
Automated nontermination proofs by safety proofs
Hong-Yi Chen1, Byron Cook1,2, Carsten Fuhs1, Kaustubh Nimkar1,
and Peter O’Hearn1

1 University College London
Gower Street, London, United Kingdom
hongyichen00@gmail.com, c.fuhs@cs.ucl.ac.uk, k.nimkar@cs.ucl.ac.uk,
p.ohearn@ucl.ac.uk

2 Microsoft Research Cambridge
21 Station Road, Cambridge, United Kingdom
bycook@microsoft.com

Abstract
We show how the problem of nontermination proving can be reduced to a question of under-
approximation search guided by a safety prover. This reduction leads to new nontermination
proving implementation strategies based on existing tools for safety proving. Our preliminary
implementation has shown favorable results over existing tools.

1998 ACM Subject Classification D.2.4 Software/Program Verification, F.3.1 Specifying and
Verifying and Reasoning about Programs, I.2.2 Automatic Programming

Keywords and phrases Nontermination analysis, Safety analysis, Closed recurrence set

1 Introduction

The problem of proving program nontermination represents an interesting complement to
termination as, unlike safety, termination’s falsification cannot be witnessed by a finite trace.
While the problem of proving termination has now been extensively studied, the search for
reliable and scalable methods for proving nontermination remains open.

In this extended abstract we present a new method of proving nontermination based
on a reduction to safety proving that leverages the power of existing tools. An iterative
algorithm is developed which uses counterexamples to a fixed safety property to refine an
underapproximation of a program. With our approach, existing safety provers can now be
employed to prove nontermination of programs that previous techniques could not handle.
Not only does the new approach perform better, it also leads to nontermination proving tools
supporting features previous tools could not handle reliably, e.g. heap, nonlinear commands,
and nondeterminism.

Recall that safety of a program means that no undesired (or unsafe) program state can
be reached from any initial state of the program. On source code level, unsafe states can be
expressed by a statement “assert(ϕ)” for a Boolean expression ϕ. Then the program is unsafe
iff there exists a run of the program from an initial state such that in this run, ϕ is violated
at the position of this statement. Techniques for safety proving include counter-example
based abstraction refinement as in Slam [1] or interpolation as in Impact [9].

Gupta et al. [8] characterize nontermination of a program by the existence of a recurrence
set. A program is nonterminating iff there exists a recurrence set for the program’s transition
relation. The existence of a recurrence set implies that the program does not terminate when
from a reachable state in the recurrence set we can always choose the next transition to a
state that also belongs to the recurrence set.



2 Automated nontermination proofs by safety proofs

As opposed to their approach we search for an underapproximation of the original program
that never terminates, regardless of the values introduced by nondeterministic assignments
during the run. This property is characterized by a closed recurrence set for the transition
relation of the underapproximation. For every state in the closed recurrence set, every
possible transition leads us to a state that belongs to the closed recurrence set. As “never
terminates” can be encoded as safety property, we can then iterate a safety prover together
with a method of underapproximating based on counterexamples. We have to be careful,
however, to find the right underapproximation in order to avoid unsoundness.

We describe our algorithm informally. It takes as input a program P and a loop L in P to
be considered for nontermination. We then mark the L’s exit location as an error location and
invoke a safety checker. Any path that reaches the exit location is the counterexample to safety
and it cannot contribute towards the nontermination of the loop. We then find an underap-
proximation of P that eliminates this path. Our algorithm either finds a precondition for P

or a precondition after a nondeterministic assignment statement such that every state which
fulfills this precondition reaches the error location when the counterexample path is followed.
To eliminate the counterexample path we then negate this condition and add a restriction on
the state space to get our underapproximating refinement. We continue this procedure as
long as there is some counterexample to safety of our current underapproximation.

Note that sometimes our refinements are too weak and the search for a safe underapprox-
imation may lead to divergence. In such cases we use suitable heuristics to strengthen our
underapproximation which then avoids the problem of divergence.

Let P ′ be our final underapproximation that is safe. We refer to the loop L after
refinements as L′. To prove nontermination we first need to ensure that the loop L′ in P ′ is
still reachable after the refinements. This can again be encoded as a safety problem, this
time marking the loop header as an error location. If safety is violated, the counterexample
path represents the path to L′ ensuring the reachability of L′.

Note that our refinements also restrict the choices for nondeterministic assignment state-
ments. We finally ensure that for every reachable state at the nondeterministic assignment
inside L′, we can still make a choice so that execution is never halted. When the check
succeeds, we report nontermination. In the final underapproximation, the set of all reachable
states at the loop header of L′ forms a closed recurrence set for the loop’s transition relation.

2 Example

We now describe our algorithm using a simple example. Consider the following program.

if (k ≥ 0)
skip;

else
i := −1;

while (i ≥ 0) {
i := nondet();

}
i := 2;

In this program the command i := nondet() represents nondeterministic
value introduction into the variable i (e.g. user input). The loop in this
program is nonterminating when the program is invoked with appropriate
inputs and when appropriate choices for the nondet assignment are made.
We are interested in automatically detecting this nontermination.

In order to find the desired underapproximation for our example,
we first introduce an assume statement (where “assume(ϕ)” can be
implemented by “if (¬ϕ) exit”) at the beginning with the initial
precondition true. We also place assume(true) statements after each
use of nondet. We then put an assert(false) statement at points where the loop under
consideration exits (thus encoding the “never terminates” property). See Figure 1(a).

We then use a safety checker (here: for programs on integer data) to search for paths that
violate this assertion. Any error path clearly cannot contribute towards the nontermination



H. Chen, B. Cook, C. Fuhs, K. Nimkar and P. O’Hearn 3

assume(true);

if (k ≥ 0)
skip;

else
i := −1;

while (i ≥ 0) {
i := nondet();
assume(true);

}

assert(false);

i := 2;

assume(k ≥ 0);

if (k ≥ 0)
skip;

else
i := −1;

while (i ≥ 0) {
i := nondet();
assume(true);

}

assert(false);

i := 2;

assume(k ≥ 0 ∧ i ≥ 0);

if (k ≥ 0)
skip;

else
i := −1;

while (i ≥ 0) {
i := nondet();
assume(true);

}

assert(false);

i := 2;
(a) (b) (c)

assume(k ≥ 0 ∧ i ≥ 0);

if (k ≥ 0)
skip;

else
i := −1;

while (i ≥ 0) {
i := nondet();
assume(i ≥ 0);

}

assert(false);

i := 2;

assume(k ≥ 0 ∧ i ≥ 0);

if (k ≥ 0)
skip;

else
i := −1;

assert(false);

while (i ≥ 0) {
i := nondet();
assume(i ≥ 0);

}

assume(k ≥ 0 ∧ i ≥ 0);
assume(k ≥ 0);

skip;
while (i ≥ 0) {

i := nondet();
assume(i ≥ 0);

}

(d) (e) (f)

Figure 1 Original instrumented program (a) and its successive underapproximations (b), (c),
(d). Reachability check for the loop (e), and nondeterminism-assume that must be checked for
satisfiability (f).



4 Automated nontermination proofs by safety proofs

of the loop. Initially, as a first counterexample to safety, we might get the path k < 0, i :=
−1, i < 0, from a safety prover. We now want to determine from which states we can reach
assert(false) and eliminate those states. Using a precondition computation similar to
Calcagno et al. [4] we find the condition k < 0. Note that our condition gives a set of states
that actually reach the error location. To rule out the states k < 0 we can add the negation
(e.g. k ≥ 0) to the precondition assume statement. See Figure 1(b).

We then try to prove the assert statement unreachable for the program in Figure 1(b).
Here we might get the path k ≥ 0, skip, i < 0, which again violates the assertion. For this
path we would discover the precondition k ≥ 0 ∧ i < 0, and to rule out these states we refine
the precondition assume statement with “assume(k ≥ 0 ∧ i ≥ 0)”. See Figure 1(c).

On this program our safety prover will again fail, perhaps resulting in the path k ≥
0, skip, i ≥ 0, i := nondet(), i < 0. In this case our algorithm stops computing the
precondition at the command i := nondet(). Here we would learn that at the nondeterministic
command the result must be i < 0 in order to violate the assertion, thus we would refine the
assume statement just after the nondeterministic statement with the negation of i < 0 and
get “assume(i ≥ 0)”. See Figure 1(d).

The program in Figure 1(d) cannot violate the assertion, and thus we have hopefully
computed the desired underapproximation to the transition relation needed in order to prove
nontermination. However, for soundness, it is essential to ensure that the loop in Figure 1(d)
is still reachable, even after the successive restrictions to the state space. We encode this
condition as a safety problem. See Figure 1(e). This time we add assert(false) before
the loop and aim to prove that the assertion is violated. The existence of a path violating
the assertion ensures that the loop in Figure 1(d) is reachable. In this case the assertion is
reachable, and thus the loop is still reachable. The path violating the assertion is our desired
path to the loop which we refer to as stem. Figure 1(f) shows the stem and the loop.

Finally we need to ensure that the assume statement in Figure 1(f) can always be satisfied
with some choice of i by any reachable state from the restricted pre-state. This is necessary
since our underapproximations may accidentally have eliminated not only the paths to the
loop’s exit location, but also all of the non-terminating paths inside the loop. We ensure this
by calculating a location invariant inv before the nondet statement. We then check that the
formula inv→ ∃i′.i′ ≥ 0 is valid. Even the weakest invariant true can be sufficient to easily
prove the validity of the above formula. This ensures that for every reachable state at the
nondeterministic assignment we can still make a choice so that execution is never halted.
Once this check succeeds we report nontermination.

3 Experiments

In order to assess the impact of our approach, we have built a preliminary implementation
within the tool T2 [2] [5] and evaluated it empirically comparing with the following tools:

TNT [8]. Note that the original TNT tool was not available and thus we have reimple-
mented the underlying constraint-based algorithm with Z3 [6] as SMT backend.
AProVE [7], using the Java Bytecode frontend. When proving nontermination of Java
Bytecode programs, AProVE implements the SMT-based nontermination analysis by
Brockschmidt et al. [3].
Julia [13]: Julia implements an approach via a reduction from Java Bytecode to
constraint logic programming described by Payet and Spoto [11].

As a benchmark set, we applied the tools on a set of 495 benchmarks from a variety of
applications (e.g. Windows device drivers, the Apache web server, the PostgreSQL server,



H. Chen, B. Cook, C. Fuhs, K. Nimkar and P. O’Hearn 5

integer approximations of numerical programs from a book on numerical recipes [12], integer
approximations of benchmarks from LLBMC [10] and other tool evaluations).

We conducted three sets of experiments. The first set consists of all the 77 examples
previously known to be nonterminating, the second set consists of all the 258 examples
previously known to be terminating, and the third set consists of all the 160 examples for
which no previous results are known and which are too large to render a manual analysis
feasible. We used the first set of examples to assess the efficiency of the algorithm, the second
set to demonstrate the algorithm’s soundness, and the third set to check if our algorithm
scales well on relatively large and complicated examples. The results demonstrate that our
procedure is overwhelmingly the most successful tool and does not show erroneous behavior
in our experiments.

4 Conclusion

In this paper we introduced a new method of proving nontermination. The idea is to split the
reasoning in two parts: a safety prover is used to prove that a loop in an underapproximation of
the original program never terminates; meanwhile failed safety proofs are used to calculate the
underapproximation. Our implementation has shown that our approach leads to performance
improvements against previous tools where they are applicable.

References
1 Thomas Ball and Sriram K. Rajamani. The SLAM toolkit. In Proc. CAV ’01, volume 2102

of LNCS, pages 260–264, 2001.
2 Marc Brockschmidt, Byron Cook, and Carsten Fuhs. Better termination proving through

cooperation. In Proc. CAV ’13, volume 8044 of LNCS, pages 413–429, 2013.
3 Marc Brockschmidt, Thomas Ströder, Carsten Otto, and Jürgen Giesl. Automated detec-

tion of non-termination and NullPointerExceptions for Java Bytecode. In Proc. FoVe-
OOS ’11, volume 7421 of LNCS, pages 123–141, 2012.

4 Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Compositional
shape analysis by means of bi-abduction. Journal of the ACM, 58(6):26, 2011.

5 Byron Cook, Abigail See, and Florian Zuleger. Ramsey vs. lexicographic termination prov-
ing. In Proc. TACAS ’13, volume 7795 of LNCS, pages 47–61, 2013.

6 Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Proc. TACAS ’08,
volume 4963 of LNCS, pages 337–340, 2008.

7 Jürgen Giesl, Peter Schneider-Kamp, and René Thiemann. AProVE 1.2: Automatic ter-
mination proofs in the dependency pair framework. In Proc. IJCAR ’06, volume 4130 of
LNAI, pages 281–286, 2006.

8 Ashutosh Gupta, Thomas A. Henzinger, Rupak Majumdar, Andrey Rybalchenko, and Ru-
Gang Xu. Proving non-termination. In Proc. POPL ’08, pages 147–158, 2008.

9 Ken McMillan. Lazy abstraction with interpolants. In Proc. CAV ’06, volume 4144 of
LNCS, pages 123–136, 2006.

10 Florian Merz, Stephan Falke, and Carsten Sinz. LLBMC: Bounded model checking of C
and C++ programs using a compiler IR. In Proc. VSTTE ’12, LNCS, pages 146–161, 2012.

11 Étienne Payet and Fausto Spoto. Experiments with non-termination analysis for Java
Bytecode. In Proc. BYTECODE ’09, volume 253 of ENTCS, pages 83–96, 2009.

12 William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Nu-
merical Recipes: The Art of Scientific Computing. Cambridge University Press, 1989.

13 Fausto Spoto, Fred Mesnard, and Étienne Payet. A termination analyzer for Java bytecode
based on path-length. ACM TOPLAS, 32(3), 2010.


	Introduction
	Example
	Experiments
	Conclusion

