Human Reasoning, Computational Logic, and Ethical Decision Making

Dominic Deckert¹ Emmanuelle-Anna Dietz Saldanha¹ Steffen Hölldobler^{1,2} **Sibylle Schwarz**³

¹International Center for Computational Logic, TU Dresden, Germany, ²North-Caucasus Federal University, Stavropol, Russian Federation, ³HWTK Leipzig, Germany

> Poznań Reasoning Week 25. August 2019

Inspiration

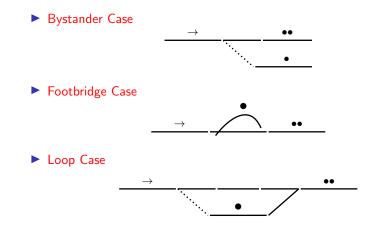
Luís Moniz Pereira and Ari Saptawijaya [2016]: Programming Machine Ethics

- Computational models of machine ethics
- Various ethical problems are implemented as logic programs
- Query for moral permissability
- However, the approach
 - does not provide a general method to account for ethical dilemmas
 - is not integrated into a cognitive theory about human reasoning

We do not aim at suggesting a moral theory!

The attempt of implementing a machine ethics, will help us understand human ethics and address the ambiguities that have not been sorted out so far. (Wallach and Allen, 2008)

Trolley Problem (Foot [1967])



Which action is morally permissable?

Ethical Decision Principles in Trolley Problems

	<u>→</u> ••	→ ••	→ <u>●</u>
	Bystander Case	Loop Case	Footbridge Case
Doctrine of double effect	change	-	-
Doctrine of triple effect	change	change	-
Maximize humans saved	change	change	throw down
action permissible say	85%	56%	12%

Maximize the number of humans saved (Utilitarism)

Could I save more humans by my action than humans that would be killed? Doctrine of double effect: Killing is not permissible as *a means to save others* If there were no human on the side track and I changed the switch

then I would still save humans on the main track?

Doctrine of triple effect: Intentional and direct kill is not permissible

Could I avoid to intentionally and directly kill someone

in order to save the others?

(Hauser, Cushman, Young, Kang-Xing Jin, Mikhail [2007]:

A Dissociation Between Moral Judgments and Justifications)

Ethical Decision Making

Basic assumption Humans construct models and reason with respect to them

An integrated computational cognitive theory must be able to consider

- actions with direct and indirect effects
- ethical principles
- conditional reasoning

If I change the switch then I will save the humans on the main track

counterfactual or prefactual reasoning

Is a killing a side effect? If there were no human on the side track and I changed the switch then I would still save the humans on the main track

This is ongoing work

Towards an Integrated Computational Cognitive Theory

- Stenning, van Lambalgen [2009]
 Human Reasoning and Cognitive Science
- Hölldobler, Kencana Ramli [2009]
 Logic Programs under Three-Valued Łukasiewicz's Semantics

Normal logic programs \mathcal{P} are finite sets of

Facts
$$e \leftarrow \top$$
Rules $s \leftarrow e \land \neg ab_1$ $s \leftarrow t \land \neg ab_2$ Assumptions $ab_1 \leftarrow \bot$ $ab_2 \leftarrow \bot$

Weak completion $wc\mathcal{P}$ of program \mathcal{P}

 $\{e \leftrightarrow \top, s \leftrightarrow (e \land \neg ab_1) \lor (t \land \neg ab_2), ab_1 \leftrightarrow \bot, ab_2 \leftrightarrow \bot\}$

Least models under three-valued Łukasiewicz logic

$$\langle \{e, s\}, \{ab_1, ab_2\} \rangle$$

Three-Valued Łukasiewicz Logic

truth values $\{0,1/2,1\}$ (syntactically represented by $\{\top,\mathsf{U},\bot\})$

negation $\neg x \mapsto 1 - x$ (weak) disjunction $x \lor y \mapsto \max(x, y)$ (weak) conjunction $x \land y \mapsto \min(x, y)$ implication $x \to y \mapsto \min(1, 1 - x + y)$ equivalence $x \leftrightarrow y \mapsto 1 - |x - y|$

\rightarrow	0	1/2	1	\leftrightarrow	0	1/2	1
0	1	1	1	0	1	1/2	0
1/2	1/2	1	1	1/2	1/2	1	1/2
1	0	1/2	1	1	0	1/2	1

 $\begin{array}{ll} \mbox{truth ordering } 0 <_t 1/2 <_t 1 & \mbox{(total)} \\ \mbox{information ordering } 1/2 <_i 0 \mbox{ and } 1/2 <_i 1 & \mbox{(partial)} \end{array}$

Weak Completion Semantics of logic programs (WCS)

(Hölldobler and Kencana Ramli [2009])

Semantic Operator $\Phi_{\mathcal{P}}(I) = \langle J^{\top}, J^{\perp} \rangle$ of ground program \mathcal{P} , where

$$\begin{array}{rcl} J^{\perp} &=& \{A \mid & A \leftarrow Body \in \mathcal{P} \text{ and } I(Body) = \top \} \\ J^{\perp} &=& \{A \mid & A \leftarrow Body \in \mathcal{P} \text{ and} \\ & & \text{for all } A \leftarrow Body \in \mathcal{P} \text{ we find } I(Body) = \bot \} \end{array}$$

Least model of weakly completed program $\mathcal{P}=\text{least}$ fixed point of $\Phi_{\mathcal{P}}$

$$\{e \leftarrow \top, s \leftarrow e \land \neg ab_1, s \leftarrow t \land \neg ab_2, ab_1 \leftarrow \bot, ab_2 \leftarrow \bot\}$$

$$\begin{array}{cccc} & \top & \bot \\ \hline I & = & \langle & \emptyset & , & \emptyset & \rangle \\ \Phi_{\mathcal{P}}(I) & = & \langle & \{e\} & , & \{ab_1, ab_2\} & \rangle \\ \Phi_{\mathcal{P}}(\Phi_{\mathcal{P}}(I)) & = & \langle & \{e, s\} & , & \{ab_1, ab_2\} & \rangle \end{array}$$

 $\Phi_{\mathcal{P}}(\Phi_{\mathcal{P}}(I))$ is a fixed point of $\Phi_{\mathcal{P}}$

Resoning under Weak Completion Semantics

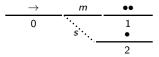
Under WCS

- represent a scenario as a logic program
- compute the least model of the weak completion of the program
- reason with respect to the least model
- add skeptical abduction if necessary
- WCS is an integrated computational cognitive theory
 - suppression task
 - selection task
 - belief bias effect
 - syllogistic reasoning
 - spatial reasoning

How can we add actions and causality to WCS?

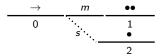
Fluent Calculus (Hölldobler and Schneeberger [1990])

- states are represented as multisets of fluents
- states are changed by the execution of actions
- actions are specified by its preconditions and direct effects
- actions might have indirect effects, which can be computed by ramifications



 $\dot{\{}t_0, c_0, \underline{m}, h_1, h_1, h_2\dot{\}} \xrightarrow{change} \dot{\{}t_0, c_0, \underline{s}, h_1, h_1, h_2\dot{\}}$

Actions



Agent

 $action(1, 1, donothing, 1, 1) \leftarrow \top$ $action(m, 1, change, s, 1) \leftarrow \top$

Trolley

 $action(t_0 \circ c_0 \circ m, 1, downhill, t_1 \circ c_0 \circ m, 1) \leftarrow \top$ $action(t_0 \circ c_0 \circ s, 1, downhill, t_2 \circ c_0 \circ s, 1) \leftarrow \top$

 $action(t_1 \circ h_1, 1, kill, t_1, d) \leftarrow \top$ $action(t_2 \circ h_2, 1, kill, t_2, d) \leftarrow \top$

Causality

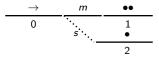
Original fluent calculus

- plan(X, P, Y) or causes(X, A, Y)
- the execution of plan P transforms state X into state Y
 - where a plan P is a sequence of actions
- causes can be defined recursively on plans

Problems:

- If a program P contains recursive structures like lists or natural numbers then Φ_P is generally not continuous anymore Avoid recursive structures or restrict them to finite subsets
- There are infinitely many ground instances of causes(X, P, X)
 - Consider as base case only finite scenarios
 - Consider only the states obtained by executing the actions of the agent
 - Compute successor states as ramifications wrt the actions of the trolley

Weak Completion Semantics and Causality



Base cases

$$\begin{array}{ll} \text{causes}(\text{donothing}, t_0 \circ c_0 \circ \textbf{m} \circ h_1 \circ h_1 \circ h_2, 1) & \leftarrow \top \\ \text{causes}(\text{change}, t_0 \circ c_0 \circ \textbf{s} \circ h_1 \circ h_1 \circ h_2, 1) & \leftarrow \top \end{array}$$

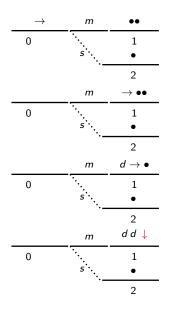
Recursive case

$$\begin{aligned} \mathsf{causes}(\mathsf{A}, \mathsf{E}_1 \circ \mathsf{Z}_1, \mathsf{E}_2 \circ \mathsf{Z}_2) &\leftarrow \mathsf{action}(\mathsf{P}_1, \mathsf{P}_2, \mathsf{A}', \mathsf{E}_1, \mathsf{E}_2) \\ &\wedge \mathsf{causes}(\mathsf{A}, \mathsf{P}_1 \circ \mathsf{Z}_1, \mathsf{P}_2 \circ \mathsf{Z}_2) \\ &\wedge \neg \mathsf{ab}(\mathsf{A}') \end{aligned}$$

Abnormalities

 $ab(downhill) \leftarrow \bot \qquad ab(kill) \leftarrow \bot$

The Bystander Doing Nothing



causes(donothing, $t_0 \circ c_0 \circ m \circ h_1 \circ h_1 \circ h_2, 1$)

 \Downarrow downhill

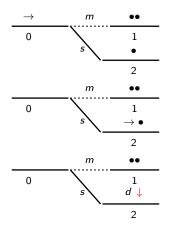
causes(donothing, $t_1 \circ c_0 \circ m \circ h_1 \circ h_1 \circ h_2, 1$)

causes(donothing, $t_1 \circ c_0 \circ m \circ h_1 \circ h_2$, d)

↓ kill

causes(donothing, $t_1 \circ c_0 \circ m \circ h_2$, $d \circ d$)

The Bystander Changing the Switch



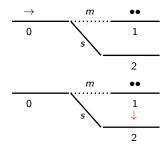
causes(change, $t_0 \circ c_0 \circ \mathbf{s} \circ h_1 \circ h_1 \circ h_2, 1$)

 \Downarrow downhill

 $causes(change, t_2 \circ c_0 \circ s \circ h_1 \circ h_1 \circ h_2, 1)$

 $causes(change, t_2 \circ c_0 \circ s \circ h_1 \circ h_1, d)$

The Bystander Changing Switch while Assuming Empty Side Track



 $causes(change, t_0 \circ c_0 \circ s \circ h_1 \circ h_1 \circ c_2, 1)$

 $causes(change, t_2 \circ c_0 \circ s \circ h_1 \circ h_1 \circ c_2, 1)$

Equational Theories

(Jaffar, Lassez, Maher [1984]:

A Theory of Complete Logic Programs with Equality)

- ${\cal P}$ ~ a (ground) normal logic program not containing the equality symbol
- ${\mathcal E}$ a set of equations
- $\equiv_{\mathcal{E}} \quad \mbox{ finest congruence relation on the set of ground terms defined by <math display="inline">\mathcal{E}$

[t] congruence class defined by the ground term t Herbrand \mathcal{E} -universe quotient of the set of ground terms modulo $\equiv_{\mathcal{E}}$ $[p(t_1, \ldots, t_n)]$ abbreviation for $p([t_1], \ldots, [t_n])$ $[p(t_1, \ldots, t_n)] = [q(s_1, \ldots, s_m)]$ iff p = q, n = m, and $[t_i] = [s_i]$ for all i

Computing Least *E*-Models

Semantic Operator $\Phi_{\mathcal{E},\mathcal{P}}(I) = \langle J^{ op}, J^{\perp}
angle$, where

$$J^{\top} = \{ [A] \mid A \leftarrow Body \in \mathcal{P} \text{ and } I(Body) = \top \}$$

$$J^{\perp} = \{ [A] \mid A \leftarrow Body \in \mathcal{P} \text{ and for all } A' \text{ where}$$

$$A' \leftarrow Body \in \mathcal{P} \text{ with } [A] = [A'] \text{ we find } I(Body) = \bot \}$$

Theorem $\Phi_{\mathcal{E},\mathcal{P}}$ is monotonic.

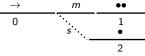
It has a least fixed point. (by Knaster-Tarski Fixed Point Theorem) Note that $\Phi_{\mathcal{E},\mathcal{P}}$ is not continuous in general.

$$q(1) \leftarrow op \qquad q(a \circ X) \leftarrow q(X) \qquad r(1) \leftarrow
eg q(X)$$

Fixed point is reached after $\omega + 1$ step, where ω is the first limit ordinal. More results under the restriction to programs \mathcal{P} that are

- propositional,
- finite ground,
- or finite datalog programs with finite Herbrand *E*-universe.
- **Theorem** $\Phi_{\mathcal{E},\mathcal{P}}$ is continuous.
- Theorem The least \mathcal{E} -model of the weak completion of \mathcal{P} is the least fixed point of $\Phi_{\mathcal{E},\mathcal{P}}$ and vice versa.

Ethical Decision Making – The Bystander Case (1)



Background Knowledge \mathcal{P}_B

 $action(t_0 \circ c_0 \circ m, 1, downhill, t_1 \circ c_0 \circ m, 1) \leftarrow \top$ $action(t_0 \circ c_0 \circ s, 1, downhill, t_2 \circ c_0 \circ s, 1) \leftarrow \top$

 $\begin{array}{l} \textit{action}(t_1 \circ h_1, 1, \textit{kill}, t_1, d) \leftarrow \top \\ \textit{action}(t_2 \circ h_2, 1, \textit{kill}, t_2, d) \leftarrow \top \end{array}$

 $ab(downhill) \leftarrow \bot$ $ab(kill) \leftarrow \bot$

$$\begin{aligned} \textit{causes}(\textit{A},\textit{E}_1 \circ \textit{Z}_1,\textit{E}_2 \circ \textit{Z}_2) \leftarrow \textit{action}(\textit{P}_1,\textit{P}_2,\textit{A}',\textit{E}_1,\textit{E}_2) \\ & \land \textit{causes}(\textit{A},\textit{P}_1 \circ \textit{Z}_1,\textit{P}_2 \circ \textit{Z}_2) \\ & \land \neg\textit{ab}(\textit{A}') \end{aligned}$$

Ethical Decision Making – The Bystander Case (2)

If I do nothing then the humans on the main track will be killed.

 \mathcal{P}_{B} causes(donothing, $t_{0} \circ c_{0} \circ \textit{m} \circ h_{1} \circ h_{1} \circ h_{2}, 1) \leftarrow \top$

Yes

▶ Its least \mathcal{E} -model maps causes(donothing, $t_1 \circ c_0 \circ m \circ h_2, d \circ d$) to \top

If I change the switch then the humans on the main track will be saved. Yes

If I change the switch then the human on the side track will be killed. Yes

 \mathcal{P}_{B} causes(change, $t_{0} \circ c_{0} \circ s \circ h_{1} \circ h_{1} \circ h_{2}, 1) \leftarrow \top$

▶ Its least \mathcal{E} -model maps *causes*(*change*, $t_2 \circ c_0 \circ s \circ h_1 \circ h_1, d$) to \top

Ethical Decision Making - The Bystander Case (3)

Changing the switch is preferable to do nothing as it will kill fewer humans. Yes

 $\begin{array}{l} \mathcal{P}_B \\ \textit{causes}(\textit{donothing}, t_0 \circ c_0 \circ \textit{m} \circ h_1 \circ h_1 \circ h_2, 1) \leftarrow \top \\ \textit{causes}(\textit{change}, t_0 \circ c_0 \circ \textit{s} \circ h_1 \circ h_1 \circ h_2, 1) \leftarrow \top \end{array}$

▶ Its least \mathcal{E} -model maps the following atoms to \top

causes(donothing, $t_1 \circ c_0 \circ m \circ h_2$, $d \circ d$) causes(change, $t_2 \circ c_0 \circ s \circ h_1 \circ h_1$, d)

Using

$$\begin{array}{l} \textit{prefer}(A_1, A_2) \leftarrow \textit{causes}(A_1, Z_1, D_1) \\ & \land \textit{causes}(A_2, Z_2, D_1 \circ d \circ D_2) \\ & \land \neg ab_{\textit{prefer}}(A_1) \\ ab_{\textit{prefer}}(\textit{change}) \leftarrow \bot \\ ab_{\textit{prefer}}(\textit{donothing}) \leftarrow \bot \end{array}$$

In the least model the following atoms are mapped to \top

```
causes(donothing, t_1 \circ c_0 \circ m \circ h_2, d \circ d)
causes(change, t_2 \circ c_0 \circ s \circ h_1 \circ h_1, d)
```

The number of humans killed is minimized by changing the switch.

Utilitarianism

Ethical Decision Making – The Bystander Case (4)

If there were no human on the side track and I changed the switch then I would still save the humans on the main track. Yes

\$\mathcal{P}_B\$ causes(change, t_0 \circ c_0 \circ s \circ h_1 \circ h_1 \circ c_2, 1) \leftarrow \T\$
Its least \$\mathcal{E}\$-model maps causes(change, t_2 \circ c_0 \circ s \circ h_1 \circ h_1 \circ c_2, 1) to \T\$
Using

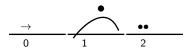
$$\begin{array}{l} \textit{permissible(change)} \leftarrow \textit{prefer(change, donothing)} \\ & \land \textit{causes(change, } t_2 \circ c_0 \circ s \circ h_1 \circ h_1 \circ c_2, 1) \\ & \land \neg ab_{\textit{permissible}}(\textit{change}) \\ ab_{\textit{permissible}}(\textit{change}) \leftarrow \bot \end{array}$$

allows to conclude that changing the switch is permissible

Doctrine of Double Effect

(Killing is permissible as a side effect but not as a means to save others)

Ethical Decision Making - The Footbridge Case



Base cases

 $\begin{aligned} \textit{causes}(\textit{donothing}, t_0 \circ c_0 \circ c_1 \circ b_1 \circ h_2 \circ h_2, 1) \leftarrow \top \\ \textit{causes}(\textit{throw}, t_0 \circ c_0 \circ h_2 \circ h_2, d) \leftarrow \top \end{aligned}$

Is throwing the person from the bridge preferable to do nothing? No

$$prefer(A_1, A_2) \leftarrow causes(A_1, Z_1, D_1) \\ \land causes(A_2, Z_2, D_1 \circ d \circ D_2) \\ \land \neg ab_{prefer}(A_1) \\ ab_{prefer}(throw) \leftarrow intentional_direct_kill(throw) \\ intentional_direct_kill(throw) \leftarrow \top$$

Pushing the person from the bridge is not permissible by Doctrine of Double Effect

Ethical Decision Making – The Loop Case

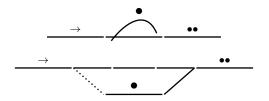
If I do nothing then the humans on the main track will be killed. Yes

- If I change the switch then the humans on the main track will be saved. Yes If I change the switch then the human on the side track will be killed. Yes
- If there were no human on the side track and I changed the switch then I would still save the humans on the main track.
 No

Changing the switch is not permissible by

Doctrine of Double Effect

Ethical Decision Making: Loop versus Footbridge Case



- Humans seem to distinguish the cases
- Throwing the person from the bridge is not permissible
- However, changing the switch is acceptable
- Direct versus indirect intentional kill

Could I avoid to intentionally and directly kill someone to save others?

Doctrine of Triple Effect

(Intentional and direct kill is not permissible.)

Conclusion

- This is ongoing work
- We can solve all examples discussed in (Pereira, Saptawijaya 2017) uniformly in WCS with equality
- We are aiming at more general ethical rules
 - If an action does something good and nothing abnormal is known then it is permissable.
 - A direct intentional kill is an abnormality.
- Extension of WCS to more than three-valued Łukasiewicz logic