
Cooperation For Better Termination Proving
Marc Brockschmidt1, Byron Cook2, and Carsten Fuhs3

1 RWTH Aachen University, Germany
brockschmidt@cs.rwth-aachen.de

2 Microsoft Research and University College London, United Kingdom
bycook@microsoft.com

3 University College London, United Kingdom
c.fuhs@cs.ucl.ac.uk

Abstract
One of the difficulties of proving program termination is managing the subtle interplay between
the finding of a termination argument and the finding of the argument’s supporting invariant. In
this extended abstract we propose a new mechanism that facilitates better cooperation between
these two types of reasoning. In an experimental evaluation we find that our new method leads
to dramatic performance improvements.

Keywords and phrases Termination analysis, safety proving, rank functions

1 Introduction

y := 1;
while x > 0 do

x := x − y;
y := y + 1;

done

When proving program termination we are simultaneously solving two
problems: the search for a termination argument, and the search for
a supporting invariant. Consider the example to the right. To prove
termination of this program we are looking to find both a termination
argument (i.e., “x decreases until 0”) and a supporting invariant (i.e.,
y > 0). The two are interrelated: Without y > 0, we cannot prove the
validity of the argument “x decreases until 0”; and without “x decreases
towards 0”, how would we know that we need to prove y > 0?

Several program termination proving tools (e.g. [9], [10], [11], [15], [17]) address this
problem using a strategy that oscillates between calls to an off-the-shelf safety prover (e.g.
[1], [3], [8], [12], [14], etc.) and calls to a rank function synthesis tool (e.g. [2], [5], [6], [16],
etc.). In this setting a candidate termination argument is iteratively constructed. The safety
prover proves or disproves the validity of the current argument via the search for invariants.
Refinement of the current termination argument is performed using the output of a rank
function synthesis tool when applied to counterexamples found by the safety prover.

A difficulty with this approach is that currently, the underlying tools do not share enough
information about the overall state of the termination proof. For example, the rank function
synthesis tool is only applied to the single path through the program described by the
counterexample found by the safety prover, while the context of this single path is not
considered at all. Meanwhile, the safety prover is unaware of things such as which paths in
the program have already been deemed terminating and how those paths might contribute
to other potentially infinite executions. The result is lost performance, as the underlying
tools often make choices inappropriate to the common goal of fast termination proving.

Here we introduce a technique that facilitates cooperation between the underlying tools
in a termination prover, thus allowing for decisions more appropriate to the common good of
proving program termination. The idea is to use a single representation of the state of the
termination proof search—called a cooperation graph—that both tools operate over. Nodes
in the graph are marked as either termination-nodes or safety-nodes to indicate their role



2 Cooperation For Better Termination Proving

i := 0;
while i < n do

j := 0;
while j ≤ i do

j := j + 1;
done
i := i + 1;

done

start

`1

`2

τ0 : i := 0;

τ1 : if(i < n);
j := 0;

τ2 : if(j > i);
i := i + 1;

τ3 : if(j ≤ i);
j := j + 1;

(a) (b)

Figure 1 Textual and control-flow graph representation of skeleton bubble sort routine

in the state of the proof. With this additional information exposed, we can now represent
the progress of the termination proof search by modifying the termination subgraph. This
has practical advantages: the safety prover can be encouraged not to explore parts of the
program that have already been proven terminating, and the rank function synthesis can
make use of the full program structure in order to find better termination arguments.

Our approach results in significant performance improvements over earlier methods and
our implementation succeeds on numerous programs where previous tools fail. In cases where
previous tools do succeed, our implementation boosts performance by orders of magnitude.

Limitations. While in theory our approach works in a general setting, our implementa-
tion focuses on sequential arithmetic programs (so these programs do not use the heap or
bitvectors). In some cases we have soundly abstracted C programs with heap to arithmetic
programs (e.g. using a technique due to Magill et al. [13]); in other cases, as is standard in
many tools (e.g. SLAM [3]), we essentially ignored bitvectors and the heap.

The full version of the present short paper has been published in [7].

2 Illustrating Example

We illustrate our approach using the example in Fig. 1, which displays a bubble-sort like
program (the manipulation of the data has been abstracted away). In our setting we use
a graph—called a cooperation graph—to facilitate sharing of information between a safety
prover and a rank function synthesis procedure. See Fig. 2 for the cooperation graph at
the start of the proof search. We start with the control-flow graph of the original program
from Fig. 1, which we keep for reasoning about safety (i.e., (un)reachability from the initial
program states). Intuitively, this part of the graph is for the finite prefix of a run from the
initial location to a loop with a (hypothetical) infinite suffix of the run. For this infinite suffix,
we have duplicated the loops of the original program (in the form of the strongly-connected
components (SCCs) of the graph with locations `t1 and `t2). We connect the two parts of the
graph with non-deterministic transitions from one copy of the program to the other (i.e.,
τ4 and τ5). Technically, the cooperation graph contains a superset of the transitions in the
initial program, yet if we can prove that there is no infinite run from the initial location
where `t1 or `t2 occur infinitely often, this implies termination of the original program as well.

After duplication, we also apply a few known tricks: In the new copy of the program, we
follow the approach of Biere et al. [4] by adding nodes (i.e., `d1 and `d2) and transitions to take



M. Brockschmidt, B. Cook, C. Fuhs 3

start

`1

`2

`t1 `d1

`t2 `d2

err

err

τ0 : i := 0;
cp1 := 0;
cp2 := 0;

τ1 : if(i < n);
j := 0;

τ2 : if(j > i);
i := i + 1;

τ3 : if(j ≤ i);
j := j + 1;

τ4 : skip;

τ5 : skip;

γ1 : if(cp1 < 1);
ic := i;
jc := j;
nc := n;
cp1 := 1;

η1 : if(cp1 < 1);

ρ1 : if(cp1 ≥ 1);

τ
t

1
:

if(
i <

n)
;

j :=
0;

τ t2 :
if(j >

i);

i :=
i +

1;

γ2 : if(cp2 < 1);
ic := i;
jc := j;
nc := n;
cp2 := 1;

η2 : if(cp2 < 1);

ρ2 : if(cp2 ≥ 1);

τt
3 : if(j ≤ i);

j := j + 1;

Figure 2 Cooperation graph derived from Fig. 1

a snapshot of variable values (i.e., γ1 and γ2). The current values of variables i, j, n are stored
in copies ic, jc, nc and the flag cpk is set to indicate that a snapshot was taken at location
`k. Furthermore, new transitions to an error location “err” have been added that can be
strengthened later by partial termination arguments à la Cook et al. [9]. Proving this error
location unreachable then implies a termination proof for the input program. In the resulting
graph, reasoning about termination is performed on the right-hand side (the termination
subgraph) by a procedure built around an efficient rank function synthesis. We search for
supporting invariants on the left-hand side (the safety subgraph) via a safety prover.

Via this duplication to the termination and safety subgraphs, we can easily restrict certain
operations to either subgraph, yet still maintain a connection between them. The safety
subgraph describes an over-approximation of all reachable states, while the termination
subgraph is an over-approximation of those states whose termination has not been proven
yet. This allows us to perform operations in the one half that may not make sense (or
may be unsound) in the other: when we prove that transitions in the termination subgraph
can only be used finitely often, we can simply remove them, as they cannot contribute to
infinite executions. This is only sound because the safety subgraph remains unchanged in this
simplification, which keeps the set of reachable states unchanged and hence allows reasoning
about safety/invariants. These iterative program simplifications encode the progress of the
termination proof search and are directly available to the safety prover.

The graph structure guides the safety prover to unproven parts of the program yielding
relevant counterexamples and allowing the rank function synthesis to produce better termina-
tion arguments. If these do not allow a program simplification, they still guide the invariant
generation by the safety prover for nodes in the safety subgraph. The invariants in turn
support reasoning about the validity of termination arguments in the termination subgraph.

Termination proof sketch. In our example, we begin searching for a path from
the “start” location to the error location “err”. We might, for example, choose the path
〈τ0, τ4, γ1, τ

t
1, η2, τ

t
3, η2, τ

t
2, ρ1〉 where τ0 is drawn from the safety subgraph and the other

transitions come from the termination subgraph. Here, 〈γ1, τ
t
1, η2, τ

t
3, η2, τ

t
2〉 form a cy-



4 Cooperation For Better Termination Proving

cle in the execution, returning back to location `t1. In our approach we do not sim-
ply use this command sequence directly to search for a new termination argument (as
is done in previous tools). Instead, we additionally consider all transitions from the
termination subgraph that enter and exit nodes in the strongly connected component
containing the found cycle of termination-transitions in the counterexample. In this
case, because the graph is so small, this includes the entire termination subgraph:

start `1 `t1 `d1

`t2 `d2

τ0 : i := 0;
cp1 := 0;
cp2 := 0; τ4 : skip;

γ1 : if(cp1 < 1);
ic := i;
jc := j;
nc := n;
cp1 := 1;

η1 : if(cp1 < 1);

τ
t

1
:

if(
i <

n)
;

j :=
0;

τ t2 :
if(j >

i);

i :=
i +

1;

γ2 : if(cp2 < 1);
ic := i;
jc := j;
nc := n;
cp2 := 1;

η2 : if(cp2 < 1);

τt
3 : if(j ≤ i);

j := j + 1;

This graph has extra termination-edges (e.g. τ t3) and
shows that the rank function n−i is a better rank function
than j− i because τ t3 modifies j. Without τ t3, j appears
as a constant so that j > i looks like a suitable candidate
invariant supporting the termination argument j− i.

Fig. 3 is the state of the cooperation graph after one
counterexample. We use the rank function with n− i + 1
for both `t1 and `d1, and n−i for both `t2 and `d2. This rank
function decreases each time we use the transition τ t1,
and the condition i < n implies that the rank function is
bounded from below. So τ t1 can only be used finitely often and we can remove it from the
termination subgraph. This also allows to remove `t1, `d1 and all transitions connected to
the two, as they are not on a non-trivial SCC anymore and thus cannot occur infinitely often
in an execution. Removing the corresponding node `1 from the safety subgraph is unsound,
as this would make the inner loop unreachable, without any termination proof for it.

start

`1

`2 `t2 `d2

err

τ0 : i := 0;
cp1 := 0;
cp2 := 0;

τ1 : if(i < n);
j := 0;

τ2 : if(j > i);
i := i + 1;

τ3 : if(j ≤ i);
j := j + 1;

τ5 : skip;

γ2 : if(cp2 < 1);
ic := i;
jc := j;
nc := n;
cp2 := 1;

η2 : if(cp2 < 1);

τt
3 : if(j ≤ i);

j := j + 1;

ρ2 : if(cp2 ≥ 1);

Figure 3 Cooperation graph after safety and termination analysis on the graph from Fig. 2.
Due to termination analysis, the transition τ t

2 has been removed. Afterward, `t
1 was not part of a

non-trivial SCC anymore, so it, its duplicate `d
1, and the connecting transitions were removed.

In the next iteration, starting on Fig. 3, all possible cycles in the termination subgraph
use the transition τ t3. We prove this transition well founded via the rank function i− j for the
locations `t2 and `d2, allowing us to remove τ t3 and then, `t2, `d2 and all connected transitions.
This yields a cooperation graph with an empty termination subgraph (so we are left with



M. Brockschmidt, B. Cook, C. Fuhs 5

what is essentially the original graph from Fig. 1). Thus we have proved termination.

3 Conclusion

One of the difficulties for reliable and scalable program termination provers is orchestrating
the interplay between the reasoning about progress and the search for supporting invariants.
We have developed a new method that facilitates cooperation between these two types of
reasoning. Our representation gives the underlying tools the whole picture of the current proof
state, allowing both types of reasoning to contribute towards the greater goal and also to share
their intermediate findings. Our experiments (which we cannot present here for space reasons;
details on experiments and benchmarks are available at http://verify.rwth-aachen.de/
brockschmidt/Cooperating-T2/ and in [7]) indicate dramatic performance gains.

The full version of this short paper has been published at [7], and our implementation in
T2 is available for download at http://research.microsoft.com/en-us/projects/t2/.

References
1 Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. Whale: an interpolation-based

algorithm for inter-procedural verification. In Proc. VMCAI ’12.
2 Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. Multi-dimensional

rankings, program termination, and complexity bounds of flowchart programs. In Proc.
SAS ’10.

3 Thomas Ball and Sriram K. Rajamani. The SLAM toolkit. In Proc. CAV ’01.
4 Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness checking as safety checking. In

Proc. FMICS ’02.
5 Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear ranking with reachability.

In Proc. CAV ’05.
6 Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. The polyranking principle. In Proc.

ICALP ’05.
7 Marc Brockschmidt, Byron Cook, and Carsten Fuhs. Better termination proving through

cooperation. In Proc. CAV ’13.
8 Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. SATABS: SAT-

based predicate abstraction for ANSI-C. In Proc. TACAS ’05.
9 Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs for systems

code. In Proc. PLDI ’06.
10 Byron Cook, Abigail See, and Florian Zuleger. Ramsey vs. lexicographic termination prov-

ing. In Proc. TACAS ’13.
11 Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Rybalchenko. Syn-

thesizing software verifiers from proof rules. In Proc. PLDI ’12.
12 Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Software

verification with BLAST. In Proc. SPIN ’03.
13 Stephen Magill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay. Automatic numeric

abstractions for heap-manipulating programs. In Proc. POPL ’10.
14 Ken McMillan. Lazy abstraction with interpolants. In Proc. CAV ’06.
15 Andreas Podelski and Andrey Rybalchenko. ARMC: the logical choice for software model

checking with abstraction refinement. In Proc. PADL ’07.
16 Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis of linear

ranking functions. In Proc. VMCAI ’04.
17 Aliaksei Tsitovich, Natasha Sharygina, Christoph M. Wintersteiger, and Daniel Kroening.

Loop summarization and termination analysis. In Proc. TACAS ’11.

http://verify.rwth-aachen.de/brockschmidt/Cooperating-T2/
http://verify.rwth-aachen.de/brockschmidt/Cooperating-T2/
http://research.microsoft.com/en-us/projects/t2/

	Introduction
	Illustrating Example
	Conclusion

