
Dependency Pairs are a
Simple Semantic Path Ordering
Nachum Dershowitz

School of Computer Science, Tel Aviv University
Ramat Aviv, Israel
nachum.dershowitz@cs.tau.ac.il

Abstract
We explicate the relation between the older semantic path ordering of Kamin and Lévy and the
newer dependency-pair method of Arts and Giesl.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Termination, semantic path orderings, dependency pairs

1 Introduction

As pointed out by Cristina Borralleras in her dissertation [5, Thm. 7.3.2] (see also [4, Section
5.4]), the dependency-pair method of Thomas Arts and Jürgen Giesl [1] is actually a special
case of the semantic path ordering of Sam Kamin and Jean-Jacques Lévy [14]. We expand
and elaborate on that relationship in what follows.

2 The Semantic Path Ordering

Let irreflexive ⋗ and reflexive u be two binary relations on terms such that their combined
“modulo” relation ⋗/u (= u∗ ○ ⋗ ○ u∗) is terminating (in the sense of [2]). This means that
there is no sequence of terms

s0 u ⋯ u s′0 ⋗ s1 u ⋯ u s′1 ⋗ s2 u ⋯ u s′2 ⋗ ⋯

containing infinitely many ⋗ steps and is equivalent to saying that the modulo relation’s
transitive closure (⋗/u)+ is well-founded. Let’s refer to this relation ⋗/u as the semantic
ordering. Typically, but not exclusively, it is defined via a homomorphism from terms to
some well-founded domain.

Despite the deliberately misleading choice of symbols, u need not be the reflexive-closure
of ⋗. But if it is, then ⋗/u is terminating if (and only if) ⋗ is.

If both relations are transitive and also are compatible with each other (meaning that
either u ○ ⋗ ⊆ ⋗ or ⋗ ○ u ⊆ ⋗; see [14, p. 14] and [1, n. 5]), and provided ⋗ is itself well-founded,
then the above termination condition holds. We prefer, however, not to bother requiring
transitivity.

Let ⋗ and u be as above and let ▶ denote the immediate subterm relation. We can define
a very simple semantic path ordering ≻/≿, with (base) semantic ordering ⋗/u, as follows:

∃si. s▶ si ≿ t
s ≻ t, s ≿ t

s ⋗ t, ∀tj ◀ t. s ≻ tj
s ≻ t, s ≿ t

s u t, ∀tj ◀ t. s ≻ tj
s ≿ t

If ≐ is the intersection u ∩ t and ≈ is ≿ ∩ ≾, then it follows that

s ≐ t, ∀tj ◀ t. s ≻ tj ,∀si ◀ s. t ≻ si

s ≈ t

nachum.dershowitz@cs.tau.ac.il

2 Dependency Pairs are a Simple Semantic Path Ordering

This is in essence the semantic path ordering of [14] (cf. [11, Def. 4]) over the semantic
relation ⋗ with a trivial (empty) functional (lifting the ordering from subterms to terms),
so that there is no recursion on subterms. We have added ≿ to the definition (in particular,
in the third case) in the obvious way. (The use of a quasi-order was also suggested in [14,
p. 10].) Technically, the relation satisfies the weak (non-strict) monotonicity condition on
the functional (cf. [14, p. 12]). It also satisfies the requirements of the general path ordering
[11]. The conditions in the definition could be relaxed somewhat to take into account the
possible non-transitivity of the relations.

▸ Theorem 1. The simple semantic path ordering ≻/≿ is terminating.

The proof is essentially as in [14] (and [11, Thm. 2]), but takes the quasi-ordered case
into account.

Proof. Suppose the path relation is not terminating and look at a minimal counterexample
u0 ≿

∗≻≿∗ u1 ≿
∗≻≿∗ u2 ≿

∗≻≿∗ ⋯, minimal with respect to subterm. Let’s number the cases as
follows:

si ≿ t
s ≻1 t

s ⋗ t, s ≻ tj
s ≻2 t

s u t, s ≻ tj
s ≿3 t

The minimal counterexample never employs the first case: Clearly, it is not the case
that u0 ≿1 u1, since then the sequence beginning with the subterm of u0 that justifies the
inequality would be smaller. Suppose ui ≻1 ui+1 is the first occurrence of case 1 in the
counterexample (i ≥ 1), and that it is justified by ti ≿ ui+1 for subterm ti of ui. Whether
ui−1 ≻2 ui or ui−1 ≿3 ui, we would have ui−1 ≻ ti ≿ ui+1 by the side requirement s ≻ tj of the
other two cases.

Whenever ui ≻2 ui+1, we have ui ⋗ ui+1; when ui ≿3 ui+1, we have ui u ui+1. This
contradicts termination of ⋗/u. ◂

For reduction in a semantic path ordering of a term-rewriting system to provide ter-
mination, one shows first of all that ` ≻ r for every rule ` → r (meaning that `σ ≻ rσ for
every substitution σ). As explained in [14, pp. 14–15], the semantic path ordering is not
necessarily weakly monotonic. That is, it need not be the case that

s ≻ t⇒ f(. . . , s, . . .) ≿ f(. . . , t, . . .)

Therefore, one also needs to demonstrate ([14, p. 14, post correctionem])

s→ t⇒ f(. . . , s, . . .) u f(. . . , t, . . .) (*)

so that s → t implies either s ≻ t (if it is a top-rewrite) or s ≿ t (if not), which is enough
to ensure that s ≿ t whenever s→ t and give termination [7, Second Termination Theorem].
With condition (*), the intersection of ≿ and → is monotonic, since s ≿ t and f(. . . , s, . . .) u
f(. . . , t, . . .) yield f(. . . , s, . . .) ≿3 f(. . . , t, . . .).

3 The Dependency-Pair Method

Consider now the (basic) dependency-pair framework [1, Thm. 7]. For every rule `→ r and
nonvariable (not necessarily proper) subterm u of r that is not headed by a constructor (a
symbol that never appears at the head of a left-hand side of any rule), we have a dependency

N. Dershowitz 3

pair ` → u. Suppose we are given a pair of (partial and quasi-) orderings ⋗,u that are
compatible (as above), and such that ⋗ is well-founded and u is weakly monotonic, meaning:

s u t⇒ f(. . . , s, . . .) u f(. . . , t, . . .)

Then, a rewrite system terminates if ` u r for every rule and ` ⋗ u for every dependency pair
(again, for all substitutions).

▸ Theorem 2. If a rewrite system can be shown terminating by the basic dependency-pair
method using the pair u and ⋗, then it is terminating by the semantic path ordering method
using the same pair.

Proof. Modify the ordering ⋗ so that all terms headed by constructors are smaller than all
those that are not (see [5, Sect. 7.3], [9, n. 9], [4, Section 5.4]). Clearly, the ordering remains
terminating and this change has no effect on dependency pairs, because constructor-headed
terms are never compared. To maintain compatibility, also remove from ⋗ any pair whose
left-side is a constructor term (they are never needed), and remove from u any pair with
left-side a constructor and right-side not (also unnecessary).

Consider a rule `→ r. We show that ` ≻ r. If r is a proper subterm of `, and in particular
if r is a variable, then ` ≻1 r. If not, then ` ⋗ r, since it is one of the dependency pairs or else
r is headed by a constructor. Furthermore, ` ≻ rj , for every subterm rj of j, either because
rj is a subterm of `, or because of a dependency pair ` → rj , or because rj is headed by a
constructor, so ` ⋗ rj , and rj ’s subterms are smaller (by induction).

For reduction in the semantic path ordering to provide termination, we said that one
also needs condition (*) to hold. But the dependency pair conditions tell us that ` u r for
every rule, and weak monotonicity tells us that c[`] u c[r] for any context c. Therefore,
s→ t⇒ f(. . . , s, . . .) u f(. . . , t, . . .), as required. ◂

It is clear why there is no need to consider dependency pairs ` → u when u is a proper
subterm of `, as suggested in [9, n. 8], since then ` ≻1 u. In fact, the pair can be ignored if
` has any proper subterm t, such that t ≿ u, as suggested in [10, Sect. 6.3].

4 The Monotonic Semantic Path Ordering

The dependency-pair conditions for termination also fulfill the requirements for the mono-
tonic semantic path ordering of [3] (preceded by [12]). This method combines a (multiset)
semantic path ordering ≻ over a well-founded quasi-order u with a (weakly-) monotonic
quasi-ordering ≥. It demands that ` ≥ r and ` ≻ r for each rule, and, furthermore, that the
two base orderings satisfy

s ≥ t⇒ f(. . . , s, . . .) u f(. . . , t, . . .) (**)

See [9, Sect. 4]. (The latter condition is called “quasi-monotonicity” of u with respect to ≥

in [3] and “harmony” of ≥ with u in [9, Sect. 3].)
Suppose now that ≥ and u are one and the same well-founded monotonic quasi-ordering.

The above condition (**) translates into weak-monotonicity of u. Then to satisfy the re-
quirements of the corresponding monotonic semantic path ordering, we have ` u r by the
demands of the dependency method and ` ≻ r for the same reasons as in the above proof.
See [5, Thm. 7.3.2] and [4, Section 5.4].

WST

4 Dependency Pairs are a Simple Semantic Path Ordering

5 Conclusion

The ordinary semantic path ordering [14], general path ordering [11, 13], and monotonic
semantic path ordering [3] all include recursive cases, where subterms are examined recur-
sively (in some order or other) if two terms are semantically equivalent (vis-à-vis ≐). As
noted in [4, Section 5.4], dependency pairs do not make use of the recursive case of the path
ordering. Including recursion on subterms refines the simple-minded ordering and can only
be of service in termination proofs. (Some might view the absence of recursive comparisons
an “advantage”, in that the search space is reduced.)

On the other hand, the dependency-pair formulation of this termination method has
the practical advantage of rephrasing the task as the termination problem of an enlarged
rewrite system (one that includes rewrite rules that force s ≻ tj to hold) for which it may
be relatively easy to adapt ordinary termination-proof systems. In one standard version
of the method, additional rules—with altered root symbols—are used to disentangle the
strong-monotonicity and weak-monotonicity requirements.

It is commonplace with the dependency-pair method for ⋗/u to be some version of the
recursive path ordering [7, 8]. The same is true for the semantic path ordering, which often
uses a simpler recursive path ordering for its semantic ordering. This kind of semantic or-
dering is something that David Plaisted and I used from the earliest days of path orderings.1

On account of the weak monotonicity requirement for the component ordering u used for
the semantic path ordering, general path ordering, or dependency-pair method, the ordering
u in all three cases can ignore selected subterms, which is very often useful.

Nothing we have said relates to the powerful data-flow techniques of [1], which take the
narrowing ideas of [6] and others to a high degree of utility. Were one to want to, the
analysis of dependency-pair chains could be captured by pattern-based semantic, perhaps
akin to that in [15].

Acknowledgement. I thank Jügen Giesl, Jean-Pierre Jouannaud, and Ori Lahav for their
advice and comments.

References

1 Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependency pairs.
Theoretical Computer Science, 236:133–178, 2000. Preliminary version available at http:
//verify.rwth-aachen.de/giesl/papers/ibn-97-46.ps.

2 Leo Bachmair and Nachum Dershowitz. Commutation, transformation, and termination.
In J. H. Siekmann, editor, Proceedings of the Eighth International Conference on Auto-
mated Deduction (Oxford, England), volume 230 of Lecture Notes in Computer Science,
pages 5–20, Berlin, July 1986. Springer-Verlag. Available at http://nachum.org/papers/
CommutationTermination.pdf.

3 Cristina Borralleras, Maria Ferreira, and Albert Rubio. Complete monotonic semantic
path orderings. In Proceedings of the 17th International Conference on Automated Deduc-
tion (Pittsburgh, PA), volume 1831 of Lecture Notes in Artificial Intelligence, pages 346–
364, Berlin, June 2000. Springer-Verlag. Available at http://www.lsi.upc.edu/~albert/
papers/mspo.ps.gz.

1 This is what was being referred to in the citation of the personal communication “[Plaisted, 1979]” in
[8]).

http://verify.rwth-aachen.de/giesl/papers/ibn-97-46.ps
http://verify.rwth-aachen.de/giesl/papers/ibn-97-46.ps
http://nachum.org/papers/CommutationTermination.pdf
http://nachum.org/papers/CommutationTermination.pdf
http://www.lsi.upc.edu/~albert/papers/mspo.ps.gz
http://www.lsi.upc.edu/~albert/papers/mspo.ps.gz

N. Dershowitz 5

4 Cristina Borralleras and Albert Rubio. Orderings and constraints: Theory and practice of
proving termination. In H. Comon-Lundh, C. Kirchner, and H. Kirchner, editors, Rewrit-
ing, Computation and Proof: Essays Dedicated to Jean-Pierre Jouannaud on the Occa-
sion of His 60th Birthday, volume 4600 of Lecture Notes in Computer Science, pages 28–
43. Springer-Verlag, Berlin, June 2007. Available at http://www.lsi.upc.edu/~albert/
papers/jean-pierre-60.pdf.

5 Cristina Borralleras Andreu. Ordering-Based Methods for Proving Termination Auto-
matically. PhD thesis, Departament de Llenguatges i Sistemes Informàtics de la Uni-
versitat Politècnica de Catalunya, Barcelona, Spain, April 2003. Available at http:
//www.lsi.upc.edu/~albert/cristinaphd.ps.gz.

6 Jacques Chabin and Pierre Réty. Narrowing directed by a graph of terms. In Ronald V.
Book, editor, Rewriting Techniques and Applications, volume 488 of Lecture Notes in
Computer Science, pages 112–123. Springer-Verlag, Berlin, 1991. Available at http:
//www.univ-orleans.fr/lifo/Members/chabin/articles/rta1991.pdf.

7 Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science,
17(3):279–301, 1982. Available at http://nachum.org/papers/Orderings4TRS.pdf.

8 Nachum Dershowitz. Termination of rewriting. Journal of Symbolic Computa-
tion, 3(1&2):69–115, February/April 1987. Available at http://nachum.org/papers/
termination.pdf.

9 Nachum Dershowitz. Termination by abstraction. In Proceedings of the Twentieth Interna-
tional Conference on Logic Programming (St. Malo, France), volume 3132 of Lecture Notes
in Computer Science, pages 1–18, Berlin, September 2004. Springer-Verlag. Available at
http://nachum.org/papers/TerminationByAbstraction.pdf.

10 Nachum Dershowitz. Jumping and escaping: Modular termination and the abstract path
ordering. Theoretical Computer Science, 464:35–47, 2012. Available at http://nachum.
org/papers/Toyama.pdf.

11 Nachum Dershowitz and Charles Hoot. Natural termination. Theoretical Computer Science,
142(2):179–207, 1995. Available at http://nachum.org/papers/natural-sterm94.pdf.

12 Alfons Geser. On a monotonic semantic path ordering. Technical Report 92-13, Ulmer
Informatik-Berichte, Universität Ulm, Germany, 1992.

13 Alfons Geser. An improved general path order. Applicable Algebra in Engineering, Com-
munication and Computing, 7(6):469–511, 1996. Available at http://webdoc.sub.gwdg.
de/ebook/e/2001/mip/gpo.ps.Z.

14 Sam Kamin and Jean-Jacques Lévy. Two generalizations of the recursive path order-
ing. Unpublished letter to Nachum Dershowitz, Department of Computer Science, Uni-
versity of Illinois, Urbana, IL, February 1980. Available at http://nachum.org/term/
kamin-levy80spo.pdf.

15 Laurence Puel. Embedding with patterns and associated recursive path ordering. In N. Der-
showitz, editor, Proceedings of the Third International Conference on Rewriting Techniques
and Applications (Chapel Hill, NC), volume 387 of Lecture Notes in Computer Science,
pages 371–387, Berlin, 1989. Springer-Verlag.

WST

http://www.lsi.upc.edu/~albert/papers/jean-pierre-60.pdf
http://www.lsi.upc.edu/~albert/papers/jean-pierre-60.pdf
http://www.lsi.upc.edu/~albert/cristinaphd.ps.gz
http://www.lsi.upc.edu/~albert/cristinaphd.ps.gz
http://www.univ-orleans.fr/lifo/Members/chabin/articles/rta1991.pdf
http://www.univ-orleans.fr/lifo/Members/chabin/articles/rta1991.pdf
http://nachum.org/papers/Orderings4TRS.pdf
http://nachum.org/papers/termination.pdf
http://nachum.org/papers/termination.pdf
http://nachum.org/papers/TerminationByAbstraction.pdf
http://nachum.org/papers/Toyama.pdf
http://nachum.org/papers/Toyama.pdf
http://nachum.org/papers/natural-sterm94.pdf
http://webdoc.sub.gwdg.de/ebook/e/2001/mip/gpo.ps.Z
http://webdoc.sub.gwdg.de/ebook/e/2001/mip/gpo.ps.Z
http://nachum.org/term/kamin-levy80spo.pdf
http://nachum.org/term/kamin-levy80spo.pdf

	Introduction
	The Semantic Path Ordering
	The Dependency-Pair Method
	The Monotonic Semantic Path Ordering
	Conclusion

