Neuron Data Elements Environment

Version 2.1

Getting Started

© Copyright 1986 - 1997, Neuron Data, Inc. All Rights Reserved.

This software and documentation is subject to and made available only pursuant to the
terms of the Neuron Data License Agreement and may be used or copied only in
accordance with the terms of that agreement. It is against the law to copy the software
except as specifically allowed in the agreement. This document may not, in whole orin
part, be copied photocopied, reproduced, translated, or reduced to any electronic
medium or machine readable form without prior consent, in writing, from Neuron
Data, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth
in the Neuron Data License Agreement and in subparagraph (c)(1) of the Commercial
Computer Software-Restricted Rights Clause at FAR 52.227-19; subparagraph (c)(1)(ii)
of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013,
subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA
FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent
a commitment on the part of Neuron Data. THE SOFTWARE AND
DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER,
NEURON DATA DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF
THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Open Interface Element™, Data Access Element™, Intelligent Rules Element™, and
Web Element™ are trademarks of and are developed and licensed by NEURON DATA,
INC., Mountain View, California. NEXPERT OBJECT® and NEXPERT® are registered
trademarks of and are developed and licensed by NEURON DATA, INC., Mountain
View, California.

Other brand or product names are the trademarks or registered trademarks of their
respective holders.

contents

1. The Elements Environment

ADOUL the EIBMENTS......c.iiiiiecire ettt sttt enesbesnesne s 1
New Features and Enhancements in the Elements Environment 2.0.........cccccoeevininns 2
New Features and Enhancements to the Open Interface Elementc.ccccooee. 2
New Features for the Intelligent Rules Element (NEXPERT)ccccocovvviveviviieieenns 3
New Features for the Data Access Element ... 3
Unicode and Multibyte SUPPOITcooviiiicccce e 3
Improvements to the OOSCriPt LANQUAGEcccoiiiririiiiiie e 3
Improvements to the Development ENVIrONMENT ... 4
IMprovements t0 the CH++ AP ... 4
New Features and Enhancements in the Elements Environment 2.1.........c..ccccoceevveennen. 4
IMProvements t0 OOSCIIPL ...oouoviiiiieeeie e 4
Improvements to Datasource/Views in the Data Access Elementc.cccoeenee. 4
Integration with Third-Party Application-Development Softwareccccoevene.e. 5
INSTAHTALION ...t bbbttt bttt 5
For More Information about INStallation ..o 5
TECHNICAL SUPPOTT ...ttt st 6
The NDDN Technical SUPPort Web Page ... 6
2. The Open Interface Element
About the Software-DevelopmMENT PrOCESS.........ccoiiiiiiiiii et 7
ADOUL RESOUFITES ..ottt ettt ettt s b e bbb et et e e et e s e e b e e aeebesbenbenbens 7
(@ 10 To] S 1T 1 SRR 9
Taskl: Creating @ UsSer INTErface ... e 9
TO DeSign @ NeW WINAOWccooiiiiiiiiie e 10
About the WINAOW EITOr ..o e 12
To Place Widgets in YOUr WINAOWcccooiiiiiiiiiiiise e 15
About the Resource Browser WINGOW............cociiiiiiiiiiine e 16
Task 2: Creating an Application-Startup Module ..., 17
Task 3: Writing OOScript Application LOGICcoeiiiiiiiineie e 20
USING CallDACKS ...ttt e 20
Using Event-HandIer SCrIPLScccovviiiiieiiieeeee e 22
Task 4: Test and Run the Script-based Applicationcccccocv i, 23
Alternate Ways of RUNNING @ SCEPToviiiiii e 24
To Edit EXiSting APPHICALIONS.coiiiiiii et 24

Getting Started

Contents

Task 5: Deploying and Porting Applicationscccccooiivviiiieveninie e 24
For More Information about the Open Interface Element...........ccccoceveveiiiivcinnininnnnne 26

3. The Data Access Element

The Data Access Element and OOSCHPL......cooiriiiiiiiiieeee s 28
QUICK TOUT ..o ettt st et et st e e et e st et eseereeseeneseeneennens 28
Generic Data-AcCeSS ODJECES ...cviiiiicicicr e 28
DBV U RESOUICE ..ottt ettt st e e bbbt sb e bt e nn b 28
ODJECE AP .ttt 29
For More Information about the Data Access Element..........ccccooeveieveieiniicccncnsenene 29
Related SUDJECLSviviiiieicie et 29
4. The Intelligent Rules Element
REASONING SYSTEIM ... eiiiiiiieitiee e st se e eseeseeneesesresresresrenrennens 31
1L I =T oSSR 32
INTEGIALION ..ot bbbttt 37
OPEN AICHITECIUIE ..o nesae e nne 38
ODbjJeCt-0rieNted SYSTEM.......cociiiiereces e e e e resrenrennens 39
(@] o) =Tod B g [od £] = PSSP 39
Pattern MAtChiNG ..o 43
YA (=1 8 1Y/ 13 1 T T £ OSSPSR 44
User-defined MEtNOAS ... e 45
Graphical User INterface DYNAMICScoeiiiiiiiieiieeisese st 46
Interaction from the Intelligent Rules Element to the GUI ..o 46
Interaction from the GUI to the Intelligent Rules Elementcccccooevvevvivivennn, 47
(2071 (o [T aTo J7AN o] o [o= 4 To] o <SSP 48
Starting the Intelligent Rules EIEMENTccoviiiiiii e 49
The Main WINAOWocuiiiie e ettt sbe s 49
Displaying POPUP IMENUSccoiiiiiieieeee e 50
a1 =] g T o T 1= TSR 52
U] 1= o [(o] OSSPSR 52
L@ o)1= =0 L1 (o OSSPSR 55
Viewing RUIES and ODJECESccviiieiiciececse e 58
LIST WINOOWS ...t bbb ettt et sbe b s 58
RUIE NEEWOIK ...ttt be e e 60
(0 o)1= T3 N [=1 41V 0] o OSSPSR 63
Processing the APPIICALIONcoov i e 66
USING HYPOTNESES ... 68
USING DALA ..ottt et b bbbt sr e e b 75
For More Information about the Intelligent Rules Element...........ccccooceoeiiiiicinininnnne 79

i Getting Started

5. OLE Automation and OOScript

Object-Model INteroperability ... 81
1O 10 1 {ox ¢ o T TSSOSO TSP PP OO U PP URTPPPTPPRTPTPTPION 81
For More Information about OLE Automation and OOSCIiPL........ccccceeveiineiinenineinnen. 82
[T - U0 [U o 1= o] £ S SPS 82

6. The Web Element
For More Information about the Web Element.............ccoooiiiiniiniinnieieeee 83

7. The Distributed Messaging Element

Components of the Distributed Messaging Elementccccoccoviiniininnennenn, 85
The Distributed Messaging Element and Other Distributed Systems 86
The Distributed Messaging Element Applicationsccccoovveninineneneicicee, 86
Concepts of the Distributed Messaging Element ..., 87
POFTADITITY ...veoeieeeee bbbt 87
Data-centered PrOCESSINGcoiveiierieieieieeeeeese e ste e stesre et see e seesesseseeneeneesesseans 87
Data ObjJect and STIUCLUIEccoiviieiiee et 87
Routers and Fully Connected NetwOrKs ..o 88
Data DISTIBULIONo.iiiiie e e e 89
Event-driven Programming ..ottt st 90
Interactions With APPHCALIONSooiiiiiiiiee e 90
RESOUICE FIIES ..ottt ettt 91
Standard ODJECt LIDIArY ..o 91
For More Information about the Distributed Messaging Elementc.cccccoeiinne 91

8. The Elements Application Services

DAtASOUICE/VIEBWSeeviiviriitiieii ettt bbbttt bbbttt bbbt b 93
INterNatioNAliZAtIONcccoiiiiie e 94
For More Information about the Elements Application Services..........c.ccocevceieieirinnnne 94

9. C++ Programming in the Elements Environment

GeNEral ATCHITECIUNE.......ocvi e e et e e re e teene s 95
RESOUICE CIASSESviiviiiticiiiti ettt ettt sttt et et e eab e s be et e sbeesresbeesresneesraereens 96
ULIIILY CIASSES ..veviiiceicicece ettt sttt sttt sttt e e eneereenens 96
Constructors and DESIIUCIOIScciviiiiieie et e e 97
ENCAPSUIATION ..ottt 98

LOLU T (0] 4 1T 2= 1 (0] o VUSROS 98
Class-Level CUuStOMIZAtIONcccceviiiieiccee e ene s 99
Instance-Level CUStOMIZAtIONc.ccecciiiieii e 99

SUBDCIASSING TN Ct oottt et e st et esreeeesreenas 101
Subclassing from NDRES SUDCIASSEScccoeiriiiiiiiiiec e 101

Getting Started iii

Contents

Defining a C++ Subclass in the Elements Environmentcccccoceveveeciiiiinenns 103
Registering a C++ Subclass in the Resource Managercccocvevvevvevesneciesnenn, 104
GeNEriC CONtAINET CIASSES......ccuiiiriiiiierie e e b e 105
(000 [l ©1=T =T =1 o] o [OOSR PR PRSP 106
Separating Source Code and Header Filesccccvivvvvivvivincie i 107
Creating CUSLOM CIASSEScciveiieiieiesieie sttt st e e ta e ene s 108
(0700 [R =T [T =] = 1 (o] o [SRS SSRSR 109
LIMITALIONS.eeee ettt bbb bbbttt et et be b e 109
Implementation Notes for CUrrent C USEISccoiiiriiniincineceeeseeeseeesiens 110
Using Custom Constructors and DESTIUCTOISccuoiiiiireineinesiesie e 112
Defining Default Constructors with RCLAS _CPLUSFULLccccooeievciiiinns 112
Defining Custom CONSTIUCLOTScocveiiiieiecie et e e e sreenee s 114
CH+ EXCeption HaNAIiNgG........cccooiiiiiiiiee e 114
For More Information about the C++ AP ... 116

10. Building Applications in the Elements Environment

Configuring the Elements ENVIFONMENT..........ccccoiiveicienie e 117
Default ConNfIQUIatioNccociiiiiiie e 118
ComPpPiler-Flag OPLiONS ..o 120
Running the Elements Environment EXamplesc.ccccovvieievenieienciciesieeeeeeens 123
BUilding APPHICALIONSccuoiviiiiiiie e 125
USING MAKETIIES ... e 125

11. Porting and Deploying Applications in the Elements Environment

Porting a C or C++ Application across Platforms ..., 128

Porting a Script Application across PIatforms ... 129

Deploying APPHCATIONS.ccoiiiiieeee et sne e 129
Deploying a C or C++ APPLICALIONocveiiriciirseces s 130

Deploying a Script APPLCALIONccveveiececes e s 131

12. Localizing Applications in the Elements Environment

Translating Resources with the Resource Compiler ... 134
Task 1: Generating the Text Resource File for the .dat Librariescccceevnin. 135
Task 2: Generating a Skeleton DIiCtIONArY ... 135
Task 3: EAiting the DICLIONAIYccccoiriiiiiieirieeese s 135
Task 4: Creating the Localized .dat Filesccccocviviiiiiiicnceieceeees e 136
Task 5: Checking Your APPlICAtioN ... 136
Task 6: Changing the Date and Time FOrmattingccocoovvnninnineineinenn, 136

Enabling the Input Methods for Multibyte Characters ..o, 137
Enabling the Canna Input Method ... 137
ENabling the XIM ..o e 137

iv Getting Started

Fonts and FONt-Family RESOUICES.........ccccierierieieieieceees et 138

FONt-FaMIilY RESOUITEScivieiiiticic sttt et sne e 139
Key Concepts for Multibyte Characters and Stringsc.ccoocevvininineninene e 140
(0o [Tl £ PSSR 140
(@0 o S 1Y/ =1 o o 1 o PSSR 141
(0 To [T IV o 1= L SO UPRRRRPR 142
Fully Supported and Tested Code TYPEScccereireiineieneenee et 142
L0191 (=151 (=T0 [@0 o [T 1Y o 1= RSRS 143
Key Character and String TYPES ..vvivieierirereieerieieese s se st sre st seensesanns 145
Character Type DefiNitiONs ..o e 145
4-Byte CharacCter FOIMAL ..o 145
BASIC StINQG TYPES oottt sttt eneenen 146
Environment Variables and FIagsccccocviviiiiii i 146
Character APIs in the Elements ENVIFONMENT ... 147
String APIs in the Elements ENVIFONMENT............ccoviiiii i 149
Variable-String APIs in the Elements Environmentccccoov v 152
Using Code Sets and COAE TYPES ...c.oiiriieieieieieeeesiesie sttt sa e e 153
ADOUT UNICOAE........iie bbb bbb ans 154
USING UNICOAE ..ot 155
Specifying Code Types for UNICOEccceviiiciciiiece s 158
LIMITALIONS ...vitiieiiee ettt bbb bbb e e ene s 162
EXAMPIES ..o bbb 162
Code Types for Unicode CONVEISIONccccevveieieieieeisese e sreseseseesseseseeeens 163
Unicode FONT MaPPING ...cooiiiiiiiiiieeie et 164
For More Information about the APIS...........coi e 166

A. PVCS Integration with the Elements Environment 2.1
Requirements for Using Level 1 PVCS Integration with the Elements Environment

168

PVCS Features Supported in Level 1 Integrationccccoovveiinnnnnenciencene 168
PVCS Features Not Supported in Level 1 Integrationcc.ccoccoevvevvcvneienenenne. 168
PVCS INTEYration TESES ...ccvcivieieetiie i siese et eie e ese st e sttt sae et e e e e e enaenes 169
Setting Up the PVCS Integration ENVIrONMENTt..........cccooeiiiieieiiese e 169
Accessing Integrated PVCS OPLIONSccvveieieiricieieecee et 169
Configuring the Elements Environment for PVCS ... 170
ChecKiNg OUL FlES ..ot e e 170
(01 aT=To1 (o To TN L N] PSSR 172
(1T =Y = T =T o 0] o RSP 174
DEletiNg REVISIONS.....cvii ittt sttt et e e e enseneeneaneeneanen 175
INABX ..o 177

Getting Started v

Contents

vi

Getting Started

__ Chapter

1 The Elements Environment

About the Elements

The Elements Environment (EE) is a suite of cross-platform tools for quickly
building complex, object-based applications for today’s rapidly changing
organizations.

This product overview gives you general information about the product and
points you to other information you need for developing your Elements
Environment applications. The chapters that follow provide overviews of
these items and pointers to the documentation for them.

These are the Neuron Data Elements and supporting services:

m The Open Interface Element (OIE) provides a window-based environment
for building graphical user interfaces (GUIs). This Element allows
developers to build portable user interfaces that are independent of the
windowing environment and operating system.

m The Data Access Element (DAE) provides the front-end to independent
data sources including flat files, relational databases, and data in
spreadsheets and other applications.

m The Intelligent Rules Element (IRE) lets you capture data models and
business logic as visually accessible entities that dynamically reflect
changes in the organizational environment.

m OOScript is a simple, high-performance, object-aware scripting
language that lets you create robust applications using all of the
Elements with seamless interoperability.

m The Web Element (WE) provides an embeddable World Wide Web
browser and Web-link navigation for building business-critical
applications for Intranets.

m The Distributed Messaging Element (DME) provides a mechanism that
allows you to partition and to dynamically configure and reconfigure
your application components across various platforms, operating
systems, and networking environments.

m The Elements Application Services (EAS) are the common set of core
services that ensure a unified development environment. Elements
Application Services include low-level services such as file
input/output (1/0) and internationalization, plus higher-level
application-development services, such as datasource/views.

Getting Started 1

Chapter

1

The Elements Environment

m Support for true object interoperability in the Elements Environment
through the OOScript language.

m Support for C/C++ interfaces that let you automatically generate C and
C++ for application code and class definitions.

New Features and Enhancements in the Elements Environment 2.0

The Elements Environment 2.0 incorporates former Neuron Data
development tools into a cohesive suite of integrated elements, including:

m The Open Interface Element (OIE)
m The Data Access Element (DAE)
m The Intelligent Rules Element (IRE)

The 2.0 release adds new features and enhancements of existing features to
these Elements.

In addition, two new Elements have been added to the development suite:
m The Web Element (WE)
m The Distributed Messaging Element (DME)

Upgrading existing applications developed with older Neuron Data
products to the Elements Environment 2.0 enables you to take advantage of
the new features and enhancements. In addition, migrating to the Elements
Environment 2.0 now will ease the transition to future releases of the
Elements Environment.

New Features and Enhancements to the Open Interface Element

m Support for the native environment on Windows 3.11, Windows 95, and
Windows NT, including:

— native drag and drop

— native menu manager

— underlying native window widget
— native Clipboard

Note: The Open Interface 3.x used emulation of these GUI elements.

These improvements result in:
— better performance
— less memory overhead
— better desktop integration
= New widgets for all supported platforms, including:
— treeview widget

Getting Started

New Features and Enhancements in the Elements Environment 2.0

— notebook widget

— toolbar widget

— tooltips (context-sensitive Help) for all widgets
Support for the native environment on the Macintosh, including:
— native Clipboard

— native balloon help

Long filenames (255 characters)

UNC pathnames

Setup guidelines

Registered icons

Compliance with Windows 95

New Features for the Intelligent Rules Element (NEXPERT)

Enhancements to tools that allow you to:

— build knowledge bases/expert systems and logic rules within a
graphically object-oriented environment

— have “smart” access to data through an inference-driven engine
— encapsulate data models with business logic

Support for a context-switch API

A new Edit API

New Features for the Data Access Element

Concurrent support for multiple databases within an application
An array fetch for the Oracle driver
Linking of multiple views to a single datasource

Dynamic updating of editing changes to a single view with other linked
views

Unicode and Multibyte Support

All of the Elements Environment products now support Unicode and
native multibyte for Japanese and Korean. (Each locale is licensed
separately.)

Improvements to the OOScript Language

Getting Started

Quick access to object classes and scripts through improved browsing
and navigation

Support for object interoperability, which allows you to integrate
OOScript modules with other modules through such industry
standards as CORBA and OLE

Chapter 1 The Elements Environment

m Support for callback procedures, functions, and arrays

Improvements to the Development Environment
m You can now regenerate C++ code from the Resource Browser.
m You can customize code generation and regeneration.

m Documentation is now available online through Adobe Acrobat with an
indexing search engine.

Improvements to the C++ API
m Full C++ classes for all Elements (except the Data Messaging Element)
m Support for the Intelligent Rules Element C++ classes
m Support for C++ exception handling (t r y/ cat ch/ t hr ow)

New Features and Enhancements in the Elements Environment 2.1

The Elements Environment 2.1 release adds additional components and
improvements to existing components, including:

Improvements to OOScript

Improvements to datasource/views in the Data Access Element
Integration with third-party application-development software
Support for character-based interfaces

Improvements to OOScript

m Support in the Distributed Messaging Element for a publish-
and-subscribe interface

m Support in the Distributed Messaging Element for routing of serialized
string messages to complex data, including to all Open Interface
datasources

m Custom routing protocols in the Distributed Messaging Element that let
you optimize broadcast objects to support two-tier, three-tier, and n-tier
client-server application architectures

m Object support for datasource/views in the diagrammer, browser, and
treeview widgets

m New code-template editor that lets you create and save custom
templates for application-specific scripts

Improvements to Datasource/Views in the Data Access Element

m A tree datasource for hierarchically arranged node objects such as
directories and subdirectories

4 Getting Started

Installation

m A graph datasource for creating complex diagrams and graphs

m Shared view dependencies with the treeview, browser, browser
overview, and diagrammer widgets

Integration with Third-Party Application-Development Software

Installation

The Elements Environment now supports integration with Intersolv PVCS
Version Manager.

Note: This product does not come with the Elements Environment 2.1. You
must purchase it directly from the manufacturer.

PVCS integration is licensed separately. If you are licensed to integrate
PVCS, the PVCS option on the File menu is enabled. If you are not licensed
to integrate PVCS, this option is disabled.

With the Elements Environment suite of tools, you receive two CD-ROMs,
one for the software and one for the documentation. You will need to install
the software and the Adobe Acrobat Reader, which allows you to read and
print the documentation for each Element.

Your software Kit includes an Installation Guide for your specific platform.
This booklet contains all the information you need to install:

m The Elements Environment on your platform

m The platform-specific Adobe Acrobat Reader

For More Information about Installation

Getting Started

m For information regarding installation of the Sentinel software and
hardware, refer to the readme.txt file in the sentinel directory of the
Development and Deployment Kit CD-ROM.

m For platform-specific installation information, refer to the Installation
Guide that came with your software and documentation CD-ROMSs. This
booklet also contains information about using the online
documentation.

Chapter 1 The Elements Environment

m For platform-specfic information regarding installing online
documentation, refer to the files in the read_me directory on the
Documentation Suite CD-ROM:

— rdme_mac.txt
— rdme_unx.txt
— rdme_win.txt

Technical Support

Neuron Data Corporate Headquarters USA (country code 1):
Tel: 415-943-2700 or 800-876-4900

Fax: 415-943-2756

E-mail support: @neurondata.com

For information or technical support for the Adobe Acrobat Reader, call the
following Adobe Acrobat Technical Support telephone number:

206-628-2757

The Adobe Acrobat platform-specific ReadMe files contain more
information about Adobe Technical Support. If you have any questions
about the Neuron Data Online Documentation, call Neuron Data Technical
Support.

Note: Neuron Data does not provide technical support for the Adobe
Acrobat Readers.

The NDDN Technical Support Web Page

NDDN, the Neuron Data Technical Support page on the World Wide Web,
gives you the following benefits:

m A wide range of Technical Support code examples

m Listings of supported products and platforms

= Numerous technical application notes (TANS) that are application- and
platform-specific
Information on the latest product releases
Status information about reported Technical Support cases

This is the URL for the NDDN Technical Support Web page:

htt ps://nddn. neur ondat a. com

6 Getting Started

__ Chapter

2

The Open Interface Element

The Open Interface Element (OIE) lets you develop cross-platform
applications with native graphical user interfaces (GUIs). Open Interface
comprises:

m A Resource Editor that helps you manage your resources—such as
windows, widgets, fonts, and other graphic elements

A Window Editor that helps you design windows for your application
A set of libraries containing standard GUI routines

About the Software-Development Process

You use the Open Interface features to create your interface, which consists
of resources such as windows. You then save your resources in these binary
and text files:

m . datfile
m .rcfile

The resource database is stored in a binary file (.dat). In addition, this
database is stored in a text file (.rc), which you can edit directly.

The development environment also produces a C or C++ code template for
your application. You use this template to link the application code to the
GULI.

After adding your own code to the template, you use one of the supported
compilers to compile the application into object files. You then link these
object files with the Open Interface libraries to create an executable file.

Open Interface generates a makefile to assist you in compiling and linking
your application. When you execute your program, the resource-database
(.dat) file is opened. Your application then has access to the resources this
database contains.

About Resources

Getting Started

Open Interface uses the concept of resources to modularize many parts of the
application code. For example, items such as windows, buttons, menus,
fonts, colors, cursors, and icons are stored as different types of resources.
The specific information about an item—such as its location, size, or

Chapter 2

The Open Interface Element

label—is retrieved and then handled using a set of generic tools. Almost
anything can be stored as a resource.

In object-oriented terms, resources store all the persistent information for a
particular item. This information does not change during the execution of an
application. For example, a text-edit widget has information associated with

it, such as size, location, attributes, and initial values. This persistent

information is stored in the resource .dat file. However, the information that
a user enters into the text-edit field of the widget is not persistent and is not

stored as a resource.

Application
Developer

Open Editor

S

Application Resource
Code File (.rc)
C Source +
Code (.c) Resource
Compiler
C
Compiler
¢ Open Interface ,
Libraries e
/
Object Files /
(-0) J/
/
X /
Linker /
/
v *
Executable your Resource Database
File application (.dat)

Figure 2-1 Open Interface Development Environment

|:| Programming Tool

[] Application Code

or Resources

Getting Started

Quick Tour

Quick Tour

Separating resources from the application code has several advantages:

m Using string resources allows you to prepare your products for various
international markets without rewriting your code.

m Using a set of routines that are well defined, efficient, and generic
greatly helps you in building resources.

m Your code assets can be more easily shared between different parts of
the same application and between different applications.

The flexibility of the Open Interface Element gives you a number of ways to
begin creating your application. However, the introductory exercise that
follows presents only a few of the possible approaches.

To complete the Quick Tour, you have to:
Create a user interface.

Create an application-startup module.
Code the application logic using OOScript.
Test and run the application.

o B~ w DRk

Deploy and port the application.

This section describes each of these tasks. The instructions show you how to
create an application with two buttons that display two different dialog
messages.

Taskl: Creating a User Interface

Getting Started

The Elements Environment’s visual editors provide a graphical
environment for creating and manipulating:

Graphical user interface (GUI)
Application logic

m Data access

m Business rules

These visual editors allow you to create GUIs with simple point-and-click
operations. For detailed information about how to start and use the editors,
see the Open Interface Element User’s Guide.

Note: The illustrations that follow are based on Windows NT screens.
However, the general tasks apply to all supported platforms.

Chapter 2

The Open Interface Element

To Design a New Window

10

1. Start the Elements Environment:

— Click either the EE C or EE C++ icon.
or:
— Type ee at the command line prompt

Note: Make sure that you are running the version of the Elements
Environment for which you are registered.
If you have installed both the C++ and C versions, the installer
automatically registered you for C++ builds and interpretation.
If you use the C version of the Elements Environment, but you
are registered for C++, the C++ servers will not load properly.
You will receivea” Cl ass Al ready Exists Error” in
your tracebacks.

Refer to the Elements Environment Installation Guide for more information

on how to register or unregister the servers.

fim (¥ Ep Sremez Hepohr wireom

I Tusnapcapd |

5 wezman Corired

WF EngreStsisg. oo

[Sl I
& rawapdy A com B Lk s
ungetmed kb = =
limgdrary . kb
b uniilad ks
Lanerd
HFEst | b4
[2 [bod
Meryp

Figure 2-2 Main Window for the Intelligent Rules Element (IRE)

Note: If your application is not licensed for the Intelligent Rules Element,
you will see the Resource Browser instead of the Intelligent Rules
Element main window and should proceed to step 3.

Getting Started

Taskl1: Creating a User Interface

2. Choose Browsers - Resource.

The Resource Browser window is blank because no library has been
selected.

0L Nagsimcs Micsis

Ele E ema [piore

Figure 2-3 Resource Browser Window

3. Choose File - New Application.

4. Select the appropriate directory and name the application Hel | o.
5. Click OK to display the Window Editor.

Getting Started 1

Chapter 2 The Open Interface Element

L Windies Flalin Wisl

TR

& [aidgel Dapcad ™ winados Aiiutee (1T prom A | o |
Al |

Laabsei 1
[[[[I [§ Wirow

[M= E

=

Figure 2-4 Window Editor in Small Tools Mode

About the Window Editor

The Window Editor opensin Small Tools mode by default when:
= the monitor has a small screen
m the monitor has low resolution

12 Getting Started

Taskl1: Creating a User Interface

The Small Tools mode gives you alarger viewing area, but displays only
minimal information and options. To switch to Large Tools mode, choose
Options- Large.

In the Large Tools mode, the type of widget you select and put in a window
appears in a box above the widget-icon column. This is helpful information
when you are first using the product.

Note: This exercise uses Small Tools mode.

L Winidies Flalio Wisl

[l R ees [awns

& [idgel Lapar 7 winadoer A inBuleg

:

Hae | Ay |

Fadd & —I Lokt [\rakoe m

—I ™ Fiasl T e Condnain:
I R G

i

[-;-4 ?
=B
=

e

=2 Ll .

Wik M=lE

s,

mt

Getting Started

Figure 2-5 Window Editor in Large Tools Mode

The window you are designing is in the middle of the screen. You can resize
this window by clicking inside the window and then dragging the corner
handles. You can add widgets such as buttons to this window.

13

Chapter 2 The Open Interface Element

The vertical toolbar to the left of the window area contains icons for various
types of widgets. You can scroll down and see other widgets to select from
the toolbar. The large arrow at the top of this column is the Selection Tool
icon. You click this icon to obtain the arrow cursor and select widgets. The
two radio buttons in the upper left of the screen control the editing mode of
the Window Editor. The default is Widget Layout. If you click Window
Attributes, you can define the default attributes for your new window.

0L Wrdies Flalin Wial

TR

el Lspoul V& koo AiBuiea | Hans [wred 4 | o I
winl] & | Labet |'wakce M Lol
—l = o ™ Fissd T ora Condinain
| —| s |
I|| = [I_ Afibaie
‘| l e [= || k I e |
I 0
Caarsinalis L i =
Frasgram] | Fami | T = BArda v Hara
H ecaogrand | e | e I'HT : ™ Mgl
r | imeon | Feg [0 MnHeht 3 o
= z widh: [0 Mawidh [T
- Fanl| Freue Coles L (PRTRSV Tlie rr: Tustacck
L e 256 i ot Limizm
:E g:ﬁ'.lm Dewg and Dreg [ER AT
MBar Rt Peland F Tage [Flesica
HEsEdn ﬂ R Fume T
VE e SomptE din [*1 Y Bmalcon I 7 Exsiirs buibn
MR E =] 5% s B I F bharios bation
drwhbba | BewbEa | | Edion | b

I I I+ Lt ey kwnlabed |

Figure 2-6 Window Attributes Dialog

In the Window Attributes dialog, the four text fields in the Coordinates panel
show the window’s placement on the screen (the xy origin and the xy extent).

14 Getting Started

Taskl1: Creating a User Interface

In the two text-edit fields that appear in the upper right part of your
window, you enter the name of the window module and the label.

These buttons are in the right corner of the screen:

Apply implements changes you have made to the new window.

Revert undoes any changes you have made with the last Apply and
displays the previously saved state.

OK saves your changes.
Cancel undoes your changes.

To Place Widgets in Your Window

6.

10.
11.
12.
13.
14.
15.
16.
17.

Getting Started

Select the OK pushbutton icon from the vertical toolbar, and draw the
buttons on the window.

Arrange the buttons and resize the window as you wish.
Double-click the left pushbutton to open its property window.
Change the name PButl to PBut Gr eet i ng.

Change the label of PButl to Gr eet i ng.

Click Apply.

Click OK.

Double-click the right pushbutton to open its property window.
Change the name of PBut2 to PBut Far ewel | .

Change the label of PBut2 to Far ewel | .

Click Apply.

Click OK.

Note: Do not confuse name with label. The name is used to reference
the widget in scripts and code. The label is what appears on the
widget in the window.

15

Chapter

2

The Open Interface Element

o Phaeh bdtos Hialn Winl MBetf aewell M= E3
kum | Pt arewell Appdy | o« |
Revert | Cancel |
D | ahe icon
__New |
Button Attr. Lhoose ... |
Ldit I

Hemive |
L Window Helle Winl | . 1] x|
e Ed Yen Quirs
~ Widget Layout T Windew

96 z1 38 = fz5 a1 f24

L

Latwl | Hello Window

Name| Winl _&M
Hever|

m .'
‘J Greeting Farewell
F

N
r No

i) 5, . of

Figure 2-7 OK Pushbutton, Window, and Property Dialog

Hello Window

18. Choose View - Test Mode.

This lets you test your design and layout.
19. Choose File - Save.
20. Choose File - Close.

About the Resource Browser Window

16

The Resource Browser window has two parts:
= Browser overview
m Browser

The panel on the left side of the window is the browser overview. This area
allows you to rapidly scan through the modules and resources in the
application. In this area are small iconic representations of the libraries,
modules, and resources in your project. There is also a transparent rectangle.
To move to another view in the browser (the panel to the right of the browser

Getting Started

Task 2: Creating an Application-Startup Module

overview), you click and hold the mouse button within the rectangle, and
then drag the rectangle to another position. The view within the browser
shifts to the corresponding position.

Browser Overview Browser

0L Nagawnce sl

Figure 2-8 Resource Browser Window

The browser shows libraries, modules, and resources. (.dat files are also
called libraries, as they are actually collections of the objects that make up
your application.)

You edit the filenames of a module by double-clicking the module node
icon. You can expand the module to view the window and associated
widgets by right-clicking the module icon and holding the button, then
choosing Extend - Resources. You can choose Collapse to retract the view.
Other options are also available from the dropdown menu.

Task 2: Creating an Application-Startup Module

Getting Started

Producing an application-startup script is an essential step in creating
OOScript applications. To do this, you need a module designated as “main,”
and you need to insert some startup OOScript statements in the script
attached to the Hello (Rmod) module:

17

Chapter 2 The Open Interface Element

To create an application-startup module:
1. Double-click the Hello (RMod) node in the Resource Browser.

2. If Main is not checked in the Modul e Attributes dialog box, select it.
3. Click OK.

i Mrshsls - Hslin H[=E

Wi Hama B
Fiaroarce Filsrama: | ~ala «

Soacs Flsrama: | ~alla 52

Heads Fisrams | ~sl: 5

FHan | ipck | D freat | Carcul |

Figure 2-9 Hello Module Attribute Dialog

4. Right-click the Hello (RMod) node in the Resource Browser and choose
New Application Script.

When you use OOScript, all your applications must have an
AppStartup procedure. The AppStartup procedure is the script that is
executed when the application launches. It provides the essential
startup information for your application. You can either insert the
AppStartup code using Script Editor code templates, or you can write it
yourself.

Note: If you are coding in C or C++, you do not need an AppStartup
script. Instead, you define the startup procedure in the function
main().

5. Choose Category - Code Templates - Default Templates - Main(Gui).

6. Drag and drop the Main(Gui) startup script into the script-editing area.
Tip: To drag and drop the script, click the Main(Gui) listing once to
highlight it. Then move the cursor to the right of the highlighted

area. When the arrow cursor changes to a -+ , drag and drop the
text into the script-editing area.

18 Getting Started

Task 2: Creating an Application-Startup Module

Figure 2-10 shows the AppStartup script for the Hello module.

[l B G Hep

N) B v [e T R -

Dol gl | gl ;jl'-rlw.-
Fro-ed o = {/ HSarvar obkqect)
Easir oinnsclion chyeat gu rr
. - - ¢ Haln procsiucs
Wi & L) PEG=D ADPETATTUS
Whni (Hubse]
Whiwn il f Ger the Ful sscver
quilwr = gwkzecveci HO.Fuw"™j;
ff Apmlication 3tactap code: you nasd sk lessrt L owe
Win 5 guafwvre.Windows. LosdDnatihes | "MyHoduls ™, “HyW
el pTon
B
- L=l | C
q " -
] J— o Line: 15 Cohem

Figure 2-10 AppStartup Script

7. Inthe script, replace Modul eNamne and Mai nW ndowNarne with the
names you gave your module and window. (These should be Hello and

Winl.)

Note:

In your script statements, when you want to assign an object
reference to a variable (or another object reference), you need to
use the “object-initialization and assignment” operator (:=). The
:= operator means that the object variable on the left side of the
operator will contain a reference to the object resulting from the
expression on the right side of the operator.

8. If you wish, test the syntax of your AppStartup script statements by
choosing File - Check Script Syntax.

If you find errors, go over the steps carefully to see if you have left out
or mistyped anything.

Getting Started

19

Chapter 2 The Open Interface Element

Task 3: Writing OOScript Application Logic

Now that you have your startup module, you can add behavior to the
pushbutton widgets. You have two options for writing your code:

m Callbacks allow your widgets to share event-handler procedures. You
can group the callbacks in modules and reuse them for new widgets.
Callbacks permit a more modular and efficient use of code by avoiding
duplication of similar code in different widgets.

m Event-handler scripts allow you to write event-handler procedures for
individual widgets. You should use this technique when behavior is
unique to a specific widget.

The next two sections describe these two programming techniques.

Using Callbacks

To use callbacks, you add the code as procedures to the application script.
You can either add keywords that appear in the code using the options in the
Category menu, or you can type the code yourself.

For this introductory application, you will add code to the existing
AppStartUp procedure and create two new procedures.

1. Toadd the code using the Category menu options, choose Category -
Resources.

2. Double-click the name of the module Hello.
This displays the resources for the module window.
3. Click PButGreeting.
4. Move the cursor to the right of the highlight until it appears as a 1 .
5. Insert PButGreeting in the main procedure beneath this line of code:

Wi n := gui Svr. Wndows. Loadl ni t Show("Hel | 0", "W nl1");
6. Repeat steps 3-5 for PButFarewell.

20 Getting Started

Task 3: Writing OOScript Application Logic

Modify the two lines where the resource names have been copied as
follows:

win. PBut Geeting. HtProc="Hello::GeetingHi t";
wi n. PBut Farewel | .Hi tProc="Hel |l o:: Farewel |H t"

Note: You could have typed the names of the pushbuttons. However,
in acomplex application with many widgets and modules, using
the Category menu options is convenient.

These two lines of callback code reference the procedures GreetingHit

and FarewellHit for the HIT event. The callbacks instruct the

application to invoke the appropriate procedure when the user
generates a “hit” event by clicking one of the buttons.

Write the two procedures referenced by the callbacks beneath the

AppStartup procedure as follows:

proc GeetingHit

gui Svr. Al ert Di al ogs. Showi nfo("Hello World");
end proc
proc Farewel | Hit

gui Svr. Al ert Di al ogs. Show nf o(" Goodbye") ;

[foi Gap Hep

muckonly icleger BUTRG

magkenly ieleger BUTOR

Getting Started

end proc
| femifier M
_casgary ¢ | #| | S CIM |p0] >dmim] Qe Yiv
Bt i i BT
magkenly iringer BUTAEATS] ff REln promeduce =
pruc AppStarctup
macendp iefeger BUTCARCE
magkerly ielnger BUTFAL AF der cae dul sErer .
runsh only intuger BUTHE RaCicl FiEyr jw pEbescver (TWD-Gui™| 1
if Appligwcion sTarcup ondsl Joe reed &t jesac 1 window
. Fin i= FElSC.Nia00Es, LOediniiFROs{TEElLE" "TLELT]
'“':H"'rl'?'EI'W“E Pin.FRactommting. HicFros = “lalio: :Frescingloe”™:
win. PlucTaraws Ll licFros = “halio: Facswsllloc®)
maderdp ivleger BUTRETRY LU
magkerly iringer BUTYES ¢ mdd cml lhacion
maccnlp alject Fewllnan LI "':*r“;a""-n 1 Fhowintno |“Helin Wacld!™} i
g B i g 4 e -:r;::'rr. IertDinlops Fkowinfo a Facld!™):
mlege Showricsl (dmg m
proe FarcwslIHiY
gaifur. AimrzDimloge . Fhovinio |"Coodbya™| @
riwger Showlusshen [shing ard proa
niwge: Shawifiaming [virng Kl
] lal L
£ L O P T Calern. 23
o
Figure 2-11 Using Callbacks in a Script
21

Chapter 2

The Open Interface Element

Tip: You can find the names of script methods, their return values,

and their parameters online. To do so, choose Category -
Repositories - Neuron Data Gui Server. Select the appropriate
category. Select the class you want to view.

Using Event-Handler Scripts

22

EE Script Editor

File Edit Script

category *| 2| o] =& FIB{ v|E={Cf el QIR s[> T |

You can also write event handlers to respond to the widget events.

To create an event handler:

9.

10.
11.

12.
13.
14.
15.

16.

Delete the two lines of callback code you added to the AppStartup
procedure and the two procedures you added.

Choose Category - Resources.

Double-click Hello.

This displays the resources for the module window.
Select PButGreeting.

Click Open Script.

Choose Category - Script Events.

Select the HIT event, and drag and drop it into the script-editing area to
obtain the following script template:

on event HT

end event
Within the event-handler script, type this line:

gui svr. Al ert Di al ogs. Showi nfo(“Hello world!”);

I Script Events LI Hello.Win1.PButGreeting
FOCUSGAINED 2]|on event HIT =
FOCUSLOST guisvr.alertDialgos. ShowInfo({"Hello world!");
end ewvent ILI
INIT _|LI « |»
ot Modifie ine: olumn:
KT — *| | NotModified Line: 2 Column: 2

Figure 2-12 Event-Handler Script

Note: You can also use the Script Browser to insert verbs, objects,

methods, properties, globals, and constants into your script. For
more information, see the OOScript Language Programmer’s
Guide.

Getting Started

Task 4: Test and Run the Script-based Application

Task 4: Test and Run the Script-based Application

1.

In the Script Editor, choose File - Check Script Syntax to check your
script.

Click Script Tracer to start the OOScript trace facility.
The Trace window displays a line-by-line analysis of the currently
running script.

To run the application, choose File - Run Script. This displays the
Hel | o window.

Note: By default, the Run Script command looks in your currently
active library to compile and run a script. If you have multiple
applications loaded in the Resource Browser, the File - Set
Current Library...command allows you to determine the current
library and to switch to other libraries if necessary.

If you have runtime errors, go back and review the previous steps.

If you click Farewell in the application window, the results should look
like this:

= Resource Browser

File Edit Yiew Options Help

= Window

Greeting

PButGreeting (PBut
PButF arewell (PBut

Resources j Win1 (Win) SESSs] Widgets |

Figure 2-13 Run Script Results

Getting Started

23

Chapter 2 The Open Interface Element

Alternate Ways of Running a Script
You can also run your script from the command line:
ee - ND_DYNCONFI G=runscr pt <L| BRARY_NAME>

m UNIX users can run the Elements Environment runscrpt option ina C
shell and create an alias to the command.

m PC (Windows 3.1/95/NT) users can type the command line in the
MS-DOS window or just click the RunScript icon to execute the
application in runtime mode.

To Edit Existing Applications

From the Resource Browser, choose File - Open Library.
Open the application library file.

Right-click and hold on the library icon.

Choose Full Extend - Modules, Resources.

To edit windows, double-click the appropriate resource icon.

I e L

To edit a script, right-click and hold on the appropriate module icon,
then choose Edit Application Script.

Task 5: Deploying and Porting Applications

Note: These instructions assume that you are using MSVC Microsoft
Developer Studio. However, the steps would be similar for other
development environments.

1. Launch Microsoft Developer Studio.

2. Close any workspaces you may have open by choosing File - Close
Workspace.

Choose File - Open Workspace.

Move to your working directory and give your workspace a name.
Choose File - Open.

Set File of Type to All Files(*.*).

IS

24 Getting Started

Task 5: Deploying and Porting Applications

7. Select the appropriate makefile:
— makefile.pc for Window 95 or Windows NT platforms
8. Click OK.

9. If necessary, choose File - Save As and change the filename to the name
of the application.

This creates the appropriate project workspace.
10. If necessary, open the .c or .cpp file and implement changes.
11. Choose Build - Build <myapp>.exe.
12. Make appropriate changes to your runtime environment.

Application Components

Open Interface generates these components for each application:
m .rc files contain (in modules) definitions of window objects, and if
desired, script procedures and script application logic.
.dat files are the binary format of the information defined in the .rc files.
Source files for the C or C++ languages containing the application logic.
Image files used in icons:
— .nxp (flat files containing business objects and rules containing
simple data)
— .gif, .tiff, .bmp icon files containing the definition of icons used in
the GUI
— html files (on a server) for use with the Web Element with .dat files
for applets

Note: The .dat files are portable across platforms. You also need to use an
Elements Environment runtime configuration and the Neuron Data
libraries and resources to build and run the application.

Getting Started 25

Chapter 2 The Open Interface Element

For More Information about the Open Interface Element

See the Open Interface Element C/C++ Programmer’s Guide.
See the Open Interface Element C/C++ API Reference, Vol. 1, Widget Classes.
See the Open Interface Element C/C++ API Reference, Vol. 2,
GUI Helper Classes.
m See the Open Interface Element User’s Guide.

For more information about Elements Environment executables and the ee
runscrpt option, refer to Chapter 10, “Building Applications in the Elements
Environment,” in this manual.

26 Getting Started

__ Chapter

3

Getting Started

The Data Access Element

The Data Access Element (DAE) is a component of the Elements Environment.
The Data Access Element is designed to:

m Give you access to multiple data sources, such as relational databases,
flat-file systems, object-oriented databases, or transactional databases

m Insulate you from the underlying complexities of data access, such as
database connections

m Letyou take advantage of database-specific functionality such as stored
procedures, triggers, and referential integrity

With the Data Access Element, you can give a single application
simultaneous, full read-and-write access to heterogeneous data sources in a
host-based or networked client-server environment. The Data Access
Element supports these standard datatypes:

numeric

interval

ANSI

char

real

variant

date

time

“blobs™ such as text and images

In addition to transparently retrieving data, the Data Access Element gives
you an abstraction layer, which separates the logical view of the data from the
specific data source. This makes it much easier and more intuitive to
manipulate data.

The Data Access Element gives you an application programming interface
(API). This allows your applications to access any relational, flat-file, or
hierarchical database on the network, including legacy data sources. The
Data Access Element API is open and extensible. This lets you extend its
functionality to meet any special requirements that your applications may
have.

Each data source has a corresponding Data Access Element driver, which
handles communication between the Data Access Element APl and the data
source. The Data Access Element fully supports all server-specific
functionality related to the underlying data source.

27

Chapter 3 The Data Access Element

The Data Access Element and OOScript

You can use the Data Access Element objects in Neuron Data’s OOScript
language for seamless integration with:

m Other Elements Environment objects
m OLE-automation server applications

Using the OOScript language, the Data Access Element objects are available:
m On all platforms as in-process servers
m For Microsoft Windows 3.1/95/NT as out-of-process, local servers

Quick Tour

The Data Access Element gives you several key components for
manipulating data:

m Data-access objects
m DBVu resource
= An object API

Generic Data-Access Objects

The Data Access Element includes a set of generic data-access objects. These
are application resources that let you separate application code from
data-access information, which remains unchanged after each application
execution. Data-access objects give your application a more modular
structure, which makes it more efficient and maintainable. Custom editors
in the Elements Environment let you create these data-access objects:

m Connection object

m Query object

m Virtual-table or RecordSet object

DBVu Resource

You can use custom editors in the Elements Environment to combine
data-access objects into a DBVu resource. The DBV U resource accesses
data-dictionary information, and it lets you view and edit its data.

You can use the Elements Application Services (EAS) datasource/views
mechanism to link GUI objects with a DBVu resource. This lets you establish
one or more views of the same data.

28 Getting Started

For More Information about the Data Access Element

Once registered with a datasource object, the GUI objects are synchronized
with the data accessed through the DBVu resource. By separating the data
from the views, the datasource/views mechanism automatically maintains
consistency between the data and the user interface.

You can register these Open Interface Element GUI objects with DBVu
resources:

m Text-edit areas (input fields)

m Check boxes

m Choice boxes

m List boxes (forms and tables)

Object API

Each Data Access Element resource described in this manual has a
corresponding full-function API accessible from the C and C++ languages.
The purpose of these resource APl modules is to give you runtime control of
the data-access objects:

NDCnx (connection) class
NDDbVu (view) class
NDQry (query) class
NDVTab (virtual table) class

For More Information about the Data Access Element

m See the Data Access Element C/C++ Programmer’s Guide.

Related Subjects
m OOScript language

m Datasource/views mechanism in Elements Application Services and
OOScript

Getting Started 29

Chapter 3 The Data Access Element

30 Getting Started

__ Chapter

The Intelligent Rules
Element

The Intelligent Rules Element (IRE) lets you develop knowledge-based
applications using a rich and flexible graphical user interface (GUI). You do
not have to be an expert in programming to use the Intelligent Rules
Element.

The Intelligent Rules Element is a hybrid system that supports:
m Areasoning system
m A powerful object-oriented representation

Reasoning System

Getting Started

To represent reasoning, the Intelligent Rules Element uses rules. Rules are
knowledge structures that let the system perform actions based on data,
such as proving a goal or deducing a conclusion. A rule is also a chunk of
knowledge representing a situation and its immediate consequences.

This is the format of a rule:

i f conditions t hen hypothesis t hen do actions or el se do
alternative actions

m The hypothesis, or goal, becomes true when the conditions are met.
Conditions define expressions that test the values of slots.

A slot is a data value represented by an object and its property.
Actions are undertaken when the conditions are positively evaluated.

Alternative actions are undertaken when any one of the conditions is
negatively evaluated.

31

Chapter

4 The Intelligent Rules Element

if...

conditions
l then ...
> ~—— hypothesis
and do ...
actions
orelse ...
alternative actions
LHS RHS

Figure 4-1 The Components of a Rule

The block to the left of the arrow represents the Left-Hand Side (LHS) of the
rule. This is where the conditions are expressed, with individual conditions
represented by horizontal lines.

The blocks to the right of the arrow form the Right-Hand Side (RHS) of the
rule:
m The first block is the hypothesis, or goal, to be proven.

m Themiddle block represents actions you specify for a positive evaluation
of the rule’s LHS (THEN actions).

m The lower block represents alternative actions you specify for a negative
evaluation of the rule’s LHS (ELSE actions).

Rule Dynamics

32

This section briefly examines how the Intelligent Rules Element processes
rules.

Rule Evaluation

The building block of the reasoning path is the single rule. The Intelligent
Rules Element processes one rule at a time. For example, assume that the
value of a slot involved in one of a rule’s conditions is known. Since this
slot’s value is known, the rule is “relevant.” The system can use this rule to
try to make inferences. Each condition of a rule’s LHS can have one of these
values:

m “true”

m “false”

= “not known”

Getting Started

Reasoning System

Getting Started

Assume now that all of the conditions (each line on the LHS) are verified and
are true. The rule can now be triggered.

Conditions —>

I - Hypothesis

Figure 4-2 The Evaluation of a Single Rule

In Figure 4-2, areas that appear in black were found by the system to be true.

Actions

Rules usually have more complex structures than the simple case of an RHS
made up of just an hypothesis. Such structures let you add actions, which
induce some change in the overall system or its environment. Figure 4-3
shows the kinds of actions that can be initiated when a rule is triggered:

Change the value of
one or several data

Creating and deleting
objects and links

Read/write in databases

Display graphics and text

Affect the influence engine

—— |

—‘ Reset values
Actions ﬁ

Load new rules Execute external
programs

I
I O

Figure 4-3 Possible Actions Initiated by the Evaluation of a Rule

33

Chapter

4 The Intelligent Rules Element

34

Backward Chaining
A hypothesis has a value; therefore, it can appear in the LHS of arule as a
condition that the system will verify. Consider the situation that Figure 4-4
depicts:
m The hypothesis, hypoA, of the rule has an unevaluated condition (shown
in gray).
The unevaluated condition is itself another hypothesis, hypoB.
To evaluate hypoA to be true, the system must verify that hypoB is true.

hypoA

I

hypoB in
LHS condition —»

Figure 4-4 A Hypothesis as a Condition

To verify whether hypoB is true, the system must find one or more rules with
hypoB as the hypothesis. Once the system finds a rule with hypoB as its
hypothesis, it evaluates the conditions in the LHS of the rule leading to

hypoB, as shown in Figure 4-5:

hypoA

L 1

LHS conditions
to be evaluated

l hypoB

Figure 4-5 The Evaluation of a Hypothesis as a Condition

This inference evaluation that the Intelligent Rules Element conducts is a
deductive process, or backward chaining. It can be made at many levels and
can involve many rules, as shown in Figure 4-6:

Getting Started

Reasoning System

T~

Figure 4-6 Backward Chaining with Multiple Hypotheses

Note: In multilevel backward chaining, there might be conflicts between
rules because more than one rule may lead to a single hypothesis. The
Intelligent Rules Element has special mechanisms to deal efficiently
with such conflicts in a way you can define.

Forward Chaining

When the RHS actions of a rule change the values of data in other rules, this
can trigger the evaluation of those rules, as shown in Figure 4-7. The
triggered rule (in black) brings three other rules on the agenda for evaluation.
This is an evocative progression, or forward chaining. The upper left rule has
been evaluated but not activated because of a nonverified condition
(indicated by a cross). Thus, its hypothesis is found to be false, and its RHS
actions fail to occur.

Getting Started 35

Chapter

4 The Intelligent Rules Element

36

Figure 4-7 Forward Chaining Triggered by RHS Actions

Revisions

Rules can also trigger revisions of other rules. Consider rule 1 in Figure 4-8.
The value of a variable caused the condition in rule 2 to fail. However, later
an action of rule 1 modifies the state of the variable in rule 2.

.
Figure 4-8 Reevaluation of a Previously False Rule Triggered by Actions

If the inference engine permits it at a particular time, the rule will be revised,
and then perhaps activated. The activation of rule 2 might place rule 3 on the
agenda for evaluation through forward chaining, as shown in Figure 4-9:

Getting Started

Reasoning System

Figure 49 Forward Chaining Triggered by Rule Revisions

Integration

From the perspective of knowledge processing, rules in the Intelligent Rules
Element are symmetric. This means that they can be used in both backward
and forward chaining. Consequently, it is not necessary to define a rule as

“forward chained” or “backward chained.” How the system processes rules
at a given time depends on:

m The events that occur because of an action or external information
m The current hypothesis that the inference engine is trying to evaluate

Figure 4-10 shows an example of a reasoning path that integrates various
mechanisms in a knowledge base with several rules. The reasoning path
follows this order:

1. After Rule 1 istriggered, rule 2 is placed on the agenda for evaluation.
2. The system’s focus is on rule 2 (circled in Figure 4-10).

3. Rule 2 triggers backward chaining and brings rule 3 under evaluation.
4

Rule 3, in turn, triggers backward chaining, which brings rule 4 and rule
5 under the system’s evaluation

5. During this backward-chaining process, an action of rule 5 brings rule 6
to the system’s attention.

6. The final evaluation of rule 2, as a result of the backward chaining,
triggers rule 7.

Getting Started 37

Chapter

4 The Intelligent Rules Element

Figure 4-10 Integrated Forward and Backward Chaining

As shown in Figure 4-10, a rule is evaluated for one of these reasons:

m |t solves the present subtask.

m Itis the most relevant to the reasoning process.

This opportunistic character of the Intelligent Rules Element architecture lets

the system follow the best line of reasoning. This is crucial for building
systems that need to adapt to changing environments.

Open Architecture

38

The Intelligent Rules Element architecture is event-driven:

m It can integrate messages from external programs, which include those
triggered by the Intelligent Rules Element rules or objects.

m Arule or a hypothesis can become relevant when an external event
justifies its evaluation, even if the system is currently evaluating another
area of the knowledge base.

= You can even make the external events have priority over the current
focus (this priority can be set by the external mechanism).

You can control the effect the integration with external events has on
knowledge processing. The Intelligent Rules Element provides
inference-control mechanisms that can either be set globally or incorporated
into the rules themselves. These mechanisms can affect the

Getting Started

Object-oriented System

backward-chaining paths (their exhaustivity, for example) or the
forwarding of RHS actions. They allow you to prevent specific actions from
having any effect on the system’s agenda and focus. The set of functions
controlling these mechanisms is called the strategies.

Object-oriented System

Rules use reasoning on a data representation of the problem. This
representation is made up of interrelated objects. As shown in Figure 4-11,
the representation dimension intersects the reasoning system at the data
level:

Representation

Reasoning

J

s

T

Figure 4-11 Intersection of the Reasoning and Representation

Object Structure

Getting Started

The object structure includes:
Objects

m Properties

m Classes

m Methods

Object

An object is a basic unit of description. Objects represent the knowledge on
which the rules reason. Objects also describe variables in the knowledge
base. You can define hierarchical relationships between objects to give rules
greater flexibility in reasoning.

39

Chapter 4 The Intelligent Rules Element

Property

A property is a characteristic that you can associate with an object or a class.
The combination of an individual object and a specific property is called a
slot. Slots store the actual values.

As an example, consider a condition of an Intelligent Rules Element rule:
I's objectl. propertyl "blue"?

This condition is part of the LHS of a rule, which is the current focus of
attention. This is a translation of this syntax:

“Is the value of the slot (property ‘propertyl’ of the object ‘objectl’) blue?”

Class
A class is a collection of objects that usually share properties.

Consider this condition:
I's <CLASS1>. propertyl bl ue
This condition translates to:

“Is there any object in the class ‘CLASS1’ whose slot ‘objectx.propertyl’ has
the value blue?”

Classes let you represent objects hierarchically:

CLASS
propertyl
property2

objectl object2 object3 object4 objectn
propertyl propertyl propertyl propertyl propertyl
property2 property2 property2 property2 property2

Figure 4-12 The Hierarchical Structure of Classes and Objects

40 Getting Started

Object-oriented System

Inheritance

Classes can store information relevant to all their objects. The objects, when
necessary, inherit this information. This mechanism is called inheritance.

propertyl
property2

propertyl
property2

objectl object2 object3 object4 objectn
Figure 4-13 Inheritance of Properties by Objects of a Class

Method

A method is a sequence of actions associated with an object, class, property,
or slot that executes under certain circumstances.

As an example, consider the following condition of an Intelligent Rules
Element rule that is the current focus of attention:

SendMessage " Conput eArea” To: objectl
This condition translates to:

“Trigger the method ‘ComputeArea’ attached to the object ‘objectl.””

Encapsulation

Methods let you hide procedures related to an object’s unique behavior
within the object itself. That way, you do not have to write them elsewhere
in the rules of the knowledge base.

Getting Started 41

Chapter 4 The Intelligent Rules Element

method1

objectl

Figure 4-14 Method-Object Relationship

This idea that an object can be a self-contained unit that includes both the
data and the procedures to process those data is known as encapsulation.

Polymorphism

Like properties, methods can be inherited by the children from their parent
object.

Methods are best used to represent related knowledge about a set of objects.
When each object has its own way of accomplishing the same task, the
attached methods typically use the same name for each object, such as
“Determine_Area” or “Calculate_Cost.” Then when a rule sends a message
to trigger the method, the message and the method bind with the list of
objects that receive the message.

Figure 4-15 depicts one message that binds with several objects that have a
method of the same name attached. The ability to use methods with the same
or similar names to represent a type of task for more than one object is
known as polymorphism.

action(x1)
method1 <action(x2)
action(x...)
mmm ScndMessage
- C < action(y1)

methodl { action(y2)
action(y...)

action(z2)

action(z1
method1< (21)
action(z...)

Figure 4-15 Same Message Triggering Different Method Actions

42 Getting Started

Object-oriented System

Pattern Matching

Getting Started

The class structure itself acts as a pointer to a set of objects, with data held
by the structure formed by associating a property with each object. This
structure is represented by the form cl ass. pr operty and is known as a
slot.

Classes thereby provide a way to search through lists of objects in order to
identify which objects meet a specific condition. This is called pattern
matching. Consider the following pattern-matching condition of a rule:

= <CARS>. col or bl ue
This means:

“Is there any object in the class ‘CARS’ whose slot ‘objectx.color’ has the
value blue?”

Objects in the class “CARS” all have the property “color.” The system:
1. Evaluates the condition and identifies all the slots with the value “blue.”
2. Automatically creates a list of objects for use by the rule’s RHS actions.

Figure 4-16 depicts a pattern-matching situation where all objects with
“slotl = blue” will have their slot “slot2” set to 0 by the RHS actions:

LHS: creating the list
of objects with slot1=blue

RHS: setting slot2=0 for all
objects with slotl=blue

Figure 4-16 Pattern Matching on Class Creating List of Objects

While the list is created on the basis of a condition that incorporates “slot1,”
the RHS action can modify slotl or any other slot of the same objects.

43

Chapter

4 The Intelligent Rules Element

System Methods

44

Methods that the system automatically triggers under circumstances that
you define are called system methods. You can define two types of system
methods:

m Order of Sources
m If Change

Order of Sources

Order of Sources lets you define and prioritize the sources that the system can
use during a session to obtain the value of a slot that is not known.

To evaluate a rule, the Intelligent Rules Element must have the appropriate
information on which to base its conclusions. If the values of slots in the LHS
conditions are unknown, the system must first obtain the values to complete
the evaluation.

For example, consider the following condition, and assume that there is ho
current value for the slot “car.color”:
= car. col or bl ue

Assume that the value of slotl of the class “car” is unknown. The system will
not be able to find the value of slotl for the object, which it needs to evaluate
the current rule. However, the system can switch to a different source that
you have defined to obtain the value.

As shown in Figure 4-17, inheritance fails, and an external routine is
computed that may provide the value:

slotl

No inheritance

sot —T—7

T External
routine

Figure 4-17 Value Computed Externally after Inheritance Fails

Getting Started

Object-oriented System

For any object slot, you can declare an Order of Sources. This object-oriented

functionality adds robustness to the system. This is because a data value can
be

m Inherited from the parent class
m Fetched from an external source
m Directly assigned

If Change Methods

If Change methods let you specify the actions that the system initiates
whenever the value of a slot changes during the evaluation of a rule.

Assume that an RHS action of a rule changes the slot value:

Order of Sources
slot
If Change

Figure 4-18 If Change Attached to an Object Slot

Assume also that there is a value for the slot at the level of the class to which
the object belongs. When the value of the slot is changed, the system
immediately executes the If Change methods.

User-defined Methods

Getting Started

You can specify when to trigger user-defined methods in an application.
Another rule or method triggers these methods during the evaluation of a
rule. A rule or a method always uses the SendMessage operator to trigger a
user-defined method. Figure 4-19 depicts a rule that uses the SendMessage
operator to trigger a method, which in turn uses its own SendMessage
operator to trigger another method.

45

Chapter 4 The Intelligent Rules Element

IF: conditionl

condition 2
method1 THEN: actionl
action 2

ELSE: SendMessage

—
.- SendMessage

IF:
method1 THEN:

ELSE:

Figure 4-19 User-defined Methods Triggered by Message Passing

Graphical User Interface Dynamics

Interaction from the Intelligent Rules Element to the GUI

The Intelligent Rules Element inference engine generates several types of
events that provide a variety of graphical user interface (GUI) interactions:

Asking questions

m Displaying conclusions
m Displaying alert messages
m Updating displayed windows with new information such as:

— achange in the value of a slot
— achange in the structure of an object
— unloaded knowledge-base file

46 Getting Started

Graphical User Interface Dynamics

LHS: creating the list
of objects with slotl=blue

File |Edit Y
Color|Size
Objl| blue | 7
Obj2| blue | 8
Obj3 | blue | 7

RHS: setting slot2=0 for all
objects with slotl=blue

Figure 4-20 Events in the Intelligent Rules Element

Figure 4-20 shows a create-object event generated by the Intelligent Rules
Element inference engine. The GUI receives the event. The window then
displays the data in a table element with:

m Rows that correspond to each object
m Columns that correspond to the properties of each object

To make this type of communication with the GUI possible, the Intelligent
Rules Element uses the OOScript language. You can define scripts at these
levels:

m The application and its modules to provide startup control

= A window

m The individual graphical element

The LHS action in Figure 4-20 is an example of immediate updating. The script

engine handles the create-object event from the Intelligent Rules Element by
updating the table.

Interaction from the GUI to the Intelligent Rules Element

Getting Started

The GUI has its own set of events generated by user actions. Typically, the
end-user makes a selection from a menu or enters a value from the keyboard
in response to an IntelligentRules Element event. The GUI engine monitors
these user actions in the background. If one of these actions occurs within the
area of a particular graphical element, such as a menu item or an input field,
the system interprets it as a GUI event. Like their Intelligent Rules Element

47

Chapter 4

The Intelligent Rules Element

counterparts, GUI events allow you to initiate appropriate responses such
as:

Sending information to the Intelligent Rules Element
m Triggering inferences in the Intelligent Rules Element

Requesting more information from the Intelligent Rules Element

Revised data value File | Edit

triggers rule _
valuation Color |Size

Objl| blue | 7
Obj2| blue | 8

Obj3 | blue

User-edited value
updates KB data

Figure 4-21 GUI Events and a Data Source

Figure 4-21 shows an update event that the GUI engine generates after the
end-user modifies a value in a table and presses Enter. The same script
engine that handles the Intelligent Rules Element events that the inference
engine generates also handles GUI events that an end-user initiates. Thus,
you can edit the scripts of your knowledge-based application while you
construct the windows and GUI objects.

Building Applications

48

The Intelligent Rules Element lets you build knowledge-based applications
for a wide range of tasks by using specialized knowledge-design facilities.

Getting Started

Building Applications

Starting the Intelligent Rules Element

How you start the Intelligent Rules Element depends on the type of
operating system your computer uses:

IBM-compatible PC

1. Setthe path to include Windows, the Intelligent Rules Element, and the
knowledge-base directories.

2. Atthe prompt, enter W N EE20.

UNIX Workstations

1. Start X Windows.

2. Change the directory to $ND_HOVE/ bi n.
3. At the prompt, enter ee20.

Macintosh

Double-click the Intelligent Rules Element application icon.

The Main Window

Getting Started

When you start the Intelligent Rules Element, the main window appears.
This is the window that controls the application. The main window displays
important options for interacting with the Intelligent Rules Element:

A list of the knowledge bases that you load into memory
A Session Control panel to monitor events

A customizeable control panel that lets you add button equivalents for
commonly used menu items

An inference engine status field
A GUI engine status field

49

Chapter 4 The Intelligent Rules Element
lergcimp b Iriedigend Alides Elmeni
Sel Curiart KB Gaggel
Fla [F Cpe e Pacd sl -
/
Clos FH | e | / Farstagt Suzrien
SwekR R T Cones Fiba
Lasd EH NEd S TR
\] e
il [Jr T
e E D
i ek Bsharad
o] 5eilip
. T SN S0 |
MF P | =
U I i
wighged Py Elsr — =
Pz [hshaed o Flama Bpplcaben
ok ponred Dok e A alon

Figure 4-22 The Main Window of the Intelligent Rules Element

Note: See the Intelligent Rules Element User’s Guide for a complete
description of the main window and of the rules development
environment.

Displaying Popup Menus

50

Popup menus provide additional functions for the various fields in the main
window. Popup menus also group related functions or display only relevant
functions. These are the three types of popup menus that you will use with

the Intelligent Rules Element facilities:

Popup Type

Description

Selection Method

Local popup

Displays options for
highlighted fields of the
editor windows or for
specific items displayed in
the network windows.

Note: Local popup menus
that you display for
individual fields are
context-sensitive; thus,

their options vary with the

field selected.

Click the highlighted field. If you are
using a one-button mouse, move the
cursor slightly to the right to display
the popup menu.

Getting Started

Building Applications

Global popup Displays general options Click inside the active window but

related to the active away from a field or button. If you are
window outside of its using a one-button mouse, use Option
highlighted field. + click.
Windows Displays the windows that Click anywhere in the active window
popup are open and gets system using the middle mouse button. If you
options outside of a are using a one- or two-button mouse,
highlighted field. use Command + click.
T LM CRERATORS Local Ffop.up menu: Global Popup menu:
Select inside Press right mouse
Cleai L i . -
- highlighted field. button in nonactive
,: 1L P | i m=0 area. One-button
5 Bo b Dt i Bt et Bh mouse users, use
5 nd | Mo Option + click.
- [)] Fide Edier
1 1 o
m - . 4 Carcsi
AR [| f] Lint of el
3 o 1 T Clowi
Merta I [o Fuh Estarel
Mt bisales { 1 — Bk guoured Dok
Fiaai | 1 L] Fint
E i -y = = Wise i ke
Feolwren o N ua
ite Comnia | =
Cusatedl ol W - —
Cralatnll bet WPl [T 0000 P JRnnnin] Ll
& rndas x{:—; ‘e
Lasd B i] dplged fe; S
UnkaadiE Windows Popup menu: Press middle P E e
Frrads g mouse button inside nonactive area. T
Irasi Lire One- and two-button mouse users, use Rpstn Saman
Dbt Liret Command + click (right button).

Figure 4-23 Sample Popup Menus

Getting Started 51

Chapter 4

The Intelligent Rules Element

Entering Text

Rule Editor

52

For building knowledge structures, the Intelligent Rules Element provides a
set of six specialized editor windows. Each window has a set of toolbar buttons
that you select to begin editing:

Button Text
Equivalent Description

NEW Clears the editor window and highlights the first field to
accept your entry for a new application structure.

EDI T Places the currently displayed application structure in
edit mode and lets you make changes.

coPY Makes a duplicate of the currently displayed application
structure and lets you make changes.

DELETE Deletes the currently displayed structure from the
application. Note: You cannot reverse this operation.

ACCEPT Verifies the syntax of entries of the current application
structure, accepts the structure into the application, and
prepares the editor window for further additions.

CANCEL Returns the currently displayed application structure to
its original unmodified state.

CHECK Verifies the syntax of the current application structure.

FI ND Searches the application to locate the specified structure.

RINIEIEIEIEE =

The following sections outline how to use the editors to build:
m Rules

m Objects

m Method structures

You add rules in the Intelligent Rules Element by using the Rule Editor
window. Like other editor windows, the Rule Editor aids the
application-development process by acting as a template for entering data.

Getting Started

Building Applications

You can use the Rule Editor option to add, edit, or delete any rule in the
knowledge base.

Figure 4-24 shows a rule with the conditions, hypothesis, and then-actions
fields in the Rule Editor window.

EE ule Editor
File Edit Expert Erowsers Beports Swindows Bule

H w |
@' Rule [R_“alve_Problem KB [untitled. kb I
If = current_task “refuelin{~| W [valve_problem |
= tank_1.pressure (=00 Actions
I:I = device orientation |"inward" Then [Shovalve problem” [@KEE[~
[] :
- g
Do
Comments | 1
b | =
Inf. Pricrity Mum. 1 Inf. Priority Slot —_—

4

Figure 4-24 Rule Editor Window

This is an example of a simple rule with three conditions, a hypothesis, and
asingle action to recreate. The exact data for the rule shown in Figure 4-24 is
as follows:

I F = current _task "refueling"
> tank_1. pressure 300
= device.orientation "i nwar d"

THEN val ve_probl em
Show "val ve_pr obl ent

Building Rules in the Rule Editor

Note: Always use the text-edit line to enter or edit values for the highlighted
fields in the Rule Editor.

1. Start the Intelligent Rules Element.

See “Starting the Intelligent Rules Element” on page 49.
2. Choose Editor - Rule.
3. Click New.

E 4. Click the highlighted field of the conditions columns and display the

Getting Started

local popup menu for this field.

53

Chapter 4 The Intelligent Rules Element

Note: If you are using a one-button mouse, make sure the cursor looks
like a small menu. Move the cursor slightly to the right to display
this menu.

5. Select = (equals).
6. Enter the slot name current _t ask:

Type into text-edit field.

If |- current_task -

7. Enter"refueling" inthe third field:

If |- |current_task "refuel

8. Follow steps 4-7 to complete the second condition as shown below:

Note: Be sure to type an underscore in the namet ank_1. pressure
and to select > instead of =.

If |- current_task "refueld
> tank_1.pressure (300

9. Follow steps 4-7 to complete the third condition as shown below:

If |- current_task "refuely

> tank_1.pressure |300
= device.orientation|"inwarg

54 Getting Started

Building Applications

10.

11.

12.

13.
14.
15.

Object Editor

Click the hypothesis field, and enter val ve_pr obl em

W valve_problem

Display the popup menu for the Actions operator column, and select
Show:

Actions
Then [5ho [
Do]

Enter the filename " val ve_pr obl ent':

Actions

Show |"valve_problem”

In the Show File dialog, click OK.
Click OK to verify and compile the rule.

Leave the Rule Editor window open, and go to “Editing Object
Structures in the Object Editor” on page 56.

You can add classes and objects in the Intelligent Rules Element using the
Object Editor. Like the Rule Editor, the Object Editor also serves as a
template. You can shift from creating rules to editing objects or the reverse
at any point while developing your application.

Figure 4-25 identifies the object name t ank_1, which has two properties.
Therefore, the Object Editor in this case defines two slots:

Getting Started

tank_1. 1 evel
tank 1. pressure

55

Chapter

4 The Intelligent Rules Element

56

It also shows that these object structures belong to the class
Regul ar _Tanks.

B

File Edit Ezpert Browsers Heportz Windows Object

| @ | b
Dbject [tark_1 KE [untitled kb e-d
e-f

Fegular Tanks |~ |
o-h
=1 | =
SubDbjects |«] |
m-n
L= | op

Properties level Unknown (FiPub £ |= |
pressure LUk rown (F)Pub > q-r
s-t
— u-

M ethods -
| -3
-2

N A E

Figure 4-25 Object Editor

Editing Object Structures in the Object Editor

1.
2.

Choose Edit - Object.

In the Object Editor window, click the page-flip graphic on the bottom
left-hand corner to display the object t ank_1 in the Name field.

Click Edit.
Enter the class name Regul ar _Tanks:

Object | Tank_1 KE | untitledkb

Classes Regular_Tanks

Click OK to verify and compile the class.

Getting Started

Building Applications

Getting Started

6. Click Copy to duplicate the object and its property.

7. Enter Tank_2 to change the object name:

| Tank_2 [+

Object EETSE <c | untitledko

8. Click OK to verify and compile the new object.

Editing Classes in the Class Editor
1. Click Classes.

Classes | Regular_Tanks

2. Click Edit.

3. Click the first column of the Properties field, and enter | evel as the
property name:

Properties I |leve1 '

4. Click OK to verify and compile the class.
5. Select the datatype Float and click OK:

Select a type for: level

.~ Boolean

~~ Date

4 Float 0K
Integer

e cancel |

~~ String

. Time

57

Chapter 4 The Intelligent Rules Element

Click the Object Editor window.

A second property level now appears. This is due to the creation of a
property automatically inherited from the Class Editor.

Properties | Tevel Unknown {F) o
pressure Unknown (F) c{)

Leave all three editor windows open, and go to “Viewing Previously
Created Rules” on page 59.

Viewing Rules and Objects

List Windows

List windows in the Intelligent Rules Element provide a textual display of all
the information in your application. Each of these has its own window:

Rules
Methods
Hypotheses
Data
Classes
Objects
Properties

Each window contains a scrollable list of related structures arranged in
alphabetical order. You can:

58

Display List windows to examine the structures and their status
Print them to obtain a record of the knowledge base.

Getting Started

Viewing Rules and Objects

Figure 4-26 shows the rule created in the previous section:

ist OF Rules

File Edit Ezpert ‘windows Rules

Rule R Valve Problem = |[[ab
I current_task s precisely equal to "refueling” o-d
And tank_1.pressure is greater than 300
And device_orientation is precisely equal to "inward” et
Then valve_problem th
is confirmed. T
And Show "walve_problem” @KEEP=FALSE;@\WAIT=FALSE; T

RS

= | yz

1 o

A

Figure 4-26 List of Rules Window

Viewing Previously Created Rules
1. Click the still open Rule Editor to make it the frontmost window.

2. Inthe Rule Editor, click in an inactive area to display the global popup
menu.

Getting Started 59

Chapter 4 The Intelligent Rules Element

3. Choose List of Rules:

6. Close the List of Rules.

% 4. Click Edit to view the rule again in the Rule Editor.
5. Click Cancel to prevent the rule from changing.

Rule Network

The Rule Network window lets you view the relationships among the rules
in your knowledge base. You can view:

m Asinglerule
m Specific groups of rules
m All the rules in the knowledge base.

60 Getting Started

Viewing Rules and Objects

Figure 4-27 shows the previously created rule in a Rule Network window.
The rule graph shows each rule’s:

m LHS conditions
m Hypothesis
m RHS actions (optional)
Hypothesis

_ tank_1. pressure >300 ? val ve_probl em ?
device.orientaion is "inward" ?
Action —> =>Show "val ve_probl enf @ KEEP ?

AN

Figure 4-27 Rule Network Window Rule Graph

Conditions —> current _task is "refusing" ?> \
r.1?

Evaluation icons

Note: The rule graph shows a question mark (?) to indicate the current
evaluation status of each component. During knowledge processing,
this symbol changes.

Displaying Rules in the Rule Network Window
1. Click the Rule Editor window, which is open.

2. Inthe Rule Editor, click in an inactive area to display the global popup
menu.

Getting Started 61

Chapter 4 The Intelligent Rules Element
3. Choose Focus Rule Network:
ule Editor
File Edit Ezpert Browsers Beportz Windows Rule
I a-h
- c-d
Rule |R_Va|ve_F'r0hIem kR Lintitind 1ok
Fiule E ditar ol
If E current task "refueling = | e
= tank 1. pressure 00 By g-h
= device_orientation |imweard” Modity blem” J@KEE[=] .
Delete
y k-
Suggest Hypothesis = m-hn
List of Rules o
D Edit Contexts |~ o-p
Cloze g-r
Push Behind
= B ackground Colar = st
— Print — I
Comments I Wit ta Fils
-
Wihy [
y-Z
Inf. Pricrity Murm. I 1 Irf. Priority Slot I
4. Leave the Rule Network window open, and go to “Displaying
Class-Object Hierarchies in the Object Network” on page 63.
Rule Network
File Edit Expert Browsers Reportz “Windows Rule
current_task = "refueling” ?
: tan.k 1.p.rESSUII'I? = 30? 7
Evice. orientation = “inward” P
Show “valve_problem” @HEP
62 Getting Started

Viewing Rules and Objects

Object Network

The Object Network window lets you view the class-object hierarchy in your
knowledge base. You can view:

= An object
m Its properties
m The classes or other objects to which it belongs

Figure 4-28 shows how the Object Network window displays the
class-object hierarchy for an object structure. The hierarchy includes:

m A class with its own property
= Two objects with properties attached

This simple hierarchy shows that the objectst ank _1 andt ank_ 2 actually
inherited the property | evel from their parent class Regul ar _Tanks:

Properties

/ Oevel
level
o /E} pressure
tank_1
(O Regular_Tanks A

O 1evel

tank_2
\ A\ [pressure

Class Objects

Figure 4-28 Network Window Class-Object Hierarchy

Displaying Class-Object Hierarchies in the Object Network
1. Choose Windows - Class Editor.

2. Inthe Class Editor window, click in an inactive area to display the
global popup menu.

Getting Started 63

Chapter 4 The Intelligent Rules Element

3. Choose Focus Object Network:

File Edit Egzpert Browsers HReports “Windows Class
] @ | =
i — c-d
D Class [Regular_tanks Clazs Editar
Mews a-f
SubClasses Copy [=]
Madify g-h
Delete i-j
Change to Object Il o
CH Nlewel Focus Object Metwork - _
. Show Object Editor -1
) Close o-p
D Push Behind
Background Color g-r
Aﬁ Prirt L~
Sk =-t
M ethods write to File -
| u-u
-
¥-Z

4. Position the cursor over the objectt ank 1, and click to expand the
object-network diagram.

Note: The cursor changes to a right-pointing arrow when you place it
on the object.

5. Repeat step 4 for the objectt ank_2:

Ew Fajwd Froweini Hejude fmabesi [fleed

64 Getting Started

Viewing Rules and Objects

6. Scroll the Object Network window to reposition the object-network
diagram.

Note: The scroll arrows let you move the diagram left and right, as well as
up and down.

it Eped freem fwot e Qe

7. Click the property | evel for the objectt ank 2 to display the local
popup menu for this item.

8. Choose Edit Meta-Slots.

The Meta-Slots Editor lets you control the attributes of specific slots in
the knowledge base, including their:

— inference priority

— inheritance priority

Getting Started 65

Chapter 4 The Intelligent Rules Element

— data-validation attributes

9. Close the Meta-Slot Editor.

10. Close the Object Network window, but leave the Rule Network window
open.

Processing the Application

The Rule Network window is especially convenient for starting knowledge
processing with a knowledge base loaded. Its special facilities give a graphic
overview of the state of knowledge processing while inferencing is taking
place. In the following demonstration, you will see that the graphic symbols
of the rule graph change according to the status of the evaluation process.
The system uses these graphic symbols—network icons—to represent the
evaluation status of individual:

m Conditions

m Actions

m Rules

66 Getting Started

Processing the Application

Getting Started

m Hypotheses

Network Value/Meaning Description
Icon

Current condition Condition or action under evaluation
or action

‘? Unknown In the initial state and not yet evaluated
x False Evaluated by the system, but failed the test
\(True Evaluated by the system but passed the test
| Not Known Evaluated by the system but found data
to be insufficient for testing
Evoked Hypothesis currently under evaluation
.’ hypothesis

In this chapter, the knowledge base consists of a single rule and the objects
it reasons over.

These steps let you start knowledge processing with a knowledge base

loaded:

1. Givethe system a place to start (Suggest and/or Volunteer and/or Send
a Message).

2. Run the session (Knowcess).

3. Set up the session to run again (Restart Session).

The following sections show a knowledge-processing session from the Rule

Network window. Two separate procedures are given for the previously

created rule:

1. You suggest the hypothesis val ve_pr obl em This action places the
hypothesis on the Intelligent Rules Element agenda for evaluation. The
system proceeds by investigating the status of the rule’s conditions.

2. Youvolunteer data that appears in a condition from the same rule. This
action also places the hypothesis val ve_pr obl emon the agenda for
evaluation.

These actions—suggesting and volunteering the same rule—demonstrate
the bidirectional nature of rules you build in the Intelligent Rules Element.
It is not necessary to define the rule as one type or the other. Rule evaluation
proceeds according to how knowledge processing was started.

67

Chapter 4 The Intelligent Rules Element

Using Hypotheses

Hypotheses can be placed directly on the Intelligent Rules Element agenda
for evaluation. This process is referred to as suggesting an hypothesis.

Suggesting an Hypothesis from the Rule Network Window
1. Click the Rule Network window, which is still open.

2. Click the hypothesisval ve_pr obl emto display the local popup menu
for this item.

3. Choose Suggest:

cumant_ak = “efuabng 7 |

tark_1 precsum = 3]3?
wa s, oo shon = 'um--d'?

Ehiow “vidwa_piohkain Gy

4. Click in an inactive area of the Rule Network window to display the
window’s popup menu.

Note: If you are using a one-button mouse, use Option + click.

68 Getting Started

Processing the Application

5. Choose Knowcess:

6. Click the up arrow on the top right of the main window to shrink it to
the size of the Session Control panel.

7. Drag the main window below the graph of the Rule Network window,
as shown here:

Rule Hetwork =] 3 I

File Edit Expert Browsers Heports Windows Rule

current_task = "refusling” @
tank_1.pressure > 300 ‘¢

device. orientation = "inward" @
+==Show "valve_problem” @KE?

e_problem #

Intelligent Rules Element

File Edit Egpert Browsers Heports ‘wWindows

I Tranzcript |

“what iz the Walue of curment_task 7

Getting Started 69

Chapter 4 The Intelligent Rules Element

8. In the Session Control panel of the main window, click the edit-line
arrow and select " r ef uel i ng":

problem 4

Intelligent Rules Element

= Edit Ezpert Browsers Heports windows
I Transcript |
Wwhat is the Yalue of current_task 7 E3]
lr=tusiing =] oK |
MNOTKMOWN

9. Click OK to continue the inferencing session.

After evaluating the rule’s first condition, the system displays the
guestion in the Session Control panel for the second condition.

70 Getting Started

Processing the Application

10. In the edit line of the Session Control panel in the main window, enter
" 310" and click OK.

_[ofxI|

sroblerm 4

E Intelligent Rules Element

File Edit Ezpert Browsers HReportz ‘windows

Tranzcript |

what iz the pressure of tank_1 7

Kl =] oK. |

After the evaluating the rule’s second condition, the system displays the
question for the third condition.

Getting Started 71

Chapter 4 The Intelligent Rules Element

11. In the Session Control panel of the main window, click the edit-line
arrow and select " | nwar d" :

device.orientation = "inward” &
+==Show "valve_problem” @@ KEP

ntelligent Rules Element

Edit Expert BErowsers HReportz wWindows

I Transcript |

*What iz the orientation of device ? EI

= oK. |

HNOTEMOWM

12. Click OK to continue the inferencing session.

After the system finishes evaluating all three LHS conditions, it triggers
the single action shown to the right of the arrow symbol (=>) in the rule
graph. The newly displayed figure is a result of the rule’s action.

72 Getting Started

Processing the Application

13. Close the Apropos window.

EE Rule Network

Edit Espert Browsers Heports Windows HRule

Intelligent Rules Element
File Edit Ezpert Browsers Beportz ‘wWindows

Tranzcript |

Session Contral ...

NP Engine Status: [Done

When processing is complete, the NXP Engine status shows “Done” in
the Session Control panel of the main window. The check marks of the
rule graph indicate the outcome of the evaluation process.

14. Click in an inactive area of the Session Control panel to display the
global popup menu.

Getting Started 73

Chapter 4 The Intelligent Rules Element

15. Choose Restart Session.

ule Network

File Edit Egpert Browsers Beports “wWindows Rule

telligent Rules Element I
File Edit Expert Browsers HReports ‘Windows

. WWindows
Tranzcript |

Intelligent Rules Element

Fiule Metwork
Session Contral ...

MNP Engine Statusz: | Done

The system returns the evaluation status of the rule graph to its original
Unknown state, as indicated by the question marks.

16. Leave the Session Control panel and the Rule Network window open.

File Edit

Expert Browsers Reports ‘Windows

Rule

valve_problern P

Intelligent Rules Element

File Edit Egpert Browsers BReports ‘windows

Tranzcript |

Session Contral ...

WP Enging Status: [Done

Getting Started

Processing the Application

Using Data

Data that causes the evaluation of one of the rule’s LHS conditions can also
place a hypotheses for evaluation on the Intelligent Rules Element’s agenda.
This action of starting knowledge processing with data is referred to as
volunteering data.

Volunteering Data from the Rule Network Window

1. Inthe Rule Network window, click the slott ank_1. pr essur e in the
rule’s second condition todisplay the local popup menu for this item.

2. Choose Volunteer:

Rule Network
File Edt Espert EBrowsers Beports MWindows Rule

current_task = "refueling"?

tank 1 wenreoen w2002
tank_1.pressure > 300 valva problem 7

Estend Right
Full Right Extent
Extend Left

Full Left E stent

Focus

Focus Object Network

=)
Edit Object ...
[4] Edit Meta-Slats 3

3. Enter " 310" and click OK:

“olunteer the pressure of tank_1

310
I Ok I
MHOTEROW M | Cancel I

4. Click in an inactive area of the Rule Network window to display the
window’s popup menu.

Getting Started 75

Chapter 4 The Intelligent Rules Element

5. Choose Knowcess:

Rule Network

File Edit Ezpet Browsers Beports ‘Windows Rule

windows

Inteligent Fules Element
Rule Metwork

current_task = "refueling" ¢
tank_1.pressure > 300 P& Restart S ession
device. orientation = “inward" 7 Suggestoluntesr
+=>Show "valve_problem” @KE?

6. Inthe Session Control panel, click the edit-line arrow and select
"refueling":

i Aule Network

e Edit Expert Browsers Heports Windows Rule

current_task = "refueling” @
tank_1 pressure = 300 ¢

dewice. orientation = “irward" ¢
+==Show "valve problem” gE

problam 4

telligent Rules Element

Fil= Edit Expert Browsers Heportz “Windows

I Transcript |

wihat is the Walue of current_task 7 El
|retusiing = oK. |
MOTKMOWN
7. Click OK.

Since the value of the second condition is already known, the system

76 Getting Started

Processing the Application

proceeds to the next unknown condition.
8. In the Session Control panel, click the edit-line arrow and select
"I nward":

Rule Network I o] I

Edit Egpert Browsers Beports findows Rule

walve_problerm #

Intelligent Rules Element

Edit Expert Browsers Beports windows

| Transcript |
“wihat is the orientation of device ? EI
[= ok |
MO T KM
9. Click OK.

After the system finishes evaluating the two unknown LHS conditions,
it triggers the single action shown to the right of the arrow symbol (=>)
in the rule graph. The newly displayed figure is the result of the rule’s
action.

10. Close the Apropos window.

When processing is complete, the Session Control Panel shows the
status of the rules engine (NXP) as “Done.” The check marks of the rule

Getting Started 77

Chapter 4 The Intelligent Rules Element

graph indicate the outcome of the evaluation process.

ule Network

File Edit Exzpert Browsers HReportz ‘windows FRule

telligent Rules Element
Fil= Edit Expert Browsers HReportz Windows

I Transcript |

Seszion Control ..

MNP Engine Status: [Done

. otart |

11. Click in an inactive area of the Session Control panel to display the
global popup menu.

12. Choose Restart Session:

telligent Rules Element

File Edit Egpert Browsers Heportz ‘wWindows

| Transcript | windows

Inteligent Rules Element
Session Contral ... Fiule Metwaork,

Kl
MxP Engine Status: [Done NOWCEss

Festa on

E e p— e — I

78 Getting Started

For More Information about the Intelligent Rules Element

The system returns the evaluation status of the rule graph to its original
Unknown state, as indicated by the question marks.

ule Network

Edit Expert Browsers Reportz ‘Windows Rule

current_task = "refueling” “¢?

tank 1 pressure > 300 72

dewice. orientation = “imward" ‘¢
+==Show "valve_problern” @kE?

telligent Rules Element
ile Edit Exzpert Browsers BReports ‘wWindows

I Transcript I
Session Control ...

M Engine Status: | Done

13. To conclude this session, close the Intelligent Rules Element windows.

For More Information about the Intelligent Rules Element

See the Intelligent Rules Element Language Programmer’s Guide.
See the Intelligent Rules Element Language Reference.

See the Intelligent Rules Element User’s Guide.

See the Intelligent Rules Element C/C++ Programmer’s Guide.

Getting Started 79

Chapter 4 The Intelligent Rules Element

80 Getting Started

__ Chapter

OLE Automation and
OO0Script

Object-Model Interoperability

The Elements Environment’s built-in interoperability layer allows you to
create enterprise-wide, business-critical applications by seamlessly
integrating objects from different object models, such as the Elements
Environment and Microsoft’s Object Linking and Embedding (OLE)
standard.

Note: The Elements Environment’s interoperability layer currently
supports the OLE object model for Microsoft Windows 3.1, Windows
95, and Windows NT. In addition, you can access CORBA servers
using OLE-to-CORBA bridges such as lona’s Orbix.

The Elements Environment provides a set of object servers to access objects of

the Neuron Data Elements through drivers to specific object models. The

interoperability layer allows Neuron Data’s OOScript language to access

these types of objects through object servers:

m Objects internal to the Elements Environment, such as GUI, data-access,
business-rule, and Web objects

m Objects external to the Elements Environment, such as Excel
spreadsheet objects or other objects enabled for OLE automation

Note: You can also access the Neuron Data objects through these object
servers by using other languages, such as Visual Basic, C, and C++.

OOScript

Neuron Data’s OOScript is a powerful fourth-generation language (4GL) for
scripting. OOScript allows you to quickly build business-critical
applications. It can effectively integrate the Elements Environment objects
and other external objects to create a comprehensive and interoperable
development environment.

The object-aware, event-driven OOScript language combines the
performance and functionality of a third-generation language (3GL) with
the visual-editing techniques of a 4GL. Using the OOScript language, you

Getting Started 81

Chapter

5

OLE Automation and OOScript

can write scripts and then attach them to your application components
(objects and modules). When system events affect your application objects,
the attached scripts execute automatically in response.

Neuron Data provides these applications for building and editing scripts:

m A visual Script Editor that lets you build and edit scripts for different
objects within the Elements Environment. You can start it from any
graphical object or resource within the Elements Environment at any
time.

m A visual Script Browser that allows you to locate and use external
servers, classes, modules, script procedures, and global variables.

m A Script Tracer gives you a basic tool for analyzing an OOScript
application as it executes.

For More Information about OLE Automation and OOScript

m See the Interoperable Objects OLE Server Installation Note.

m See the OOScript Language Programmer’s Guide and the OOScript
Language Reference.

Related Subjects

82

m The Elements Environment Application Services (EAS)

Getting Started

__ Chapter

6 The Web Element

The Web Element (WE) allows you to enable your applications for the World
Wide Web. Besides being portable, the Web Element contains all the features
that you can find in a Web browser.

The Web Element includes these components:

Web Element browser

Navigator Link and Navigator Overview
Web Control

Navigation API

HTML Editor

The Web Element has these features:

Is compatible with HTML 2.0

Allows you to embed a World Wide Web browser window in an
Elements Environment application

Includes Neuron Data Applets, which allow you to create dynamic,
distributed miniapplications that clients can download from anywhere
in an enterprise-wide Intranet or from the Internet.

Neuron Data Applets that use the OOScript servers have full access to
external objects, such as those available in OLE automation servers.

The Web Element Pro contains C/C++ APIs that allow you to:

Embed a Web Control in any window of an application
Build widgets that are aware of Web Control

For More Information about the Web Element

Getting Started

See the Web Element Programming Guide.

For information on the Web Element OOScript classes, see the OOScript
Language Reference.

83

Chapter 6 The Web Element

84 Getting Started

__ Chapter

The Distributed Messaging
Element

The Distributed Messaging Element (DME) lets you run multiple processes on
several computersin adistributed system. It allows you to share information
without having to worry about low-level communications. The Distributed
Messaging Element provides these features for building distributed systems
and applications:

m A comprehensive set of routines for building simple and complex
distributed systems

m Tools to manage the distributed systems as if they were a single
application running on a single processor

Applications can be
m Self-contained programs running on one or more pProcessors
m Multiple threads of a single program

Communication between the processes can be simple sequencing routines
within a single program. It can involve more complex processes, such as
“interrupt-driven” real-time control and transmission of messages between
completely independent programs with long latencies.

The Distributed Messaging Element handles data transfers between:
m Threads of a single process

m Processes on the same computer

m Processes on separate computers

For intraprocess communication, the Distributed Messaging Element can
use a variety of mechanisms, including UNIX sockets and shared memory.
For interprocessor transfers, the Distributed Messaging Element can use:

m Transport Communications Protocol/Internet Protocol (TCP/IP)
sockets

m Serial connections (including modems)
m Other standard computer networks and protocols

Components of the Distributed Messaging Element

m A communications protocol and interface-definition language (IDL)
that describe the format for sending and receiving data objects on the
physical network

Getting Started 85

Chapter 7 The Distributed Messaging Element

m Router processes that are responsible for routing the data objects to the
appropriate processes

m Alibrary of routines that implement the application programming
interface (API) to the Distributed Messaging Element

The Distributed Messaging Element and Other Distributed Systems

The Distributed Messaging Element and other distributed data systems,

such as distributed databases, differ in the following ways:

m The Distributed Messaging Element is a data-transmission mechanism.
It distributes information to all appropriate processes and then
completely erases the data from its own temporary buffers.

Note: The only exception to this is the persistent delivery information,
which is kept at the sender and recipient ends, not in the
infrastructure itself.

= Any new processes that attach to the Distributed Messaging Element
cannot access previously distributed information. This is unlike other
databases, which constantly update their files to retain a current version
of all the data that they receive.

m The Distributed Messaging Element does not need to maintain data
internally. Therefore, it does not require the complicated and
time-consuming data-locking and cache-coherency mechanisms
inherent in other distributed systems.

The Distributed Messaging Element Applications

The Distributed Messaging Element provides a comprehensive foundation
for distributed applications. It supports event-driven, peer-to-peer
applications as well as client-server applications. The Distributed Messaging
Element is distinctive in its real-time, dynamic control capabilities.
Application areas for the Distributed Messaging Element include:

m Distributed manufacturing systems

Real-time data distribution and distributed databases
Collaborative workgroup and workflow software
Distributed control systems

Networked multimedia applications

Accounting applications, such as order processing and inventory
control

Integrated logistics
Distributed decision-support systems.
Migration of applications to new distributed environments

86 Getting Started

Concepts of the Distributed Messaging Element

Concepts of the Distributed Messaging Element

Portability

The following sections describe concepts underlying the Distributed
Messaging Element, including:

m Data objects

m The data-distribution method used to send data objects

m The event-driven model of programming

The Distributed Messaging Element software is designed to be easily
portable across different:

m Computer architectures

m Operating systems

m Programming languages

Different architectures and operating systems can connect to the same
virtual network to send and receive information from any other process. The

Distributed Messaging Element handles all data translation required for
communication between processes.

Data-centered Processing

The Distributed Messaging Element uses a data-centered approach, in
which processes that exchange data indicate the type of data they exchange,
and not their addresses or process IDs. In a data-centered approach,
processes can be replaced, run on different processors, or simulated without
affecting any of the other processes. This makes modular systems possible.
Since all processes can access all data, debugging communications becomes
easier than in an address-based system.

An example of a data-centered system is a distributed database, in which
processes exchange information by reading from, and writing to, database
entries. Each process accesses the database through a local interface. The
processes have no prior knowledge of the other processes accessing the
database.

Data Object and Structure

Getting Started

Since the Distributed Messaging Element is a data-centered system, the
organization of data in the Distributed Messaging Element is very
important. The Distributed Messaging Element uses structures to define the
format of each class of data. All processes use the same format for the
structures to ensure a consistent data format.

87

Chapter

/

The Distributed Messaging Element

Each piece of information exchanged between processes is referred to as a
data object, which contains these fields:

m The data itself

m Information about the process that created the data

m The time the data was created

m Information to uniquely identify the structure of the data

The Distributed Messaging Element provides various routines for handling
all this information as a unit.

The Distributed Messaging Element provides mechanisms for defining new
classes of data objects in terms of the data structures they contain. Once a
data-object class is defined, applications can:

m Create instances of this object
= Fill them with information
m Exchange them with other applications

Note: In this manual, the term “object” refers to a data object.

Routers and Fully Connected Networks

88

The Distributed Messaging Element implements a ‘“virtual’ fully connected
network, where all processes are connected to all other processes. Any
process can read information from, and write information to, any other
process.

Most implementations of such a network are based on the point-to-point
communication model. Each process in the network has an open file
descriptor for every other process and keeps track of its connections with all
other processes.

However, the Distributed Messaging Element implements a multipoint
method by creating a process called the router, which is responsible for these
tasks:

m Maintaining all the necessary connections
m Automatically routing information among various processes

m Exchanging information between processes on its processor as well as
on different processors

The user program has a single connection with its local Distributed
Messaging Element router. It connects to other processes through the
Distributed Messaging Element router. This simplification not only reduces
the complexity of the user code, but also improves performance by
optimizing the data distribution.

Getting Started

Concepts of the Distributed Messaging Element

This architecture is natively multipoint, which means that messages can have
more than one sender and receiver. Therefore, the Distributed Messaging
Element is more scalable and flexible than point-to-point communication

Process E

Process A

models.
, Platform 4

Platform 1
Router
\ Platform 4 Platform 1 1
Router
Process B

Process C

Process D

Platform 2

Point-to-

Platform 2 Platform 3
Platform 3 .
Point Communications Multipoint Communications

Figure 7-1 Multipoint Routing versus Point-to-Point Communications

Data Distribution

Getting Started

Using the data-centered approach and routers, the Distributed Messaging

Element has these mechanisms for exchanging data of a particular class:

m A process indicates what classes of data it needs by “registering an
interest” in the corresponding data format.

Note: A process registering interest in a particular class of data is equivalent
to saying: ““Whenever data of class X is available, no matter who
created it, | want a copy.”

m When the particular class of data is available, the Distributed Messaging
Element router distributes the data to all processes that registered an
interest in that class of data, but not to processes not interested in that
class of data.

A process does not have to know who needs the data. The process just
communicates to its router to distribute a copy of the data to any process that
wants it. The Distributed Messaging Element router translates this
command into a specific set of transmissions that depend on the interests of
all processes.

89

Chapter 7 The Distributed Messaging Element

Event-driven Programming

The Distributed Messaging Element API uses an event-driven model of
programming, in which you define a set of conditions that may become true
at some point in the execution of an application. An event occurs whenever
a condition becomes true.

Examples of events in a Distributed Messaging Element application include:
m The receipt of data from another application

m Timers

m Keyboard input

m File input/output (17/0)

The Distributed Messaging Element provides mechanisms for indicating an

“interest” in each kind of event. You have to specify an event handler to be
invoked whenever the specified event occurs.

Interactions with Applications

An application is a piece of code that can be uniquely identified and uniquely
addressed. An application usually is a separate executable, but it can also be
m A thread within an executable

m A dynamic link library (DLL)

m A separate virtual “environment” within an executable

The Distributed Messaging Element can interact with applications in the
following ways:

Seeing the applications running

m Starting and stopping applications

m Identifying the application that generated a piece of data

m Sending a piece of data to an application

The Distributed Messaging Element provides routines for these functions:
m Initializing a new application
m Exiting an application (not the whole executable)

m Controlling the behavior of an application, such as reloading persistent
information

90 Getting Started

For More Information about the Distributed Messaging Element

Resource Files

Resource files store, in a common format and directory, the following
configuration information. The Distributed Messaging Element components
require this information at various times during the execution of a
distributed application:

m Fields contained in each kind of data object

Default parameters for starting an application
Information about which remote computers to connect to
The current configuration of the applications

Data that the applications have received or sent

Resource files provide a very simple file-based database. Each resource file
contains one or more records of information. These records are instances of
objects stored in a file.

The Distributed Messaging Element provides tools for reading, writing, and
updating objects in these resource files. In addition, various Distributed
Messaging Element tools use the resource files to store information such as:

m Object definitions
m Connection configuration
m Startup defaults

Standard Object Library

The standard object library contains a set of standard object definitions and
routines that provide default capabilities for all the Distributed Messaging
Element applications. This library includes several ““utility packages’ of
objects or routines. Each package provides a service. It also contains one or
more object definitions, and routines for interpreting and exchanging those
objects.

Capabilities of these utility packages include:
Monitoring the application states of all systems on the network

m Monitoring configuration information, including routers
m Starting and stopping remote applications
m Automatic maintenance of connections

For More Information about the Distributed Messaging Element

m See the Distributed Messaging Element Programmer’s Guide.
m See the C API Reference Manual.

Getting Started 91

Chapter 7 The Distributed Messaging Element

92 Getting Started

__ Chapter

The Elements Application
Services

To reduce development time, the Elements Application Services (EAS)
provides the support layer for these low-level, platform-specific functions:

Built-in memory and print management
Graphic primitives

Error handling

File input and output

Asychnronous event management
String manipulation

The Elements Application Services makes the graphical-presentation layers
and the integration layers of an application portable.

For high-level application development, the Elements Application Services
provides complex building blocks, which you can use to assemble your
application. With building-block mechanisms, such as datasource/views,
you can avoid repetitive coding tasks related to these functions:

m Manipulation of data and sources of data

m Display of data for complex widgets such as tables and list boxes

Datasource/Views

Getting Started

The datasource/views mechanism provides the underlying bidirectional
protocols linking datasources and views for scripts written in OOScript, C,
and C++. By using this mechanism, you avoid having to write code to
directly manipulate widgets.

Datasource/views separately addresses:
m Data management

m Application logic

= GUI management

The datasource/views mechanism allows you to concurrently access the
same data, such as information from a database, and to present it in multiple
views—for example:

m A spreadsheet-like table

93

Chapter

8

The Elements Application Services

m A choice box
m Aninputfield

The data can then be modified at either end of the link. When the datasource
is modified, it can automatically update all the views, depending on the
options present in the registered view. The datasource also controls access to
prevent conflicts among multiple views during simultaneous changes.

Internationalization

The Elements Application Services also provides the underlying support for
internationalization. With the Elements Application Services, you can
quickly port applications to several single-byte or double-byte languages,
including Japanese. The internationalization features include:

Character sets

Porting support

Text rendering

In-place editing

Standard or native in-text widgets
String-manipulation services

See Chapter 12, “Localizing Applications in the Elements Environment,” for
more information about internationalization.

For More Information about the Elements Application Services

94

m See the Elements Application Services C/C++ Programmer’s Guide.

Getting Started

__ Chapter

C++ Programming in the
Elements Environment

The Elements Environment for C++ consists of:
m Aset of C++ libraries

m A setof resource files

m A development environment

The Elements Environment libraries themselves have been compiled in C++.
This implementation of the product achieves a high level of object
orientation, including:

m Subclassing
Virtuality
Templates
Exception handling
Generic classes

The Elements Environment C++ development environment includes these

features:
m The C++ classes implement the same set of API calls provided in the C
libraries.

Naming conventions in the C++ API are similar to those in the C API.

Virtual member functions implement the notification mechanism used
in C to achieve virtuality.

m There is a set of C++-specific constructors for each of the C++ classes.
Many of these constructors are overloaded for specific processes. Some
of the classes also have specific destructors.

m The classes inherit directly from each other; there are no intermediate
implementation classes.

General Architecture
The Elements Environment C++ libraries include:

m Resource classes
m Utility classes

Getting Started 95

Chapter 9 C++ Programming in the Elements Environment

Resource Classes

In the Elements Environment, the base class for objects that can be persistent
and that support instance customization is the Neuron Data Resource
(NDREes) class. All subclasses of NDRes inherit directly from each other ina
single inheritance graph. These resource classes have part of their interface
defined as virtual member functions. You can reimplement these in
subclasses to customize their behaviors.

Utility Classes

Utility classes are a group of C++ classes that do not derive from the NDRes
class. These objects:

m Do not support persistence or instance customization
m From a C++ perspective, do not offer any virtual API functions

All these classes are defined as standard C++ classes. All the API functions
are defined as:

= Member functions
m Static member functions

Utility classes provide this functionality:
Memory management

Memory pools

Storage objects (such as arrays, hash tables, and AVL trees)
Buffered input/output (1/0)

File 170

File management

Compression and decompression
Encryption

String management

Time management

In the case of arrays, several generic classes are defined according to
whether the data should be stored directly or by reference.

Utility classes provide much of the functionality of the standard C++ library
functions. In addition, they ensure that the applications you develop are
compatible across platforms.

96 Getting Started

General Architecture

Constructors and Destructors

Each class in the Elements Environment C++ library defines:
m Overloaded versions of the constructor new
m The C++ destructor del et e

C++ Constructor new and Destructor delete

The NDRes class redefines the C++ newand del et e operators as calls to
Elements Environment memory management. This allows you to create and
delete objects with the familiar C++ newand del et e operators. When you
use these constructors to subclass from the base NDRes class, they allow
you to construct an object from information persistently stored in the
resource manager.

For example, to construct a window wi n from the information stored in the
module nod and resource Wi n in a loaded resource library, you can use:
NDW nPtr win = new NDW n("nod", "w n");

To create a window and a button in that window, you can use:

NDW nPtr wi n = new NDW n;
win->lnit();

NDPBut Pt r pbut = new NDPBut ;
wi n- >AddWjt (pbut) ;

You can remove the button from the window with:

wi n- >RermoveWjt (pbut) ;

del et e pbut;

Note: Usually, you do not delete widgets one by one. Instead, when users
exit a window, the window manager deletes all the widgets. You
delete windows either by using the window manager of the interface
or by this explicit call:

Wi n->Termi nate();

The Elements Environment Constructor new

The Elements Environment constructor newallows advanced Elements
Environment applications to subclass an object at runtime. This constructor
takes a third argument, &ar r ay. This lets you specify, at construction time,
the instantiation class for each of the objects that gets created.

Getting Started 97

Chapter

9

C++ Programming in the Elements Environment

Encapsulation

For example, this code will instantiate a button in the window for the
subclass MyTBut of NDTBut:

ResRunTi med assArray array;

ResRunTi meCl assRec i nf o;

i nfo. ResName = " PBut &k";

info.ResC ass = MyTBut:: d ass();
array. AppendEl t (& nf o) ;

NDW nPtr win = new NDW n("nod", "w n", &array);

Note: When you use this runtime subclassing mechanism, make sure that
the objects you want to instantiate are a subclass of the stored object.

The Elements Environment widget classes use the C++ encapsulation

mechanisms in a simple way:

m The class-specific fields are protected and therefore cannot be directly
accessed; however, they still permit subclassing.

m The member functions are public and appear to be directly accessible.

A large number of field names, such as TBut Pri vat el and

TBut Pri vat e2, are encoded. Therefore, even if the corresponding fields
are in the public section, they behave as if they were private because their
true names are concealed.

You can access protected fields of classes only by making a call to the
appropriate member function. In particular, you cannot use certain
functions as freely as in C. Instead of passing pointers to the resource, you
use member functions of the instantiated objects. For example, this function
call does not compile in C++:

Wit Pt r Wit ;

WGT_Get FgCol or (wgt) ;

The correct implementation is
wgt - >Get FgCol or () ;

Customization

98

The Elements Environment allows you to customize the behavior of objects
in classes inheriting from NDRes at two levels:

m Class
= Instance

Getting Started

Customization

Class-Level Customization

To customize the behavior of objects at the class level, you can reimplement
virtual member functions in subclasses. This is the standard C++ mechanism
for customization.

For example, if you want to replace the redraw method for your own
subclass of NDPBut, you can redefine the NfyRedraw virtual member
function for the subclass:
class MyPBut : public NDPBut {

RCLAS_CPPFULL(MyPBut, NDPBut)

voi d Nf yRedr aw voi d) ;
b

voi d MyPBut : : Nf yRedr aw(voi d)

/1 default draw ng
NDPBut : : Nf yRedr aw() ;
/1 customdraw in addition

}

Use this mechanism when you need to customize a significant number of
instances.

Instance-Level Customization

Getting Started

You can customize the behavior of any instance of a given class without
affecting the behavior of all the other instances.

Instance-level customization is most useful in specialized applications in
which customization affects only a single instance. For example, the
Elements Environment code generator uses this mechanism to ease
compilation.

You can achieve instance-level customization by registering notification
handlers to override the default behavior that the corresponding virtual
member functions implement.

For each virtual member of any class, there is a notification that identifies the
callback. For example, the NfyHit virtual member function of the NDTBut
class is identified by TBUT _NFYHI T.

You can register a callback by using the macros provided in the public
header file respub.h. These macros allow you to register member functions
of any particular class as callbacks.

99

Chapter 9 C++ Programming in the Elements Environment

This example shows how to customize the class Form at the instance level:
1. Create the class:

class Form: public NDWn {
pr ot ect ed:
NDPBut Pt r mPBut Ck;
NDLBox Pt r ni.BoxDat a;

public:

Form();

~Form()

RES NFYVO DHANDLER(Form NfyH tOk)// decl ares call back
}

2. Set the handler in the constructor for the class:
Form:Form() : NDWn("nmod", "wn")
{

nmPBut Ok = (NDPBut Pt r) Get NamedWgt (" OK") ;
nm_LBoxDat a = (NDLBoxPtr) Get NanedWjt ("Data");
RES_SETNFYVO DHANDLER(For m nPBut Ok,
TBUT_NFYHI T, Nf yHi t Ok) ;
}

3. Implement the handler:
voi d Form : NfyHi t Ok(voi d)

NDW n: : Term nat e();
}
You can have the handler call the default action for the notification before or
after it does its custom processing. You can do this by calling the DefNfy
method if the ND<Class> pointer for the object is available:

void Form : NfyHit(void)

nPBut Ok- >Def Nf y(TBUT_NFYHI T); // Call default action.
Term nate();

}
Note: You have to call the DefNfy method. If you call the NfyHit method,
it will call Form::NfyHit again and cause an infinite loop.

There isa RES_ SHAREDNFYVOIDHANDLER version of the macro. This
macro passes the ResPt r of the object that triggered the notification as a
parameter to the handler. However, you need to know the actual type of the
object so that you can cast it from ResPt r to <Cl ass>Pt r to call the
correct default action for <Class>.

100 Getting Started

Subclassing in C++

Subclassing in C++

The Elements Environment exports its entire APl as C++ classes. Except for
the restriction on implementation classes described in “Utility Classes” on
page 96, you can subclass any of the classes.

Subclassing from NDRes Subclasses

Getting Started

The Elements Environment NDRes subclasses have to interact with the
persistency manager. Therefore, subclassing of NDRes is different from
subclassing in C++:

The NDRes subclass objects are not always created and destroyed
explicitly through the C++ newand del et e operators. Instead, in most
Elements Environment-based applications:

— The resource manager automatically creates widgets when a
window is loaded from the resource database.

— The resource manager automatically destroys widgets when a
window is terminated. This can happen as a result of a user action
from the System menu or because of an explicit call to
NDWin:: Terminate().

To maintain this capability, you have to register the C++ classes in the
resource manager. That way, it will know how to create and destroy
instances of these classes. Also, you must provide information about
your widget’s persistent fields so that the Elements Environment
resource manager can manage these fields for you.

The Elements Environment API provides mechanisms to support these

different subclassing needs:

— Light C++ subclassing, in which the subclass need not directly
interact with the resource manager. See “Light Subclassing” on
page 102 for details.

— Full C++ subclassing, in which the subclass can define new fields,
virtual functions, constructors, destructors, and persistent fields.
See “Full Subclassing” on page 102 for details.

NDWin subclass objects are not always propagated to the instances of

the class. To avoid this problem, the Elements Environment provides

template classes. Template classes allow widgets defined in a template for

a window subclass to be automatically inherited by:

— All the instances of the subclass

— The templates

— Instances of derived subclasses

101

Chapter 9 C++ Programming in the Elements Environment

When you use the template class, the system maintains index values for
widgets.

Note: You cannot select inherited widgets in the Window Editor. Their
names will be followed by an “L” in the widget list to indicate
that they are locked. You can only edit these widgets in the
template itself.

Light Subclassing

You can use light subclassing when you do not want the persistence manger
to create or dispose of instances of the resulting class. In that case, the
persistence manager does not have to know anything about the subclass in
addition to what it already knows about the superclasses. You have to create
and dispose of all instances. They are never stored in the resource files
directly.

Note: Even though instances of a class are not stored in a resource-library
file, they can be constructed from the information stored for an
instance of a superclass. For example, suppose that nod. wi n is a
window in a .dat file. Then, this constructor will construct the
instance MyWin from the information for nod. wi n:

MW n:: MW n() : NDWn("nmod", "win")
{

B
}

Full Subclassing

Full subclassing is used when you want to define persistent fields in your
C++ class.

The Elements Environment resource manager handles these persistent fields
and automatically loads them from a resource database (.dat file). You can
edit them:

m Intext form in the resource (.rc) file
m Through an editor that you display from the Resource Browser

Conceptually, there is no major difference between full subclassing in C++
and resource subclassing in C. The main difference is that you must register
the class through a call to RCLAS_CPlusRegister instead of a call to
RCLAS_Register.

To subclass a resource class:
1. Place the RCLAS_CPPFULL macro in your subclass definition.
2. Implement the two constructors required, as well as the destructor.

102 Getting Started

Subclassing in C++

3. Initialize the O Fi el ds static variable, which is returned by the
GetOiFields() function, using one of these methods:

— Statically initialize the variable with the array of persistent field
descriptors:

PFI dPtr Myd ass:: O Fields[] = {
{ "Fieldl", RCLAS OFFSET(MC ass, Field1),
PFLD_TYPESTR
PFLD_CATTEXT 1},
{ "Field2", RCLAS OFFSET(MC ass, Fiel d2),
PFLD_TYPEI NT16,
PFLD_CATSI ZE },
{ NULL, O, PFLD TYPEBAD, PFLD_CATNONE }
b
— If your compiler does not let you statically initialize the variable,
compute the offsets before registering the class:
MyC ass * n = NULL;
Q Fields[0].Ofset

O Fields[1].Ofset
Regi ster();

4. By calling MyClass::Register() in an initialization routine, register the
C++ class before any resource database containing instances is loaded.

RES OFFSETOF(n, Field1);
RES_OFFSETOF(n, Fiel d2);

5. Define how your class instances respond to the notifications sent by the
resource or widget managers.

6. Define and implement the class API.
7. Rebuild the development environment.

8. Provide an editor for your new class if you want to fully integrate your
subclass in the Elements Environment.

Note: The fact that the class is implemented in C++ instead of C does not
create any special problems.

To complete these tasks, see the example subclex.cpp and the readme.txt in
this directory:

ee21\ cpp\ exanpl es\ gui \ subcl ass

Defining a C++ Subclass in the Elements Environment

Getting Started

You can define a C++ subclass using the Class Editor in the Resource
Browser. The Class Editor allows you to specify the characteristics of the
subclass you add.

In the Class Editor, you can also specify that the new class appear in the
Window Editor tools palette. If you choose this option, you can create more
instances of the subclass by selecting the icon that you specified for your
class in the Window Editor palette.

103

Chapter

9 C++ Programming in the Elements Environment

When you save your class, the Elements Environment generates a resource
class definition in the .rc text file of the module in which you defined the
class. The resource class definition has this syntax:
(R as. Conpi | e

Name: "M/C ass”

Parent: "MParent"

Modul e: " MyMod"

Version: 8
/1 Define persistent fields here.

)

The instances of the subclass are described as in the .rc file:

(MyCl ass. Conpi l e

Narme: " M/Mod. MyWgt ™

)

Warning: The Elements Environment Class Editor does not allow you to
modify classes that already exist. You can only edit all the
attributes of a new class during the session in which you created
the class. If you want to modify the class later, you need to edit the
.rc file and recreate the resource database (.dat file) with rescomp.

Registering a C++ Subclass in the Resource Manager

104

The RCLAS_CPPFULL macro defines (among other things) a Register static

member function that registers the C++ class to the resource manager. You

should call this Register function before any instance of the subclass is

created or loaded.

To register a C++ subclass to the resource manager:

1. Include the RCLAS_ CPPFULL(class, parent_class) macro in the C++
class definition.

2. Implement the two required constructors and the destructor.

These constructors are required:

<cl ass>::<class>(RC asPtr rclas, RO asCreateCPtr cptr);
<cl ass>:: <cl ass>();

For which the default implementation would be

<cl ass>::<class>(RC asPtr rclas, RO asCreateCPtr cptr)
<pcl ass>(rcl as, cptr)

.
}

<class>::<class>() : <pclass>(<class>::Q0 dass, NULL)

NV

Getting Started

Generic Container Classes

Note: If any of these constructors or destructor is missing, the class will have
undefined symbols at link time.

If you create the class in the Resource Browser, the Elements Environment
generates the template code for all this. Thus, you do not need to type the
code yourself.

For example, if you define MyClass as a subclass of ParentClass using the
Resource Browser, the following code gets generated:
class My ass : public Parentd ass {

/1 class informati on such as fields, nenber functions
public:

/'l resource-manager information

RCLAS _CPPFULL(MO ass, ParentC ass)

}

Myd ass:: MyCl ass(RC asPtr rclas, RO asCreateCPtr cptr)
Parent Cl ass(rclas, cptr)

{
N
}
M/C ass:: MyCl ass() : Parentd ass(M/d ass:: O O ass, NULL)
{

YA
}

Then include this call in one of your initialization routines:

MyCl ass: : Register();

Note: If you do not call MyClass::Register() in your main program before
creating an instance of MyClass, the program will cause errors that

are difficult to diagnose. These errors will violate segmentation when
accessing or constructing members of MyClass.

Generic Container Classes

Getting Started

The Elements Environment provides a set of generic container classes that you

can use to define any type of array. There are three types of generic arrays:

m The generic ArPtr class, which is defined in arptrpub.h, instantiates the
array of pointers classes. Array of pointers contains pointers to objects,
not the objects themselves. Copying an array of pointers copies only the
pointers. The original array and the copy share the objects.

m The generic ArRec class, which is defined in arrecpub.h, instantiates the
array of objects classes. Array of objects, or structures, contains the objects
themselves. All objects must be of the same size. Copying an array of
objects copies the objects themselves.

105

Chapter

9

C++ Programming in the Elements Environment

m The generic ArNum class, which is defined in arnumpub.h, instantiates
the array of numbers classes. Array of numbers contains numbers of any
integral type.

Arrays provide these services:

Store and retrieve an element by index

Look up an element by key

m Store elements without duplication

m Sort the elements according to a sorting method you provide

You define a specific array class by using one of the ARXXX_DEFCLASS
macros. For example:

ARPTR_CLASS(NDW nPtr, NDW nCPtr)

defines a new C++ class ArPtrOfNDWIinPtr, where each element is a
NDW nPt r . All the methods in the class use the proper types.

You can use this class as follows:

ArPtrO NDW nPtr array;

NDW nPt r aWw n;

array. AppendEl t (aW n) ;
aWn = array. Get Nt hEl t (0) ;

Code Generation

106

From the Resource Browser in the Elements Environment, you can:
m Generate code
m Separate the code into header and source files

Laying Out Windows

When you use the Window Editor to create a window in the Resource
Browser, the widgets you add to your window determine the exact code that
gets generated in the C++ source-code template file. The code template has
this structure:

m The first section of the code template contains a list of #i ncl ude
statements. The list of libraries that are installed depends on the exact
product configuration and the types of resources you included in your
project.

m The Notification Handlers section contains the handler template, which
allows you to customize actions. This section consists of a set of virtual
member functions.

Getting Started

Generic Container Classes

You can customize this generated code by inserting your own code in
the appropriate notification handlers. The custom code that you add
overrides the default behavior of the widgets. For example:

voi d ApplW nl:: Hit TBut Ok(voi d)

NDAI rt W : Ok(mTEd- >Get Str());
}

The constructor for the window registers the widgets. This allows you
to reference the widget using the variable names specified in the class

declaration. It also registers the appropriate notifications for the added
widgets through the WIN_SETNFYHANDLER macro in the window
constructor method. For each widget class, the string-list resource

<cl assnod>. <Mycl ass>CodeGNf ys controls the default list of

generated handlers. For example, for single-line text edits, the list is in
TEd. STEdCodeGNf ys.

Note: You can access each widget from anywhere as a simple member
attribute of the window object. You can add more NfyHandlers
if you need to.

The next section loads the window resource and calls the constructor.
The Init method initializes the window.

The last section contains the application main() routine and a set of
library-installation functions. The list of libraries installed depends on
the exact product configuration. These are the resources that define the
installation functions:

— i ncl udes for the list of includes

- Cppl nst al | s for the list of C++ statements to register the
element

— CppLoadl ni t s to load and initialize the element
- CppExi t s to leave the element

Separating Source Code and Header Files

Getting Started

The generated code can either include a declaration of the class that
describes the window or the declaration can be output to a separate header
file. The presence or the absence of a header-file name in the Module Editor
of the Resource Browser determines whether or not to save the code into
separate header and source files:

If the user module has entries for both—mymod.cpp and
mymod.h—two distinct files are generated.

If the user module has only one source name—mymod.cpp—and no
header name, the whole code is placed in mymod.cpp.

107

Chapter

9

C++ Programming in the Elements Environment

The header section contains the declarations of member functions that
implement the instance-level callbacks for each window class. It also
contains member variables to reference the widgets in a
programmer-friendly way with the function NDW(gt::GetNamedWgt().

Creating Custom Classes

108

If you use the Class Editor to define your own custom subclass in the
Elements Environment, all the C++ code to define and register this class will
be automatically generated. The generated code will use the
RCLAS_CPPFULL macro.

For example, if you create a subclass SubBrows of the class Brows with one
persistent field F1 of type string, this code will be generated:

class SubBrows : public NDBrows {

pr ot ect ed:
Str F1;

public:
RCLAS_CPPFULL(SubBr ows, NDBrows)
static void CppRegister(void);

b
typedef class SubBrows C FAR * SubBrowsPtr;

PFl dRec SubBrows:: QO Fields[] = {

{ "F1", 0, PFLD TYPESTR, PFLD CATOTHER },
{ (Cstr)NULL }

}.

1

SubBr ows: : SubBrows(RC asPtr rclas, RC asCreateCPtr
cptr) : NDBrows(rclas, cptr)
{

}

SubBr ows: : SubBrows() : NDBrows(SubBrows:: O C ass,
(RC asCreat eCPt r) NULL)
{

}
SubBr ows: : ~SubBr ows()
{

}

RC asPtr SubBrows:: QO C ass = NULL;
voi d SubBrows: : CppRegi st er (voi d)
{
SubBrowsPtr n = NULL;
O Fields[0].O fset = RES OFFSETOR(n, F1);

) Regi ster();

The main() routine of your application will contain:
SubBr ows: : CppRegi ster();

Getting Started

Code Regeneration

Code Regeneration

Limitations

Getting Started

The code regeneration process maintains common source files for both
regenerated and customized (user-generated) code. Each file usually
contains only one module. The Elements Environment generates source files
when they are first saved. They are then maintained by you and by the code
regenerator.

The code-parsing strategy performs minimum updates in a reliable way.
The parser uses code annotations, or comments, to greatly improve its
reliability. The annotations help you distinguish text areas controlled by the
code regenerator from areas where you enter text and edit custom code.

The code regenerator always preserves all the original code changes that you
make, if you made changes only where the code regenerator does not write
to. Therefore, it systematically checks annotated areas before updating them
in order to identify modifications. For example, if you insert text in a solid
block, the entire section is commented out between #i f 0 and #endi f. The
regenerated block is inserted above the commented-out section. You can
later decide whether to keep the changes and merge them with the new
version. The same thing happens in flexible areas for key commands that are
not recognized or are no longer part of the project you are currently editing
(for example, removed menu items).

Warning: Do not modify code within areas that contain comments alerting
you not to modify the code. Only the code regenerator can write to
those areas.

Regeneration is only initiated when no errors are found. If you accidentally
alter annotations, the code regenerator provides error comments. The
regeneration process always produces an output, even if it is only error
messages.

Programming in the Elements Environment has certain limitations for
creating C++ applications.

Copy and Assignment Operations

You cannot copy any of the C++ objects, and you cannot assign one object to
another:

NDVStr::myString("Hello");
NDVStr::copyString(nyString); // Conpilation error

109

Chapter

9

C++ Programming in the Elements Environment

NDVSt r: : assi gnedStri ng;
assignedString = nmyString; // Conpilation error

Customizing Editors in C++

You cannot customize editors using standard C++ mechanisms. If your
application requires embedding the development environment or building
editors for your custom classes, follow the same conventions as the C code
listed in the custom.doc file.

Implementation Notes for Current C Users

110

Use the following guidelines to build the Elements Environment C++
libraries.

Note: Do not mix C and C++ calls in your code, if C++ exception handling
is enabled. If you do, it will cause compiler errors.

Member Functions

Use member functions and virtual member functions instead of API calls in
C.

For example, use:

Wi n->Show() ;

instead of:

W N_Show(wi n) ;

Note: In some cases, the conversion is not straightforward. The drawing
APl is in fact defined in the NDW(gt class. Thus:

DRAW Set Col or s(wgt, COLOR Red(), COLOR Blue());
DRAW Rect (wgt, rect);

is converted into:
wgt - >Dr awSet Col or s(NDCol or: : Red(), NDCol or:: Blue());
wgt - >Dr awRect (rect) ;

Memory Allocation and Deallocation

Instead of the calls in C, use the Elements Environment overloaded
operators newand del et e to allocate or deallocate an instance of a class.
These operators are in fact redefined for all classes inheriting from NDRes.

For example, use:

WnPtr = new ("nmod", "win");
wi n- >Set Label (" MyW ndow") ;

Getting Started

Limitations

Getting Started

instead of:

WnPtr = WN_LoadSi zed("nmod", "win",SizeO (w nRec));
W N_Set Label (win, "My W ndow');
R B

Constructors and Destructors

Use C++ constructors and destructors to create or destroy an instance of a
class.

For example, use:
NDFil ePtr file = new NDFile("data");
instead of:

FilePtr file = FILE New();
FI LE_Construct Name(file, "data");

After the function AddWagt() attaches the widget to a container widget
(either a panel or a window), you only need to call the destructor for the
container. The container widget’s destructor will in turn call the destructor
for each attached widget.

Overloaded Members

Use C++ overloaded members for the C API calls that are functionally the
same but differ only in the type of arguments.

For example, use:
Intl6 i16 = 4;
Int32 i32 = 6;
ted->Set (i 16);
ted->Set (i 32);
instead of:

Int16 i16 4;

Int32 i32 = 16;

TED Setlnt16(ted, i16);
TED Setlnt32(ted, i32);

Notifications as Virtual Member Functions

Use virtual member functions instead of notifications. For each notification,
a virtual member function takes as its argument the notification data it
defined. The standard way of customizing class behavior in C is replaced by
the standard C++ subclass-customization scheme (reimplementing virtual
member functions).

111

Chapter 9 C++ Programming in the Elements Environment

These examples define a subclass of the PBut class that customizes the
response to the Nf yHi t notification:

The code in C++:

class MyPButd ass : public NDPBut ({
A B

public:
virtual void NfyH t(void);

}

voi d MyPBut:: Nf yHi t (voi d)
{

/1 Do sonet hing.
NDPBut: : NfyHi t(); // Call default action if you want.
/1 Do sonething el se.

}
The code in C:

typedef struct _MyPBut Rec {
PBUT _REC
R
} MyPBut Rec, C FAR *M/PBut Ptr;
typedef enum {
PBUT_NFYI NHERI T(MYPBUT)
} MyPBut Nf yEnum

static void C FAR S_MyPBut Def Nf y(MyPBut Pt r pbut, M/PBut Nf yEnum

code)
switch (code) {
case MYPBUT_NFYHI T:
/* Do sonething at the class level. */
br eak;
def aul t:
PBUT_Def Nf y(pbut, code);
}

Using Custom Constructors and Destructors

This section provides information for developers who want to define custom
constructors in C++ resource subclasses:

m Defining default constructors with the RCLAS_CPLUSFULL macro
m Defining custom constructors for a C++ subclass

Defining Default Constructors with RCLAS_CPLUSFULL

The RCLAS_CPLUSFULL macro is designed to encapsulate all the details
of resource subclassing in C++. The RCLAS_CPLUSFULL macro defines:

m The special constructor

112 Getting Started

Using Custom Constructors and Destructors

Getting Started

m The registration logic

This is how the RCLAS_CPLUSFULL macro works:

1. Tosubclass a widget class, you place the RCLAS_CPLUSFULL macro
in the definition of your subclass:

RCLAS_CPLUSFULL(M/Cl ass, Parentd ass)
2. This macro expands to:

private:

static RClasPtr O O ass;
static ResPtr C_FAR O New(RCl asCreateCPtr cptr){

return (ResPtr)new MyCl ass(M/Cl ass:: QO d ass, cptr);}
static void C FAR O Del ete(ResPtr res)
{ delete (MO ass C FAR*)res;}

prot ect ed:
MyCl ass(RCl asPtr rclas, RC asCreateCPtr cptr);
public:
PFl dRec SubMyd ass:: QO Fields[] =
{{ (CStr)NULL }};
void C _FAR* operator new(size_t size)
{ return Myd ass:: O C ass->Al | ocObj (size);}

voi d operator delete(void C FAR* obj)
{ Myd ass: O C ass->Deal | ocOhj (obj); }

M ass();
virtual ~Myd ass();

static RO asPtr Cdass() { return MWC ass::Q d ass; }

static PFldPtr GetO Fields() { return G Fields; }

static void Register()

{ Myd ass:: G O ass = RCLAS_CPl usRegi ster ("M ass",
O New, QO Delete, (ResNfyProc) NULL,
Parent Cl ass:: C ass(), MyCass::CGtQO Fields()); }

3. The G d ass private static variable is set to the resource class the
resource manager creates when the class is registered.

4. The resource manager calls the OiNew and OiDelete private functions
to create and delete instances.

5. The protected constructor takes two arguments. It is used by the
resource manager to load instances or by subclasses to perform the
base-class initialization.

6. The public constructor does not take any arguments. You can use it to
construct new instances of the class from scratch.

7. The public Class function returns the resource class the resource
manager created when the class was registered.

113

Chapter 9 C++ Programming in the Elements Environment

8. The public GetOiFields function returns the O Fi el ds associated
with the class.

9. The public Register() static function registers the class. You should call
it in an initialization routine of the C++ program.

Defining Custom Constructors

To define custom constructors in the resource subclasses, you must
understand the role of the protected constructor.

The protected constructor takes two arguments:

m The first is the resource class of the resource that is being instantiated.
This will be different from the G Cl ass of the current C++ class if you
call the protected constructor as a base-class constructor from a subclass
constructor.

m Thesecond contains information that is private to the resource manager.
It describes the context in which the instance is created, such as by a
calling the new operator or by loading from the .dat file. When this
argument is set to NULL, the resource manager considers that the
resource is created dynamically through the new operator.

C++ Exception Handling

Two types of C++ libraries can be created from the Elements Environment
source code:

m Libraries that use the C++t r y/cat ch/t hr owmechanisms
internally.

Note: This is the default.

These libraries are intended for C++ programmers who:
— Use C++ exception handling in their code

— Usethe Elements Environment with other C++ libraries that rely on
C++ exception handling

m Libraries that use the setjmp/longjmp calls for exception handling.
These libraries are intended for C++ programmers who:

— Do not want to use C++ exception handling

— Rely on tools that do not support C++ exception handling, such as
the GNU C++ compiler on most UNIX platforms

114 Getting Started

C++ Exception Handling

Getting Started

When C++ exception handling is enabled, these actions take place:

The libraries signal abnormal conditions by throwing an instance of the
NDExcept C++ class.

The NDExcept class defines a function to get the frame-stack pointer.

The NDErrFrame class defined in the errpub.h file provides the
functions to query the error stack for either C or C++ libraries.
Queries are performed in your error handler before calling the
ERR_RETRY and ERR_RECOVER macros.

If you do not want an alert dialog, the error handler can use the
ERR_RETRYSILENT or ERR_RECOVERSILENT macros to prevent
the alert from being displayed.

The C++ exception handling is implemented as follows:

The CPP_EXCEPTI ONcompilation flag controls whether or not C++
exception handling is enabled. This flag is automatically defined when
the C++ compiler is configured for C++ exception handling.

The ErrFrame structure is redefined as a class with a constructor and a
destructor, which link and unlink the stack frames. The destructor
ensures that the error frames are properly unlinked when a C++
exception is thrown.

The ERR_CATCH macro is defined differently, depending on whether
the compiler’s C++ exception handling is used or not. In C, its expansion
contains a setjmp() call; in C++ it expands into the beginningofatry
block.

The err_catch label becomes a macro and expands into a pair of cat ch
blocks and a got 0 so that the code compiles when the label is
immediately followed by a colon (:).

The ERR_Signal function is implemented with a C++t hr owrather
than a call to longjmp.

Existing exception-handling code based on the ERR_ macros will compile
and work as they currently do, because they are automatically remapped in
C++try/cat ch constructs.

Note: There are a few cases where existing code will not compile with the

CPP_EXCEPTI ONflag on. For example, code that branches to the
err_catch label with an explicit got o will not compile. However, it
can easily be modified—for example, by introducing a second label
with a different name.

115

Chapter 9 C++ Programming in the Elements Environment

For More Information about the C++ API

See the Open Interface Element C++ Programmer’s Guide.
See the Open Interface Element C++ API Reference, Vol. 1, Widget Classes.

See the Open Interface Element C++ API Reference, Vol. 2,
GUI Helper Classes.

See the Intelligent Rules Element C++ Programmer’s Guide.

See the Data Access Element C++ Programmer’s Guide.

See the Web Element C++ Programmer’s Guide.

See the Elements Application Services C++ Programmer’s Guide.

116 Getting Started

__ Chapter

10

Building Applications in the
Elements Environment

You can use the Neuron Data Elements Environment to build your
application after you:

1. Install the Development libraries and Deployment Kits

2. Modify your environment variables with the Elements Environment
libraries you want

This release of the Elements Environment provides these libraries for your
applications:

m The Open Interface Element
m The Data Access Element, including:
— Sybase driver
Oracle driver
ODBC driver (for PCs only)
ProtoDB driver (provided by Neuron Data)
The Intelligent Rules Element
The Distributed Messaging Element
The Web Element

Configuring the Elements Environment

Getting Started

You can run applications in the Elements Environment by:
m Dynamically loading the Elements Environment libraries
m Statically linking the Elements Environment libraries

Note: Inthe development environment, you can only dynamically load the
libraries. The Distributed Messaging Element is a runtime product
that is linked statically. For information about building Distributed
Messaging Element applications, see the Distributed Messaging
Element Programmer’s Guide.

See "Default Configuration" on page 118 for the configuration files the
Elements Environment supports.

117

Chapter 10 Building Applications in the Elements Environment

The file nd.h contains all the library-initialization statements you need to
link optional Neuron Data Elements libraries with your application. You can
find this file in this directory:

$ND_HOVE\ c\i ncl ude or SND_HOVE\ cpp\i ncl ude
This file also contains preprocessor compilation flags. These let you enable the

required libraries for your particular type of application. For a list of flags,
see "Building Applications" on page 125.

Default Configuration

Installing the Elements Environment involves only one executable
program—ee. This file dynamically loads Neuron Data Elements based on a
configuration file that you specify. The default configuration file, which
enables all the Elements you install, is ee.cfg. This file is in this directory:

$ND_HOVE\ dat

Warning: Make sure you install only the Elements that you are licensed to
use. If you install unlicensed Elements, the Elements Environment
configuration file will have incorrect information.

To verify that you installed only the Elements that you are licensed to use,
enter this command:
c:\aut hfeat |

This gives you a list of Elements that you have installed. Delete the Elements
that you are not licensed to use from the Elements Environment directory on
your hard drive.

The following table identifies which configuration flags have been enabled
in specific configuration files in the above directory.

Note: The ND_I M_XXXflag in this table provides the language-input
method for international support.

Name of Elements Enabled Environment Configuration Flags
Configuration File Enabled
oie.cfg Open Interface Element Development ND_Q
ND_GUI
ND_I M_XXX
ND_EDI TORS
ND_SCRI PTI NG
gui . cfg Open Interface Element Runtime ND_O
ND_GUI
ND_I M_XXX
118 Getting Started

Configuring the Elements Environment

Name of
Configuration File

Elements Enabled

Environment

Configuration Flags
Enabled

we. cfg

web. cfg

dae. cfg

da. cfg

ire.cfg

rules.cfg

Getting Started

Open Interface Element
and Web Element

Open Interface Element
and Web Element

Open Interface Element
and Data Access Element

Open Interface Element
and Data Access Element

Intelligent Rules Element
and Open Interface
Element

Intelligent Rules Element
and Open Interface
Element

Development

Runtime

Development

Runtime

Development

Runtime

ND O

ND_GUI

ND_I M_XXX
ND_VE
ND_RUNSCRI PT
ND_EDI TORS
ND_SCRI PTI NG
ND_ O

ND_GUI

ND_I M_XXX
ND_VE

ND_QO

ND_GUI

ND_I M_XXX
ND_DA

ND_EDI TORS
ND_SCRI PTI NG
ND O

ND_GUI

ND_I M_XXX
ND_DA

ND_DA XXX (driver flags)
ND_QO

ND_GUI

ND_I M_XXX
ND_I R

ND_| R_DB

ND_|I R_EXE
ND_EDI TORS
ND_SCRI PTI NG
ND_I R

ND_| R_DB

ND_I R_EXE

119

Chapter 10 Building Applications in the Elements Environment

The Data Access Element drivers are disabled by default. To enable a
database driver, uncomment the corresponding database-driver flag among
these flags:

ND_DA ORA7

ND_DA_SYB

ND_DA_PDB

ND_DA_ODBC (for PCs only)

ND DA DB2

Starting the Elements Environment

m To start the Elements Environment with the default configuration from
your PC or Macintosh, double-click the EE icon.

m To start the Elements Environment with the default configuration from
acommand line, enter:

ee
m To run the Elements Environment with a specific configuration file,
enter:

ee - ND_DYNCONFI G=confi gurationfile
where configuration file is the name of the file, without its extension, that
specifies the libraries and the options that you want to load.

Including Additional Configuration Files

To include another configuration file, put the keyword Load in the
command line, using this syntax:

| oad configurationfilenamew t hout extensi on

Compiler-Flag Options

120

The configuration of the Elements Environment software is controlled by a
set of compiler flags. You can set each flag to 0 or 1 using either of these
methods:

m Explicitly in a#def i ne statement in the main source-code file before
including nd.h

m From the command line of the compiler. For example, this will set the
flag to 1:

-ND_DA_ORA7
If you do not set a flag explicitly, it will take a default value as defined by
your environment.

The keyword Opt i on lets you specify the software components that you
want to enable for the Elements Environment. Components include the

Getting Started

Configuring the Elements Environment

Getting Started

individual Elements, as well as libraries that provide additional or specific
functionality. See the following sections for the options available.

Enabling and Disabling Options
m To turn an option on, use this syntax:

OPTI ONNAME on
m To turn an option off, use this syntax:

OPTI ONNAME of f

Note: Use only uppercase for the option name.

m To ignore options, comment them out by placing them between these
characters:

[* *]
Note: If multiple definitions of the same option appear in a configuration
file, only the last definition is used.

Common Options

You can use these options with all the Neuron Data Elements, except the
Distributed Messaging Element:

Option Description

ND_DYNCONFI G Permits dynamic loading instead of static linking.

ND_EDI TORS Provides the libraries for the graphical editors for all
enabled Elements.

ND_SCRI PTI NG Provides the libraries for the scripting servers for all
enabled Elements.

ND_RUNSCRPT Starts an application with an AppStartup script. This

requires ND_SCRI PTI NGto be turned on.You can
launch scripts without turningon ND_QOl or

ND_GUI —for example, in an automatic tester or in an
application using only script procedures.

ND_GUI Provides the libraries for the graphical user interface
(GUI), instead of character mode.

Note: Character mode is not available for all Elements.

ND_I M_NATI VE Allows the Asian language input method as defined by
the native operating system.

ND_I M_JAPANESE Japanese input method.

ND_| M_KOREAN Korean input method.

ND_SCRI PT_SERVERS Controls whether the script servers are initialized.

121

Chapter 10 Building Applications in the Elements Environment

122

Options Controlling the Main Neuron Data Elements

Option Description

ND O The Open Interface Element for portable graphics and toolkit.
This enables ND_GUI .

ND_IR The Intelligent Rules Element (formerly NEXPERT Object) for
rules and objects.

ND_DA The Data Access Element for transparent access to databases and
integration of the GUI with data.

ND_DM The Distributed Messaging Element for distributed objects and
other advanced communication capabilities.
Note: The Distributed Messaging Element is statically linked.

ND_WVE The Web Element for browsing the World Wide Web. This

requires ND_Ql .

Element-specific Options

Option

Description

The Intelligent Rules Element

ND_I R DA

ND_I R_EXE

ND_| R DB

A bridge between the Intelligent Rules Element and the Data
Access Element for direct access from rules to relational
databases.

Note: The system enables this flag when you specify ND_DA
with your compiler.

Library that provides the Intelligent Rules Element’s built-in
execute functions. This requiresND_| R

Library that provides access to spreadsheets and
nonrelational databases. This requiresND_| R For access to
relational databases, it requires ND_DAand ND_DA XXX

The Data Access Element (DAE)
Note: All these options require ND_DA.

ND_DA_ORA7
ND_DA SYB
ND_DA_ODBC
ND_DA_PDB
ND_DA DB2

DAE Oracle7 driver.
DAE Sybase driver.
DAE ODBC driver.
DAE ProtoDB driver.
DAE Informix driver.

Note: The Elements Application Services libraries (Core and Res) are
enabled by default.

Getting Started

Configuring the Elements Environment

Running the Elements Environment Examples

Getting Started

To check if you can create Elements Environment C and C++ applications,
try to recreate one of the sample applications installed in this directory:

ND_HOVE\ c\ exanpl es\ xxx or ND_HOVE\ cpp\ exanpl es\ xxx

These sections show you how to run the examples. Before you run an
example, compile it using the make file provided.

Examples for the Open Interface Element
1. Change to this directory:

exanpl es\ gui \ | box
2. If you are using a Microsoft compiler, enter:
nmake -f makefile.pc
or
If you are using a UNIX compiler, enter:

make
The Elements Environment resource compiler (rescomp) runs on the file
Iboxex.rc to generate Iboxex.dat and creates the Iboxex object file. The
linker creates the application executable, Iboxex.

Note: The order of execution depends on the make program used, and
it is not important.

3. Enter this command to build and run the Iboxex application:
| boxex
A window with several pushbuttons appears.

Note: If the window does not appear, check the nd.dbg file generated
by the ee executable.

Examples for the Data Access Element
1. Change to this directory:
exanpl es\ da\ dat avi ew
2. If you are using a Microsoft compiler, enter:

nmake -f nakefile.pc
or

If you are using a UNIX compiler, enter:

make
The Elements Environment resource compiler (rescomp) runs on the file
dataview.rc to generate dataview.dat and creates the dataview object
file. Then the linker creates the application executable, dataview.

123

Chapter 10 Building Applications in the Elements Environment

124

Note: The order of execution depends on the make program used, and
it is not important.

3. Enter this command to build and run the dataview application:

dat avi ew
A window with datasource connection options appears.

Note: Ifthe window does not appear, check the ND.DBG file generated
by the ee executable.

Examples for the Intelligent Rules Element
1. Change to this directory:

exanpl es\rul es\ hel |l o
2. If you are using a Microsoft compiler, enter:

nmake -f makefile.pc
or
If you are using a UNIX compiler, enter:

make
The compiler creates the helloxx object files. Then, the linker creates the
helloxx application executables.

3. Enter this command to run the hellol application:

hel | o1
A window with a NXP> prompt should appear.

Note: For a tutorial based on the helloxx examples, see the Intelligent Rules
Element Programmer’s Guide.

Examples for the Web Element
1. Change to this directory:

exanpl es\ web\ webwgt
2. If you are using a Microsoft compiler, enter:

nmake -f nakefile.pc
or

If you are using a UNIX compiler, enter:

make
The Elements Environment resource compiler (rescomp) runs on the file
webwex.rc to generate webwex.dat and creates the webwex object file.
Then, the linker creates the application, webwex.

Note: The order of execution/creation depends on the make program
used, and it is not important.

Getting Started

Configuring the Elements Environment

3. Enter this command to build and run the webwex application:

webwex
A window that tries to connect to the World Wide Web over your
network connection appears. Establishing the connection might take
some time. The window appears only when the connection is
established; otherwise, it times out.

Examples for the Distributed Messaging Element

See the Distributed Messaging Element Programmer’s Guide.

Building Applications

After generating applications from your Elements Environment executable,
you can:

m Statically link them with the appropriate libraries (the default)
m Load the libraries dynamically. To choose dynamic loading, you must

use the ND_DYNCONFI Gflag. Alternately, you can uncomment this
flag in your configuration file.

You must also compile and link your application with the appropriate
libraries. The file nd.h contains all the library-initialization statements
required to link the Elements Environment libraries with your application.
You can find it in this directory:

ND_HOVE\ c\i ncl ude or ND_HOVE\ cpp\i ncl ude

This file is included in the main source-code file generated by the Elements
Environment executable. To support the initialization statements provided
by nd.h, there are compiler flags that let you link your application with the
appropriate libraries.

See "Compiler-Flag Options" on page 120 for a list and description of the
options currently available.

Using Makefiles

Getting Started

The Elements Environment includes two files in the ND_HOME/mkinc
directory for the supported compilers:

m For a specific application, makedef.inc defines the compilation and
linking flags, and the required libraries.

m makerule.inc contains the rules to compile and link.

The main make file, which the Elements Environment generates, has the
target files needed to build the Elements in your application. The main make
file must include makedef.inc and makerule.inc.

125

Chapter 10 Building Applications in the Elements Environment

126 Getting Started

__ Chapter

11

Getting Started

Porting and Deploying
Applications in the
Elements Environment

In the Elements Environment, you can develop applications on one platform
and port them to other platforms. You can then deploy the applications to
end-users.

There are two versions of the Elements Environment Kits:
m The Development kit
m The Deployment Kit

The only difference between the two kits is that the Development kit has the
Resource Browser and related files; the Deployment kit does not have these
files. All other libraries and header files are the same. The kits also have the
same layout on all platforms.

Note: You must have both the Development kit and the Deployment Kit to
build and deploy your applications.

Follow these guidelines when you port or deploy applications that you

develop using the Elements Environment:

m When you rebuild the application for the first time, always use the
DEBUG libraries—libdbg (except for the Intelligent Rules Element).
This lets you easily detect errors.

m Start porting the application that you are developing as soon as you can.
This helps you discover:

— Problems specific to a platform

— Common problems that are easier to track on one system than on
another

For example, if you develop on both Windows and UNIX, it is often
easier to debug your code on UNIX than on Windows.

m When porting an application that is ready to be delivered to users, use
a nonrestricted version of the Open Interface Element libraries.

m Initialize the nd.dat file. This is a special resource file containing user and
security information for all Neuron Data products you have installed.
After you initialize nd.dat, you can use it for deploying your application
to end-users.

127

Chapter 11 Porting and Deploying Applications in the Elements Environment

See your Installation Guide for information about initializing this file.

Note: Inall the procedures in this chapter, source platform is the platform on

which you developed your application. Target platform is the platform
to which you are porting your application.

Porting a C or C++ Application across Platforms

128

1.

Install the Elements Environment Development or Deployment kit on
the target platform.

Follow the instructions in the Installation Guide for the appropriate
platform.

Copy all the application files from the source platform to the target
platform, including:

— Cand C++ source files
— header files

— .rcfiles

— makefiles

— knowledge bases

— bitmap files

- flat files

Note: When you copy files from one system to another, make sure that
you copy compiled knowledge-base files and bitmap files in
binary mode. Copy all text files in text mode. Verify that the
end-of-line characters convert properly.

Edit the makefile for the target platform.

See ee2l.txt in the ee21\doc directory of the Elements Environment
CD-ROM for instructions.

Note: If you do not have the Elements Environment Development kit
on the target platform, you can create a makefile from the
Elements Environment Development kit on the source platform.
You can also modify a makefile from an example in the Open
Interface Element.

Rebuild your application.

Use rescomp to compile the .rc resource files and generate a new .dat
library file.

Getting Started

Porting a Script Application across Platforms

6.

Modify the environment variables for your system.

See the appropriate .pdf files for your platform in the Sys_conf directory
of the documentation CD-ROM.

Porting a Script Application across Platforms

1.

Install the Elements Environment Development or Deployment kit on
the target platform.

Follow the instructions in the Installation Guide for the appropriate
platform.

Copy these Elements Environment files from the source platform to the
target platform:

— .rcfiles
— knowledge-base files
— .nxp flat-file databases

Note: Ifyourapplication uses a mixture of C or C++and OOScript, also
copy the source file, header file, and makefile from the source
platform to the target platform.

Rebuild your application.
Use rescomp to:

— Compile the .rc resource files
— Generate a new .dat library file
Modify the environment variables for your system.

See the appropriate .pdf files for your platform in the Sys_conf directory
of the documentation CD-ROM.

Deploying Applications

Getting Started

Applications built with the Elements Environment are not protected by the
hardware key (Macintosh and PC) or security server (UNIX and OpenVMS).
Only the development-environment tools are so protected. However, you
cannot deliver an application with a Deployment kit containing this
restricted banner: “This is for development only.” Therefore, you must
purchase a porting kit, which is exactly the same thing without this
restriction.

129

Chapter 11 Porting and Deploying Applications in the Elements Environment

Note: Deploy your application with the same nd.dat file as the one you used

when you built it. Do not reinstall the .dat files from the master disks
or tape, because your nd.dat file contains a valid serial number.

Using the installation process of your application, you must provide a way
to protect files, such as .dat files and libraries, from being modified.

Deploying a C or C++ Application

130

This section assumes that you have already developed the application in the
Open Interface Element and ported it to the target user system.

1.
2.

Rebuild your application without the debugging information.

Make sure you have the following files to run your Elements
Environment application on similar platforms:

— The executable program of the application

— The Elements Environment libraries for platforms using DLLs or
shareable libraries

Note: Modify your makefile to point to the /dll directory instead of the
/dlldbg directory, and use the nondebug and nonrestricted
libraries.
— Any database client libraries if you based your application on the
Data Access Element

— Your application’s .dat files

— The Elements Environment .dat files (taken from the
/dat/$ND_LANG and /dat directories)

Note: If you are not using scripts, you do not need ndresed.dat and
ndim*.dat.
— Any additional files specific to your application, such as bitmaps,
knowledge bases, and flat files

Note: Maintain the same directory structure when you copy the Elements

Environment files to the target platform.

Instruct your users to set the ND_PATH environment variable to the
directory that contains these files.

Note: If users get error messages about ND_PATH, or if they cannot
install the application, copy all the Elements Environment .dll
and .dat libraries to the same directory as your project and try
again.

If you are using other environment variables, provide a script or an

installation program for the users to correctly set the environment.

Getting Started

Deploying a Script Application

After referring to the Installation Guide for the appropriate platform,
specify other special platform settings for the target systems.

For example, you have to set FILES=50 or more in CONFIG.SYS on
DOS, and the correct memory size of the application on the Macintosh.

Modify the environment variables for the target system.

See the appropriate .pdf files for your platform in the Sys_conf directory
of the documentation CD-ROM.

Deploying a Script Application

Getting Started

This section assumes that you have already developed the application in the
Open Interface Element and ported it to the target user system.

1.

Make sure you have the following files to run your Elements
Environment application on similar platforms:

— The Elements Environment executable program with option
- ND_DYNCONFI G=r unscr pt

— The Elements Environment libraries for platforms using DLLs or
shareable libraries

Note: Use nondebug and nonrestricted libraries.

— Any database client libraries if you based your application on the
Data Access Element

— Your application’s .dat files

— The Elements Environment .dat files (taken from the
/dat/$ND_LANG directory)

— Any additional files specific to your application, such as bitmaps,
knowledge bases, and flat files

Note: Maintain the same directory structure when you copy the Elements

Environment files to the target platform.

Instruct your users to set the ND_PATH environment variable to the
directory that contains these files.

If you are using other environment variables, provide a script or an
installation program for the users to correctly set the environment.

After referring to the Installation Guide for the appropriate platform,
specify other special platform settings for the target systems.

For example, you have to set FILES=50 or more in CONFIG.SYS on
DOS, and the correct memory size of the application on the Macintosh.

131

Chapter 11 Porting and Deploying Applications in the Elements Environment

5. Modify the environment variables for the target system.

See the appropriate .pdf files for your platform in the Sys_conf directory
of the documentation CD-ROM.

132 Getting Started

__ Chapter

12

Getting Started

Localizing Applications In
the Elements Environment

Localizing an application means converting an application from its original
language to a target language by translating strings from one language to
another. It includes changing alphabets to characters that are completely
different from the characters in the original language. The Elements
Environment provides the following features to help you localize your
applications:

Support for Multibyte Characters

The Elements Environment supports multibyte characters, which can handle
Asian and European characters as well as ASCII. The Elements Environment
also provides a set of string functions designed for multibyte characters.

These modules contain multibyte APIs:

m Str
m VStr
m Char
m Ct

Language-independent APIs

The Elements Environment provides language-independent application
programming interfaces (APIs), which are designed specifically for multibyte
characters. Also, the Elements Environment APIs can accommodate
applications that accept characters from two or more alphabets at the same
time. These interfaces take advantage of industry-standard character
encoding. You can use the same set of APIs for all locales. Therefore, you do
not need different versions of the Elements Environment, and switching
from one language to another is simple.

Input Methods

The Elements Environment offers an expanded set of input methods for
multibyte characters:

m The standard Canna input method for inputting Japanese Nihongo
characters. Canna is a public-domain Kana-Kaniji conversion library.

133

Chapter 12 Localizing Applications in the Elements Environment

m The X input method (XIM) for UNIX/X Windows environments. XIM
offers a broad range of support for multibyte characters, enabling you
to input Japanese, Korean, Chinese, Taiwanese, and other character
types. The X11 versions provide libraries that communicate with the
XIM-compliant input servers.

m On-the-spot multibyte input for Microsoft Windows.

Processing Input and Output Strings

The Elements Environment APIs provide the functions you need to process
and output strings. For example, string APls enable you to:

Create and destroy strings
Search for characters in strings
m Extract numeric values

m Compare strings

The Elements Environment also has interfaces for:
m Characters

m Code types

m Code sets

Fonts

You can specify multiple native fonts for the strings displayed on the screen.
For example, in JEUS or SJIS environments on UNIX, you can display a
string containing a combination of Kanji, Kana, and ASCII characters.

String-Resource Editor

The string-resource editor allows you to build tables of string resources. You
can substitute these resources with resources from other
languages—including multibyte languages—and then recompile. This is
useful for internationalizing applications developed for different locales.

Translating Resources with the Resource Compiler

134

If you want to adapt your user interface for a different native language but
do not want to change the underlying structure of your software, you can set
the appropriate environment variables and then translate the static strings
in your resource files into the target language.

Rather than separately maintaining resource files for each language version
of your application, you can create your application in one language, then
translate the resources into other languages as required.

Getting Started

Translating Resources with the Resource Compiler

To translate your string and label resources, perform the following tasks.

Note: These steps are for UNIX systems, but you can adapt them for other
environments through utilities such as MKS tools on the PC or
streamedit with MPW on the Macintosh.

Task 1: Generating the Text Resource File for the .dat Libraries

Note:If you are starting with a .rc file, skip to the next task.

1. Runrescomp to generate the text form of the resources (the .rc file) for
the .dat libraries. For example:
To generate the all.rc file for libl.dat ... lib2.dat, enter:

resconp -output libl.dat ... lib2.dat > all.rc
To localize the Neuron Data .dat files so that you can change the built-in
strings, generic windows, and Open Edit itself, enter:

cd $ND_ HOWE/ li b
resconp -output nd*.dat > nd_all.rc

2. Make sure that the all.rc file contains the text form of all the resources
you want to localize, with data from all the libraries combined into a
single file.

Task 2: Generating a Skeleton Dictionary

Use the text file you have just created to generate a skeleton dictionary
containing your strings and labels in their original language.
To do this, use the rescomp utility with this syntax:

resconp -gendict nydict all.rc

The skeleton dictionary lists all the strings and labels in your application in
the format required by the dictionary.

Task 3: Editing the Dictionary
1. For each entry in the skeleton dictionary, place the original word in
guotation marks, followed by a right arrow, followed by the translation
in quotation marks:

“Original Wrd1"=>"Wordl Transl ation"
"Original Wrd2"=>"Wrd2 Transl ati on"
"Ori gi nal Wordn"=>"Wordn Transl ati on"
For example, an English/French dictionary might contain these entries:
"W ndow' =>"Fenétre"
"New Check Button"=>"Nouveau Bouton Marqué"
"Butt on" =>"Bout on"

Getting Started 135

Chapter 12 Localizing Applications in the Elements Environment

2. Asyou translate the dictionary entries, remove lines that do not need to
be translated.

Task 4: Creating the Localized .dat Files
1. Rename your existing .dat files or move them to another directory.

2. Inthe .rcfile that you generated, verify that the Li b. conpi | e
definitions do not contain a Di r Name field that points to the location of
your existing .dat files.

Tip: You can empty the Di r Nane fields or set them to a “.”,
which points to the current directory.
3. Enter a command with this syntax to create a .dat file:

resconp -t nydict filenane.rc
This creates a .dat file in the current directory.

4. Use this command with the verbose (- v) option to display a message
whenever a string is translated:

% resconp -tv dict filenane.rc

For example, using the French/English dictionary created above, this
command:

% resconp -tv dict filenane.rc

produces output that might look like this:
Transl ating "W ndow' to "Fenétre"
Transl ati ng "New Check Button" to "Nouveau Bouton
Mar qué”
Transl ating "Button" to "Bouton"

Task 5: Checking Your Application

1. After all the resources are translated, check the appearance of your
strings and widgets.

Depending on the translation, widgets could be too small or too large
for the new text they contain.

2. If necessary, adjust the size of buttons, text edits, and choice boxes.
Note: Menu objects adjust automatically when the string-length
changes, so you don’t have to change them manually.
Task 6: Changing the Date and Time Formatting

If necessary, change the output formatting of the date and time fields in the
application to match the format of these fields for the specific locale.

136 Getting Started

Enabling the Input Methods for Multibyte Characters

Enabling the Input Methods for Multibyte Characters

To set up your environment for multibyte input, you do not need special
APIs or special code for handling input methods with the Elements
Environment. All you have to do is:

1. Set the appropriate environment variables
2. Start the input method server

Note: You must first install either Canna or XIM on your system before you
can input multibyte characters.

Enabling the Canna Input Method

To use Canna on a UNIX system running the Elements Environment:
1. Go to the directory containing the Canna software by entering:

cd $ND_HOVE/ canna
2. To become the super user, enter:

Ssu
3. Run the script to install Canna by entering:

/canna_i nstal |
4. To start the Canna server on any machine on your network, enter:

$ND_HOWVE/ canna/ bi n/ cannaser ver

5. Tosetthe O T_CANNAHOST environment variable to the host name
running the Canna server, enter:

setenv O T_CANNAHCST nyhost
where myhost is the name of the Canna-server host.

6. Start your application.

Enabling the XIM

To use XIM on a UNIX system running X Windows and the Elements
Environment:

1. Start your XIM-compliant input server.

For example, in the Solaris 2.4) environment, enter:
ht t

Getting Started 137

Chapter 12 Localizing Applications in the Elements Environment

2. Set the LANGenvironment variable.

For example, to set it to Japanese, enter in a C shell in the Solaris 2.3)
environment:

setenv LANG j a

Note: On other systems, the name for the Japanese environment may
be different.

3. Start your application.

These variables control the XIM environment:

Variable Value Description
ND_XI'M TRUE Use XIM.
FALSE (the default) Do not use XIM.
ND_XI MPREEDI T NOTHI NG Preedit on the root window.
AREA Preedit on the bottom of the
Elements Environment
window.
PCSI Tl ON (the Preedit over the cursor position
default) in the text edit.
ND_XI MSTATUS NOTHI NG Status is displayed on the root
window.

AREA (the default) Status is displayed on the
bottom of the Elements
Environment window.

Note: The XI MPr eedi t Cal | backs and XI M5t at usCal | backs
styles are not supported in the current version of the Elements
Environment.

Fonts and Font-Family Resources

138

A font is an object that defines how text appears on the screen. From the
windowing system’s perspective, a font is an object that allows the drawing
engine to measure and render pieces of text.

The Elements Environment lets you specify a font family through the FFam
resource, which is described in the ffampub.h file. This resource, instead of
individual font resources, describes the mapping between the font family
and native fonts. This new scheme simplifies the dynamic creation and
modification of fonts.

Getting Started

Fonts and Font-Family Resources

Note: The XxxFami | y persistent fields are there for compatibility with
earlier releases of the Open Interface Element. Convert your existing
font resources to specify the font family through the FFam
mechanism.

API sections that are bracketed with the FONT_COVPAT compilation
flag in the fontpub.h file are there for compatibility with earlier
releases. Avoid using these, and convert any code that uses them to
the new APIs.

Font-Family Resources

Getting Started

A font-family resource describes the mapping between a portable font family
and the native fonts that implement the family and its variants on the
various windowing systems. Font families enable you to:

m Easily specify portable font resources
m Build portable user interfaces for selecting font styles and sizes

The font-family resources:
m Encapsulate the low-level X11 font names (XLFD)
m Provide high-level management of X11 fonts

Instead of having to specify font names in the XLFD format, these resources
allow you to use a simple user interface to change:

m Font family
m Fontsize
m Fontstyle

Font families also provide critical support for multibyte text. You can set up
a font family to describe a set of fonts covering several code sets (for
example, JIS-0201 and JIS-0208). Then, the font manager associates several
system fonts with a given font resource. The drawing routines switch system
fonts transparently when drawing multibyte text.

Specifying a font family is usually simple. However, it can become complex
if:
m You have to specify the family on different windowing systems.

m You need to specify a set of fonts covering several code sets for
multibyte text.

A font family is expressed in a simple language that provides predefined
operators to test various system parameters. This example shows how to use
the specification language:

x_famly "courier"; x_foundry = "adobe";
mac_fam |y " Chi cago”;

139

Chapter 12 Localizing Applications in the Elements Environment

pmfam |y "System Proportional";
1f is_x11 then (scaling_quality 80) else (scaling_quality 110)

The specification is a list of statements separated by semicolons (;).
Note: The last statement should not be followed by a semicolon.

For more information about the Elements Environment font manager and
font-family resource, see the Open Interface Element Users’ Guide. For
additional information, see the ffampub.h file.

Key Concepts for Multibyte Characters and Strings

Code Sets

140

After translating an application’s resource strings, add these resource
strings to your application code or rewrite the code to support one or more
locales. To do this, you need to use the Elements Environment APIs directly.

The Elements Environment APIs support multibyte characters needed for
non-English languages. Multibyte characters require:

m Code sets
m Code mappings
m Code types

These represent the characters in an alphabet as numeric codes and
determine how these codes are placed within a multibyte-character
structure.

A code set is a numeric representation of each character in an alphabet. The
numeric codes in each code set vary in their hexadecimal range. Most code
sets are extensions to the ASCII character set. Code sets are combined with
mappings to form a code type. Elements Environment supports these code
sets:

Elements Environment Supported Code Sets
Version
Version 2.1 ASCII
ISO_LATIN1
JIS_0201
JIS_0208
Korean ASCII
KSC 5601

Getting Started

Key Concepts for Multibyte Characters and Strings

Code Mapping

Getting Started

Elements Environment Supported Code Sets
Version

Simplified Chinese ASCII

GB2312

Traditional Chinese ASCII

BIG5

For Solaris and SunOs:
ASCII

CNS11643-1
CNS11643-2
CNS11643-3

Code mapping determines the representation of the encoded character within
a multibyte character. A multibyte character is an unsigned 32-bit integer.
Code mapping includes placing the bytes within the character and
manipulating the bytes if necessary.

Code mapping can be more complex than byte placement: The JIS code set
defines codes in which the first and second bytes are in the 0x21-0x7e range.
JIS bytes cannot be inserted into a string regardless of the byte order. This is
because the JIS code would then be indistinguishable from the ASCII codes.
These mappings address this problem:

The SJIS mapping is complex. The SJIS transposes the JIS_0208 code in
these ranges:

— the first byte in 0x81-0x9f or Oxe0-0xfc
— the second byte in 0x40-0x7e or 0x80-0xfc

It includes a transposition of JIS-0201 code in these ranges:
— the first byte in the Oxal-Oxdf range
— the second byte in the 0x21-0x7e range

The JEUC mapping transposes the first byte of a JIS 0201 code to 0x8e
and the second byte in the Oxal-0xfe range.

It transposes the first byte of a JIS_0208 code in the 0xal-0xfe range and
the second byte in the Oxal-0xfe range.

The KSC 8-bit mapping code set transposes a code in the Oxal-0xfe,
Oxal-0xfe range.

The GB 8-bit mapping code set transposes a code in the Oxal-0xfe,
Oxal-0xfe range.

141

Chapter 12 Localizing Applications in the Elements Environment

m The BIG5 code set's first byte is in the Oxal-Oxfe range, and the second
byte is in the 0x40-0x7e or Oxal-0xfe range. This allows it to be used
with ASCII as it is.

m The CNS code set defines 16 planes of 2-byte characters in the
0x21-0x7e and 0x21-0x7e ranges. In CNS code mapping, the first plane
is transposed to the Oxal-0xfe range, and the rest of the planes are
mapped to 4-byte characters as follows:

0x8e, O0xal0+n, Oxal-Oxfe, Oxal -0xfe
where n is the number of CNS character planes.

Note: CNS defines 16 planes of character mapping, but actual character
codes are defined in only 7 planes. The Elements Environment
supports only the first 3 planes.

Code Types

A code type, or coding scheme, combines one or more code sets with a code
mapping.

For single-byte-ASCII or extended-ASCII characters, the byte value maps
directly to the code value. For these alphabets, the code set and the code type
are identical.

For multibyte characters, different code types can be based on the same code
set but on different code mappings. For example, the Japanese EUC code
type offered by Sun and the SJIS code type offered by Sony are two different
mappings of the JIS code set.

The Elements Environment provides two levels of support for code sets:
m Tested
= Untested

Fully Supported and Tested Code Types

Code types supported and tested under the current version of the Elements
Environment include:

ASCII Code Type
The CT_ASCII code type contains the CS_ASCII code set.

142 Getting Started

Key Concepts for Multibyte Characters and Strings

CJK Code Types

In the CJK code-type group, the Elements Environment supports:

CT_SJIS, which combines CS_ASCII with CS_JIS_0201 and CS_JIS_0208

CT_JEUC, which combines CS_ASCII with CS_JIS_0201, CS_JIS_0208,
and CS_JIS 0212

CT_KSC, which consists of CS_ASCII plus CS_KSC 5601
CT_GB, which is a combination of CS_ASCII and CS_GB 2312
CT_BIG5, which is a combination of CS_ASCII and CS_BIG5

CT_CNS, which consists of CS_ASCII, CS_CNS11643-1,
CS_CNS11643-2, and CS_CNS11643-3

Untested Code Types

Getting Started

Code types that are supported by the current version of the Elements
Environment but are not tested include:

ISO 8859 _X Code Types

The CT_ISO... code types combine the CS_ASCII, CS_EMPTY_809f, and
CS_ISO... code sets. The Elements Environment supports these 1SO 8859_X
code types:

CT_ISO_LATIN1
CT_ISO_LATIN2
CT_ISO_LATIN3
CT_ISO_LATIN4
CT_ISO_CYRILLIC
CT_ISO_ARABIC
CT_ISO_GREEK
CT_ISO_HEBREW
CT_ISO_LATINO

Adobe Code Types

The Elements Environment supports CT_ADOBE_STD, which combines the
CS_ASCII, CS_EMPTY_809f, and CS_ADOBE_STD code sets:

The CT_LATINL1 code type contains CS_ASCII, CS_ADOBE_LATINLI,
and CS_ISO_LATINL1.

The CT_ADOBE_SYMBOL code type contains CS_ASCII (00-f only),
CS_EMPTY_809f, and CS_ADOBE_SYMBOL.

The CT_ADOBE_ZAPFDB code type contains the
CS_ADOBE_ZAPFDB code set only.

143

Chapter 12

Localizing Applications in the Elements Environment

144

Macintosh Code Types

m The CT_MAC_ROMAN code type combines the CS_ASCII and
CS_MAC_ROMAN code sets.

m The CT_MAC_ARABIC code type combines CS_ASCII with
CS_ISO_ARABIC and CS_MAC_ARABIC.

m The CT_MAC_HEBREW code type combines the CS_ASCI|,
CS_I1SO_HEBREW, and CS_MAC_HEBREW code sets.

Microsoft Windows Code Types

The Microsoft Windows code types have two forms:

m The 1252 code type contains the CS_ASCII, CS_MSW_ANSII, and
CS_ISO_LATINL1 code sets.

m The 125X code type combines CS_ASCII and CS_MSW _125X.

The Elements Environment supports these Microsoft Windows code types:
CT_MSW_EASTEURO

CT_MSW_CYRILLIC

CT_MSW_ANSI

CT_MSW_GREEK

CT_MSW_TURK

CT_MSW_HEBREW

CT_MSW_ARABIC

PC Code Types

The PC code types combine CS_ASCII with the specific PC code sets. The
Elements Environment offers these code types:

CT_PC_437
CT_PC_850
CT_PC_852
CT_PC_855
CT_PC_857
CT_PC_860
CT_PC_861
CT_PC_863
CT_PC_864
CT_PC_865
CT_PC_869
CT_PC_M4

Getting Started

Key Character and String Types

Unicode Code Type

The CT_UNICODE code type contains these code sets:
m CS_ASCII

m CS EMPTY_809

m CS_ISO_LATIN1

= CS_UNICODE

HP ROMANS8
The CT_HP_ROMANS code type contains the CS_HP_ROMANS code set.

Key Character and String Types

Two basic datatypes control how characters and strings are manipulated in
the application code:

m Native datatype supports applications operating in one language at a

time.
Note: Systems dedicated to a specific locale already have a native code
type specified.
m UniCode type supports Unicode characters contained in Unicode

strings.

Character Type Definitions

The Elements Environment Char module defines Char and Uni Code
character types.

m The Char type is a 1-byte section of a global string. The ChCode type
encodes a multibyte character in a 32-bit unsigned integer.

m The Uni Code character type encodes a character in a 16-bit unsigned
integer. Uni CodePt r is a pointer to a Uni Code character.
4-Byte Character Format

The ChCode type encodes characters in an unsigned 32 bit integer. ChCode
characters contain four bytes: Bytel, Byte2, Byte3, and Byte4. Bytel is the
least significant byte, and Byte4 is the most significant.

Getting Started 145

Chapter 12 Localizing Applications in the Elements Environment

Multibyte-character encoding is shown in this table:

Byte Number Contents
Byt el First byte of the multibyte character
Byt e2 Second byte of the multibyte character, or NULL
Byt e3 Third byte of the multibyte character, or NULL
Byt e4 NULL

Note: Char and ChCode values are always identical for pure ASCII
characters, but are not necessarily the same for multibyte characters.

Basic String types

The Elements Environment Str module defines native and Unicode string
types.
m AStr stringisanarray of Char and/or ChCode characters. There are
also types to accommodate these cases:
— where the global string is constant
— where the pointer to the string is constant
— where both are constant
m A Uni Str string contains Unicode characters only. There are also
pointersto Uni St r pointers. The Uni St r , the pointer to the Uni St r,
or both can be constants.

Environment Variables and Flags

146

The ND_LANGenvironment variable defines the native language for the
application. When you want to change from one native language to another,
you must reset this environment variable. This table shows the languages
supported and the possible settings.

ND LANG Language ND_CHARNATI VE
enusasc US English. No setting (the default)
j aj peuc Japanese EUC. CT_JEUC
jajpsjis Japanese ShiftJIS. CT_SJI's
kokr ksc Korean KSC. CT_KSC
zht wbi g5 Taiwanese BIG5. CT_BI G
zht wens Taiwanese CNS. CT_CNS
zhcngb Chinese GB. CT_&B

Getting Started

Character APIs in the Elements Environment

ND_LANG Language ND_CHARNATI VE

enusut f 8 For European CT_UTFS8
Unicode/UTF8 version.
The .dat file remains in
English.

jaj putf8 For global UTF8 version. CT_UTF8

kokrutf8 For global UTF8 version. CT_UTF8

zhtwut f 8 For global UTF8 version. CT_UTF8

zhcnutf 8 For global UTF8 version. CT_UTF8

Note: The Macintosh and the Power Macintosh do not support Unicode.

If you are using an Asian language, set the ND_CHARNATI VE environment
variable when running OLE-based applications under Windows 95 and
Windows NT. The table in this section shows the settings.

If you are using a European language, set the ND_CHARNATI VE
environment variable to support PostScript printing. This list shows the

possible settings:
CT_ISO_LATIN1
CT_ISO_LATIN2
CT_ISO_LATIN3
CT_ISO_LATIN4
CT_ISO_CYRILLIC
CT_ISO_ARABIC
CT_ISO_GREEK
CT_ISO_HEBREW
CT_ISO_LATIN9

Character APIs in the Elements Environment

Getting Started

The APIs in the Elements Environment Char module enable you to
manipulate characters and obtain information about them in these ways:

Get a character code

Obtain an ASCII character's classification
Convert ASCII characters

Convert characters between datatypes
Convert between ASCII and EBCDIC
Get a character length

Get a specified byte of a character

147

Chapter 12 Localizing Applications in the Elements Environment

Note: APIs for basic character classification enable you to obtain
information such as whether the character is alphanumeric,
hexadecimal, a control character, or a space. The CHAR _Asci il s
APIs assume that the character is in the specified C Runtime library

(C RTL) classification.

This table shows the Char operations and the corresponding APIs.

Character Operation

API

Get a character code

Basic character classification

Basic character conversion

Conversions between ASCII and EBCDIC

Get length

148

CHAR Get Byt e

CHAR Get Byt el
CHAR Get Byt e2
CHAR Get Byt e3

CHAR | sAsci
CHAR | sAsci i Al pha

CHAR | sAsci i Upper

CHAR | sAsci i Lower

CHAR | sAsci i Al Num

CHAR IsAsciiDigit

CHAR_I sAsci i HexDi gi t
CHAR | sAsciiCctDigit
CHAR | sAsci i Space

CHAR | sAsci i Punct

CHAR | sAsci i Control
CHAR | sAscii Print

CHAR_I sAsci i G aph

CHAR AsciiDigitGetlnt
CHAR Asci i HexDi gi t Get | nt
CHAR_Asci i CctDi gi t Get I nt

CHAR Asci i Al phaGet Base

CHAR Asci i Get Lower
CHAR _Asci i Get Upper

CHAR Asci i Get Cont r ol
CHAR Asci i Get Graph

CHAR_Asci i Get Ebcdi ¢
CHAR _Ebcdi cGet Asci i

CHAR_ToAsci i
CHAR Fr omAsci i

CHAR Cet Len
CHAR _CodeGCet Len
CHAR_Nat Get Len

Getting Started

String APIs in the Elements Environment

Character Operation API

Get byte CHAR GCet Byt e

C RTL classification CHAR | sAsci i
CHAR_Asci i | sAl pha
CHAR Asci i | sUpper
CHAR Asci i | sLower
CHAR _Asci i | sAl Num
CHAR AsciilsDigit
CHAR Asci il sHexDi gi t
CHAR_AsciilsCctDigit
CHAR Asci i | sSpace
CHAR Asci i | sPunct
CHAR Asci il sControl
CHAR AsciilsPrint
CHAR Asci i | sGraph
CHAR Asci i DigitGetlnt
CHAR Ascii CctDigitGetlnt

CHAR Asci i HexDi gi t Get I nt
CHAR_Asci i Al phaGet Base
CHAR Asci i Get Lower

CHAR Asci i Get Upper

String APlIs in the Elements Environment

Getting Started

The APIs in the Elements Environment Str module enable you to manipulate
strings and obtain information about them in these ways:

Extract characters and numeric values from strings
Create, copy, and dispose of strings

Set the contents of a string

Append to strings

Determine the string length

Iterate through stings

Write into strings

Compare and match strings

Search for characters in strings

Find word boundaries

Format numeric values

Convert strings between upper and lower cases

Note: The Elements Environment provides separate APIs for strings and

substrings.

149

Chapter 12 Localizing Applications in the Elements Environment

This table shows the Str operations and the corresponding APIs:

String Operation

API

Get characters from strings

Get numeric values from strings

Create, clone, and dispose of strings

Set strings

Append strings

Get string length

Iterate through strings

Write into string buffers

Basic string comparisons

150

Native and Ct versions of these
functions:

STR_Get Code
STR_Get Fwr d
STR_Get Bwr d

STR Get Dec. . .
STR_Get Hex. . .
STR_Get Radi x. . .
STR_Get Doubl e
STR_SubGet Dec. . .
STR_SubGet Hex. . .
STR_SubGCet Radi x. ..
STR_SubGet Doubl e

STR_NewSet
STR_NewSet Sub
STR _C one

STR _Di spose
STR Di spose0

STR_Set
STR_Set Sub

STR_Append
STR_AppendSub

STR Get Len
STR_Get TrunclLen

Native and C versions of these
functions:

STR_Get Code
STR_Get Fwr d
STR_Get Bwr d

Native versions of these
functions:

STR_Put
STR_Put Sub
STR _Put Asci i
STR WiteAscii

STR_Put Code
STR Wit eCode

STR_Cmp
STR_CnpSub

STR_Equal s
STR_Equal sSub

Getting Started

String APIs in the Elements Environment

Getting Started

String Operation API
Match strings STR_Mat chesChar
STR _Mat ches

Search for character

Find word boundaries

Format numeric values

Basic conversions

STR_Mat chesPat
STR_Mat chesSub
STR_Mat chesPat Sub

Substring versions of
STR Find...:

STR_Fi ndFi r st Char
STR_Fi ndLast Char
STR_Fi ndFi r st

STR _Fi ndLast
STR_I Fi ndFi r st
STR_| Fi ndLast
STR Findl Fi rst
STR_Fi ndl Last

STR_Fi ndWor d
STR_Fi ndWor dSub

STR_Put Dec. . .
STR_Put Hex. . .
STR _Put Radi x. ..
STR_Put Doubl e

STR _Asci i UpCase
STR_Asci i UpCaseSub
STR_Asci i DownCase
STR_Asci i DownCaseSub
STR _UpCase
STR_UpCaseSub

STR DownCase
STR_DownCaseSub

STR_Put Asci i Upper
STR _Put Asci i Lower
STR_Put Asci i Upper Sub
STR _Put Asci i Lower Sub
STR_Put Upper

STR_Put Lower

STR_Put Upper Sub
STR_Put Lower Sub

151

Chapter 12 Localizing Applications in the Elements Environment

Variable-String APIs in the Elements Environment

The APIs in the Elements Environment VStr module enable you to
manipulate variable strings and obtain information in these ways:

Allocate and deallocate memory for variable strings
Initialize and destroy variable strings

Change the contents of variable strings

Obtain the string length and string contents
Concatenate, insert, and delete strings and characters
Compare variable strings

Load resources into variable strings

Copy, initialize, and dispose of arrays

This table shows the VStr module’s operations and APIs:

Operation API
New and dispose Native and Ct versions of VSTR_New. . . :
VSTR_New

VSTR_NewSet St r
VSTR_NewSet St r Sub
VSTR_NewSet

VSTR _Cl one

VSTR_Di spose
VSTR_Di spose0

Native and Ct versions of
VSTR Init...:

VSTR | ni t

VSTR I nitSet Str
VSTR_| ni t Set St r Sub
VSTR | ni t Set
VSTR_End

Initialization/destruction

Native and Ct versionsof VSTR Set. . .:

VSTR Set Str
VSTR_Set St r Sub
VSTR_Set
VSTR_Copy

VSTR_Get Len
VSTR_Get Str
VSTR_QueryStr Sub

Changing contents

Queries

152 Getting Started

Using Code Sets and Code Types

Operation API

VSTR_AppendSt r
VSTR_AppendSt r Sub
VSTR_Append
VSTR_AppendChar
VSTR_Tr uncAt

VSTR Truncat e
VSTR O ear

VSTR_CnpSt r
VSTR_Cnp

VSTR_NewSet Res
VSTR_ | ni t Set Res
VSTR_Set Res

VSTR_ArraydC one
VSTR Arraylnit
VSTR_ArrayEnd
VSTR_Arr ayReset
VSTR_ArrayDi spose

Concatenation, insertion, deletion

Comparisons

Loading resources

Operations for arrays of strings

Using Code Sets and Code Types

Getting Started

Code sets and code types are used in the process of mapping alphabetic
characters into a numeric code in a 4-byte word.
Code-Set Operations and APIs

A code set is a numeric representation for each character in an alphabet. The
Elements Environment code-set APIs are not public.

See "Code Sets" on page 140 for more information.

Code-Type Operations and APIs

Code types identify a complete character-coding system, which associates a
code set with a mapping.

See "Code Types" on page 142 for more information.

The Ct module APIs use two types of data:
m Ct | d for the code-type ID
m ChCode for a code value within a code type

Code types are identified with a unique ID of the form CT_XXX

See the Ct module for a complete list of code-type IDs.

153

Chapter 12 Localizing Applications in the Elements Environment

The Ct module APIs allow you to:
Create and destroy a code type
Initialize a code type

Get code-type IDs

Iterate through a code type
Convert to and from code sets

This table describes the code-type operations and the corresponding APIs:

Code-Type Operations

API

Create/destroy code type

Initialization
General APIs

About Unicode

154

CT_New
CT_Di spose
CT_Di spose0

CT_Def I ni t

CT_GetCtld
CT_Get Char Len
CT_Get Fwr d
CT_GetBwd
CT_GetlInfo
CT_Cvt Char
CT_Cvt Ct ToCs
CT_Cvt CsToCt
CT_Get MaxChar Len
CT_IsSingleOnly
CT_GCet Upper
CT_Cet Lower

Unicode is a worldwide character-encoding standard that includes
characters used in most language types, such as:

m European
Indic
Arabic
Asian

In addition, it includes various symbols, such as:

Mathematical
Technical
Phonetic
Punctuation

Getting Started

About Unicode

Using Unicode

In the Unicode standard, a character is defined by 16 bits; therefore, there can
be up to 65,536 characters. With Unicode, you can mix many languages in
one application. You can also combine character and string processing for
various languages.

Note: Windows NT uses Unicode internally, and some applications process
Unicode internally.

This section describes the problems with using Unicode and how the
Elements Environment resolves those problems.

ASCII Compatibility

Since Unicode characters are coded in 16 bits, they are not compatible with
ASCII characters. For example, ASCII “A” (0x41 in hexadecimal) is coded
0x0041 in Unicode.

Unicode strings can include “0x00” in the string. Programs using
C-language string handling regard “0x00” as a string terminator; thus, they
cannot handle Unicode strings. This means that an ASClI-based application
cannot even display Unicode-encoded English strings.

Most applications supporting Unicode, except Windows NT, use pure
Unicode. To keep ASCII compatibility and enable Unicode, without
modifying existing API calls that take strings as arguments, the Elements
Environment uses Unicode Transformation Format (UTF8) as an internal code
type. UTF8 allows you to convert any Unicode value to UTF8, and UTF8 to
Unicode. In UTF8, ASCII code keeps ASCII values. Also, this format does
not include “0x00” in the string.

Note: UTF8 mode is available only if you set the ND_CHARNATI VE
environment variable to CT_UTF8.

The following table shows the UTF8 encoding scheme. In UTF8, a character
can be 1, 2, 3, 4, 5 or 6 bytes in length. The actual character value is the
concatenation of the v bits. If the character is 1 byte in size, it is the same as
ASCII. Code point 0 is allowed only in the 1-byte encoding.

Bytes Bits Hex Min Hex Max Byte Sequence in Binary

1 7 00000000 0000007F Ovvvvvvv

2 11 00000080 000007FF 110vvvvv 10vvvvvv

3 16 00000800 OOOOFFFF 1110vvvv 10vvvvvv 10vvvvvv

4 21 00010000 OO1FFFFF 11110vvv 10vvvvwv 10vvvvvv 10vvvvvv

Getting Started

Chapter 12 Localizing Applications in the Elements Environment

Bytes Bits Hex Min Hex Max Byte Sequence in Binary

5
6

156

26 00200000 O3FFFFFF 111110vv 10vvvvvv 10vvvvvv 10vvvvvv 10vvvvvv

31

04000000 7FFFFFFF 1111110v 10vvvvvv 10vvvvvv 10vvvvvv 10vvvvvv 10vvvvvv

This specification supports up to 6-byte encoding. However, the Elements
Environment supports only 1-, 2-, and 3-byte encoding.

Unicode characters whose code value is less than 0x80 are mapped to 1-byte
encoding, which is the same as ASCII. Unicode characters whose value is
equal to, or greater than, 0x80 and less than 0x800 are mapped to 2-byte
encoding. Other Unicode characters are mapped to 3-byte encoding.

For more detailed information about UTF8, see this site on the World Wide
Web:
htt p: // www. st onehand. con? uni code/ st andar d/ utf 8. ht m

Conversion with Existing Character Sets

Unicode includes many characters that are already defined in other
standard code sets. Thus, it is possible to convert characters in existing code
sets to Unicode.

However, there is no way to arithmetically convert Unicode to or from
existing code sets except for ASCII, 1SO8859-1 (used for Western European
Latin characters), and a few other code sets.

Neuron Data provides functions to convert Unicode from and to existing
character sets. This section gives an overview of the conversion functions.
For a detailed description of these functions, see “Specifying Code Types for
Unicode” on page 158.

To convert Unicode strings to or from current code types defined by
ND_CHARNATI VE, use:
STR _ToUni () and STR_Fronlni ()
To convert one Unicode character to or from a specific code type, use:
CT_ToUni () and CT_Fr omni ()
To convert Unicode characters to a specified code set, use:
CS_ToUni () and CS_Fr omuni ()

If you use Unicode as an intermediate code, it is possible to convert one code
type to another code type. For example, you can convert MacRoman code
type to Unicode and then convert it again to Windows ANSI code type. For
those code-type conversions, use:

STR_ToCt () and STR_Frontt ()

Getting Started

About Unicode

Getting Started

The available code types or code sets for these conversion APIs are described
in “Code Types for Unicode Conversion” on page 163.

You need the conversion tables to convert Unicode from or to existing
character sets except for ASCII and ISO Latinl. These tables usually reside
in the data file named unicvt.tab. They are loaded automatically, when they
are needed, so that they do not occupy memory all the time.

Font for Drawing and Printing

There are almost no Unicode-compatible fonts. Only Windows NT provides
a Unicode font, which covers some European characters but not Indic,
Arabic, and Asian characters.

For PostScript printing, though some font vendors provide some Unicode
fonts, these do not fully support Unicode.

When you set the ND_CHARNATI VE variable to CT_UTF8, the

i s_uni versal clause is available. You can put any number of the native
fonts in the font-family description language by using the next f ont
keyword.

When the Elements Environment draws a UTF8 character, it tries to map the
UTF8 code to a specified font code. If the UTF8 code successfully maps, the
Elements Environment uses it for drawing. The order of mapping
corresponds to the order of font descriptions.

Not all the fonts are available UTF8. For the available fonts for code
mapping, see “Unicode Font Mapping” on page 164. This font-mapping
function is available only on Windows 95, Windows NT, and UNIX/X
Windows. Other platforms cannot draw UTF8 code.

The Elements Environment uses the same strategy for PostScript printing. It
tries to map UTF8 code to the specified PostScript fonts. For the available
PostScript fonts and their notation in the font-family description language,
see “Unicode Font Mapping” on page 164.

Unicode Input

There is almost no Unicode-based input method. Windows NT provides a
simple table-based Unicode input method, but it is difficult to use. The
Elements Environment provides code-type conversions for these types of
input:

m Keyboard input

m Clipboard input

157

Chapter 12 Localizing Applications in the Elements Environment

Keyboard Input

The Elements Environment provides the ND_KEYBOARDCODET YPE
environment variable, which specifies the keyboard-input code type. The
Elements Environment assumes that the keyboard-input code type is the
specified code type, and it converts each keyboard input to the internal code
type specified by the ND_CHARNATI VE environment variable.

For example, if you have the Japanese ShiftJIS-based input method on your
system and your Elements Environment application runs in UTF8 mode,
you can specify ND_KEYBOARDCODETYPE to be CT_SJI S. Your
keyboard input will then convert to UTF8.

In addition, you can:
m Dynamically change the keyboard code type by calling the
EVENT_Set KbCt API

m Get the current keyboard code type by calling EVENT _Get KbCt

Clipboard Input

You can dynamically change the Elements Environment Clipboard
input/output (1/0). You can set the default Clipboard code type with the
ND_CLI PCODETYPE environment variable. You can then dynamically set
and get it using the CLI P_Set Ct and CLI P_Get Ct APIs.

The Elements Environment provides a simple table-based Unicode input
method as a sample program. This shows all Unicode characters in a list box,
and you can select any character with the mouse and copy it to the Elements
Environment Clipboard. You can copy and paste it into any Elements
Environment application.

See “Examples” on page 162 for more information about this program.

Specifying Code Types for Unicode

158

ND_CHARNATIVE

ND_CHARNATI VE specifies the code type for the Elements Environment. If
you specify CT_UTF8 for this variable, you can use UTF8-encoded code for
all the Elements Environment APIs. If you do not set ND_CHARNATI VE,
CT_ASCI | is assumed, and it can only process ASCII codes.

Getting Started

About Unicode

Getting Started

These are other possible values for ND_CHARNATI VE:

CT_I SO _LATI N1 1ISO8859-1 code type. Used for Western European
languages for most of UNIX and X Windows.

CT_SJI's For ShiftlIS. Used for Japanese Macintosh, PC, and
UNIX.

CT_JEUC For Japanese EUC. Used for most of Japanese
UNIX.

CT_KSC For Korean. Used for Korean.

CT_&B For GB2312. Used for mainland China.

CT_BI G For BIG5. Used for Taiwan.

CT_CNs For CNS. Used for Sun in Taiwan.

You will need a license to use some of these settings.

ND_KEYBOARDCODETYPE

ND_KEYBOARDCODETYPE specifies the keyboard-input code type. The
Elements Environment assumes that all the codes are in this code type, and
it converts the code to the internal code type specified by

ND_ CHARNATI VE.

If ND_KEYBOARDCODETYPE is not set, no keyboard-input conversion
occurs.

If the keyboard-input code cannot be converted to the internal code, it is just
ignored. No error message is displayed.

You can change this keyboard code type dynamically by calling
EVENT_SetKbCt(). You can obtain the current keyboard code type by
calling EVENT_GetKbCt().

ND_CLIPCODETYPE

ND_CLI PCODETYPE specifies the Clipboard input code type. The
Elements Environment assumes all Clipboard codes are in this code type,
and it converts the code to the internal code type specified by
ND_CHARNATI VE. In addition, it converts all Clipboard output from the
internal code to the Clipboard code type.

If ND_CLI PCODETYPE is not set, no Clipboard 1/0 conversion occurs.

If the Clipboard 1/0 code cannot be converted, it is just ignored. No error
message is displayed.

159

Chapter 12 Localizing Applications in the Elements Environment

160

You can change this Clipboard code type dynamically by calling
CLIP_SetKbCt(). You can obtain the current Clipboard code type by calling
CLIP_GetKbCt().

EVENT_SetKbCt, EVENT_GetKbCt

void EVENT_SetKbCt(CtldEnum ctid);
CtldEnum EVENT_GetKbCt(void);

EVENT _SetKbCt() sets the keyboard code type. The Elements Environment
converts all keyboard input codes to the internal code type based on this
information.

EVENT_GetKbCt() returns the current keyboard code type.

CLIP_SetClipCt, CLIP_GetClipCt

void CLIP_SetKbCt(CtldEnum ctid)
CtldEnum CLIP_GetKbCt(void)

CLIP_SetKbCt() sets the Clipboard code type. The Elements Environment
converts all Clipboard 1/0 codes to/from the internal code type based on
this information.

CLIP_GetKbCt() returns the current keyboard code type.

STR_ToUni, STR_FromUni

StriVVal STR_ToUni(UniStr buf, StrlVVal unisize, CStr str, CharCvtSet flags,
StrCvtCtxPtr ctx);

StrivVal STR_FromUni(Str buf, StrlVal size, UniCStr unistr,

CharCvtSet flags, StrCvtCtxPtr ctx);
STR_ToUni() converts an internal string whose code type is defined by
ND_CHARNATI VE to Unicode. It then puts the converted string into buf.
The unisize is the size in 16-bit integers, not the size in bytes.

STR_FromUni() converts a Unicode string to an internal string. It then puts
the converted string into buf. The size is the size of buf in 16-bit integers, not
the size in bytes.

These routines always terminate buf with NULL bytes and never write more
than si ze bytes into buf, including the terminating NULL. They return the
number of characters that have been written to buf without terminating
NULL.

Note: The flags are for future use to convert various characters defined in
charpub.h. You can specify 0 for now.

Getting Started

About Unicode

Getting Started

ctx may be NULL or a pointertoa St r Cvt C x, which will be filled with buf
and str positions where the conversion can resume after the destination
buffer has been reallocated.

STR_ToCt, STR_FromCt

StriVVal STR_ToCt(NatStr buf, StrlVal size, Cstr str, CtCPtr ct,
StrCvtCtxPtr ctx)

StrlVVal STR_FromCt(Str buf, StrlVal size, NatCStr str, CtCPtr ct,
StrCvtCtxPtr ctx)

STR_ToCt() converts str to ct-encoded string and puts the result into buf.
STR_FromCt() converts ct-encoded str to an internal string and puts the
result into buf.

The size is size of buf. These routines always terminate buf with NULL bytes
and never write more than size bytes into buf, including the terminating
NULL. They return the number of characters that have been written to buf
without the terminating NULL.

ctx may be NULL or a pointertoa St r Cvt C x, which will be filled with buf
and str positions where the conversion can resume after the destination
buffer has been reallocated.

CT_ToUni, CT_FromUni

BoolEnum CT_ToUni(CtCPtr ct, ChCode ch, UniCodePtr uni)
BoolEnum CT_FromUni(CtCPtr ct, UniCode uni, ChCodePtr ch)
CT_ToUni() converts a ct-encoded ch code to Unicode uni.

CT_FromUni() converts a Unicode uni to ct-encoded ch code.

If the conversion succeeds, these functions return BOOL_ TRUE; otherwise,
they return BOOL_FALSE.

CS_ToUni, CS_FromUni

BoolEnum CS_ToUni(CsCPtr cs, CsCode code, UniCodePtr uni)
BoolEnum CS_FromUni(CsCPtr cs, UniCode uni, CsCode code)
CS_ToUni() converts code in the cs codeset to Unicode uni.

CS_FromUni() converts Unicode uni to code of the cs code set.

If the conversion succeeds, these functions return BOOL_TRUE; otherwise,
they return BOOL__FALSE.

161

Chapter 12 Localizing Applications in the Elements Environment

Limitations

The Elements Environment does not support these Unicode features:

Nonspacing Marks

For example, the Elements Environment does not treat these as the same:

Uni code 0x0061 LATIN SMALL LETTER A + Uni code 0x0308
NON_SPACI NG_DI AERESI S

Uni code OxOO0E4 LATI N _SVALL_LETTER A DI ARESI S

Right-to-Left Languages

You cannot use Arabic or Hebrew, for example, with the Elements
Environment version of Unicode.

Language-specific Rendering Issues

The following, for example, are not supported:
Korean syllable composing

Thai characters’ tone marks

m Arabic or Greek’s context-dependent shapes
m Arabic ligatures

Platform-Specific Issues

On the Macintosh, OS/2 Presentation Manager, and Windows 3.1, UTF8
cannot be used as an ND_CHARNATI VE to specify the internal code.

Examples

You can find these examples in these directories:
m $ND_HOME/C/examples/unicode
m $ND_HOME/CPP/examples/unicode

tedit

This is a simple text editor for editing UTF8 strings. Keyboard input and
Clipboard input can also be changed dynamically through menu selections.

The code type of the 170 file also can be specified. For example, it can read
a Japanese EUC file and convert it to a UTF8 file.

162 Getting Started

About Unicode

uniin
This is an example of a simple Unicode input method. Users should set the

ND_ CHARNATI VE environment variable to CT__UTF8 before starting this
application.

This program displays all Unicode characters in the list box. Users can click
any characters to select them and then click Copy to copy them to the
Clipboard as a UTF8 string.

Any UTF8-based Elements Environment application can retrieve the copied
strings with the Paste function text edit (CTRL-V).
Code Types for Unicode Conversion

You can convert these code types to/from Unicode:

~ASCl | ASCII code

1 SO _LATI N1 1SO8859-1 for Western Europe

"1 SO _LATI N2 1SO8859-2 for Eastern Europe

"1 SO _LATI N3 1SO8859-3 for Southeast Europe

"1 SO _LATI N4 1SO8859-4 for Scandinavian

"1SO CYRILLIC 1SO8859-5 for Russian

"1 SO _ARABI C 1SO8859-6 for Arabic

"1 SO_GREEK 1SO8859-7 for Greek

" | SO HEBREW 1SO8859-8 for Hebrew

"1 SO _LATI N9 1SO8859-9 for Turkish

" MAC_ROVAN Macintosh code type for Western Europe

SJI'S Japanese ShiftlIS Windows codepage 932
EUC Japanese EUC
| Gb Taiwanese Big5 encoding

CNS Taiwanese CNS11643 EUC encoding

@]

Korean KSC5601 8-bit encoding
Mainland China’s 2312 8-bit encoding
~ADOBE_STD Adobe Systems standard encoding

~ ADOBE_LATI N1 Adobe Systems ISOLatin1 encoding

~ ADOBE_ZAPFDB Adobe Systems ZapfDingbats encoding
~ ADOBE_SYMBOL Adobe Systems Symbol encoding

W ANSI MS Windows codepage 1252

W EASTEURO MS Windows codepage 1250

W CYRI LLI C MS Windows codepage 1251

W GREEK MS Windows codepage 1253

W TURK MS Windows codepage 1254

W ARABI C MS Windows codepage 1256

W HEBREW MS Windows codepage 1255

8%

9992999999993999992939933999
> > > > W<

5555555

Getting Started 163

Chapter 12 Localizing Applications in the Elements Environment

Unicode Font Mapping

X11

The following X11 fonts can be used for Unicode (UTF8) code drawing on
X11. (X11 fonts are listed by the last two fields of the XLFD description.)

i s08859-1 1ISO8859-1 for Western Europe, Latin America
i s08859- 2 1ISO8859-2 for Eastern Europe

i s08859- 3 1ISO8859-3 for Southeast Europe

i s08859- 4 1SO8859-4 for Scandinavian

i s08859-5 1SO8859-5 for Russian

i s08859- 6 1SO8859-6 for Arabic

i s08859-7 1S0O8859-7 for Greek

i s08859- 8 1SO8859-8 for Hebrew

i s08859-9 1SO8859-9 Latin5 for Turkish

j i sx0201. 1976- 0 Japanese Half-width Kana
] 1 sx0208. 1983- 0 Japanese Kanji, and so on
ksc5601. 1987-0 Korean KSC5601

gbh2312.1980-0 Mainland China’s GB2312

bi g5.et-0 Taiwanese Big5

bi g5. eten-0 Taiwanese Big5

cns11643-1 Taiwanese CNS11643-1
cns11643-2 Taiwanese CNS11643-2
cns11643-3 Taiwanese CNS11643-3

uni codel. 1-0 Unicode font

-di ngbat s Adobe Systems ZapfDingbats font

You can specify these fonts in the font-family description language
(x_charset "iso08859-1").

Note: You can get most of these X11 fonts from these URLSs:

2/l cair-archive. kai st. ac. kr/ pub/ hangul / f ont s/

://letlport.etl.go.jp/pub/mule/fonts/

2/ /ftp.ifcss. org/ pub/software/fonts/{big5, cns, gb, msc}/
bdf /

tp. kui s. kyoto-u. ac.jp/msc/fonts/jisksp-fonts/

t

t

—h —h —h

t
t
t

p. ora. com pub/ exanpl es/ nut shel | / uj i p/ uni x/
p. vszbr. cz/ pub/ X11-fonts

—h —h —h
TTT TTT

tp://f
tp://f
tp://f

Windows 95 and Windows NT

You can use one of these methods to install Unicode fonts in Windows 95

and Windows NT:

m Install the “Lucida Sans Unicode” True Type font file included with
Windows 95 and Windows NT. This font covers ASCII and most of the
European code set, including Greek and Russian. Extract the file
1 10646.tt from the Windows 95 or Windows NT CD-ROM, and install
it on your system.

Note: If you cannot find this file, check other .tt files in the Windows
95 or Windows NT CD-ROM.

164 Getting Started

About Unicode

Getting Started

m Use the Trial or Times New Roman fonts to support European, Greek,
and Russian characters.

If you have third-party Unicode fonts, use them.
Install code-page-specific True Type fonts from the International

Windows 3.1 kit.

These CHARSET fonts can be mapped from UTF8. To use these fonts, install
the font file from the Control Panel. Some double-byte fonts cannot be
installed onto nonnative systems.

CHARSET Value

0 (including Unicode)

CHARSET Name

ANS| _CHARSET

SHI FTJI S_CHARSET 128
HANGUL _CHARSET 129
GB2312_CHARGET 134
CHI NESEBI G5_ CHARSET 136
GREEK _CHARSET 161
TURKI SH_CHARSET 162
HEBREW CHARSET 177
ARABI C_CHARSET 178
RUSSI AN_CHASET 204

PostScript

These PostScript fonts can be mapped from UTF8. To use these fonts for
UTF8 PostScript printing, put the font name into the font-family description
language using the listed keyword (for example, ps_r oman " Ti nes"):

PostScript Encoding Keyword Sample Font Name

AdobeSt andard ps_roman Times, Helvetica, Courier

Adobe Synbol ps_synbol Symbol

J1 SX0208 ps_j 0208 GothicBBB-Medium-H

J1 SX0201 ps_j 0201 EothicBBB-Medium.Hanka
u

Zapf Di ngbat s ps_zapf db ZapfDingbats

KSC5601 ps_ksc5601 KSC5601 7-bit encoded fonts

JI SX0212 ps_j 0212 JISX0212 7-bit encoded fonts

Bl G5 ps_bi g5 Big5 encoded fonts

GB2312 ps_gh2312 GB2312 7-bit encoded fonts

I SCLati nl ps_isolatinl 1SO8859-1 encoded fonts

1 SOCyrillic ps_isocyrllic 1SO8859-5 encoded fonts

165

Chapter 12 Localizing Applications in the Elements Environment

Note: To enable UTF8 PostScript printing, the PostScript printer should
have the font you specified.

For More Information about the APIs

m For detailed information about the language-independent APIs, see the
Char, Str, VStr, Cs, and Ct modules in the Elements Application Services
C/C++ Programmer’s Guide.

m For multibyte API information, see the Elements Application Services
Programmer’s Guide.

166 Getting Started

__ Appendix

PVCS Integration with the
Elements Environment 2.1

The Elements Environment 2.1 and later versions support integration of the
PVCS software configuration management (SCM) software. This software
allows you to control the revision of source code in various ways, including:

m Privilege/access
m Login/logout
m Archiving

Note: The Elements Environment does not include the PVCS software. You
must purchase the PVCS software separately from Intersolv or a
licensed vendor.

The integration of the Elements Environment with PVCS allows you to use
many PVCS functions without exiting the Elements Environment and using
the PVCS interface. Instead, you have access to PVCS Level 1 (basic)

integration from the File menu within any Elements Environment interface.

The available PVCS functions include:

m Configuring the Elements Environment so it can read necessary
information, such as the location of archive files, from the PVCS
configuration (.cfg) files

Checking out source-code files
Checking in source-code files
Generating basic software-control status reports

Managing revised source-code files located on your development
platform

However, many other PVCS features are still controlled through the PVCS
interface and not through the Elements Environment, including:

m User-access control

Checkin authorization

Build authorization
Miscellaneous user privileges
File access

Note: The current version of Elements Environment only supports PVCS
version 5.2.x.

C++ Programmer’s Guide 167

Appendix A PVCS Integration with the Elements Environment 2.1

Note: Consult the Intersolv PVCS User Guide and Reference for specific

information on configuring and using the PVVCS software.

The Elements Environment 2.1 currently provides basic (Level 1) integration
with PVCS. Neuron Data plans to offer advanced (Levels 2 and 3)
integration in future releases of the Elements Environment.

Requirements for Using Level 1 PVCS Integration with the Elements Environment

When purchasing the Elements Environment software, you must:

Obtain a license from Neuron Data to integrate PVCS with the Elements
Environment

Install the PVCS software on your system before installing the Elements
Environment

Have the Elements Environment 2.1 or a later version that includes the
PVCS recognition module

To determine if PVCS integration is enabled:

1
2.
3.

Launch the Elements Environment.
Choose File from any Browser.

If PVCS is enabled, the PVCS option appears on the drop-down menu.
If PVCS is not enabled, this option does not appear.

PVCS Features Supported in Level 1 Integration

Default configuration files
Checkout with locking and version labels

Checkin with change description, user ID, date/time stamp, and
version labels

Access to project files and selection lists
Grouping of files using version labels

Generating basic reports

Capturing PVCS error alerts and displaying them

PVCS Features Not Supported in Level 1 Integration

168

Macintosh development platforms

Merging—combining two sets of revisions to create a new source-code
file

Branching—developing alternate versions of source-code files
simultaneously

Multiple locking of files

C++ Programmer’s Guide

Setting Up the PVCS Integration Environment

Neuron Data plans to support these features in future releases of the
Elements Environment.

PVCS Integration Tests
Every time you launch the Elements Environment, it:
1. Determines whether you have configured it to use PVCS integration

2. Checks to see if the PVCS libraries and development environment are
on your system

3. Determines if you have a Neuron Data Elements Environment license
for PVCS integration

4. Checks to see that you have enabled PVCS integration by setting
ND_PVCSto “on” in ee.cfg, oie.cfg, and runscrpt.cfg

If these requirements are met, PVCS integration is enabled for the current
development session.

Setting Up the PVCS Integration Environment

To activate PVCS integration, you must turn the environment variable
ND_PVCS “on.” During installation of the Elements Environment, the
environment variable ND_PVCS is declared in the files ee.cfg, oie.cfg, and
runscrpt.cfg, but is set to “off.” To enable PVCS integration, open these text
files and set ND_PVCS to “on.”

Note: The files ee.cfg, oie.cfg, and runscrpt.cfg are located in the \ee21\dat
subdirectory.

Note: Do not confuse the Elements Environment configuration files with
the PVCS project configuration files.

Accessing Integrated PVCS Options

You can choose integrated PVCS options from the File menu anywhere
within the Elements Environment:

1. Choose File - PVCS.
2. Choose a PVCS option.

Note: If you have not loaded a PVCS configuration (.cfg) file, all other
options are disabled.

C++ Programmer’s Guide 169

Appendix A PVCS Integration with the Elements Environment 2.1

3. Go to the appropriate directory and select the file(s) you want.

Note: Depending on the option you choose, only some of the files may
appear.

Tip: You can select multiple files by dragging or by Shift + click.

Configuring the Elements Environment for PVCS

You use the PVCS Configure option to tell the Elements Environment what
PVCS configuration file (.cfg) to use. The Elements Environment uses the
information from this file to determine:

m Your access privileges (based on your login ID)

m The location of your project archive files

Note: Before choosing any other PVCS option, you must first choose
Configure so the Elements Environment knows which configuration
file to use.

Tip: You do not have to enter your user ID. The Elements
Environment gets your last login ID and uses that for
comparison.

1. Choose File - PVCS - Select Config File.

2. Go to the appropriate directory and double-click the project’s
configuration file.

Checking Out Files

170

Checking out a file gives you access to it for browsing or editing. When you
check out one or more files, PVCS:

= Allows you to select the file(s) to be checked out

m Checks your login ID against data in the project’s PVCS configuration
file to see if you are authorized to check out, write to, or lock the selected
file(s)

Notifies you if you are not authorized to perform these actions

Allows you to lock files if you are authorized to do so

Note: A locked file cannot be checked out by anyone else until you
unlock it.

Alerts you if another user has a requested file locked out

Allows you to add version labels to group source-code files

Allows you to check out files by revision level

C++ Programmer’s Guide

Checking Out Files

To check out files:

1. Choose File - PVCS - Check Out.

2. Go to the appropriate directory and select the file(s) you want.
3. Click OK.

i Chack Disl [1aai0)

wowicng Dy

Chwck; Daf
" |Fuad Doy =
™ wikable s ook :

Ltk Psviukon

™ bp'mren Labal |

™ By Revmund Ritsnm |

Note that the default settings on the Check Out window are Read Only
and Latest Revision, and that the by Version Label and by Revision #
options are disabled.

4. If you are authorized, you can select Writable w/ Lock.

This allows you to make revisions to the file and prevents other users
from accessing it until you unlock it. If you select this option, this
enables the by Version Label and by Revision # options.

5. To add a new version label or select a current one, select by Version
Label and enter the version label.

C++ Programmer’s Guide 171

Appendix A PVCS Integration with the Elements Environment 2.1

To check out a specific revision, select by Revision # and choose
Revision.... Double-click the appropriate revision.

Click OK to check out the file.
If you selected multiple files in step 2, repeat steps 5-7 as appropriate.

Checking In Files

172

Checking in a file lets you log a file back into the project archives after you
have made revisions. Each time you check in a file, PVCS creates a new
revision level for it. When you check in one or more files, PVCS:

Lets you select file(s) to check in from the current working directory

Checks your login ID against data in the project’s PVCS configuration
file to see if you are authorized to check in the selected file(s)

Notifies you if you are not authorized to check in the file(s)

Allows you to add a revision description that is saved in the project
archives

Saves any unsaved work file(s)

Updates revision information in the project archives

Deletes the file(s) from your working directory if you selected that
option

Automatically unlocks checked-in file(s) to give other authorized users
access

To check in files:

1.
2.
3.

Choose File - PVCS - Check In.
Go to the appropriate directory and select the file(s) you want.
Click OK.

C++ Programmer’s Guide

Checking In Files

[Chasck In [Tae0]

it Chack.In

I [k wrddie| (1 3
I Keg Mot o Workbs

K pap whoald e Liokead Coarsesd

(i Dhegiipdamy

v prmon Ll

Note that the default setting on the Check In window is Keep
Read-Only Workfile.

4. If you wish, change the default setting to Delete Workfile or Keep
Workfile Locked

If you select Keep Workfile Locked, the file will be checked in but other
users will not have access to it until you check it in again with Keep
Workfile Locked disabled.

5. If you want to add a description of your revisions, select Change
Description and enter a description.

6. If you want to add a new version label, select Version Label and enter
the version label.

If the file already has a version label that is different from the version
label you enter, you will be asked if you want to overwrite the version
label. Click OK or Cancel.

7. Click OK to check in the file

8. If you selected multiple files in step 2, repeat steps 5-7 as appropriate.

C++ Programmer’s Guide 173

Appendix A PVCS Integration with the Elements Environment 2.1

Generating Reports

174

The Report option allows you to create summaries about your project file(s)
and/or revisions. When you use the Report option, PVCS:

Lets you select archive file(s) to include in the report from the archive
directory and subdirectories

Checks your login ID against data in the project’s PVCS configuration
file to see if you are authorized to generate reports

Notifies you if you are not authorized to generate reports
Retrieves the PVCS log(s) on the file(s) you have selected
Generates the report

Saves the report in your current working directory

To generate reports:

1.
2.
3.

Choose File - PVCS - Archive Report.
Go to the archive directory and select the archive file(s).
Click OK.

0L Mapamt | 1wk 00]

™ Horsume nkesaten

™ Rmvmon mla o onlp ‘ Carsesl

Lt bl vt

L Yoo Lsked

Note that the default setting on the Report window is Full, meaning that
all reporting information is printed.

If you wish, select the appropriate option for a report containing only
the information you want.

Click OK to accept your selection.

C++ Programmer’s Guide

Deleting Revisions

6. Enter the directory path and filename for the report.
7. Click OK to generate the report.

Deleting Revisions

The Delete Revisions option allows you to delete revisions you have made
from the project archive.

Warning: Make sure you want to delete your revisions before proceeding.

To delete revisions:
1. Choose File - PVCS - Delete Revisions.

0L Navioen [Tac O]

2. Select the revision you want to delete.
3. Click OK to delete the revision and all associated files.

If you are unsure about deleting the revision, click Cancel.

C++ Programmer’s Guide 175

Appendix A PVCS Integration with the Elements Environment 2.1

176 C++ Programmer’s Guide

Index

Symbols

:= operator 19

A

Accept button 52
actions 31, 33
backward chaining 34—35
changing data values 35
forward chaining 35—36
immediate updating 47
initiating 33p
by system 44, 45
when values change 45
viewing 61
adding objects and classes 55
adding rules 52
adding widgets 15, 107
Adobe Acrobat Reader 6
Adobe code types 143
aert dialogs 115
allocating memory 110
alternative actions 31
annotations 109
applets 83

application files 25
copying 128, 130
protecting 130

Application Programming Interface (API)
C/C++ language support 110, 111
character classification 147149
character encoding 153, 154
Data Access Element 27, 29
Elements Environment 101
language-independent 133
multibyte characters 133, 140
string management 149151
utility classes 96
variable strings 152—153

Application Services libraries 122

Getting Started

applications 1, 90
See also cross-platform applications
adding main window 10—16
adding menus 50-51
building 48-58, 117-125, 129
changing native languages 146
defining native Ian_9uagzes 146
deploying 24, 127, 129-132
developing 1, 7, 9
distributing 86
language settings 118, 121
localizing 133—166
porting 24, 87, 127
CI/C++ environments 128-129
script 129
processing 66—79
restarting session 74
redefining 2
running 23, 117
sample 123-125
startup scripts 17—19
testing layouts 16
upgrading 2
AppStartup procedure 18, 20
running 121
Archive Report command (PVCS) 174
ArNum class 106
arnumpub.h 106
ArPtr class 105
arptrpub.h 105
array classes 105, 106
array of numbers 106
array of objects 105
array of pointers 105
arrays 96, 153

defining 105-106
types 105
ArRec class 105

arrecpub.h 105
ARXXX_DEFCLASS macros 106
ASCII character sets 133, 140
coding schemes 142
conversions 148
Unicode characters and 155
Asian character sets 133
Asian language input methods 121, 134
assignment 19
object references 19
programming limitations 109

177

Index

assignment operator 19

B

backward chaining 34-35, 37

inference control 38
base class (persistent objects) 96

BIG5 character sets 141
~ mappi n% 142
binary files
binary mode 128
bitmap files 128
browser overview panel 16
See also Resource Browser window
browser panel 16
See also Resource Browser window
buffered 1/0 96

building applications 48-58, 117-125, 129

building libraries 110
building localized dictionaries 135
built-in IRE functions 122
businessrules See IRE
buttons
constructing/destructing 97
customizing 2
IRE editor windows 52
placing in windows 15
C++ code example 97, 98
redraw C++ code example 99

C

C language support 29, 110
subclassing 102
Unicode characters and 155

C++ language support 29, 95
building libraries 110
code regeneration 109
customizing object behavior 98—100
exception handling 110, 114-115
limitations 109-112

C/C++ applications
deploying 130131
porting 128129

C/C++ code templates 7

startup scripts and 18
structure defined 106

178

C/C++ interfaces 2

enhancements 4
callbacks 2022

notifications and 99
overview 20
registeri ngSmembers as 99
Cancel button 52
Cannainput method 133

enabling 137
catch mechanism 114

Char datatype 145
Char module 133, 147
character classification 148
character codes 140

getting 148
character conversions 148, 151

Unicode characters 156, 160, 161
character encoding 133, 140, 153

Unicode-supported procedures 154
character functions 148
character mode 121
character sets

See also specific

coding schemes 142, 153

UTF8 mode 155

international support 3

numeric representations 140
character translations 133, 134

messages 136
character types (international) 145

charpub.h 160

CHARSET fonts 165

ChCode datatype 145

check boxes 29

Check button 52

Check In command (PVCS) 172
Check In window (PVCS) 173
Check Out command (PVCS) 171
Check Out window (PVCS) 171
Check Script Syntax command 19, 23
checking in files 172—173
checking out files 170-172
choice boxes 29

CJK code types 143

Getting Started

Index

Class Editor 57

caution for editing classes 104
defining subclasses 103, 108
class pointers 43, 105
classes 40, 55, 95, 97

adding to tools palette 103
customizing specific 99
declarations 107
editing 57
caution 104
memory allocation/deallocation 110
private fields 98
protected fields 98
viewing hierarchies 63-66
client-server applications 86
See also applications
CLIP_GetkbCt 160
CLIP_SetkbCt 160
Clipboard code types 158, 159, 160
CNSxxx character sets 141
mapping 142
code 9?
checking syntax 19, 23
controling revisions 167
customizing 2022
debuggin
editing 24, 109
generati n%4, 106, 107
parsing 109
reusing 20
saving 107
code annotations 109
code mappings 142
See also character sets
defined 141
code regenerator 109
code sets 140, 153
code templates 7
copying 18
startup scripts 18
structure defined 106
code types 142, 153
tested 142-143
Unicode conversions 163
untested 143-145
coding schemes 142, 153
UTF8 mode 155
Collapse command 17
command buttons See pushbuttons

Getting Started

command-line syntax
building localized dictionaries 135
compiler options 121
localizing .dat files 135, 136
running Elements Environment 120
running sample applications 123, 124
running scripts 24

communication 35

comparisons 150, 153
compiler flags 118, 120
enabli_ng/di&ablin%_ 121
explicitly setting 120
listed 122
compiling options See compiler flags
compiling resource files
C/C++ applications 128
script applications 129
compression 96
concatenation 153
conditional statements 31

adding actions 33
backward chaining 34-35, 37
bidirectionality 3
forward chaining 35—36, 37
inference control mechanisms 38
revising 36
status 67
strategies 39
suggesting a hypothesis 74
suggesting an hypothesis 68
user-defined methods and 45
viewing elements 61
volunteering data 75—79
conditions
creating 53
defined 31
evaluating 32, 34, 37, 67
object listsand 43
unknown values and 44
values changing and 45
viewing 61
configuration files
loading 120
configuring Elements Environment 117-120
compiling options 120-122
configuring PVCS 170
connection classes 29
connection objects 28

connections 27

179

Index

constructors 97, 111

customizing 114
default 11
registering subclasses and 104
window classes 107
container classes 105-108

customizing 108
conversion tables 157

conversions 148, 151

Unicode characters 156, 160, 161
Unicode code types 163
Copy button 52

copying application files 128, 130
copying code templates 18
copying objects 57, 105

programmi n%l imitations 109
CORBA servers 81
CPP_EXCEPTION flag 115
creating applications 48-58, 117-125
creating menus 50-51
creating objects and classes 55
creating user interfaces 9
cross-platform applications 1, 7, 93

C++ langu ewfgort 96
porting to 128—-129
CS ASCII code set 142

CS FromuUni 161

CS ToUni 161

Ct module 133, 153
CT_ADOBE_SYMBOL code type 143
CT_ADOBE_STD code type 143
CT_ADOBE_ZAPFDB code type 143
CT_ASCII code type 142

CT_BIG5 code type 143

CT_CNS code type 143

CT_FromUni 161

CT_GB code type 143
CT_HP_ROMANS code type 145
CT_1S0... code types 143

CT_JEUC code type 143

CT_KSC code type 143
CT_MAC_xxx codetypes 144
CT_MSW_xxx code types 144
CT_PC_xxx code types 144

CT_SJIS code type 143

CT_ToUni 161

180

CT_UNICODE code type 145
Current condition or action icon 67
custom classes 108

customer assistance 6

customizing widgets 20—22

D

da.cfg 119
DAE (Data Access Element) 1, 27

control options 122
default configuration 119, 120
new features 3, 4
object accessibility 28
quick tour 28—2
sample application 123
DAE drivers 27
enabling 120, 122
dae.cfg 11
.dat files 25

deploying applications and 130
generating text resources for 135
initializing 127
localizing 135, 136
data 75
Data Access Element See DAE
data objects 88
data sources 1, 93
accessing multiple 27
data transfers 85
data-access objects 28
database connections See connections
database drivers See DAE drivers
databases 122
datasource/views mechanism 28, 93
datatypes 27

internationalization 145-146
data-validation attributes 66

dataview application 124
date formats 136
DBView resource 28
deallocating memory 110
DEBUG libraries 127
debugging 23, 127
declarations 107
decompression 96

Getting Started

Index

deductive reasoning 34

default configuration 118

default constructors 112

define statements 120

DefNfy method 100

Delete button 52

delete operator 97, 110

Delete Revisions option (PVCS) 175
deleting rules 52

deleting widgets 97, 111

deploying applications 24, 127, 129-132

guidelines 127
Deployment kits 117, 127

restriction banner 129
destructors 97, 111
developing applications 1, 7, 9
Development kits 117, 127
dictionaries 28

local e-dependent 135
displaying class-object hierarchy 63—66
displaying property settings 63
displaying rules 60—62
Distributed Messaging Element See DME
distributed systems 85

DME vs. 86
distributing applications 86
DLLs131
DME (Distributed Messaging Element) 1,
8591

components of 85

control options 122

data processing 87

defaults 91

distributed systems vs. 86

event-handling mechanism 90

portability 8

process re%i stering 89

resources 91

routers 88-89

sample application 125
documentation 4, 5

dynamic-link libraries (DLLs) 131

E
EAS (Elements Application Services) 1, 93-94

Getting Started

EASlibraries 122

EBCDIC character sets 148

Edit Application Script command 24

Edit button 52

editing classes 57
caution 104

editing code 24, 109

editing locale-dependent dictionaries 135

editing makefiles 128

editing rules 52

editor windows (IRE) 52-58

editors 9
loading 121
programming limitations 110

EE (Elements Environment) 1
accessing multiple data sources 27
building applications 117-125
building libraries 110
C language support 102, 110
C++ language support 95
compiling options 120-122
configuring 117-120
defining arrays 105—-106
defining subclasses 103, 108
enabling software components 120
enhancementsto 2.0 2—4
enhancementsto 2.1 4-5
exception handling 114-115
installing elements 118

launching 10
loading libraries 121, 122, 125
programming limitations 109-112
starting 120
subclassing in 101-105, 112
unlicensed elements 118
version control 167

eecfg 118

Elements Application Services See EAS
Elements Environment See EE

enabling DAE drivers 120, 122
enabling software components 120
encapsulation 41, 98

encoding characters 133, 140, 153

Unicode-supported procedures 154
encryption 96

end-of-line characters 128

181

Index

environment variables 130, 131

character tranglations 134

multibyte characters 137

native language 146

Unicode code types 158

XIM-compliant applications 138
ERR_CATCH macro 115

ERR_RECOVER macro 115
ERR_RECOVERSILENT macro 115
ERR_RETRY macro 115
ERR_RETRYSILENT macro 115
ERR_Signd function 115
ErrFrame structure 115
error stack 115
errpub.h 115
European character sets 133
event handlers 20, 22
EVENT_GetKbCt 160
EVENT_SetkbCt 160
events 38, 82

GUIs 4648

messaging element 90
Evoked hypothesisicon 67
exception handling 110, 114-115
executable files 7, 130

executing applications See running applications

Extend - Resources command 17
extended ASCI| characters 142
external routines 38

F

Falseicon 67

FFam resource 138, 139
ffampub.h 138

filel/O 96

file management 96

files 7, 25

controling revisions 167
copying application 128, 130
protecting 130

FILES setting 131

Find button 52

firing 33

Focus Object Network command 64
Focus Rule Network command 62

182

font families 139
FONT_COMPAT flag 139
fonts 134, 138

mapping to native 139
Unicode-compatible 157, 164—166
forward chaining 35—36, 37

inference control 38
frame-stack pointer 115

FromCt function 161
FromUni function 160, 161
functions 122

character classification 148
string management 150
variable strings 152

G

GB2312 character sets 141
generating code 4, 106, 107
generating revision reports 174-175
GetKbCt function 160
GetNamedWgt function 108
global popup menus 51
graphical user interfaces See GUIs
gui.cfg 118
GUIs7
compili ng options 121
creating
event handling 4648
linking objects with views 28

H

header files 107
copying 129
hellol application 124
hierarchies 40
viewing 63—66
HP code types 145
HTML Editor 83
hypothesis
See also conditions
defined 32
status 67
suggesting 68—74
viewing

Getting Started

Index

1/O Seeinput; output
icons (Rule Network window) 66
If Change methods 45
if...then...else statement 31

See also conditional statements
image files 25
include statements 106
inductive reasoning 33
inference control mechanism 38
inference priority 65
inferences 32, 66
inheritance 41
inheritance priority 65
inherited widgets 102
Init method 107
initializing EE libraries 125
initializing windows 107
initiating actions 33

system 44, 45

when values change 45
input 1, 96

buffered 96
input fields 29
input methods 133

compiler options 121

enabling 137

Unicode charactersand 157, 158
input strings 134
installation 5—6

caution 10
EE elements 118
instantiation 97
array of objects classes 105
array of pointers classes 105
customizing given instances 99
maintaining instances manually 102
Intelligent Rules Element See IRE
internationalization 1, 3, 94
code mappings 141, 153
date/time formats 136
language settings 118, 121
languages supported 146
localizing applications 133—166
setting fonts 138—140
string types 145146

Getting Started

Internet 83

I nteroperable Objects Element See OL E automa-

tion

Intranet 1, 83
IRE (Intelligent Rules Element) 1, 31

adding actions 33
adding classes and objects 55-58
adding rules 52-55
application processing 66—79
restarting session 74
backward chaining 34—35, 37
building applications 48-58
built-in functions 122
conditions 31
evaluating 32, 34, 37, 67
unknown values and 44
values changing and 45
control options 12
default configuration 119
editing classes 57
editor windows 5258
forward chaining 3536, 37
GUI event handling 4648
inference control mechanisms 38
list windows 58—66
main window 49
message processing 41, 45
new features 3
object-oriented reasoning 3946
processing knowledge base 67
rule structure 31-3
components 32
revisions 36
sample Blication 124
starting
viewing class-object hierarchy 63—66
viewing rules 60—62
ire.cfg 119

ISO character sets 140, 143

J

Japanese language input method 121, 133
JEUC character mapping 141
JIS character sets 140, 141

K

keyboard-input code type (Unicode) 158
K nowcess command 67, 69, 76

183

Index

knowledge base 66

displaying rules 60

manipulating rules 53

printing 58

processing 67

variablesin 39

viewing class hierarchy 63
Korean language input method 121, 134
K SC character sets 140

L

labels
namesvs. 15
trandating 135
language settings 118, 121
language-independent APIs 133
character classification 147-149
string management 149-151
variable strings 152—153
languages (international) 146
languages, programming (supported) 81
Large command 13
Large Tools mode 13
launching EE 10
launching Elements Environment 120
launching IRE 49
Iboxex application 123
LHS (Left-Hand Side) 32
See also conditional statements
libraries 95
exception handling and 114
guidelines for building 110
initializing 125
installing 106, 107
listed 117
loading 121, 122, 125
messaging element 91
nondebug 130, 131
nonrestricted versions 127, 130, 131
shareable 131
viewing 17
linking 119, 121, 125
list boxes 29
List of Rules command 60
list windows (IRE) 58—66
Load keyword 120

184

loading configuration files 120
loading EE libraries 121, 122, 125
loading sample applications 123, 124
local popup menus 50

local e-dependent dictionaries 135
local e-dependent resources 134
localizing applications 133—166

See also internationalization

code mappings 141, 153

language-independent APIs 133

setting fonts 138—-140

string management 134, 140, 149

variable strings 152

string types 145-146

supported languages 146

translating resources 134—136
locking files 171, 173

longjmp calls 114

M

M acintosh code types 144
macros
array classes 106
exception handling 115
registering members as callbacks 99
resource subclassing 102, 112
main function 107
makefiles 7, 25, 125
copying 129
edi%/n99128
mapping encoded characters 141, 153
member functions 110
declarations 108
overloading 111
registering as callbacks 99
resource classes 96, 98
utility classes 96
widget classes 98
memory alocation 110
memory management 96, 97
memory pools 96
menus 50-51
message processing 41, 45
messages (string translation) 136
messaging element See DME
Meta-Slots Editor 65

Getting Started

Index

methods 41

system-triggered 44-45
user-defined 45
Microsoft Windows code types 144
Microsoft Windows-specific Unicode fonts 164
modems 85
Module Editor 107
modules 7, 107, 109
main 17
viewing
multibyte characters 3, 133

code mappings 141, 153

coding schemes 142

requirements 140

setting up environment 137
multilevel backward chaining 35

N

names (labelsvs.) 15
native datatype 145
native fonts 134, 138
mappings 139
Unicode-compatible 157, 164—166
native language 146
See also internationalization
nd.dat 127

deployin licationsand 130
ndh 118 125

ND_CHARNATIVE environment variable 146

limitations 162

settings 159

Unicode characters and 156, 158
ND_CLIPCODETYPE environment variable

158, 159

ND_DA compiler option 122
ND_DA_DB2 compiler option 122
ND_DA_ODBC compiler option 122
ND_DA_ORA7 compiler option 122
ND_DA_PDB compiler option 122
ND_DA_SYB compiler option 122
ND_DM compiler option 122
ND_DYNCONFIG compiler option 121
ND_EDITORS compiler option 121
ND_GUI compiler option 121, 122
ND_IM_JAPANESE compiler option 121
ND_IM_KOREAN compiler option 121

Getting Started

ND_IM_NATIVE compiler option 121
ND_IR compiler option 122

ND_IR_DA compiler option 122
ND_IR_DB compiler option 122
ND_IR_EXE compiler option 122
ND_KEYBOARDCODETY PE environment
variable 158, 159

ND_LANG environment variable 146
ND_OIl compiler option 122

ND_PATH environment variable 130, 131
ND_PVCSvariable 169

ND_RUNSCRPT compiler option 121
ND_SCRIPT_SERVERS compiler option 121
ND_SCRIPTING compiler option 121
ND_WE compiler option 122

ND_XIM variable 138

ND_XIMPREEDIT variable 138
ND_XIMSTATUS variable 138

NDCnx class 29

NDDbVu class 29

NDDN Technical Support Web page 6
NDErrFrame class 115

NDExcept class 115

ndim*.dat 130

NDQry class 29

NDRes class 96

accessing protected fields 98
customizing object behavior 98
memory allocation/deallocation 110
subclassing 96, 97, 102
C++ mechanism vs. 101
ndresed.dat 130

NDV Tab class 29
NDWin class 101
network icons 66
networks 1

messaging system 85, 88—-89
Neuron Data Gui Server command 22
New Application command 11
New button 52
new operator 97, 110
NEXPERT See IRE
nondebug library 130, 131
nonrelational databases 122
nonrestricted libraries 127, 130, 131

185

Index

Not Known icon 67
notifications 111

customizing class behavior 99
default actions 100
defining 106
registering 107
numbers 106

O

object arrays 105
Object Editor 55-58

starting 56
Object Editor command 56
object files 7
object interoperability 2
object libraries 91
object lists 43
Object Network window 6366
displaying hierarchies 63
object references 19
object servers See servers
object sets 42, 43
object structures 39
objects 81
adding 55
copying 57, 105

programming limitations 109

customizing behavior 98—100
hierarchical representations 40
pointersto 10
sharing properties 40
subclassing at runtime 97
viewing hierarchies 63—66
ODBC driver 117
See also DAE drivers
OIE (Open Interface Element) 1
control options 122
default configuration 118, 119
new features 2
overview 79
quick tour 925
sample aEpIication 123
toolkit 122
oiecfg 118
OLE automation 81-82, 83

OLE object model 81

186

OLE-to-CORBA bridges 81
online documentation 4
installing 5
0OsScript 1, 81
See also scripts
DAE objects and 28
enhancements 3, 4
GUI interfaces and 47
startup scripts 17-19
Open Interface Element See OIE

Option keyword 120
Oracledriver 117

See also DAE drivers
Order of Sources methods 44

output 1, 96

buffered 96
output strings 134

overloaded member functions 111

P

parameters, viewing 22
parsing code 109
pattern matching (object lists) 43
PC code types 144
.pdf files 129
persistent fields 101
defining 102
persistent objects 8
base class 96
constructing 97
pointer arrays 105
pointers 105
See also class pointers
polymorphism 42
popup menus 50-51
portable user interfaces 1
porting applications 24, 87, 127

C/C++ environments 128-129
guidelines 127
script 129

PostScript fonts 165

predefined IRE functions 122
preprocessor compilation flags 118
private fields 98

Getting Started

Index

procedures 41
application startup 18, 20
running 121
reusing 20
programming languages (supported) 81
programming limitations 109-112
properties
duplicating 57
sharing 4
viewing 63
protected constructors 114
protected fields 98
protecting files 130
ProtoDB driver 117
See also DAE drivers
push buttons
customizing 20
pushbuttons
placing in windows 15
PVCS 16
checking in files 172—173
checking out files 170-172
configuring 170
defaults 171, 173
deleting revisions 175
enabling 169
generating reports 174-175
integration tests 169
loading files 170
locking files 171, 173
requirements 168
revision logs 173
setting up 169
supported features 168
testing accessibility 168
PVCS command 169

Q

query classes 29
query objects 28

R

rcfiles 25

RCLAS CPLUSFULL macro 112

RCLAS CPlusRegister macro 102

RCLAS CPPFULL macro 102, 104
custom classes 108

Getting Started

RCLAS Register 102

RecordSet objects 28

redraw method 99

referential integrity 27

registering subclasses 102, 104-105
Registers function 104

registration (caution) 10

Report option (PVCS) 174-175
RES_SHAREDNFYVOIDHANDLER macro
100

rescomp 104, 128, 129

tranglating resources 134—136
resizing windows 13

Resource Browser 11, 106, 127

enhancements 4
window, described 16
resource class definition 104
resource classes 96
accessing protected fields 98
changing definitions 104
customizing object behavior 98
subclassing 96, 97, 102
in EE 101
Resource command 11
resource compiler See rescomp
resource files 7, 91
compiling 128, 129
editing 1%4
viewing 17
resource manager

defining persistent fields 101, 102
registering subclasses 102, 104-105

resources 28

fonts 138, 139
generating text form 135
local e-dependent 134

mes&a_ging7element 91
overview /-9
saving 7
trandating 134—136
respub.h 99
Restart Session command 74
restriction banner (Development kit) 129
return values, viewing 22
revision control 167
revision logs 173
revision reports 174-175

187

Index

RHS (Right-Hand Side) 32
See also conditional statements

routers 88—89

Rule Editor 52-55
main window 53
starting 53

Rule Editor command 53

rule graph 61

Rule Network window 60—62
displaying rules 61
knowledge processing 66—79
suggesting an hypothesis 68
volunteering data 75—79

rules (defined) 31

Rules Element See IRE

rules.cfg 119

Run Script command 23

running applications 23, 117

runscrpt option 24

runtime subclassing mechanism 98

S

sample applications 123125
saving code 107
saving resources 7
script applications
deploying 131-132
pgftiné]?29
Script Browser 82
Script Editor 82
startup scripts 18
Script Events command 22
script servers 121
scripting language See OOScript
scripting libraries 121
scripts 47, 82
checking syntax 19, 23
copying 1%
editing 24
getting information 22
responding to events 22
running 2%, 24
testing 23
writing statements 20—22
searches 151

security 127

188

selecting widgets 14
Selection Tool icon 14
sending intralinterprocess messages 85
SendM essage operator 45
serial connections 85

server connections 28
servers 81

setjmp calls 114

SetKbCt function 160
shareable libraries 131

SJIS character mapping 141
slots

defined 31, 43
displaying attributes 65
unknown values 44
values changi n% 45
Small Tools mode 12

widget icons 14
sockets 85

software components 120
software-devel opment process 7
source code See code
source files 25, 109

copying 129

saving codeto 107
source platform (defined) 128

source-code management (SCM) software See
PVCS

spreadsheets 122

starting EE 10

starting Elements Environment 120
starting IRE 49

startup procedure See AppStartup procedure
startup scripts 17-19

static member functions 96

storage objects 96

stored procedures 27

Str constant 146

Str module 133, 146, 149

STR_FromCt 161

STR_FromUni 160

STR ToCt 161

STR ToUni 160

strategies 39

string buffers 150

Getting Started

Index

string functions 150
comparisons 150, 153

conversions 151
Unicode characters 160, 161
variable strings 152
string management 96

localized applications 134, 140, 149
variable strings 152
string resources 134

string translation messages 136
string types (international) 145146
string-resource editor 134

strings, translating 133, 135
subclasses 103

customizing 108
defining persistent fields 102
manually maintaining instances 102
registering 102, 104—105
virtual members and 99

subclassing 101-105, 112

C language support 102

C++ mechanism vs, EE 101

objects at runtime 97

resource classes 96, 97, 102

widget classes 113

window classes 101
subclex.cpp 103

substrings 149
Suggest command 68
Sybase driver 117

See also DAE drivers
syntax checking 19, 23

system initiated actions 44, 45
system methods 44-45

T

target files 125
target platform (defined) 128
TCP/IP support 85
technical support 6
template classes 101
templates 7

copying 18

startup scripts 18

structure defined 106
Test Mode command 16

testing scripts 23

Getting Started

text files 7, 128

text mode 128

text-edit areas 29

third-party applications 5

throw mechanism 114

time formats 136

time management 96

ToCt function 161

toolkit (OIE) 122

tools palette, adding classes 103
ToUni function 160, 161

Trace window 23, 82

tranglating resources 134—136
trandations (character) 133, 134
transmitting intra/interprocess messages 85
triggers 27, 33

Trueicon 67

try mechanism 114

types See datatypes

U

Unicode character sets 3, 154

Clipboard code tyfe 158, 159, 160
code types 145, 158
conversions 163
specifying 158161
conversions 156, 160, 161
examples 162
keyboard-input code types 158, 159, 160
limitations 155, 156, 157, 162
mapping characters 157
platforms not supgorti ng 147
UniCode datatype 14

Unicode Transformation Format (UTF8) 155
Unicode-compatible fonts 157

|atform-specific mappings 164—166
uniC\F/)t.tab 15%) pping

UniStr constant 146
UNIX sockets 85
Unknown icon 67
unknown values 44
unlicensed elements 118
upgrading applications 2
user interfaces See GUIs
user-defined methods 45

189

Index

UTF8 mode 155

code drawing 164
utf8.html 156

utility classes 96

Vv

-v option 136

variable strings 152—153
comparing 153

variables 108

verbose (-v) option 136

verbs 22

version control 167

version labels 171, 173

view classes 29

view objects 28

viewing class-object hierarchy 63—66

viewing property settings 63

viewing rules 60—62

views 93

linking with GUI objects 28
virtual member functions 96, 110

customizing object behavior 99
notificationsvs. 111
overriding 99

virtual table classes 29

virtual table objects 28
visual editors 9
Volunteer command 75
volunteering data 75—79
VStr module 133, 152

W

WE (Web Element) 1, 83

control options 122

default configuration 119

sample application 124
we.cfg 119

Web browser 1, 83

Web Element See WE

web.cfg 119

Web-link navigation 1

webwex application 124

widget classes 98
subclassing 113

190

widget icons 14
widgets 13
adding 15, 107
customizing 20—22
defining in templates 101
deleting 97, 111
locked in Window Editor 102
namesvs. labels 15
referencing 107, 108
respondin% to events 22
selecting 14
testing layouts 16
WIN_SETNFYHANDLER macro 107
Window Attributes button 14
Window Attributes dialog 14
window classes 101
constructors 107
declarations 107
Window Editor 12, 106
adding classes 103
inherited widgets and 102
window manager
windows
adding widgets 15, 107
creating 10-16, 106
C++ code example 97
defining defaults 14
destroying 97
initializing 107
redefining 24
resizing
Windows code types 144
windows popup menus 51
Windows-specific Unicode fonts 164
World Wide Web See Web

X

X input method 134
X Windows

X input method 134
X11 fonts 164

XIM environments 134

setting up 137
XIM-compliant input servers 134
XIM PreeditCallbacks 138
XIM StatusCallbacks 138
XxxFamily persistent fields 139

Getting Started

	Contents
	The Elements Environment
	About the Elements
	New Features and Enhancements in the Elements Envi...
	New Features and Enhancements to the Open Interfac...
	New Features for the Intelligent Rules Element (NE...
	New Features for the Data Access Element
	Unicode and Multibyte Support
	Improvements to the OOScript Language
	Improvements to the Development Environment
	Improvements to the C++ API

	New Features and Enhancements in the Elements Envi...
	Improvements to OOScript
	Improvements to Datasource/Views in the Data Acces...
	Integration with Third-Party Application-Developme...

	Installation
	For More Information about Installation

	Technical Support
	The NDDN Technical Support Web Page

	The Open Interface Element
	About the Software-Development Process
	About Resources
	Quick Tour
	Task1: Creating a User Interface
	To Design a New Window
	About the Window Editor
	To Place Widgets in Your Window

	About the Resource Browser Window
	Task 2: Creating an Application-Startup Module
	Task 3: Writing OOScript Application Logic
	Using Callbacks
	Using Event-Handler Scripts

	Task 4: Test and Run the Script-based Application
	Alternate Ways of Running a Script

	To Edit Existing Applications
	Task 5: Deploying and Porting Applications
	Application Components

	For More Information about the Open Interface Elem...

	The Data Access Element
	The Data Access Element and OOScript
	Quick Tour
	Generic Data-Access Objects
	DBVu Resource
	Object API

	For More Information about the Data Access Element...
	Related Subjects

	The Intelligent Rules Element
	Reasoning System
	Rule Dynamics
	Rule Evaluation
	Actions
	Backward Chaining
	Forward Chaining
	Revisions

	Integration
	Open Architecture

	Object-oriented System
	Object Structure
	Object
	Property
	Class
	Method

	Pattern Matching
	System Methods
	Order of Sources
	If Change Methods

	User-defined Methods

	Graphical User Interface Dynamics
	Interaction from the Intelligent Rules Element to ...
	Interaction from the GUI to the Intelligent Rules ...

	Building Applications
	Starting the Intelligent Rules Element
	IBM-compatible PC
	UNIX Workstations
	Macintosh

	The Main Window
	Displaying Popup Menus
	Entering Text
	Rule Editor
	Building Rules in the Rule Editor

	Object Editor
	Editing Object Structures in the Object Editor
	Editing Classes in the Class Editor

	Viewing Rules and Objects
	List Windows
	Viewing Previously Created Rules

	Rule Network
	Displaying Rules in the Rule Network Window

	Object Network
	Displaying Class-Object Hierarchies in the Object ...

	Processing the Application
	Using Hypotheses
	Suggesting an Hypothesis from the Rule Network Win...

	Using Data
	Volunteering Data from the Rule Network Window

	For More Information about the Intelligent Rules E...

	OLE Automation and OOScript
	Object-Model Interoperability
	OOScript
	For More Information about OLE Automation and OOSc...
	Related Subjects

	The Web Element
	For More Information about the Web Element

	The Distributed Messaging Element
	Components of the Distributed Messaging Element
	The Distributed Messaging Element and Other Distri...
	The Distributed Messaging Element Applications
	Concepts of the Distributed Messaging Element
	Portability
	Data-centered Processing
	Data Object and Structure
	Routers and Fully Connected Networks
	Data Distribution
	Event-driven Programming
	Interactions with Applications
	Resource Files
	Standard Object Library

	For More Information about the Distributed Messagi...

	The Elements Application Services
	Datasource/Views
	Internationalization

	For More Information about the Elements Applicatio...

	C++ Programming in the Elements Environment
	General Architecture
	Resource Classes
	Utility Classes
	Constructors and Destructors
	C++ Constructor new and Destructor delete
	The Elements Environment Constructor new

	Encapsulation

	Customization
	Class-Level Customization
	Instance-Level Customization

	Subclassing in C++
	Subclassing from NDRes Subclasses
	Light Subclassing
	Full Subclassing

	Defining a C++ Subclass in the Elements Environmen...
	Registering a C++ Subclass in the Resource Manager...

	Generic Container Classes
	Code Generation
	Laying Out Windows

	Separating Source Code and Header Files
	Creating Custom Classes

	Code Regeneration
	Limitations
	Copy and Assignment Operations
	Customizing Editors in C++
	Implementation Notes for Current C Users
	Member Functions
	Memory Allocation and Deallocation
	Constructors and Destructors
	Overloaded Members
	Notifications as Virtual Member Functions

	Using Custom Constructors and Destructors
	Defining Default Constructors with RCLAS_CPLUSFULL...
	Defining Custom Constructors

	C++ Exception Handling
	For More Information about the C++ API

	Building Applications in the Elements Environment
	Configuring the Elements Environment
	Default Configuration
	Starting the Elements Environment
	Including Additional Configuration Files

	Compiler-Flag Options
	Enabling and Disabling Options
	Common Options
	Options Controlling the Main Neuron Data Elements
	Element-specific Options

	Running the Elements Environment Examples
	Examples for the Open Interface Element
	Examples for the Data Access Element
	Examples for the Intelligent Rules Element
	Examples for the Web Element
	Examples for the Distributed Messaging Element

	Building Applications
	Using Makefiles

	Porting and Deploying Applications in the Elements...
	Porting a C or C++ Application across Platforms
	Porting a Script Application across Platforms
	Deploying Applications
	Deploying a C or C++ Application

	Deploying a Script Application

	Localizing Applications in the Elements Environmen...
	Support for Multibyte Characters
	Language-independent APIs
	Input Methods
	Processing Input and Output Strings
	Fonts
	String-Resource Editor
	Translating Resources with the Resource Compiler
	Task 1: Generating the Text Resource File for the ...
	Task 2: Generating a Skeleton Dictionary
	Task 3: Editing the Dictionary
	Task 4: Creating the Localized .dat Files
	Task 5: Checking Your Application
	Task 6: Changing the Date and Time Formatting

	Enabling the Input Methods for Multibyte Character...
	Enabling the Canna Input Method
	Enabling the XIM

	Fonts and Font-Family Resources
	Font-Family Resources

	Key Concepts for Multibyte Characters and Strings
	Code Sets
	Code Mapping
	Code Types
	Fully Supported and Tested Code Types
	ASCII Code Type
	CJK Code Types

	Untested Code Types
	ISO 8859_X Code Types
	Adobe Code Types
	Macintosh Code Types
	Microsoft Windows Code Types
	PC Code Types
	Unicode Code Type
	HP ROMAN8

	Key Character and String Types
	Character Type Definitions
	4-Byte Character Format
	Basic String types
	Environment Variables and Flags

	Character APIs in the Elements Environment
	String APIs in the Elements Environment
	Variable-String APIs in the Elements Environment
	Using Code Sets and Code Types
	Code-Set Operations and APIs
	Code-Type Operations and APIs

	About Unicode
	Using Unicode
	ASCII Compatibility
	Conversion with Existing Character Sets
	Font for Drawing and Printing
	Unicode Input

	Specifying Code Types for Unicode
	ND_CHARNATIVE
	ND_KEYBOARDCODETYPE
	ND_CLIPCODETYPE
	EVENT_SetKbCt, EVENT_GetKbCt
	CLIP_SetClipCt, CLIP_GetClipCt
	STR_ToUni, STR_FromUni
	STR_ToCt, STR_FromCt
	CT_ToUni, CT_FromUni
	CS_ToUni, CS_FromUni

	Limitations
	Nonspacing Marks
	Right-to-Left Languages
	Language-specific Rendering Issues
	Platform-Specific Issues

	Examples
	tedit
	uniin

	Code Types for Unicode Conversion
	Unicode Font Mapping
	X11
	Windows 95 and Windows NT
	PostScript

	For More Information about the APIs

	PVCS Integration with the Elements Environment 2.1...
	Requirements for Using Level 1 PVCS Integration wi...
	PVCS Features Supported in Level 1 Integration
	PVCS Features Not Supported in Level 1 Integration...
	PVCS Integration Tests
	Setting Up the PVCS Integration Environment
	Accessing Integrated PVCS Options
	Configuring the Elements Environment for PVCS
	Checking Out Files
	Checking In Files
	Generating Reports
	Deleting Revisions

	Index

