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Abstract
The predicative lexicographic path order (PLPO for short), a syntactic restriction of the lex-
icographic path order, is presented. As well as lexicographic path orders, several non-trivial
primitive recursive equations, e.g., primitive recursion with parameter substitution, unnested
multiple recursion, or simple nested recursion, can be oriented with PLPOs. It can be shown
that PLPOs however only induce primitive recursive upper bounds for derivation lengths of com-
patible rewrite systems. This yields an alternative proof of a classical fact that the class of
primitive recursive functions is closed under these non-trivial primitive recursive equations.
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1 Introduction

As shown by R. Péter [9], the class of primitive recursive functions is closed under a
recursion schema that is not an instance of primitive recursion, e.g., primitive recursion
with parameter substitution (PRP) f(x + 1, y) = h(x, y, f(x, p(x, y))), unnested multiple
recursion (UMR) f(x+1, y+1) = h(x, y, f(x, p(x, y)), f(x+1, y)), or simple nested recursion
(SNR) f(x+ 1, y) = h(x, y, f(x, p(x, y, f(x, y)))). H. Simmons [10] showed Péter’s results in
a general framework aiming to answer a deep question why primitive recursive functions are
closed under these non-trivial primitive recursive equations. As observed by E. A. Cichon
and A. Weiermann [6], in order to assess the complexity of a given function, we can discuss
about maximal lengths of rewriting sequences, which is known as derivation lengths, in a
term rewrite system that defines the function. More precisely, if every derivation length in a
given rewrite system R is bonded by a function in a class F , then the function defined by
R is elementary recursive in F measured by the size of a starting term. In [2] M. Avanzini
and G. Moser have shown that “elementary recursive in” can be replaced by “polynomial
time in” if one only considers of rewriting sequences starting with terms whose arguments
are already normalised. In [6] alternative proofs of Péter’s results were given employing
primitive recursive number-theoretic interpretations of rewrite systems corresponding to
those non-trivial primitive recursive equations mentioned above. On the other side, any
equation of (PRP), (UMR) and (SNR) can be oriented with a termination order known
as the lexicographic path order (LPO for short). As shown by Weiermann [11], LPOs
induce multiply recursive upper bounds for those derivation lengths. Thus, in order to
discuss about (PRP), (UMR) or (SNR), it is natural to restrict LPOs. In [5] Cichon
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introduced the ramified lexicographic path order (RLPO for short), a syntactic restriction
of LPO, capturing (PRP) and (UMR). This work is an attempt to find a maximal model
for primitive recursive functions based on termination orders in a way different from [5] but
stemming from Simmons’ approach in [10]. The recursion-theoretic characterisation given
in [10] is based on a restrictive (higher order primitive) recursion that is commonly known
as predicative recursion. A brief explanation about predicative recursion can be found in
the paragraph after Example 5 on page 3. Taking the idea of predicative recursion into the
lexicographic comparison, we introduce the predicative lexicographic path order (PLPO for
short), a syntactic restriction of LPO. As well as LPOs, (PRP) (UMR) and (SNR) can be
oriented with PLPOs. However, in contrast to LPOs, PLPOs only induce primitive recursive
upper bounds for derivation lengths of compatible rewrite systems. This yields an alternative
proof of the fact that primitive recursive functions are closed under (PRP) (UMR) and
(SNR). The definition of PLPO is also strongly motivated by a more recent work [1] by
Avanzini, Moser and the author.

2 Predicative Lexicographic Path Orders

Let V denote a countably infinite set of variables. A signature F is a finite set of function
symbols. The number of argument positions of a function symbol f ∈ F is denoted as
arity(f). We write T (V,F) to denote the set of terms over V and F . The signature F can
be partitioned into the set C of constructors and the set D of defined symbols. We suppose
that C contains at least one constant. We assume a specific (possibly empty) subset Dlex
of D. A precedence >F on the signature F is a quasi-order whose strict part >F is well-
founded on F . We write f ≈F g if f >F g and g >F f . We also assume that the argument
positions of every function symbol are separated into two kinds. The separation is indicated by
semicolon as f(t1, . . . , tk; tk+1, . . . , tk+l), where t1, . . . , tk are called normal arguments whereas
tk+1, . . . , tk+l are called safe ones. The equivalence ≈F is extended to the term equivalence
≈. We write f(s1, . . . , sk; sk+1, . . . , sk+l) ≈ g(t1, . . . , tk; sk+1, . . . , tk+l) if f ≈F g and sj ≈ tj
for all j ∈ {1, . . . , k + l}. An auxiliary relation s = f(s1, . . . , sk; sk+1, . . . , sk+l) =plpo t holds
if one of the following cases holds, where s wplpo t denotes s =plpo t or s ≈ t.
1. f ∈ C and si wplpo t for some i ∈ {1, . . . , k + l}.
2. f ∈ D and si wplpo t for some i ∈ {1, . . . , k}.
3. f ∈ D, t = g(t1, . . . , tm; tm+1, . . . , tm+n) for some g such that f >F g, and s =plpo tj for

all j ∈ {1, . . . ,m+ n}.
Now we define the predicative lexicographic path order (PLPO for short) denoted as >plpo.
We write s >plpo t if s >plpo t or s ≈ t, like the relation wplpo, write (s1, . . . , sk) >plpo
(t1, . . . , tk) if sj >plpo tj for all j ∈ {1, . . . , k}, and we write (s1, . . . , sk) >plpo (t1, . . . , tk) if
(s1, . . . , sk) >plpo (t1, . . . , tk) and additionally si >plpo ti for some i ∈ {1, . . . , k}.

I Definition 1. s = f(s1, . . . , sk; sk+1, . . . , sk+l) >plpo t holds if one of the following holds.
1. s =plpo t.
2. si >plpo t for some i ∈ {1, . . . , k + l}.
3. f ∈ D, t = g(t1, . . . , tm; tm+1, . . . , tm+l) for some g such that f >F g, s =plpo tj for all

j ∈ {1, . . . ,m}, and s >plpo tj for all j ∈ {m+ 1, . . . ,m+ n}.
4. f ∈ D\Dlex, t = g(t1, . . . , tk; tk+1, . . . , tk+l) for some g such that f ≈F g, (s1, . . . , sk) >plpo

(t1, . . . , tk), and (sk+1, . . . , sk+l) >plpo (tk+1, . . . , tk+l).
5. f ∈ Dlex, t = g(t1, . . . , tm; tm+1, . . . , tm+l) for some g such that f ≈F g, and there exists

i0 ∈ {1, . . . ,min(k,m)} such that sj ≈ tj for all j ∈ {1, . . . , i0−1}, si0 >plpo ti0 , s =plpo tj
for all j ∈ {i0 + 1, . . . ,m}, and s >plpo tj for all j ∈ {m+ 1, . . . ,m+ n}.
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By induction according to the definition of >plpo, the inclusion >plpo⊆>lpo can be shown
for the LPO >lpo induced by the same precedence. The converse inclusion does not hold in
general.

I Example 2. RPR = {f(; 0, y)→ g(; y), f(; s(;x), y)→ h(;x, y, f(;x, y))}.
The sets C and D are defined by C = {0, s} and D = {g, h, f}. Let Dlex = ∅. Define a

precedence >F by f ≈F f and f >F g, h. Define an argument separation as indicated in the
rules. Then RPR can be oriented with the PLPO >plpo induced by >F . For the first rule
f(; 0, y) >plpo y and hence f(; 0, y) >plpo g(; y) by Case 3 in Definition 1. Consider the second
rule. Since (s(;x), y) >plpo (x, y), f(; s(;x), y) >plpo f(;x, y) holds as an instance of Case 4.
An application of Case 3 allows us to conclude f(; s(;x), y) >plpo h(;x, y, f(;x, y)).

I Example 3. RPRP = {f(0; y)→ g(; y), f(s(;x); y)→ h(x; y, f(x; p(x; y)))}.
The sets C and D are defined as in the previous example. Define the set Dlex by Dlex = {f}.

Define a precedence >F by f ≈F f and f >F q for all q ∈ {g, p, h}. Define an argument
separation as indicated. Then RPRP can be oriented with the induced PLPO >plpo. We only
consider the most interesting case. Namely we oriente the second rule. Since s(;x) =plpo
x, f(s(;x); y) =plpo x holds by the definition of =plpo. This together with Case 3 yields
f(s(;x); y) >plpo p(x; y). Hence an application of Case 5 yields f(s(;x); y) >plpo f(x; p(x; y)).
Another application of Case 3 allows us to conclude f(s(;x); y) >plpo h(x; y, f(x; p(x; y))).

I Example 4. RUMR =


f(0, y; ) → g0(y; ),

f(s(;x), 0; ) → g1(x; f(x, q(x; ); )),
f(s(;x), s(; y); ) → h(x, y; f(x, p(x, y; ); ), f(s(;x), y; ))

.

The sets C and D are defined as in the former two examples and the set Dlex is defined in
the previous example. Define a precedence >F by f ≈F f and f >F g for all g ∈ {g0, g1, p, q, h}.
Define an argument separation as indicated. Then RUMR can be oriented with the induced
PLPO >plpo. Let us consider the most interesting case. Namely we oriente the third
rule. Since f >F p and s(;u) =plpo u for each u ∈ {x, y}, f(s(;x), s(; y); ) =plpo p(x, y; )
holds by the definition of =plpo. Hence, since s(;x) >plpo x, an application of Case 5 in
Definition 1 yields f(s(;x), s(;x); ) >plpo f(x, p(x, y; ); ). Another application of Case 5 yields
f(s(;x), s(; y); ) >plpo f(s(;x), y; ). Clearly f(s(;x), s(; y); ) =plpo u for each u ∈ {x, y}. Hence
an application of Case 3 allows us to conclude f(s(;x), s(; y); ) >plpo h(x, y; f(x, p(x, y; ); ),
f(s(;x), y; )).

I Example 5. RSNR = {f(0; y)→ g(; y), f(s(;x); y)→ h(x; y, f(x; p(x; y, f(x; y))))}.
The sets C, D and Dlex are defined as in the former three examples. Define a pre-

cedence >F as in the previous example. Define an argument separation as indicated.
Then RSNR can be oriented with the induced PLPO >plpo. We only oriente the second
rule. As we observed in the previous example, f(s(;x); y) >plpo f(x; y) holds by Case 5.
Hence f(s(;x); y) >plpo p(x; y, f(x; y)) holds by Case 3. This together with Case 5 yields
f(s(;x); y) >plpo f(x; p(x; y, f(x; y))). Thus another application of Case 3 allows us to conclude
f(s(;x); y) >plpo h(x; y, f(x; p(x; y, f(x; y)))).

Careful readers may observe that the general form of nested recursion, e.g., defining
equations for the Ackermann function, cannot be oriented with PLPOs. As intended in [4],
predicative recursion is a syntactic restriction of the standard (primitive) recursion, where the
number of recursive calls is measured only by a normal argument whereas results of recursion
are allowed to be substituted only for safe arguments: f(x+ 1, ~y;~z) = h(x, ~y;~z, f(x, ~y;~z)).
In [10] the meaning of predicative recursion is modified (though [10] is an earlier work
than [4]) in such a way that recursive calls are allowed even on safe arguments for the
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standard primitive recursion (see Example 2) but still restricted on normal arguments for
multiple (nested) recursion (see Example 3–5). In the sequel we present a primitive recursive
interpretation for PLPOs. This yields that the maximal length of rewriting sequences in
any rewrite system compatible with a PLPO is bounded by a primitive recursive function in
the size of the starting term. All the missing details can be found in a technical report [7].
Following [6, page 214], given a natural d ≥ 2, we define the primitive recursive function Fm

by F0(x) = dx+1 and Fm+1(x) = F
d(1+x)
m (x), where F d

m denotes the d-fold iteration of Fm.

I Definition 6. Given k, we inductively define the k-ary primitive recursive function Fm,n by

Fm,0(x1, . . . , xk) = 0, Fm,n+1(x1, . . . , xk) =
{

F
Fm,n(x1,...,xk)+d(1+xn+1)
m (

∑n+1
j=1 xj) if n < k,

F
Fm,n(x1,...,xk)
m (

∑k
j=1 xj) if k ≤ n.

I Definition 7. Let ` be a natural such that 2 ≤ `, F a signature and >F a precedence on
F . The rank rk : F → N is defined in accordance with >F , i.e., rk(f) ≥ rk(g) ⇔ f >F g.
Define a natural K by K = max{k | f ∈ F and f has k normal argument positions}. Then a
primitive recursive interpretation I : T (F)→ N is defined by I(t) = dFrk(f)+`,K+1(I(t1),...,I(tk))·∑l

j=1 I(tk+j), where t = f(t1, . . . , tk; tk+1, . . . , tk+l) ∈ T (F).

Let 2 ≤ `. We define a restriction =`
plpo of =plpo: s = f(s1, . . . , sk; sk+1, . . . , sk+l) =`

plpo t

holds if one of the following cases holds, where s w`
plpo t denotes s =`

plpo t or s ≈ t.
1. f ∈ C and si w`

plpo t for some i ∈ {1, . . . , k + l}.
2. f ∈ D and si w`

plpo t for some i ∈ {1, . . . , k}.
3. f ∈ D, t = g(t1, . . . , tm; tm+1, . . . , tm+n) for some g such that f >F g, and s =`−1

plpo tj for
all j ∈ {1, . . . ,m+ n}.

We write >`
plpo to denote the PLPO induced by =`

plpo and |t| to denote the size of a term t.
In addition, for a rewrite system R and a relation >, we write R ⊆> if l > r holds for every
rule (l→ r) ∈ R.

I Lemma 8. Let s, t ∈ T (F ,V) and σ : V → T (F) be a ground substitution. Suppose
max({arity(f) | f ∈ F} ∪ {` · (K + 2) + 2} ∪ {|t| + 1}) ≤ d. If s >`

plpo t, then, for the
interpretation I induced by ` and d, I(sσ) > I(tσ) holds.

I Lemma 9. Let s, t ∈ T (F) be ground terms and C(2) ∈ T (F ∪ {2}) a (ground) context.
If I(s) > I(t), then I(C(s)) > I(C(t)) holds.

I Theorem 10. Let R be a rewrite system over a signature F such that R ⊆>`
plpo for some

` ≥ 2 and s, t ∈ T (F) be ground terms. Suppose max({arity(f) | f ∈ F}∪ {` · (K + 2) + 2} ∪
{|r| + 1 | (l → r) ∈ R}) ≤ d. If s →R t, then, for the interpretation induced by ` and d,
I(s) > I(t) holds.

I Theorem 11. For any rewrite system R such that R ⊆>plpo for some PLPO >plpo, the
length of any rewriting sequence in R starting with a ground term is bounded by a primitive
recursive function in the size of the starting term.

I Corollary 12. The class of primitive recursive functions is closed under primitive recursion
with parameter substitution, unnested multiple recursion and simple nested recursion.

3 Concluding remarks

A novel termination order, the predicative lexicographic path order PLPO, was presented.
As well as LPOs, any instance of (PRP), (UMR) and (SNR) can be oriented with a PLPO.
Note that general simple nested recursion briefly discussed in [6, page 221], e.g., simple
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nested recursion with more than one recursion parameters, can be even oriented with PLPOs.
On the other side, PLPOs only induce primitive recursive upper bounds for derivation
lengths of compatible rewrite systems. It turns out that the presented primitive recursive
interpretation is not affected even if in Case 4 of Definition 1 one allows permutations of safe
argument positions on {k + 1, . . . , k + l}. Allowance of permutations of normal argument
positions is not clear at present. One would recall that, as shown by D. Hofbauer in [8],
multiset path orders only induce primitive recursive upper bounds for derivation lengths of
compatible rewrite systems. Allowance of multiset comparison is not clear in the case even
for safe arguments. We mention that every PLPO is a slight extension of an exponential path
order EPO* defined in [1] though EPO*s only induce exponential (innermost) derivational
complexity. An auxiliary relation =epo employed to define EPO* is strictly included in =plpo.
We also mention that the auxiliary relation =plpo is exactly the same as the relation >pop
introduced in [3] to define the polynomial path order POP*. By induction according to the
inductive definition of an EPO* >epo∗, it can be shown that >epo∗⊆>plpo holds with the
same precedence and the same argument separation. In general none of (PRP), (UMR)
and (SNR) can be oriented with EPO*s. Perhaps it should be emphasised that a significant
difference between PLPO and EPO* lies in Case 4 of Definition 1. Without Case 4 PLPOs
would only induce elementary recursive derivational complexity.
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