
Piecewise-Defined Ranking Functions∗

Caterina Urban1

1 École Normale Supérieure - CNRS - INRIA
Paris, France
urban@di.ens.fr

Abstract
We present the design and implementation of an abstract domain for proving program termina-
tion by abstract interpretation. The domain automatically synthesizes piecewise-defined ranking
functions and infers sufficient conditions for program termination. The analysis is sound, meaning
that all program executions respecting these sufficient conditions are indeed terminating.

We discuss the limitations of the proposed framework, and we investigate possible future work.
In particular, we explore potential extensions of the abstract domain considering piecewise-defined
non-linear ranking functions such as polynomials or exponentials.

1998 ACM Subject Classification D.1.4 Sequential Programming, D.2.4 Software/Program Ver-
ification, F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Abstract Interpretation, Ranking Function, Termination

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

The traditional method for proving program termination [6] is based on the synthesis of
ranking functions, which map program states to elements of a well-ordered set. A program
terminates if a ranking function that decreases during program execution is found. In [4],
Patrick Cousot and Radhia Cousot introduced the idea of the computation of a ranking
function by Abstract Interpretation [3], a general theory of programs semantics approximation.
In a recent work [10], we built on their proposed general framework, to design and implement
a suitable abstract domain for proving termination of imperative programs.

Intuitively, we can define a ranking function from the states of a program to ordinal
numbers, in an incremental way: we start from the program final states, where the function
has value 0; then, we add states to the domain of the function, retracing the program
backwards and counting the number of performed program steps as value of the function.

However, such ranking function is obviously not computable. Hence, we resort to abstract
interpretation to automatically compute an abstract ranking function, which consists of
abstract invariants attached to program points. These abstract invariants are represented by
elements of an abstract domain and state properties about the program variables whenever
control reaches that program point. More specifically, the elements of the abstract domain
are piecewise-defined affine functions of the program variables, representing an upper bound
on the number of program execution steps remaining before termination.

The domain automatically synthesizes such piecewise-defined ranking functions through
backward invariance analysis. The analysis does not rely on assumptions about the structure

∗ The research leading to these results was partially funded by the MBAT project (EU ARTEMIS Joint
Undertaking under grant agreement no. 269335).

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p

2 Piecewise-Defined Ranking Functions

1st iteration 2nd iteration 3rd/4th iteration

4 f(x) = 0 f(x) = 0 f(x) = 0

1 f(x) =

{
1 x > 10
⊥ x ≤ 10

f(x) =

1 x > 10
4 9 ≤ x ≤ 10
⊥ x ≤ 8

f(x) =

1 x > 10
4 9 ≤ x ≤ 10
−3x + 38 7 ≤ x ≤ 8
⊥ x ≤ 6

3 f(x) =

{
2 x > 8
⊥ x ≤ 8

f(x) =

2 x > 8
5 7 ≤ x ≤ 8
⊥ x ≤ 6

f(x) =

2 x > 8
5 7 ≤ x ≤ 8
−3x + 33 x ≤ 6

2 f(x) =

3 x > 8
⊥ 7 ≤ x ≤ 8
⊥ x ≤ 6

f(x) =

3 x > 8
6 7 ≤ x ≤ 8
⊥ x ≤ 6

f(x) =

3 x > 8
6 7 ≤ x ≤ 8
⊥ x ≤ 6

Figure 2 Simple Example Analysis.

of the analyzed program: for example, is not limited to simple loops, as in [8]. To handle
disjunctions arising from tests and loops, the analysis automatically partitions the space of
values for the program variables into intervals, inducing a piecewise-definition of the affine
ranking functions. During the analysis, pieces are split by tests, modified by assignments
and joined when merging control flows. Widening limits the number of pieces of a ranking
function to a maximum given as a parameter of the analysis.

Moreover, the domain naturally infers sufficient conditions for program termination. The
analysis is sound: all program executions respecting these sufficient conditions are indeed
terminating, while an execution that does not respect these conditions might not terminate.

int : x
while 1(x <= 10) do

if 2(x > 6) then
3x := x + 2

fi
od4

Figure 1 Simple Example

Example Let us consider a small sequential programming
language with no procedures, no pointers and no recursion.
The language statements include assignments, branches and
while loops. All program variables have (mathematical) integer
values. In particular, let us consider the simple program in
Figure 1. Figure 2 illustrates the details of the backward
invariance analysis. We map each program control point to a
function f ∈ Z 7→ N of the variable x, representing an upper
bound on the number of execution steps before termination.

The analysis is performed backwards starting from the total function f(x) = 0 at program
point 4. At program point 1, the loop test x ≤ 10 splits the domain of the function and
enforces termination in 1 step. At program point 3, the assignment x := x+ 2 modifies the
domain of the function and increases its value to 2. The, the test x > 6 further splits the
domain of the function. Finally, a second iteration starts joining the function at program
point 4 after x > 10 with the function at program point 2 after x ≤ 10.

At the fourth iteration, a fix-point is reached yielding the following ranking function

C. Urban 3

f ∈ Z 7→ N as loop invariant at program point 1:

f(x) =

⊥F x ≤ 6
−3x+ 38 7 ≤ x ≤ 8
4 9 ≤ x ≤ 10
1 x ≥ 11

The analysis provides x > 6 as a sufficient condition for termination, revealing potential
non-termination for x ≤ 6. Indeed, for x ≤ 6, the program is non-terminating. J

2 Piecewise-Defined Affine Ranking Functions Abstract Domain

In the following, due to space constraints, we do not recall the results presented in [4] and
we introduce straightaway our abstract domain of piecewise-defined affine ranking functions.
Most definitions will be only hinted, we refer to [10] for more details and examples.

The elements of the abstract domain belong to V# , S# 7→ F#, where S# is the set of
abstract program states (in particular, we abstract the program states using the intervals ab-
stract domain [2]) and F# , {⊥F} ∪ {f# | f# ∈ Zn 7→ N} ∪ {>F} is the set of natural-valued
ranking functions of the integer-valued program variables (in addition to the function ⊥F
representing potential non-termination, and the function >F representing the lack of enough
information to conclude). More specifically, an abstract function v# ∈ V# has the form:

v# ≡

s#

1 7→ f#
1

s#
2 7→ f#

2

. . .

s#
k 7→ f#

k

where the abstract states s#
1 , . . . , s

#
k induce a partition of the space of values for the program

variables, and the ranking functions f#
1 , . . . , f

#
k are affine functions of the program variables.

The concretization function γ ∈ (S# 7→ F#) 7→ (S ↪→ O) is applied piecewise and maps
an abstract function to a partial function from program states to ordinals:

γ(s# 7→ ⊥F) = ∅̇
γ(s# 7→ f#) = λs ∈ γS(s#). f#(s(x1), . . . , s(xn))

γ(s# 7→ >F) = ∅̇

where ∅̇ denotes the totally undefined function, and the function γS ∈ S# 7→ P(S) maps an
abstract state to the corresponding set of program states.

The domain operators for the abstract approximation order v, the abstract computational
order 4 and the abstract join t rely on a partition unification algorithm that, given two
abstract functions v#

1 and v#
2 , modifies the partitions on which they are defined, into a

common refined partition of the space of values for each program variable. In particular,
since the partitions are determined by intervals with constant bounds, the unification simply
introduces new bounds consequently splitting intervals in both partitions. Then, the binary
operators can be applied piecewise: the abstract orders, first compare the abstract states on
which each function is defined, and then compare the values of the ranking functions on each
abstract state; the join operator t reuses the convex-hull of polyhedra [5].

The widening operator O prevents the number of pieces of an abstract function from
growing indefinitely. First, it performs a partition unification that keeps only the interval

4 Piecewise-Defined Ranking Functions

bounds occurring in the first abstract function. Then, it widens the functions piecewise,
reusing the convex-hull and the widening of polyhedra.

In order to handle assignments, the abstract domain is equipped with an operation to
substitute an arithmetic expression for a variable within an affine function. An assignment is
carried on piecewise and independently on each abstract state and each ranking function.
Then, the resulting covering induced by the abstract states is refined to obtain a partition.

Finally, to deal with tests, the abstract domain merely applies piecewise to each abstract
state the abstract filter operator from the intervals domain.

The operators of the abstract domain are combined together, to compute an abstract
ranking function for a program, through backward invariance analysis. The starting point is
the constant function equals to 0 at the program final control point. The ranking function is
then propagated backwards towards the program initial control point taking assignments
and tests into account with join and widening around loops [1].

Thanks to the soundness of all abstract operators, we can establish the soundness of the
analysis for proving program termination: the program states, for which the analysis finds a
ranking function, are states from which the program indeed terminates.

Implementation We have implemented a research prototype static analyzer [9], based on
our abstract domain of piecewise-defined affine ranking functions, and we have used it to
analyze programs written in a small non-deterministic imperative language. The prototype
is written in OCaml, and the operators from the intervals and convex polyhedra abstract
domains are provided by the Apron library [7].

The analysis proceeds by structural induction on the program syntax, iterating loops
until an abstract fix-point is reached. In case of nested loops, a fix-point on the inner loop is
computed for each iteration of the outer loop, following [1].

3 Future Work

As might be expected, the implemented domain has a limited expressiveness that translates
into an imprecision of the analysis especially in the case of nested loops (and, in general,
of programs with non-linear complexity). For this reason, we would like to design other
abstract domains, based on more sophisticated abstract states and on non-linear ranking
functions such as polynomials or exponentials.

int : x1 , x2

while 1(x1 <= 10) do
2x2 := 10
while 3(x2 > 1) do

4x2 := x2 - 1
od5

6x1 := x1 + 1
od7

Figure 3 Bubble Sort

Piecewise-Defined Non-Linear Ranking Functions Let us
consider the program in Figure 3: it is the (skeleton of) the
Bubble Sort algorithm for an array of length 10, once we have
removed all tests and assignments on the array. Since the
program has a polynomial time complexity, we need non-linear
(polynomial) ranking functions to prove its termination.

Figure 4 illustrates the iterates of the backward invariance
analysis limited at program control point 1. At the third
iteration, the analysis tries to synthesize an affine ranking
function for the program. However, such function is not a
fix-point: at the next iteration, for x1 ≤ 8, we obtain an affine
function f2(x1, x2) = −24x1 + 259 with greater slope than f1(x1, x2) = −22x1 + 243; this
manifests the need for a polynomial function and, in particular, it leads to the parabola
f(x1, x2) = 1

2x
2
1 − 31x1 + 567

2 tangent to both f1(x1, x2) and f2(x1, x2) and passing through

C. Urban 5

1

1st iteration f(x1, x2) =

{
1 x1 > 10
⊥ x1 ≤ 10

2nd iteration f(x1, x2) =

1 x1 > 10
23 x1 = 10
⊥ x1 ≤ 9

3rd iteration f(x1, x2) =

1 x1 > 10
23 x1 = 10
−22x1 + 243 x1 ≤ 9

4th iteration f(x1, x2) =

1 x1 > 10
23 x1 = 10
43 x1 = 9
−24x1 + 259 x1 ≤ 8

4th/5th iteration f(x1, x2) =

1 x1 > 10
23 x1 = 10
1
2 x2

1 − 31x1 + 567
2 x1 ≤ 9

Figure 4 Bubble Sort Analysis.

the point x1 = 9 of f1(x1) = −22x1 + 243. At the fifth iteration, a fix-point is reached,
proving program termination for all values of x1 and x2. J

It also remains to investigate the possibility of structuring computations as suggested by
[4]. In addition, we plan to extend our research to proving other liveness properties.

References
1 François Bourdoncle. Efficient Chaotic Iteration Strategies with Widenings. In FMPA,

pages 128–141, 1993.
2 Patrick Cousot and Radhia Cousot. Static Determination of Dynamic Properties of Pro-

grams. In Symposium on Programming, pages 106–130, 1976.
3 Patrick Cousot and Radhia Cousot. Abstract Interpretation: a Unified Lattice Model for

Static Analysis of Programs by Construction or Approximation of Fixpoints. In POPL,
pages 238–252, 1977.

4 Patrick Cousot and Radhia Cousot. An Abstract Interpretation Framework for Termination.
In POPL, pages 245–258, 2012.

5 Patrick Cousot and Nicolas Halbwachs. Automatic Discovery of Linear Restraints Among
Variables of a Program. In POPL, pages 84–96, 1978.

6 Robert W. Floyd. Assigning Meanings to Programs. Proceedings of Symposium on Applied
Mathematics, 19:19–32, 1967.

7 Bertrand Jeannet and Antoine Miné. Apron: A Library of Numerical Abstract Domains
for Static Analysis. In CAV, pages 661–667, 2009.

8 Andreas Podelski and Andrey Rybalchenko. A Complete Method for the Synthesis of Linear
Ranking Functions. In VMCAI, pages 239–251, 2004.

9 Caterina Urban. FuncTion. http://www.di.ens.fr/~urban/FuncTion.html.
10 Caterina Urban. The Abstract Domain of Segmented Ranking Functions. In SAS, pages

43–62, 2013.

http://www.di.ens.fr/~urban/FuncTion.html

	Introduction
	Piecewise-Defined Affine Ranking Functions Abstract Domain
	Future Work

