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diffusion tensor field in the human brain. Overview of a whole sagittal slice (left) and close-up (right).

ABSTRACT

One of the most promising avenues for compiling anatomical brain
connectivity data arises from diffusion magnetic resonance imaging
(dMRI). dMRI provides a rather novel family of medical imaging
techniques with broad application in clinical as well as basic neu-
roscience as it offers an estimate of the brain’s fiber structure com-
pletely non-invasively and in vivo. A convenient way to reconstruct
neuronal fiber pathways and to characterize anatomical connectiv-
ity from this data is the computation of diffusion tractograms.

In this paper, we present a novel and effective method for visual-
izing probabilistic tractograms within their anatomical context. Our
illustrative rendering technique, called fiber stippling, is inspired by
visualization standards as found in anatomical textbooks. These il-
lustrations typically show slice-based projections of fiber pathways
and are typically hand-drawn. Applying the automatized technique
to diffusion tractography, we demonstrate its expressiveness and in-
tuitive usability as well as a more objective way to present white-
matter structure in the human brain.
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1 INTRODUCTION

To date, anatomical connectivity information has been revealed
mostly from animal models. These focus on the measurements of
axonal degenerating subsequent to lesion, active transport of tracers
that are injected while the animal is still alive or, most frequently on
post mortem tracer application. The respective techniques require
high levels of effort and skill, cannot be applied to an individual
living human subject, and are not suited for obtaining an exhaustive
connectivity pattern of the whole brain, or even of a certain region
in the brain. Furthermore, tract variability is difficult to assess since
only a limited set of connections can be traced per specimen.

Illustration of tract tracing usually reveals slice-wise projections
of tracer substance arrival and only allows for reconstruction of
pathways by means of photo processing software [30], or even –in
older anatomical textbooks- hand drawings.

With diffusion MRI (dMRI), a technique has emerged that al-
lows in vivo and non-invasive characterization of long-range ax-
onal connectivity in the brain [19, 18, 14]. This technique probes
the direction-dependent mobility of water molecules by measuring
dephasing of spins of protons in the presence of a spatially vary-
ing magnetic field (‘gradient’) at a certain time after excitation. As
microstructural barriers influence the mobility of the molecules, it
is possible to infer certain direction-dependent aspects of the mi-
croanatomy, such as fiber directions. This allows the reconstruction
of white matter fiber pathways, referred to as diffusion tractogra-
phy [26, 17, 8, 29], and an estimation of anatomical connectivity.
However, noise and artifacts present in the MR scan introduce un-
certainty pertaining to fiber direction. Further uncertainty in model
parameters is caused by using simple models to describe the com-



plex nature of the diffusion signal [5]. Probabilistic tractography
provides a means to quantize the anatomical connectivity pattern in
terms of a scalar field of probabilities in order to infer useful infor-
mation about fiber tract direction while taking the aforementioned
uncertainty into account. More precisely, probabilistic tractograms
can be regarded as an appropriate approximation to the anatomical
connectivity profile representing small individual brain areas (usu-
ally small MRI voxels).

To date, different methods have been proposed to perform prob-
abilistic tractography. Among them are the construction of a prob-
abilistic density function proposed by Behrens et al. [5] and a ran-
dom walk method suggested by Anwander et al. [3]. The latter ap-
proach is used in this paper and describes the path taken by a parti-
cle starting from a given seed voxel near the gray- and white matter
boundary and transitioning through target voxels within the white
matter volume based upon local diffusivity measurements (i.e. local
diffusivity measurements determine the transition probability from
voxels to neighboring voxels). The random walk of a particle start-
ing from the same seed voxel is repeated many times such that the
relative frequencies at which particles transitioned to target voxels
give an appropriate measure of the probability of connectivity from
particular seed voxels to target voxels.

In the following, we give a detailed description of fiber stip-
pling, a novel and effective method for visualizing probabilistic
tractograms. The illustration of the tractograms is embedded in an
outline of their anatomical context. The rendering technique is in-
spired by illustrations as can be found in anatomical textbooks, and
is based on the metaphor of a slab showing only sections of fiber
pathways that lie in the slab. These sections are represented as line
stipples. In particular, the main contributions of this paper are

• a new illustrative technique to render probabilistic tractogra-
phy data employing a widely accepted metaphor,

• an integration of this technique with a gray matter/white matter
context and

• a publicly available implementation of the integrated tech-
nique in an open-source framework for medical and brain data
visualization (http://www.OpenWalnut.org).

2 RELATED WORK

This section is divided into two parts. In the first part we will
describe illustration techniques - as usually applied in modern
anatomical textbooks - we will be doing this at the example of the
book of Schmahmann and Pandya [30] as this has become quasi-
standard to reference fiber pathways in the (macaque) brain. In the
second part we present a brief overview of previous work on visu-
alizing probabilistic tracts.

2.1 Inspiration from anatomical textbook

In 2006, Schmahmann and Pandya published an anatomical text-
book on fiber pathways from the cerebral cortex of macaque mon-
key brains [30]. For constructing the illustrations for the book, they
employed microscopy with radioactive tracers. This is not suited
for in vivo analysis, but it allows for a great level of detail, almost
an order of magnitude beyond the resolution that might be achiev-
able by current dMRI-based methods.

Their findings of connections in the brain are presented slice-
wise; each carefully selected slice depict tracts with hand-drawn
points and dashes indicating their directionality as well as anatomi-
cal context with the help of white matter and gray matter boundary
lines as shown in Figure 2. The method we present in this paper
mimic the tracts using line stipples and the boundaries with isolines
of structural MRI data such as T1-weighted MR images. Still there
is a huge difference of precision between both methods, but the in-
crease in precision of dMRI scanners is expected to continue. This
will make in vivo measurements of a comparable precision feasible.

Figure 2: Composite diagram taken as example from Schmahmann
and Pandya [30], page 139, Figure 6-13, slice 85, with the kind per-
mission of the authors. In order to present the tract findings from
36 rhesus monkey brains combined into one picture, they draw the
aggregated tracts onto a coronal slice from a healthy subject, called
templated brain. The image illustrates white matter fiber pathways
from six tracer injections. Each injection is color coded (cases 1 to 6)
and the highlighted tracts are labeled with their respective names.

2.2 Methods for visualizing probabilistic tracts

Various approaches to visualizing probabilistic tractography data
are described in literature. Such methods can be mainly categorized
into groups, namely methods that provide a three-dimensional rep-
resentation of probabilistic tractograms, slice-based techniques and
glyph-based techniques.

2.2.1 Three-dimensional representations

Probabilistic tractograms are more appropriately described as a
three-dimensional scalar field. Isosurfaces represent points of a
fixed scalar value (isovalue) and can therefore give the user an ini-
tial impression of the data, as depicted in Figure 3a. However, iso-
surfaces also have several drawbacks.

First, there is the problem to choose a meaningful isovalue and
second, the user has no visual feedback about the data besides the
surface for the chosen isovalue. To mitigate the first problem, one
may use nested, semi-transparent isosurfaces as depicted in Fig-
ure 3c. Many other methods may be used such as direct volume
rendering of probabilistic tracts proposed by Kapri et al. [36], line
construction algorithms such as fODF-PROBA fibers presented by
Descoteaux et al. [10] or three-dimensional line integral convolu-
tion (LIC) proposed by Falk et al. [11]. A common problem of
all of these three-dimensional representations is that it is hard to
provide reasonable anatomical context. Either the representation
occludes the context or the representation itself is partly occluded
by the context hampering its interpretation. This holds even for the
illustrative approach presented by Svetachov et al. [35].



(a) Isosurface (b) Isosurface T1 (c) Nested isosurfaces

Figure 3: Different isosurfaces as examples for volumetric probabilis-
tic tract representations. (a) Isosurface, (b) isosurface with axial T1
slice as anatomical context and (c) nested transparent isosurfaces
with axial T1 slice as anatomical context

Topological visualization of probabilistic tracking as presented
by Schultz et al. [31] may seem different from all these techniques.
Still, as it uses nested 3D surfaces to depict the topology, it inherits
the problems of all 3D and surface methods.

2.2.2 Slice-based Techniques

One reason why slice-based techniques are widely used in neuro-
science is the fact that data from MRI scans is acquired and orga-
nized in slices. Slice-based techniques are generally used among
neuroscientists since they provide a direct view of the original
data. Another reason is that three-dimensional shapes may be-
come overly complex very easily. However, the most crucial ad-
vantage is to provide a sufficient anatomical context. This is a
difficult task for three-dimensional shapes but relatively easy for
slice-based techniques. In practice, neuroscientists often use one or
three slices representing the three standard orientations in sagittal,
axial, or coronal view. These slices are just axis-aligned cutting-
planes. Furthermore, deformed slices have been proposed by An-
wander et al. [2, 32]. In this work we only apply axis-aligned slices.
Hence, for obtaining reasonable volume representations, images
need to be properly oriented in the underlying coordinate system.

Another (very basic) approach is to use color maps for render-
ing those parts of the probabilistic tractograms that are intersected
by the cutting plane directly onto the cutting plane as depicted in
Figure 4a. This visualization provides the presentation of proba-
bility distributions, whereas the underlying diffusion directions are
not visible. More complex methods that are able to communicate
the diffusion directions are the two-dimensional LIC, or techniques
looking similiar to LIC as the one proposed by Calamante et al. [9].
It is generally applied to vector fields and uses only the direction-
ality information as depicted in Figure 4b. A combination of LIC
and color coding can convey both the diffusion direction and the
probability value from the tractogram simultaneously, as shown in
Figure 4c. However, the diffusion direction is not always easy to
see and in particular regions of complex tract configurations, such
as crossing tracts, would be very difficult to present.

2.2.3 Glyph-based Techniques

Tensor glyphs, such as ellipsoids, superquadrics [20] or tensor
patches [7], provide a simple and direct way to represent local in-
formation in tensor data sets. Whereas their main purpose is to
represent the full tensor information in a convenient and easily per-
ceivable way, information that is not necessarily important to the
user may become dominant, for example huge glyphs in areas not
in the currently intended focus. Neuroscientists often are only in-
terested in fiber bundles, which represent global connections in the
brain, whereas glyphs are only used to study the local structure of

(a) Heat map (b) LIC (c) Colored LIC

Figure 4: Axial T1 slice with the same probabilistic tract but different
overlays.

the raw data. Nevertheless, our method has some similarities to
glyph-based approaches:

• We represent the local direction of fiber tracts using stip-
ples. But instead of overwhelming the user with additional
information encoded in individual stipples (like for other
glyphs [1, 12, 27]), the pattern of stipples provides informa-
tion about the course and properties of fiber tracts. In addition,
this has the advantage that stipples can be placed much closer
than glyphs and, therefore, provide directional information at
a much higher resolution.

• Placement of stipples, similarly to the placement of glyphs,
plays an important role. While similar issues have recently
been addressed for glyphs [21, 15], the underlying problem is
somewhat different. Glyph-based approaches only work if ev-
ery individual glyph is distinctly visible. In our approach, the
reduction of each stipple to the important information renders
this requirement unnecessary.

• The simplicity of individual stipples makes rendering fast and
efficient and avoids the use of memory or processing power
consuming approaches. This also holds for simple vector plots
of the main diffusion direction. However, the arrows in con-
ventional vector plots do not vary in density according to an
additional scalar field [22] (in our case the probability). The
reason behind keeping density in conventional vector plots
constant is the aim to avoid misleading interpolation of the
human visual system. The lengths of the arrows is simply per-
ceived wrongly in this case. Additionally, vectors nearly par-
allel to the viewing direction, or, in our case, nearly orthogonal
to the slice, become very small (nearly points) and can be eas-
ily missed. Our method counteracts this effect by using glyphs
that all have the same area.

3 METHODS

In order to produce a slice-based probabilistic rendering similar to
the slices generated by Schmahmann and Pandya [30], we com-
bine our tract rendering with boundary curves of the gray matter for
anatomical context. In the following, we give a detailed description
of the techniques we use for the anatomical context followed by a
description of our illustrative probabilistic tract rendering. The pro-
cedures are identical for all slices and in particular for arbitrarily
oriented slices. As mentioned above we provide only implementa-
tion details for axis-aligned slices.



Figure 5: High resolution isolines for gray matter (blue) and white
matter (orange) boundaries, derived from T1 image also used as
non-interpolated background, to show the resolution difference.

3.1 Anatomical context

Since anatomical context is a fundamental tool for neuroscientists
we present this in two variants. First, we provide boundary lines
indicating white matter and gray matter borders analog to those in
the images from Schmahmann and Pandya. Secondly, these lines
were combined with structural MRI data such as T1-weighted MR
volume as shown in Figure 6. The user can interactively switch
between these variants.

For boundary extraction, we use a 2D algorithm, also known
as marching quads, which is closely related to the marching cubes
algorithm presented by Lorensen et al. [24]. For each view, ax-
ial, sagittal and coronal, we define an implicitly represented regular
two-dimensional grid consisting of quadrilateral cells. The T1 im-
age is resampled for all vertices of this grid. For every edge of the
grid we check whether interpolation of the T1 values along the edge
crosses the selected isovalues for gray or white matter. For exam-
ple, if an isovalue is between the values at the vertices building up
the edge, this edge hits the isovalue. Once all those edges are de-
termined, the isolines are generated from the crossing points on the
edges. In order to provide high-quality isolines (see Figure 5) rep-
resenting the usually used trilinear interpolant more accurately, the
user may specify an arbitrary grid resolution. A higher resolution
obviously leads to higher computation times for the isolines. With
original T1 image resolution (1mm isotropic), the whole system
is still very fast and interactive. For a grid with sixteen times the
image resolution the computation is still performed within two sec-
onds. If higher quality is needed, the system may slow down a bit.
Straight-forward parallelization of the implementation could easily
bring this below one second again. The thresholds can be visually
adjusted within our tool, since they have to be determined for each
subject. To ease this process we also provide also custom coloring
of the isolines. For ideas how we could automate the determination
of the thresholds we refer to Section 6.1.

3.2 Generating fiber stipples

As already mentioned, our visualization technique for probabilis-
tic tracts is inspired by anatomical textbook drawings. For exam-
ple the authors of Fiber Pathways of the Brain, Schmahmann and
Pandya [30], use series of short lines and dots to represent the direc-
tion of fibers traced in microscopy images as depicted in Figure 2.
We use line stipples similar to their traces to represent the main dif-
fusion direction from the DTI data together with the topology of
the scalar field from the probabilistic tracking (see Figure 1). This
visualzation employs the metaphor of a slab showing only sections
of fiber pathways lying in the slab. It thus mimics the short parts
of the fibers in the tissue slabs traced using the microscope. In the
following, we describe the generation of stipples.

We start with creating a two-dimensional regular grid on the
given slice. By default the resolution of this grid is set to the native

(a) (b)

Figure 6: (a) Gray matter and white matter boundary curves derived
from a T1 image. The T1 thresholds for gray matter and white matter
were determined visually as depicted in (b). Prominent structures
like the lateral ventricles or the superior frontal gyrus are easy to see
and support orientation.

resolution of the datasets. Still, users may change the resolution of
the grid in case they are interested in taking a closer look to a region
of interest. However the resolution is set, this two-dimensional grid
provides us with sample points for placing the lines stipples.

For each sample point and each tract, multiple line stipples may
be drawn. Regions of high probability will result in a high density
of line stipples, whereas regions with lower probability will exhibit
a lower density. We linearly vary the density from ten stipples per
cell down to zero in accordance with the probability. The placement
of the line stipples for each sample point is achieved by generating
jittered positions around the sample point inside its cell. We call
this jittered position a center point for a line stipple. Looking up the
probability and principal diffusion direction, that will determine the
color and shape of a line stipple, is performed separately for each
line stipple’s center point by trilinear interpolation.

To achieve a discriminative coloring for the probabilistic tracts,
we use the HSV color model [33] and uniformly distribute the tracts
along the hue circle. Despite this preset, the user can choose to se-
lect a custom coloring for each tract. This is convenient to increase
the contrast against the background (anatomical context) if neces-
sary. Finally, the opacity of each line stipple is used to emphasize
the tract’s probability at the given center point.

The shape of each line stipple is determined by the principal dif-
fusion direction at its center point. These directions are given as
a vector field derived from the second-order tensor field. The vec-
tor field consists of the eigenvectors corresponding to the largest
eigenvalues of the tensors. Since the center points are very un-
likely to lie exactly on the grid vertices, we obtain the diffusion
directions through component-wise interpolation. Unfortunately,
this will produce interpolation artifacts as can be seen in Figure 7a.
In oder to overcome those artifacts, we orient all eigenvectors into
the same half space as suggested by Hotz et al. [16]. This is pos-
sible because the main diffusion direction is only defined up to its
sign , meaning the eigenvectors v and −v are representing the same
diffusion direction. The improvement is shown in Figure 7b.

Once a diffusion direction vector is computed, it is scaled to the
size of a cell and projected onto the slice. Hence, a dot or a short
line represents a diffusion direction perpendicular or nearly perpen-
dicular to the slice, whereas a line with the length of the cell border
represents a diffusion direction parallel to or in the slice. To fur-
ther assist the user, in matching a line stipple’s shape to the diffu-
sion direction it represents, we provide a rendering of the slice grid
which can be displayed on demand as depicted in Figure 8. In oder
to achieve a smooth look, the line stipples’ shape is rendered with
round endings and a flat body as depicted in Figure 9a. The shape is
determined by two points specifying the length of the stipple and a
radius for its width. endings. The two points specifying the length



(a) (b)

Figure 7: Illustration of eigenvector interpolation artifacts (left) and
stipples with corrected interpolation (right).

Figure 8: Optional slice grid giving the user a reference for the maxi-
mum length of line stipples. It can help to understand how parallel or
orthogonal the represented direction is.

are given by the end points of the projected diffusion vector. As
can be seen in Figure 9b, we vary the radius: It is increased if the
line stipple’s shape tends towards a dot and decreased if it tends to-
wards a line. This produces a rendering where all stipples consume
an equivalent area. This is desired because all diffusion directions
are equally important. The area of a line stipple is given in Equa-
tion 1 and is set to fill a tenth of a cell area. This value is chosen
to provide good results with the above mentioned ten stipples per
cell. Solving Equation 1 for r, yields the radius needed to produce
a shape with the desired radius.

Aline stipple = r2
π +2rPQ (1)

In the renderings, the probability is represented by the opacity
as well as by the density of the line stipples, whereas the diffusion
direction is only represented by the shape of the stipples of equal
area. Sometimes, it is convenient to focus only on regions of higher
probability and fade out regions of lower probability. We therefore
provide a threshold slider that lets the user hide all line stipples
below the selected probability. Per default everything is shown.

Of course line stipples may overlap. However, compared to ten-
sor glyphs, this does not cause a problem because the stipples are
rendered in a semi-transparent fashion. Thus, overlapping stipples

P Q
r

(a) (b)

Figure 9: (a) The structure of the line stipple is controlled by the two
points P and Q and a radius r. The points P and Q are the endings of
the diffusion vector projection onto the slice. The radius r is implicitly
given by the area prescribed for the line stipple. (b) Different radii
realizing area preserving line stipples.

can still be distinguished while the overlap provides a more natu-
ral look of the visualization as it resembles a manual drawing of
stipples by a painter.

4 DATA

To illustrate this novel method we applied it to MRI data of six
healthy subjects. All structural data was acquired using Siemens
3-T Magnetom TRIO Scanners, located at the Max-Planck-Institute
for Human Cognitive and Brain Sciences (Leipzig, Germany) and
the Max-Planck-Institute for Neurological Research (Cologne, Ger-
many). Diffusion data was measured along 60 gradient directions
using a resolution of 1.72mm voxel size for up to 128× 128× 72
voxels. Each gradient direction was measured three times to in-
crease Signal-to-Noise ratio and therefore improve the robustness
of tensor reconstruction and tractography. In addition a high-
resolution T1-weighted image (1mm voxel size, 256× 256× 176
voxels) was acquired for each subject to provide anatomical con-
text. We use T1 images for that because they exhibit a high gray
matter/white matter contrast [23] facilitating the extraction of the
gray matter and white matter boundaries. After general prepro-
cessing (e.g. motion correction) the diffusion data was resampled
to 1mm voxel size, using the FSL software package [34]. Sub-
sequently second order diffusion tensors and their corresponding
major diffusion directions (principal eigenvectors) were derived on
this interpolated data. Finally tractograms with similar seed regions
for all subjects were created using the estimated diffusion tensors.
For reference purposes we also computed a fractional anisotropy
(FA) data set from the diffusion tensor image using the formula as
given by Basser and Pierpaoli [4, 28]. In a second (optional) prepro-
cessing step, the brains were extracted from their T1 images using
FSL-BET from the FSL software package. In order to combine all
data for visualization, all images of one subject must have the same
resolution and have to be aligned to each other. This was realized by
a linear registration of the T1 image into the diffusion space using
FSL-FLIRT from the FSL software package.

If the diffusion-weighted image is not axis aligned we register
all images to standard space MNI152 [25].

5 RESULTS

We applied fiber stippling to the data, as described in Section 4,
to show a single tract of a single subject in Figure 11 and multiple
tracts of a single subject in Figure 10. It has also been tested with all
other mentioned subjects and produced results of the same quality.
In Figure 12, fiber stippling is applied to different subjects with
different tracts to illustrate its robustness and flexibility.

As depicted in Figures 10, 11 and 12, the T1 boundary curves
give a clear and precise context. Prominent features like the ventric-
ular system and surface morphology (gyri, sulci) are well to discern.
If even more detailed context is needed for example in regions deep
inside the white matter, the plain T1 image or any other image can
be easily combined with fiber stippling. As depicted in Figure 11b
in the lower left, some times line stipples may break the boundary
curves due to small local error in the registration process. Those
artifacts appeared with linear as well as with nonlinear registration
methods. However, this is not a problem of our method but of the
preparation of the data. Such problems have to be solved by the
domain experts themselves because a good registration is also im-
portant for nearly all other combinations of different measurements
in research. Since the T1 intensities for the same tissue may vary
between subjects and measurements, the thresholds for the bound-
ary curves must be determined once for each image. In order to
assist the user we provide an interactive slider to align the curves to
an underlying T1 image.

Additionally, Figure 11f illustrates that fiber stippling is also able
to effectively visualize the topology of a probabilistic tractogram.



In Figure 10 this is not prominent, because the focus is set to re-
gions of higher probability values there. Since each tract uses just
one color, even complex tract configurations like tract crossings, as
depicted in Figure 10b, produce visually clear results as long as not
too many tracts are used. The limitation of the number of tracts is
a problem inherent in this type of illustration and is for example
also present in Figure 2 where regions may occlude each other. De-
spite that, line stipples may also overlap and produce more opaque
colored regions as if they were rendered solitary. However, this
does not happen often and only in regions of high density where
the probability is high anyway, so the representation of the topol-
ogy is preserved. Furthermore, fiber stippling also reflects the di-
rectional information from the underlying tensor field, thus aiding
understanding of tractography of a tract. With the jittered place-
ment of line stipples, it is possible that some of the stipples form
a short chain, producing the impression of a connected polyline.
As we apply a random jittering, this happens only rarely and has
no significant impact on the perceived directionality of the tract.
Finally, the choice of a custom resolution enables the user to get
a dense visualization (though only trilinearly interpolated) even for
small regions and ease the comparison of regions in close-up views.

The performance of fiber stippling is primarily bounded by the
resolution of the two-dimensional grid of each slice. Secondarily
it is bounded by the number of probabilistic tracts used. The more
tracts are used the more tracts must be checked for contributing line
stipples in the stipple creation phase. An HP(R) Workstation Z600
with Intel(R) Xeon(R) CPU E5620, 32GB RAM and an Nvidia(R)
Quadro FX 3800 graphics board with 1GB Memory served as test
system. The time of rendering itself did never contribute noticeably
to the overall runtime. Even with a mass of line stipples interaction
(e.g. rotation) can be performed in real time. With native voxel
size, anatomical context as well as line stipples need less than one
second to be created. With four tracts, each contributing many line
stipples, the whole process is done in about a second. If now the
resolution is increased 16-fold, the performance decreases but will
be below four seconds.

6 CONCLUSION

Fiber stippling, the illustrative technique for visualizing probabilis-
tic tractograms presented in this paper, allows for a new interactive
view on fiber pathways of the brain. The underlying metaphor of a
slab showing only sections of pathways lying in the slab is intuitive
and has already proven its usefulness in a widely used textbook that
inspired the present paper. Although the use of transparency and
stipple density is a direct consequence of the nature of the scalar
fields representing the probabilistic tractograms, i.e. the decrease
of the scalar (probability) from the seed point, the presented meth-
ods are directly applicable to scalar fields with other characteristics.
Scalar fields representing masks can be the basis for fiber stippling
visualization without any changes to the methods. Such masks can
represent very different features. Examples range from fiber bundle
volumes [13] to activations in functional MRI [6]. Fiber stippling
can also be used to illustrate fuzzy fiber bundle descriptions like the
one presented by Wassermann et al. [37].

We received very positive feedback from our collaborating neu-
roscientists. Actually, it was them who communicated a need for
such a visualization in the first place. Fiber stippling is already in
use in their daily work for discussing different tractography results
and producing images for their research reports.

6.1 Future Work

For the future we plan to extend our work from DTI to HARDI
(High Angular Resolution Diffusion Imaging) data. This will im-
prove the illustration of fiber crossings where we only show the
main diffusion direction at the moment. Compared to the textbook
illustrations our method does not provide any labels yet. We are al-

ready working on an automatic labeling as an extension of the pre-
sented work. Additionally we want to ease the process of choosing
the white matter and gray matter boundary thresholds with existing
segmentation algorithms, like FSL-FAST from the FSL software
package. Furthermore, we plan to improve the user interface of our
method to allow an easy use in the OpenWalnut framework even
for non-expert users. After publication of this article the described
method will be freely available in OpenWalnut.
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