
Program Termination analysis using MAX-SMT∗

Daniel Larraz1, Albert Oliveras1, Enric Rodríguez-Carbonell1, and
Albert Rubio1

1 Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract
We show how Max-SMT can be exploited in constraint-based program termination proving.
The generation of a ranking function is expressed as a Max-SMT optimization problem where
constraints are assigned different weights. As a result, quasi-ranking functions –functions that
almost satisfy all conditions for ensuring well-foundedness– are produced in a lack of ranking
functions. This allows our method to progress in the termination analysis where other approaches
would get stuck. Moreover, Max-SMT makes it easy to combine the process of building the
termination argument with the usually necessary task of generating supporting invariants. The
method has been implemented in a prototype and succesfully tested on a wide set of programs
showing its potential in practice.

1 Introduction

Proving termination is necessary to ensure total correctness of programs. Still, termination
bugs are difficult to trace and are hardly notified: as they do not arise as system failures
but as unresponsive behavior, when faced to them users tend to restart their devices with-
out reporting to software developers. Due to this, approaches for proving termination of
imperative programs have regained an increasing interest in the last decade [1, 2, 3, 4].

One of the major difficulties in these methods is that often supporting invariants are
needed. In [5], by formulating both invariant and ranking function synthesis as constraint
problems, both can be solved simultaneously, so that only the necessary supporting invari-
ants for the targeted ranking functions –namely, lexicographic linear ranking functions– need
to be discovered.

Based on this idea, we present a Max-SMT constraint-based approach for proving ter-
mination. The crucial observation in our method is that, although our goal is to show that
transitions cannot be executed infinitely by finding a ranking function or an invariant that
disables them, if we only discover an invariant, or a quasi-ranking function that almost ful-
fills all needed properties for well-foundedness, we have made some progress: either we can
remove part of a transition and/or we have improved our knowledge on the behavior of the
program. A natural way to implement this idea is by considering that some of the con-
straints are hard (the ones guaranteeing invariance) and others are soft (those guaranteeing
well-foundedness) in a Max-SMT framework. Moreover, by giving different weights to the
constraints we can set priorities and favor those invariants and (quasi-) ranking functions
that lead to the furthest progress.

The technique has been implemented in our prototype of C++ analyzer CppInv. Thanks
to our tool, we have proved termination of a wide set of programs, which have been taken
from the programming learning environment Jutge.org [6] and from benchmark suites in the
literature [7].

∗ This work has been partially supported by the Spanish MEC/MICINN under grantTIN 2010-68093-
C02-01

int main () {
int x,y,z ;
`1 : while (y ≥ 1) {

x−−;
`2 : while (y < z) {

x++;
z−−;

}
y = x + y;

}
}

l1 l2

τ3

τ1

τ2

Θ(`1) ≡ true Θ(`2) ≡ false
ρτ1 : y ≥ 1, x′ = x− 1, y′ = y, z′ = z

ρτ2 : y < z, x′ = x+ 1, y′ = y, z′ = z − 1
ρτ3 : y ≥ z, x′ = x, y′ = x+ y, z′ = z

Figure 1 Program and its transition system.

2 Encoding Termination using MAX-SMT

In this paper we model imperative programs by means of transition systems. See Fig. 1
for an example of a program together with the corresponding transition system. Note that
primed versions of the variables represent the values of the variables after the transition and
that Θ is a map from locations to formulas characterizing the initial values of the variables.
From now on we assume that variables take integer values and programs are linear, i.e.,
the initial conditions Θ and transition relations ρ are described as conjunctions of linear
inequalities.

An important class of invariant maps is that of inductive invariant maps:

I Definition 1. An invariant map µ is said to be inductive if:

[Initiation] For every location `: Θ(`) |= µ(`)
[Consecution] For every transition τ = (`, `′, ρ): µ(`) ∧ ρ |= µ(`′)′.

The basic idea of the approach we follow for proving program termination [8] is to
argue by contradiction that no transition is infinitely executable. First of all, it is obvious
that disabled transitions (i.e., that can never be executed) cannot be infinitely executable.
Moreover, one just needs to focus on transitions joining locations in the same strongly
connected component (SCC): if a transition is executed over and over again, then its pre
and post locations must belong to the same SCC. So let us assume that one has found a
ranking function for such a transition τ , according to the following definition:

I Definition 2. Let τ = (`, `′, ρ) be a transition such that ` and `′ belong to the same SCC,
denoted by C. A function R is said to be a ranking function for τ if:

[Boundedness] ρ |= R ≥ 0
[Strict Decrease] ρ |= R > R′

[Non-increase] For every τ̂ = (ˆ̀, ˆ̀′, ρ̂) such that ˆ̀, ˆ̀′ ∈ C: ρ̂ |= R ≥ R′

Note that boundedness and strict decrease only depend on τ , while non-increase depends
on all transitions in the SCC.

Similarly to [5], we consider linear invariant and linear ranking function templates and
take the following constraints from the definitions of inductive invariant and ranking func-
tion:

Initiation: For `: I`
def= Θ(`) ` I`

Disability: For τ = (`, `′, ρ): Dτ
def= I` ∧ ρ ` 1 ≤ 0

Consecution: For τ = (`, `′, ρ): Cτ
def= I` ∧ ρ ` I ′

`′

Boundedness: For τ = (`, `′, ρ): Bτ
def= I` ∧ ρ ` R ≥ 0

Strict Decrease: For τ = (`, `′, ρ): Sτ
def= I` ∧ ρ ` R > R′

Non-increase: For τ = (`, `′, ρ): Nτ
def= I` ∧ ρ ` R ≥ R′

Finally, let L and T be the sets of locations and transitions in the SCC under consid-
eration, respectively. Let also P be the set of transitions that are pending to be proved
finitely executable. Then we construct the following constraint system, which is later on
transformed into an SMT problem over linear and non-linear arithmetic:∧

`∈L

I` ∧
∧
τ∈T

(
Dτ ∨ Cτ

)
∧
∨
τ∈P

(
Dτ ∨ (Bτ ∧ Sτ)

)
∧
(
(
∧
τ∈P

Nτ) ∨
∨
τ∈P

Dτ
)
.

The first two conjuncts guarantee that an invariant map is computed; the other two, that
at least one of the pending transitions can be discarded. Notice that, if there is no disabled
transition, we ask that all transitions in P are non-increasing, but only that at least one
transition in P (the next to be removed) is both bounded and strict decreasing. Note also
that for finding invariants one has to take into account all transitions in the SCC, even those
that have already been proved to be finitely executable: otherwise some reachable states
might not be covered, and the invariant generation would become unsound. Hence in our
termination analysis we consider two transition systems: the original transition system for
invariant synthesis, whose transitions are T and which remains all the time the same; and the
termination transition system, whose transitions are P , i.e, where transitions already shown
to be finitely executable have been removed. This duplication is similar to the cooperation
graph of [7].

The idea is to consider the constraints guaranteeing invariance as hard, so that any so-
lution to the constraint system will satisfy them, while the rest are soft. Let us consider
propositional variables pB, pS and pN, which intuitively represent if the conditions of bound-
edness, strict decrease and non-increase in the definition of ranking function are violated
respectively, and corresponding weights ωB, ωS and ωN. We consider now the next constraint
system (where soft constraints are written [·, ω], and hard ones as usual):∧
`∈L

I` ∧
∧
τ∈T

(
Dτ ∨ Cτ

)
∧
∨
τ∈P

(
Dτ ∨

(
(Bτ ∨ pB) ∧ (Sτ ∨ pS)

))
∧((∧

τ∈P
Nτ
)
∨
∨
τ∈P

Dτ ∨ pN
)
∧ [¬pB, ωB] ∧ [¬pS, ωS] ∧ [¬pN, ωN].

Note that, since all constraints are fulfiled, ranking functions have cost 0, and (if no
transition is disabled) functions that fail in any of the conditions are penalized with the
respective weight. Thus, the Max-SMT solver looks for the best solution and gets a ranking
function if feasible; otherwise, the weights guide the search to get invariants and quasi-
ranking functions that satisfy as many conditions as possible.

Hence this Max-SMT approach allows recovering information even from problems that
would be unsatisfiable in the initial method. This information can be exploited to perform
dynamic trace partitioning [9] as follows. Assume that the optimal solution to the above
Max-SMT formula has been computed, and let us consider a transition τ ∈ P such that
Dτ ∨ ((Bτ ∨ pB) ∧ (Sτ ∨ pS)) evaluates to true in the solution. Then we distinguish several
cases depending on the properties satisfied by τ and the computed function R:

If τ is disabled then it can be removed.

If R is non-increasing and satisfies boundedness and strict decrease for τ , then τ can be
removed too: R is a ranking function for it.
If R is non-increasing and satisfies boundedness for τ but not strict decrease, one can
split τ in the termination transition system into two new transitions: one where R > R′

is added to τ , and another one where R = R′ is enforced. Then the new transition with
R > R′ is automatically eliminated, as R is a ranking function for it. Equivalently, this
can be seen as adding R = R′ to τ . Now, if the solver could not prove R to be a true
ranking function for τ because it was missing an invariant, this transformation will guide
the solver to find that invariant so as to disable the transition with R = R′.
If R is non-increasing and satisfies strict decrease for τ but not boundedness, the same
technique from above can be applied: it boils down to adding R < 0 to τ .
If R is non-increasing but neither strict decrease nor boundedness are fulfilled for τ ,
then τ can be split into two new transitions: one with R < 0, and another one with
R ≥ 0 ∧R = R′.
If R does not satisfy the non-increase property, then it is rejected; however, the invariant
map from the solution can be used to strengthen the transition relations for the following
iterations of the termination analysis.

Note this analysis may be worth applying on other transitions τ in the termination
transition system apart from those that make Dτ ∨ ((Bτ ∨ pB) ∧ (Sτ ∨ pS)) true. E.g., if R
is a ranking function for a transition τ but fails to be so for another one τ ′ because strict
decrease does not hold, then, according to the above discussion, τ ′ can be strengthened with
R = R′.

On the other hand, working in this iterative way requires imposing additional constraints
to avoid getting to a standstill. Namely, in the case where non-increase does not hold and
so one would like to exploit the invariant, it is necessary to impose that the invariant is not
redundant.

Another advantage of this Max-SMT approach is that by using different weights we can
express priorities over conditions. Since, as explained above, violating the property of non-
increase invalidates the computed function R, it is convenient to make ωN the largest weight.
On the other hand, when non-increase and boundedness are fulfilled but not strict decrease
an equality is added to the transition, whereas when non-increase and strict decrease are
fulfilled but not boundedness just an inequality is added. As we prefer the former to the
latter, in our implementation we set ωB > ωS.

Further refinements are possible. E.g., the termination transition system can also be
used for generating properties that are guaranteed to eventually hold at a location for
some computations. More specifically, we devised the following light-weight approach for
generating what we call termination implications. In a nutshell, for each location ` a
new linear inequality template J` is introduced and the following constraint is imposed:∧
τ=(ˆ̀,`,ρ)∈P (Dτ ∨ Iˆ̀∧ ρ ` J ′

`) . The rationale is that, if we find a property J` that is
implied by all transitions going into ` and ` is finally reached, then J` must hold. Then
this termination implication can be propagated forward to the transitions going out from `,
i.e., J` can be conjoined to I` ∧ ρ in the termination transition system. Finally, additional
constraints are imposed to ensure that new termination implications are not redundant with
the already computed invariants and termination implications.

I Example 3. Let us show a termination analysis of the program in Fig. 1. In the first
round, the solver finds the invariant y ≥ 1 at `2 and the ranking function z for τ2. While
y ≥ 1 can be added to τ3 (resulting into a new transition τ ′

3), the ranking function allows
eliminating τ2 from the termination transition system.

In the second round, the solver cannot find a ranking function. However, thanks to the
Max-SMT formulation, it can produce the quasi-ranking function x, which is non-increasing
and strict decreasing for τ1, but not bounded. This quasi-ranking function can be used to
split transition τ1 into two new transitions τ1.1 and τ1.2 as follows:

ρτ1.1 : x ≥ 0, y ≥ 1, x′ = x− 1, y′ = y, z′ = z

ρτ1.2 : x < 0, y ≥ 1, x′ = x− 1, y′ = y, z′ = z

Then τ1.1 is immediately removed, since x is a ranking function for it.
In the third and final round, the termination implication x < 0 is generated at `2, together

with the ranking function y for transition τ ′
3. Note that the termination implication is crucial

to prove the strict decrease of y for τ ′
3, and that the previously generated invariant y ≥ 1

at `2 is needed to ensure boundedness. Now τ ′
3 can be removed, which makes the graph

acyclic. This concludes the termination proof.

3 Conclusion

The method presented here has been implemented in the tool CppInv1.
This tool has been proved competitive in comparison with the new version of T2, which

according to the results given in [7] is performing much better when proving termination
than most of the existing tools.

For a full description of the method, its implementation and the experimental evaluation,
see [10].

References
1 D. Dams, R. Gerth, O. Grumberg, A heuristic for the automatic generation of ranking

functions, in: Workshop on Advances in Verification, 2000, pp. 1–8.
2 M. Colón, H. Sipma, Synthesis of linear ranking functions, in: TACAS, Vol. 2031 of Lecture

Notes in Computer Science, Springer, 2001, pp. 67–81.
3 A. Podelski, A. Rybalchenko, A complete method for the synthesis of linear ranking func-

tions, in: VMCAI, Vol. 2937 of Lecture Notes in Computer Science, Springer, 2004, pp.
239–251.

4 A. Tiwari, Termination of linear programs, in: CAV, Vol. 3114 of Lecture Notes in Com-
puter Science, Springer, 2004, pp. 70–82.

5 A. R. Bradley, Z. Manna, H. B. Sipma, Linear ranking with reachability, in: CAV, Vol.
3576 of Lecture Notes in Computer Science, Springer, 2005, pp. 491–504.

6 J. Petit, O. Giménez, S. Roura, Jutge.org: an educational programming judge, in: SIGCSE,
ACM, 2012, pp. 445–450.

7 M. Brockschmidt, B. Cook, C. Fuhs, Better termination proving through cooperation, in
CAV, 2013, to appear.

8 M. Colón, H. Sipma, Practical methods for proving program termination, in: CAV, Vol.
2404 of Lecture Notes in Computer Science, Springer, 2002, pp. 442–454.

9 L. Mauborgne, X. Rival, Trace partitioning in abstract interpretation based static analyzers,
in: M. Sagiv (Ed.), European Symposium on Programming (ESOP’05), Vol. 3444 of Lecture
Notes in Computer Science, Springer-Verlag, 2005, pp. 5–20.

10 D. Larraz, A. Oliveras, E. Rodríguez-Carbonell, A. Rubio, Proving termination of impera-
tive programs using max-smt, in FMCAD, 2013, to appear.

1 CppInv, together with all benchmarks used in the experimental evaluation, is available at www.lsi.
upc.edu/~albert/cppinv-term-bin.tar.gz.

www.lsi.upc.edu/~albert/cppinv-term-bin.tar.gz
www.lsi.upc.edu/~albert/cppinv-term-bin.tar.gz

	Introduction
	Encoding Termination using MAX-SMT
	Conclusion

