
Management of XML Documents

in Object-Relat ional Databases

Thomas Kudrass, Matthias Conrad
Leipzig University of Applied Science,

Department of Computer Science and Mathematics, D-04251 Leipzig
kudrass@imn.htwk-leipzig.de matthias@conradius.de

Abstract. Many applications deal with complex XML documents that need
to be made persistent. We investigate the use of the object-relational mode-
ling approach that combines both the strengths of object oriented concepts
and relational DBMS technology provided by current DBMS vendors. As a
prerequisite, we analyze the document definition and generate the equivalent
object-relational database schema in SQL. We discuss the main issues when
mapping XML documents to an object-relational target schema with the ex-
ample of Oracle. The paper concludes with a summary of our experiences
with the object-relational approach for XML document mangement.

1 Motivation

One of the most important issues of the XML community is the mapping of XML doc-
uments to databases. XML provides the required flexibility for the data exchange in
heterogeneous information systems and for the development of content management
systems. It is undisputed that only database systems as storage platform can guarantee
the necessary features such as powerful and efficient search capabilities, transaction-
oriented storage und concurrency control. There are different approaches how XML can
be represented in database systems. These approaches can be classified according to the
data model of the target schema. Therefore, we distuinguish between relational, object-
oriented and native XML representation of XML documents in a database [1]. Another
aspect to describe the XML-to-database storage approach is the question of how generic
the mapping algorithms work. There is a number of relational transformation algo-
rithms, proposed by [5,9], that analyze the document structure only and map the data of
a document to generic tables, e.g., edge tables or attribute tables. Although these algo-
rithms are applicable for data-centric documents, they pose some serious limitations.
Among them is the high degree of decomposition of the source documents, which turns
the upload of a document into a large number of relational insert operations [6]. Another
limitation is the information loss as the result of using these algorithms. That affects in-
formation that is not considered data of a document - such as comments or processing
instructions. Other known transformation problems are the handling of mixed content

and external entities that have to be transformed properly when being transferred into
databases and vice-versa. This issue is known as round-trip problem.
Content-oriented approaches focus on the data of an XML document, i.e., the schema
of the document is the source of the definition of the database schema. Thus, the under-
lying methods analyze the document schema, typically defined by a DTD or an XML
Schema, and transform it according to a general algorithm into the corresponding data-
base structure. Some systems allow the user to intervene into the transformation by in-
dividual definitions. Many commercial users hesitate to invest into another DBMS to
deal with XML objects. Instead, they are interested in exploiting the full functionality
of relational database systems, which have been developed towards object-relational
systems. The blend of object-oriented concepts with the established relational database
technology is a promising platform for the storage of XML documents with any com-
plexity using the schema information. For it, we have built the prototype of a storage
system with Oracle (versions 8i and 9i) to evaluate the feasability of the available ob-
ject-relational technology for XML document management.
The paper is organized as follows: Section 2 gives an overview about the object-rela-
tional techniques as they are used for the modeling of XML documents. Section 3
presents the structure of the utility program XML2Oracle we developed to capture the
document definition. Section 4 discusses the main issues of the object-relational map-
ping methodology we had to deal with. Some special issues are treated in section 5. Sec-
tion 6 introduces the meta-data structures that support the mapping algorithms. In sec-
tion 7, we give an assessment of our experiences as conclusion about the feasibility of
the chosen approach.

2 Object-Relational Concepts - A Short Overview

2.1 Object Types
User-defined datatypes (UDTs) represent the most important object-oriented concept
provided by Oracle. They are very similar to the user-defined types as introduced in
SQL:1999 [7]. Since the implementation has been done on the Oracle platform, the used
SQL syntax from Oracle is a subset of the complete SQL3 standard.
An object type bundles three components: type name, attribute list, method list. The fol-
lowing example shows a simple object type without methods.

CREATE TYPE Type_Professor AS OBJECT(
PName VARCHAR(80),
Subject VARCHAR(120));

The statement above defines a datatype that can be used as domain of another attribute.
The result is a relational schema that is not in the first normal form because it may con-
tain non-atomic attributes that can be arbitrarily complex.

CREATE TYPE Type_Course AS OBJECT(
Name VARCHAR(100), // atomic domain
Professor Type_Professor); // non-atomic domain

There are two possibilities to create a table using object types:

A table can be defined as object table, i.e., the type of the tuples corresponds with the
object type. Object tables are treated like usual tables in SQL queries. The definition of
object tables can include constraints. In our example, the attribute PName is defined as
primary key. Note that the definition of a constraint is bound to the definition of the ta-
ble - not to the definition of the object type.

CREATE TABLE TabProfessor OF Type_Professor(
PName PRIMARY KEY);

Another way to create tables with object types is to use the object type as attribute do-
main as the following example shows:

CREATE TABLE Course_Offering(
Department VARCHAR(120),
Course Type_Course);

Using object-valued attributes, the SQL queries must use constructors, which have the
same name as the type and a list of parameters equivalent to the type attributes. The
following sample INSERT statement uses two constructors, Type_Course and
Type_Professor.

INSERT INTO Course_Offering
VALUES (’CS’, Type_Course (’CAD Intro’,

 Type_Professor (’Jaeger’,’CAD’)));

2.2 Collection Types
Oracle provides two kinds of collection types: arrays and nested tables. The SQL:1999
standard provides just arrays a the only collecton type.
The first collection type provided by Oracle is the array of variable length, denoted as
VARRAY. The array definition comprises the name of the array, the maximum length
and the domain of the elements. Note that there are some restrictions on arrays in Oracle
8. In Oracle 8, the element type must not be another collection type (array or nested ta-
ble) or a large object type. Oracle 9 eliminates this restriction and accepts any element
type in a collection. Although the array type enables the efficient storage of complex
values, they can only be retrieved or stored as a whole array in SQL. The following ex-
ample defines an array type, TypeVA_Subject. It consists of at most 5 VAR-
CHAR(200) elements that denote names of subjects taught at university.

CREATE TYPE TypeVA_Subject AS
VARRAY(5) OF VARCHAR(200);

The second available type of collection is nested table. Unlike VARRAYs, they enable
us to store an unlimited number of elements. A nested table can be defined as in the fol-
lowing example:

CREATE TYPE Type_TabSubject AS
TABLE OF VARCHAR(200);

CREATE TABLE TabProfessor (
Name VARCHAR(80),
Subject Type_TabSubject)

NESTED TABLE Subject STORE AS TabSubject_List;

In this example, a table type, Type_TabSubject, is defined whose elements are
strings of no more than 200 characters. The table elements can be of a user-defined ob-
ject type or a large object type. This table type is used as domain of the attribute Sub-
ject in the table TabProfessor. The STORE AS clause determines to store the
content of the table-valued attribute Subject in TabSubject_List, a sepa-
rate table. Nested tables are managed by the DBMS using internal foreign keys.

2.3 Object References
Oracle supports the concept of object identifiers that are managed for row objects, i.e.,
objects of object tables. Therefore, object identifiers can be used as references to row
objects. For that purpose a new data type, REF, has been introduced in Oracle to estab-
lish relationships between objects, analogously to the foreign key relationship in the re-
lational model. The following example defines a relationship between course and pro-
fessor, assuming that a course is offered by (exactly) one professor.

CREATE TYPE Type_Course AS OBJECT(
Name VARCHAR(200),
Prof_Ref REF Type_Professor);

CREATE TABLE TabCourse OF Type_Course;

All referenced objects must be of the same object type, but can be stored in different
tables. Thus, the usage of REF to define relationships is more flexible than foreign keys,
which are restricted to two tables. On the other hand, there is a useful construct (SCOPE
FOR) that defines the table which a referenced object can belong to. Scoped values can
be dereferences. The REF concept of Oracle complies with the SQL:1999 standard.

3 Capturing the XML Document Information

A prerequisite to store an XML document in an object-relational database is the defini-
tion of a data structure that is appropriate for the document structure. To capture the
XML document information we wrote the program XML2Oracle with a graphical user
interface [3]. This program analyzes both the XML document and the corresponding
DTD using two parsers. One parser analyzes the XML document and checks well-
formedness and validity of the document. The second - non-validating - parser analyzes
the DTD only and transforms it into a DTD Document Object Model (DOM). The XML
parser used in our program is provided in the Oracle XML Developers Kit (XDK) [11].
Among the few available DTD parsers we chose the parser by Wuttka [10].
Figure 1 represents the function of XML2Oracle and the use of both parsers.
XML2Oracle produces two DOM trees that represent the logical structure of the docu-
ments. The DOM tree for the XML documents shows the elements and their values as
well as the attributes and their values. The DTD is also represented in a tree structure
considering constraints, such as occurrence and optionality of elements. The DTD tree
representation is the precondition for the definition of the database schema. Appendix
A shows a sample document that is used throughout the paper.

4 Mapping XML Documents to Object-Relational Databases

The DTD tree representation is the input for the generation algorithm producing an SQL
script. This script can be executed afterwards without any modification to create and
populate the database tables and representing XML documents. The overall structure of
the mapping procedure is shown in figure 2.

XML V2 Parser DTD Parser

XML Document

Processing of XML / DTD

Well-Formedness /
Validity Check

XML2Oracle

XML DOM Tree DTD DOM Tree

DBMS Oracle

JDBC / ODBC

Syntax Check

Figure 1 Parsing DTD and XML in XML2Oracle

Element

Simple (4.1)

Iteration (4.2) Iteration (4.2)

Complex (4.1)

Optional (4.3) Mandatory (4.3)

Attribute (4.4)

Simple

Iteration

IMPLIED

REQUIRED

Node

Figure 2 Overall Structure of the Mapping Algorithm

Each case to be treated is marked with the corresponding subsection number. A node
of the tree represents either an element or an attribute in the XML document. We dis-
tinguish simple elements and elements that can be decomposed into subelements (com-
plex elements). The multiple occurrence and the optionality of the elements have to be
considered as well when deriving the equivalent database definition. The algorithm
works for all possible combinations of the cases mentioned above.

4.1 Mapping of Elements

Simple Elements
Simple elements contain character data; they are assigned the #PCDATA type in a
DTD. An element that consists of simple subelements only can be represented in an ob-
ject-relational database as follows: First, an object type is defined with a name derived
from the parent element, using some predefined naming conventions (see section 5). All
subelements of type #PCDATA are represented as attributes of the object type. The at-
tribute domain is defined as VARCHAR. The name of an attribute is determined by the
name of the corresponding subelement. Secondly, that object type is used as the tuple
type for the table that is created with it. Due to the lack of element datatypes in a DTD
there is no way to restrict the type of the table attributes. For that reason, our mapping
schema generates VARCHAR(4000) as default attribute type in order to avoid value as-
sigment conflicts. However, the limitation of the string length is a serious restriction re-
garding XML documents with chunks of unstructured text, particularly document-ori-
ented documents.

Complex Elements
It has been shown that the relational mapping of complex elements leads to an enor-
mous decomposition of the documents into tables, sometimes termed shredding. The
relational approach becomes worse if the elements are nested repeatedly. Therefore, we
pursue the idea of a one-to-one mapping of an XML document into a complex database
object representing its content and logical structure. The basic idea of our mapping al-
gorithm is as follows: For each element type in a DTD, a corresponding object type is
created in the database. Hence, subelements of an element are represented as attributes
of the equivalent object type. If a subelement is of type #PCDATA, the domain is cre-
ated as for simple elements. If the subelement contains further subelements, a new ob-
ject type is defined that is used as domain for the attribute that represents the parent sub-
element.
The aggregation of SQL object types enables an XML document of any nesting depth
to be mapped to an object-relational database. The result is a relation that is composed
of object types that may be composed of other object types. It reflects the logical struc-
ture of the source XML document.
The advantage of the object-relational schema becomes obvious when executing IN-
SERT and SELECT statements. In our example, the insertion of an XML document
would produce three separate INSERT statements, which would also require the crea-

tion of primary keys. Using an object-relational approach requires a single INSERT
query for one document as the following example shows:

The element data to be stored are passed to the appropriate constructor method.
The advantages of the object-relational representation also become evident when infor-
mation has to be retrieved from the document. The object structure can be traversed us-
ing the dot notation without executing join operations.

The sample query above retrieves the family names of students who have subscribed to
a course of Professor Jaeger.

4.2 Iteration Operators
The multiple occurrence of XML elements can be marked with a ’*’ or a ’+’ operator
in the DTD, denoted as set-valued elements. The representation of set-valued elements
can be implemented by collection types in an object-relational DBMS. However, some
workaround solution is necessary in systems which only provide limited set type con-
structors, such as Oracle 8.
Collection type constructors can easily be applied to set-valued elements with text-val-
ued subelements as the following example shows. There are two alternatives: nested ta-
bles and arrays.

<!ELEMENTProfessor(PName,Subject+,Department)>
<!ELEMENTSubject (PCDATA)>

The usage of the Oracle8 collection types is not possible for set-valued subelements in
Oracle 8 due to the type restrictions (cf. section 2.2).
For each complex object that contains a ’+’ or ’*’ operator, an individual object type is
created with the same name as the corresponding element type in the DTD. Its subele-

INSERT INTO TabUniversity
VALUES (’Computer Science’,

 Type_Student(’23374’,’Conrad’,’Matthias’,
 Type_Course(’CAD Intro’,
 Type_Professor(’Jaeger’,’CAD’,’Computer Science’),
 ’4’))));

SELECT S.attrLName
FROM TabUniversity S
WHERE S.attrStudent.attrCourse.attrProfessor.attrPName

 = ’Jaeger’;

CREATE TYPE Type_Subject AS
TABLE OF VARCHAR(4000);

CREATE TABLE TabProfessor(
...attrSubject Type_Subject,
...)
NESTED TABLE attrSubject ...;

CREATE TYPE TypeVA_Subject AS
VARRAY(9) OF VARCHAR(4000);

CREATE TABLE TabProfessor(
...attrSubject TypeVA_Subject,
...);

ments are represented as attributes of the object type provided that they are not set-val-
ued and complex. A relationship between the parent element and its set-valued complex
subelement can be expressed as reference, which appears as REF attribute in the object
type definition that represents the subelement. The reference to another object type re-
quires the existence of an object table of that type because the reference relationship is
established between OIDs, which are properties of objects. Therefore, a one-to-many
relationship can be mapped to a REF-valued attribute pointing to the parent element,
analogously to the foreign key relationship between relations. The approach of using
REF attributes proves weak when dealing with many-to-many relationships because
that would require the introduction of additional object types - analogously to the rela-
tionship table.

Example
Another drawback of the modeling alternative above appears when the database is pop-
ulated from XML documents: Since XML elements do not have a user-defined identi-
fier, it is hard to generate the appropriate INSERT statements. For them, the identifier
of the object to be referenced has to be retrieved. This may require querying all at-
tributes of an object to identify the object that takes part in the relationship. We intro-
duced an additional unique attribute for the sole purpose of simplifying the generation
of INSERT operations that establish relationships with other elements.
With Oracle 9i it is now possible to create arbitrarily nested collection types, which
would solve the problems of set-valued elements as described above[4].

CREATE TYPE TypeVA_Course AS
 VARRAY(100)OF Type_Course;
CREATE TYPE TypeVA_Professor AS
 VARRAY(100)OF Type_Professor;
CREATE TYPE TypeVA_Subject AS
 VARRAY(100)OF VARCHAR(4000);
CREATE TYPE Type_Professor AS OBJECT(

attrPName VARCHAR(4000),
attrSubject TypeVA_Subject,
attrDept VARCHAR(4000));

CREATE TYPE Type_Course AS OBJECT(
attrName VARCHAR(4000),
attrProfessor TypeVA_Professor,
attrCreditPts VARCHAR(4000));

CREATE TYPE Type_Student AS OBJECT(
attrStudNr VARCHAR(4000),
attrLName VARCHAR(4000),
attrFName VARCHAR(4000),
attrCourse TypeVA_Course);

CREATE TABLE TabUniversity(
attrStudyCourse VARCHAR(4000),
attrStudent TypeVA_Student);

In our prototype, we chose the VARRAY collection type; nested tables work in nearly
the same manner. Thus, the implementation of complex elements works as follows: For
each set-valued element of a DTD, a VARRAY collection type is created and named
according to predefined conventions - as our example shows. Complex elements and
their children are represented by object types and their attributes. The resulting object
type can be used as domain of elements in an array type. For example, an array type
TypeVA_Professor with elements of type Type_Professor is defined for the
document element Professor. This array is assigned to the attribute attrProfes-
sor within the object type Type_Course. Thus, it is possible to express a many-to-
many relationship between professor and course by using set-valued attributes in both
objects. The use of nested collection types saves the work with explicit references to
represent relationships. The effect is a more natural modeling of an XML document in
an object-relational system. The intermediate tree representation of the document type
definition produced after the analysis step can be represented as the definition of only
one table with simple, complex and set-valued attributes. The data of complex subele-
ments that will be stored in objects within the table are passed via constructor methods
called within the INSERT statement. Thus, an INSERT operation to fill the database ta-
ble from the document’s top element looks as following:

INSERT INTO TabUniversity VALUES(’Computer Science’,
 TypeVA_Student(
 Type_Student(’23374’,’Conrad’,’Matthias’,
 TypeVA_Course(
 Type_Course(’Database Systems II’,

 TypeVA_Professor(
 Type_Professor(’Kudrass’,
 TypeVA_Subject(’Database Systems’,

’Operat. Systems’),
 ’Computer Science’)),’4’),
 Type_Course(’CAD Intro’,
 TypeVA_Professor(

 Type_Professor(’Jaeger’,
 TypeVA_Subject(’CAD’,’CAE’),

’Computer Science’)),’4’),
 ...)),

 Type_Student(’00011’,’Meier’,’Ralf’,...)...)
 ...);

Note that the SQL:1999 standard - like Oracle 8 - excludes the nesting of arrays, which
would aggravate a solution as shown above.

4.3 Not-Null Constraints
XML supports the concept of null values through optional element types and attributes.
If the value of an optional element type or attribute is null, it is not included in the doc-
ument. Optional elements are defined with the operators ’?’ (zero or one) or ’*’ (zero
or many). XML attributes can be defined as #IMPLIED in the DTD. In those cases a
document is still valid when the element or attribute value does not occur. Such ele-

ments or attributes have to be mapped to nullable columns - the default for every non-
prime attribute of a relation.
Elements that are not characterized as optional or set-valued elements defined with the
’+’ operator are considered mandatory in the DTD. The same applies to attributes that
are defined as #REQUIRED. The corresponding attributes in the database have to be
defined as NOT NULL attributes. Note that constraints (such as NOT NULL) can only
be defined in the object table - not in the definition of the object type. The current re-
strictions for constraints affect the definition of set-valued and object-valued attributes.
Set-valued attributes cannot be defined as NOT NULL altogether. It is only possible to
prohibit null values in inner attributes of complex attributes using CHECK constraints.
However, also CHECK constraints can only be defined in a table or object table.
The following example illustrates the problems when using CHECK clauses
for NOT NULL constraints:

<!ELEMENT Course (Name,Address?)>
<!ELEMENT Address (Street,City?)>

CREATE TYPE Type_Address AS OBJECT
attrStreet VARCHAR(4000),
attrCity VARCHAR(4000));

CREATE TYPE Type_Course AS OBJECT
attrName VARCHAR(4000),
attrAddress Type_Address);

CREATE TABLE TabCourse OF Type_Course(
attrName NOT NULL,

CHECK (attrAddress.attrStreet IS NOT NULL));

According to the DTD, the subelement Address is optional in the XML document. If
the Address element exists in the document, then its subelement street must exist
as well. The following INSERT statement produces a desired error message because it
is not allowed to create a new address with a city but without a street.

INSERT INTO TabCourse
VALUES(’CAD Intro’,Type_Address(NULL,’Leipzig’);

Let’s assume a new course is inserted into the TabCourse table without any address
data:

INSERT INTO TabCourse
VALUES(’Operating Systems’,NULL);

The second INSERT statement conflicts with the declaration in the DTD and produces
also an error message. Since the element Address does not exist, the corresponding
object attribute is assigned a NULL value. However, the DBMS checks for the exist-
ence of the attribute attrStreet within the attribute attrAddress, which results
in a non-desired error message. Therefore, the use of CHECK constraints for optional
complex element types is not recommendable. The provided modeling features of Ora-
cle do not allow to define NOT NULL constraints for subelements of complex element
types that are optional. Likewise, NOT NULL constraints cannot be applied to collec-
tion types.

4.4 Mapping of Attributes
Attributes can be defined with some additional information in XML. The main differ-
ence between attributes and elements is that attributes cannot be nested. Instead, they
are assigned string values only. Possible types of attributes are: ID, IDREF, CDATA,
and NMTOKEN.
XML attributes are treated like simple elements when being stored in a database. Since
an XML attribute is just a string, it is mapped to an attribute of a table or an object type
with the VARCHAR datatype assigned. Attributes that are defined as #REQUIRED are
represented as NOT NULL columns in the database.

<!ATTLIST StudentNr SNumber CDATA #REQUIRED> //DTD Def.

CREATE TYPE Type_StudentNr AS OBJECT(//DB Def.
attrSNumber VARCHAR(4000),
...);

CREATE TABLE TabStudent OF Type_Student(
attrSNumber NOT NULL,
...);

In order to keep the relationship between element and attribute in the generated database
schema, an object type is defined that stores both the element and the attribute. Thus,
the resulting object type is assigned the simple element - unlike simple elements with-
out any attributes (cf. section 4.1). The mapping methodology is illustrated with the fol-
lowing example:

If an element is described in more detail by attributes in the DTD, then an object type
is created for the attribute list with a name according to our naming conventions (see
section 5). The attributes of the object type are derived from the XML attribute list.
Elements can reference other elements identified by an ID attribute through IDREF at-
tributes. A mapping of those attributes into simple VARCHAR database columns
would ignore their semantics. Instead, IDREF attributes must be represented as REF-
valued columns in the database pointing to the referenced element. The target element
is stored in an object table; its ID attribute is mapped to a VARCHAR column. This
mapping rule requires determining in advance which ID attribute is referenced by an
IDREF value. This kind of information cannot be captured from the DTD, rather from
the XML document.

<!ELEMENT A (B,...)
<!ELEMENT B (PCDATA)>
<!ATTLIST B

C CDATA IMPLIED
D CDATA IMPLIED>

CREATE TYPE TypeA AS OBJECT(
attrB TypeB,
...);

CREATE TYPE TypeB AS OBJECT(
attrB VARCHAR(4000),
attrListBTypeAttrL_B);

CREATE TYPE TypeAttrL_B AS OBJECT(
attrC VARCHAR(4000),
attrD VARCHAR(4000));

5 Meta-Data about XML Documents

The object-relational mapping algorithms, as they are used in our system, cause some
loss of information. So it cannot be determined if a table column or an object type has
been derived from an element or an attribute in the source XML document. Another
problem is the generation of names in the target database. It must be avoided that ele-
ment names may conflict with SQL keywords (e.g., ORDER). Further, the uniqueness
of the generated names of database objects has to be guaranteed. The introduction of
naming conventions for the generation of the database schema helps to distinguish be-
tween identical names stemming from different document types. Table 1 shows the
naming conventions used in XML2Oracle.

In addition, XML2Oracle maintains a meta-table during the transformation to capture
information about the source XML document. Each XML document to be stored is as-
signed a unique DocID to identify it in the database. Further meta-information regard
document name, DocName, document location, URL, and prolog information, such as
the character set. The structure of the meta-table looks as follows:

TabMetadata (DocID: INTEGER, DocName: VARCHAR,
URL: VARCHAR, SchemaID: VARCHAR, NameSpace: VARCHAR,
XMLVersion: VARCHAR, CharacterSet: VARCHAR,
Standalone: CHAR, DocData: TypeVA_DocData, Date: DATE)

The attribute DocData represents an array of DocData objects:

Naming Convention Object Semantics

TabElementname Name of a table

attrElementname Name of a DB attribute derived from a simple XML
element (table or object type column)

attrAttributename Name of a DB attribute derived from an XML
attribute (table or object type column)

attrListElementname Name of a database attribute that represents an XML
attribute list

IDElementname Name of a primary key or foreign key attribute

Type_Elementname Name of an object type derived from an element name

TypeAttrL_Elementname Name of an object type generated for an attribute list

TypeVA_Elementname Name of an array

OView_Elementname Name of an object view

Table 1: Naming Conventions in XML2Oracle

Type_DocData (XML_Type: String, XML_Name: String,
DB_Name: String, DB_Type: String, NameSpace: String)

The meta-table solves the naming issue for elements by inserting a schema identifier
that is generated for each newly created schema by XML2Oracle. That SchemaID is
combined with the naming conventions to generate unique names of tables and object
types. SchemaIDs are necessary to deal with identical element names from different
DTDs. Those elements may have different subelements, which would result in errors
when generating the database schema. Note the restriction imposed by a DBMS regard-
ing the maximum name length of identifiers (e.g., Oracle accepts only 30 characters).
Another choice to deal with synonymous elements is the usage of namespaces. A name-
space can be defined for a single element or a whole document. Accordingly, the name-
space definitions are stored in the meta-table as well. The attribute DocData has been
introduced to capture whether an attribute in the database has been derived from an
XML element or an XML attribute (attribute XML_Type). Furthermore, information
about its naming (DB_Name) and its type (DB_Type) are stored.

6 Special Issues

6.1 Representation of Entities
Entity references can be inserted into documents. XML2Oracle expands them at their
occurrences so that the expanded entities are stored in the database. Therefore, the in-
formation about the original entity definition has been lost. Also, a problem arises with
how to store markup characters that are not used for markup. These are stored using the
lt, gt, amp, quot, and apos entities. The XML parser (e.g., the parser used in
XML2Oracle), transforms those entity references into the corresponding character lit-
erals that are stored in the database. So it is not possible to retrieve the original docu-
ment from the database. A solution for that issue is to extend the meta-database by in-
formation about the entities. For them, an object type could be defined which comprises
both entity reference and substitution text. The information about internal entities de-
fined in the DTD can be captured from the output of the DTD parser used in
XML2Oracle. When the document is retrieved from the database the characters can be
replaced by the original entity references that can be found in the meta-table.

6.2 Non-hierarchical and Recursive Relationships
The usage of a tree as an intermediate data structure implies restrictions for some doc-
uments. Recursive relationships between document elements cannot be adequately rep-
resented in a tree. The same applies to elements with multiple parents as the example in
figure 3 shows:
An element that occurs more than once with different parent elements in the DTD is rep-
resented repeatedly as node in the generated DTD tree, for example the element Ad-
dress. In such cases a graph should be the preferred data structure.
A DTD can be designed in such a way that an element can be part of any other element.
Hence, recursive relationships between elements may occur. The schema generation al-
gorithm applied in XML2Oracle is not appropriate for this kind of recursion because it
would execute infinite loops. Therefore, we describe a methodology to cope with recur-

sive relationships. The basic idea is to use REF-valued attributes to treat recursion as
illustrated here:

<!ELEMENT Professor
 (PName,Address,Course*,Subject?,Dept)>

...
<!ELEMENT Dept (DName,Professor*)>

The complex element Professor comprises - among others - the subelement Dept.
This element is complex itself and contains the element Professor as subelement.
To implement this structure in an object-relational DBMS, an object type has to be defined
for the element Professor. It comprises an attribute attrDept (derived from the
subelement Dept) that is assigned the object type Type_Dept. That object type itself
contains a collection-typed attribute attrProfessor (e.g., nested table) because
Professor is a set-valued subelement of Dept. The nested table stores only references
to the object type. Note that an object table has to be created for the object type
Type_Professor because references can only point to objects of an object table.

Since all types are related, the deletion of any type must be propagated to all dependents
by using DROP FORCE statements in SQL.

Figure 3 Mapping of Non-Hierarchical Relationships

<!ELEMENT Professor(PName,Address,Student)>
<!ELEMENT Address (Street,City)>
<!ELEMENT Student (Address,SName)>
<!ELEMENT PName (#PCDATA)>
<!ELEMENT SName (#PCDATA)>
<!ELEMENT Street (#PCDATA)>
<!ELEMENT City (#PCDATA)>

DTD Parser

CREATE TYPE Type_Professor;
CREATE TABLE TabRefProfessor AS

TABLE OF REF Type_Professor;
CREATE TYPE Type_Dept AS OBJECT(

attrDName VARCHAR2(4000),
attrProfessorTabRefProfessor);

CREATE TYPE Type_Professor AS OBJECT(
attrPName VARCHAR2(4000),
attrDept Type_Dept);

6.3 Using Object Views
Besides supporting the creation of tables with object types as structured column values,
Oracle also supports the creation of database views that can deliver structured rows of
data. Database views can be used in combination with user-defined object types to cre-
ate structured logical views based on one or more tables or views [8]. Let’s assume a
relational schema has been generated from the DTD as it has been described in known
mapping algorithms [2].
The following example shows an object view representing data of a relational schema
- without considering set-valued elements.

CREATE VIEW OView_University AS
SELECTType_University(u.attrStudyCourse,
 Type_Student(s.attrStudNr, s.attrLName,

 s.attrFName,
 Type_Course(c.attrName,
 Type_Professor
 (p.attrPName,p.attrSubject,p.attrDept))))
 AS University
FROM tabUniversity u, tabStudent s,
 tabCourse c, tabProfessor p
WHEREs.IDStudNr = c.IDStudNr AND

 c.IDCourse = p.IDCourse;

We begin by creating user-defined types from the given DTD according to the methodology
described in section 4. Next, we create an object view, OView_University, to su-
perimpose the correct logical structure on top of a join of four physical tables with in-
formation about students, courses and professors. It uses the Type_University()
constructor to create instances of Type_University()objects. In the same way, it
uses the Type_Student() constructor to create instances of Type_Student objects
within Type_University. Nested as an attribute to the Type_Student() con-
structor is the Type_Course() constructor to create an instance of Type_Course.
The same applies to the Type_Professor() constructor that is nested within the
Type_Course() as well. Object views can be applied in template-driven mapping
procedures, i.e., SELECT queries on the object view can be embedded into XML template
documents. This can be exploited by software utilities that transfer data from object-re-
lational databases to XML documents.
In order to transform a simple set-valued element represented as a separate table in the
relational model into a collection object type, the collection is dynamically computed
using the keywords CAST and MULTISET. The following example shows a piece of
the resulting view for the set-valued element Subject that is assigned to each Pro-
fessor element in the DTD.

...Type_Professor (p.attrPName,
CAST (MULTISET (SELECT s.attrSubject

 FROM tabSubject s
 WHERE p.IDProfessor = s.IDProfessor)

 AS TypeVA_Subject), p.attrDept), ...

7 Conclusions and Future Work

We have presented a number of mapping techniques that can be deployed to represent
an XML document in an object-relational DBMS. The algorithms use the document
schema information as they are stored in a DTD. We discovered advantages and draw-
backs of using the object-relational approach for the transformation of DTDs.
Advantages:

• user-defined datatypes as adequate representation of document elements
• allows non-atomic domains, more natural representation of XML documents of

any complexity
• multiple nesting of XML elements
• simple database queries by using dot notation, tight correspondence with XPath

expressions
• uniform identity of every element in the database by object identifiers
• relationships between elements via object references (REF-valued attributes)

Drawbacks:
• set-valued complex elements cannot be mapped to collection types due to system

limitations (Oracle 8i only), the same applies to the SQL:1999 standard
• NOT NULL constraints cannot be adequately expressed
• usage of references does not preserve the order of elements
• distinction between element and attribute requires additionally the maintenance

of metadata
• loss of document information: comments, processing, instructions,entity refer-

ences, prolog
• little flexibility in case of changes to the DTD, any change implies the adaptation

of the database schema
• no type concept in DTDs -> simple elements and attributes can only be assigned

the VARCHAR datatype in the database
• restricted maximum length of the VARCHAR datatype

Our work has shown that it is not necessary to purchase another - native XML - DBMS
in order to manage XML documents in databases, provided that the available relational
DBMS is enhanced by the necessary object-relational extensions. Our prototype imple-
mentation has revealed the strengths of the object-relational approach regarding the
structural complexity, but also some weaknesses that could be overcome by further ef-
forts in the future. One of the main limitations is caused by the lack of definition capa-
bilities in a DTD. Hence, one of the next tasks is to start with the analysis of documents
with XML Schema, which provides more advanced concepts (such as element types).
For the intermediate representation of XML documents a graph structure should be pre-
ferred in order to cope with recursive relationships. To store text elements in the data-
base some more flexibility is required beyond the available VARCHAR datatype. Large
text elements should be assigned the CLOB type. Our approch as we presented in this

paper can be developed further by enhancing the meta-database to consider comments,
processing instructions, entity references and their location within the document.
The use of an object-relational DBMS as storage engine for XML documents supports
the coexistence of different storage models. XML datatypes currently provided by RD-
BMS vendors focus mainly on the implementation of XML documents as CLOBs
(Character Large Objects). Therefore, we have to investigate the extended XML sup-
port announced for Oracle 9i; the Release 2 (XML DB) uses the object-relational ap-
proach in a very similar way as we have proposed here. Our work has proved that there
are more alternatives to make use of object-relational database technology with a broad
range of storage choices and query capabilities. In particular, data-centric applications
that exchange structured data can benefit from our work.

Acknowledgement

This work has been funded by the Saxonian Department of Science and Art (Säch-
sisches Ministerium für Wissenschaft und Kunst) through the HWP program.

References

[1] R. Bourret: XML and Databases, 2000.
http://www.rpbourret.com/xml/XMLAndDatabases.html

[2] R. Bourret: Mapping DTDs to Database, 2001.
http://www.rpbourret.com/xml/index.htm (on: http://www.xml.com).

[3] M. Conrad: Speicherung von XML-Dokumenten mit bekanntem Schema in objektrelatio-
nalen Systemen am Beispiel Oracle, Diplomarbeit (German), HTWK Leipzig, 2001.

[4] B. Chang, M. Scardina, S. Kiritzov: Oracle 9i XML Handbook. Maximize XML-enabled
Oracle 9i, Oracle Press Osborne/Mc Graw Hill, 2001.

[5] D. Florescu, D. Kossmann: Storing and Querying XML Data using an RDBMS,
Data Engineering, Sept. 1999, Vol.22, No.3.

[6] T. Kudrass: Management of XML Documents without Schema in Relational Database
Systems, OOPSLA Workshop on Objects, <XML> and Databases, Tampa, Oct. 2001.

[7] J. Melton, A. Simon: SQL:1999 - Understanding Relational Language Components. Mor-
gan Kaufmann, 2001.

[8] S. Muench: Building Oracle XML Applications, O’Reilly & Associates, 2000.
[9] J. Shanmugasundaram et. al: Relational Databases for Querying XML Documents:

Limitations and Opportunities, Proc. 25th VLDB conference, 1999.
[10] M. Wutka: DTD Parser, 2001, http://www.wutka.com/dtdparser.html
[11] Oracle Corp. XML Developers Kit, http://www.oracle.com/xml

Appendix A: Sample Document

<!ELEMENT University (StudyCourse,Student*)>
<!ELEMENT Student (LName,FName,Course*)>
<!ATTLIST Student StudNr CDATA #REQUIRED>
<!ELEMENT Course (Name,Professor*,CreditPts?)>
<!ELEMENT Professor (PName,Subject+,Dept)>
<!ENTITY cs "Computer Science">
<!ELEMENT LName(#PCDATA)>
<!ELEMENT FName(#PCDATA)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT PName(#PCDATA)>
<!ELEMENT Subject (#PCDATA)>
<!ELEMENT Dept (#PCDATA)>
<!ELEMENT StudyCourse (#PCDATA)>

Figure 4 Sample Document

Element Attribute Element Value Attribute Value Occurrence Property Entity

	Management of XML Documents in Object-Relational Databases
	1 Motivation
	2 Object-Relational Concepts - A Short Overview
	2.1 Object Types
	2.2 Collection Types
	2.3 Object References

	3 Capturing the XML Document Information
	4 Mapping XML Documents to Object-Relational Databases
	4.1 Mapping of Elements
	4.2 Iteration Operators
	4.3 Not-Null Constraints
	4.4 Mapping of Attributes

	5 Meta-Data about XML Documents
	6 Special Issues
	6.1 Representation of Entities
	6.2 Non-hierarchical and Recursive Relationships

	7 Conclusions and Future Work

