
Small Polynomial Path Orders in TCT∗

Martin Avanzini1, Georg Moser1, and Michael Schaper1

1 Institute of Computer Science,
University of Innsbruck, Austria
{martin.avanzini,georg.moser,michael.schaper}@uibk.ac.at

Abstract

1998 ACM Subject Classification F.2.2, F.4.1, F.4.2, D.2.4, D.2.8

Keywords and phrases Runtime Complexity, Polynomial Time Functions, Rewriting

1 Introduction

In [2] we propose the small polynomial path order (sPOP? for short). This order provides
a characterisation of the class of polytime computable function via term rewrite systems
(TRSs for short). Any polytime computable function is expressible as a constructor TRS
which is compatible with (an instance of) sPOP?. On the other hand, any function defined
by a constructor TRS compatible with sPOP? is polytime computable. This order has
also ramifications in the automated complexity analysis of rewrite systems. The innermost
runtime complexity of any constructor TRS R compatible with sPOP? lies in O(nd). Here
d ∈ N refers to the maximal depth of recursion of defined symbols f in R.

This work deals with the implementation of sPOP? in the Tyrolean complexity tool1
(TCT for short). The order has been extended to relative rewriting, and takes also usable
arguments [6] into account. As by-product, we obtain a form of reduction pair from sPOP?.
Such reduction pairs can be used in the dependency pair analysis of Hirokawa and the second
author [5] and Noschinski et al. [7]. For details and proofs we refer the reader to [1].

2 Small Polynomial Path Orders

We assume familiarity with rewriting [3]. Let R be a TRS over a signature F , with defined
symbols in D. Constructors are denoted by C := F \ D. Further, let K ⊆ D denote a set
of recursive symbols, and let Á denote a (quasi)-precedence on F . We denote by ą and
∼ the proper order and equivalence underlying Á. We call the precedence Á admissible
for sPOP? if it retains the partitioning of F in the following sense. If f ∼ g then f ∈ C
implies g ∈ C, likewise, f ∈ K implies g ∈ K. Small polynomial path orders embody
the principle of predicative recursion [4] on compatible TRSs. To this end, arguments of
every function symbol are partitioned into normal and safe ones. Notationally we write
f(t1, . . . , tk; tk+1, . . . , tk+l) with normal arguments t1, . . . , tk separated from safe arguments
tk+1, . . . , tk+l by a semicolon. For constructors, we fix that all argument positions are safe.
We define the equivalence ≈s on terms respecting this separation as follows: s ≈s t holds
if s = t or s = f(s1, . . . , sk; sk+1, . . . , sk+l) and t = g(t1, . . . , tk; tk+1, . . . , tk+l) where f ∼ g

and si ≈s ti holds for all i = 1, . . . , k + l. We write s �n/≈ t if t is a subterm (modulo ≈s) of
a normal argument of s.

∗ This work is partially supported by FWF (Austrian Science Fund) project I-608-N18.
1 TCT is open source and available from http://cl-informatik.uibk.ac.at/software/tct.

http://cl-informatik.uibk.ac.at/software/tct

The following definition introduces small polynomial path orders, also accounting for
parameter substitution [2]. We denote by T (F<f ,V) the set of terms built from variables
and function symbols F<f := {g ∈ F | f ą g}.

I Definition 2.1. Let s = f(s1, . . . , sk; sk+1, . . . , sk+l). Then s ąspop∗ps
t if either

1) si Áspop∗ps
t for some argument si of s.

2) f ∈ D, t = g(t1, . . . , tm; tm+1, . . . , tm+n) with f ą g and the following conditions hold:
(i) s �n/≈ tj for all normal arguments tj of t, (ii) s ąspop∗ps

tj for all safe arguments tj of
t, and (iii) tj 6∈ T (F<f ,V) for at most one j ∈ {1, . . . , k + l}.

3) f ∈ K, t = g(t1, . . . , tk; tk+1, . . . , tk+l) with f ∼ g and the following conditions hold: (i)
〈s1, . . . , sk〉 ą

prod
spop∗ps

〈t1, . . . , tk〉, (ii) s ąspop∗ps
tj for all safe arguments tj (j = k+1, . . . , k+

l), and (iii) tj ∈ T (F<f ,V) for all j = 1, . . . , k + l.
Here Áspop? denotes the extension of ąspop∗ps

by safe equivalence ≈s. Further, ą
prod
spop∗ps

denotes
the product extension of ąspop∗ps

: 〈s1, . . . , sn〉 ą
prod
spop∗ps

〈t1, . . . , tn〉 if si Áspop? ti for all i =
1, . . . , n, and si0 ąspop∗ps

ti0 for some i0 ∈ {1, . . . , n}.

The depth of recursion rdÁ,K(f) of f ∈ F is recursively defined by rdÁ,K(f) := 1+d if f ∈ K
and rdÁ,K(f) := d if f 6∈ K, where d = max {0} ∪ {rdÁ,K(g) | f ą g}.
I Proposition 2.2 ([2]). Let R be a constructor TRS compatible with an instance ąspop∗ps

based on an admissible precedence Á with recursive symbols K. Then the innermost runtime
complexity of R lies in O(nd), where d = max{0} ∪ {rdÁ,K(f) | f ∈ D}.

3 Polynomial Path Orders as Complexity Processors

Our tool TCT operates internally on complexity problems P = 〈S/W,Q, T 〉, where S,W,Q
are TRSs and T denotes a set of ground terms. The set T is called the set of starting terms
of P. Throughout the following, this complexity problem is kept fixed. The complexity
(function) cpP : N→ N of P is defined as the partial function

cpP(n) := max{dh(t, Q−→S/W) | ∃t ∈ T and |t| 6 n} .

Here Q−→S/W := Q−→∗W · Q−→S · Q−→∗W denotes the Q-restricted rewrite relation of S relative to
W, where Q−→R is the restriction of −→R where all proper subterms of the redex are in Q
normal form. We call the complexity problem P a runtime complexity problem if all terms
in T are basic, i.e., of the form f(t1, . . . , tk) for f ∈ D and constructor terms t1, . . . , tk. It is
called an innermost complexity problem if all normal forms of Q are normal forms of S ∪W.

A (complexity) judgement is a statement ` P : f where P is a complexity problem and
f : N → N. This judgement is valid if cpP is defined on all inputs, and cpP ∈ O(f). A
complexity processor is an inference rule

` P1 : f1 · · · ` Pn : fn
` P : f

.

This processor is sound if ` P : f is valid whenever the judgements ` P1 : f1, . . . , ` Pn : fn
are valid. We follow the usual convention and annotate side conditions as premises to
inference rules. An inference of ` P : f using sound processors is called a complexity proof.
If this inference admits no assumptions, then the judgement ` P : f is valid.

In the following, we propose a complexity processors based on sPOP? that operates on
innermost runtime complexity problems. In essence, this processor requires thatW ⊆ Áspop∗ps

and S ⊆ ąspop∗ps
holds, and that W and S are constructor TRSs. If these requirements are

met, then the complexity of P lies in O(nd) for d ∈ N the maximal depth of recursion as in
Proposition 2.2. To weaken monotonicity requirements, we integrate argument filterings into
the order. The argument filtering is constrained, so that in derivations of starting terms, no
redex is removed. Compare [6], where µ-monotone orders are used in a similar spirit.

An argument filtering (for a signature F) is a mapping π that assigns to every k-ary
function symbol f ∈ F an argument position i ∈ {1, . . . , k} or a (possibly empty) list
[i1, . . . , il] of argument positions with 1 6 i1 < · · · < il 6 k. If π(f) is a list we say that π is
non-collapsing on f . Below π always denotes an argument filtering. For each f ∈ F , let fπ
denote a fresh function symbol associated with f . We define Fπ := {fπ | f ∈ F and π(f) =
[i1, . . . , il]}. The sets Dπ and Cπ denote the defined symbols and constructors in Fπ, as given
by the restriction of Fπ to symbols fπ associated with f ∈ D and f ∈ C respectively. We
denote by π also its extension to terms: π(t) := t if t is a variable, and for t = f(t1, . . . , tk),
π(t) := π(ti) if π(f) = i and f(π(ti1), . . . , π(til)) if π(f) = [i1, . . . , il]. For an order � on
terms over Fπ, we define s �π t if π(s) � π(t) holds.

A map µ : F → P(N) with µ(f) ⊆ {1, . . . , k} for every k-ary f ∈ F is called a re-
placement map on F . The set Posµ(t) of µ-replacing positions in a term t is given by
Posµ(t) := ∅ if t is a variable, and Posµ(t) := {ε} ∪ {i·p | i ∈ µ(f) and p ∈ Posµ(ti)} if
t = f(t1, . . . , tk). For a binary relation → on terms we denote by Tµ(→) the set of terms
t where sub-terms at non-µ-replacing positions are in normal form: t ∈ Tµ(→) if for all
positions p in t, if p 6∈ Posµ(t) then t|p → u does not hold for any term u. Let R denote a
set of rewrite rules. A replacement map µ is called a usable replacement map for R in P, if
−→∗S∪W(T) ⊆ Tµ(Q−→R). For a usable replacement map µ and argument filtering π, we say
that π agrees with µ if for all function symbols f in the domain of µ, either (i) π(f) = i and
µ(f) ⊆ {i} or otherwise (ii) µ(f) ⊆ π(f) holds.

I Theorem 3.1. Let P = 〈S/W,Q, T 〉 be an innermost complexity problem, where S and
W are constructor TRSs. Let π denote an argument filtering on the symbols in P that agrees
with a usable replacement map for S in P, and that is non-collapsing on defined symbols of
S. Let Kπ ⊆ Dπ denote a set of recursive function symbols, and Á an admissible precedence
on Fπ. The following processor is sound, for d := max{0} ∪ {rdÁ,Kπ (fπ) | fπ ∈ Fπ}.

S ⊆ ąπ
spop∗ps

W ⊆ Áπ
spop∗ps

` 〈S/W,Q, T 〉 : nd
.

We remark that the restriction that π is non-collapsing on defined symbols of S is essen-
tial, compare also [1]. In TCT, Theorem 3.1 is usually applied in combination with the
relative decomposition processor [1], This processor allows the iterated combination of dif-
ferent techniques, by translating the judgement ` 〈S/W,Q, T 〉 : f into the two judgements
` 〈S1/S2 ∪W,Q, T 〉 : f and ` 〈S2/S1 ∪W,Q, T 〉 : f , where S1 ∪ S2 = S. Theorem 3.1 is
tight, in the sense that for any d ∈ N one can find a complexity problem P that satisfies the
pre-conditions, and whose complexity function lies in Ω(nd) [2]. The next example illustrates
the application of Theorem 3.1.

I Example 3.2. Consider the innermost complexity problem P]log = 〈S]log/Wlog,S]log ∪
Wlog, T]log〉 where the TRS S]log consisting of the rewrite rules

half](s(s(x)))→ half](x) log](s(s(x)))→ log](s(half(x))) ,

the TRS Wlog consists of the rules

half(0)→ 0 half(s(s(x)))→ s(half(x)) ,

and T] consists of the basic terms f(sn(0)) for n ∈ N and f ∈ {half], log]}. Observe that
the rules in S]log can only be applied on root positions in derivations starting from T]log.
It follows that the map µ∅, which maps any function symbol f in P]log to ∅, is a usable
replacement map for S]log in P]log. Consider the argument filtering π with π(half) = 1 and
π(f) = [1] for f 6= half. Note that π trivially agrees with µ∅. Using Kπ := {half], log]} and
the empty precedence one can show S]log ⊆ ąπ

spop∗ps
andWlog ⊆ Áπ

spop∗ps
. Trivially rdÁ,Kπ (sπ) =

rdÁ,Kπ (0π) = 0, as neither half]π ą log]π nor log]π ą half]π holds, we see that rdÁ,Kπ (half]π) =
rdÁ,Kπ (log]π) = 1. By Theorem 3.1, the complexity of P]log is bounded by a linear function.

4 Polynomial Path Orders and Dependency Pairs

In TCT, a dependency pair problem (DP problem for short) is a complexity problem whose
strict and weak component contains also dependency pairs. Unlike for termination analysis,
we allow compound symbols in right hand sides of dependency pairs. The purpose of these
symbols is to group function calls. The example considered above is a DP problem that was
generated by TCT on AG01/#3.7 from the termination problem data base2 (TPDB for short).
For each k-ary f ∈ D, let f] denote a fresh function symbol also of arity k, the dependency
pair symbol (of f). The least extension of F to all dependency pair symbols is denoted by
F]. We define t] := f](t1, . . . , tk) if t = f(t1, . . . , tk) and f ∈ D, and t] := t otherwise. For
a set of terms T , we denote by T] the set of marked terms T] := {t] | t ∈ T}. Consider
the infinite signature Com that contains for each i ∈ N a fresh constructor symbol ci ∈ Com
of arity i. Symbols in Com are called compound symbols. We denote by com(t) the term t,
and overload this notation to sequences of terms such that com(t1, . . . , tk) = ck(t1, . . . , tk)
for k 6= 1. A dependency pair (DP for short) is a rewrite rule l] → com(r]1, . . . , r

]
k) where

l, r1, . . . , rk ∈ T (F ,V). Let S and W be two TRSs over T (F ,V), and let S] and W] be two
sets of dependency pairs. A dependency pair complexity problem, or simply DP problem, is a
runtime complexity problem P] = 〈S]∪S/W]∪W,Q, T]〉 over marked basic terms T]. We
keep the convention that S] and W] denote dependency pairs. Our notion of a DP problem
is general enough to capture images of the transformations proposed in the literature [5, 7]
for polynomial complexity analysis, compare [1]. In the following, we suppose S = ∅, i.e.,
the complexity function of P] accounts for dependency pairs only. We emphasise that for
innermost runtime complexity analysis, TCT always constructs a DP problem of this shape,
by either applying the weightgap condition [5] or using dependency tuples [7] only.

As a consequence of the following simple observation, the argument filtering employed
in Theorem 3.1 has to fulfil, besides the non-collapsing condition on defined symbols of S],
only mild conditions on compound symbols.

I Lemma 4.1. Let P] = 〈S]/W] ∪W,Q, T]〉 be a DP problem. Suppose µ denotes a usable
replacement map for dependency pairs S] in P]. Then µcom is a usable replacement map
for S] in P]. Here µcom denotes the restriction of µ to compound symbols in the following
sense: µcom(cn) := µ(cn) for all cn ∈ Com, and otherwise µcom(f) := ∅ for f ∈ F].

For DP problems, one can remove the non-collapsing condition on the employed argument
filtering. The inferred complexity bound is less fine grained however.

I Theorem 4.2. Let P] = 〈S]/W]∪W,Q, T]〉 be an innermost DP problem, where S], W]

and W are constructor TRSs. Let µ denote a usable replacement map for S]∪W] in P], Let

2 See http://termination-portal.org/wiki/Termination_Competition.

http://termination-portal.org/wiki/Termination_Competition

π denote an argument filtering on the symbols in P that agrees with a usable replacement map
for all dependency pairs in P]. Let Kπ ⊆ D]π denote a set of recursive function symbols, and
Á an admissible precedence where cπ ∼ dπ only holds for non-compound symbols c, d 6∈ Com.
The following processor is sound, for d := max{0} ∪ {rdÁ,Kπ (fπ) | fπ ∈ F]π}.

S] ⊆ ąπ
spop∗ps

W] ∪W ⊆ Áπ
spop∗ps

` 〈S]/W] ∪W,Q, T]〉 : nmax(1,2·d)
.

We remark that the pre-conditions of the theorem are essential, and the estimated com-
plexity is asymptotically optimal in general [1].

5 Conclusion

bound sPOP? sPOP?
DP MIDP

O(1) 4\0.17 20\0.28 20\0.27

O(n1) 20\0.17 72\0.31 98\0.48

O(n2) 23\0.19 11\0.44 17\4.67

O(n3) 6\0.23 3\0.60 8\14.7

total 54\0.19 106\0.32 143\1.55

maybe 703\0.34 652\1.20 613\18.3

Table 1 Number of oriented prob-
lems and average execution time (secs.)

In this work we have outlined the implementation of
sPOP? in TCT. We conclude with an empirical evalu-
ation of this method. In Table 1 we contrast sPOP?

to matrix interpretations (MI for short). Here the sub-
script DP denotes that the input is first transformed
into a DP problem and syntactically simplified, com-
pare [1, Section 14.5]. As testbed we used the 757
well-formed constructor TRSs from the TPDB 8.0.3

Comparing sPOP? and sPOP?
DP we see a signif-

icant increase in precision and power. This can be
attributed to the relaxed conditions on the employed
argument filtering. On the testbed, sPOP?

DP cannot cope in power with MIDP, but the av-
erage execution time of sPOP?

DP is significantly lower. Worthy of note, sPOP?
DP and MIDP

are incomparable. Their combination can handle 149 examples.

References
1 M. Avanzini. Verifying Polytime Computability Automatically. PhD thesis, Univer-

sity of Innsbruck, Institute for Computer Science, 2013. Submitted. Available at http:
//cl-informatik.uibk.ac.at/~zini/publications/.

2 M. Avanzini, N. Eguchi, and G. Moser. A New Order-theoretic Characterisation of the
Polytime Computable Functions. In Proc. of 10th APLAS, volume 7705 of LNCS, pages
280–295, 2012.

3 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge UP, 1998.
4 S. Bellantoni and S. Cook. A new Recursion-Theoretic Characterization of the Polytime

Functions. Computational Complexity, 2(2):97–110, 1992.
5 N. Hirokawa and G. Moser. Automated Complexity Analysis Based on the Dependency

Pair Method. In Proc. of 4th IJCAR, volume 5195 of LNAI, pages 364–380, 2008.
6 N. Hirokawa and G. Moser. Automated Complexity Analysis Based on the Dependency

Pair Method. 2012. To appear.
7 L. Noschinski, F. Emmes, and J. Giesl. A Dependency Pair Framework for Innermost

Complexity Analysis of Term Rewrite Systems. In Proc. of 23rd CADE, volume 6803 of
LNAI, pages 422–438. Springer, 2011.

3 See http://cl-informatik.uibk.ac.at/software/tct/experiments/wst2013 for full experimental
evidence and explanation on the setup.

http://cl-informatik.uibk.ac.at/~zini/publications/
http://cl-informatik.uibk.ac.at/~zini/publications/
http://cl-informatik.uibk.ac.at/software/tct/experiments/wst2013

	Introduction
	Small Polynomial Path Orders
	Polynomial Path Orders as Complexity Processors
	Polynomial Path Orders and Dependency Pairs
	Conclusion

