
Towards decidable classes of logic programs with
function symbols
Marco Calautti, Sergio Greco, Cristian Molinaro, Irina Trubitsyna

DIMES, Università della Calabria
87036 Rende (CS), Italy
{calautti,greco,cmolinaro,trubitsyna}@dimes.unical.it

Abstract
Function symbols are widely acknowledged as an important feature in logic programming, but
unfortunately, common inference tasks become undecidable in their presence. To cope with this
issue, recent research has focused on identifying decidable classes of programs allowing only a
restricted use of function symbols while ensuring decidability of common inference tasks. In this
paper, we give an overview of current termination criteria. We also present a technique which
can be used in conjunction with current termination criteria to enlarge the class of programs
recognized as terminating.

1998 ACM Subject Classification F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages

Keywords and phrases Logic programming with function symbols, bottom-up evaluation, stable
model semantics

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction and Preliminaries

In recent years, there has been a great deal of interest in enhancing answer set solvers
by supporting function symbols. Function symbols often make modeling easier and the
resulting encodings more readable and concise, but unfortunately, common inference tasks
become undecidable in their presence. The class of finitely ground programs, proposed in [1],
guarantees decidability of common inference tasks. In particular, finitely ground programs
are terminating, i.e. the bottom-up evaluation of these programs gives a finite number of
finite stable models. Since membership in the class is semi-decidable, research has focused
on identifying sufficient conditions for a program to be finitely ground, leading to different
criteria, called termination criteria. Efforts in this direction are ω-restricted programs [9],
λ-restricted programs [2], finite domain programs [1], argument-restricted programs [8], safe
programs [7], Γ-acyclic programs [7], and bounded programs [5]. In this paper, we give an
overview of recent research on this topic. Specifically, we present some recently proposed
decidable termination criteria, able to recognize the termination of disjunctive logic programs,
and an orthogonal technique that can be used in conjunction with them to enlarge the class
of programs recognized as finitely-ground [6].

We assume the reader is familiar with logic programs with function symbols under the
stable model semantics [3] (see [5] for a brief overview). Given a program P we denote by
arg(P) the set of all arguments of P , i.e., expressions of the form p[i] where p is a predicate
symbol of arity n appearing in P and 1 ≤ i ≤ n. We use body(r) and head(r) to denote
the body and the head of a rule r in P; body+(r) denotes the conjunction of all positive
literals in body(r). For any rule r, ground(r) denotes the set of rules obtained by replacing



2 Towards decidable classes of logic programs with function symbols

variables with ground terms which can be constructed using constants and function symbols
occurring in P. An argument q[i] ∈ arg(P) is said to be limited if it takes values from a
finite domain, that is, if for every (stable) model M of P the projection of Q over the i-th
arguments is a finite set, where Q is the set of q-atoms in M . We consider programs where
rules are range restricted, that is all variables occurring in a rule r also occur in body+(r)
and distinguish base predicate symbols, defined only by facts (i.e., ground rules with empty
body) from derived predicate symbols, defined by arbitrary rules. For ease of presentation,
we sometimes consider only positive programs as the techniques described can be easily
extended to programs with negative body literals and disjunction in head.

2 Basic Termination Criteria

In this section, we describe the most general “basic” termination criterion proposed in the
literature, namely argument-restricted programs [8]. We shall not discuss other well-known
basic termination criteria, such as ω-restricted programs [9], λ-restricted programs [2] and
finite domain programs [1], as they have been generalized by argument-restricted programs.
We named the aforementioned termination criteria “basic” as their definition does not rely
on other termination criteria.

Termination criteria are used to determine sets of arguments which are limited. In the
following we shall use the following notations. Given a program P and a criterion W , W (P)
denotes the set of arguments which are recognized as limited by criterion W , whereas W
denotes the class of programs which are recognized as terminating by W , that is the class of
programs such that arg(P) = W (P).

Argument-restricted programs [8]. The argument-restricted criterion tests the possibility
to find for each argument a finite upper bound of the depth of terms that may occur in
that argument during the program evaluation. This test is based on the notion of argument
ranking function defined below. For any atom A of the form p(t1, ..., tn), A0 denotes the
predicate symbol p, and Ai denotes term ti, for 1 ≤ i ≤ n.

I Definition 1. An argument ranking for a program P is a partial function φ from arg(P)
to non-negative integers such that, for every rule r of P, every atom A occurring in the
head of r, and every variable X occurring in an argument term Ai, if φ(A0[i]) is defined,
then body+(r) contains an atom B such that X occurs in an argument term Bj , φ(B0[j]) is
defined, and the following condition is satisfied

φ(A0[i])− φ(B0[j]) ≥ d(X,Ai)− d(X,Bj)

where d(X, t) = 0 if t = X; if t = f(v1, . . . , vk), then d(X, t) = 1 + max
vl contains X

d(X, vl).

The set of restricted arguments of P isAR(P) = {p[i] | p[i] ∈ arg(P)∧∃φ s.t. φ(p[i]) is defined}.
A program P is said to be argument restricted iff AR(P) = arg(P). �

I Example 2. Consider the following logic program P2:

p(f(X))← q(X).
q(X)← p(f(X)).

The program is recognized to be argument-restricted. In particular, the argument-restricted
function φ can be defined as follows: φ(p[1]) = 1 and φ(q[1]) = 0. �



M.Calautti et al. 3

3 Iterated Termination Criteria

In this section we present recently proposed criteria which, starting from a set of limited
arguments defined through the application of a basic criterion, computes a possibly larger
set of limited arguments.

Safe programs [7]. The first technique is obtained by introducing a fixpoint function, called
safe function, which, iteratively, extends a given set of limited arguments. Its definition is
based on the notion of activation graph.

The activation graph of a program P , denoted Ω(P), is a directed graph whose nodes are
the rules of P, and there is an edge (ri, rj) in the graph iff ri activates rj , i.e. there exist
two ground rules r′i ∈ ground(ri), r′j ∈ ground(rj) and a set of ground atoms D such that
(i) D 6|= r′i, (ii) D |= r′j , and (iii) D ∪ head(r′i) 6|= r′j . This intuitively means that if D does
not satisfy r′i, D satisfies r′j , and head(r′i) is added to D to satisfy r′i, this causes r′j not to
be satisfied anymore (and then to be “activated”).

I Definition 3. Given a program P and a basic termination criterion W , the set of W-safe
arguments S-W (P) is computed by first setting S-W (P) = W (P) and next iteratively adding
each argument q[k] such that for all rules r ∈ P where q appears in the head (i) r does
not depend on a cycle of Ω(P), or (ii) for every head atom q(t1, ..., tn), every variable X
appearing in tk appears also in some safe argument in body+(r). A program P is said to be
W-safe if S-W (P) = arg(P). �

The criterion obtained by combining basic criterion W with the safe function is denoted by
S-W .

I Example 4. The following simple logic program P4 is not recognized as terminating by
any basic termination criteria introduced so far.

p(X, X)← base(X).
p(f(X), g(X))← p(X, X).

However, this program is terminating and P4 ∈ S-W, for every basic criterion W , since the
activation graph of P4 does not contain any cycle. �

Bounded Programs [5]. The definition of bounded programs relies on the notion of labelled
argument graph. This graph, denoted GL(P), is derived from the argument graph by labelling
edges as follows: for each pair of nodes p[i], q[j] ∈ arg(P) and for every rule r ∈ P such that
(i) an atom p(t1, ..., tn) appears in head(r), (ii) an atom q(u1, ..., um) appears in body+(r),
(iii) terms ti and uj have a common variable X, there is an edge (q[j], p[i], 〈α, r, h, k〉), where
h and k are natural numbers denoting the positions of p(t1, ..., tn) in head(r) and q(u1, ..., um)
in body+(r), respectively1, whereas α = ε if ti = uj , α = f if uj = X and ti = f(..., X, ...),
α = f̄ if uj = f(..., X, ...) and ti = X. For the sake of simplicity, without loss of generality,
we assume that if a variable X appears in two terms occurring in the head and body of a
rule respectively, then only one of the two terms is a complex term and that the nesting level
of complex terms is at most one.

1 We assume that literals in the head (resp. body) are ordered with the first one being associated with 1,
the second one with 2, etc.



4 Towards decidable classes of logic programs with function symbols

Figure 1 Rewriting of P6 and corresponding labelled argument graph.

Given a path ρ = (a1, b1, 〈α1, r1, h1, k1〉), . . . , (am, bm, 〈αm, rm, hm, km〉), we define λ1(ρ) =
α1 ...αm, λ2(ρ) = r1, ..., rm, and λ3(ρ) = 〈r1, h1, k1〉 ... 〈rm, hm, km〉. Given a cycle π consist-
ing of n labelled edges e1, ..., en, we can derive n different cyclic paths starting from each of
the ei’s—we use τ(π) to denote the set of such cyclic paths.

Given two cycles π1 and π2, we write π1 ≈ π2 iff ∃ρ1 ∈ τ(π1) and ∃ρ2 ∈ τ(π2) such
that λ3(ρ1) = λ3(ρ2). Given a program P, we say that a cycle π in GL(P) is active iff
∃ρ ∈ τ(π) such that λ2(ρ) = r1, ..., rm and (r1, r2), ..., (rm−1, rm), (rm, r1) is a cyclic path in
the activation graph Ω(P).

Given a program P and a path ρ in GL(P), we denote with λ̂1(ρ) the string obtained
from λ1(ρ) by iteratively eliminating pairs of the form γγ̄ from the string until the resulting
string cannot be further reduced.

Given a program P, a cycle π in GL(P) can be classified as follows. We say that π is i)
balanced if ∃ρ ∈ τ(π) s.t. λ̂1(ρ) is empty, ii) growing if ∃ρ ∈ τ(π) s.t. λ̂1(ρ) does not contain
a symbol of the form γ̄, iii) failing otherwise.

I Definition 5. Given a program P and a basic termination criterion W , the set of W-
bounded arguments B-W (P) is computed by first setting B-W (P) = W (P) and next iter-
atively adding each argument q[k] such that for each basic cycle π in GL(P) on which q[k]
depends, at least one of the following conditions holds:
1. π is not active or is not growing;
2. π contains an edge (s[j], p[i], 〈f, r, l1, l2〉) and, letting p(t1, ..., tn) be the l1-th atom in the

head of r, for every variable X in ti, there is an atom b(u1, ..., um) in body+(r) s.t. X
appears in a term uh and b[h] is W-bounded;

3. there is a basic cycle π′ in GL(P) s.t. π′ ≈ π, π′ is not balanced, and π′ passes only
through W-bounded arguments.

A program P is said to be W-bounded if B-W (P) = arg(P). �

The criterion obtained by combining basic criterion W with the bounded function is
denoted by B-W . The class of W-bounded programs is denoted by B-W. A relevant aspect
that distinguishes this technique from other works is that this technique analyzes how groups
of arguments are each other related—this is illustrated in the following example.

I Example 6. Consider the following logic program P6:

r0 : count([a, b, c], 0).
r1 : count(L, I + 1)← count([X|L], I).

The bottom-up evaluation of P6 terminates yielding the set of atoms count([a, b, c], 0),
count([b, c], 1), count([c], 2), and count([ ], 3). The query goal count([ ], L) can be used to
retrieve the length L of list [a, b, c].2 �

2 Notice that P6 has been written so as to count the number of elements in a list when evaluated in a



M.Calautti et al. 5

To comply with the syntactic restrictions required by the bounded technique, Figure
1 shows a rewriting of P6 and the corresponding labelled argument graph. where lc and
s denote the list constructor and the sum operators respectively. Basically, considering
the argument-restricted technique as the basic criterion W , after having established that
argument count[1] is limited, that is count[1] ∈ B-AR(P6), by analyzing the two cycles
involving arguments count[1] and count[2], respectively and using Condition 3 of Definition
5 it is possible to detect that also argument count[2] is limited, that is count[2] ∈ B-AR(P6).
Consequently, P6 is AR-bounded.

4 Rewriting technique

In this section we present a rewriting technique [6] that, used in conjunction with current
termination criteria, allows us to detect more programs as finitely-ground. This technique
takes a logic program P and transforms it into an adorned program Pµ with the aim of
applying termination criteria to Pµ rather than P . The transformation is sound in that if the
adorned program satisfies a certain termination criterion, then the original program satisfies
this criterion as well and, consequently, is finitely-ground. Importantly, as showed by the
below example, applying termination criteria to adorned programs rather than the original
ones strictly enlarges the class of programs recognized as finitely-ground. This technique is
much more general than those used to deal with chase termination (see [4]).

I Example 7. Consider the following program P7, where base is a base predicate symbol
defined by facts not showed here.

r0 : p(X, f(X))← base(X).
r1 : p(X, f(X))← p(Y, X), base(Y).
r2 : p(X, Y)← p(f(X), f(Y)).

First, base predicate symbols are adorned with strings of ε’s; thus, we get the adorned
predicate symbol baseε. This is used to adorn the body of r0 so as to get

ρ0 : pεf1 (X, f(X))← baseε(X).

from which we derive the new adorned predicate symbol pεf1 , and the adornment definition
f1 = f(ε). Next, pεf1 and baseε are used to adorn the body of r1 so as to get

ρ1 : pf1f2 (X, f(X))← pεf1 (Y, X), baseε(Y)

from which we derive the new adorned predicate symbol pf1f2 , and the adornment definition
f2 = f(f1). Intuitively, the body of ρ1 is coherently adorned because Y is always associated
with the same adornment symbol ε. Using the new adorned predicate symbol pf1f2 , we can
adorn rule r2 and get

ρ2 : pεf1 (X, Y)← pf1f2 (f(X), f(Y)).

At this point, we are not able to generate new adorned rules (using the adorned predicate
symbols generated so far) with coherently adorned bodies and the transformation terminates.
In fact, pf1f2(Y, X), baseε(Y) is not coherently adorned because the same variable Y is associated

bottom-up fashion, and therefore differs from the classical formulation relying on a top-down evaluation
strategy. However, programs relying on a top-down evaluation strategy can be rewritten into programs
whose bottom-up evaluation gives the same result.



6 Towards decidable classes of logic programs with function symbols

with both f1 and ε; moreover, pεf1(f(X), f(Y)) is not coherently adorned because f(X) does
not comply with the (simple) term structure described by ε.

To determine termination of the bottom-up evaluation of P7, we can apply current
termination criteria to Pµ7 = {ρ0, ρ1, ρ2} rather than P7. �

It is worth noting that the rewriting technique ensures that if Pµ7 is recognized as
terminating, so is P7. Notice also that both P7 and Pµ7 are recursive, but while some
termination criteria (e.g., the argument-restricted and Γ-acyclicity criteria) detect Pµ7 as
terminating, none of the current termination criteria is able to realize that P7 terminates.

References
1 Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola Leone. Computable

functions in ASP: Theory and implementation. In ICLP, pages 407–424, 2008.
2 Martin Gebser, Torsten Schaub, and Sven Thiele. Gringo : A new grounder for answer set

programming. In LPNMR, pages 266–271, 2007.
3 Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.

In ICLP/SLP, pages 1070–1080, 1988.
4 Sergio Greco, Cristian Molinaro, and Francesca Spezzano. Incomplete Data and Data

Dependencies in Relational Databases. Synthesis Lectures on Data Management. Morgan
& Claypool Publishers, 2012.

5 Sergio Greco, Cristian Molinaro, and Irina Trubitsyna. Bounded programs: A new decid-
able class of logic programs with function symbols. In ĲCAI, 2013.

6 Sergio Greco, Cristian Molinaro, and Irina Trubitsyna. Logic programming with function
symbols: Checking termination of bottom-up evaluation through program adornments. In
ICLP (to appear in TPLP journal), 2013.

7 Sergio Greco, Francesca Spezzano, and Irina Trubitsyna. On the termination of logic
programs with function symbols. In ICLP (Technical Communications), pages 323–333,
2012.

8 Yuliya Lierler and Vladimir Lifschitz. One more decidable class of finitely ground programs.
In ICLP, pages 489–493, 2009.

9 Tommi Syrjanen. Omega-restricted logic programs. In LPNMR, pages 267–279, 2001.


	Introduction and Preliminaries
	Basic Termination Criteria
	Iterated Termination Criteria
	Rewriting technique

