
Submitted to:
WLP 2016

c© S. Brass & H. Stephan
This work is licensed under the Creative Commons
Attribution-Noncommercial-No Derivative Works License.

Experiences with Some Benchmarks for Deductive Databases
and Implementations of Bottom-Up Evaluation

Stefan Brass Heike Stephan
Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg, Germany

brass@informatik.uni-halle.de stephan@informatik.uni-halle.de

OpenRuleBench [14] is a large benchmark suite for rule engines, which includes deductive databases.
We previously proposed a translation of Datalog to C++ based on a method that “pushes” derived
tuples immediately to places where they are used. In this paper, we report preformance results of
various implementation variants of this method compared to XSB, YAP and DLV. We study only a
fraction of the OpenRuleBench problems, but we give a quite detailed analysis of each such task and
the factors which influence performance. The results not only show the potential of our method and
implementation approach, but could be valuable for anybody implementing systems which should be
able to execute tasks of the discussed types.

1 Introduction

With deductive database technology, the range of tasks a database can do is increasing: It can not only
fetch and compose data, as classical SQL queries, but a larger part of the application can be specified
declaratively in a pure logic programming language. It is common that database systems offer stored
procedures and triggers today, but this program code is written in an imperative language, not declara-
tively as queries in SQL. In addition, still other (non-declarative) languages are used for the application
development itself. It is the claim of deductive databases like LogicBlox [1] to unify all this.

Making deductive databases a successful programming platform for future applications has many
aspects, including the design of language features for declarative, rule-based output (see, e.g., [6]). But
improving the performance of query evaluation / program execution is still an important task. Some
older deductive database prototypes have been not very good from the performance viewpoint. Typically,
people who are not yet convinced of the declarative approach ask about performance as one of their first
questions. Furthermore, the amount of data to be processed is constantly increasing. New processor
architectures offer new opportunities, which may not be utilized in old code.

Benchmarks can be a useful tool to evaluate and compare the performance of systems. Further-
more, they can be motivating for new system developers. In the area of deductive databases, Open-
RuleBench [14] is a well-known benchmark suite. It is a quite large collection of problems, basically
12 logic programs, but some with different queries and different data files. The original paper [14] con-
tains 18 tables with benchmark results. The logic programs used for the tests (with different syntax
variants and settings for different systems), the data files and supporting shell scripts can be downloaded
from

http://www3.cs.stonybrook.edu/~pfodor/openrulebench/download.html

The tests have been re-run in 2010 and 2011, the results are available at:

http://rulebench.semwebcentral.org/

http://creativecommons.org
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www3.cs.stonybrook.edu/~pfodor/openrulebench/download.html
http://rulebench.semwebcentral.org/


2 Experiences with Benchmarks for Deductive Databases

In this paper, we look at only five of the benchmark problems, but in significantly more detail than
the original OpenRuleBench paper. We are currently developing an implementation of our “Push”-
method for bottom-up evaluation [5, 7], and would like to document and to share our insights from
many preformance tests with different variants. We compare our method with XSB [18], YAP [10],
and dlv [13]. It is also of some value that we did these measurements again five years later with new
versions of these systems on a different hardware. We also put more emphasis on the loading time and
overall runtime than the authors of the original OpenRuleBench paper [14]. In addition, we did some
measurements on main memory consumption.

As we understand the rules of OpenRuleBench, the options for each benchmark and system were
manually selected in cooperation with the system developers. This means that a good automatic op-
timization does not “pay off” in the benchmark results, although it obviously is of importance for the
usability of the system. However, this also helps to separate two different aspects: The basic performance
of program execution and having an intelligent optimizer, which finds a good query execution plan and
index structures. For systems that allow to influence query evaluation with many options, the optimizer
becomes less important for the OpenRuleBench results.

Since our query execution code is in part manually created and we still try different data structures,
this can be seen as an extreme case of the manual tuning. It is our goal to test and demonstrate the
potential of our approach, but we are still far from a complete system. Naturally, before investing maybe
years to develop a real deductive database system, it is good to see what can be reached, and whether it
is worth to follow this path.

In contrast, each of the three systems we use as a comparison has been developed over more than
a decade. They are mature systems which offer a lot of programming features which are important
for usage in practical projects. Although our performance numbers are often significantly better, our
prototype could certainly not be considered as a competitor for real applications.

Our approach is to translate Datalog (pure Prolog without function symbols) to C++, which is then
compiled to native code by a standard compiler. We have an implementation of this translation (written
in Prolog), and a library of data structures used in the translated code written in C++:

http://www.informatik.uni-halle.de/~brass/push/

At the moment, the result of the translation must still be manually copied to a C++ class frame, and
compiler and linker are manually executed, but it should be an easy task to automize this. The tests
reported in the current paper discuss different code structures, therefore it seemed better to first find the
optimal structure before programming the complete translation. However, the current implementation of
the Datalog-to-C++ translation already generates different variants of the main query execution code.

XSB compiles into machine code of an abstract machine (XWAM) and interprets that code. The
same is true for YAP [10] (the abstract machine is called YAAM). DLV probably uses a fully interpreted
approach. Since we compile to native code, this obviously gives us an advantage. If one compares the
numbers given in [9] for Sicstus Prolog native code vs. emulated bytecode, the speedup for native code is
between 1.5 and 5.6, with median value 2.6. Of course, the speedup also depends on the granularity of the
operations that are executed. For instance, if many operations are index lookups or other large database
operations, these are in native code in the virtual machine emulator anyway, so that the overhead of
interpretation is not important in this case. But this means that the speedup that must be attributed to
using native code might even be less than what is mentioned above.

One of the strengths of the “Push” method investigated in this paper is that it tries to avoid copying
data values (as far as possible). In the standard implementation of bottom-up evaluation, the result of
applying a rule is stored in a derived relation. In contrast, Prolog implementations do not copy vari-
able values or materialize derived literals (except with tabling). It might be that the “Push” method

http://www.informatik.uni-halle.de/~brass/push/


S. Brass & H. Stephan 3

makes bottom-up evaluation competitive because it gives it something which Prolog systems already
had. However, as we will see, good performance depends on many factors (including, e.g., efficient data
structures). The message of this paper is certainly not that the “Push” method alone could make us win
benchmarks.

2 Query Language, General Setting

In this paper, we consider the very basic case of Datalog, i.e. pure Prolog without negation and without
function symbols (i.e. terms can only be variables or constants). A logic program is a set of rules, for
example

answer(X) :- grandparent(sam, X).

grandparent(X, Z) :- parent(X, Y), parent(Y, Z).

This computes the grandparents of sam, given a database relation parent. For our bottom-up method, we
assume that there is a “main” predicate answer, for which we want to compute all derivable instances.
For the other systems, the body of the answer-rule is directly posed as query/goal.

We require range-restriction (allowedness), i.e. all variables in the head of the rule must also appear
in a body literal. Therefore, when rules are applied from right (body) to left (head), only facts are derived,
i.e. variable-free atomic formulas like grandparent(sam, john).

As usual in deductive databases, the predicates are classified into

• EDB-predicates (“extensional database”), which are defined only by facts (usually a large set of
facts stored in a database, or maybe specially formatted files). In the above example, parent is an
EDB predicate.

• IDB-predicates (“intensional database”), which are defined by rules. In the example, grandparent
and answer are IDB predicates.

The execution of a logic program/query has three distinct phases:

Logic Program
(Rules for IDB Predicates)

6

Compilation -

Data File
(Facts for EDB Predicates)

6

Data Load -

Output
(Query Result)

?

Execution

The input to our transformation are the rules for the IDB-predicates, i.e. these are known at “compile
time”. The concrete data for the EDB-predicates are only known at “run time”. Therefore, the C++
program resulting from our translation can be executed for different database states (sets of facts). In
this way, optimizations or precomputations done at compile time can be amortized over many program
executions. Actually, since the database is usually large and the program relatively small, even a single
execution might suffice so that work invested during the transformation “pays off”.

In the OpenRuleBench tests, the runtime is again split into the time required for loading the data
file and the real execution time when the data is already in main memory (and useful data structures



4 Experiences with Benchmarks for Deductive Databases

have been built). In the OpenRuleBench paper [14], the authors are interested only in the time for the
inference (i.e. the execution phase), and only this time is shown in the paper. We show the times for both,
the data load and the execution, and the overall runtime measured externally. Only in case of DLV it was
not possible to separate this (we did measure the time for only loading the data, but it is not clear how
much of the data structure building is done if the data is not used).

Of course, handling the data load separately is interesting if many queries are executed later on the
data in main memory, i.e. if one had a main memory DBMS server.

For the most part, we did not consider the compilation time which might be considered as giving us
an unfair advantage. Systems which have no separate compilation phase cannot profit from this.

3 Data Structures

When the facts from a data file are loaded, they are stored in main-memory relations. A large part of the
C++ library which is used in the translation result implements various data structures for main-memory
relations. Most relations are C++ templates which are parameterized with the tuple type. However, there
are a few exceptions (experimental/old implementations, or data structures for very special cases).

Actually, all arguments are currently mapped to integers. We have implemented a string table using
a radix tree similar to [12] in order to assign unique, sequential numbers to strings. If we know that
different arguments have different domains (which are never joined) we use different such “string tables”
to keep the numbers dense (which is good for array based data structures).

There are basically three types of relation data structures:

• Lists, which support access to the tuples with binding pattern “ff...f”, i.e. all arguments are free
(output arguments). One can open a cursor over the list and iterate over all its elements (tuples).
Lists are implemented as a tree of 4 KB pages, each containing an array of tuples (i.e. the tuples
are stored in consecutive memory locations which helps to improve CPU cache utilization). The
next level of the tree contains pages with pointers to the data pages (similar to the management of
blocks in the original Unix file system).

• Sets, which support access to the tuples with binding pattern “bb...b”, i.e. all arguments are
bound (input arguments). One can insert a tuple and gets the information whether the insertion was
successful (new tuple) or not (the tuple was contained in the set already). We are experimenting
with different set implementations, currently: (a) a simple hash table of fixed size, (b) a dynamic
hash table which doubles its size if it gets too full, and (c) an array of bitmaps (some of the
benchmarks have only a small domain of integers from 0 to 1000).

• Maps (or really multimaps) for all other cases, e.g. a binding pattern like bf: Given values for
the input arguments (in this case, the first one), one can open a cursor over the corresponding
(tuples of) values for the output arguments. The current state is that we have only a flexible array
implementation for a single integer input argument, but a general map will be implemented soon.

Temporary relations might be needed during execution of a logic program: If a rule has more than
one IDB body literal, previously derived facts matching these literals must be stored (except possibly one
of the literals, if we know that its facts arrive last and we can immediately process them). In this case it is
important that when a cursor is opened, the set of tuples it loops over is not affected by future insertions.

Temporary sets are also needed for duplicate elimination during query evaluation. For some bench-
marks, this has a big influence on speed.



S. Brass & H. Stephan 5

4 The Push Method for Bottom-Up Evaluation

The push method has been introduced in [5], and a version with partial evaluation has been defined in [7].
The following is just a quick reminder in order to be able to understand different variants of the code.

The basic method only works with rules with at most one IDB body literal (as generated, e.g., by
the SLDMagic method [4]). Rules with multiple IDB body literals are normalized by creating interme-
diate storage for previously derived tuples (similar to seminaive evaluation with a single tuple as “delta”
relation, see [7]).

In the push method, a fact is represented by a position in the program code and values of C++ vari-
ables. A fact type is a positive IDB literal with constants and C++ variables as arguments, for instance
p(a, v_1, v_2). If execution reaches a code position corresponding to this fact type, the correspond-
ing fact with the current values of the variables v_1 and v_2 has been derived. Now this derived fact is
immediately “pushed” to rules with a matching body literal. A rule application consists of

• a rule of the given program,

• a fact type that is unifiable with the IDB body literal of this rule, or a special marker “init” if the
rule has only EDB body literals,

• a fact type that is general enough to represent all facts which can be derived with the rule applied
to the input fact type.

A rule application graph consists of the fact types as nodes (plus an “init” node), and the rule applica-
tions as edges.

One can use different sets of fact types. In [5] the fact types had the form p(p_1, p_2, ...),
i.e. there was one C++ variable for each argument position of each IDB predicate. This requires a lot of
copying in a rule application. The approach of [7] did avoid this by computing a set of fact types as a
fixpoint of an abstract TP-operator working with C++ variables instead of real constants. These variables
were introduced if a data value was needed from an EDB body literal (the real values are not known at
compile time). This avoids copying, but the set of generated fact types can “explode” (as, e.g., in the
wine ontology benchmark). Therefore, our current implementation supports both approaches, and we
work on mixed variants which combine the advantages of both.

There is one code piece for each rule application. At the end of this code piece, a fact has been
derived and the variables of the resulting fact type have been set.

Of course, a derived fact might match body literals of several rules. In that case control jumps to
one such rule application, and the other possibilities are later visited via backtracking. If variables are
changed when there might still be backtrack points on the stack which need the old value, these are saved
on a stack, too. In both of the above variants of the push method, this happens only for recursive rule
applications.

It is also possible that a rule application can produce several facts. Only one is computed at a time
and immediately used, other facts are computed later via backtracking. Therefore, the code piece for a
rule application has two entry points: One for computing the first fact (“START”), and one for computing
an additional fact (“CONT”). Before control jumps to a place where the derived fact is used, the “CONT”-
label is put on the backtrack stack. In case a rule application is unsuccessful or there is no further fact
that can be derived, the main loop is continued, which takes the next rule application from the backtrack
stack and executes its code piece.



6 Experiences with Benchmarks for Deductive Databases

5 About the Time and Memory Measurements

We compared our method with the following systems:

• XSB Prolog version 3.6 (Gazpatcho)

• YAP Prolog version 6.2.2

• DLV version x86-64-linux-elf-static

Both Prolog systems support tabling. The DLV system uses a variant of magic sets transformation
and then does bottom-up evaluation.

We executed the benchmarks on a machine with two 6272 AMD Opteron 16 Core CPUs. However,
the current version of our program does not use multiple threads (we will consider this in future research).
The machine has 64 GB of RAM. This is quite a lot, but we also measure how much memory is really
used by the systems. The operating system is Debian x86_64 GNU/Linux 3.2.63.

The overall execution time (“elapsed wall clock time”) and the memory (“maximum resident set
size”) for each test was measured with the Linux time program. The time for loading the data and for
executing the query are measured by functions of each system.

Every test was run ten times and the time average values were calculated. Additionally, for the XSB
and YAP systems the times for loading the data and program files and for executing the queries were
separately measured.

For the DLV system the use of the -stats option is officially discouraged for benchmark purposes,
so for estimating the loading time the loading of the data files was measured once using the time pro-
gram; the value appears in parentheses in the tables.

XSB Prolog compiles the input files to a xwam file which can be loaded quite fast, but for better
comparison with the other systems dynamic loading was used.

6 The DBLP Benchmark

For the DBLP benchmark [14], data from the DBLP bibliography (dblp.uni-trier.de) is stored as a
large set of facts for an EAV-relation

att(DocID, Attribute, Value).

The file contains slightly more than 2.4 million facts of this type, for instance:

att(’node12eo5mnsvx56023’,title,’On the Power of Magic.’).

It is about 122 MB large. The test query is

answer(Id, T, A, Y, M) :-

att(Id, title, T),

att(Id, year, Y),

att(Id, author, A),

att(Id, month, M).

In this case, att is an EDB-predicate, and answer is the only IDB-predicate. The file contains data of
about 215.000 documents (i.e. 11.3 facts per document).1

1The DBLP data are available as XML file from http://dblp.uni-trier.de/xml/. The DBLP has now data of 3.4 mil-
lion documents, the XML-file is 1.8 GB large. We plan to transform this larger data file to the same type of Datalog facts as the
official OpenRuleBench DBLP test file.

http://dblp.uni-trier.de/xml/


S. Brass & H. Stephan 7

It seems that the key to success for this benchmark problem are the data structures to represent the
facts. When the data is loaded, we must store it in relation data structures for later evaluation of the
EDB body literals. Note that the program/query is known when the data is loaded, so we can try to
create an optimal index structure for each EDB body literal. In particular, selections for constants known
at compile time can already be done when the data is loaded. In the example, all body literals contain
different constants, therefore we create a distinct relation for each of them.

E.g. there is a relation att_title, which represents att-facts that match the first body literal
att(Id, title, T). Of course, the constant is not explicitly stored, therefore the relation has only
two columns. We use a nested loop/index join. The first occurrence of each variable binds that variable,
and at all later occurrences, its value is known. Since this is the first body literal, both variables are still
free, and the relation att_title is accessed with binding pattern ff, i.e. it is a list.

For the second body literal att(Id, year, Y), there is a relation att_year which represents only
att-facts with year as second argument. Again, this argument is not explicitly represented in the stored
tuples. Since the value of the variable Id is known when this body literal is evaluated, the relation must
support the binding pattern bf. Therefore it is a map (or really multimap, since we do not know that
there is only one year for each document).

In the same way, the other two body literals are turned into exactly matching relations of type bf.
This means that although the loader has to look at all facts in the data file, it stores only those facts which
are relevant for the query (which are 35% of the facts in the data file).

The strings that occur in the data are mapped to unique, sequential integers. Since the three arguments
of the predicate att are never compared, we use three distinct “string tables”: This makes it simpler
to implement the maps based on a kind of flexible array — for other map data structures, this would
probably have no advantage. However, also bitmap implementations of sets profit from a small, dense
domain. In summary, the main data structures are:

Data Structure Rows/Strings Memory (KB)
String table for Arg. 1 214905 91612
String table for Arg. 2 19 4
String table for Arg. 3 923881 284052
List for att(Id, title, T) 209943 1648
Map for att(Id, year, Y) 209944 844
Map for att(Id, author, A) 440934 3688
Map for att(Id, month, A) 2474 844

One might expect that creating these indexes slows down the loading of data (in effect, some time
is moved from the execution phase to the load phase). However, our loader is quick. Here are the
benchmark results:

System Load (ms) Execution (ms) Total time (ms) Factor Memory (KB) Mem. Diff.
Push 2565 22 2610 1.0 385172 383990
XSB 89045 2690 92390 35.4 415500 404535
XSB (trie) 90710 269 91275 35.0 380259 369294
YAP 24878 7370 32438 12.4 813760 808911
DLV (20110) — 25898 9.9 926864 926167

The total time is dominated by the loading time, however the pure execution time is also interesting. By
the way, just reading the file character by character with the standard library takes about the same time



8 Experiences with Benchmarks for Deductive Databases

as our loader (which reads the file in larger chunks). In the OpenRuleBench programs, XSB did not use
the trie index, but this dramatically improves execution time (the influence on the total time is not big).

The main memory consumption of our “Push” implementation is acceptable (383 MB, which is
about the same as XSB, and less than half of YAP and XSB). However, since only one third of the facts
are actually stored, and only with a specific binding pattern, memory could become an issue for other
application scenarios.

In order to check how much memory was used by the data for the benchmark and how much is
program code in the system (including possibly large libraries) we determined the memory used by just
starting and stopping each system (without loading data or compiling rules). The result is:

System Base Memory (KB)
Push 1182
XSB 10965
YAP 4849
DLV 697

The column “Mem. Diff.” in the benchmark result table contains the difference of the memory used in
the benchmark minus this baseline.

Since this query is a standard database task, we also tried HSQLDB 2.3.4. It loads all data into main
memory when the system starts, this took 32471 ms. Executing the following SQL query took 3863 ms:

SELECT COUNT(*)

FROM ATT ATT_TITLE, ATT ATT_YEAR, ATT ATT_AUTHOR, ATT ATT_MONTH

WHERE ATT_TITLE.ATTRIBUTE = ’title’

AND ATT_YEAR.ATTRIBUTE = ’year’

AND ATT_AUTHOR.ATTRIBUTE = ’author’

AND ATT_MONTH.ATTRIBUTE = ’month’

AND ATT_TITLE.DOC_ID = ATT_YEAR.DOC_ID

AND ATT_TITLE.DOC_ID = ATT_AUTHOR.DOC_ID

AND ATT_TITLE.DOC_ID = ATT_MONTH.DOC_ID

The total time for starting the database, executing the query and shutting down the database was
40777 ms (the shutdown took 4330 ms). HSQLDB did use three threads (300% CPU) and 3 GB of main
memory (i.e. three times the system resources of the deductive systems above). HSQLDB is written
in Java (and was executed in the OpenJDK 64-bit Server VM: IcedTea 2.6.6, Java 1.7.0). We used an
index over (ATTRIBUTE, DOC_ID). We tried also an index with the two attributes inversed, or all three
attributes, but all this did not change much. Although there might be further options for tuning HSQLDB,
it is at least not easy to get much better runtimes with a relational database.

7 The Join 1 Benchmark

The Join1 example from [14] contains the following rules:

a(X, Y) :- b1(X, Z), b2(Z, Y).

b1(X, Y) :- c1(X, Z), c2(Z, Y).

b2(X, Y) :- c3(X, Z), c4(Z, Y).

c1(X, Y) :- d1(X, Z), d2(Z, Y).



S. Brass & H. Stephan 9

The EDB predicates are c2, c3, c4, d1, d2. There are three data files: One with 10 000 facts each
(i.e. 50 000 facts in total), one with 50 000 facts each, and one with 250 000 facts each. The data val-
ues are randomly generated integers between 1 and 1000. Different queries are considered in [14],
namely a(X, Y), b1(X, Y), b2(X, Y), and the same with bound first or second argument, e.g. the
query a(1, Y). In our test, we only tried the query a(X, Y).

The benchmark results for the small data file (10 000 facts per EDB-predicate, 624 KB) are:

System Load (ms) Execution (ms) Total time (ms) Factor Memory (KB)
Push (Bitmap) 14 1 772 1 787 1.0 7 311
Push (Dyn.Hashtab) 11 10 372 10 383 5.8 45 688
xsb-btc 141 22 432 22 827 12.8 82 667
XSB 148 24 551 25 002 14.0 82 526
YAP 421 17 557 18 067 10.1 10 933
DLV 147 172 82.4 461 646

The benchmark scripts (from the authors of [14]) used a version of XSB with “batched scheduling” for
this test. However, it gives only a relatively small improvement over the standard version (with “local
scheduling”).

The domain of values are in all cases integers from 1 to 1000, so many duplicates will be generated.
Actually, this test is dominated by the time for duplicate elimination. With an “array of bitmaps” imple-
mentation, we are much faster than with a dynamic hash table (it doubles its size if the chains get too
long). Here are the relations used in our Push implementation:

Table Comment Rows Memory (KB)
c2_bf EDB-Relation (Map) 10 000 88
c3_ff EDB-Relation (List) 10 000 84
c4_bf EDB-Relation (Map) 10 000 88
d1_ff EDB-Relation (List) 10 000 84
d2_bf EDB-Relation (Map) 10 000 88
b1_fb Temporary IDB-Relation (Map) 634 088 4 976
b1_bb Duplicate Check for IDB-Pred. (Set) 634 088 14 004
b2_bb Duplicate Check for IDB-Pred. (Set) 95 954 2 524
c1_bb Duplicate Check for IDB-Pred. (Set) 95 570 2 520
a_bb Duplicate Check for IDB-Pred. (Set) 1 000 000 19 724

In the version with bitmap duplicate check, the last four sets need only 128 KB each. The temporary
IDB-relation is needed because the first rule has two IDB-body literals:

a(X, Y) :- b1(X, Z), b2(Z, Y).

Therefore, we compute first the b1-facts and store them in b1_fb. Later, when we derive a b2-fact, we
use it immediately to derive a-facts with this rule. Since in this case Z is bound from the b2-fact, we need
the binding pattern fb for the intermediate storage of b1-facts.

If one does not do any duplicate elimination, one gets 99.9 million result tuples, i.e. on average every
answer is computed 100 times. Our implementation of this needed 2 501 ms execution time, i.e. was
quite fast. This shows again that this benchmark depends a lot on the efficiency of duplicate elimination.

Our results with the hash table are not impressive and could be fully explained with using native
code instead of emulating an abstract machine. However, it scales better than XSB as the other data sets



10 Experiences with Benchmarks for Deductive Databases

show. XSB timeouts already on the middle data set with 50 000 rows per EDB predicate (timeout is set
at 30 minutes). Our Push implementation (with hash table) needs 106 s. This means that it is better by at
least the factor 17.

However, we found that tabling all IDB predicates for XSB and YAP and introducing indexes for the
EDB relations in XSB dramatically improved the runtime performance of these systems (in the original
program files, tabling was only done for the predicate a/2 in XSB, and no indices were used). This led
to the following results:

System Load (ms) Execution (ms) Total time (ms) Memory (KB)
XSB 414 11 302 11 927 123 885
YAP 437 6 719 7 256 133 622

Due to creating indexes, the loading time of XSB has increased, and both systems need more memory
for the tables.

8 The Transitive Closure Benchmark with Both Arguments Free

An important test for a deductive database system is the transitive closure program:

tc(X, Y) :- par(X, Y).

tc(X, Y) :- par(X, Z), tc(Z, Y).

Of course, this is one of the OpenRuleBench benchmark problems for recursion. It uses 10 data files
of different size (see below), we first concentrated on the file tc_d1000_parsize50000_xsb_cyc.P

where the arguments of the par-relation are taken from a domain of 1000 integers (1 to 1000) (i. e. the
graph has 1000 nodes); there are 50 000 randomly generated par-facts (i. e. the graph has 50 000 edges);
the graph is cyclic; and the file size is 673 KB. OpenRuleBench used three test queries: tc(X, Y),
tc(1, Y), and tc(X, 1)2. Here are the benchmark results for the first query asking for the entire tc

relation (i. e. with binding pattern ff):

System Load (ms) Execution (ms) Total time (ms) Factor Memory (KB)
Push 11 2 171 2 190 1.0 21 832
Seminaive 10 4 598 4 613 2.1 29 587
XSB 1 095 11 357 12 641 5.8 134 024
YAP 424 19 407 19 867 9.1 145 566
DLV (260) — 109 673 50.1 404 737

Obviously, one must detect duplicates in order to ensure termination. But even with non-cyclic data,
there are many duplicates: Each node is linked to 5% of the other nodes. So the probability is quite
high that even after short paths the same node is reached multiple times. XSB uses tabling to solve this
problem [18, 8, 22]. The relations we used for this problem are:

Table Comment Rows Memory (KB)
par_ff EDB-relation (as list), used in first rule 50000 396
par_fb EDB-relation (as map), used in second rule 50000 400
tc_bb Duplicate check for result (set) 1000000 19 536

2Actually, anonymous variables were used in the test, because the answers are not further processed.



S. Brass & H. Stephan 11

The first rule produces initial tc-facts and simply loops over the entire par-relation, therefore it needs a
version implemented as list. The second (recursive) rule is activated in the “Push” method when a new
tc-fact is derived. Therefore, a value for variable Z is known and the EDB-relation is accessed with
binding pattern fb.

We also implemented a standard seminaı̈ve bottom-up evaluation for comparison. It used the same
data structures as our Push implementation, it only needed an additional list tc_ff for the result. It is
slower than the “Push” method. Probably, this is due to the different memory accesses: In each iteration,
freshly derived tuples are first stored in the result list, and they are accessed again in the next iteration.

The following table lists the benchmark results for the full set of 10 data files of various size and
characteristics. We compared only the execution times with XSB. We used here the original settings
for XSB from the OpenRuleBench scripts. In the result shown above, a trie-index was added, which
improved the performance (12.6 s instead of 15.5 s).

Rows Dom cyc XSB Push Factor

50 000 1000 N 5.980s 0.732s 8.2
50 000 1000 Y 15.513s 2.160s 7.2

250 000 1000 N 33.274s 4.350s 7.6
250 000 1000 Y 82.497s 12.440s 6.6
500 000 1000 N 76.673s 10.230s 7.5
500 000 1000 Y 187.200s 30.620s 6.1
500 000 2000 N 139.881s 23.870s 5.9
500 000 2000 Y 329.873s 61.460s 5.4

1 000 000 2000 N 297.870s 56.623s 5.3
1 000 000 2000 Y 714.721s 150.270s 4.8

The first column gives the number of rows in the database, i. e. the size of the par-relation. The second
column lists the size of the domain of values which occur in the par columns.3 The last column shows the
speed improvement factor of our Push implementation over XSB. For loading the last relation (1 million
rows, 14.2 MB), XSB needs 90.2s, our Push implementation needs 0.2s.

9 The Transitive Closure Benchmark with the First Argument Bound

In this benchmark, one is not interested in all connected pairs in the transitive closure, but only in nodes
reachable from node 1. So the binding pattern for accessing the predicate is bf.

Different systems use different methods to pass bindings to called predicates. E.g. for XSB and
YAP, this is a feature of SLD-resolution. For a system based on bottom-up evaluation, the magic set
method is the standard solution [2, 3]. Probably DLV does this. However, since magic sets are known
to have problems with tail recursions [17], we use SLDMagic [4] for our “Push” method instead (the
“Push” method alone is a pure bottom-up method would not pass query bindings). The output of the
transformation is:

3Some of the graphs which claim to be non-cyclic actually do contain cycles. The largest non-cyclic graph with 1000 nodes
is {(i, j) | 1≤ i < j ≤ 1000}. This has only 999∗1000/2 = 499 500 edges.



12 Experiences with Benchmarks for Deductive Databases

p1(A) :- p1(B), par(B,A).

p1(A) :- par(1,A).

p0(A) :- p1(B), par(B,A).

p0(A) :- par(1,A).

tc(1,A) :- p0(A).

The predicate p0 is not really needed, but since the SLDMagic prototype produces this program, it would
be unfair to improve it manually. Nevertheless, it can be evaluated extremely fast, since it reduced the
arity of the recursive predicate. Here are the benchmark results:

System Load (ms) Execution (ms) Total time (ms) Factor Memory (KB)
Push 10 14 30 1.0 9 716
XSB 1 098 7 142 8 418 280.6 86 936
YAP 440 8 743 9 246 308.2 91 325
DLV (260) — 110 779 3 692.6 404 736

At least the standard version of tabling has the same problem with tail recursions as magic sets: One
cannot materialize the derived tc-facts in this case, since they are not only for the type tc(1, Y), but
all facts tc(X, Y) for every X reachable from 1. Depending on the graph, this can make the difference
between a linear number of facts and a quadratic number of facts. XSB and YAP might be affected by
this problem.

It could be argued that the good results for the Push Method are mainly due to the SLDMagic program
transformation. Therefore, in a further test, the SLDMagic-transformed program was also given as input
to the other systems. Indeed, they did profit from the transformation (in runtime as well as in memory
usage), but the Push Method is still in the first place:

System Load (ms) Execution (ms) Total time (ms) Factor Memory (KB)
Push 10 14 30 1.0 9 716
XSB 1 093 10 1 292 43.1 14 298
YAP 449 36 562 18.7 16 696
DLV (260) — 389 13.0 11 997

For the other data files, we compared the execution times only with XSB (using SLDMagic for the
Push method, but not for XSB):

Rows Dom cyc XSB Push Factor

50 000 1000 N 1.296s 0.010s 130
50 000 1000 Y 6.912s 0.010s 691

250 000 1000 N 9.309s 0.030s 310
250 000 1000 Y 35.098s 0.030s 1170
500 000 1000 N 19.989s 0.050s 400
500 000 1000 Y 69.929s 0.060s 1165
500 000 2000 N 36.067s 0.060s 601
500 000 2000 Y 154.110s 0.070s 2202

1 000 000 2000 N 80.117s 0.130s 616
1 000 000 2000 Y 300.719s 0.150s 2005

The case with the second argument bound still has to be investigated. The SLDMagic method is no
advantage in this case. So our Push method would need the same time as in the tc(X, Y) case, which
means 2.171 s for execution. XSB needs only 0.020 s for execution, i.e. is better by a factor of 109!
Since our data loader is quicker, the factor for total time is less than 2, but XSB is still better. Of course,
we are working on improving the SLDMagic method. But that is a different topic.



S. Brass & H. Stephan 13

10 The Wine Ontology Benchmark

The wine ontology benchmark consists of 961 rules with 225 IDB-predicates, of which all but one are
recursive, and 113 EDB-predicates. The program is basically one big recursive component.4

System Load (ms) Execution (ms) Total time (ms) Factor Memory (KB)
Push 1 2 255 2 260 1.0 9 236
XSB 106 8 548 8 851 3.9 322 894
YAP 52 10 793 10 899 4.8 334 761
DLV (60) — 31 743 14.0 42 452

This is an example where the Push method with partial evaluation as introduced in [7] “explodes”: It
produces a lot of different specializations of the rules, of which there are already many in the input
program. Therefore, we used the version of the push method without partial evaluation from [5] here.
Even with that, the resulting C++ program is large (34 294 lines). The detection of duplicates is essential
for termination. We used the hash table here, probably a bitmap would further improve performance.

Standard implementations of bottom-up evaluation would iterate all rules in a recursive clique until
one such iteration did not produce a new fact. In this example, this would be very inefficient because
basically all rules form a single recursive clique, but in each iteration only a few rules actually “fire”. In
contrast, the “Push” method only looks at rules which are activated by a new fact for an IDB body literal.

11 Related Work

The push method has been studied in [5], and compared with “Pull’ and “Materialization” methods of
bottom-up evaluation, but only with artificial examples, no real data loaded from files, and no index
structures. The paper [7] defines a different version of the push method, which does not create variables
for every argument of each IDB predicate, but for variables occurring in EDB literals in rule bodies. This
helps to reduce or nearly eliminate the copying of values, at the price of creating several specializations of
the same rule (this reduces runtime, but increases code size, sometimes significantly). It is basically this
version which was used in our benchmarks, with certain improvements. Furthermore, our transformation
program can also fall back to the version of [5], if the generated program would otherwise become
unacceptably large. Actually, both versions can be combined for a single input program.

The idea of immediately using derived facts to derive more facts is not new in those papers. For
instance, variants of semi-naive evaluation have been studied which work in this way [19, 21]. It also
seems to be related to the propagation of updates to materialized views. However, the representation of
tuples at runtime and the code structure is different from [19] (and this is essential for the reduction of
copying values). The paper [21] translates from a temporal Datalog extension to Prolog, which makes
any efficiency comparison dependend on implementation details of the used Prolog compiler.

In relational databases, the benefits of not materializing intermediate results have been recognized
for a long time; this is known as pipelining. Pushing data up a pipeline has been studied in [15]; however,
they work with relational algebra expressions rather than Datalog rules.

4Actually, the wine ontology program does not do what it is supposed to do: The test query is for californian wines, but
the result contains other objects, too. We checked that XSB produces the same output. Nevertheless, the program is a chal-
lenging test for a deductive system, no matter whether it is meaningful. The wine ontology was developed for the OWL guide
http://www.w3.org/TR/owl-guide/. It links to a site no longer available, but the ontology is probably the one available
here: https://www.movesinstitute.org/exi/data/DAML/wines.daml. Thanks to Boris Motik, who referred us to the
paper [11]: This introduces an approximate translation from OWL DL TBoxes to Datalog. Although it is not completely clear
yet that this translation was used, the approximation would explain that the result might contain wrong answers.

http://www.w3.org/TR/owl-guide/
https://www.movesinstitute.org/exi/data/DAML/wines.daml


14 Experiences with Benchmarks for Deductive Databases

12 Conclusion

This is a paper about some experiences gained while implementing a deductive database system and
testing its performance. Of course, the system is not yet finished, and more problems and insights are
waiting along the road. Nevertheless, the understanding reached so far seems interesting and useful:
• A system based on a bottom-up method can compete with systems based on SLD-resolution with

tabling. Older deductive database systems like Coral [16, 20] had no chance against XSB [18].
Avoiding the copying of data values and the materialization of derived tuples seems to be the main
reason for the success of the Push method.

• Fast data structure implementations, especially for duplicate elimination, are very important. For
duplicate tests, tuples were materialized in “set” data structures. We plan to use nested tables in
future in order to keep the advantage of reducing the copying of values.

• The SLDMagic method proved very useful for the transitive closure with binding pattern bf. For
the binding pattern fb, work is still needed.

• Some variants in the code that intuitively seemed important had no effect on performance. For
instance, we first tried a static procedure which only counted the derived facts, but did not return
them. When we later used an object with a cursor interface where one can fetch each result there
was no difference (although there were many more procedure calls, and what had been local or
static variables before had to become attributes). Furthermore, replacing a switch and goto (our
standard translation) with while-loops (where possible) had no important influence on perfor-
mance (but improves the readability of the generated code, of course).

We plan to define an abstract machine and translate alternatively into this machine. Then it would not
always be necessary to use a C++ compiler.

We also work on a parallelized version of our method. At times where even small PCs have at
least four cores, one should obviously make use of this resource. The easier parallelization is also one
motivation for declarative programming.

Of course, also adding function symbols (term constructors), negation and aggregation functions are
on the agenda, plus more exotic things like ordered predicates and declarative output.

References
[1] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu, Emir Pasalic, Todd L. Veld-

huizen & Geoffrey Washburn (2015): Design and Implementation of the LogicBlox System. In: Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data, ACM, pp. 1371–1382.

[2] Francois Bancilhon, David Maier, Yehoshua Sagiv & Jeffrey D. Ullman (1986): Magic Sets and Other
Strange Ways to Implement Logic Programs. In: Proc. of the 5th ACM Symp. on Principles of Database
Systems (PODS’86), ACM Press, pp. 1–15.

[3] Catril Beeri & Raghu Ramakrishnan (1987): On the Power of Magic. In: Proc. of the Sixth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’87), ACM, pp. 269–284.

[4] Stefan Brass (2000): SLDMagic — The Real Magic (with Applications to Web Queries). In W. Lloyd et al., ed-
itors: First International Conference on Computational Logic (CL’2000/DOOD’2000), LNCS 1861, Springer,
pp. 1063–1077. Available at http://www.informatik.uni-halle.de/~brass/publ/Bra00a.ps.gz.

[5] Stefan Brass (2010): Implementation Alternatives for Bottom-Up Evaluation. In Manuel Hermenegildo &
Torsten Schaub, editors: Technical Communications of the 26th International Conference on Logic Program-
ming (ICLP’10), Leibniz International Proceedings in Informatics (LIPIcs) 7, Schloss Dagstuhl, pp. 44–53.
Available at http://drops.dagstuhl.de/opus/volltexte/2010/2582.

http://www.informatik.uni-halle.de/~brass/publ/Bra00a.ps.gz
http://drops.dagstuhl.de/opus/volltexte/2010/2582


S. Brass & H. Stephan 15

[6] Stefan Brass (2012): Order in Datalog with Applications to Declarative Output. In Pablo Barceló & Reinhard
Pichler, editors: Datalog in Academica and Industry, 2nd Int. Workshop, Datalog 2.0, LNCS 7494, Springer-
Verlag, pp. 56–67. Available at http://users.informatik.uni-halle.de/~brass/order/.

[7] Stefan Brass & Heike Stephan (2015): Bottom-Up Evaluation of Datalog: Preliminary Report. In Sibylle
Schwarz & Steffen Hölldobler, editors: 29th Workshop on (Constraint) Logic Programming (WLP 2015),
HTWK Leipzig, pp. 21–35. Available at http://www.imn.htwk-leipzig.de/WLP2015/.

[8] Weidong Chen & David S. Warren (1996): Tabled Evaluation with Delaying for General Logic Programs.
Journal of the ACM 43(1), pp. 20–74.

[9] Vı́tor Santos Costa (1999): Optimizing Bytecode Emulation for Prolog. In Gopalan Nadathur, editor: Princi-
ples and Practice of Declarative Programming, Internat. Conf. PPDP’99, LNCS 1702, Springer, pp. 261–277.

[10] Vı́tor Santos Costa, Ricardo Rocha & Luı́s Damas (2012): The YAP Prolog System. Theory and Practice of
Logic Programming 12(1–2), pp. 5–34. Available at https://www.dcc.fc.up.pt/~ricroc/homepage/
publications/2012-TPLP.pdf.

[11] Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph & Tuvshintur Tserendorj (2008): Approximate OWL
Instance Retrieval with SCREECH. In Anthony G. Cohn, David C. Hogg, Möller. Ralf & Bernd Neu-
mann, editors: Logic and Probability for Scene Interpretation, Dagstuhl Seminar Proceedings 08091,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, Dagstuhl, Germany, pp. 1–8. Available
at http://drops.dagstuhl.de/opus/volltexte/2008/1615.

[12] Viktor Leis, Alfons Kemper & Thomas Neumann (1997): The Adaptive Radix Tree: ARTful Index-
ing for Main-Memory Databases. In: Proc. of the 2013 IEEE International Conference on Data En-
gineering (ICDE’2013), IEEE Computer Society, pp. 38–49. Available at http://www3.informatik.
tu-muenchen.de/~leis/papers/ART.pdf.

[13] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri & Francesco
Scarcello (2006): The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Logic
7(3), pp. 499–562. Available at https://arxiv.org/pdf/cs/0211004.

[14] Senlin Liang, Paul Fodor, Hui Wan & Michael Kifer (2009): OpenRuleBench: An Analysis of the Per-
formance of Rule Engines. In: Proceedings of the 18th International Conference on World Wide Web
(WWW’09), ACM, pp. 601–610. Available at http://rulebench.projects.semwebcentral.org/.

[15] Thomas Neumann (2011): Efficiently Compiling Efficient Query Plans for Modern Hardware. Proceed-
ings of the VLDB Endowment 4(9), pp. 539–550. Available at http://www.vldb.org/pvldb/vol4/
p539-neumann.pdf.

[16] Raghu Ramakrishnan, Divesh Srivastava & S. Sudarshan (1994): Rule Ordering in Bottom-Up Fixpoint
Evaluation of Logic Programs. IEEE Transactions on Knowledge and Data Engineering 6(4), pp. 501–517.

[17] Kenneth A. Ross (1991): Modular Acyclicity and Tail Recursion in Logic Programs. In: Proc. of the Tenth
ACM SIGACT-SIGMOD-SIGART Symp. on Princ. of Database Systems (PODS’91), pp. 92–101.

[18] Konstantinos Sagonas, Terrance Swift & David S. Warren (1994): XSB as an Efficient Deductive Database
Engine. In Richard T. Snodgrass & Marianne Winslett, editors: Proc. of the 1994 ACM SIGMOD
Int. Conf. on Management of Data (SIGMOD’94), pp. 442–453.

[19] Heribert Schütz (1993): Tupelweise Bottom-up-Auswertung von Logikprogrammen (Tuple-wise bottom-up
evaluation of logic programs). Ph.D. thesis, TU München.

[20] Praveen Seshadri, Shaun Flisakowski & Seymour Hersh (1996): CORAL: The Inside Story. Shocking Hacks
Revealed. Technical Report, Department of Computer Sciences, The University of Wisconsin-Madison.
Available at http://ftp.cs.wisc.edu/coral/doc/Inside.ps.

[21] Donald A. Smith & Mark Utting (1999): Pseudo-Naive Evaluation. In: Australasian Database Conf. , pp.
211–223. http://www.cs.waikato.ac.nz/research/jstar/1999-ADC-pseudo-naive-eval.pdf.

[22] Terrance Swift (1999): Tabling for non-monotonic programming. Annals of Mathematics and Artificial
Intelligence 25, pp. 201–240.

http://users.informatik.uni-halle.de/~brass/order/
http://www.imn.htwk-leipzig.de/WLP2015/
https://www.dcc.fc.up.pt/~ricroc/homepage/publications/2012-TPLP.pdf
https://www.dcc.fc.up.pt/~ricroc/homepage/publications/2012-TPLP.pdf
http://drops.dagstuhl.de/opus/volltexte/2008/1615
http://www3.informatik.tu-muenchen.de/~leis/papers/ART.pdf
http://www3.informatik.tu-muenchen.de/~leis/papers/ART.pdf
https://arxiv.org/pdf/cs/0211004
http://rulebench.projects.semwebcentral.org/
http://www.vldb.org/pvldb/vol4/p539-neumann.pdf
http://www.vldb.org/pvldb/vol4/p539-neumann.pdf
http://ftp.cs.wisc.edu/coral/doc/Inside.ps
http://www.cs.waikato.ac.nz/research/jstar/1999-ADC-pseudo-naive-eval.pdf

	Introduction
	Query Language, General Setting
	Data Structures
	The Push Method for Bottom-Up Evaluation
	About the Time and Memory Measurements
	The DBLP Benchmark
	The Join 1 Benchmark
	The Transitive Closure Benchmark with Both Arguments Free
	The Transitive Closure Benchmark with the First Argument Bound
	The Wine Ontology Benchmark
	Related Work
	Conclusion

