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The methods to access large relational databases in a distributed system are well established: the
relational query language SQL often serves as a language for data access and manipulation, and in
addition public interfaces are exposed using communication protocols like REST. Similarly to REST,
GraphQL is the query protocol of an application layer developed by Facebook. It provides a unified
interface between the client and the server for data fetching and manipulation. Using GraphQL’s
type system, it is possible to specify data handling of various sources and to combine, e.g., relational
with NoSQL databases. In contrast to REST, GraphQL provides a single API endpoint and supports
flexible queries over linked data.

GraphQL can also be used as an interface for deductive databases. In this paper, we give an
introduction of GraphQL and a comparison to REST. Using language features recently added to
SWI–Prolog 7, we have developed the Prolog library GraphQL.pl, which implements the GraphQL
type system and query syntax as a domain–specific language with the help of definite clause gram-
mars (DCG), quasi quotations, and dicts. Using our library, the type system created for a deductive
database can be validated, while the query system provides a unified interface for data access and
introspection.

1 Introduction

In times of big data, the increasing growth of data sets is a big challenge for both data storage and data
access. The traditional back–end services became more diverse in the recent past. Today, relational
databases are used side by side with document–oriented NoSQL databases, each with a different data
query mechanism. To bridge over the various query languages, abstraction layers have been introduced.

In October 2015, Facebook open–sourced GraphQL [2], an application layer query language, which
has been internally developed since 2012. Today, most of Facebook’s applications make use of GraphQL
as the data–fetching mechanism, resulting in hundreds of billions of GraphQL API calls a day [1].

The need for GraphQL arose while developing native mobile applications side by side with web
applications. In order to share the code base where possible, a unified application programming inter-
face (API) for data access should be provided. At the same time, the introduction of an abstraction layer
hides the internals like the used database and schemas. In an agile development cycle, this allows to
change front–end and back–end technologies simultaneously without impeding each other.

Because of various problems and deficiencies in the alternatives of such an abstraction layer and
for accessing hierarchical data, a new query language has been defined. The most popular alternative
architectural style REST [3], the representational state transfer, appeared unsuitable for applications
that need a lot of flexibility when accessing the data while reducing the number of round–trip times
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in a distributed system. As a result, GraphQL provides only a single API endpoint for data access,
which is backed by a structured, hierarchical type system. Because of this, the GraphQL specification
defines besides the query language mechanisms for query validation and provides self–descriptiveness
by introspection.

This makes GraphQL a good fit for a unified abstraction layer for static, predefined deductive database
queries. The type system is storage–independent and can easily integrate various data sources, like rela-
tional and document–oriented databases as well as file–based data formats. With the deductive database
system DDBASE [7], we already have available a system to connect various storage back–ends like CSV

and SQL. It is part of the Dislog’s Developer Toolkit DDK1, which also contains tools for querying,
updating and transforming XML data. With GraphQL, this results in a interface, which can be integrated
in existing back–end environments and interact with any programming language used for the front–end
development.

In this paper, we choose to use SWI–Prolog to develop a GraphQL server implementation, called
GraphQL.pl. With the use of definite clause grammars (DCG), Prolog gives a natural approach to im-
plement the type system and query document as an external domain–specific language so that the code
examples used in the GraphQL specification can be used directly to define the GraphQL server. With
quasi quotations, which were introduced in SWI–Prolog of version 6.3.17, this domain–specific language
can be directly embedded into normal Prolog code, which lowers the barrier for GraphQL–experienced
developers who are not yet familiar with Prolog. For the sake of a shorter and prettier syntax, which
is more familiar to developers coming from other programming languages, our implementation makes
great use of features supported only by recent SWI–Prolog releases. Therefore GraphQL.pl requires
SWI–Prolog of at least version 7.

The paper is organised as follows: Section 2 introduces GraphQL and gives a comparison to the
well–established architectural pattern REST. In Section 3, we discuss the definition of GraphQL as a
domain–specific language in Prolog. Implementation details of GraphQL.pl are presented in Section 4,
with a focus on the definition of GraphQL’s type system using definite clause grammars, quasi quotations,
and dicts. Section 5 presents a use case of our implementation to define a standalone GraphQL server.
Finally, we conclude with a summary and discussion of future work in Section 6.

2 Background: The GraphQL Application Layer

Although used several years in production, the GraphQL specification is still under active development.
The most recent Working Draft specification[2] is of April 2016. Most of the changes since its initial
publication in October 2015 have been clarifications in the wording.

Along with the GraphQL specification, Facebook published a reference implementation of a GraphQL
server using JavaScript2. This reference implementation only provides base libraries that would be the
basis for a GraphQL server and is not yet feature–complete. In contrast to our implementation, the
JavaScript module does not support the syntax used in the GraphQL specification, i.e. the types have to
be specified in a proper format based on JavaScript, while GraphQL.pl implements them as a domain–
specific language.

Because GraphQL got lots of exposure recently, there are GraphQL implementations in most popular
programming languages, including PHP, Java, C/C++, and Haskell. There is a large number of tools to
interact with GraphQL or connect it with existing back–end technologies. The Awesome list of GraphQL

1http://www1.pub.informatik.uni-wuerzburg.de/databases/ddbase/
2Facebook on GitHub: GraphQL.js, https://github.com/graphql/graphql-js
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and Relay3 collects a great number of existing GraphQL implementations, tools and related blog posts
and conference videos.

GraphQL ServerDifferent Client Apps Storage Back-ends

Figure 1: Illustration of the role of the GraphQL Server in a distributed system

The GraphQL server acts as a unified layer for data access and manipulation. In a distributed system,
it is located at the same layer like REST, SOAP, and XML–RPC, that means it is used as an abstraction
layer to hide the database internals. Similar to these architectural patterns, GraphQL does not support
ad–hoc queries. That means that unlike SQL, the general structure of possible queries is defined by the
GraphQL server provider in advance. It is not possible to join different entities in a single query, unless
their relation has been specified in the GraphQL type definition.

As illustrated in Figure 1, client applications written in various programming languages can send
requests to the GraphQL server, which validates and executes the query by collecting the information
from the various data sources. This protocol is a classical request–response message exchange pattern,
with the following two messages:

– a request, which must be provided in a well–defined query language and send as plain string to the
single GraphQL endpoint, and

– a response of the GraphQL server specified as a JSON document.

In most applications, complex, structured data is requested from the API. To provide a single entity
with all its relations (and possibly their relations, etc.) from a single API endpoint, a GraphQL query is
structured hierarchically. The structure of the query represents the data that is expected to be returned.
In general, each level of a GraphQL query corresponds to a particular type. They can be nested and even
recursive. The result document is a set of entities with their relations specified in the type system. This
clarifies the name GraphQL, as these entities and relations can be thought of as a graph.

As a motivating example, we will consider a GraphQL server instance to access and manipulate data
of persons along with their favourite books. Figure 2 presents on the left–hand side an example query
document to get some basic information about the person named Alice, i.e. her name and age; the
attribute age should be renamed to years in the result set. The query includes her favourite books with
their title and authors. The string–based format of the request message presented in the example strictly
follows the GraphQL specification. The aim of our work is to implement this format as a domain–specific
language in Prolog using DCGs.

On the right–hand side of Figure 2, an example result for the query is presented. By definition of
the GraphQL specification, the returned data has to be encoded as a JSON document. The structure and

3https://github.com/chentsulin/awesome-graphql
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query getAlice { GraphQL

person(name: "Alice") {

name

years: age

books(favourite: true) {

# is implicitly a list

title

authors {

name

}

}

}

}

{ "data": { Json
"person ": {

"name": "Alice",

"years ": 31,

"books ": [

{

"title ": "Moby -Dick",

"authors ": [{

"name": "H. Melville"

}]

}

]

} } }

Figure 2: Example GraphQL query and corresponding result in JSON

entities have to follow the request: only keys which were specified in the query are allowed to be part of
the result document.

2.1 Type System

Being part of the data access and manipulation layer, GraphQL does not support ad–hoc queries like
most standard database drivers provide. While with SQL it is possible to dynamically create queries and
join multiple tables with almost no restriction, GraphQL queries have to satisfy the given type system
defined by the GraphQL server administrator. The entire type system is called the schema.

GraphQL’s type system is very expressive and supports features like inheritance, interfaces, lists,
custom types, enumerated types. By default, every type is nullable, i.e. not every value specified in the
type system or query has to be provided.

type Person { GraphQL

name: String!

age: Integer

books(favourite: Boolean ): [Book]

friends: [Person]

}

type Book {

title: String!

authors: [Person]

}

type Query { GraphQL

person(name: String !): Person

book(title: String !): Book

books(filter: String ): [Book]

}

Figure 3: Type definitions for the motivating example query of Figure 2 and GraphQL’s Query type

In Figure 3 we present a minimal definition of a type system to satisfy the example query of Figure 2.
It defines the two types Person and Book as object types, i.e. as a number of field–value–pairs. The
fields can have arguments. For example, in order to retrieve the books of a Person, it can be specified to
return only favourite books by providing an appropriate Boolean flag.
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The two types Person and Book reference each other, i.e. the underlying model for an author is a per-
son. The type Person is recursive since the friends field returns a list of Person. String, Integer,
and Boolean are scalars and among others primitive values defined in the GraphQL specification. The
exclamation mark declares values which must not be null, i.e. every Person must specify a name value.
Types enclosed by square brackets like [Book] are ordered collections of the given type.

Every GraphQL type system must specify a special root type called Query, which serves as the entry
point for the query’s validation and execution. As illustrated in Figure 3, the fields of this object type
can also have parameters, here name and title which are of the type String and must be provided (as
denoted by the exclamation mark).

A more detailed introduction to GraphQL’s type system, which supports inheritance and composition
through fragments, is out of scope of this work. Nevertheless, our presented GraphQL.pl system imple-
ments the more complex properties of the type system like interfaces, unions, enums, and execution
directives.

We want to highlight that the GraphQL specification standardizes only the format of the query doc-
ument, but not how to denote the type system. The query language is consistent for all GraphQL server
implementations and related tools and every GraphQL server has to implement it, independent of the
underlying programming language. As opposed to this, the mechanism to specify the type system is
currently closely related to the used GraphQL system. For example, in Facebook’s reference imple-
mentation, the types are defined by calling appropriate JavaScript functions. Instead we propose to use
the same domain–specific language as used for the query document. This also eases the usage of the
GraphQL specification, because the type examples there are denoted in a format similar to the query
document, too.

2.2 Relation to the Communication Architecture REST

The type system of GraphQL is similar to the definition of resources in the REST architecture. In both
architectural patterns there are no ad–hoc queries, instead the system’s types are defined in advance,
specifying possible parameters and the output format.

R
ES

T 
C

lie
nt

R
ES

T 
Se

rv
er

GET /persons/alice?books=favourite

{ "name": "Alice", 
   "favourite_books": [2] }

GET /books/2

{ "title": "Moby-Dick", 
   "authors": ["melville"] }

GET /persons/melville

{ "name": "H. Melville" }

G
ra

ph
Q

L 
Se

rv
er

String-based Query

 JSON Response

G
ra

ph
Q

L 
C

lie
nt

Figure 4: Illustration of the request–response message sequences of a complex query in REST and
GraphQL
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Both GraphQL and REST are independent of the underlying programming language and used data-
base back–ends. The communication with the client is based on a request–response message exchange
pattern. But in contrast to GraphQL, a REST interface in general provides multiple API endpoints, one
for each resource. For example, to request complex data consisting of multiple entities and different
types, a REST–based protocol has to address multiple resources, resulting in a sequence of round–trip
times. The two accessing patterns are illustrated in Figure 4 using the example of requesting a person
with its favourite books.

The REST–based data access approach has the need of three round–trip times to collect the required
information, which must be transformed into a single object on the client–side. Besides this overhead,
REST supports caching and partial documents. The often used transport protocol HTTP adds support for
authentication and authorisation, too. These features as well as the freedom of choice with regard to the
used data exchange formats are not possible with GraphQL as of yet. In Table 1 we give an overview of
the properties of REST and GraphQL.

Property REST GraphQL
API Endpoints multiple single
Message format
for queries

string–based string

Message format
for mutations

any string

Message format
for response

any,
especially hypermedia

JSON

Type System
weakly typed,

no machine–readable metadata
strongly typed,

meta data for introspection
Built–in features cacheable query validation, introspection

Table 1: Comparison of REST and GraphQL

3 Definition of GraphQL as a DSL

The aim of our implementation is to support the GraphQL syntax presented in its specification to ease
the use of the given examples with our Prolog implementation. The syntax for query documents is
well–defined in the specification. However, the format to declare types4 is not standardized at all and
might therefore be different in GraphQL implementations of other programming languages. We choose
to follow the format given for the code examples in the GraphQL specification. In this way, the code
snippets mentioned in the documentation can easily be used to create a standalone GraphQL server.

To support the GraphQL syntax in GraphQL.pl, we define an appropriate domain–specific lan-
guage (DSL), for what Prolog is very suitable. Simple languages can be modelled directly using Prolog
syntax only, i.e. by defining terms and declaring appropriate operators. For instance, the JSON data
format as presented on the right–hand side of Figure 2 is valid Prolog syntax, although a shorter notation
is feasible using Prolog atoms.

In a similar way, a subset of the GraphQL language could be represented by Prolog terms with only
minimal modifications, i.e. the language could be implemented as an internal DSL. As a result, it would

4The GraphQL types are declared when setting up a GraphQL server, generally by the database administrator.
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be possible to use the GraphQL examples directly within Prolog, without having the need to write a
parser first. The definition as an internal DSL would also profit from tools actually written for Prolog.

We want to discuss the definition of GraphQL as an internal DSL in Prolog based on the declaration
of the type Person as presented in Figure 3. By defining the (!)/1 suffix operator, the declaration
of non–nullable types is syntactically valid. Similarly, we define type/1 as a prefix operator. Since
whitespaces and commas are insignificant for GraphQL and type names can start with a lowercase letter,
the Person type definition of Figure 3 could be expressed by the term presented in Figure 5, which is
valid syntax of standard Prolog.

:- op(800, xf , !). Prolog
:- op(650, fx , type).

?- Person = type person(

name: string!,

age: integer ,

friends: [person],

books: [book] ).

Figure 5: Operator definitions to define GraphQL as an internal DSL

The notation of Figure 5 almost follows the GraphQL specification, only the curly braces had to
be replaced to achieve a valid Prolog term5. Nevertheless, this approach of defining the GraphQL type
specification as an internal DSL in Prolog is very restrictive:

– Types have to start with a lowercase letter to not create a variable. Although this is allowed
according to the GraphQL specification, it is convention to start type names with an uppercase
letter. Especially it is not possible to reference built–in types, since String, Integer etc. all start
with an uppercase letter.

– Because we replaced curly with normal braces, query documents could contain compounds with
two pairs of brackets: one for the arguments, another for nested items. In the query document of
Figure 2, this results in person(name: ’Alice’)(name, years: age, ...), which is not valid
in Prolog6.

Because of these restrictions and since GraphQL.pl shall completely support the syntax given in the
GraphQL specification, the definition of the language as an external DSL might be more reasonable. In
the following we will develop a way of embedding GraphQL in SWI–Prolog 7 using quasi quotations.

4 Implementation Using Features of SWI–Prolog 7

We have implemented the GraphQL.pl system in SWI–Prolog [8], using features recently added to SWI–
Prolog of version 7 [9]. Our implementation makes great use of quasi quotations, definite clause gram-
mars, and dicts.

5Since the introduction of dicts in SWI–Prolog 7, person{} would be syntactically correct, i.e. it is not necessary to replace
the curly braces. We present dicts in Section 4.3.

6Even using dicts in SWI–Prolog 7, i.e. to use the term person(name: ’Alice’){name: , years: age, ...}, this would
not be valid, since a dict’s tag must be either a variable or atom.
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4.1 Quasi Quotations

For more complex languages or if Prolog’s syntax is too restrictive, other mechanisms for the definition of
external DSLs have been discussed [10]. Since Prolog has poor support for quoting long text fragments,
quasi quotations have been introduced to SWI–Prolog in 2013 [11]. They are inspired by Haskell and in
similar form also part of other programming languages like JavaScript (called tagged template strings).
Quasi quotations in SWI–Prolog have been used to implement external languages like HTML, SQL, and
SPARQL.

The basic form of a quasi quotation is of the following form, where Tag is a callable Prolog predicate
with an arity of 4 and Content is a string:

{|Tag||Content|} e.g. {|html||<p>Hello World!</p>|}

For better readability in this paper, we will enclose the Tag by whitespaces, which is still valid SWI–
Prolog 7 syntax. The quasi quotation presented before invokes the following call by the Prolog parser.
Because quasi quotations are resolved using Prolog’s term expansion mechanism, the following call is
invoked at compile time:

call(+TagName, +ContentHandle, +SyntaxArgs, +Vars, -Result)

The quasi quotation’s Tag can be any term with the functor TagName/TagArity. The Tag’s argu-
ments are passed as a list SyntaxArgs7, which guarantees that the TagName predicate is always of arity
4. The Vars argument provides access to variables of the quasi quotation’s context. ContentHandle is
an opaque term that carries the content of the quasi quoted text and position information about the source
code. It is usually passed to with quasi quotation input/3 or phrase from quasi quotation/2.
While the first predicate creates a stream, we are using phrase from quasi quotation/2, which
parses the enclosed string according to a given DCG. For instance, Figure 6 illustrates the definition
of the {| type || ... |} quasi quotation, which processes the given Content by using the non–
terminal dcg type of the DCG.

:- use_module(library(quasi_quotations )). Prolog
:- quasi_quotation_syntax(type).

type(ContentHandle , SyntaxArgs , Vars , Result) :-

phrase_from_quasi_quotation(dcg_type(Vars , Result), ContentHandle ).

dcg_type(Vars , Result) --> ... % DCG definitions

Figure 6: Definition of the type quasi quotation

In our implementation, we use quasi quotations for being able to embed the query document as
well as the type definitions in the Prolog source code. In order to define types and the overall schema,
GraphQL.pl provides several quasi quotation tags, for example type/4 and schema/4. Figure 7 gives
an example on how to use the quasi quotations to define types and a schema. All user–defined type
names starting with an uppercase letter create corresponding Prolog variables, i.e. the quasi quotations
in Figure 7 make the variables Person, Book and Query available. In this way, it is possible to reference
the Book type in the type definition of Person and vice–versa. In contrast, the built-in types like Integer
create atoms beginning with a lowercase letter, i.e. integer etc.

7This can also be expressed as: Tag =.. [TagName|SyntaxArgs], length(SyntaxArgs, TagArity).
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Besides these tags, we define quasi quotations for simple, text–based specifications of enum types
and interface declarations. The query and mutation documents can be specified with a quasi quotation
as well, although in general they are given as strings as part of the GraphQL request sent to the server.

:- use_module(library(graphql), [type/4, schema /4]). Prolog
example_schema(S) :-

Person = {| type ||

name: String!

age: Integer

books(favourite: Boolean ): [Book]

friends: [Person]

|},

S = {| schema ||

type Query {

person(name: String !): Person

book(title: String !): Book

books(filter: String ): [Book]

}

type Book { ... }

|}.

Figure 7: Definition of the type Person and schema S using quasi quotations

4.2 Definite Clause Grammars

The GraphQL specification provides a grammar to define the format of a query document. It is the
basis for the DCGs [4] used in our implementation to parse the query document. For parsing the type
definitions, the same mechanism is used.

In Figure 8 we present the simplified grammar to parse the type quasi quotation. It is used by
phrase from quasi quotation/2 as shown in Figure 6. For the sake of simplicity, we omit the gen-
eration of the internal representation Result, and also the handling of whitespaces and the specification
of minor DCG rules. Using this grammar, the type definition specified in Figure 7 can be processed.

Most of the grammar specified in the GraphQL specification for query documents has been trans-
lated into a DCG, resulting in more than 50 non–terminals just to parse queries. The entire DCG rule
base to parse the type system as well is implemented in more than 600 lines of code with more than
80 non–terminals. Their names are based on the grammars presented in the GraphQL specification.
However, to define sequences of elements, the DCG easily gets bloated by helping rules. Because the
Extended Definite Clause Grammars [5] are also part of the DDK, we intend to adopt EDCG rules for
writing more powerful grammars in a simpler way in the future.

4.3 Internal Representation Using Dicts

The DCG is used to parse the given quasi quotations of type definitions and query documents. Along
with this, we create an abstract syntax tree (AST) as an internal representation. We use SWI–Prolog’s
dicts to create nested terms holding the given information.

With SWI–Prolog 7, dicts were introduced as a new data type for named key–value associations [9].
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dcg_type(_Vars , _Result) --> % ignore for simplicity Prolog
list_of_type_definition. % resolves to ’type_definition ’

type_definition -->

name , % the type ’s name in the object

( arguments | "" ), % optional , e.g. favourite: Boolean

":",

type.

type -->

( named_type % e.g. Integer

| list_type % e.g. [Book]

| non_null_type ). % e.g. String!

named_type -->

( primitive_type % built -in type of GraphQL

| prolog_var_name ). % part of library(dcg/basics)

list_type --> "[", type , "]".

non_null_type -->

( named_type | list_type ),

"!".

Figure 8: Extract of the DCG to parse the type quasi quotation

In previous versions this was often realised using a list of Key=Value pairs. For example JSON docu-
ments were encoded as what follows:

json([ name="Alice", years=31, ... ])

This notation does not ensure the uniqueness of the keys and does not provide a short notation to
directly access a child node. The new syntax of dicts resembles the one of JSON and should be more
familiar for developers of other programming languages. It is of the following form8:

Tag{ Key1: Value1, Key2: Value2, ... }

The Tag is either an atom or a variable. We also make use of the anonymous dict {...}, where Tag
is the anonymous variable. For example, the type information created by the type quasi quotation are
encoded by a dict of the following form:

object{

fields: _{

FieldName1: field{

type: Type1,

resolver: Resolver1

}, ... },

resolve: Resolver }

8In the following, our code examples will include both quasi quotations and dicts, which might confuse the reader. Although
their visual appearance is similar, they can easily be distinguished by their start token:

– quasi quotations are opened by {|,

– dicts with Tag{.
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This nested object{} dict contains a collection of type definitions as the fields entry. It corre-
sponds to the list of type definitions DCG rule of Figure 8, i.e. it has a FieldName for every
type definition. The resolve entries are automatically created for every type and field. They are
used to specify how to retrieve the data for this component and are unbound at first. In Section 5 we
introduce their usage in detail.

Dicts can be unified following the standard symmetric Prolog unification rules, although the unifica-
tion will fail if both dicts do not contain the same set of keys:

?- p{ a: 1, b: 2 } = P{ a: A, b: B }.

P = p, A = 1, B = 2.

?- p{ a: 1, b: 2 } = P{ a: A }.

false.

Besides this, there are two methods to access a single value of the Key in the dict. With Dict.Key

the related value is retrieved. Since this dot notation will throw an error if the given Key does not appear
in the Dict, we prefer using Dict.get(Key), which instead silently fails for missing keys and can
therefore be used as a pre–condition in a Prolog rule.

After parsing the quasi quotations using DCGs, the GraphQL schema and types are represented by
dicts. The AST generation was omitted in the code example of Figure 8 for the sake of simplicity. In
Figure 9 we present an extract of the generated dicts.

example_schema(S) :- Prolog
Person = object{

fields: _{

name: field{ type: string , nonNull: true , resolve: _ },

age: field{ type: integer , resolve: _ },

books: list{

arguments: _{ favourite: field{ type: boolean } },

kind: field{ type: Book }, resolve: _ },

friends: list{ kind: field{ type: Person }, resolve: _ } },

resolve: _ },

S = schema{

query: object{

fields: _{

person: field{ type: Person , ... },

book: field{ ... }, books: field{ ... } }, ... } }.

Figure 9: Extracts of the generated dicts for the type and schema definitions of Figure 7

In SWI–Prolog without occurs check, a call Person = object{ ... Person ... } does not raise an
error. Instead, a corresponding cyclic substitution is created. Later, we will select the types of sub
fields of Person using the dot notation, e.g., T = Person.fields.friends.kind.type. Since only
GraphQL’s types can be cyclic but not the queries, this will not lead to non-termination.

The AST for the query document is of an equivalent form. In Figure 9 we omitted additional in-
ternal properties used for introspection. For example it is possible to give each type and field a textual
description which can be accessed with the help of the built–in type query.
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5 Query Execution Using Type and Field Resolvers

In this section, we present a working example for GraphQL.pl, which illustrates the query execution and
validation. For data storage, we use Prolog facts person/6 and book/3 as presented in Figure 10. Their
data correspond to the type definitions of Figure 3. To return either all or only the person’s favourite
books based on the favourite argument we use an additional Favs data entry. The example can easily
be adapted to request the data from external databases with the help of SQL or from text–based formats
like XML and CSV.

% person(Id , Name , Age , Books , Favs , Friends) Prolog
person(1, ’Alice ’, 31, [1, 2], [2], [2]).

person(2, ’Bob ’, 42, [2], [2], [1, 3]).

person(3, ’H. Melville ’, 72, [1], [], []).

person(4, ’D. Defoe ’, 71, [], [], []).

% book(Id , Title , Authors)

book(1, ’Robinson Crusoe ’, [4]).

book(2, ’Moby -Dick ’, [3]).

Figure 10: Example fact base

In order to execute a query document, both the AST of the query and of the type system are traversed
simultaneously in a top–down approach. Beginning with the root type Query specified in the GraphQL
schema, the GraphQL.pl system searches for the requested fields in the type definitions. To get the
appropriate value, for every type of the schema a resolve/5 predicate has to be defined, which we call
the resolver. It is used to generate the resulting dict for a specific type, which is the basis for the JSON

document returned to the client. A resolver is of the following form:

resolve(+Id, +Parent, +Args, +AST, -Result)

It is called every time the GraphQL.pl system has to retrieve the value of a field in the query docu-
ment. This Result, which must be returned as a dict, is made up based on the given context information:
Id is a unique identifier which might be used to retrieve a single data set; Args is a dict with all the argu-
ments specified for the current field and might be empty, i.e. {}; AST provides the static type information
of the currently examined GraphQL type. The Parent argument passes the calculated result of the su-
perior document level. In this way it is possible to, e.g., create a particular resolver for the books field in
the Person type of Figure 3, which has access to the calculated answer dict of the person. This technique
is used to refine or complete the answer of the parent’s level.

The resolver’s arguments might not be bound on every predicate call, for example, there is no Parent
information for the query’s root type. In most cases no unique identifier Id is specified, instead the
Result has to be shaped based on the Parent and Args context information.

In Figure 11 we define the resolvers for our usage example9, resolve p/5, resolve b/5, and
resolve p b/5. They are required to calculate the answer dicts based on the given fact base:

9To use the GraphQL.pl system, the user has to implement a resolver for every GraphQL type, so the system is able to
retrieve the requested data according to these resolver predicates. Since the resolvers are explicitly assigned to the appropriate
types later, the predicate’s name is not significant. We choose to call them using the type’s first letter, i.e. resolve p is the
resolver for the type Person.
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resolve_p(Id, _Parent , Args , _AST , Result) :- Prolog
( Name = Args.get(name)

; nonvar(Id) ),

person(Id , Name , Age , Fri , All , Favs),

Result = _{ name:Name , age:Age , friends:Fri , books:(All , Favs) }.

resolve_b(Id, _Parent , Args , _AST , Result) :-

( book(Id, Authors , Args.get(title ))

; nonvar(Id), book(Id, Authors , Title) ),

Result = _{ title:Title , authors:Authors }.

resolve_p_b(_Id , Parent , Args , _AST , Result) :-

(All , Favs) = Parent.books ,

( Args.get(favourite) = true ->

Result = Favs

; Result = All ).

Figure 11: Definition of the resolver predicates

– resolve p/5 is the used resolver for the type Person. It collects the person’s information by its
name, provided in the Args dict. If otherwise no name argument is specified, i.e. Args.get(name)
fails, the appropriate data entry is retrieved by the given identifier Id.

– resolve b/5 retrieves the data for the type Book and similarly depends either on the book’s title
or its identifier.

– In addition to resolve p/5 we define the predicate resolve p b/5, which is used to only deter-
mine the returned value for the books field of a person.

The result of a requested Person type depends on the value of the boolean flag favourite of the
books(favourite: Boolean) selector in the query: if it is true, only the person’s favourite books
should be listed; otherwise all. Therefore we determine the value of the books field in two steps, using
the predicates mentioned before:

1. When determining the field–value associations for the Person object type by calling the
resolve p/5 predicate, the value for the books field is set to the tuple (All,Favs).

2. Because the fields are resolved in a top–down approach, GraphQL.pl now takes into account possi-
bly defined resolvers of the next level’s fields. We use the resolve p b/5 resolver as a refinement
of the books field. It returns either the All or Favs tuple element provided in Parent.books,
depending on the favourite: Boolean flag given as Args.favourite property.

As a last step for the GraphQL.pl server declaration, the resolvers have to be connected to the ap-
propriate types and fields. Every type and field generated using GraphQL.pl’s quasi quotations has
a special resolve key which is unbound at first. It can be instantiated using the dot notation in-
troduced in SWI–Prolog 7 for dicts. In our example, the type resolver for Person is declared by
Person.resolve = resolve p, as presented in Figure 12. The resolver for the person’s books field
is declared by Person.fields.books.resolve = resolve p b.

In a real–world application, the queries are raised by a remote client. The GraphQL server gets the
query as string, runs the execution and sends back the response as a JSON document. To complete our
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:- use_module(library(graphql), [query /3]). Prolog
?- Schema = {| schema ||

type Query { ... }

type Book { ... } |},

Person = {| type || ... |},

Person.resolve = resolve_p ,

Person.fields.books.resolve = resolve_p_b ,

Book.resolve = resolve_b ,

Query = {| query ||

person(name: "Alice") {

name , years: age

books(favourite: true) { title , authors { name } } } |},

graphql:query(Schema , Query , Result ).

Figure 12: Declaration of the schema and the resolvers with following query execution

given example, we directly call the query using the predicate query/3 of GraphQL.pl, where Schema

and Query are dicts generated from the corresponding quasi quotations:

graphql:query(+Schema, +Query, -Result)

query/3 creates a result according to the type system and the resolver predicates and returns it as a
dict, which could be directly sent to the client as a JSON document. In Figure 12 we give an example
on specifying and executing a query given as a quasi quotation. Result is a dict representing the JSON

output already stated in Figure 2. Because dicts are the preferred format to specify JSON since SWI–
Prolog 7, they can be, e.g., printed by using the built–in json write dict/3. An example result is10:

Result = _{ data: _{

person: _{ name: ’Alice’, years: 31,

books: [ _{ title: ’Moby-Dick’,

authors: [ _{ name: ’H. Melville’ } ] } ] } } }

6 Conclusions and Future Work

In this paper, we have introduced the language GraphQL, an application layer used for data queries
and manipulations developed by Facebook, and presented a comparison to REST, a well–established
architectural pattern for distributed systems. We have implemented a GraphQL server in SWI–Prolog 7,
called GraphQL.pl. We used features added to SWI–Prolog very recently in version 7, resulting in short
and very readable source code. The GraphQL.pl system is an example for these features to underline
their need and production–ready state in a real application.

For being able to specify the query and type system in the same way it is used in the GraphQL
specification, the text–based format has been implemented as an external domain–specific language in
Prolog. Along with the used syntactic elements – quasi quotations, definite clause grammars and dicts –,
this allows for the specification of a GraphQL server even for developers not yet familiar with Prolog. In

10It is worth noting that although the type system given in Figure 3 defined books as a list of Book, i.e. book: [Book], this
is neither expressed in the string representation of the query nor its AST. But because this information can be deducted from
the type system, the correct result document is calculated and the query is valid and unambiguous.
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the GraphQL reference implementation, similar syntactic elements have been used in JavaScript: tagged
template strings to embed the type system DSL, and JSON for the returned objects.

As the GraphQL.pl system has been developed in a test–driven approach, it also provides a test
framework with a large number of use–cases of the implemented domain–specific language. The entire
implementation is available online at https://github.com/fnogatz/GraphQL.pl.

In the future, we intend to connect GraphQL.pl with more back–end technologies, e.g. SQL, XML

and REST APIs. Because our deductive database system DDBASE [7] already supports various, het-
erogeneous data sources, we intend to use GraphQL as an additional unified query language. Using the
data’s meta information collected by DDBASE, one could target reasoning about the data’s format in
order to improve GraphQL’s introspection system or automatically generate the type system.

Because – in contrast to a REST approach – GraphQL is based only on a single request–response
cycle, all the fields requested by the client are known at query execution, we intend to incorporate opti-
mising strategies in the resolvers. In this way, it would be possible to use the abstraction layer introduced
by GraphQL for query optimisations for existing query languages like SQL, too.

Besides for data access, GraphQL specifies also the syntax for mutating data sets. The mutation op-
eration is not implemented in GraphQL.pl so far. As a proof–of–concept, we intend to connect GraphQL
mutations with FN–Query [6], which allows the data access and manipulation of semi–structured data in
XML documents.
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