
Analyzing Runtime and Size Complexity of Integer
Programs (Abstract)
Marc Brockschmidt1, Fabian Emmes1, Stephan Falke2,
Carsten Fuhs3, and Jürgen Giesl1

1 RWTH Aachen University, Germany
2 Karlsruhe Institute of Technology, Germany
3 University College London, UK

Abstract
We developed a modular approach to automatic complexity analysis. Based on a novel alternation
between finding symbolic time bounds for program parts and using these to infer size bounds on
program variables, we can restrict each analysis step to a small program part while maintaining
a high level of precision. Extensive experiments with the implementation of our method demon-
strate its performance and power in comparison with other tools. In particular, our method finds
bounds for many programs whose complexity could not be analyzed by automatic tools before.

1998 ACM Subject Classification D.2.4 Software/Program Verification, D.2.8 Metrics, F.3.1
Specifying and Verifying and Reasoning about Programs

Keywords and phrases Symbolic Complexity Bounds, Termination Analysis, Runtime Complex-
ity, Size Complexity, Integer Programs

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

Methods for automatically proving termination of imperative programs have received increased
attention recently. But in many cases, termination is not sufficient. Instead, the program
should terminate in reasonable (typically, (pseudo-)polynomial) time. We build upon the
well-known observation that (e.g., polynomial) rank functions used for termination proofs
implicitly also provide a runtime complexity bound. However, this only holds for proofs using
a single rank function. In practice, larger programs are usually handled by a disjunctive or
lexicographic combination of simple rank functions. Deriving a complexity bound in this
setting is much harder, as the two examples below illustrate.

while i > 0 do
i = i − 1

done
while x > 0 do

x = x − 1
done

while i > 0 do
i = i − 1
x = x + i

done
while x > 0 do

x = x − 1
done

For both programs, the lexicographic rank function
〈f1, f2〉 proves termination, where f1 measures states
by i and f2 is x. However, the program on the left
has linear runtime, while the program on the right
has quadratic complexity. The difference between the
programs is in the size of x after the first loop. To handle such effects, our method derives
runtime complexity bounds for parts of the program and uses them to deduce size complexity
bounds for program variables at certain locations. We measure the size of integers by their
absolute values. These size bounds allow to derive more runtime complexity bounds, and the
process continues until all loops and variables have been handled.

For the example on the right, our method first proves that the first loop is executed
linearly often using the rank function i. Then, it deduces that i is bounded by its initial
value i0 in all loop iterations. Combining these observations, our approach infers that x
is incremented by a value bounded by i0 at most i0 times, yielding that x is bounded by
x0 + i2

0. Finally, our method detects that the second loop is executed x times, and combines
this with our bound x0 + i2

0 on the value of x when entering the second loop. This allows us
to conclude that the program’s runtime is bounded by i0 + i2

0 + x0.

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p


2 Analyzing Runtime and Size Complexity of Integer Programs (Abstract)

Our main contribution is a novel approach which alternates between finding runtime
bounds and finding size bounds for sequential imperative programs operating on integer data
with (potentially non-linear) arithmetic and (unbounded) non-determinism. We apply this
general approach to obtain two main results:
1. A novel method to deduce (often non-linear) size bounds on program variables by com-

bining bounds for local variable changes with runtime bounds.
2. A new modular method to compute symbolic runtime bounds for isolated program parts.

These runtime bounds are based on size bounds for variables that may have been modified
in the preceding parts of the program. In this way, we only need to consider small
program parts at a time, allowing our approach to scale to larger programs.
Several methods to determine symbolic runtime complexity bounds have been developed

in recent years, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. To the best of our knowledge, our
approach is the first that implements a combined, alternating size and runtime analysis for
imperative programs. To evaluate our method, we have created a simple prototype KoAT.

1 log n n n log n n2 n3 n>3 EXP Time
KoAT 102 0 151 0 58 3 3 0 1.7 s
PUBS 85 4 104 1 13 4 0 6 .3 s
Rank 56 0 19 0 8 1 0 0 .5 s

We compared this prototype with the
complexity analyzers PUBS [1, 2] and Rank [3]
on 682 examples from the literature on ter-
mination and complexity analysis of integer
programs. The table on the side illustrates
how often the tools could infer a runtime bound for the example set. Here 1, log n, n, n log n,
n2, n3, and n>3 represent their corresponding asymptotic classes and EXP is the class of
exponential functions. The column “Time” gives the average runtime on those examples
where the respective tool was successful. The table shows that on this collection, our approach
was substantially more powerful than the two other previous tools and still efficient.

References
1 E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-form upper bounds in static cost

analysis. JAR, 46(2):161–203, 2011.
2 E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis of object-

oriented bytecode programs. TCS, 413(1):142–159, 2012.
3 C. Alias, A. Darte, P. Feautrier, L. Gonnord. Multi-dimensional rankings, program termi-

nation, and complexity bounds of flowchart programs. In SAS ’10, pages 117–133, 2010.
4 M. Avanzini and G. Moser. A combination framework for complexity. In RTA ’13, pages

55–70, 2013.
5 R. Blanc, T. A. Henzinger, T. Hottelier, and L. Kovács. ABC: Algebraic bound computation

for loops. In LPAR-16, pages 103–118, 2010.
6 J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, and C. Fuhs. Symbolic evaluation

graphs and term rewriting: A general methodology for analyzing logic programs. In
PPDP ’12, pages 1–12, 2012.

7 S. Gulwani, K. K. Mehra, and T. M. Chilimbi. SPEED: Precise and efficient static estimation
of program computational complexity. In POPL ’09, pages 127–139, 2009.

8 J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate amortized resource analysis.
TOPLAS, 34(3), 2012.

9 J. A. Navas, E. Mera, P. López-García, and M. V. Hermenegildo. User-definable resource
bounds analysis for logic programs. In ICLP ’07, pages 348–363, 2007.

10 L. Noschinski, F. Emmes, and J. Giesl. Analyzing innermost runtime complexity of term
rewriting by dependency pairs. JAR, 51(1):27–56, 2013.

11 F. Zuleger, S. Gulwani, M. Sinn, and H. Veith. Bound analysis of imperative programs
with the size-change abstraction. In SAS ’11, pages 280–297, 2011.


