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Abstract
We propose an extension of the Knuth-Bendix order (KBO) called KBO with partial status. A
standard status indicates permutation of arguments to each function symbol, but we extend them
to allow some arguments to be ignored. This idea is similar to the argument filtering, but benefits
of these methods are independent and hence can be combined. In addition, we introduce further
refinements of KBO that become possible by partial status. Significance of the proposed method
is verified through experiments.
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1 Introduction

Reduction orders are used to prove termination of term rewrite systems (TRSs). The
Knuth-Bendix order (KBO) [3] is a classical example of reduction orders.

The dependency pair (DP) framework (e.g. [2]) significantly enhances the method of
reduction orders. In the DP framework, dependencies between rewrite rules are analyzed.
Then each cycle of dependency is shown to be finite using a reduction pair 〈%,�〉, which is
typically designed from a reduction order by applying argument filtering. However, argument
filtering is not always helpful as the following example illustrates:

I Example 1. Consider the following set of constraints:

F(s(x)) � F(p(s(x))) p(s(x)) % x

In order to satisfy the first constraint by KBO (or any other simplification order), the
argument of p must be filtered. However, the second constraint cannot be satisfied under
such an argument filtering.

In this note, we propose a reduction pair that can satisfy the above constraints by
generalizing KBO with status [5]. Usually, a status assigns a new position to every argument
of a function symbol. When defining a reduction pair, however, not every argument must
be assigned a new position, but some may be ignored. We say such a status is partial. The
difference between a partial status and an argument filter with standard (i.e. total) status
may look subtle; indeed, a trivial definition of LPO with partial status should be subsumed
by LPO with argument filters and total status. On the other hand, KBO benefits from partial
status because of weights of ignored arguments, which would be lost if those arguments were
filtered beforehand by an argument filter. Indeed, the constraints in Example 1 are satisfied
by KBO with partial status defined in Section 2. We further introduce two refinements that
become possible using partial status. Then we demonstrate the significance of our approach
through experiments.
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2 KBO with Partial Status

Below we define the notion of partial status and the KBO reduction pair.

I Definition 2. A partial status function σ is a mapping that assigns for n-ary symbol f a
list [i1, . . . , in′ ] of distinct positions in {1, . . . , n}.

We write ~sσ(f) to denote the sequence si1 , . . . , sin′ , where σ(f) = [i1, . . . , in′ ].

I Definition 3 (KBO with partial status). Let &F be a quasi-precedence, σ a partial status
function and 〈w,w0〉 a weight function, i.e. w : F → N, w0 > 0 and w(c) ≥ w0 for every
constant c ∈ F . The weight w(s) of a term s is defined as usual:

w(s) :=
{
w0 if s ∈ V
w(f) +

∑n
i=1 w(si) if s = f(~sn)

TheKnuth-Bendix order pair 〈%KBO,�KBO〉 is defined recursively as follows: s %(resp. �)KBO
t iff |s|x ≥ |t|x for all x ∈ V and either

1. w(s) > w(t), or
2. w(s) = w(t) and either

a. s = f1(. . . fk(t) . . . ), σ(f1) = · · · = σ(fk) = [1] and t ∈ V for some k ≥(resp. >) 0, or
b. s = f(~sn), t = g(~tm) and either

i. f >F g, or
ii. f ∼F g and [~sσ(f)] %(resp. �)lex

KBO [~tσ(g)].
Here �lex

KBO denotes the lexicographic extension of �KBO modulo %KBO.

The major difference to the standard KBO (e.g. [6]) is case (2a), where we exclude the
case if σ(fi) = [ ] for some fi. Because of this modification, the admissibility constraint of
KBO can be eased as follows:

I Definition 4. A weight function w is said to be admissible for &F and σ iff every unary
symbol f s.t. w(f) = 0 and σ(f) = [1] is greatest in &F , i.e. f &F g for every g ∈ F .

In the remainder of this note, we always assume admissibility. Note that a unary symbol
f of weight 0 need not be greatest in &F , if σ(f) = [ ].

I Example 5. Consider again the constraints in Example 1. Suppose w, >F and σ satisfy
w(s) > w(p) = 0, σ(s) = [1], σ(p) = [ ], and s >F p. Then, F(s(x)) �KBO F(p(s(x))) because
of cases (2b–ii) and (2b–i), and p(s(x)) %KBO x because of case (1).

Note that in the above example, it also holds that s(x) �KBO p(s(x)). Hence, �KBO is
not a simplification order anymore, or not even a reduction order. Nonetheless, we can show
the following result which is sufficient for the DP framework:

I Theorem 6. The KBO pair 〈%KBO,�KBO〉 is a reduction pair.

Due to lack of space, we only present a proof for well-foundedness of �KBO. We prove
the following auxiliary lemma first:

I Lemma 7. If ~sσ(f) ∈ SN(�KBO) and s �KBO t, then t ∈ SN(�KBO).

Proof. By induction on the quadruple 〈w(s), f, [~sσ(f)], |t|〉, which is ordered by the lexico-
graphic composition of >, >F , �lex

KBO and >. Trivially, it is sufficient to consider t = g(~tm).
Let [j1, . . . , jm′ ] = σ(g).
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Suppose w(s) > w(t). Then we have w(s) > w(t) ≥ w(tjk
) and hence s �KBO tjk

for
every k ∈ {1, . . . ,m′}. By the induction hypothesis on the fourth component, we obtain
tjk
∈ SN(�KBO). Thus for arbitrary u s.t. t �KBO u, the induction hypothesis on the

first component yields u ∈ SN(�KBO).
Suppose w(s) = w(t). First we show tjk

∈ SN(�KBO) for every k ∈ {1, . . . ,m′}. It is
trivial if no such k exists, i.e. if σ(g) = [ ]. Hence suppose σ(g) 6= [ ].

If w(t) = w(tjk
), then g must be unary with w(g) = 0 and σ(g) = [1]. Because of the

admissibility, only case (2b–ii) can be applied for s �KBO g(t1) = t. Hence, we obtain
si1 %KBO t1 and thus t1 ∈ SN(�KBO), since si1 ∈ SN(�KBO).
If w(t) > w(tjk

), then s �KBO tjk
by case (1). By the induction hypothesis on the

fourth component, tj ∈ SN(�KBO).
Now let us consider arbitrary u s.t. t �KBO u. Since we have either f >F g or f ∼F g

and [~sσ(f)] �lex
KBO [~tσ(g)], 〈w(s), f, [~sσ(f)], |t|〉 is greater than 〈w(t), g, [~tσ(g)], |u|〉. Hence,

the induction hypothesis yields u ∈ SN(�KBO). J

I Lemma 8. The relation �KBO is well-founded.

Proof. Let us show s ∈ SN(�KBO) for every term s by induction on |s|. Suppose s =
f(~sn) �KBO t. By the induction hypothesis, we have ~sn ∈ SN(�KBO) and thus ~sσ(f) ∈
SN(�KBO). Hence by Lemma 7, we get t ∈ SN(�KBO). J

3 Refinements

In this section, we refine %KBO in order to encompass the polynomial order (POLO) that is
induced by the weight function.

I Definition 9. The empty status function is the partial status σ s.t. σ(f) = [ ] for all f ∈ F .

KBO induced by the quasi-precedence &F = F2 and the empty status is quite similar to
POLO induced by the interpretation A: fA(~xn) = w(f) +

∑n
i=1 xi. However, the latter is

slightly more powerful; the constraint x % p(x) can be satisfied by POLO s.t. pA(x) = x,
but the weak part of KBO cannot satisfy this constraint even if w(p) = 0.

In [6], %KBO is refined s.t. x %KBO c for a minimal constant c. In our setting, a similar
refinement can be applied for non-constants:

I Proposition 10. Let s ∈ V and t = g(~tm) s.t.
|t|s ≤ 1 and |t|x = 0 for every x ∈ V \ {s},
w(t) = w0,
g is minimal w.r.t. &F , and
σ(g) = [ ].

Then for any term s′ = f(~sn), s′ %KBO t[s 7→ s′]. J

Hence, we refine s %KBO t by adding the following subcase for case (2) of Definition 3
(note that the first two conditions above are already satisfied in case (2)):

c. s %KBO t if s ∈ V and t = g(~tm) s.t. g is minimal w.r.t. &F and σ(g) = [ ].

I Example 11. Consider the following set of constraints:

F(s(x), y) � F(p(s(x)), p(y)) F(x, s(y)) % F(p(x), p(s(y))) p(s(x)) % x

Let σ(p) = [ ], σ(F) = [1], w(s) > w(p) = 0 and p be minimal w.r.t. &F . As analogous to
Example 5, the first and the third constraints are satisfied. For the second constraint, it
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yields x % p(x), for which case (c) of the refined %KBO applies. Note that the argument
of p cannot be filtered by an argument filter, because of the third constraint. Hence the
refinement of [6] does not work for this example.

We can also refine %KBO when the right-hand side is a variable.

I Proposition 12. Let s = f(~sn) and t ∈ Var(s) s.t.
σ(f) = [ ], and
for any g ∈ F , f &F g if σ(g) = [ ] and f >F g otherwise.

Then for any term t′ = g(~tm), s[t 7→ t′] %KBO t′. J

Hence, we refine s %KBO t by adding the following subcase for case (2):

d. s %KBO t if s = f(~sn) and t ∈ V s.t. σ(f) = [ ] and for any g ∈ F , f &F g if
σ(g) = [ ] and f >F g otherwise.

It is easy to prove the following result:

I Theorem 13. Let 〈w,w0〉 be a weight function, σ the empty status function and &F = F2.
Then the refined KBO is equivalent to POLO1 induced by the carrier set {n ≥ w0} and the
interpretation fA(~xn) := w(f) +

∑n
i=1 xi. J

I Example 14. Consider the following set of constraints:

F(g(h(x))) � F(h(g(g(h(h(x)))))) g(h(x)) % x

Because of the second constraint, arguments of g and h cannot be filtered. Then the first
constraint requires w(g) = w(h) = 0 and moreover one of the following alternatives to hold:

σ(g) = σ(h) = [ ] and g >F h: In this case, the second constraint can be satisfied only if
%KBO is refined by case (d).
σ(h) = [1] and g >F h: This case is not admissible.
σ(g) = [1], σ(h) = [ ] and g &F h: In this case the second constraint cannot be satisfied.

Hence the set of constraints can be satisfied by KBO with partial status only if it is refined
by case (d). Note that POLO (and LPO) cannot satisfy the set of constraints, since the first
rule is not simply terminating and neither g nor h may have 0-coefficient.

4 Experiments and Future Work

We implemented our method via an SMT encoding that extends [9]. For the DP framework, we
implemented a simple estimation of dependency graphs, and strongly connected components are
sequentially processed in order of size where smaller ones are precedent. We also implemented
usable rules w.r.t. argument filters following the encoding proposed in [1].

The experiments2 are run on a server equipped with two quad-core Intel Xeon W5590
processors running at a clock rate of 3.33GHz and 48GB of main memory, though only one
thread of SMT solver runs at once. As the SMT solver, we choose z3 4.3.1. The test set of
termination problems are the 1463 TRSs from the TRS Standard category of TPDB 8.0.63

and 1315 from the SRS Standard category. Timeout is set to 60 seconds.

1 Note that cA ≥ w0 > 0 is required for every constant c.
2 Detailed results are available at http://www.sakabe.i.is.nagoya-u.ac.jp/~ayamada/WST2013/.
3 The Termination Problems Data Base. http://termination-portal.org/wiki/TPDB.

http://www.sakabe.i.is.nagoya-u.ac.jp/~ayamada/WST2013/
http://termination-portal.org/wiki/TPDB
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Table 1 Experiments

Solo Combination Combination (SRS)
Method yes T.O. time yes T.O. time yes T.O. time

KBO 439 3 1079.23 565 5 1008.69 117 467 28654.39
Def. 3 463 4 1255.77 583 5 1036.46 120 468 28780.43

Prop. 10 464 4 1305.19 584 5 1044.68 120 468 28853.21
Prop. 12 464 4 1275.01 584 5 1036.92 121 474 29356.51

Prop. 10+12 465 4 1323.83 585 5 1049.84 121 474 29380.88

In Table 1, the ‘Method’ field indicates the reduction pair processor used. ‘KBO’ row is
the standard KBO with (total) status and ‘Def. 3’ is the KBO with partial status. ‘Prop. 10’
and ‘Prop. 12’ applies the refinement of Proposition 10 and Proposition 12, resp. All the
methods are with quasi-precedences, argument filters and usable rules.

‘Solo’ field only applies the reduction pair processor indicated by the ‘Method’ field.
Partial status gives measurable increase in the number of successes (indicated by ‘yes’ field),
though the efficiency is affected (‘time’ field). Each refinement of Section 3 gains one success
with probably acceptable increase in runtime.

‘Combination’ field applies several reduction pair processors first: It applies the linear
POLO (with/without max) with coefficient at most 1, and then LPO with quasi-precedence
and status. In this situation partial status becomes more attractive; the increase in number
of successes remains measurable, while increase of runtime gets dramatically smaller. For
‘Combination (SRS)’ field, it applies linear POLO before the indicated processor.

Despite the benefit observed in our experimental implementation, all the TPDB examples
our tool proved terminating are also proved terminating by existing termination tools such
as AProVE. Our next task is to apply partial status to other extensions of KBO (e.g. [4, 7, 8])
to further increase the number of successful termination proofs.
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