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Abstract
We reformulate Okada’s version of Takeuti’s ordinal diagrams as inference rules in the style of
the abstract path ordering.
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1 Purpose

Ordinals are used in proof-theoretical investigations to chraracterize the logical complexity
of formal systems of analysis and of specific mathematical theorems. Ordinal diagrams,
the original version of which is due to Takeuti [12], are one of the most powerful syntactic
notations of ordinals that have been devised. They are related to the Friedman’s [11] and
Kříž’s [6] gap version of Kruskal’s famous Tree Theorem [7, 8], in that the well-orderedness of
diagrams follows from the Gap Tree Theorem. Partially ordered versions of ordinal diagrams
are only possible in restricted cases; see [10, 5, 4].

We reformulate ordinal diagrams in the style Okada [9] by ignoring forests (that is,
unconnected trees), which can be compared as multisets of trees [2]. This re-articulation
highlights the (as yet unexploited) similarity of the ordering of diagrams with the abstract
path ordering [1], designed to prove termination of term rewriting systems.

2 Atomic Case

Given base sets Σ and Π, well-ordered by a precedence ⋗, with all of Π greater than all of
Σ, we define a well-ordering >∞ over unordered trees T with leaves from Σ and (internal)
nodes from Π, that is:

T ∶∶= Σ ∣ Π(T, . . . , T )

Notation: s, t, sk, t` are trees of T ; α,β are nodes from Π; a, b are leaves from Σ; u, v ∈ T ∖Σ,
the non-leaf trees.

Stratified subtrees. By an α-subtree we mean an immediate subtree of some α node in
the tree for which there are no smaller nodes en route from the root. Define the relation ⊳α

as follows:

β ≥ α s ⊵α u

β(. . . , s, . . . ) ⊳α u

where > here is ⋗ (the ordering on nodes). As usual, we are using ≥ and ⊵ for the reflexive
closures.

This relation is transitive.
The following three definitions are mutually recursive.
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Minimal operator. The smallest node in a tree (or trees) that is greater than α.

µα(a) = ∞

µα(β(s1, . . . , sn)) =

⎧⎪⎪
⎨
⎪⎪⎩

min{β,µα(s1, . . . , sn)} β > α

µα(s1, . . . , sn) α ≥ β

µα(s1, . . . , sn) = min{µα(s1), . . . , µα(sn)}

where > is ⋗ and minima are taken with respect to ⋗, with ∞ greater than all node values.

Stratified ordering. For each α, the following is a well-ordering.

a > b
a >α b

(α1)
u >α b

(α2) u ⊳α ○ ≥α v
u >α v

(α3)
u >µα{u,v} v u >α/⊳α v

u >α v
(α4)

where > is ⋗ and u >α/⊳α v means u >α s for every s ⊲α v. Recall that a and b are leaves;
u and v are not. Clearly, each stratum >α has the “stratified” subtree property, namely:
x ⊳α y implies x >α y.

We note that u >β v iff u >γ v whenever γ = µα(u, v) ⋗ β ⋗ α, there being no β-subtrees
in u or v, so (α3) is not applicable and the second hypothesis of (α4) is vacuous.

Target ordering. The ordinal path ordering >∞ is a dependent lexicographic pair, con-
sisting of the ordering ⋗ on nodes followed by the multiset extension of the ordering >α,
selected by the shared node α, on immediate subtrees.

u >∞ b
(∞1)

α > β

α(. . . , sk, . . . ) >∞ β(. . . , t`, . . . )
(∞2)

{. . . , sk, . . .} ≫α {. . . , t`, . . .}

α(. . . , sk, . . . ) >∞ α(. . . , t`, . . . )
(∞3)

where > is ⋗ and ≫α is the multiset extension of >α.
Another way to express this top-level ordering is to extend ⋗ so that non-leaves are

compared by comparing their root nodes in the node ordering and non-leaves are always
greater than leaves, and to define ≫ to compare non-leaf trees with equal root values to
each other by comparing the multiset of immediate subtrees in the order indexed by the
root-node value. (Trees with incomparable roots are incomparable.) Then >∞ is the union
of these two (disjoint) orderings, and we can economize by using the following rules:

s ⋗ t
s >∞ t

(∞1,2) s≫ t
s >∞ t

(∞3)

3 Tree Case

Given a base set Σ with minimal element 0, well-ordered by ⋗, we define a well-ordering >∞
over unordered (trees of) trees T with leaves from Σ and trees for internal nodes, that is:

T ∶∶= Σ ∣ T (T, . . . , T )

There is no longer a separate node vocabulary Π. Hence, the ordering on nodes is no longer
⋗, but instead is the lowest stratum >0 of the same ordering as is being defined on trees.
The definition is the same, except that ⋗ is replaced by >0 throughout.
Notation: α,β, s, t, sk, t` are trees of T ; a, b are leaves from Σ; u, v ∈ T ∖Σ.

The following four definitions are mutually recursive.

Stratified subtrees. A subtree of an α node with no smaller nodes en route.

β ≥ α s ⊵α u

β(. . . , s, . . . ) ⊳α u
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where > here is >0.

Minimal operator. As above: The smallest node in a tree (or trees) that is greater than
α.

µα(a) = ∞

µα(β(s1, . . . , sn)) =

⎧⎪⎪
⎨
⎪⎪⎩

min{β,µα(s1, . . . , sn)} β > α

µα(s1, . . . , sn) α ≥ β

µα(s1, . . . , sn) = min{µα(s1), . . . , µα(sn)}

where > is >0 and minima are taken with respect to >0.

Stratified ordering. For each α, the following is a well-ordering.

a > b
a >α b u >α b

u ⊳α ○ ≥α v
u >α v

u >µα{u,v} v u >α/⊳α v

u >α v

where > is >0.

Target ordering. Dependent lexicographic pair, ordering the roots followed by the multiset
extension of the selected ordering on immediate subtrees.

u >∞ b

α > β

α(. . . , sk, . . . ) >∞ β(. . . , t`, . . . )

{. . . , sk, . . .} ≫α {. . . , t`, . . .}

α(. . . , sk, . . . ) >∞ α(. . . , t`, . . . )

where > is the node ordering >0 and ≫α is the multiset extension of >α.

4 Examples

We focus in the coming examples on unary trees (strings) and the atomic ordering, though
the tree case is the more interesting.

4.1 An Example
Consider the rewriting rule ffx → fgfx, with Π = {f, g} and Σ anything, and let f ⋗ g.
First, notice that fx >∞ g y, for any y, and in particular fx >∞ gfx. So the target ordering
>∞ does not have the subtree property (which is what makes it useful in this—and many
other—cases).

Since f is the largest node value in the precedence, we have fx >∞ g y for all trees x and
y. Similarly, we have

f ⋗ g

fx >∞ gfy
(∞2)

fx >f /⊳f gfy

fx >f gfy
(α4)

{fx} ≫f {gfy}

ffx >∞ fgfy
(∞3)

since there are no f -subtrees in gfy.
Since >∞ is total and well-ordered, it cannot be monotonic. Still we want s >∞ t whenever

s rewrites to t; in other words, we want vffw >∞ vfgfw, for all v,w ∈ Π∗.
We show that if u >∞ v, for u and v having the same root node, then αu >∞ αv, for any

node α (f or g). There are four cases: g x >∞ g y implies fg x >∞ fg y and g g x >∞ g g y and
fx >∞ fy implies ffx >∞ ffy and gfx >∞ gfy.
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It is easy to verify that g x >∞ g y implies fg x >∞ fg y for all strings x and y:

g x >∞ g y g x >f /⊳f g y
g x >f g y

(α4)

fg x >∞ fg y
(∞3)

there being no f -subtrees in gy. (So this is also true for larger alphabets, as long as f is
maximal.)

Furthermore, fx >∞ fy implies ffx >∞ ffy:

fx >∞ fy

⋮

fx >f /⊳f fy

fx >f fy
(α4)

ffx >∞ ffy
(∞3)

because, for any z ⊴f y, we have

fx ⊳f x

fx >f x
(α3)

fx >∞ fy
x >f y y ⊵f z

x >f z

fx >f z

and x >α y ⊵α z always implies x >α z on account of the subtree property and transitivity.
Virtually the same argument (with one additional step) shows that fx >∞ fy implies gfx >∞
gfy.

Lastly, one can show that g x >∞ g y implies g g x >∞ g g y:

g x >∞ g y

[ g x >f g y ]
(α4) g x >g x >g y

g x >g/⊵g y

g x >g g y
(α4)

g g x >∞ g g y
(∞3)

there being no f -subtrees in g y, and x >g y being the only way that one can have g x >∞ g y.
The bracketed step is omitted if f does not occur in x or y.

4.2 A Counterexample
For the purposes of a counterexample in [3] (showing the necessity of a subterm condition for
the critical-pair lemma in the case of normal conditional rewriting), the following inequalities
were needed: a > b, fa > ga, hfa > c > kfa, c > kgb, fx > hfx (!), fx > kgb, hx > kx. For that, we
can interpret terms as follows:

JaK = 1
JbK = 0
JcK = 0(1(1),1)

Jh(x)K = 0(JxK,2) i.e. JhK = λx.0(x,2)
Jf(x)K = 1(JxK)
Jk(x)K = 0(JxK)
Jg(x)K = 0(JxK)
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5 Conclusion

The use of ordinal diagrams, as made simple by the above inference rules, holds out some
hope for helping in difficult (non-simplifying) termination proofs.

Acknowledgement. I thank Mitsu Okada and the readers for their questions and com-
ments.
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