
Synthesizing Matrix Interpretations via Backward
Completion∗

Dieter Hofbauer

ASW – Berufsakademie Saarland, Germany
d.hofbauer@asw-berufsakademie.de

Abstract
Various approaches to automatically synthesizing termination proofs via matrix interpretations
are used in state-of-the-art provers, most notably those based on satisfiability solving. In this
talk, an alternative idea for the particular case of string rewriting is presented, exploiting the
view of matrix interpretations as weighted automata. A demo of a prototype implementation
will show the utility of this approach, as well as its limitations.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Termination, string rewriting, matrix interpretations

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Matrix interpretations for string rewriting interpret the free monoid of strings in a ring
structure, where concatenation of factors corresponds to multiplication and replacement of
factors corresponds to subtraction. For termination, we use an (infinite) ordered ring, which
is well-founded on its positive cone, see [1].

I Example 1. In (Z, 0, 1, +, ·) we can prove termination of {aba→ aa} by the interpretation
i : a 7→ 1, b 7→ 2 as i(aba → aa) = i(aba) − i(aa) = i(a) · i(b) · i(a) − i(a) · i(a) = 1 > 0,
but neither {ab→ ba} nor {aa→ aba} can be proven terminating in Z as multiplication is
commutative and due to the totality of the ordering employed, respectively.

For that reason, we use non-commutative rings with a non-total ordering, in this case
rings of square matrices over the natural numbers; for definitions and notations we refer
to [1].

I Example 2. For proving termination of {ab → ba} consider the E2-interpretation i :
a 7→ (1 1

0 1) , b 7→ (1 0
0 2), where i(ab → ba) = i(ab) − i(ba) = i(a) · i(b) − i(b) · i(a) =

(1 2
0 2)− (1 1

0 2) = (0 1
0 0) ∈ P2, and for proving termination of {aa→ aba} the E1-interpretation

i : a 7→ (1 1
1 0) , b 7→ (1 0

0 0) gives i(aa→ aba) = i(aa)− i(aba) = (2 1
1 1)− (1 1

1 1) = (1 0
0 0) ∈ P1.

Various approaches for synthesizing matrix interpretations have been proposed, for
instance complete enumeration of restricted matrix shapes, random guesses for small matrix
dimensions, evolutionary programming, and, most prominently, constraint solving. In this
talk, we present backward completion as another approach for the same purpose. This is
related to forward completion procedures for match-bound termination proofs as in [2].

∗ This work was partially supported by a travel grant from the Japan Advanced Institute of Science and
Technology (JAIST).

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p

2 Synthesizing matrix interpretations

2 Matrix interpretations as weighted automata

Matrix interpretations correspond to weighted automata in a direct way. A weighted automaton
is a mapping weight : Q× Σ×Q→ N, where Q is a finite set (of states). This mapping is
extended to weight : Q×Σ∗×Q→ N by multiplying weights along a single path and adding
weights of different paths. A transition from state p to state q with weight n for letter a

corresponds to i(a)p,q = n in a matrix interpretation, and vice versa.

I Example 3. The matrix interpretation

a 7→

1 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 2 0 0 0
0 0 0 0 1

 , b 7→

1 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 2 1 0 1
0 0 0 0 1

of type E{1,5} corresponds to the following weighted automaton, proving termination of
{aabb→ bbbaaa} (TPDB problem z001, see [3], known as Zantema’s problem):

?>=<89:;1a:1,b:1
((a:1 //?>=<89:;2 a:1 //?>=<89:;3 b:1 //

a:1

�� ?>=<89:;4 b:1 //

b:1

��

a:2,b:2

ZZ

?>=<89:;5 a:1,b:1
vv

3 Backward completion

Often, automata of a particularly simple form can prove termination of string rewriting
systems. These straight-line automata essentially consist of a single path that corresponds to
the left-hand side of a rule, where each transition has weight 1.

I Example 4. For {aa→ aba}, the following automaton proves termination:

?>=<89:;1Σ:1
((a:1 //?>=<89:;2 a:1 //?>=<89:;3 Σ:1

vv

I Example 5. In the same way, for {bbcabc→ abbcbca} (TPDB problem z061) the automaton

?>=<89:;1Σ:1
((b:1 //?>=<89:;2 b:1 //?>=<89:;3 c:1 //?>=<89:;4 a:1 //?>=<89:;5 b:1 //?>=<89:;6 c:1 //?>=<89:;7 Σ:1

vv

serves as a termination certificate.

Of course, straight-line automata fail in many cases.

I Example 6. Consider {bcabbc→ abcbbca} (TPDB problem z062). For the automaton

?>=<89:;1Σ:1
((b:1 //?>=<89:;2 c:1 //?>=<89:;3 a:1 //?>=<89:;4 b:1 //?>=<89:;5 b:1 //?>=<89:;6 c:1 //?>=<89:;7 Σ:1

vv

we get weight(1, bcabbc, 4) = 0 � 1 = weight(1, abcbbca, 4), and the termination proof fails.
However, if we compensate for that defect by adding an edge

?>=<89:;1Σ:1
((b:1 //?>=<89:;2 c:1 //?>=<89:;3 a:1 //?>=<89:;4 b:1 //?>=<89:;5 b:1 //?>=<89:;6 c:1 //

c:1

[[

?>=<89:;7 Σ:1
vv

we are done: weight(1, bcabbc, 4) = 1 = weight(1, abcbbca, 4).

D. Hofbauer 3

This motivates backward completion. Define a pair of states (s, t) with weight(s, `, t) <

weight(s, r, t) to be a defect for the rewriting rule `→ r. Compensate for such a defect by
adding a path for ` from s to t. In general, for a backward completion step choose a defect
(s, t) for some rule `→ r and a factorization ` = `1`2`3 so that, for some states p, q,

?>=<89:;s
`1 //?>=<89:;p ?>=<89:;q

`3 //?>=<89:;t

and add a path of weight 1 from p to q for `2:

?>=<89:;s
`1 //?>=<89:;p

`2:1 //?>=<89:;q
`3 //?>=<89:;t

4 Implementation

One possiblity is to implement backward completion as a probabilistic algorithm, as follows.

(1) Choose as start automaton ?>=<89:;0Σ:1
((?>=<89:;1 Σ:1

vv

with just two states.
(2) Randomly choose the left-hand side ` of a rule ` → r and add a path from 0 to 1 for

`, resulting in ?>=<89:;0Σ:1
((`:1 //?>=<89:;1 Σ:1

vv

. Note that now weight(0, `, 1) > weight(0, r, 1)
unless ` is a factor of r, in which case the rewriting system is already non-terminating.

(3) As long as defects exist and weight(0, `, 1) > weight(0, r, 1) keeps holding true, randomly
perform some backward completion step.

This might fail or go on forever, but in case the procedure stops successfully, the resulting
automaton provides a termination certificate.

I Example 7. The automaton in example 3 can easily be synthesized in this way. Futher ex-
amples include rewriting systems from the TPDB that haven’t been solved during the 2013 ter-
mination competition (see termination-portal.org/wiki/Termination_Competition/).

5 Extensions

In the talk, we present various variants of this strategy, in particular a non-probabilistic
variant where completion steps are enumerated under a breadth-first strategy. Building
on results from [4], a specialized strategy aims at automatically proving polynomial upper
bounds on derivation lengths. Backward completion can be easily adapted to the setting
of relative termination proofs, thereby considerably strengthening its applicability. A demo
implemention shows the utility of the approach, as well as its limitations.

References
1 D. Hofbauer, J. Waldmann. Termination of string rewriting with matrix interpretations.

Proc. 17th Int. Conf. on Rewriting Techniques and Applications (RTA), pp. 328–342, 2006.
2 A. Geser, D. Hofbauer, J. Waldmann, H. Zantema. Finding finite automata that certify

termination of string rewriting. Int. J. Found. Comput. Sci. 16(3):471–486, 2005.
3 The Termination Problems Data Base, termination-portal.org/wiki/TPDB/.
4 J. Waldmann. Polynomially bounded matrix interpretations. Proc. 21st Int. Conf. on

Rewriting Techniques and Applications (RTA), pp. 357–372, 2010.

termination-portal.org/wiki/Termination_Competition/
termination-portal.org/wiki/TPDB/

	Introduction
	Matrix interpretations as weighted automata
	Backward completion
	Implementation
	Extensions

