
13th International Workshop on
Termination (WST 2013)

Johannes Waldmann (Editor)

WST 2013, August 29–31, 2013, Bertinoro, Italy



Preface

This volume contains the informal proceedings of the 13th International Work-
shop on Termination, to be held August 29–31, 2013, at the Centro Residenziale
Universitario di Bertinoro, Italy.

The International Workshop on Termination (WST) brings together, in an
informal setting, researchers interested in all aspects of termination, whether
this interest be practical or theoretical, primary or derived. The workshop also
provides a ground for cross-fertilisation of ideas from term rewriting and from
the different programming language communities.

This year, for the first time, WST takes place jointly with the 3rd Interna-
tional Workshop on Foundational and Practical Aspects of Resource Analysis
(FOPARA).

Previously, WST was held at St. Andrews (1993), La Bresse (1995), Ede
(1997), Dagstuhl (1999), Utrecht (2001), Valencia (2003), Aachen (2004), Seat-
tle (2006), Paris (2007), Leipzig (2009), Edinburgh (2010), and Obergurgl (2012).

The 13th Workshop on Termination consists of 16 regular submissions, con-
tained in this volume, and an invited talk by Byron Cook on Beyond Termina-
tion.

I would like to take this opportunity to thank all those that helped to prepare
and run the workshop: the participants, the members of the program committee,
and especially the local organisers.

Leipzig, August 27, 2013 Johannes Waldmann.

Program Committee

Evelyne Contejean LRI, CNRS, Univ Paris-Sud, Orsay
Carsten Fuhs University College London
Alfons Geser HTWK Leipzig
Jürgen Giesl RWTH Aachen
Sergio Greco University of Calabria
Nao Hirokawa Japan Advanced Institute of Science and Tech-

nology
Dieter Hofbauer ASW BA Saarland
Georg Moser Universität Innsbruck
Albert Rubio Universitat Politecnica de Catalunya
Peter Schneider-Kamp Syddansk Universitet
Johannes Waldmann (chair) HTWK Leipzig
Florian Zuleger TU Wien

Local Organisation

Ugo Dal Lago Università di Bologna
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Small Polynomial Path Orders in TCT∗
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1 Introduction

In [2] we propose the small polynomial path order (sPOP? for short). This order provides
a characterisation of the class of polytime computable function via term rewrite systems
(TRSs for short). Any polytime computable function is expressible as a constructor TRS
which is compatible with (an instance of) sPOP?. On the other hand, any function defined
by a constructor TRS compatible with sPOP? is polytime computable. This order has
also ramifications in the automated complexity analysis of rewrite systems. The innermost
runtime complexity of any constructor TRS R compatible with sPOP? lies in O(nd). Here
d ∈ N refers to the maximal depth of recursion of defined symbols f in R.

This work deals with the implementation of sPOP? in the Tyrolean complexity tool1
(TCT for short). The order has been extended to relative rewriting, and takes also usable
arguments [6] into account. As by-product, we obtain a form of reduction pair from sPOP?.
Such reduction pairs can be used in the dependency pair analysis of Hirokawa and the second
author [5] and Noschinski et al. [7]. For details and proofs we refer the reader to [1].

2 Small Polynomial Path Orders

We assume familiarity with rewriting [3]. Let R be a TRS over a signature F , with defined
symbols in D. Constructors are denoted by C := F \ D. Further, let K ⊆ D denote a set
of recursive symbols, and let Á denote a (quasi)-precedence on F . We denote by ą and
∼ the proper order and equivalence underlying Á. We call the precedence Á admissible
for sPOP? if it retains the partitioning of F in the following sense. If f ∼ g then f ∈ C
implies g ∈ C, likewise, f ∈ K implies g ∈ K. Small polynomial path orders embody
the principle of predicative recursion [4] on compatible TRSs. To this end, arguments of
every function symbol are partitioned into normal and safe ones. Notationally we write
f(t1, . . . , tk; tk+1, . . . , tk+l) with normal arguments t1, . . . , tk separated from safe arguments
tk+1, . . . , tk+l by a semicolon. For constructors, we fix that all argument positions are safe.
We define the equivalence ≈s on terms respecting this separation as follows: s ≈s t holds
if s = t or s = f(s1, . . . , sk; sk+1, . . . , sk+l) and t = g(t1, . . . , tk; tk+1, . . . , tk+l) where f ∼ g

and si ≈s ti holds for all i = 1, . . . , k + l. We write s �n/≈ t if t is a subterm (modulo ≈s) of
a normal argument of s.

∗ This work is partially supported by FWF (Austrian Science Fund) project I-608-N18.
1 TCT is open source and available from http://cl-informatik.uibk.ac.at/software/tct.
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The following definition introduces small polynomial path orders, also accounting for
parameter substitution [2]. We denote by T (F<f ,V) the set of terms built from variables
and function symbols F<f := {g ∈ F | f ą g}.

I Definition 2.1. Let s = f(s1, . . . , sk; sk+1, . . . , sk+l). Then s ąspop∗ps t if either

1) si Áspop∗ps t for some argument si of s.
2) f ∈ D, t = g(t1, . . . , tm; tm+1, . . . , tm+n) with f ą g and the following conditions hold:

(i) s �n/≈ tj for all normal arguments tj of t, (ii) s ąspop∗ps tj for all safe arguments tj of
t, and (iii) tj 6∈ T (F<f ,V) for at most one j ∈ {1, . . . , k + l}.

3) f ∈ K, t = g(t1, . . . , tk; tk+1, . . . , tk+l) with f ∼ g and the following conditions hold: (i)
〈s1, . . . , sk〉 ąprod

spop∗ps
〈t1, . . . , tk〉, (ii) s ąspop∗ps tj for all safe arguments tj (j = k+1, . . . , k+

l), and (iii) tj ∈ T (F<f ,V) for all j = 1, . . . , k + l.
Here Áspop? denotes the extension of ąspop∗ps by safe equivalence ≈s. Further, ąprod

spop∗ps
denotes

the product extension of ąspop∗ps : 〈s1, . . . , sn〉 ąprod
spop∗ps

〈t1, . . . , tn〉 if si Áspop? ti for all i =
1, . . . , n, and si0 ąspop∗ps ti0 for some i0 ∈ {1, . . . , n}.

The depth of recursion rdÁ,K(f) of f ∈ F is recursively defined by rdÁ,K(f) := 1+d if f ∈ K
and rdÁ,K(f) := d if f 6∈ K, where d = max {0} ∪ {rdÁ,K(g) | f ą g}.
I Proposition 2.2 ([2]). Let R be a constructor TRS compatible with an instance ąspop∗ps

based on an admissible precedence Á with recursive symbols K. Then the innermost runtime
complexity of R lies in O(nd), where d = max{0} ∪ {rdÁ,K(f) | f ∈ D}.

3 Polynomial Path Orders as Complexity Processors

Our tool TCT operates internally on complexity problems P = 〈S/W,Q, T 〉, where S,W,Q
are TRSs and T denotes a set of ground terms. The set T is called the set of starting terms
of P. Throughout the following, this complexity problem is kept fixed. The complexity
(function) cpP : N→ N of P is defined as the partial function

cpP(n) := max{dh(t, Q−→S/W) | ∃t ∈ T and |t| 6 n} .

Here Q−→S/W := Q−→∗W · Q−→S · Q−→∗W denotes the Q-restricted rewrite relation of S relative to
W, where Q−→R is the restriction of −→R where all proper subterms of the redex are in Q
normal form. We call the complexity problem P a runtime complexity problem if all terms
in T are basic, i.e., of the form f(t1, . . . , tk) for f ∈ D and constructor terms t1, . . . , tk. It is
called an innermost complexity problem if all normal forms of Q are normal forms of S ∪W.

A (complexity) judgement is a statement ` P : f where P is a complexity problem and
f : N → N. This judgement is valid if cpP is defined on all inputs, and cpP ∈ O(f). A
complexity processor is an inference rule

` P1 : f1 · · · ` Pn : fn
` P : f

.

This processor is sound if ` P : f is valid whenever the judgements ` P1 : f1, . . . , ` Pn : fn
are valid. We follow the usual convention and annotate side conditions as premises to
inference rules. An inference of ` P : f using sound processors is called a complexity proof.
If this inference admits no assumptions, then the judgement ` P : f is valid.

In the following, we propose a complexity processors based on sPOP? that operates on
innermost runtime complexity problems. In essence, this processor requires thatW ⊆ Áspop∗ps
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and S ⊆ ąspop∗ps holds, and that W and S are constructor TRSs. If these requirements are
met, then the complexity of P lies in O(nd) for d ∈ N the maximal depth of recursion as in
Proposition 2.2. To weaken monotonicity requirements, we integrate argument filterings into
the order. The argument filtering is constrained, so that in derivations of starting terms, no
redex is removed. Compare [6], where µ-monotone orders are used in a similar spirit.

An argument filtering (for a signature F) is a mapping π that assigns to every k-ary
function symbol f ∈ F an argument position i ∈ {1, . . . , k} or a (possibly empty) list
[i1, . . . , il] of argument positions with 1 6 i1 < · · · < il 6 k. If π(f) is a list we say that π is
non-collapsing on f . Below π always denotes an argument filtering. For each f ∈ F , let fπ
denote a fresh function symbol associated with f . We define Fπ := {fπ | f ∈ F and π(f) =
[i1, . . . , il]}. The sets Dπ and Cπ denote the defined symbols and constructors in Fπ, as given
by the restriction of Fπ to symbols fπ associated with f ∈ D and f ∈ C respectively. We
denote by π also its extension to terms: π(t) := t if t is a variable, and for t = f(t1, . . . , tk),
π(t) := π(ti) if π(f) = i and f(π(ti1), . . . , π(til)) if π(f) = [i1, . . . , il]. For an order � on
terms over Fπ, we define s �π t if π(s) � π(t) holds.

A map µ : F → P(N) with µ(f) ⊆ {1, . . . , k} for every k-ary f ∈ F is called a re-
placement map on F . The set Posµ(t) of µ-replacing positions in a term t is given by
Posµ(t) := ∅ if t is a variable, and Posµ(t) := {ε} ∪ {i·p | i ∈ µ(f) and p ∈ Posµ(ti)} if
t = f(t1, . . . , tk). For a binary relation → on terms we denote by Tµ(→) the set of terms
t where sub-terms at non-µ-replacing positions are in normal form: t ∈ Tµ(→) if for all
positions p in t, if p 6∈ Posµ(t) then t|p → u does not hold for any term u. Let R denote a
set of rewrite rules. A replacement map µ is called a usable replacement map for R in P, if
−→∗S∪W(T ) ⊆ Tµ( Q−→R). For a usable replacement map µ and argument filtering π, we say
that π agrees with µ if for all function symbols f in the domain of µ, either (i) π(f) = i and
µ(f) ⊆ {i} or otherwise (ii) µ(f) ⊆ π(f) holds.
I Theorem 3.1. Let P = 〈S/W,Q, T 〉 be an innermost complexity problem, where S and
W are constructor TRSs. Let π denote an argument filtering on the symbols in P that agrees
with a usable replacement map for S in P, and that is non-collapsing on defined symbols of
S. Let Kπ ⊆ Dπ denote a set of recursive function symbols, and Á an admissible precedence
on Fπ. The following processor is sound, for d := max{0} ∪ {rdÁ,Kπ (fπ) | fπ ∈ Fπ}.

S ⊆ ąπ
spop∗ps

W ⊆ Áπ
spop∗ps

` 〈S/W,Q, T 〉 : nd
.

We remark that the restriction that π is non-collapsing on defined symbols of S is essen-
tial, compare also [1]. In TCT, Theorem 3.1 is usually applied in combination with the
relative decomposition processor [1], This processor allows the iterated combination of dif-
ferent techniques, by translating the judgement ` 〈S/W,Q, T 〉 : f into the two judgements
` 〈S1/S2 ∪W,Q, T 〉 : f and ` 〈S2/S1 ∪W,Q, T 〉 : f , where S1 ∪ S2 = S. Theorem 3.1 is
tight, in the sense that for any d ∈ N one can find a complexity problem P that satisfies the
pre-conditions, and whose complexity function lies in Ω(nd) [2]. The next example illustrates
the application of Theorem 3.1.
I Example 3.2. Consider the innermost complexity problem P]log = 〈S]log/Wlog,S]log ∪
Wlog, T ]log〉 where the TRS S]log consisting of the rewrite rules

half](s(s(x)))→ half](x) log](s(s(x)))→ log](s(half(x))) ,

the TRS Wlog consists of the rules

half(0)→ 0 half(s(s(x)))→ s(half(x)) ,
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and T ] consists of the basic terms f(sn(0)) for n ∈ N and f ∈ {half], log]}. Observe that
the rules in S]log can only be applied on root positions in derivations starting from T ]log.
It follows that the map µ∅, which maps any function symbol f in P]log to ∅, is a usable
replacement map for S]log in P]log. Consider the argument filtering π with π(half) = 1 and
π(f) = [1] for f 6= half. Note that π trivially agrees with µ∅. Using Kπ := {half], log]} and
the empty precedence one can show S]log ⊆ ąπ

spop∗ps
andWlog ⊆ Áπ

spop∗ps
. Trivially rdÁ,Kπ (sπ) =

rdÁ,Kπ (0π) = 0, as neither half]π ą log]π nor log]π ą half]π holds, we see that rdÁ,Kπ (half]π) =
rdÁ,Kπ (log]π) = 1. By Theorem 3.1, the complexity of P]log is bounded by a linear function.

4 Polynomial Path Orders and Dependency Pairs

In TCT, a dependency pair problem (DP problem for short) is a complexity problem whose
strict and weak component contains also dependency pairs. Unlike for termination analysis,
we allow compound symbols in right hand sides of dependency pairs. The purpose of these
symbols is to group function calls. The example considered above is a DP problem that was
generated by TCT on AG01/#3.7 from the termination problem data base2 (TPDB for short).
For each k-ary f ∈ D, let f ] denote a fresh function symbol also of arity k, the dependency
pair symbol (of f). The least extension of F to all dependency pair symbols is denoted by
F ]. We define t] := f ](t1, . . . , tk) if t = f(t1, . . . , tk) and f ∈ D, and t] := t otherwise. For
a set of terms T , we denote by T ] the set of marked terms T ] := {t] | t ∈ T}. Consider
the infinite signature Com that contains for each i ∈ N a fresh constructor symbol ci ∈ Com
of arity i. Symbols in Com are called compound symbols. We denote by com(t) the term t,
and overload this notation to sequences of terms such that com(t1, . . . , tk) = ck(t1, . . . , tk)
for k 6= 1. A dependency pair (DP for short) is a rewrite rule l] → com(r]1, . . . , r

]
k) where

l, r1, . . . , rk ∈ T (F ,V). Let S and W be two TRSs over T (F ,V), and let S] and W] be two
sets of dependency pairs. A dependency pair complexity problem, or simply DP problem, is a
runtime complexity problem P] = 〈S]∪S/W]∪W,Q, T ]〉 over marked basic terms T ]. We
keep the convention that S] and W] denote dependency pairs. Our notion of a DP problem
is general enough to capture images of the transformations proposed in the literature [5, 7]
for polynomial complexity analysis, compare [1]. In the following, we suppose S = ∅, i.e.,
the complexity function of P] accounts for dependency pairs only. We emphasise that for
innermost runtime complexity analysis, TCT always constructs a DP problem of this shape,
by either applying the weightgap condition [5] or using dependency tuples [7] only.

As a consequence of the following simple observation, the argument filtering employed
in Theorem 3.1 has to fulfil, besides the non-collapsing condition on defined symbols of S],
only mild conditions on compound symbols.

I Lemma 4.1. Let P] = 〈S]/W] ∪W,Q, T ]〉 be a DP problem. Suppose µ denotes a usable
replacement map for dependency pairs S] in P]. Then µcom is a usable replacement map
for S] in P]. Here µcom denotes the restriction of µ to compound symbols in the following
sense: µcom(cn) := µ(cn) for all cn ∈ Com, and otherwise µcom(f) := ∅ for f ∈ F ].

For DP problems, one can remove the non-collapsing condition on the employed argument
filtering. The inferred complexity bound is less fine grained however.

I Theorem 4.2. Let P] = 〈S]/W]∪W,Q, T ]〉 be an innermost DP problem, where S], W]

and W are constructor TRSs. Let µ denote a usable replacement map for S]∪W] in P], Let

2 See http://termination-portal.org/wiki/Termination_Competition.
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π denote an argument filtering on the symbols in P that agrees with a usable replacement map
for all dependency pairs in P]. Let Kπ ⊆ D]π denote a set of recursive function symbols, and
Á an admissible precedence where cπ ∼ dπ only holds for non-compound symbols c, d 6∈ Com.
The following processor is sound, for d := max{0} ∪ {rdÁ,Kπ (fπ) | fπ ∈ F ]π}.

S] ⊆ ąπ
spop∗ps

W] ∪W ⊆ Áπ
spop∗ps

` 〈S]/W] ∪W,Q, T ]〉 : nmax(1,2·d)
.

We remark that the pre-conditions of the theorem are essential, and the estimated com-
plexity is asymptotically optimal in general [1].

5 Conclusion

bound sPOP? sPOP?
DP MIDP

O(1) 4\0.17 20\0.28 20\0.27

O(n1) 20\0.17 72\0.31 98\0.48

O(n2) 23\0.19 11\0.44 17\4.67

O(n3) 6\0.23 3\0.60 8\14.7

total 54\0.19 106\0.32 143\1.55

maybe 703\0.34 652\1.20 613\18.3

Table 1 Number of oriented prob-
lems and average execution time (secs.)

In this work we have outlined the implementation of
sPOP? in TCT. We conclude with an empirical evalu-
ation of this method. In Table 1 we contrast sPOP?

to matrix interpretations (MI for short). Here the sub-
script DP denotes that the input is first transformed
into a DP problem and syntactically simplified, com-
pare [1, Section 14.5]. As testbed we used the 757
well-formed constructor TRSs from the TPDB 8.0.3

Comparing sPOP? and sPOP?
DP we see a signif-

icant increase in precision and power. This can be
attributed to the relaxed conditions on the employed
argument filtering. On the testbed, sPOP?

DP cannot cope in power with MIDP, but the av-
erage execution time of sPOP?

DP is significantly lower. Worthy of note, sPOP?
DP and MIDP

are incomparable. Their combination can handle 149 examples.
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SAT compilation for Termination Proofs via
Semantic Labelling
Alexander Bau1, Jörg Endrullis2, and Johannes Waldmann1

1 HTWK Leipzig, Fakultät IMN, 04277 Leipzig, Germany
2 Vrije Universiteit Amsterdam, The Netherlands

Abstract
For the termination method of rule removal by semantic labelling, matrix interpretations and then
unlabelling, we give a purely functional specification and apply our CO4 constraint compiler to
automatically generate a propositional encoding. This extends a “manual” SAT encoding of this
method in Jambox (Endrullis, 2008): we allow sequences of interpretations during labelling.

1 Introduction

Finding parameters for termination proof methods is a constraint satisfaction problem: given
a rewrite system, we are looking for a precedence for a path order, or for coefficients of
interpretations, etc.

For (finite domain) constraint programming, SAT (propositional satisfiably) takes the
role of an assembly language: it gives direct access to the machine (i.e., powerful and
highly optimized SAT solver), but it is cumbersome and error-prone for actual programming.
Instead, we want to use a high-level specification language, to increase expressiveness and
safety.

Two of us (Bau, Waldmann) are developing the CO4 language and compiler [1] that
translates Haskell specifications to SAT formulas. We have previously applied CO4 for
finding loops in string rewriting. With respect to a manual SAT encoding of TTT2 [5], our
compiled formula is larger by a factor of < 10, with a similar factor for run-times of the
SAT solver, but the source code of the constraint system is just 1/3 in size.

In this note, we report on an application of CO4 in termination of string rewriting, using
the method of semantic labelling, interpretations, and unlabelling. This is well-known [6],
and it had been implemented in several termination tools already: Teparla and Torpa used
semantic labelling in ≈ 2006, by a stochastic search for models.

Jambox [2] ≈ 2007 used a “manual” SAT encoding for the following constraint: given
a rewrite system R, there is a model M for R and an interpretation I for the M -labelled
system RM and a non-empty S ⊆ R such that each rule in SM is strictly I-decreasing.
We then have relative termination SN(S/R), that is, we can remove S. Correctness of this
method had been formalized for CeTA [4].

We now extend Jambox’ implementation by allowing for a sequence of interpretations
for the labelled system. This is a conceptually simple modification: instead of one order,
use a lexicographic product of several orders. Using the CO4 language, this modification
can be expressed directly in the source code (see function lexi), and all extra encoding is
done by the compiler.

2 Semantic Labelling and Unlabelling

An algebra A is a model for a rewrite system R over signature Σ if for each s→R t, we have
A(s) = A(t). If we have a model A for R, we construct a labelled version RA of R where
each function symbol is labelled by the value(s) of its argument(s).
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2 SAT compilation for Termination Proofs via Semantic Labelling

I Example 1. We consider the string rewriting system R = {aa → aba} over the sig-
nature Σ = {a, b}. The algebra A with domain D = {0, 1}, and interpretation aA =
{(0, 1), (1, 1)}, bA = {(0, 0), (1, 0)}, is a model for R, and RA is {a1a0 → a0b1a0, a1a1 →
a0b1a1}.

Termination of R and RA are equivalent (under some conditions that are true for string
rewriting). The point of the method is that termination of RA may be easier to show that
termination of R since we increase the signature, and have more room to maneuver.

In the example, we can see that the number of occurrences of a1 decreases in each rule ap-
plication. This can be verified by the (linear, additive) interpretation {(a0, 0), (a1, 1), (b1, 0)}
for RA. There is no such interpretation for R.

3 SAT compilation with CO4

CO4 [1] is a high-level declarative language for describing constraint systems. The language
is a subset of the purely functional programming language Haskell [3] that includes user-
defined algebraic data types and recursive functions defined by pattern matching, as well as
higher-order polymorphic types.

Source programs operate on algebraic data (like Booleans, List, Trees) which we call
concrete values. CO4 compilation creates programs that operate on abstract values. An
abstract value ∈ A represents a set of concrete values of the same type. An abstract value
is a tree, where each node contains a sequence of propositional logic formulas. Given a
truth assignment σ, the sequence of truth values of these formulas under σ gives a binary
number that denotes a constructor. Doing this for each node, a concrete value decode(a, σ)
is determined.

A high level, parametric constraint system constraint :: P -> U -> Bool written in
CO4 represents a predicate on U depending on a parameter p ∈ P. p is not known a-priori.
The compilation and evaluation of a CO4 program is a staged process:

1. The original program, operating on concrete values C, is compiled into an abstract
program that operates on abstract values A.

2. Given an parameter p, the abstract program is evaluated, resulting in an abstract value
a (representing a Boolean).

3. The formula a = True is given to an external SAT solver. It tries to find a satisfying
assignment σ.

4. A value u ∈ U is reconstructed by σ, so that constraint p u = True.

Values that depend on the u parameter of the top-level constraint are not known during
abstract evaluation. Abstract evaluation of case-distinctions on those values has to evaluate
(abstractly) all branches and then merge the results into a single abstract value.

Natural numbers may be defined as list of Booleans type Nat = [Bool] in CO4. For
naturals with bit-width k this encoding ends up in abstract values with depth k. A user-
defined function on naturals would require k pattern matches to inspect a number: this
leads to long runtimes of the compiled program and the resulting formulas would be large.
To avoid those issues, CO4 provides built-in naturals, where a number of bit-width k is
encoded by an abstract value with k flags and no arguments. CO4 provides arithmetic and
relational operations on naturals as well.
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4 Implementation

Complete source code of the termination method is available as part of https://github.
com/jwaldmann/matchbox (file MB/Label/SLPO.standalone.hs).

Here, we just indicate the main types and functions. For string rewriting, we have

type Symbol = [Bool]; type Word = [Symbol]
data Mode = Strict | Weak ; data Rule = Mode Word Word ; type SRS = [Rule]

where lists are built-in (with their usual Haskell definition). A symbol is represented as a
binary string. The length of that string is known at run-time (when the implementation
sees the signature of the rewrite system) but not at compile-time.

We often access information that belongs to a symbol. We use binary trees where the
symbol encodes a path from the root to a leaf

data Tree a = Leaf a | Branch (Tree a) (Tree a)
get :: Tree a -> Symbol -> a
get t p = case p of

[] -> case t of Leaf x -> x
x:p’ -> case t of Branch l r ->

get (case x of False -> l ; True -> r) p’

Symbols will be labelled according to an unknown model, but we know the size of the
model. We represent a labelled symbol as the concatenation of a list of known booleans (the
original symbol) with a list (of known length) of unknown booleans (the label).

Note that the pattern matches on p and on t can be resolved at run-time (when generating
the SAT formula), but the pattern match on x has to be encoded (since x depends on the
model, which is determined by the solver).

We also represent finite algebras (of size 2n) the same way: the domain is the set of bit
strings of length n, and for each symbol, we have a function from domain to domain:

type Model = Tree Func; type Func = Tree Value; type Value = [Bool]

We compose functions (and give the most general type):

timesF :: Tree a -> Func -> Tree a
timesF f g = case g of

Leaf w -> Leaf (get f w)
Branch l r -> Branch (timesF f l) (timesF f r)

Given an algebra, we compute the labelled version of rewrite system, as a list of systems
(for each original rule, one sub-system containing all its labelled versions). Also, each side
of each rule is annotated with its value in the model. These values will be constrained to be
equal.

labelled :: SRS -> Model -> [ [ ((Value,Value), Rule) ] ]
labelled srs mod =

let ks = keys ( leftmost mod )
labelRule u k = case u of

(l,r) -> case labelledW mod l k of
( ltop, l’ ) -> case labelledW mod r k of

( rtop, r’ ) -> ((ltop,rtop),(l’,r’))
in map ( \ u -> map ( \ k -> labelRule u k ) ks ) srs

10



4 SAT compilation for Termination Proofs via Semantic Labelling

We omit details on interpretations, and come back to the lexicographic comparison men-
tioned in the introduction:

data Comp = Greater | GreaterEquals | None
comp :: Interpretation -> Rule -> Comp
comps :: [ Interpretation ] -> Rule -> Comp
comps ints u = lexi (map ( \ i -> comp i u) ints )
lexi :: [Comp] -> Comp
lexi cs = case cs of

[] -> GreaterEquals
c : cs’ -> case c of

Greater -> Greater; GreaterEquals -> lexi cs’; None -> None

This shows the expressiveness of the CO4 language. — The main constraint is

data Label = Label Model [ Interpretation ] [ Bool ]
constraint :: SRS -> Label -> Bool

where constraint srs (Label mod ints flags) is True iff mod is a model for srs and
the lexicographic combination of ints is compatible with the labelled system, and removes
the flagged rules (of the original system) completely, and at least one rule is flagged.

5 Performance

We describe work-in-progress, so we don’t have complete performance data on a larger set
of problems. We give an example (that shows the power of the method) and a comparison
(that shows the quality of the SAT compilation).

I Example 2. Our implementation produces this termination proof for a2b2 → b3a3:

matchbox ~/tpdb/tpdb-4.0/SRS/Zantema/z001.srs -l2,2 --dim 1 --bits 4 --nat
# 2 bits for model values, 2 interpretations for labelled system

CNF finished (#variables: 21483, #clauses: 82956)
Solver finished in 4.152 seconds (result: True)

model: 3b0 2b1 3b2 1b3
2a0 0a1 0a2 0a3

labelled system: a0 a1 b3 b0 -> b1 b3 b2 a0 a2 a0
a0 a1 b3 b2 -> b1 b3 b0 a2 a0 a2
a0 a3 b2 b1 -> b1 b3 b0 a2 a0 a1
a0 a2 b1 b3 -> b1 b3 b0 a2 a0 a3

natural matrix interpretation 1 natural matrix interpretation 2
[(b0,x -> [[1]] * x + [[0]]) [(b0,x -> [[1]] * x + [[1]])
,(b2,x -> [[3]] * x + [[1]]) ,(b2,x -> [[5]] * x + [[9]])
,(b1,x -> [[1]] * x + [[4]]) ,(b1,x -> [[1]] * x + [[0]])
,(b3,x -> [[1]] * x + [[1]]) ,(b3,x -> [[1]] * x + [[4]])
,(a0,x -> [[1]] * x + [[0]]) ,(a0,x -> [[1]] * x + [[0]])
,(a2,x -> [[1]] * x + [[1]]) ,(a2,x -> [[3]] * x + [[0]])
,(a1,x -> [[3]] * x + [[7]]) ,(a1,x -> [[1]] * x + [[0]])
,(a3,x -> [[1]] * x + [[0]])] ,(a3,x -> [[1]] * x + [[1]])]
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I Example 3. We can mimick Jambox’ behaviour by restricting the number of interpre-
tations for the labelled system to 1. With a model of size 23, we get a termination proof
(details omitted)

matchbox ~/tpdb/tpdb-4.0/SRS/Zantema/z001.srs -l3,1 -d1 -b3 --nat
CNF finished (#variables: 23876, #clauses: 91447)
Solver finished in 2.282 seconds (result: True)

Jambox’ formula (for the same parameters) has 33492 variables and 232683 clauses. That
means that our CO4 compiler produced a SAT encoding that is comparable to a manual
encoding.

6 Extensions

Our implementation additionally allows for each removal step for the labelled system to use
arctic or natural matrix interpretation, or lexicographic path order with argument filtering,
and also to reverse rules or not—where all these options are encoded in the program, and
thus chosen by the solver.

I Example 4. This gives one of the shorter termination proofs for Zantema’s system:

matchbox ~/tpdb/tpdb-4.0/SRS/Zantema/z001.srs -l2,1 -d1 -b1 --lpo
CNF finished (#variables: 4752, #clauses: 17075)
Solver finished in 1.811 seconds (result: True)

model: 2b0 3b1 3b2 0b3
1a0 2a1 1a2 1a3

labelled system: a1 a3 b2 b0 -> b0 b3 b1 a2 a1 a0
a1 a0 b3 b2 -> b0 b3 b1 a2 a1 a2
a1 a0 b3 b1 -> b0 b3 b2 a1 a2 a1
a1 a2 b0 b3 -> b0 b3 b1 a2 a1 a3

LPO: delete symbols: a1 a3
precedence: a0 = b2 > a2 = b3 > b0 > b1

Here we compare (with respect to the path order) after applying the morphism (argument
filter) that deletes some symbols.
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Abstract
We developed a modular approach to automatic complexity analysis. Based on a novel alternation
between finding symbolic time bounds for program parts and using these to infer size bounds on
program variables, we can restrict each analysis step to a small program part while maintaining
a high level of precision. Extensive experiments with the implementation of our method demon-
strate its performance and power in comparison with other tools. In particular, our method finds
bounds for many programs whose complexity could not be analyzed by automatic tools before.
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Methods for automatically proving termination of imperative programs have received increased
attention recently. But in many cases, termination is not sufficient. Instead, the program
should terminate in reasonable (typically, (pseudo-)polynomial) time. We build upon the
well-known observation that (e.g., polynomial) rank functions used for termination proofs
implicitly also provide a runtime complexity bound. However, this only holds for proofs using
a single rank function. In practice, larger programs are usually handled by a disjunctive or
lexicographic combination of simple rank functions. Deriving a complexity bound in this
setting is much harder, as the two examples below illustrate.

while i > 0 do
i = i − 1

done
while x > 0 do

x = x − 1
done

while i > 0 do
i = i − 1
x = x + i

done
while x > 0 do

x = x − 1
done

For both programs, the lexicographic rank function
〈f1, f2〉 proves termination, where f1 measures states
by i and f2 is x. However, the program on the left
has linear runtime, while the program on the right
has quadratic complexity. The difference between the
programs is in the size of x after the first loop. To handle such effects, our method derives
runtime complexity bounds for parts of the program and uses them to deduce size complexity
bounds for program variables at certain locations. We measure the size of integers by their
absolute values. These size bounds allow to derive more runtime complexity bounds, and the
process continues until all loops and variables have been handled.

For the example on the right, our method first proves that the first loop is executed
linearly often using the rank function i. Then, it deduces that i is bounded by its initial
value i0 in all loop iterations. Combining these observations, our approach infers that x
is incremented by a value bounded by i0 at most i0 times, yielding that x is bounded by
x0 + i2

0. Finally, our method detects that the second loop is executed x times, and combines
this with our bound x0 + i2

0 on the value of x when entering the second loop. This allows us
to conclude that the program’s runtime is bounded by i0 + i2

0 + x0.
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2 Analyzing Runtime and Size Complexity of Integer Programs (Abstract)

Our main contribution is a novel approach which alternates between finding runtime
bounds and finding size bounds for sequential imperative programs operating on integer data
with (potentially non-linear) arithmetic and (unbounded) non-determinism. We apply this
general approach to obtain two main results:
1. A novel method to deduce (often non-linear) size bounds on program variables by com-

bining bounds for local variable changes with runtime bounds.
2. A new modular method to compute symbolic runtime bounds for isolated program parts.

These runtime bounds are based on size bounds for variables that may have been modified
in the preceding parts of the program. In this way, we only need to consider small
program parts at a time, allowing our approach to scale to larger programs.
Several methods to determine symbolic runtime complexity bounds have been developed

in recent years, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. To the best of our knowledge, our
approach is the first that implements a combined, alternating size and runtime analysis for
imperative programs. To evaluate our method, we have created a simple prototype KoAT.

1 log n n n log n n2 n3 n>3 EXP Time
KoAT 102 0 151 0 58 3 3 0 1.7 s
PUBS 85 4 104 1 13 4 0 6 .3 s
Rank 56 0 19 0 8 1 0 0 .5 s

We compared this prototype with the
complexity analyzers PUBS [1, 2] and Rank [3]
on 682 examples from the literature on ter-
mination and complexity analysis of integer
programs. The table on the side illustrates
how often the tools could infer a runtime bound for the example set. Here 1, log n, n, n log n,
n2, n3, and n>3 represent their corresponding asymptotic classes and EXP is the class of
exponential functions. The column “Time” gives the average runtime on those examples
where the respective tool was successful. The table shows that on this collection, our approach
was substantially more powerful than the two other previous tools and still efficient.
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Abstract
One of the difficulties of proving program termination is managing the subtle interplay between
the finding of a termination argument and the finding of the argument’s supporting invariant. In
this extended abstract we propose a new mechanism that facilitates better cooperation between
these two types of reasoning. In an experimental evaluation we find that our new method leads
to dramatic performance improvements.

Keywords and phrases Termination analysis, safety proving, rank functions

1 Introduction

y := 1;
while x > 0 do

x := x − y;
y := y + 1;

done

When proving program termination we are simultaneously solving two
problems: the search for a termination argument, and the search for
a supporting invariant. Consider the example to the right. To prove
termination of this program we are looking to find both a termination
argument (i.e., “x decreases until 0”) and a supporting invariant (i.e.,
y > 0). The two are interrelated: Without y > 0, we cannot prove the
validity of the argument “x decreases until 0”; and without “x decreases
towards 0”, how would we know that we need to prove y > 0?

Several program termination proving tools (e.g. [9], [10], [11], [15], [17]) address this
problem using a strategy that oscillates between calls to an off-the-shelf safety prover (e.g.
[1], [3], [8], [12], [14], etc.) and calls to a rank function synthesis tool (e.g. [2], [5], [6], [16],
etc.). In this setting a candidate termination argument is iteratively constructed. The safety
prover proves or disproves the validity of the current argument via the search for invariants.
Refinement of the current termination argument is performed using the output of a rank
function synthesis tool when applied to counterexamples found by the safety prover.

A difficulty with this approach is that currently, the underlying tools do not share enough
information about the overall state of the termination proof. For example, the rank function
synthesis tool is only applied to the single path through the program described by the
counterexample found by the safety prover, while the context of this single path is not
considered at all. Meanwhile, the safety prover is unaware of things such as which paths in
the program have already been deemed terminating and how those paths might contribute
to other potentially infinite executions. The result is lost performance, as the underlying
tools often make choices inappropriate to the common goal of fast termination proving.

Here we introduce a technique that facilitates cooperation between the underlying tools
in a termination prover, thus allowing for decisions more appropriate to the common good of
proving program termination. The idea is to use a single representation of the state of the
termination proof search—called a cooperation graph—that both tools operate over. Nodes
in the graph are marked as either termination-nodes or safety-nodes to indicate their role
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2 Cooperation For Better Termination Proving

i := 0;
while i < n do

j := 0;
while j ≤ i do

j := j + 1;
done
i := i + 1;

done

start

`1

`2

τ0 : i := 0;

τ1 : if(i < n);
j := 0;

τ2 : if(j > i);
i := i + 1;

τ3 : if(j ≤ i);
j := j + 1;

(a) (b)

Figure 1 Textual and control-flow graph representation of skeleton bubble sort routine

in the state of the proof. With this additional information exposed, we can now represent
the progress of the termination proof search by modifying the termination subgraph. This
has practical advantages: the safety prover can be encouraged not to explore parts of the
program that have already been proven terminating, and the rank function synthesis can
make use of the full program structure in order to find better termination arguments.

Our approach results in significant performance improvements over earlier methods and
our implementation succeeds on numerous programs where previous tools fail. In cases where
previous tools do succeed, our implementation boosts performance by orders of magnitude.

Limitations. While in theory our approach works in a general setting, our implementa-
tion focuses on sequential arithmetic programs (so these programs do not use the heap or
bitvectors). In some cases we have soundly abstracted C programs with heap to arithmetic
programs (e.g. using a technique due to Magill et al. [13]); in other cases, as is standard in
many tools (e.g. SLAM [3]), we essentially ignored bitvectors and the heap.

The full version of the present short paper has been published in [7].

2 Illustrating Example

We illustrate our approach using the example in Fig. 1, which displays a bubble-sort like
program (the manipulation of the data has been abstracted away). In our setting we use
a graph—called a cooperation graph—to facilitate sharing of information between a safety
prover and a rank function synthesis procedure. See Fig. 2 for the cooperation graph at
the start of the proof search. We start with the control-flow graph of the original program
from Fig. 1, which we keep for reasoning about safety (i.e., (un)reachability from the initial
program states). Intuitively, this part of the graph is for the finite prefix of a run from the
initial location to a loop with a (hypothetical) infinite suffix of the run. For this infinite suffix,
we have duplicated the loops of the original program (in the form of the strongly-connected
components (SCCs) of the graph with locations `t1 and `t2). We connect the two parts of the
graph with non-deterministic transitions from one copy of the program to the other (i.e.,
τ4 and τ5). Technically, the cooperation graph contains a superset of the transitions in the
initial program, yet if we can prove that there is no infinite run from the initial location
where `t1 or `t2 occur infinitely often, this implies termination of the original program as well.

After duplication, we also apply a few known tricks: In the new copy of the program, we
follow the approach of Biere et al. [4] by adding nodes (i.e., `d1 and `d2) and transitions to take
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start

`1

`2

`t1 `d1

`t2 `d2

err

err

τ0 : i := 0;
cp1 := 0;
cp2 := 0;

τ1 : if(i < n);
j := 0;

τ2 : if(j > i);
i := i + 1;

τ3 : if(j ≤ i);
j := j + 1;

τ4 : skip;

τ5 : skip;

γ1 : if(cp1 < 1);
ic := i;
jc := j;
nc := n;
cp1 := 1;

η1 : if(cp1 < 1);

ρ1 : if(cp1 ≥ 1);

τ
t

1
:

if(
i <

n);

j :=
0;

τ t2 :
if(j >

i);
i :=

i +
1;

γ2 : if(cp2 < 1);
ic := i;
jc := j;
nc := n;
cp2 := 1;

η2 : if(cp2 < 1);

ρ2 : if(cp2 ≥ 1);

τt
3 : if(j ≤ i);

j := j + 1;

Figure 2 Cooperation graph derived from Fig. 1

a snapshot of variable values (i.e., γ1 and γ2). The current values of variables i, j, n are stored
in copies ic, jc, nc and the flag cpk is set to indicate that a snapshot was taken at location
`k. Furthermore, new transitions to an error location “err” have been added that can be
strengthened later by partial termination arguments à la Cook et al. [9]. Proving this error
location unreachable then implies a termination proof for the input program. In the resulting
graph, reasoning about termination is performed on the right-hand side (the termination
subgraph) by a procedure built around an efficient rank function synthesis. We search for
supporting invariants on the left-hand side (the safety subgraph) via a safety prover.

Via this duplication to the termination and safety subgraphs, we can easily restrict certain
operations to either subgraph, yet still maintain a connection between them. The safety
subgraph describes an over-approximation of all reachable states, while the termination
subgraph is an over-approximation of those states whose termination has not been proven
yet. This allows us to perform operations in the one half that may not make sense (or
may be unsound) in the other: when we prove that transitions in the termination subgraph
can only be used finitely often, we can simply remove them, as they cannot contribute to
infinite executions. This is only sound because the safety subgraph remains unchanged in this
simplification, which keeps the set of reachable states unchanged and hence allows reasoning
about safety/invariants. These iterative program simplifications encode the progress of the
termination proof search and are directly available to the safety prover.

The graph structure guides the safety prover to unproven parts of the program yielding
relevant counterexamples and allowing the rank function synthesis to produce better termina-
tion arguments. If these do not allow a program simplification, they still guide the invariant
generation by the safety prover for nodes in the safety subgraph. The invariants in turn
support reasoning about the validity of termination arguments in the termination subgraph.

Termination proof sketch. In our example, we begin searching for a path from
the “start” location to the error location “err”. We might, for example, choose the path
〈τ0, τ4, γ1, τ

t
1, η2, τ

t
3, η2, τ

t
2, ρ1〉 where τ0 is drawn from the safety subgraph and the other

transitions come from the termination subgraph. Here, 〈γ1, τ
t
1, η2, τ

t
3, η2, τ

t
2〉 form a cy-
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4 Cooperation For Better Termination Proving

cle in the execution, returning back to location `t1. In our approach we do not sim-
ply use this command sequence directly to search for a new termination argument (as
is done in previous tools). Instead, we additionally consider all transitions from the
termination subgraph that enter and exit nodes in the strongly connected component
containing the found cycle of termination-transitions in the counterexample. In this
case, because the graph is so small, this includes the entire termination subgraph:

start `1 `t1 `d1

`t2 `d2

τ0 : i := 0;
cp1 := 0;
cp2 := 0; τ4 : skip;

γ1 : if(cp1 < 1);
ic := i;
jc := j;
nc := n;
cp1 := 1;

η1 : if(cp1 < 1);

τ
t

1
:

if(
i <

n);

j :=
0;

τ t2 :
if(j >

i);
i :=

i +
1;

γ2 : if(cp2 < 1);
ic := i;
jc := j;
nc := n;
cp2 := 1;

η2 : if(cp2 < 1);

τt
3 : if(j ≤ i);

j := j + 1;

This graph has extra termination-edges (e.g. τ t3) and
shows that the rank function n−i is a better rank function
than j− i because τ t3 modifies j. Without τ t3, j appears
as a constant so that j > i looks like a suitable candidate
invariant supporting the termination argument j− i.

Fig. 3 is the state of the cooperation graph after one
counterexample. We use the rank function with n− i + 1
for both `t1 and `d1, and n−i for both `t2 and `d2. This rank
function decreases each time we use the transition τ t1,
and the condition i < n implies that the rank function is
bounded from below. So τ t1 can only be used finitely often and we can remove it from the
termination subgraph. This also allows to remove `t1, `d1 and all transitions connected to
the two, as they are not on a non-trivial SCC anymore and thus cannot occur infinitely often
in an execution. Removing the corresponding node `1 from the safety subgraph is unsound,
as this would make the inner loop unreachable, without any termination proof for it.

start

`1

`2 `t2 `d2

err

τ0 : i := 0;
cp1 := 0;
cp2 := 0;

τ1 : if(i < n);
j := 0;

τ2 : if(j > i);
i := i + 1;

τ3 : if(j ≤ i);
j := j + 1;

τ5 : skip;

γ2 : if(cp2 < 1);
ic := i;
jc := j;
nc := n;
cp2 := 1;

η2 : if(cp2 < 1);

τt
3 : if(j ≤ i);

j := j + 1;

ρ2 : if(cp2 ≥ 1);

Figure 3 Cooperation graph after safety and termination analysis on the graph from Fig. 2.
Due to termination analysis, the transition τ t

2 has been removed. Afterward, `t
1 was not part of a

non-trivial SCC anymore, so it, its duplicate `d
1, and the connecting transitions were removed.

In the next iteration, starting on Fig. 3, all possible cycles in the termination subgraph
use the transition τ t3. We prove this transition well founded via the rank function i− j for the
locations `t2 and `d2, allowing us to remove τ t3 and then, `t2, `d2 and all connected transitions.
This yields a cooperation graph with an empty termination subgraph (so we are left with
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what is essentially the original graph from Fig. 1). Thus we have proved termination.

3 Conclusion

One of the difficulties for reliable and scalable program termination provers is orchestrating
the interplay between the reasoning about progress and the search for supporting invariants.
We have developed a new method that facilitates cooperation between these two types of
reasoning. Our representation gives the underlying tools the whole picture of the current proof
state, allowing both types of reasoning to contribute towards the greater goal and also to share
their intermediate findings. Our experiments (which we cannot present here for space reasons;
details on experiments and benchmarks are available at http://verify.rwth-aachen.de/
brockschmidt/Cooperating-T2/ and in [7]) indicate dramatic performance gains.

The full version of this short paper has been published at [7], and our implementation in
T2 is available for download at http://research.microsoft.com/en-us/projects/t2/.
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Abstract
Function symbols are widely acknowledged as an important feature in logic programming, but
unfortunately, common inference tasks become undecidable in their presence. To cope with this
issue, recent research has focused on identifying decidable classes of programs allowing only a
restricted use of function symbols while ensuring decidability of common inference tasks. In this
paper, we give an overview of current termination criteria. We also present a technique which
can be used in conjunction with current termination criteria to enlarge the class of programs
recognized as terminating.
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1 Introduction and Preliminaries

In recent years, there has been a great deal of interest in enhancing answer set solvers
by supporting function symbols. Function symbols often make modeling easier and the
resulting encodings more readable and concise, but unfortunately, common inference tasks
become undecidable in their presence. The class of finitely ground programs, proposed in [1],
guarantees decidability of common inference tasks. In particular, finitely ground programs
are terminating, i.e. the bottom-up evaluation of these programs gives a finite number of
finite stable models. Since membership in the class is semi-decidable, research has focused
on identifying sufficient conditions for a program to be finitely ground, leading to different
criteria, called termination criteria. Efforts in this direction are ω-restricted programs [9],
λ-restricted programs [2], finite domain programs [1], argument-restricted programs [8], safe
programs [7], Γ-acyclic programs [7], and bounded programs [5]. In this paper, we give an
overview of recent research on this topic. Specifically, we present some recently proposed
decidable termination criteria, able to recognize the termination of disjunctive logic programs,
and an orthogonal technique that can be used in conjunction with them to enlarge the class
of programs recognized as finitely-ground [6].

We assume the reader is familiar with logic programs with function symbols under the
stable model semantics [3] (see [5] for a brief overview). Given a program P we denote by
arg(P) the set of all arguments of P , i.e., expressions of the form p[i] where p is a predicate
symbol of arity n appearing in P and 1 ≤ i ≤ n. We use body(r) and head(r) to denote
the body and the head of a rule r in P; body+(r) denotes the conjunction of all positive
literals in body(r). For any rule r, ground(r) denotes the set of rules obtained by replacing

20



2 Towards decidable classes of logic programs with function symbols

variables with ground terms which can be constructed using constants and function symbols
occurring in P. An argument q[i] ∈ arg(P) is said to be limited if it takes values from a
finite domain, that is, if for every (stable) model M of P the projection of Q over the i-th
arguments is a finite set, where Q is the set of q-atoms in M . We consider programs where
rules are range restricted, that is all variables occurring in a rule r also occur in body+(r)
and distinguish base predicate symbols, defined only by facts (i.e., ground rules with empty
body) from derived predicate symbols, defined by arbitrary rules. For ease of presentation,
we sometimes consider only positive programs as the techniques described can be easily
extended to programs with negative body literals and disjunction in head.

2 Basic Termination Criteria

In this section, we describe the most general “basic” termination criterion proposed in the
literature, namely argument-restricted programs [8]. We shall not discuss other well-known
basic termination criteria, such as ω-restricted programs [9], λ-restricted programs [2] and
finite domain programs [1], as they have been generalized by argument-restricted programs.
We named the aforementioned termination criteria “basic” as their definition does not rely
on other termination criteria.

Termination criteria are used to determine sets of arguments which are limited. In the
following we shall use the following notations. Given a program P and a criterion W , W (P)
denotes the set of arguments which are recognized as limited by criterion W , whereas W
denotes the class of programs which are recognized as terminating by W , that is the class of
programs such that arg(P) = W (P).

Argument-restricted programs [8]. The argument-restricted criterion tests the possibility
to find for each argument a finite upper bound of the depth of terms that may occur in
that argument during the program evaluation. This test is based on the notion of argument
ranking function defined below. For any atom A of the form p(t1, ..., tn), A0 denotes the
predicate symbol p, and Ai denotes term ti, for 1 ≤ i ≤ n.

I Definition 1. An argument ranking for a program P is a partial function φ from arg(P)
to non-negative integers such that, for every rule r of P, every atom A occurring in the
head of r, and every variable X occurring in an argument term Ai, if φ(A0[i]) is defined,
then body+(r) contains an atom B such that X occurs in an argument term Bj , φ(B0[j]) is
defined, and the following condition is satisfied

φ(A0[i])− φ(B0[j]) ≥ d(X,Ai)− d(X,Bj)

where d(X, t) = 0 if t = X; if t = f(v1, . . . , vk), then d(X, t) = 1 + max
vl contains X

d(X, vl).

The set of restricted arguments of P isAR(P) = {p[i] | p[i] ∈ arg(P)∧∃φ s.t. φ(p[i]) is defined}.
A program P is said to be argument restricted iff AR(P) = arg(P). �

I Example 2. Consider the following logic program P2:

p(f(X))← q(X).
q(X)← p(f(X)).

The program is recognized to be argument-restricted. In particular, the argument-restricted
function φ can be defined as follows: φ(p[1]) = 1 and φ(q[1]) = 0. �
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3 Iterated Termination Criteria

In this section we present recently proposed criteria which, starting from a set of limited
arguments defined through the application of a basic criterion, computes a possibly larger
set of limited arguments.

Safe programs [7]. The first technique is obtained by introducing a fixpoint function, called
safe function, which, iteratively, extends a given set of limited arguments. Its definition is
based on the notion of activation graph.

The activation graph of a program P , denoted Ω(P), is a directed graph whose nodes are
the rules of P, and there is an edge (ri, rj) in the graph iff ri activates rj , i.e. there exist
two ground rules r′i ∈ ground(ri), r′j ∈ ground(rj) and a set of ground atoms D such that
(i) D 6|= r′i, (ii) D |= r′j , and (iii) D ∪ head(r′i) 6|= r′j . This intuitively means that if D does
not satisfy r′i, D satisfies r′j , and head(r′i) is added to D to satisfy r′i, this causes r′j not to
be satisfied anymore (and then to be “activated”).

I Definition 3. Given a program P and a basic termination criterion W , the set of W-safe
arguments S-W (P) is computed by first setting S-W (P) = W (P) and next iteratively adding
each argument q[k] such that for all rules r ∈ P where q appears in the head (i) r does
not depend on a cycle of Ω(P), or (ii) for every head atom q(t1, ..., tn), every variable X
appearing in tk appears also in some safe argument in body+(r). A program P is said to be
W-safe if S-W (P) = arg(P). �

The criterion obtained by combining basic criterion W with the safe function is denoted by
S-W .

I Example 4. The following simple logic program P4 is not recognized as terminating by
any basic termination criteria introduced so far.

p(X, X)← base(X).
p(f(X), g(X))← p(X, X).

However, this program is terminating and P4 ∈ S-W, for every basic criterion W , since the
activation graph of P4 does not contain any cycle. �

Bounded Programs [5]. The definition of bounded programs relies on the notion of labelled
argument graph. This graph, denoted GL(P), is derived from the argument graph by labelling
edges as follows: for each pair of nodes p[i], q[j] ∈ arg(P) and for every rule r ∈ P such that
(i) an atom p(t1, ..., tn) appears in head(r), (ii) an atom q(u1, ..., um) appears in body+(r),
(iii) terms ti and uj have a common variable X, there is an edge (q[j], p[i], 〈α, r, h, k〉), where
h and k are natural numbers denoting the positions of p(t1, ..., tn) in head(r) and q(u1, ..., um)
in body+(r), respectively1, whereas α = ε if ti = uj , α = f if uj = X and ti = f(..., X, ...),
α = f̄ if uj = f(..., X, ...) and ti = X. For the sake of simplicity, without loss of generality,
we assume that if a variable X appears in two terms occurring in the head and body of a
rule respectively, then only one of the two terms is a complex term and that the nesting level
of complex terms is at most one.

1 We assume that literals in the head (resp. body) are ordered with the first one being associated with 1,
the second one with 2, etc.
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4 Towards decidable classes of logic programs with function symbols

Figure 1 Rewriting of P6 and corresponding labelled argument graph.

Given a path ρ = (a1, b1, 〈α1, r1, h1, k1〉), . . . , (am, bm, 〈αm, rm, hm, km〉), we define λ1(ρ) =
α1 ...αm, λ2(ρ) = r1, ..., rm, and λ3(ρ) = 〈r1, h1, k1〉 ... 〈rm, hm, km〉. Given a cycle π consist-
ing of n labelled edges e1, ..., en, we can derive n different cyclic paths starting from each of
the ei’s—we use τ(π) to denote the set of such cyclic paths.

Given two cycles π1 and π2, we write π1 ≈ π2 iff ∃ρ1 ∈ τ(π1) and ∃ρ2 ∈ τ(π2) such
that λ3(ρ1) = λ3(ρ2). Given a program P, we say that a cycle π in GL(P) is active iff
∃ρ ∈ τ(π) such that λ2(ρ) = r1, ..., rm and (r1, r2), ..., (rm−1, rm), (rm, r1) is a cyclic path in
the activation graph Ω(P).

Given a program P and a path ρ in GL(P), we denote with λ̂1(ρ) the string obtained
from λ1(ρ) by iteratively eliminating pairs of the form γγ̄ from the string until the resulting
string cannot be further reduced.

Given a program P, a cycle π in GL(P) can be classified as follows. We say that π is i)
balanced if ∃ρ ∈ τ(π) s.t. λ̂1(ρ) is empty, ii) growing if ∃ρ ∈ τ(π) s.t. λ̂1(ρ) does not contain
a symbol of the form γ̄, iii) failing otherwise.

I Definition 5. Given a program P and a basic termination criterion W , the set of W-
bounded arguments B-W (P) is computed by first setting B-W (P) = W (P) and next iter-
atively adding each argument q[k] such that for each basic cycle π in GL(P) on which q[k]
depends, at least one of the following conditions holds:
1. π is not active or is not growing;
2. π contains an edge (s[j], p[i], 〈f, r, l1, l2〉) and, letting p(t1, ..., tn) be the l1-th atom in the

head of r, for every variable X in ti, there is an atom b(u1, ..., um) in body+(r) s.t. X
appears in a term uh and b[h] is W-bounded;

3. there is a basic cycle π′ in GL(P) s.t. π′ ≈ π, π′ is not balanced, and π′ passes only
through W-bounded arguments.

A program P is said to be W-bounded if B-W (P) = arg(P). �

The criterion obtained by combining basic criterion W with the bounded function is
denoted by B-W . The class of W-bounded programs is denoted by B-W. A relevant aspect
that distinguishes this technique from other works is that this technique analyzes how groups
of arguments are each other related—this is illustrated in the following example.

I Example 6. Consider the following logic program P6:

r0 : count([a, b, c], 0).
r1 : count(L, I + 1)← count([X|L], I).

The bottom-up evaluation of P6 terminates yielding the set of atoms count([a, b, c], 0),
count([b, c], 1), count([c], 2), and count([ ], 3). The query goal count([ ], L) can be used to
retrieve the length L of list [a, b, c].2 �

2 Notice that P6 has been written so as to count the number of elements in a list when evaluated in a
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To comply with the syntactic restrictions required by the bounded technique, Figure
1 shows a rewriting of P6 and the corresponding labelled argument graph. where lc and
s denote the list constructor and the sum operators respectively. Basically, considering
the argument-restricted technique as the basic criterion W , after having established that
argument count[1] is limited, that is count[1] ∈ B-AR(P6), by analyzing the two cycles
involving arguments count[1] and count[2], respectively and using Condition 3 of Definition
5 it is possible to detect that also argument count[2] is limited, that is count[2] ∈ B-AR(P6).
Consequently, P6 is AR-bounded.

4 Rewriting technique

In this section we present a rewriting technique [6] that, used in conjunction with current
termination criteria, allows us to detect more programs as finitely-ground. This technique
takes a logic program P and transforms it into an adorned program Pµ with the aim of
applying termination criteria to Pµ rather than P . The transformation is sound in that if the
adorned program satisfies a certain termination criterion, then the original program satisfies
this criterion as well and, consequently, is finitely-ground. Importantly, as showed by the
below example, applying termination criteria to adorned programs rather than the original
ones strictly enlarges the class of programs recognized as finitely-ground. This technique is
much more general than those used to deal with chase termination (see [4]).

I Example 7. Consider the following program P7, where base is a base predicate symbol
defined by facts not showed here.

r0 : p(X, f(X))← base(X).
r1 : p(X, f(X))← p(Y, X), base(Y).
r2 : p(X, Y)← p(f(X), f(Y)).

First, base predicate symbols are adorned with strings of ε’s; thus, we get the adorned
predicate symbol baseε. This is used to adorn the body of r0 so as to get

ρ0 : pεf1 (X, f(X))← baseε(X).

from which we derive the new adorned predicate symbol pεf1 , and the adornment definition
f1 = f(ε). Next, pεf1 and baseε are used to adorn the body of r1 so as to get

ρ1 : pf1f2 (X, f(X))← pεf1 (Y, X), baseε(Y)

from which we derive the new adorned predicate symbol pf1f2 , and the adornment definition
f2 = f(f1). Intuitively, the body of ρ1 is coherently adorned because Y is always associated
with the same adornment symbol ε. Using the new adorned predicate symbol pf1f2 , we can
adorn rule r2 and get

ρ2 : pεf1 (X, Y)← pf1f2 (f(X), f(Y)).

At this point, we are not able to generate new adorned rules (using the adorned predicate
symbols generated so far) with coherently adorned bodies and the transformation terminates.
In fact, pf1f2(Y, X), baseε(Y) is not coherently adorned because the same variable Y is associated

bottom-up fashion, and therefore differs from the classical formulation relying on a top-down evaluation
strategy. However, programs relying on a top-down evaluation strategy can be rewritten into programs
whose bottom-up evaluation gives the same result.
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6 Towards decidable classes of logic programs with function symbols

with both f1 and ε; moreover, pεf1(f(X), f(Y)) is not coherently adorned because f(X) does
not comply with the (simple) term structure described by ε.

To determine termination of the bottom-up evaluation of P7, we can apply current
termination criteria to Pµ7 = {ρ0, ρ1, ρ2} rather than P7. �

It is worth noting that the rewriting technique ensures that if Pµ7 is recognized as
terminating, so is P7. Notice also that both P7 and Pµ7 are recursive, but while some
termination criteria (e.g., the argument-restricted and Γ-acyclicity criteria) detect Pµ7 as
terminating, none of the current termination criteria is able to realize that P7 terminates.
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Abstract
We show how the problem of nontermination proving can be reduced to a question of under-
approximation search guided by a safety prover. This reduction leads to new nontermination
proving implementation strategies based on existing tools for safety proving. Our preliminary
implementation has shown favorable results over existing tools.

1998 ACM Subject Classification D.2.4 Software/Program Verification, F.3.1 Specifying and
Verifying and Reasoning about Programs, I.2.2 Automatic Programming

Keywords and phrases Nontermination analysis, Safety analysis, Closed recurrence set

1 Introduction

The problem of proving program nontermination represents an interesting complement to
termination as, unlike safety, termination’s falsification cannot be witnessed by a finite trace.
While the problem of proving termination has now been extensively studied, the search for
reliable and scalable methods for proving nontermination remains open.

In this extended abstract we present a new method of proving nontermination based
on a reduction to safety proving that leverages the power of existing tools. An iterative
algorithm is developed which uses counterexamples to a fixed safety property to refine an
underapproximation of a program. With our approach, existing safety provers can now be
employed to prove nontermination of programs that previous techniques could not handle.
Not only does the new approach perform better, it also leads to nontermination proving tools
supporting features previous tools could not handle reliably, e.g. heap, nonlinear commands,
and nondeterminism.

Recall that safety of a program means that no undesired (or unsafe) program state can
be reached from any initial state of the program. On source code level, unsafe states can be
expressed by a statement “assert(ϕ)” for a Boolean expression ϕ. Then the program is unsafe
iff there exists a run of the program from an initial state such that in this run, ϕ is violated
at the position of this statement. Techniques for safety proving include counter-example
based abstraction refinement as in Slam [1] or interpolation as in Impact [9].

Gupta et al. [8] characterize nontermination of a program by the existence of a recurrence
set. A program is nonterminating iff there exists a recurrence set for the program’s transition
relation. The existence of a recurrence set implies that the program does not terminate when
from a reachable state in the recurrence set we can always choose the next transition to a
state that also belongs to the recurrence set.
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2 Automated nontermination proofs by safety proofs

As opposed to their approach we search for an underapproximation of the original program
that never terminates, regardless of the values introduced by nondeterministic assignments
during the run. This property is characterized by a closed recurrence set for the transition
relation of the underapproximation. For every state in the closed recurrence set, every
possible transition leads us to a state that belongs to the closed recurrence set. As “never
terminates” can be encoded as safety property, we can then iterate a safety prover together
with a method of underapproximating based on counterexamples. We have to be careful,
however, to find the right underapproximation in order to avoid unsoundness.

We describe our algorithm informally. It takes as input a program P and a loop L in P to
be considered for nontermination. We then mark the L’s exit location as an error location and
invoke a safety checker. Any path that reaches the exit location is the counterexample to safety
and it cannot contribute towards the nontermination of the loop. We then find an underap-
proximation of P that eliminates this path. Our algorithm either finds a precondition for P

or a precondition after a nondeterministic assignment statement such that every state which
fulfills this precondition reaches the error location when the counterexample path is followed.
To eliminate the counterexample path we then negate this condition and add a restriction on
the state space to get our underapproximating refinement. We continue this procedure as
long as there is some counterexample to safety of our current underapproximation.

Note that sometimes our refinements are too weak and the search for a safe underapprox-
imation may lead to divergence. In such cases we use suitable heuristics to strengthen our
underapproximation which then avoids the problem of divergence.

Let P ′ be our final underapproximation that is safe. We refer to the loop L after
refinements as L′. To prove nontermination we first need to ensure that the loop L′ in P ′ is
still reachable after the refinements. This can again be encoded as a safety problem, this
time marking the loop header as an error location. If safety is violated, the counterexample
path represents the path to L′ ensuring the reachability of L′.

Note that our refinements also restrict the choices for nondeterministic assignment state-
ments. We finally ensure that for every reachable state at the nondeterministic assignment
inside L′, we can still make a choice so that execution is never halted. When the check
succeeds, we report nontermination. In the final underapproximation, the set of all reachable
states at the loop header of L′ forms a closed recurrence set for the loop’s transition relation.

2 Example

We now describe our algorithm using a simple example. Consider the following program.

if (k ≥ 0)
skip;

else
i := −1;

while (i ≥ 0) {
i := nondet();

}
i := 2;

In this program the command i := nondet() represents nondeterministic
value introduction into the variable i (e.g. user input). The loop in this
program is nonterminating when the program is invoked with appropriate
inputs and when appropriate choices for the nondet assignment are made.
We are interested in automatically detecting this nontermination.

In order to find the desired underapproximation for our example,
we first introduce an assume statement (where “assume(ϕ)” can be
implemented by “if (¬ϕ) exit”) at the beginning with the initial
precondition true. We also place assume(true) statements after each
use of nondet. We then put an assert(false) statement at points where the loop under
consideration exits (thus encoding the “never terminates” property). See Figure 1(a).

We then use a safety checker (here: for programs on integer data) to search for paths that
violate this assertion. Any error path clearly cannot contribute towards the nontermination

27



H. Chen, B. Cook, C. Fuhs, K. Nimkar and P. O’Hearn 3

assume(true);

if (k ≥ 0)
skip;

else
i := −1;

while (i ≥ 0) {
i := nondet();
assume(true);

}

assert(false);

i := 2;

assume(k ≥ 0);

if (k ≥ 0)
skip;

else
i := −1;

while (i ≥ 0) {
i := nondet();
assume(true);

}

assert(false);

i := 2;

assume(k ≥ 0 ∧ i ≥ 0);

if (k ≥ 0)
skip;

else
i := −1;

while (i ≥ 0) {
i := nondet();
assume(true);

}

assert(false);

i := 2;
(a) (b) (c)

assume(k ≥ 0 ∧ i ≥ 0);

if (k ≥ 0)
skip;

else
i := −1;

while (i ≥ 0) {
i := nondet();
assume(i ≥ 0);

}

assert(false);

i := 2;

assume(k ≥ 0 ∧ i ≥ 0);

if (k ≥ 0)
skip;

else
i := −1;

assert(false);

while (i ≥ 0) {
i := nondet();
assume(i ≥ 0);

}

assume(k ≥ 0 ∧ i ≥ 0);
assume(k ≥ 0);

skip;
while (i ≥ 0) {

i := nondet();
assume(i ≥ 0);

}

(d) (e) (f)

Figure 1 Original instrumented program (a) and its successive underapproximations (b), (c),
(d). Reachability check for the loop (e), and nondeterminism-assume that must be checked for
satisfiability (f).
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4 Automated nontermination proofs by safety proofs

of the loop. Initially, as a first counterexample to safety, we might get the path k < 0, i :=
−1, i < 0, from a safety prover. We now want to determine from which states we can reach
assert(false) and eliminate those states. Using a precondition computation similar to
Calcagno et al. [4] we find the condition k < 0. Note that our condition gives a set of states
that actually reach the error location. To rule out the states k < 0 we can add the negation
(e.g. k ≥ 0) to the precondition assume statement. See Figure 1(b).

We then try to prove the assert statement unreachable for the program in Figure 1(b).
Here we might get the path k ≥ 0, skip, i < 0, which again violates the assertion. For this
path we would discover the precondition k ≥ 0 ∧ i < 0, and to rule out these states we refine
the precondition assume statement with “assume(k ≥ 0 ∧ i ≥ 0)”. See Figure 1(c).

On this program our safety prover will again fail, perhaps resulting in the path k ≥
0, skip, i ≥ 0, i := nondet(), i < 0. In this case our algorithm stops computing the
precondition at the command i := nondet(). Here we would learn that at the nondeterministic
command the result must be i < 0 in order to violate the assertion, thus we would refine the
assume statement just after the nondeterministic statement with the negation of i < 0 and
get “assume(i ≥ 0)”. See Figure 1(d).

The program in Figure 1(d) cannot violate the assertion, and thus we have hopefully
computed the desired underapproximation to the transition relation needed in order to prove
nontermination. However, for soundness, it is essential to ensure that the loop in Figure 1(d)
is still reachable, even after the successive restrictions to the state space. We encode this
condition as a safety problem. See Figure 1(e). This time we add assert(false) before
the loop and aim to prove that the assertion is violated. The existence of a path violating
the assertion ensures that the loop in Figure 1(d) is reachable. In this case the assertion is
reachable, and thus the loop is still reachable. The path violating the assertion is our desired
path to the loop which we refer to as stem. Figure 1(f) shows the stem and the loop.

Finally we need to ensure that the assume statement in Figure 1(f) can always be satisfied
with some choice of i by any reachable state from the restricted pre-state. This is necessary
since our underapproximations may accidentally have eliminated not only the paths to the
loop’s exit location, but also all of the non-terminating paths inside the loop. We ensure this
by calculating a location invariant inv before the nondet statement. We then check that the
formula inv→ ∃i′.i′ ≥ 0 is valid. Even the weakest invariant true can be sufficient to easily
prove the validity of the above formula. This ensures that for every reachable state at the
nondeterministic assignment we can still make a choice so that execution is never halted.
Once this check succeeds we report nontermination.

3 Experiments

In order to assess the impact of our approach, we have built a preliminary implementation
within the tool T2 [2] [5] and evaluated it empirically comparing with the following tools:

TNT [8]. Note that the original TNT tool was not available and thus we have reimple-
mented the underlying constraint-based algorithm with Z3 [6] as SMT backend.
AProVE [7], using the Java Bytecode frontend. When proving nontermination of Java
Bytecode programs, AProVE implements the SMT-based nontermination analysis by
Brockschmidt et al. [3].
Julia [13]: Julia implements an approach via a reduction from Java Bytecode to
constraint logic programming described by Payet and Spoto [11].

As a benchmark set, we applied the tools on a set of 495 benchmarks from a variety of
applications (e.g. Windows device drivers, the Apache web server, the PostgreSQL server,
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integer approximations of numerical programs from a book on numerical recipes [12], integer
approximations of benchmarks from LLBMC [10] and other tool evaluations).

We conducted three sets of experiments. The first set consists of all the 77 examples
previously known to be nonterminating, the second set consists of all the 258 examples
previously known to be terminating, and the third set consists of all the 160 examples for
which no previous results are known and which are too large to render a manual analysis
feasible. We used the first set of examples to assess the efficiency of the algorithm, the second
set to demonstrate the algorithm’s soundness, and the third set to check if our algorithm
scales well on relatively large and complicated examples. The results demonstrate that our
procedure is overwhelmingly the most successful tool and does not show erroneous behavior
in our experiments.

4 Conclusion

In this paper we introduced a new method of proving nontermination. The idea is to split the
reasoning in two parts: a safety prover is used to prove that a loop in an underapproximation of
the original program never terminates; meanwhile failed safety proofs are used to calculate the
underapproximation. Our implementation has shown that our approach leads to performance
improvements against previous tools where they are applicable.
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1 Purpose

Ordinals are used in proof-theoretical investigations to chraracterize the logical complexity
of formal systems of analysis and of specific mathematical theorems. Ordinal diagrams,
the original version of which is due to Takeuti [12], are one of the most powerful syntactic
notations of ordinals that have been devised. They are related to the Friedman’s [11] and
Kříž’s [6] gap version of Kruskal’s famous Tree Theorem [7, 8], in that the well-orderedness of
diagrams follows from the Gap Tree Theorem. Partially ordered versions of ordinal diagrams
are only possible in restricted cases; see [10, 5, 4].

We reformulate ordinal diagrams in the style Okada [9] by ignoring forests (that is,
unconnected trees), which can be compared as multisets of trees [2]. This re-articulation
highlights the (as yet unexploited) similarity of the ordering of diagrams with the abstract
path ordering [1], designed to prove termination of term rewriting systems.

2 Atomic Case

Given base sets Σ and Π, well-ordered by a precedence ⋗, with all of Π greater than all of
Σ, we define a well-ordering >∞ over unordered trees T with leaves from Σ and (internal)
nodes from Π, that is:

T ∶∶= Σ ∣ Π(T, . . . , T )
Notation: s, t, sk, t` are trees of T ; α,β are nodes from Π; a, b are leaves from Σ; u, v ∈ T ∖Σ,
the non-leaf trees.

Stratified subtrees. By an α-subtree we mean an immediate subtree of some α node in
the tree for which there are no smaller nodes en route from the root. Define the relation ⊳α
as follows:

β ≥ α s ⊵α u
β(. . . , s, . . . ) ⊳α u

where > here is ⋗ (the ordering on nodes). As usual, we are using ≥ and ⊵ for the reflexive
closures.

This relation is transitive.
The following three definitions are mutually recursive.
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2 The Ordinal Path Ordering

Minimal operator. The smallest node in a tree (or trees) that is greater than α.

µα(a) = ∞
µα(β(s1, . . . , sn)) = ⎧⎪⎪⎨⎪⎪⎩

min{β,µα(s1, . . . , sn)} β > α
µα(s1, . . . , sn) α ≥ β

µα(s1, . . . , sn) = min{µα(s1), . . . , µα(sn)}
where > is ⋗ and minima are taken with respect to ⋗, with ∞ greater than all node values.

Stratified ordering. For each α, the following is a well-ordering.

a > b
a >α b (α1)

u >α b (α2) u ⊳α ○ ≥α v
u >α v (α3) u >µα{u,v} v u >α/⊳α v

u >α v (α4)
where > is ⋗ and u >α/⊳α v means u >α s for every s ⊲α v. Recall that a and b are leaves;
u and v are not. Clearly, each stratum >α has the “stratified” subtree property, namely:
x ⊳α y implies x >α y.

We note that u >β v iff u >γ v whenever γ = µα(u, v) ⋗ β ⋗ α, there being no β-subtrees
in u or v, so (α3) is not applicable and the second hypothesis of (α4) is vacuous.

Target ordering. The ordinal path ordering >∞ is a dependent lexicographic pair, con-
sisting of the ordering ⋗ on nodes followed by the multiset extension of the ordering >α,
selected by the shared node α, on immediate subtrees.

u >∞ b
(∞1) α > β

α(. . . , sk, . . . ) >∞ β(. . . , t`, . . . ) (∞2) {. . . , sk, . . .} ≫α {. . . , t`, . . .}
α(. . . , sk, . . . ) >∞ α(. . . , t`, . . . ) (∞3)

where > is ⋗ and ≫α is the multiset extension of >α.
Another way to express this top-level ordering is to extend ⋗ so that non-leaves are

compared by comparing their root nodes in the node ordering and non-leaves are always
greater than leaves, and to define ≫ to compare non-leaf trees with equal root values to
each other by comparing the multiset of immediate subtrees in the order indexed by the
root-node value. (Trees with incomparable roots are incomparable.) Then >∞ is the union
of these two (disjoint) orderings, and we can economize by using the following rules:

s ⋗ t
s >∞ t

(∞1,2) s≫ t
s >∞ t

(∞3)

3 Tree Case

Given a base set Σ with minimal element 0, well-ordered by ⋗, we define a well-ordering >∞
over unordered (trees of) trees T with leaves from Σ and trees for internal nodes, that is:

T ∶∶= Σ ∣ T (T, . . . , T )
There is no longer a separate node vocabulary Π. Hence, the ordering on nodes is no longer⋗, but instead is the lowest stratum >0 of the same ordering as is being defined on trees.
The definition is the same, except that ⋗ is replaced by >0 throughout.
Notation: α,β, s, t, sk, t` are trees of T ; a, b are leaves from Σ; u, v ∈ T ∖Σ.

The following four definitions are mutually recursive.

Stratified subtrees. A subtree of an α node with no smaller nodes en route.

β ≥ α s ⊵α u
β(. . . , s, . . . ) ⊳α u
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where > here is >0.

Minimal operator. As above: The smallest node in a tree (or trees) that is greater than
α.

µα(a) = ∞
µα(β(s1, . . . , sn)) = ⎧⎪⎪⎨⎪⎪⎩

min{β,µα(s1, . . . , sn)} β > α
µα(s1, . . . , sn) α ≥ β

µα(s1, . . . , sn) = min{µα(s1), . . . , µα(sn)}
where > is >0 and minima are taken with respect to >0.

Stratified ordering. For each α, the following is a well-ordering.

a > b
a >α b u >α b u ⊳α ○ ≥α v

u >α v u >µα{u,v} v u >α/⊳α v
u >α v

where > is >0.

Target ordering. Dependent lexicographic pair, ordering the roots followed by the multiset
extension of the selected ordering on immediate subtrees.

u >∞ b

α > β
α(. . . , sk, . . . ) >∞ β(. . . , t`, . . . )

{. . . , sk, . . .} ≫α {. . . , t`, . . .}
α(. . . , sk, . . . ) >∞ α(. . . , t`, . . . )

where > is the node ordering >0 and ≫α is the multiset extension of >α.
4 Examples

We focus in the coming examples on unary trees (strings) and the atomic ordering, though
the tree case is the more interesting.

4.1 An Example
Consider the rewriting rule ffx → fgfx, with Π = {f, g} and Σ anything, and let f ⋗ g.
First, notice that fx >∞ g y, for any y, and in particular fx >∞ gfx. So the target ordering>∞ does not have the subtree property (which is what makes it useful in this—and many
other—cases).

Since f is the largest node value in the precedence, we have fx >∞ g y for all trees x and
y. Similarly, we have

f ⋗ g
fx >∞ gfy

(∞2)
fx >f /⊳f gfy

fx >f gfy (α4)
{fx} ≫f {gfy}
ffx >∞ fgfy

(∞3)

since there are no f -subtrees in gfy.
Since >∞ is total and well-ordered, it cannot be monotonic. Still we want s >∞ t whenever

s rewrites to t; in other words, we want vffw >∞ vfgfw, for all v,w ∈ Π∗.
We show that if u >∞ v, for u and v having the same root node, then αu >∞ αv, for any

node α (f or g). There are four cases: g x >∞ g y implies fg x >∞ fg y and g g x >∞ g g y and
fx >∞ fy implies ffx >∞ ffy and gfx >∞ gfy.

WST
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4 The Ordinal Path Ordering

It is easy to verify that g x >∞ g y implies fg x >∞ fg y for all strings x and y:

g x >∞ g y g x >f /⊳f g y
g x >f g y (α4)

fg x >∞ fg y
(∞3)

there being no f -subtrees in gy. (So this is also true for larger alphabets, as long as f is
maximal.)

Furthermore, fx >∞ fy implies ffx >∞ ffy:

fx >∞ fy

⋮
fx >f /⊳f fy

fx >f fy (α4)
ffx >∞ ffy

(∞3)

because, for any z ⊴f y, we have

fx ⊳f x
fx >f x (α3)

fx >∞ fy
x >f y y ⊵f z

x >f z
fx >f z

and x >α y ⊵α z always implies x >α z on account of the subtree property and transitivity.
Virtually the same argument (with one additional step) shows that fx >∞ fy implies gfx >∞
gfy.

Lastly, one can show that g x >∞ g y implies g g x >∞ g g y:

g x >∞ g y[ g x >f g y ] (α4) g x >g x >g y
g x >g/⊵g y

g x >g g y (α4)
g g x >∞ g g y

(∞3)

there being no f -subtrees in g y, and x >g y being the only way that one can have g x >∞ g y.
The bracketed step is omitted if f does not occur in x or y.

4.2 A Counterexample
For the purposes of a counterexample in [3] (showing the necessity of a subterm condition for
the critical-pair lemma in the case of normal conditional rewriting), the following inequalities
were needed: a > b, fa > ga, hfa > c > kfa, c > kgb, fx > hfx (!), fx > kgb, hx > kx. For that, we
can interpret terms as follows:

JaK = 1
JbK = 0
JcK = 0(1(1),1)

Jh(x)K = 0(JxK,2) i.e. JhK = λx.0(x,2)
Jf(x)K = 1(JxK)
Jk(x)K = 0(JxK)
Jg(x)K = 0(JxK)
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5 Conclusion

The use of ordinal diagrams, as made simple by the above inference rules, holds out some
hope for helping in difficult (non-simplifying) termination proofs.

Acknowledgement. I thank Mitsu Okada and the readers for their questions and com-
ments.
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1 Introduction

As pointed out by Cristina Borralleras in her dissertation [5, Thm. 7.3.2] (see also [4, Section
5.4]), the dependency-pair method of Thomas Arts and Jürgen Giesl [1] is actually a special
case of the semantic path ordering of Sam Kamin and Jean-Jacques Lévy [14]. We expand
and elaborate on that relationship in what follows.

2 The Semantic Path Ordering

Let irreflexive ⋗ and reflexive u be two binary relations on terms such that their combined
“modulo” relation ⋗/u (= u∗ ○ ⋗ ○ u∗) is terminating (in the sense of [2]). This means that
there is no sequence of terms

s0 u ⋯ u s′0 ⋗ s1 u ⋯ u s′1 ⋗ s2 u ⋯ u s′2 ⋗ ⋯
containing infinitely many ⋗ steps and is equivalent to saying that the modulo relation’s
transitive closure (⋗/u)+ is well-founded. Let’s refer to this relation ⋗/u as the semantic
ordering. Typically, but not exclusively, it is defined via a homomorphism from terms to
some well-founded domain.

Despite the deliberately misleading choice of symbols, u need not be the reflexive-closure
of ⋗. But if it is, then ⋗/u is terminating if (and only if) ⋗ is.

If both relations are transitive and also are compatible with each other (meaning that
either u ○ ⋗ ⊆ ⋗ or ⋗ ○ u ⊆ ⋗; see [14, p. 14] and [1, n. 5]), and provided ⋗ is itself well-founded,
then the above termination condition holds. We prefer, however, not to bother requiring
transitivity.

Let ⋗ and u be as above and let ▶ denote the immediate subterm relation. We can define
a very simple semantic path ordering ≻/≿, with (base) semantic ordering ⋗/u, as follows:

∃si. s▶ si ≿ t
s ≻ t, s ≿ t s ⋗ t, ∀tj ◀ t. s ≻ tj

s ≻ t, s ≿ t s u t, ∀tj ◀ t. s ≻ tj
s ≿ t

If ≐ is the intersection u ∩ t and ≈ is ≿ ∩ ≾, then it follows that

s ≐ t, ∀tj ◀ t. s ≻ tj ,∀si ◀ s. t ≻ si

s ≈ t
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2 Dependency Pairs are a Simple Semantic Path Ordering

This is in essence the semantic path ordering of [14] (cf. [11, Def. 4]) over the semantic
relation ⋗ with a trivial (empty) functional (lifting the ordering from subterms to terms),
so that there is no recursion on subterms. We have added ≿ to the definition (in particular,
in the third case) in the obvious way. (The use of a quasi-order was also suggested in [14,
p. 10].) Technically, the relation satisfies the weak (non-strict) monotonicity condition on
the functional (cf. [14, p. 12]). It also satisfies the requirements of the general path ordering
[11]. The conditions in the definition could be relaxed somewhat to take into account the
possible non-transitivity of the relations.

▸ Theorem 1. The simple semantic path ordering ≻/≿ is terminating.

The proof is essentially as in [14] (and [11, Thm. 2]), but takes the quasi-ordered case
into account.

Proof. Suppose the path relation is not terminating and look at a minimal counterexample
u0 ≿∗≻≿∗ u1 ≿∗≻≿∗ u2 ≿∗≻≿∗ ⋯, minimal with respect to subterm. Let’s number the cases as
follows:

si ≿ t
s ≻1 t

s ⋗ t, s ≻ tj
s ≻2 t

s u t, s ≻ tj
s ≿3 t

The minimal counterexample never employs the first case: Clearly, it is not the case
that u0 ≿1 u1, since then the sequence beginning with the subterm of u0 that justifies the
inequality would be smaller. Suppose ui ≻1 ui+1 is the first occurrence of case 1 in the
counterexample (i ≥ 1), and that it is justified by ti ≿ ui+1 for subterm ti of ui. Whether
ui−1 ≻2 ui or ui−1 ≿3 ui, we would have ui−1 ≻ ti ≿ ui+1 by the side requirement s ≻ tj of the
other two cases.

Whenever ui ≻2 ui+1, we have ui ⋗ ui+1; when ui ≿3 ui+1, we have ui u ui+1. This
contradicts termination of ⋗/u. ◂

For reduction in a semantic path ordering of a term-rewriting system to provide ter-
mination, one shows first of all that ` ≻ r for every rule ` → r (meaning that `σ ≻ rσ for
every substitution σ). As explained in [14, pp. 14–15], the semantic path ordering is not
necessarily weakly monotonic. That is, it need not be the case that

s ≻ t⇒ f(. . . , s, . . .) ≿ f(. . . , t, . . .)
Therefore, one also needs to demonstrate ([14, p. 14, post correctionem])

s→ t⇒ f(. . . , s, . . .) u f(. . . , t, . . .) (*)

so that s → t implies either s ≻ t (if it is a top-rewrite) or s ≿ t (if not), which is enough
to ensure that s ≿ t whenever s→ t and give termination [7, Second Termination Theorem].
With condition (*), the intersection of ≿ and → is monotonic, since s ≿ t and f(. . . , s, . . .) u
f(. . . , t, . . .) yield f(. . . , s, . . .) ≿3 f(. . . , t, . . .).
3 The Dependency-Pair Method

Consider now the (basic) dependency-pair framework [1, Thm. 7]. For every rule `→ r and
nonvariable (not necessarily proper) subterm u of r that is not headed by a constructor (a
symbol that never appears at the head of a left-hand side of any rule), we have a dependency
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pair ` → u. Suppose we are given a pair of (partial and quasi-) orderings ⋗,u that are
compatible (as above), and such that ⋗ is well-founded and u is weakly monotonic, meaning:

s u t⇒ f(. . . , s, . . .) u f(. . . , t, . . .)
Then, a rewrite system terminates if ` u r for every rule and ` ⋗ u for every dependency pair
(again, for all substitutions).

▸ Theorem 2. If a rewrite system can be shown terminating by the basic dependency-pair
method using the pair u and ⋗, then it is terminating by the semantic path ordering method
using the same pair.

Proof. Modify the ordering ⋗ so that all terms headed by constructors are smaller than all
those that are not (see [5, Sect. 7.3], [9, n. 9], [4, Section 5.4]). Clearly, the ordering remains
terminating and this change has no effect on dependency pairs, because constructor-headed
terms are never compared. To maintain compatibility, also remove from ⋗ any pair whose
left-side is a constructor term (they are never needed), and remove from u any pair with
left-side a constructor and right-side not (also unnecessary).

Consider a rule `→ r. We show that ` ≻ r. If r is a proper subterm of `, and in particular
if r is a variable, then ` ≻1 r. If not, then ` ⋗ r, since it is one of the dependency pairs or else
r is headed by a constructor. Furthermore, ` ≻ rj , for every subterm rj of j, either because
rj is a subterm of `, or because of a dependency pair ` → rj , or because rj is headed by a
constructor, so ` ⋗ rj , and rj ’s subterms are smaller (by induction).

For reduction in the semantic path ordering to provide termination, we said that one
also needs condition (*) to hold. But the dependency pair conditions tell us that ` u r for
every rule, and weak monotonicity tells us that c[`] u c[r] for any context c. Therefore,
s→ t⇒ f(. . . , s, . . .) u f(. . . , t, . . .), as required. ◂

It is clear why there is no need to consider dependency pairs ` → u when u is a proper
subterm of `, as suggested in [9, n. 8], since then ` ≻1 u. In fact, the pair can be ignored if
` has any proper subterm t, such that t ≿ u, as suggested in [10, Sect. 6.3].

4 The Monotonic Semantic Path Ordering

The dependency-pair conditions for termination also fulfill the requirements for the mono-
tonic semantic path ordering of [3] (preceded by [12]). This method combines a (multiset)
semantic path ordering ≻ over a well-founded quasi-order u with a (weakly-) monotonic
quasi-ordering ≥. It demands that ` ≥ r and ` ≻ r for each rule, and, furthermore, that the
two base orderings satisfy

s ≥ t⇒ f(. . . , s, . . .) u f(. . . , t, . . .) (**)

See [9, Sect. 4]. (The latter condition is called “quasi-monotonicity” of u with respect to ≥
in [3] and “harmony” of ≥ with u in [9, Sect. 3].)

Suppose now that ≥ and u are one and the same well-founded monotonic quasi-ordering.
The above condition (**) translates into weak-monotonicity of u. Then to satisfy the re-
quirements of the corresponding monotonic semantic path ordering, we have ` u r by the
demands of the dependency method and ` ≻ r for the same reasons as in the above proof.
See [5, Thm. 7.3.2] and [4, Section 5.4].
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5 Conclusion

The ordinary semantic path ordering [14], general path ordering [11, 13], and monotonic
semantic path ordering [3] all include recursive cases, where subterms are examined recur-
sively (in some order or other) if two terms are semantically equivalent (vis-à-vis ≐). As
noted in [4, Section 5.4], dependency pairs do not make use of the recursive case of the path
ordering. Including recursion on subterms refines the simple-minded ordering and can only
be of service in termination proofs. (Some might view the absence of recursive comparisons
an “advantage”, in that the search space is reduced.)

On the other hand, the dependency-pair formulation of this termination method has
the practical advantage of rephrasing the task as the termination problem of an enlarged
rewrite system (one that includes rewrite rules that force s ≻ tj to hold) for which it may
be relatively easy to adapt ordinary termination-proof systems. In one standard version
of the method, additional rules—with altered root symbols—are used to disentangle the
strong-monotonicity and weak-monotonicity requirements.

It is commonplace with the dependency-pair method for ⋗/u to be some version of the
recursive path ordering [7, 8]. The same is true for the semantic path ordering, which often
uses a simpler recursive path ordering for its semantic ordering. This kind of semantic or-
dering is something that David Plaisted and I used from the earliest days of path orderings.1

On account of the weak monotonicity requirement for the component ordering u used for
the semantic path ordering, general path ordering, or dependency-pair method, the orderingu in all three cases can ignore selected subterms, which is very often useful.

Nothing we have said relates to the powerful data-flow techniques of [1], which take the
narrowing ideas of [6] and others to a high degree of utility. Were one to want to, the
analysis of dependency-pair chains could be captured by pattern-based semantic, perhaps
akin to that in [15].
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Abstract
The predicative lexicographic path order (PLPO for short), a syntactic restriction of the lex-
icographic path order, is presented. As well as lexicographic path orders, several non-trivial
primitive recursive equations, e.g., primitive recursion with parameter substitution, unnested
multiple recursion, or simple nested recursion, can be oriented with PLPOs. It can be shown
that PLPOs however only induce primitive recursive upper bounds for derivation lengths of com-
patible rewrite systems. This yields an alternative proof of a classical fact that the class of
primitive recursive functions is closed under these non-trivial primitive recursive equations.

1998 ACM Subject Classification F.4.1, F.3.3

Keywords and phrases Primitive recursive functions, Derivational complexity, Lexicographic
path orders, Predicative recursion

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

As shown by R. Péter [9], the class of primitive recursive functions is closed under a
recursion schema that is not an instance of primitive recursion, e.g., primitive recursion
with parameter substitution (PRP) f(x + 1, y) = h(x, y, f(x, p(x, y))), unnested multiple
recursion (UMR) f(x+1, y+1) = h(x, y, f(x, p(x, y)), f(x+1, y)), or simple nested recursion
(SNR) f(x+ 1, y) = h(x, y, f(x, p(x, y, f(x, y)))). H. Simmons [10] showed Péter’s results in
a general framework aiming to answer a deep question why primitive recursive functions are
closed under these non-trivial primitive recursive equations. As observed by E. A. Cichon
and A. Weiermann [6], in order to assess the complexity of a given function, we can discuss
about maximal lengths of rewriting sequences, which is known as derivation lengths, in a
term rewrite system that defines the function. More precisely, if every derivation length in a
given rewrite system R is bonded by a function in a class F , then the function defined by
R is elementary recursive in F measured by the size of a starting term. In [2] M. Avanzini
and G. Moser have shown that “elementary recursive in” can be replaced by “polynomial
time in” if one only considers of rewriting sequences starting with terms whose arguments
are already normalised. In [6] alternative proofs of Péter’s results were given employing
primitive recursive number-theoretic interpretations of rewrite systems corresponding to
those non-trivial primitive recursive equations mentioned above. On the other side, any
equation of (PRP), (UMR) and (SNR) can be oriented with a termination order known
as the lexicographic path order (LPO for short). As shown by Weiermann [11], LPOs
induce multiply recursive upper bounds for those derivation lengths. Thus, in order to
discuss about (PRP), (UMR) or (SNR), it is natural to restrict LPOs. In [5] Cichon
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introduced the ramified lexicographic path order (RLPO for short), a syntactic restriction
of LPO, capturing (PRP) and (UMR). This work is an attempt to find a maximal model
for primitive recursive functions based on termination orders in a way different from [5] but
stemming from Simmons’ approach in [10]. The recursion-theoretic characterisation given
in [10] is based on a restrictive (higher order primitive) recursion that is commonly known
as predicative recursion. A brief explanation about predicative recursion can be found in
the paragraph after Example 5 on page 3. Taking the idea of predicative recursion into the
lexicographic comparison, we introduce the predicative lexicographic path order (PLPO for
short), a syntactic restriction of LPO. As well as LPOs, (PRP) (UMR) and (SNR) can be
oriented with PLPOs. However, in contrast to LPOs, PLPOs only induce primitive recursive
upper bounds for derivation lengths of compatible rewrite systems. This yields an alternative
proof of the fact that primitive recursive functions are closed under (PRP) (UMR) and
(SNR). The definition of PLPO is also strongly motivated by a more recent work [1] by
Avanzini, Moser and the author.

2 Predicative Lexicographic Path Orders

Let V denote a countably infinite set of variables. A signature F is a finite set of function
symbols. The number of argument positions of a function symbol f ∈ F is denoted as
arity(f). We write T (V,F) to denote the set of terms over V and F . The signature F can
be partitioned into the set C of constructors and the set D of defined symbols. We suppose
that C contains at least one constant. We assume a specific (possibly empty) subset Dlex
of D. A precedence >F on the signature F is a quasi-order whose strict part >F is well-
founded on F . We write f ≈F g if f >F g and g >F f . We also assume that the argument
positions of every function symbol are separated into two kinds. The separation is indicated by
semicolon as f(t1, . . . , tk; tk+1, . . . , tk+l), where t1, . . . , tk are called normal arguments whereas
tk+1, . . . , tk+l are called safe ones. The equivalence ≈F is extended to the term equivalence
≈. We write f(s1, . . . , sk; sk+1, . . . , sk+l) ≈ g(t1, . . . , tk; sk+1, . . . , tk+l) if f ≈F g and sj ≈ tj
for all j ∈ {1, . . . , k + l}. An auxiliary relation s = f(s1, . . . , sk; sk+1, . . . , sk+l) =plpo t holds
if one of the following cases holds, where s wplpo t denotes s =plpo t or s ≈ t.
1. f ∈ C and si wplpo t for some i ∈ {1, . . . , k + l}.
2. f ∈ D and si wplpo t for some i ∈ {1, . . . , k}.
3. f ∈ D, t = g(t1, . . . , tm; tm+1, . . . , tm+n) for some g such that f >F g, and s =plpo tj for

all j ∈ {1, . . . ,m+ n}.
Now we define the predicative lexicographic path order (PLPO for short) denoted as >plpo.
We write s >plpo t if s >plpo t or s ≈ t, like the relation wplpo, write (s1, . . . , sk) >plpo
(t1, . . . , tk) if sj >plpo tj for all j ∈ {1, . . . , k}, and we write (s1, . . . , sk) >plpo (t1, . . . , tk) if
(s1, . . . , sk) >plpo (t1, . . . , tk) and additionally si >plpo ti for some i ∈ {1, . . . , k}.

I Definition 1. s = f(s1, . . . , sk; sk+1, . . . , sk+l) >plpo t holds if one of the following holds.
1. s =plpo t.
2. si >plpo t for some i ∈ {1, . . . , k + l}.
3. f ∈ D, t = g(t1, . . . , tm; tm+1, . . . , tm+l) for some g such that f >F g, s =plpo tj for all

j ∈ {1, . . . ,m}, and s >plpo tj for all j ∈ {m+ 1, . . . ,m+ n}.
4. f ∈ D\Dlex, t = g(t1, . . . , tk; tk+1, . . . , tk+l) for some g such that f ≈F g, (s1, . . . , sk) >plpo

(t1, . . . , tk), and (sk+1, . . . , sk+l) >plpo (tk+1, . . . , tk+l).
5. f ∈ Dlex, t = g(t1, . . . , tm; tm+1, . . . , tm+l) for some g such that f ≈F g, and there exists

i0 ∈ {1, . . . ,min(k,m)} such that sj ≈ tj for all j ∈ {1, . . . , i0−1}, si0 >plpo ti0 , s =plpo tj
for all j ∈ {i0 + 1, . . . ,m}, and s >plpo tj for all j ∈ {m+ 1, . . . ,m+ n}.
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By induction according to the definition of >plpo, the inclusion >plpo⊆>lpo can be shown
for the LPO >lpo induced by the same precedence. The converse inclusion does not hold in
general.

I Example 2. RPR = {f(; 0, y)→ g(; y), f(; s(;x), y)→ h(;x, y, f(;x, y))}.
The sets C and D are defined by C = {0, s} and D = {g, h, f}. Let Dlex = ∅. Define a

precedence >F by f ≈F f and f >F g, h. Define an argument separation as indicated in the
rules. Then RPR can be oriented with the PLPO >plpo induced by >F . For the first rule
f(; 0, y) >plpo y and hence f(; 0, y) >plpo g(; y) by Case 3 in Definition 1. Consider the second
rule. Since (s(;x), y) >plpo (x, y), f(; s(;x), y) >plpo f(;x, y) holds as an instance of Case 4.
An application of Case 3 allows us to conclude f(; s(;x), y) >plpo h(;x, y, f(;x, y)).

I Example 3. RPRP = {f(0; y)→ g(; y), f(s(;x); y)→ h(x; y, f(x; p(x; y)))}.
The sets C and D are defined as in the previous example. Define the set Dlex by Dlex = {f}.

Define a precedence >F by f ≈F f and f >F q for all q ∈ {g, p, h}. Define an argument
separation as indicated. Then RPRP can be oriented with the induced PLPO >plpo. We only
consider the most interesting case. Namely we oriente the second rule. Since s(;x) =plpo
x, f(s(;x); y) =plpo x holds by the definition of =plpo. This together with Case 3 yields
f(s(;x); y) >plpo p(x; y). Hence an application of Case 5 yields f(s(;x); y) >plpo f(x; p(x; y)).
Another application of Case 3 allows us to conclude f(s(;x); y) >plpo h(x; y, f(x; p(x; y))).

I Example 4. RUMR =





f(0, y; ) → g0(y; ),
f(s(;x), 0; ) → g1(x; f(x, q(x; ); )),

f(s(;x), s(; y); ) → h(x, y; f(x, p(x, y; ); ), f(s(;x), y; ))



.

The sets C and D are defined as in the former two examples and the set Dlex is defined in
the previous example. Define a precedence >F by f ≈F f and f >F g for all g ∈ {g0, g1, p, q, h}.
Define an argument separation as indicated. Then RUMR can be oriented with the induced
PLPO >plpo. Let us consider the most interesting case. Namely we oriente the third
rule. Since f >F p and s(;u) =plpo u for each u ∈ {x, y}, f(s(;x), s(; y); ) =plpo p(x, y; )
holds by the definition of =plpo. Hence, since s(;x) >plpo x, an application of Case 5 in
Definition 1 yields f(s(;x), s(;x); ) >plpo f(x, p(x, y; ); ). Another application of Case 5 yields
f(s(;x), s(; y); ) >plpo f(s(;x), y; ). Clearly f(s(;x), s(; y); ) =plpo u for each u ∈ {x, y}. Hence
an application of Case 3 allows us to conclude f(s(;x), s(; y); ) >plpo h(x, y; f(x, p(x, y; ); ),
f(s(;x), y; )).

I Example 5. RSNR = {f(0; y)→ g(; y), f(s(;x); y)→ h(x; y, f(x; p(x; y, f(x; y))))}.
The sets C, D and Dlex are defined as in the former three examples. Define a pre-

cedence >F as in the previous example. Define an argument separation as indicated.
Then RSNR can be oriented with the induced PLPO >plpo. We only oriente the second
rule. As we observed in the previous example, f(s(;x); y) >plpo f(x; y) holds by Case 5.
Hence f(s(;x); y) >plpo p(x; y, f(x; y)) holds by Case 3. This together with Case 5 yields
f(s(;x); y) >plpo f(x; p(x; y, f(x; y))). Thus another application of Case 3 allows us to conclude
f(s(;x); y) >plpo h(x; y, f(x; p(x; y, f(x; y)))).

Careful readers may observe that the general form of nested recursion, e.g., defining
equations for the Ackermann function, cannot be oriented with PLPOs. As intended in [4],
predicative recursion is a syntactic restriction of the standard (primitive) recursion, where the
number of recursive calls is measured only by a normal argument whereas results of recursion
are allowed to be substituted only for safe arguments: f(x+ 1, ~y;~z) = h(x, ~y;~z, f(x, ~y;~z)).
In [10] the meaning of predicative recursion is modified (though [10] is an earlier work
than [4]) in such a way that recursive calls are allowed even on safe arguments for the
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standard primitive recursion (see Example 2) but still restricted on normal arguments for
multiple (nested) recursion (see Example 3–5). In the sequel we present a primitive recursive
interpretation for PLPOs. This yields that the maximal length of rewriting sequences in
any rewrite system compatible with a PLPO is bounded by a primitive recursive function in
the size of the starting term. All the missing details can be found in a technical report [7].
Following [6, page 214], given a natural d ≥ 2, we define the primitive recursive function Fm

by F0(x) = dx+1 and Fm+1(x) = F
d(1+x)
m (x), where F d

m denotes the d-fold iteration of Fm.

I Definition 6. Given k, we inductively define the k-ary primitive recursive function Fm,n by

Fm,0(x1, . . . , xk) = 0, Fm,n+1(x1, . . . , xk) =
{

F
Fm,n(x1,...,xk)+d(1+xn+1)
m (

∑n+1
j=1 xj) if n < k,

F
Fm,n(x1,...,xk)
m (

∑k
j=1 xj) if k ≤ n.

I Definition 7. Let ` be a natural such that 2 ≤ `, F a signature and >F a precedence on
F . The rank rk : F → N is defined in accordance with >F , i.e., rk(f) ≥ rk(g) ⇔ f >F g.
Define a natural K by K = max{k | f ∈ F and f has k normal argument positions}. Then a
primitive recursive interpretation I : T (F)→ N is defined by I(t) = dFrk(f)+`,K+1(I(t1),...,I(tk))·∑l

j=1 I(tk+j), where t = f(t1, . . . , tk; tk+1, . . . , tk+l) ∈ T (F).

Let 2 ≤ `. We define a restriction =`
plpo of =plpo: s = f(s1, . . . , sk; sk+1, . . . , sk+l) =`

plpo t

holds if one of the following cases holds, where s w`
plpo t denotes s =`

plpo t or s ≈ t.
1. f ∈ C and si w`

plpo t for some i ∈ {1, . . . , k + l}.
2. f ∈ D and si w`

plpo t for some i ∈ {1, . . . , k}.
3. f ∈ D, t = g(t1, . . . , tm; tm+1, . . . , tm+n) for some g such that f >F g, and s =`−1

plpo tj for
all j ∈ {1, . . . ,m+ n}.

We write >`
plpo to denote the PLPO induced by =`

plpo and |t| to denote the size of a term t.
In addition, for a rewrite system R and a relation >, we write R ⊆> if l > r holds for every
rule (l→ r) ∈ R.

I Lemma 8. Let s, t ∈ T (F ,V) and σ : V → T (F) be a ground substitution. Suppose
max({arity(f) | f ∈ F} ∪ {` · (K + 2) + 2} ∪ {|t| + 1}) ≤ d. If s >`

plpo t, then, for the
interpretation I induced by ` and d, I(sσ) > I(tσ) holds.

I Lemma 9. Let s, t ∈ T (F) be ground terms and C(2) ∈ T (F ∪ {2}) a (ground) context.
If I(s) > I(t), then I(C(s)) > I(C(t)) holds.

I Theorem 10. Let R be a rewrite system over a signature F such that R ⊆>`
plpo for some

` ≥ 2 and s, t ∈ T (F) be ground terms. Suppose max({arity(f) | f ∈ F}∪ {` · (K + 2) + 2} ∪
{|r| + 1 | (l → r) ∈ R}) ≤ d. If s →R t, then, for the interpretation induced by ` and d,
I(s) > I(t) holds.

I Theorem 11. For any rewrite system R such that R ⊆>plpo for some PLPO >plpo, the
length of any rewriting sequence in R starting with a ground term is bounded by a primitive
recursive function in the size of the starting term.

I Corollary 12. The class of primitive recursive functions is closed under primitive recursion
with parameter substitution, unnested multiple recursion and simple nested recursion.

3 Concluding remarks

A novel termination order, the predicative lexicographic path order PLPO, was presented.
As well as LPOs, any instance of (PRP), (UMR) and (SNR) can be oriented with a PLPO.
Note that general simple nested recursion briefly discussed in [6, page 221], e.g., simple
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nested recursion with more than one recursion parameters, can be even oriented with PLPOs.
On the other side, PLPOs only induce primitive recursive upper bounds for derivation
lengths of compatible rewrite systems. It turns out that the presented primitive recursive
interpretation is not affected even if in Case 4 of Definition 1 one allows permutations of safe
argument positions on {k + 1, . . . , k + l}. Allowance of permutations of normal argument
positions is not clear at present. One would recall that, as shown by D. Hofbauer in [8],
multiset path orders only induce primitive recursive upper bounds for derivation lengths of
compatible rewrite systems. Allowance of multiset comparison is not clear in the case even
for safe arguments. We mention that every PLPO is a slight extension of an exponential path
order EPO* defined in [1] though EPO*s only induce exponential (innermost) derivational
complexity. An auxiliary relation =epo employed to define EPO* is strictly included in =plpo.
We also mention that the auxiliary relation =plpo is exactly the same as the relation >pop
introduced in [3] to define the polynomial path order POP*. By induction according to the
inductive definition of an EPO* >epo∗, it can be shown that >epo∗⊆>plpo holds with the
same precedence and the same argument separation. In general none of (PRP), (UMR)
and (SNR) can be oriented with EPO*s. Perhaps it should be emphasised that a significant
difference between PLPO and EPO* lies in Case 4 of Definition 1. Without Case 4 PLPOs
would only induce elementary recursive derivational complexity.

References
1 M. Avanzini, N. Eguchi, and G. Moser. A Path Order for Rewrite Systems that Compute

Exponential Time Functions. In Proceedings of 22nd RTA, volume 10 of Leibniz Interna-
tional Proceedings in Informatics, pages 123–138, 2011.

2 M. Avanzini and G. Moser. Closing the Gap Between Runtime Complexity and Polytime
Computability. In Proceedings of 21st RTA, volume 6 of Leibniz International Proceedings
in Informatics, pages 33–48, 2010.

3 M. Avanzinii and G. Moser. Complexity Analysis by Rewriting. In Proceedings of 9th
FLOPS 2008, volume 4989 of Lecture Notes in Computer Science, pages 130–146, 2008.

4 S. Bellantoni and S. Cook. A New Recursion-theoretic Characterization of the Polytime
Functions. Computational Complexity, 2(2):97–110, 1992.

5 E. A. Cichon. Termination Orderings and Complexity Characterizations. In P. Aczel,
H. Simmons, and S. S. Wainer, editors, Proof Theory, pages 171–193. Cambridge University
Press, 1992.

6 E. A. Cichon and A. Weiermann. Term Rewriting Theory for the Primitive Recursive
Functions. Annals of Pure and Applied Logic, 83(3):199–223, 1997.

7 N. Eguchi. Predicative Lexicographic Path Orders: Towards a Maximal Model for Primitive
Recursive Functions. Technical report. Available online at arXiv: 1308.0247 [math.LO].

8 D. Hofbauer. Termination Proofs by Multiset Path Orderings Imply Primitive Recursive
Derivation Lengths. Theoretical Computer Science, 105(1):129–140, 1992.

9 R. Péter. Recursive Functions. Academic Press, New York-London, The 3rd revised edition,
Translated from the German, 1967.

10 H. Simmons. The Realm of Primitive Recursion. Archive for Mathematical Logic, 27:177–
188, 1988.

11 A. Weiermann. Termination Proofs for Term Rewriting Systems by Lexicographic Path
Ordering Imply Multiply Recursive Derivation Lengths. Theoretical Computer Science,
139(1–2):355–362, 1995.

45



SAT-Based Loop Detection in Graph Rewriting
Marcus Ermler

University of Bremen, Department of Computer Science
P.O.Box 33 04 40, 28334 Bremen, Germany
maermler@informatik.uni-bremen.de

Abstract
In this paper, we propose an approach for detecting loops in derivations of graph rewriting systems
via a translation of the derivation process and loop conditions into propositional formulas. A
satisfying assignment represents a derivation with a detected loop and so it witnesses that the
corresponding graph rewriting system does not terminate.
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1 Introduction

The question of termination or non-termination of graph rewriting systems seems to be
an interesting issue, but is in general undecidable [5]. Nevertheless, techniques to prove
termination of graph rewriting systems were introduced (cf. e.g. [4]). Termination of graph
rewriting is defined in the following way (cf. [4]).

I Definition 1 (Termination). A graph rewriting system GRS is terminating, if it does not
admit an infinite derivation.

The question of looping or non-looping has attracted much attention over the last years in the
context of string and term rewriting systems, but is not so much studied in the area of graph
rewriting. Also, SAT-based approaches are applied to string and term rewriting (cf. e.g. [6]).
In this paper, we propose a new approach for detecting loops in derivations of graph rewriting
systems via a translation of derivations and loop conditions into propositional formulas. The
idea of translating graph rewriting into SAT was introduced in [3], the proposed technique
for loop detection is supplemented to this approach. By using a translation to SAT, we want
to benefit from fast solving techniques implemented in modern SAT solvers.

2 Graph Rewriting

We use edge labeled directed graphs without multiple edges and with a finite node set. For
a finite set Σ of labels, such a graph is a pair G = (V, E) where V = {1, . . . , n} = [n] for
some n ∈ N is a finite set of nodes, numbered from 1 to n, and E ⊆ V × Σ× V is a set of
labeled edges. n is called the size of G. The components V and E are also denoted by VG

and EG. We call an edge (v, x, v) a sling and an edge (v, ∗, v′) unlabeled and omit the label
∗ in drawings. Two edges (v1, x, v2) and (v′1, x′, v′2) are considered as an undirected edge if
v1 = v′2 and v2 = v′1. A special graph is the empty graph ∅ = (∅, ∅). We call G a subgraph of
H, denoted by G ⊆ H, if VG ⊆ VH and EG ⊆ EH .

Furthermore, we use injective graph morphisms for the matching. Let G, H be two graphs
as defined above. An injective graph morphism from g : G → H is an injective mapping
gV : VG → VH , that is structure- and label-preserving, i.e. for each edge (v, x, v′) ∈ EG,
(gV (v), x, gV (v′)) ∈ EH . An injective graph morphism g : G→ H yields the image g(G) =
(gV (VG), gE(EG)) ⊆ H with gE(EG)) = {(gV (v), x, gV (v′)) | (v, x, v′) ∈ EG} called the
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2 SAT-Based Loop Detection in Graph Rewriting

match of G in H. In the following, we will write g(v) and g(e) for nodes v ∈ VG and edges
e ∈ EG because the type of the argument indicates the indices V and E.

I Example 2. Figure 1 shows the example graph G0. Its nodes are numbered from 1 to
4 and all its edges except the slings are unlabeled and undirected. The slings are labeled
with ∅ to denote that the corresponding nodes have not yet been chosen. The graph on
the left-hand of the arrow in Figure 2, called Lchoose in the following, is a subgraph of G0.
One can choose four injective mappings from Lchoose to G0: g = {1 7→ 1}, g = {1 7→ 2},
g = {1 7→ 3}, or g = {1 7→ 4}.

1

∅

2

∅

3

∅

4

∅

Figure 1 The graph G0

1

∅

−→ 1

member

Figure 2 The rule choose

1

member

2 −→ 1

member

2

Figure 3 The rule remEdge

A rule r = (L ⊇ K ⊆ R) consists of three graphs: the left-hand side L, the gluing graph
K, and the right-hand side R. In our approach, we only consider rules with EK = ∅ and an
invariant node set, i.e. VL = VK = VR. For that reason, we simplify the rule notation to
r = (L→ R), denote the set of nodes of a rule r by Vr and its size by size(r) = size(L).

The application of a rule to a graph works as follows. Let r = (L → R) be a rule,
G a graph, and g : L → G an injective graph morphism. Remove the edges in g(L) from
G yielding D and add R disjointly to D. Finally, glue R and D as follows. (1) Merge
each v ∈ VR with g(v). (2) If there is an edge (v, x, v′) ∈ ER with v, v′ ∈ VR and an edge
(g(v), x, g(v′)) ∈ ED then these edges are identified. The application of a rule r to a graph G

with respect to an injective graph morphism g yielding a graph H is denoted by G =⇒
r,g

H.
This is called rule application or direct derivation and fits into the double-pushout approach
(cf. [1]). The sequential composition d = G0 =⇒

r1,g1
G1 =⇒

r2,g2
· · · =⇒

rn,gn

Gn of n direct derivations

for some n ∈ N is called a derivation, shortly denoted by G0
∗=⇒
P

Gn for n ≥ 0 and G0
+=⇒
P

Gn

for n > 0 if r1, . . . , rn ∈ P .

I Example 3. In Figure 2, one can find an example for a graph rewriting rule which adds
a member sling to a node. As described above, there are four mappings from Lchoose to
G0. In Figure 4 a derivation is shown. The first graph G1 of the derivation is the result of
applying choose to G0 twice by using the mappings g = {1 7→ 2} and, then, g = {1 7→ 4}.
Applying the rule remEdge from Figure 3 with the mapping g = {1 7→ 4, 2 7→ 3} results in
the second graph. Finally, a three time application of the rule remEdge yields the last graph.
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member

3

∅

4

member

1=⇒
remEdge

1

∅

2

member

3

∅

4

member

3=⇒
remEdge

1

∅

2

member

3

∅

4

member

Figure 4 A sample derivation

A graph grammar is a system GG = (G0, P, ∆) consisting of an initial graph G0, a finite
set P of graph rewriting rules, and a set ∆ ⊆ Σ of terminal symbols. The graph grammar
GG specifies all derivations from the initial graph G0 to graphs labeled over ∆.
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I Example 4. As an example, we consider the vertex cover problem that refers to the question,
whether for a graph G = (V, E), a subset X ⊆ V exists, such that for all (v, x, v′) ∈ E,
v ∈ X or v′ ∈ X. The corresponding graph grammar for the graph G0 from Figure 1 is
V C = (G0, {choose, remEdge}, {member,∅}). The derivation in Figure 4 states the last
part of a possible computation with G0 as input. The two-time application of choose yields
the first graph of the derivation as detailed above. A vertex cover is found, because the last
graph of the derivation has only edges labeled with member or ∅.

3 Detecting Loops in Graph Rewriting via SAT

Every propositional formula with variable set {edge(v, a, v′, k) | (v, a, v′) ∈ [n]× Σ× [n], k ∈
[m]} represents a sequence G1, . . . , Gm of graphs for each variable assignment f satisfying
the formula, i.e. the graph Gk contains the edge (v, a, v′) if and only if f(edge(v, a, v′, k)) =
TRUE. Please note, that this translation does not allow node addition or deletion. A single
initial graph G in the kth derivation step can be described by the formula

graph(G)(k) =
∧

(v,a,v′)∈EG

edge(v, a, v′, k) ∧
∧

(v,a,v′)∈([n]×Σ×[n])−EG

¬edge(v, a, v′, k).

I Example 5. Then, the graph G0 in Figure 1 is expressed via the following formula

graph(G0)(0) =
∧

(v,a,v′)∈E0

edge(v, a, v′, 0) ∧
∧

(v,a,v′)∈([n]×Σ×[n])−E0

¬edge(v, a, v′, 0)

where E0 = {(1, ∗, 2), (2, ∗, 1), (2, ∗, 3), (3, ∗, 2), (3, ∗, 4), (4, ∗, 3), (2, ∗, 4), (4, ∗, 2), (1,∅, 1),
(2,∅, 2), (3,∅, 3), (4,∅, 4)}. Please note, that in case of undirected edges both corresponding
directed edges have to occur in the formula.

For a rule r = (L→ R) the set of injective graph morphisms from [size(r)] to the set of
nodes [n] is denoted byM(r, n). Let k ∈ N be a derivation step, Gk−1 be a graph with the
node set [n], r = (L → R) be a rule, and g ∈ M(r, n). The application of r to Gk−1 with
respect to g is then expressed by the following formulas

morph(r, g, k) =
∧

(v,a,v′)∈EL
edge(g(v), a, g(v′), k − 1),

rem(r, g, k) =
∧

(v,a,v′)∈EL−ER
¬edge(g(v), a, g(v′), k),

add(r, g, k) =
∧

(v,a,v′)∈ER
edge(g(v), a, g(v′), k),

keep(r, g, k) =
∧

(v,a,v′)6∈g(EL∪ER)
(
edge(v, a, v′, k − 1)↔ edge(v, a, v′, k)

)

where g(EL ∪ ER) = {(g(v), a, g(v′)) | (v, a, v′),∈ EL ∪ ER},
apply(r, g, k) = morph(r, g, k) ∧ rem(r, g, k) ∧ add(r, g, k) ∧ keep(r, g, k).

The formula morph describes that g is a graph morphism from L to Gk−1. The removal of
the images of every edge of the left-hand side L from Gk−1 is expressed by rem. The addition
of edges of the right-hand side R is described by add. That edges that have been neither
deleted nor added must be kept, corresponds to the formula keep. Finally, apply describes
the whole application of r to Gk−1 with respect to g. The following theorem states that a
satisfying assignment to apply corresponds to a direct derivation.

I Theorem 6. Gk−1 =⇒
r,g

Gk if and only if there is a satisfying assignment to the formula
graph(Gk−1)(k− 1) ∧ apply(r, g, k) ∧ graph(Gk)(k).

I Example 7. For the rule remEdge in Figure 3, the first graph G1 in Figure 4, and the
graph morphism g = {1 7→ 4, 2 7→ 3} one gets the following formulas: morph(remEdge, g, 2) =
edge(4, member, 4, 1)∧edge(3, ∗, 4, 1)∧edge(4, ∗, 3, 1), rem(remEdge, g, 2) = ¬edge(3, ∗, 4, 2)∧
¬edge(4, ∗, 3, 2), and add(remEdge, g, 2) = edge(4, member, 4, 2).
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4 SAT-Based Loop Detection in Graph Rewriting

For each rule r ∈ P and each mapping g ∈ M(r, n), the possible applications of r to
Gk−1 are expressed via step(k) =

∨
r∈P,g∈M(r,n) apply(r, g, k). All derivation starting in G0 of

length m are described by der(G0, m) = graph(G0)(0) ∧∧m
k=1 step(k). The following theorem

states the connection between der and successful derivations.

I Theorem 8. Let G0 and GT be two graphs of size n, P be a rule set, and m ∈ N be the
number of derivation steps. Then there is a successful derivation G0

m=⇒
P

GT if and only if
there is a satisfying assignment to der(G0, m) ∧ graph(GT)(m).

Let n be the size of G0 and p(n) be a polynomial bound. Then all derivations starting in G0
with a length of at most p(n) are expressed via all_der(G0, p(n)) =

∨p(n)
m=0 der(G0, m).

I Example 9. A satisfying assignment to the following subformula yields the derivation
detailed in Example 3 where c is an abbreviation for choose and rE for remEdge
graph(G0)(0) ∧ apply(c, {1 7→ 2}, 1) ∧ apply(c, {1 7→ 4}, 2) ∧ apply(rE, {1 7→ 4, 2 7→ 3}, 3)∧
apply(rE, {1 7→ 2, 2 7→ 1}, 4) ∧ apply(rE, {1 7→ 2, 2 7→ 3}, 5) ∧ apply(rE, {1 7→ 4, 2 7→ 2}, 6).

Let G0 and H0 be two graphs and g : G0 → H0 be an injective graph morphism. Then
the JOIN-Theorem in ([2], p. 101) states the conditions under which a derivation G0

n=⇒Gn

can be extended to a derivation H0
n=⇒Hn. Loosely speaking, H0 −G0 is joined with each

Gi. This result can be used to find derivations of the form G0
n=⇒Gn =⇒H0 ⊃∼ G0, i.e. to

detect loops in derivations. According to the JOIN-Theorem, the derivation G0
n=⇒Gn would

be extended to a derivation H0
n=⇒Hn. Important here is that nodes connecting g(G0) and

H0 − g(G0) are not deleted during the derivation. In this paper, we only consider rules that
do not delete nodes but this is still a special case. Thus, we use the term simple looping
instead of looping and define it as follows.

I Definition 10 (Simple Loops). A graph rewriting system with an initial graph G0 and a
rule set P containing no node deletion rules is called simple looping, if there are graphs G, H

and an injective graph morphism g : G→ H such that G0
∗=⇒
P

G
+=⇒
P

H.

I Example 11. Let us consider again Example 4 and let us assume that choose has been
defined in a wrong way (see Figure 5). The application of choose to G0 yields the last graph
in Figure 6 where G0 is isomorphic to a subgraph of it, i.e. the derivation contains a simple
loop. The rule choose can be applied infinitely often to node 2.

1

∅

−→ 1

∅

member

Figure 5 The altered rule choose
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∅
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∅

4

∅

=⇒
choose 1

∅

2

∅

member

3

∅

4

∅

Figure 6 A detected loop

For some graph in a derivation of length m isomorphic to a subgraph of the last graph of
this derivation, we define the following propositional formula

loop(m) =
m−1∨

k=1

∨

g∈M(n,n)

∧

(v,a,v′)∈[n]×Σ×[n]

(
edge(v, a, v′, k)→ edge(g(v), a, g(v′), m)

)
.

Please note, that this formula generates up to nn possible morphisms (g ∈ M(n, n)) and
has to be restricted in some way. An idea could be to use node types to reduce the possible
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matchings. In the derivation from Example 3, we could use the member- and ∅-slings as node
types such that member-nodes could only match member-nodes (the same for ∅-nodes).

Detecting a simple loop in all derivations up to a length of p(n) is defined as follows

loop_detection(G0, p(n)) =
p(n)∨

m=0

(
der(G0, m) ∧ loop(m)

)
.

Simple looping corresponds to a satisfying assignment for loop_detection.
I Theorem 12. Let GRS be a graph rewriting system with an initial graph G0 of size n and P

be a rule set containing no node deletion rules. Then GRS is simple looping if and only if there
is a polynomial p(n) such that there is a satisfying assignment to loop_detection(G0, p(n)).

I Example 13. A satisfying assignment to the subformula der(G0, 1) ∧ loop(1) would yield
the detected simple loop from Example 11.

4 Conclusion

In this paper, we have introduced a SAT-based approach for detecting simple loops in
derivations of graph rewriting systems. In future, we want to investigate looping for subgraphs,
i.e. we want to find derivations G0

∗=⇒G
+=⇒H where a subgraph G of G is isomorphic to

a subgraph of H. This idea would cover simple looping. Moreover, we want to devise a
translation to SAT for graph rewriting systems with node deletion rules.
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Abstract
As an alternative to recursion [2] or cycles [6], which grant Turing-completeness, we sketch a

system of nets that is sufficiently expressive to manipulate complex inductive and co-inductive
objects, but enforces termination at the same time. We aim at a logically sound framework,
close to prior fixed-point logics [1], that can be computationally implemented as a graph-based
rewriting system in the style of proof nets. A complete and fully satisfactory formalization
might require a refined approach, based on systems of interaction nets that are enriched with a
deep-inference typing system as presented in [3].
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1 Introduction

Inductive types include typically integers, list, trees, or more complex finite objects, possibly
simply-typed λ-terms. Co-inductive types typically represent infinite data-structures like
streams, however some infinite co-inductive terms also admit finite representations.

For instance, lists of elements of type A are either the empty list or a construct made of
an element of type A and another list. An unfolded definition of their type could be written,
using some standard functional programming syntax, as follows:

Nil | Cons of A * (Nil | Cons of A * (Nil | Cons of A * (...)))

With linear logic connectives it writes 1⊕A⊗ (1⊕A⊗ (1⊕A⊗ (. . . ))), which can also be
represented finitely with a µ abstraction: µα. 1⊕A⊗ α.

Using instead a ν abstraction, the dual connector, type να. 1⊕A⊗ α denotes streams,
i. e. possibly infinite sequences of elements of A. In particular, streams of natural numbers,
for instance, include recurrent sequences such as [1, 2, 1, 2, 1, 2, . . . [, or slightly more complex
sequences like [1, 1, 2, 1, 2, 3, 1, 2, 3, 4. . . [, which can be defined finitely in most programming
languages.

A few specific inductive types like integers, lists or trees are easily represented in systems
of nets like interaction nets [5], but co-inductive types are not commonly found. We describe
in this paper a generic method to implement any inductive or co-inductive type, from the
multiplicative, additive and exponential constructions provided by linear logic. We will
moreover show that the exponential constructions are not strictly required.

2 Unfolding Boxes

Given the usual system of proof nets for MELL [4], we consider sets NΓ [P1 : Γ1, . . . , Pk : Γk]
of nets of interface Γ containing open emplacements (also called net variables) Pi of interface
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2 Towards Generic Inductive Constructions in Systems of Nets

Γi. These are called open nets. The usual principles behind net reduction are unchanged;
open emplacements just do not actively take part in the interaction process.

Unfolding boxes (a finite description of a co-inductive object). Let N(H) be an open
net with interface:

N(H)

B1 ... Bq V1 ... Vn

A1 ... Ap U1 ... Um

whose open emplacement H is typed with atomic type variables α1, . . . , αp and β1, . . . , βq

as follows:

H

β1 ... βq V1 ... Vn

α1 ... αp U1 ... Um

Such a net can be enclosed within an unfolding box as described hereafter. The open
emplacement H and type variables αi and βi, which are expected to appear in their respec-
tive Ai or Bi and are assumed not to appear in any of the Vi or the Ui, are bound in the
process.

ρH N(H)

A1 ... Ap U1 ... Um

να1. A1 ... ναp. Ap U1 ... Um

B1 ... Bq V1 ... Vn

µβ1. B1 ... µβq. Bq V1 ... Vn

From a logical viewpoint, the content of an unfolding box ρH is the body of an inductive
proof in which the open emplacement H is used as induction hypothesis. Ports typed ναi. Ai

or µβi. Bi are principal ports, and ports typed Vi or Ui are auxiliary ports which do not
interact immediately.

Moreover, two atomic variables among the αi or the βi can be chosen equal when their
respective Ai or Bi (i. e. the types they mask) are equal.

Reduction of unfolding boxes Any logical operator which interacts through a principal
port of an unfolding box will open, or “unfold”, this box. Type-wise, type variables αi and
βi are not made free, but are respectively substituted with type ναi. Ai or type µβi. Bi .
Bounded open emplacements which materialize inductive calls are substituted with copies
of the full original unfolding box.

The typing system ensures that recursive calls are made deep inside the inductive struc-
ture of the interacting object and prevents non-termination.

Self-reduction Open emplacements may anytime be substituted with copies of the contents
of the whole box which binds them. It optimizes later reductions of the net and could be
triggered once after each normal unfolding step (again, to avoid non-termination).
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3 Examples

Our system allows one to write any operation on inductive or co-inductive data types, like
usual integer addition, multiplication, exponentiation, etc. or list concatenation, mapping,
folding, flattening, etc. or stream intermixing, mapping, etc.

First, we provide the very basic example of a net producing (on demand) an infinite
stream να. 1⊕A⊗ α of a given element of type A produced by a net N .

ρH

N H

⊕2

⊗
A

α

A⊗ α

1⊕A⊗ α

να. 1⊕A⊗ α

Follows another example, which takes as parameters a promoted function !(A( B),
that maps elements of type A to elements of type B, and a list µα. 1⊕A⊗ α with elements
of the former type, and returns a list µβ. 1⊕B ⊗ β with elements the latter type:

ρH

&

@ H

? ?

⊕1 ⊕2

⊥ `

1 ⊗
BB µβ. 1⊕B ⊗ β

B ⊗ µβ. 1⊕B ⊗ β1

µβ. 1⊕B ⊗ βµβ. 1⊕B ⊗ β

µβ. 1⊕B ⊗ β

µβ. 1⊕B ⊗ β

µα. 1⊕A⊗ α

1⊕A⊗ α

1
A⊗ α

!(A( B)

!(A( B)

!(A( B)
!(A( B)A α

53



4 Towards Generic Inductive Constructions in Systems of Nets

This unfolding box will unfold as soon as the top-level constructor of the µα. 1⊕A⊗ α
list will interact through its principal port. This constructor will then be matched against
the additive box. Only one of the two additive slices will be kept. If the input list is not
empty, the first element is extracted and a copy of the function is applied to it by the net
labeled @. In parallel, an inductive call is made to deal with the tail of the list. Resulting
objects are combined to produce the output list. When the input list is eventually depleted,
notice that no inductive call is made, since the filled H emplacement is garbage-collected
with the entire right slice of the additive box.

4 A Co-Inductively Defined Exponential

Exponential constructions can be encoded with the provided co-induction scheme, using type
!A := να. 1 &A& α⊗ α, whose relevance was already mentioned in [4]. The implementation
of weakening, dereliction, contraction and promotion rules is provided below. Obviously, this
definition of the exponential is not free. In particular, would we not restrict generation of
!A to those four constructions only, we could build non-uniform exponentials.

Rules weakening and contraction write:

N

⊥

⊕1

?A

⊥ V1 ... Vn

N

`

⊕3

?A

?A ?A

?A` ?A V1 ... Vn

Rules dereliction and promotion of a net N write:

N

⊕2

?A

A

V1 ... Vn

ρH M(H)

1 &A& α⊗ α

!A

!V1 ... !Vn

!V1 ... !Vn

where M(H) denotes the net obtained by superposing the following additive-box slices.
Operators weakening and contraction used in those slices have already been defined.

&1

1

? ? ?

1

1 &A& α⊗ α

!V1 ... !Vn

!V1 ... !Vn
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&2

N

A

1 &A& α⊗ α

!V1 ... !Vn

!V1 ... !Vn

&3

⊗

? ? ?

α⊗ α

H

α

H

α

1 &A& α⊗ α

!V1 ... !Vn

!V1 ... !Vn

Main reductions of exponential constructions are simulated by unfoldings followed by
standard reduction steps. As an aside, additive commutation steps are expensive (except in
the case of a fully-parallel reduction strategy) and are usually disabled. It is then harmless
to allow interaction on upper ports of unfolding boxes that are typed with an exponential
type, so that exponential commutations are made available as well.

5 Conclusion

We presented inductive types and sketched a generic method to handle them in the proof net
formalism, as an extension of MELL. The exponential fragment can in fact automatically be
obtained trough an encoding, although a native handling would certainly be more efficient.

We provided examples that make proper use of the unfolding boxes, but a correctness
criterion was not discussed. Deep-inference typing systems such as the one presented in [3]
might offer a good framework to properly structure an unfolding construction. In forth-
coming works, we aim to extend their reducibility-based strong normalization theorem to
inductive and co-inductive types.

References
1 D. Baelde. Least and greatest fixed points in linear logic. CoRR, abs/0910.3383, 2009.
2 S. Gimenez. Programmer, calculer et raisonner avec les réseaux de la logique linéaire. PhD

thesis, Université Paris Diderot, 2009.
3 S. Gimenez and G. Moser. The structure of interaction. In Computer Science Logic

(CSL ’13), 2013.
4 J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
5 Y. Lafont. Interaction nets. Principles of Programming Languages (POPL ’90), pages

95–108, 1990.
6 R. Montelatici. Polarized proof nets with cycles and fixpoints semantics. In Typed Lambda

Calculi and Applications, volume 2701 of Lecture Notes in Computer Science, pages 256–
270. Springer, 2003.

55



Synthesizing Matrix Interpretations via Backward
Completion∗

Dieter Hofbauer

ASW – Berufsakademie Saarland, Germany
d.hofbauer@asw-berufsakademie.de

Abstract
Various approaches to automatically synthesizing termination proofs via matrix interpretations
are used in state-of-the-art provers, most notably those based on satisfiability solving. In this
talk, an alternative idea for the particular case of string rewriting is presented, exploiting the
view of matrix interpretations as weighted automata. A demo of a prototype implementation
will show the utility of this approach, as well as its limitations.
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1 Introduction

Matrix interpretations for string rewriting interpret the free monoid of strings in a ring
structure, where concatenation of factors corresponds to multiplication and replacement of
factors corresponds to subtraction. For termination, we use an (infinite) ordered ring, which
is well-founded on its positive cone, see [1].

I Example 1. In (Z, 0, 1, +, ·) we can prove termination of {aba→ aa} by the interpretation
i : a 7→ 1, b 7→ 2 as i(aba → aa) = i(aba) − i(aa) = i(a) · i(b) · i(a) − i(a) · i(a) = 1 > 0,
but neither {ab→ ba} nor {aa→ aba} can be proven terminating in Z as multiplication is
commutative and due to the totality of the ordering employed, respectively.

For that reason, we use non-commutative rings with a non-total ordering, in this case
rings of square matrices over the natural numbers; for definitions and notations we refer
to [1].

I Example 2. For proving termination of {ab → ba} consider the E2-interpretation i :
a 7→ ( 1 1

0 1 ) , b 7→ ( 1 0
0 2 ), where i(ab → ba) = i(ab) − i(ba) = i(a) · i(b) − i(b) · i(a) =

( 1 2
0 2 )− ( 1 1

0 2 ) = ( 0 1
0 0 ) ∈ P2, and for proving termination of {aa→ aba} the E1-interpretation

i : a 7→ ( 1 1
1 0 ) , b 7→ ( 1 0

0 0 ) gives i(aa→ aba) = i(aa)− i(aba) = ( 2 1
1 1 )− ( 1 1

1 1 ) = ( 1 0
0 0 ) ∈ P1.

Various approaches for synthesizing matrix interpretations have been proposed, for
instance complete enumeration of restricted matrix shapes, random guesses for small matrix
dimensions, evolutionary programming, and, most prominently, constraint solving. In this
talk, we present backward completion as another approach for the same purpose. This is
related to forward completion procedures for match-bound termination proofs as in [2].

∗ This work was partially supported by a travel grant from the Japan Advanced Institute of Science and
Technology (JAIST).
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2 Synthesizing matrix interpretations

2 Matrix interpretations as weighted automata

Matrix interpretations correspond to weighted automata in a direct way. A weighted automaton
is a mapping weight : Q× Σ×Q→ N, where Q is a finite set (of states). This mapping is
extended to weight : Q×Σ∗×Q→ N by multiplying weights along a single path and adding
weights of different paths. A transition from state p to state q with weight n for letter a

corresponds to i(a)p,q = n in a matrix interpretation, and vice versa.

I Example 3. The matrix interpretation

a 7→




1 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 2 0 0 0
0 0 0 0 1


 , b 7→




1 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 2 1 0 1
0 0 0 0 1




of type E{1,5} corresponds to the following weighted automaton, proving termination of
{aabb→ bbbaaa} (TPDB problem z001, see [3], known as Zantema’s problem):

?>=<89:;1a:1,b:1
(( a:1 //?>=<89:;2 a:1 //?>=<89:;3 b:1 //

a:1

�� ?>=<89:;4 b:1 //

b:1

��

a:2,b:2

ZZ

?>=<89:;5 a:1,b:1
vv

3 Backward completion

Often, automata of a particularly simple form can prove termination of string rewriting
systems. These straight-line automata essentially consist of a single path that corresponds to
the left-hand side of a rule, where each transition has weight 1.

I Example 4. For {aa→ aba}, the following automaton proves termination:

?>=<89:;1Σ:1
(( a:1 //?>=<89:;2 a:1 //?>=<89:;3 Σ:1

vv

I Example 5. In the same way, for {bbcabc→ abbcbca} (TPDB problem z061) the automaton

?>=<89:;1Σ:1
(( b:1 //?>=<89:;2 b:1 //?>=<89:;3 c:1 //?>=<89:;4 a:1 //?>=<89:;5 b:1 //?>=<89:;6 c:1 //?>=<89:;7 Σ:1

vv

serves as a termination certificate.

Of course, straight-line automata fail in many cases.

I Example 6. Consider {bcabbc→ abcbbca} (TPDB problem z062). For the automaton

?>=<89:;1Σ:1
(( b:1 //?>=<89:;2 c:1 //?>=<89:;3 a:1 //?>=<89:;4 b:1 //?>=<89:;5 b:1 //?>=<89:;6 c:1 //?>=<89:;7 Σ:1

vv

we get weight(1, bcabbc, 4) = 0 � 1 = weight(1, abcbbca, 4), and the termination proof fails.
However, if we compensate for that defect by adding an edge

?>=<89:;1Σ:1
(( b:1 //?>=<89:;2 c:1 //?>=<89:;3 a:1 //?>=<89:;4 b:1 //?>=<89:;5 b:1 //?>=<89:;6 c:1 //

c:1

[[

?>=<89:;7 Σ:1
vv

we are done: weight(1, bcabbc, 4) = 1 = weight(1, abcbbca, 4).
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This motivates backward completion. Define a pair of states (s, t) with weight(s, `, t) <

weight(s, r, t) to be a defect for the rewriting rule `→ r. Compensate for such a defect by
adding a path for ` from s to t. In general, for a backward completion step choose a defect
(s, t) for some rule `→ r and a factorization ` = `1`2`3 so that, for some states p, q,

?>=<89:;s
`1 //?>=<89:;p ?>=<89:;q

`3 //?>=<89:;t

and add a path of weight 1 from p to q for `2:

?>=<89:;s
`1 //?>=<89:;p

`2:1 //?>=<89:;q
`3 //?>=<89:;t

4 Implementation

One possiblity is to implement backward completion as a probabilistic algorithm, as follows.

(1) Choose as start automaton ?>=<89:;0Σ:1
(( ?>=<89:;1 Σ:1

vv

with just two states.
(2) Randomly choose the left-hand side ` of a rule ` → r and add a path from 0 to 1 for

`, resulting in ?>=<89:;0Σ:1
(( `:1 //?>=<89:;1 Σ:1

vv

. Note that now weight(0, `, 1) > weight(0, r, 1)
unless ` is a factor of r, in which case the rewriting system is already non-terminating.

(3) As long as defects exist and weight(0, `, 1) > weight(0, r, 1) keeps holding true, randomly
perform some backward completion step.

This might fail or go on forever, but in case the procedure stops successfully, the resulting
automaton provides a termination certificate.

I Example 7. The automaton in example 3 can easily be synthesized in this way. Futher ex-
amples include rewriting systems from the TPDB that haven’t been solved during the 2013 ter-
mination competition (see termination-portal.org/wiki/Termination_Competition/).

5 Extensions

In the talk, we present various variants of this strategy, in particular a non-probabilistic
variant where completion steps are enumerated under a breadth-first strategy. Building
on results from [4], a specialized strategy aims at automatically proving polynomial upper
bounds on derivation lengths. Backward completion can be easily adapted to the setting
of relative termination proofs, thereby considerably strengthening its applicability. A demo
implemention shows the utility of the approach, as well as its limitations.
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Abstract
Logically Constrained Term Rewriting Systems (LCTRSs) provide a general framework for term
rewriting with constraints. We discuss a simple dependency pair approach to prove termination
of LCTRSs. We see that existing techniques transfer to the constrained setting in a natural way.

1 Introduction

In [4], logically constrained term rewriting systems are introduced (building on [3] and [2]).
These LCTRSs combine many-sorted term rewriting with constraints in an arbitrary theory,
and can be used for analysing for instance imperative programs.

Termination is an important part of such analysis, both for its own sake (to guarantee
finite program evaluation), and to create an induction principle that can be used as part of
other analyses (for instance proofs of confluence [6] or function equality [3]).

In unconstrained term rewriting, many termination techniques exist, often centred around
dependency pairs [1]. Some of these methods have also been transposed to integer rewriting
with constraints [2]. However, that setting is focused purely on proving termination for its
own sake, and thus poses very strong restrictions on term and rule formation.

In this paper, we will see how a basic dependency pair approach can be defined for
LCTRSs, and extend several termination methods which build around dependency pairs.

2 Preliminaries (from [4])

We assume standard notions of many-sorted term rewriting to be well-uderstood.
Let V be an infinite set of sorted variables, Σ = Σterms ∪ Σtheory be a many-sorted

signature, I a mapping which assigns to each sort occurring in Σtheory a set, and J a
function which maps each f : [ι1× . . .× ιn]⇒ κ ∈ Σtheory to a function Jf in Iι1 =⇒ . . . =⇒
Iιn =⇒ Iκ. For every sort ι occurring in Σtheory we also fix a set Valι ⊆ Σtheory of values:
function symbols a : []⇒ ι, where J gives a one-to-one mapping from Valι to Iι. A value c
is identified with the term c(). The elements of Σtheory and Σterms overlap only on values.

We call a term in T erms(Σtheory,V) a logical term. For ground logical terms, we define
Jf(s1, . . . , sn)K := Jf (Js1K, . . . , JsnK). A ground logical term s has value t if t is a value such
that JsK = JtK. Every ground logical term has a unique value. A constraint is a logical term
of some sort bool with Ibool = B, the set of booleans. A constraint s is valid if JsγKJ = >
for all substitutions γ which map the variables in Var(s) to a value.

A rule is a triple l→ r [ϕ] where l and r are terms with the same sort and ϕ is a constraint;
l is not a logical term (so also not a variable). If ϕ = true with J (true) = >, the rule is
just denoted l→ r. We define LVar(l→ r [ϕ])) as Var(ϕ)∪(Var(r)\Var(l)). A substitution
γ respects l→ r [ϕ] if γ(x) is a value for all x ∈ LVar(l→ r [ϕ]) and ϕγ is valid.

∗ The research described in this paper is supported by the Austrian Science Fund (FWF) international
project I963 and the Japan Society for the Promotion of Science.
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2 Termination of LCTRSs

Given a set of rules R, the rewrite relation →R is the union of →rule and →calc, where:
C[lγ]→rule C[rγ] if l→ r [ϕ] ∈ R and γ respects l→ r [ϕ];
C[f(s1, . . . , sn)]→calc C[v] if f ∈ Σtheory \Σterms, all si values and v is the value of f(~s)

A reduction step with →calc is called a calculation. In an LCTRS with rules R, the
defined symbols are all symbols f such that a rule f(~l) → r [ϕ] exists in R. Symbols
f ∈ Σtheory \ Val are called calculation symbols and all other symbols are constructors.

I Example 1. We consider an LCTRS with sorts int and bool, with Ibool = B and int
mapped to the set of 16-bit signed integers; addition is sensitive to overflow. The rules are
a naive implementation of the Ackermann function (which will likely fall prey to overflows):

A(m,n) → A(m− 1,A(m,n− 1)) [m 6= 0 ∧ n 6= 0] A(0, n) → n+ 1
A(m, 0) → A(m− 1, 1) [m 6= 0]

A is a defined symbols, +,−, 6=,∧ calculation symbols, and all integers are constructors.

3 Dependency Pairs

As the basis for termination analysis, we will consider dependency pairs [1]. We first intro-
duce a fresh sort dpsort, and for all defined symbols f : [ι1× . . .× ιn]⇒ κ also a new symbol
f ] : [ι1 × . . .× ιn]⇒ dpsort. If s = f(s1, . . . , sn) with f defined, then s] := f ](s1, . . . , sn).

The dependency pairs of a given rule l→ r [ϕ] are all rules of the form l] → p] [ϕ] where
p is a subterm of r which is headed by a defined symbol. The set of dependency pairs for a
given set of rules R, notation DP(R), consists of all dependency pairs of any rule in R.
I Example 2. Noting that for instance A](m, 0)→ m−] 1 is not a dependency pair, since
− is a calculation symbol and not a defined symbol, Example 1 has three dependency pairs:

1. A](m, 0) → A](m− 1, 1) [m 6= 0]
2. A](m,n) → A](m− 1,A(m,n− 1)) [m 6= 0 ∧ n 6= 0]
3. A](m,n) → A](m,n− 1) [m 6= 0 ∧ n 6= 0]

Fixing a set R of rules, and given a set P of dependency pairs, a P-chain is a sequence
ρ1, ρ2, . . . of dependency pairs such that all ρi are elements of P, but with distinctly renamed
variables, and there is some γ which respects all ρi, such that for all i: if ρi = li → pi [ϕi] and
ρi+1 = li+1 → pi+1 [ϕi+1], then piγ →∗R li+1γ. Also, the strict subterms of liγ terminate.
We call P a DP problem and say that P is chain-free if there is no infinite P-chain.12

I Theorem 3. An LCTRS R is terminating if and only if DP(R) is chain-free.

4 The Dependency Graph

To prove chain-freeness of a DP problem, we might for instance use the dependency graph:

I Definition 4. A dependency graph approximation of a DP problem P is a graph G whose
nodes are the elements of P and which has an edge between ρ1 and ρ2 if (ρ1, ρ

′
2) is a P-chain,

where ρ′2 is a copy of ρ2 with fresh variables. G may have additional edges.

I Theorem 5. A DP problem P with graph approximation G is chain-free if and only if P ′
is chain-free for every strongly connected component (SCC) P ′ of G.

1 In the literature, we consider tuples of sets and flags, which is necessary if we also want to consider
non-minimal chains, innermost termination or non-termination. For simplicity those are omitted here.

2 In the literature, the word finite is used instead of chain-free. Since we have a single set instead of a
tuple, we used a different word to avoid confusion (as “finite” might refer to the number of elements).
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I Example 6. Consider an LCTRS with rules R = {f(x) → f(0 − x) [x > 0]}. Then
DP(R) = {f ](x) → f ](−x) [x > 0]}. The dependency graph of DP(R) has one node, and
no edges, since there is no substitution γ which satisfies both γ(x) > 0 and γ(y) > 0 and
yet has (−x)γ →∗R yγ (as logical terms reduce only with →calc). Thus, clearly every SCC
of this graph is terminating, so DP(R) is chain-free, so R is terminating!

Of course, manually choosing a graph approximation is one thing, but finding a good
one automatically is more difficult. We consider one way to choose such an approximation:

Given a DP problem P, let GP be the graph with the elements of P as nodes, and with
an edge from l1 → r1 [ϕ1] to l2 → r2 [ϕ2] if the formula ϕ1∧ϕ′2∧ψ(r1, l

′
2,LVar(l1 → r1 [ϕ1])

∪ LVar(l′2 → r′2 [ϕ′2])) is satisfiable (or its satisfiability cannot be determined). Here, l′2 →
r′2 [ϕ′2] is a copy of l2 → r2 [ϕ2] with fresh variables, and ψ(s, t, L) is given by the clauses:

ψ(s, t, L) = > if either s is a variable not in L, or s = f(s1, . . . , sn) and one of:
f is a defined symbol, and s /∈ T erms(Σtheory, L),
f is a calculation symbol, t a value or variable, and s /∈ T erms(Σtheory, L),
f is a constructor and t a variable not in L;

ψ(s, t, L) =
∧n
i=1 ψ(si, ti, L) if s = f(s1, . . . , sn) and t = f(t1, . . . , tn) and f not defined;

ψ(s, t, L) is the formula s = t if s ∈ T erms(Σtheory, L), t ∈ T erms(Σtheory,V) and s and
t are not headed by the same theory symbol (we already covered that case);
ψ(s, t, L) = ⊥ in all other cases.

I Theorem 7. GP is a graph approximation for P.

This graph result and the given approximation correspond largely with the result of [5].

I Example 8. The graph in Example 6 is calculated with this method: ψ(f ](−x), f ](y), {x,
y})∧ x > 0∧ y > 0 evaluates to −x = y ∧ x > 0∧ y > 0 (as f ] is a constructor with respect
to R), which is not satisfiable (as any decent SMT-solver over the integers can tell us).

5 The Value Criterion

To quickly handle DP problems, we consider a technique similar to the subterm criterion
in the unconstrained case. This value criterion can also be seen as a simpler version of
polynomial interpretations, which does not require ordering rules (see Section 6).

I Definition 9. Fixing a set P of dependency pairs, a projection function for P is a function
ν which assigns to each symbol f ] : [ι1 × . . .× ιn]⇒ dpsort a number ν(f ]) ∈ {1, . . . , n}. A
projection function is extended to a function on terms as follows: ν(f ](s1, . . . , sn)) = sν(f]).

I Theorem 10. Let P be a set of dependency pairs, ι a sort and ν a projection function
for P, with the following property: for any dependency pair l → r [ϕ] ∈ P, if ν(l) has sort
ι and is a logical term (this includes variables), then the same holds for ν(r). Let moreover
� be a well-founded ordering relation on Iι and � a quasi-ordering such that � · � ⊆ �.
Suppose additionally that we can write P = P1 ∪ P2, such that for all ρ = l→ r [ϕ] ∈ P:

if ν(l) is a logical term of sort ι, then so is ν(r), and Var(ν(r)) ⊆ Var(ν(l));
if ρ ∈ P1, then ν(l) has sort ι and ν(l) ∈ T erms(Σtheory,LVar(ρ));
if ν(l) has sort ι and ν(l) ∈ T erms(Σtheory,V), then ϕ⇒ ν(l) � ν(r) is valid if ρ ∈ P1,
and ϕ⇒ ν(l) � ν(r) is valid if ρ ∈ P2.

Then P is chain-free if and only if P2 is chain-free.

Proof. A chain with infinitely many elements of P1 gives an infinite �∗ · � reduction. J
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4 Termination of LCTRSs

I Example 11. Using the value criterion, we can complete termination analysis of the
Ackermann example. Choosing for � the unsigned comparison on bitvectors (so n � m if
either n is negative and m is not, or sign(n) = sign(m) and n > m), and ν(A) = 1, we have:

A](m, 0)→ A](m− 1, 1) [m 6= 0]: (m 6= 0)⇒ m � m− 1
A](m,n)→ A](m− 1,A(m,n− 1)) [m 6= 0 ∧ n 6= 0]: (m 6= 0 ∧ n 6= 0)⇒ m � m− 1
A](m,n)→ A](m,n− 1) [m 6= 0 ∧ n 6= 0] (m 6= 0 ∧ n 6= 0)⇒ m � m

All three are valid, so P is chain-free if P2 = {A](m,n)→ A](m,n− 1) [m 6= 0∧ 0∧n 6= 0]}
is. This we prove with another application of the value criterion, now taking ν(A]) = 2.

Note that the difficulty to apply the value criterion is in finding a suitable value ordering.
There are various systematic techniques for doing this (depending on the underlying theory),
but their specifics are beyond the scope of this paper.

6 Reduction Pairs

Finally, the most common method to prove chain-freeness is the use of a reduction pair.
A reduction pair (%,�) is a pair of a monotonic quasi-ordering and a well-founded partial

ordering on terms such that s � t % q implies s � q. Note that it is not required that �
is included in %; % might also for instance be an equivalence relation. A rule l → r [ϕ] is
compatible with R ∈ {%,�} if for all substitutions γ which respect the rule we have: lγ R rγ.
I Theorem 12. A set of dependency pairs P is chain-free if and only if there is a reduction
pair (%,�) and we can write P = P1 ∪ P2 such that P2 is chain-free, and:

all ρ ∈ P1 are compatible with � and all ρ ∈ P2 are compatible with %;
either all ρ ∈ R are compatible with %,
or all ρ ∈ P have the form l→ f(s1, . . . , si) [ϕ] with all si ∈ T erms(Σtheory,LVar(ρ));
f(~v) % w if f is a calculation symbol, v1, . . . , vn are values and w is the value of f(~v).

Note that all rules must be compatible with %, unless the subterms of the right-hand sides
in P can only be instantiated to ground logical terms; in this (reasonably common!) case,
we can ignore the rules in the termination argument. This is a weak step in the direction of
usable rules, a full treatment of which is beyond the scope of this short paper.

For the reduction pair, we might for instance use the recursive path ordering described
in [4]. Alternatively, we could consider polynomial interpretations:
I Theorem 13. Given a mapping µ which assigns to each function symbol f : [ι1×. . .×ιn]⇒
κ ∈ Σterms∪Σtheory an n-ary polynomial over Z, and a valuation α which maps each variable
to an integer, every term s corresponds to an integer µα(s). Let s � t if for all α: µα(s) >
max(0, µα(t)), and s % t if for all α: µα(s) = µα(t). Then (%,�) is a reduction pair.

Here, % is an equivalence relation. Alternatively we might base % on the ≥ relation in
Z, but then we must pose an additional weak monotonicity requirement on µ.
I Example 14. We consider an LCTRS over the integers, without overflow. This example
uses bounded iteration, which is common in systems derived from imperative programs:

sum(x, y)→ 0 [x > y] sum(x, y)→ x+ sum(x+ 1, y) [x ≤ y]

This system admits one dependency pair: sum](x, y) → sum](x + 1, y) [x ≤ y]. Neither
the dependency graph nor the value criterion can handle this pair. We can orient it using
polynomial interpretations, with µ(sum) = λnm.m − n + 1; integer functions and integers
are interpreted as themselves. Then x ≤ y ⇒ y − x + 1 > max(0, y − (x + 1) + 1) is valid,
so the pair is compatible with � as required.

Thus, DP(R) is chain-free if and only if ∅ is chain-free, which is obviously the case!
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7 Related Work

The most important related work is [2], where a constrained term rewriting formalism over
the integers is introduced, and methods are developed to prove termination similar to the
ones discussed here. The major difference with the current work is that the authors of [2]
impose very strong type restrictions: they consider only theory symbols (of sort int) and
defined symbols (of sort unit). Rules have the form f(x1, . . . , xn) → g(s1, . . . , sn), where
the xi are variables and all si are logical terms. This significantly simplifies the analysis (for
example, the dependency pairs are exactly the rules), but has more limited applications; it
suffices for proving termination of simple (imperative) integer programs, but does not help
directly for analysing confluence or function equivalence.

8 Conclusion

In this paper, we have seen how termination methods for normal TRSs, and in particular the
dependency pair approach, extend naturally to the setting of LCTRSs. Decision procedures
are handled by solving validity of logical formulas. While this is undecidable in general,
many practical cases can be handled using today’s powerful SMT-solvers.

Considering termination results, we have only seen the tip of the iceberg. In the fu-
ture, we hope to extend the constrained dependency pair framework to handle also inner-
most termination and non-termination. Moreover, the dependency pair approach can be
strengthened with various techniques for simplifying dependency pair processors, both ad-
aptations of existing techniques for unconstrained term rewriting (such as usable rules) and
specific methods for constrained term rewriting (such as the chaining method used in [2] or
methods to add constraints in some cases).

In addition, we hope to provide an automated termination tool for LCTRSs in the near
future. Such a tool could for instance be coupled with a transformation tool from e.g. C or
Java to be immediately applicable for proving termination of imperative programs, or can
be used as a back-end for analysis tools of confluence or function equivalence.
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Program Termination analysis using MAX-SMT∗
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Abstract
We show how Max-SMT can be exploited in constraint-based program termination proving.
The generation of a ranking function is expressed as a Max-SMT optimization problem where
constraints are assigned different weights. As a result, quasi-ranking functions –functions that
almost satisfy all conditions for ensuring well-foundedness– are produced in a lack of ranking
functions. This allows our method to progress in the termination analysis where other approaches
would get stuck. Moreover, Max-SMT makes it easy to combine the process of building the
termination argument with the usually necessary task of generating supporting invariants. The
method has been implemented in a prototype and succesfully tested on a wide set of programs
showing its potential in practice.

1 Introduction

Proving termination is necessary to ensure total correctness of programs. Still, termination
bugs are difficult to trace and are hardly notified: as they do not arise as system failures
but as unresponsive behavior, when faced to them users tend to restart their devices with-
out reporting to software developers. Due to this, approaches for proving termination of
imperative programs have regained an increasing interest in the last decade [1, 2, 3, 4].

One of the major difficulties in these methods is that often supporting invariants are
needed. In [5], by formulating both invariant and ranking function synthesis as constraint
problems, both can be solved simultaneously, so that only the necessary supporting invari-
ants for the targeted ranking functions –namely, lexicographic linear ranking functions– need
to be discovered.

Based on this idea, we present a Max-SMT constraint-based approach for proving ter-
mination. The crucial observation in our method is that, although our goal is to show that
transitions cannot be executed infinitely by finding a ranking function or an invariant that
disables them, if we only discover an invariant, or a quasi-ranking function that almost ful-
fills all needed properties for well-foundedness, we have made some progress: either we can
remove part of a transition and/or we have improved our knowledge on the behavior of the
program. A natural way to implement this idea is by considering that some of the con-
straints are hard (the ones guaranteeing invariance) and others are soft (those guaranteeing
well-foundedness) in a Max-SMT framework. Moreover, by giving different weights to the
constraints we can set priorities and favor those invariants and (quasi-) ranking functions
that lead to the furthest progress.

The technique has been implemented in our prototype of C++ analyzer CppInv. Thanks
to our tool, we have proved termination of a wide set of programs, which have been taken
from the programming learning environment Jutge.org [6] and from benchmark suites in the
literature [7].

∗ This work has been partially supported by the Spanish MEC/MICINN under grantTIN 2010-68093-
C02-01
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int main () {
int x,y,z ;
`1 : while (y ≥ 1) {

x−−;
`2 : while (y < z) {

x++;
z−−;

}
y = x + y;

}
}

l1 l2

τ3

τ1

τ2

Θ(`1) ≡ true Θ(`2) ≡ false
ρτ1 : y ≥ 1, x′ = x− 1, y′ = y, z′ = z

ρτ2 : y < z, x′ = x+ 1, y′ = y, z′ = z − 1
ρτ3 : y ≥ z, x′ = x, y′ = x+ y, z′ = z

Figure 1 Program and its transition system.

2 Encoding Termination using MAX-SMT

In this paper we model imperative programs by means of transition systems. See Fig. 1
for an example of a program together with the corresponding transition system. Note that
primed versions of the variables represent the values of the variables after the transition and
that Θ is a map from locations to formulas characterizing the initial values of the variables.
From now on we assume that variables take integer values and programs are linear, i.e.,
the initial conditions Θ and transition relations ρ are described as conjunctions of linear
inequalities.

An important class of invariant maps is that of inductive invariant maps:

I Definition 1. An invariant map µ is said to be inductive if:

[Initiation] For every location `: Θ(`) |= µ(`)
[Consecution] For every transition τ = (`, `′, ρ): µ(`) ∧ ρ |= µ(`′)′.

The basic idea of the approach we follow for proving program termination [8] is to
argue by contradiction that no transition is infinitely executable. First of all, it is obvious
that disabled transitions (i.e., that can never be executed) cannot be infinitely executable.
Moreover, one just needs to focus on transitions joining locations in the same strongly
connected component (SCC): if a transition is executed over and over again, then its pre
and post locations must belong to the same SCC. So let us assume that one has found a
ranking function for such a transition τ , according to the following definition:

I Definition 2. Let τ = (`, `′, ρ) be a transition such that ` and `′ belong to the same SCC,
denoted by C. A function R is said to be a ranking function for τ if:

[Boundedness] ρ |= R ≥ 0
[Strict Decrease] ρ |= R > R′

[Non-increase] For every τ̂ = (ˆ̀, ˆ̀′, ρ̂) such that ˆ̀, ˆ̀′ ∈ C: ρ̂ |= R ≥ R′

Note that boundedness and strict decrease only depend on τ , while non-increase depends
on all transitions in the SCC.

Similarly to [5], we consider linear invariant and linear ranking function templates and
take the following constraints from the definitions of inductive invariant and ranking func-
tion:
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Initiation: For `: I`
def= Θ(`) ` I`

Disability: For τ = (`, `′, ρ): Dτ
def= I` ∧ ρ ` 1 ≤ 0

Consecution: For τ = (`, `′, ρ): Cτ
def= I` ∧ ρ ` I ′

`′

Boundedness: For τ = (`, `′, ρ): Bτ
def= I` ∧ ρ ` R ≥ 0

Strict Decrease: For τ = (`, `′, ρ): Sτ
def= I` ∧ ρ ` R > R′

Non-increase: For τ = (`, `′, ρ): Nτ
def= I` ∧ ρ ` R ≥ R′

Finally, let L and T be the sets of locations and transitions in the SCC under consid-
eration, respectively. Let also P be the set of transitions that are pending to be proved
finitely executable. Then we construct the following constraint system, which is later on
transformed into an SMT problem over linear and non-linear arithmetic:

∧

`∈L
I` ∧

∧

τ∈T

(
Dτ ∨ Cτ

)
∧
∨

τ∈P

(
Dτ ∨ (Bτ ∧ Sτ )

)
∧
(
(
∧

τ∈P
Nτ ) ∨

∨

τ∈P
Dτ
)
.

The first two conjuncts guarantee that an invariant map is computed; the other two, that
at least one of the pending transitions can be discarded. Notice that, if there is no disabled
transition, we ask that all transitions in P are non-increasing, but only that at least one
transition in P (the next to be removed) is both bounded and strict decreasing. Note also
that for finding invariants one has to take into account all transitions in the SCC, even those
that have already been proved to be finitely executable: otherwise some reachable states
might not be covered, and the invariant generation would become unsound. Hence in our
termination analysis we consider two transition systems: the original transition system for
invariant synthesis, whose transitions are T and which remains all the time the same; and the
termination transition system, whose transitions are P , i.e, where transitions already shown
to be finitely executable have been removed. This duplication is similar to the cooperation
graph of [7].

The idea is to consider the constraints guaranteeing invariance as hard, so that any so-
lution to the constraint system will satisfy them, while the rest are soft. Let us consider
propositional variables pB, pS and pN, which intuitively represent if the conditions of bound-
edness, strict decrease and non-increase in the definition of ranking function are violated
respectively, and corresponding weights ωB, ωS and ωN. We consider now the next constraint
system (where soft constraints are written [·, ω], and hard ones as usual):
∧

`∈L
I` ∧

∧

τ∈T

(
Dτ ∨ Cτ

)
∧
∨

τ∈P

(
Dτ ∨

(
(Bτ ∨ pB) ∧ (Sτ ∨ pS)

))
∧

(( ∧

τ∈P
Nτ
)
∨
∨

τ∈P
Dτ ∨ pN

)
∧ [¬pB, ωB] ∧ [¬pS, ωS] ∧ [¬pN, ωN].

Note that, since all constraints are fulfiled, ranking functions have cost 0, and (if no
transition is disabled) functions that fail in any of the conditions are penalized with the
respective weight. Thus, the Max-SMT solver looks for the best solution and gets a ranking
function if feasible; otherwise, the weights guide the search to get invariants and quasi-
ranking functions that satisfy as many conditions as possible.

Hence this Max-SMT approach allows recovering information even from problems that
would be unsatisfiable in the initial method. This information can be exploited to perform
dynamic trace partitioning [9] as follows. Assume that the optimal solution to the above
Max-SMT formula has been computed, and let us consider a transition τ ∈ P such that
Dτ ∨ ((Bτ ∨ pB) ∧ (Sτ ∨ pS)) evaluates to true in the solution. Then we distinguish several
cases depending on the properties satisfied by τ and the computed function R:

If τ is disabled then it can be removed.

66



If R is non-increasing and satisfies boundedness and strict decrease for τ , then τ can be
removed too: R is a ranking function for it.
If R is non-increasing and satisfies boundedness for τ but not strict decrease, one can
split τ in the termination transition system into two new transitions: one where R > R′

is added to τ , and another one where R = R′ is enforced. Then the new transition with
R > R′ is automatically eliminated, as R is a ranking function for it. Equivalently, this
can be seen as adding R = R′ to τ . Now, if the solver could not prove R to be a true
ranking function for τ because it was missing an invariant, this transformation will guide
the solver to find that invariant so as to disable the transition with R = R′.
If R is non-increasing and satisfies strict decrease for τ but not boundedness, the same
technique from above can be applied: it boils down to adding R < 0 to τ .
If R is non-increasing but neither strict decrease nor boundedness are fulfilled for τ ,
then τ can be split into two new transitions: one with R < 0, and another one with
R ≥ 0 ∧R = R′.
If R does not satisfy the non-increase property, then it is rejected; however, the invariant
map from the solution can be used to strengthen the transition relations for the following
iterations of the termination analysis.

Note this analysis may be worth applying on other transitions τ in the termination
transition system apart from those that make Dτ ∨ ((Bτ ∨ pB) ∧ (Sτ ∨ pS)) true. E.g., if R
is a ranking function for a transition τ but fails to be so for another one τ ′ because strict
decrease does not hold, then, according to the above discussion, τ ′ can be strengthened with
R = R′.

On the other hand, working in this iterative way requires imposing additional constraints
to avoid getting to a standstill. Namely, in the case where non-increase does not hold and
so one would like to exploit the invariant, it is necessary to impose that the invariant is not
redundant.

Another advantage of this Max-SMT approach is that by using different weights we can
express priorities over conditions. Since, as explained above, violating the property of non-
increase invalidates the computed function R, it is convenient to make ωN the largest weight.
On the other hand, when non-increase and boundedness are fulfilled but not strict decrease
an equality is added to the transition, whereas when non-increase and strict decrease are
fulfilled but not boundedness just an inequality is added. As we prefer the former to the
latter, in our implementation we set ωB > ωS.

Further refinements are possible. E.g., the termination transition system can also be
used for generating properties that are guaranteed to eventually hold at a location for
some computations. More specifically, we devised the following light-weight approach for
generating what we call termination implications. In a nutshell, for each location ` a
new linear inequality template J` is introduced and the following constraint is imposed:∧
τ=(ˆ̀,`,ρ)∈P (Dτ ∨ Iˆ̀∧ ρ ` J ′

`) . The rationale is that, if we find a property J` that is
implied by all transitions going into ` and ` is finally reached, then J` must hold. Then
this termination implication can be propagated forward to the transitions going out from `,
i.e., J` can be conjoined to I` ∧ ρ in the termination transition system. Finally, additional
constraints are imposed to ensure that new termination implications are not redundant with
the already computed invariants and termination implications.

I Example 3. Let us show a termination analysis of the program in Fig. 1. In the first
round, the solver finds the invariant y ≥ 1 at `2 and the ranking function z for τ2. While
y ≥ 1 can be added to τ3 (resulting into a new transition τ ′

3), the ranking function allows
eliminating τ2 from the termination transition system.
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In the second round, the solver cannot find a ranking function. However, thanks to the
Max-SMT formulation, it can produce the quasi-ranking function x, which is non-increasing
and strict decreasing for τ1, but not bounded. This quasi-ranking function can be used to
split transition τ1 into two new transitions τ1.1 and τ1.2 as follows:

ρτ1.1 : x ≥ 0, y ≥ 1, x′ = x− 1, y′ = y, z′ = z

ρτ1.2 : x < 0, y ≥ 1, x′ = x− 1, y′ = y, z′ = z

Then τ1.1 is immediately removed, since x is a ranking function for it.
In the third and final round, the termination implication x < 0 is generated at `2, together

with the ranking function y for transition τ ′
3. Note that the termination implication is crucial

to prove the strict decrease of y for τ ′
3, and that the previously generated invariant y ≥ 1

at `2 is needed to ensure boundedness. Now τ ′
3 can be removed, which makes the graph

acyclic. This concludes the termination proof.

3 Conclusion

The method presented here has been implemented in the tool CppInv1.
This tool has been proved competitive in comparison with the new version of T2, which

according to the results given in [7] is performing much better when proving termination
than most of the existing tools.

For a full description of the method, its implementation and the experimental evaluation,
see [10].
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Abstract
We present the design and implementation of an abstract domain for proving program termina-
tion by abstract interpretation. The domain automatically synthesizes piecewise-defined ranking
functions and infers sufficient conditions for program termination. The analysis is sound, meaning
that all program executions respecting these sufficient conditions are indeed terminating.

We discuss the limitations of the proposed framework, and we investigate possible future work.
In particular, we explore potential extensions of the abstract domain considering piecewise-defined
non-linear ranking functions such as polynomials or exponentials.
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1 Introduction

The traditional method for proving program termination [6] is based on the synthesis of
ranking functions, which map program states to elements of a well-ordered set. A program
terminates if a ranking function that decreases during program execution is found. In [4],
Patrick Cousot and Radhia Cousot introduced the idea of the computation of a ranking
function by Abstract Interpretation [3], a general theory of programs semantics approximation.
In a recent work [10], we built on their proposed general framework, to design and implement
a suitable abstract domain for proving termination of imperative programs.

Intuitively, we can define a ranking function from the states of a program to ordinal
numbers, in an incremental way: we start from the program final states, where the function
has value 0; then, we add states to the domain of the function, retracing the program
backwards and counting the number of performed program steps as value of the function.

However, such ranking function is obviously not computable. Hence, we resort to abstract
interpretation to automatically compute an abstract ranking function, which consists of
abstract invariants attached to program points. These abstract invariants are represented by
elements of an abstract domain and state properties about the program variables whenever
control reaches that program point. More specifically, the elements of the abstract domain
are piecewise-defined affine functions of the program variables, representing an upper bound
on the number of program execution steps remaining before termination.

The domain automatically synthesizes such piecewise-defined ranking functions through
backward invariance analysis. The analysis does not rely on assumptions about the structure

∗ The research leading to these results was partially funded by the MBAT project (EU ARTEMIS Joint
Undertaking under grant agreement no. 269335).
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2 Piecewise-Defined Ranking Functions

1st iteration 2nd iteration 3rd/4th iteration

4 f(x) = 0 f(x) = 0 f(x) = 0

1 f(x) =

{
1 x > 10
⊥ x ≤ 10

f(x) =





1 x > 10
4 9 ≤ x ≤ 10
⊥ x ≤ 8

f(x) =





1 x > 10
4 9 ≤ x ≤ 10
−3x + 38 7 ≤ x ≤ 8
⊥ x ≤ 6

3 f(x) =

{
2 x > 8
⊥ x ≤ 8

f(x) =





2 x > 8
5 7 ≤ x ≤ 8
⊥ x ≤ 6

f(x) =





2 x > 8
5 7 ≤ x ≤ 8
−3x + 33 x ≤ 6

2 f(x) =





3 x > 8
⊥ 7 ≤ x ≤ 8
⊥ x ≤ 6

f(x) =





3 x > 8
6 7 ≤ x ≤ 8
⊥ x ≤ 6

f(x) =





3 x > 8
6 7 ≤ x ≤ 8
⊥ x ≤ 6

Figure 2 Simple Example Analysis.

of the analyzed program: for example, is not limited to simple loops, as in [8]. To handle
disjunctions arising from tests and loops, the analysis automatically partitions the space of
values for the program variables into intervals, inducing a piecewise-definition of the affine
ranking functions. During the analysis, pieces are split by tests, modified by assignments
and joined when merging control flows. Widening limits the number of pieces of a ranking
function to a maximum given as a parameter of the analysis.

Moreover, the domain naturally infers sufficient conditions for program termination. The
analysis is sound: all program executions respecting these sufficient conditions are indeed
terminating, while an execution that does not respect these conditions might not terminate.

int : x
while 1(x <= 10) do

if 2(x > 6) then
3x := x + 2

fi
od4

Figure 1 Simple Example

Example Let us consider a small sequential programming
language with no procedures, no pointers and no recursion.
The language statements include assignments, branches and
while loops. All program variables have (mathematical) integer
values. In particular, let us consider the simple program in
Figure 1. Figure 2 illustrates the details of the backward
invariance analysis. We map each program control point to a
function f ∈ Z 7→ N of the variable x, representing an upper
bound on the number of execution steps before termination.

The analysis is performed backwards starting from the total function f(x) = 0 at program
point 4. At program point 1, the loop test x ≤ 10 splits the domain of the function and
enforces termination in 1 step. At program point 3, the assignment x := x+ 2 modifies the
domain of the function and increases its value to 2. The, the test x > 6 further splits the
domain of the function. Finally, a second iteration starts joining the function at program
point 4 after x > 10 with the function at program point 2 after x ≤ 10.

At the fourth iteration, a fix-point is reached yielding the following ranking function
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f ∈ Z 7→ N as loop invariant at program point 1:

f(x) =





⊥F x ≤ 6
−3x+ 38 7 ≤ x ≤ 8
4 9 ≤ x ≤ 10
1 x ≥ 11

The analysis provides x > 6 as a sufficient condition for termination, revealing potential
non-termination for x ≤ 6. Indeed, for x ≤ 6, the program is non-terminating. J

2 Piecewise-Defined Affine Ranking Functions Abstract Domain

In the following, due to space constraints, we do not recall the results presented in [4] and
we introduce straightaway our abstract domain of piecewise-defined affine ranking functions.
Most definitions will be only hinted, we refer to [10] for more details and examples.

The elements of the abstract domain belong to V# , S# 7→ F#, where S# is the set of
abstract program states (in particular, we abstract the program states using the intervals ab-
stract domain [2]) and F# , {⊥F} ∪ {f# | f# ∈ Zn 7→ N} ∪ {>F} is the set of natural-valued
ranking functions of the integer-valued program variables (in addition to the function ⊥F
representing potential non-termination, and the function >F representing the lack of enough
information to conclude). More specifically, an abstract function v# ∈ V# has the form:

v# ≡





s#
1 7→ f#

1

s#
2 7→ f#

2

. . .

s#
k 7→ f#

k

where the abstract states s#
1 , . . . , s

#
k induce a partition of the space of values for the program

variables, and the ranking functions f#
1 , . . . , f

#
k are affine functions of the program variables.

The concretization function γ ∈ (S# 7→ F#) 7→ (S ↪→ O) is applied piecewise and maps
an abstract function to a partial function from program states to ordinals:

γ(s# 7→ ⊥F) = ∅̇
γ(s# 7→ f#) = λs ∈ γS(s#). f#(s(x1), . . . , s(xn))
γ(s# 7→ >F) = ∅̇

where ∅̇ denotes the totally undefined function, and the function γS ∈ S# 7→ P(S) maps an
abstract state to the corresponding set of program states.

The domain operators for the abstract approximation order v, the abstract computational
order 4 and the abstract join t rely on a partition unification algorithm that, given two
abstract functions v#

1 and v#
2 , modifies the partitions on which they are defined, into a

common refined partition of the space of values for each program variable. In particular,
since the partitions are determined by intervals with constant bounds, the unification simply
introduces new bounds consequently splitting intervals in both partitions. Then, the binary
operators can be applied piecewise: the abstract orders, first compare the abstract states on
which each function is defined, and then compare the values of the ranking functions on each
abstract state; the join operator t reuses the convex-hull of polyhedra [5].

The widening operator O prevents the number of pieces of an abstract function from
growing indefinitely. First, it performs a partition unification that keeps only the interval
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4 Piecewise-Defined Ranking Functions

bounds occurring in the first abstract function. Then, it widens the functions piecewise,
reusing the convex-hull and the widening of polyhedra.

In order to handle assignments, the abstract domain is equipped with an operation to
substitute an arithmetic expression for a variable within an affine function. An assignment is
carried on piecewise and independently on each abstract state and each ranking function.
Then, the resulting covering induced by the abstract states is refined to obtain a partition.

Finally, to deal with tests, the abstract domain merely applies piecewise to each abstract
state the abstract filter operator from the intervals domain.

The operators of the abstract domain are combined together, to compute an abstract
ranking function for a program, through backward invariance analysis. The starting point is
the constant function equals to 0 at the program final control point. The ranking function is
then propagated backwards towards the program initial control point taking assignments
and tests into account with join and widening around loops [1].

Thanks to the soundness of all abstract operators, we can establish the soundness of the
analysis for proving program termination: the program states, for which the analysis finds a
ranking function, are states from which the program indeed terminates.

Implementation We have implemented a research prototype static analyzer [9], based on
our abstract domain of piecewise-defined affine ranking functions, and we have used it to
analyze programs written in a small non-deterministic imperative language. The prototype
is written in OCaml, and the operators from the intervals and convex polyhedra abstract
domains are provided by the Apron library [7].

The analysis proceeds by structural induction on the program syntax, iterating loops
until an abstract fix-point is reached. In case of nested loops, a fix-point on the inner loop is
computed for each iteration of the outer loop, following [1].

3 Future Work

As might be expected, the implemented domain has a limited expressiveness that translates
into an imprecision of the analysis especially in the case of nested loops (and, in general,
of programs with non-linear complexity). For this reason, we would like to design other
abstract domains, based on more sophisticated abstract states and on non-linear ranking
functions such as polynomials or exponentials.

int : x1 , x2
while 1(x1 <= 10) do

2x2 := 10
while 3(x2 > 1) do

4x2 := x2 - 1
od5

6x1 := x1 + 1
od7

Figure 3 Bubble Sort

Piecewise-Defined Non-Linear Ranking Functions Let us
consider the program in Figure 3: it is the (skeleton of) the
Bubble Sort algorithm for an array of length 10, once we have
removed all tests and assignments on the array. Since the
program has a polynomial time complexity, we need non-linear
(polynomial) ranking functions to prove its termination.

Figure 4 illustrates the iterates of the backward invariance
analysis limited at program control point 1. At the third
iteration, the analysis tries to synthesize an affine ranking
function for the program. However, such function is not a
fix-point: at the next iteration, for x1 ≤ 8, we obtain an affine
function f2(x1, x2) = −24x1 + 259 with greater slope than f1(x1, x2) = −22x1 + 243; this
manifests the need for a polynomial function and, in particular, it leads to the parabola
f(x1, x2) = 1

2x
2
1 − 31x1 + 567

2 tangent to both f1(x1, x2) and f2(x1, x2) and passing through
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1

1st iteration f(x1, x2) =

{
1 x1 > 10
⊥ x1 ≤ 10

2nd iteration f(x1, x2) =





1 x1 > 10
23 x1 = 10
⊥ x1 ≤ 9

3rd iteration f(x1, x2) =





1 x1 > 10
23 x1 = 10
−22x1 + 243 x1 ≤ 9

4th iteration f(x1, x2) =





1 x1 > 10
23 x1 = 10
43 x1 = 9
−24x1 + 259 x1 ≤ 8

4th/5th iteration f(x1, x2) =





1 x1 > 10
23 x1 = 10
1
2 x2

1 − 31x1 + 567
2 x1 ≤ 9

Figure 4 Bubble Sort Analysis.

the point x1 = 9 of f1(x1) = −22x1 + 243. At the fifth iteration, a fix-point is reached,
proving program termination for all values of x1 and x2. J

It also remains to investigate the possibility of structuring computations as suggested by
[4]. In addition, we plan to extend our research to proving other liveness properties.
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Abstract
We propose an extension of the Knuth-Bendix order (KBO) called KBO with partial status. A
standard status indicates permutation of arguments to each function symbol, but we extend them
to allow some arguments to be ignored. This idea is similar to the argument filtering, but benefits
of these methods are independent and hence can be combined. In addition, we introduce further
refinements of KBO that become possible by partial status. Significance of the proposed method
is verified through experiments.
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1 Introduction

Reduction orders are used to prove termination of term rewrite systems (TRSs). The
Knuth-Bendix order (KBO) [3] is a classical example of reduction orders.

The dependency pair (DP) framework (e.g. [2]) significantly enhances the method of
reduction orders. In the DP framework, dependencies between rewrite rules are analyzed.
Then each cycle of dependency is shown to be finite using a reduction pair 〈%,�〉, which is
typically designed from a reduction order by applying argument filtering. However, argument
filtering is not always helpful as the following example illustrates:

I Example 1. Consider the following set of constraints:

F(s(x)) � F(p(s(x))) p(s(x)) % x

In order to satisfy the first constraint by KBO (or any other simplification order), the
argument of p must be filtered. However, the second constraint cannot be satisfied under
such an argument filtering.

In this note, we propose a reduction pair that can satisfy the above constraints by
generalizing KBO with status [5]. Usually, a status assigns a new position to every argument
of a function symbol. When defining a reduction pair, however, not every argument must
be assigned a new position, but some may be ignored. We say such a status is partial. The
difference between a partial status and an argument filter with standard (i.e. total) status
may look subtle; indeed, a trivial definition of LPO with partial status should be subsumed
by LPO with argument filters and total status. On the other hand, KBO benefits from partial
status because of weights of ignored arguments, which would be lost if those arguments were
filtered beforehand by an argument filter. Indeed, the constraints in Example 1 are satisfied
by KBO with partial status defined in Section 2. We further introduce two refinements that
become possible using partial status. Then we demonstrate the significance of our approach
through experiments.
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2 KBO with Partial Status

Below we define the notion of partial status and the KBO reduction pair.

I Definition 2. A partial status function σ is a mapping that assigns for n-ary symbol f a
list [i1, . . . , in′ ] of distinct positions in {1, . . . , n}.

We write ~sσ(f) to denote the sequence si1 , . . . , sin′ , where σ(f) = [i1, . . . , in′ ].

I Definition 3 (KBO with partial status). Let &F be a quasi-precedence, σ a partial status
function and 〈w,w0〉 a weight function, i.e. w : F → N, w0 > 0 and w(c) ≥ w0 for every
constant c ∈ F . The weight w(s) of a term s is defined as usual:

w(s) :=
{
w0 if s ∈ V
w(f) +

∑n
i=1 w(si) if s = f(~sn)

TheKnuth-Bendix order pair 〈%KBO,�KBO〉 is defined recursively as follows: s %(resp. �)KBO
t iff |s|x ≥ |t|x for all x ∈ V and either

1. w(s) > w(t), or
2. w(s) = w(t) and either

a. s = f1(. . . fk(t) . . . ), σ(f1) = · · · = σ(fk) = [1] and t ∈ V for some k ≥(resp. >) 0, or
b. s = f(~sn), t = g(~tm) and either

i. f >F g, or
ii. f ∼F g and [~sσ(f)] %(resp. �)lex

KBO [~tσ(g)].
Here �lex

KBO denotes the lexicographic extension of �KBO modulo %KBO.

The major difference to the standard KBO (e.g. [6]) is case (2a), where we exclude the
case if σ(fi) = [ ] for some fi. Because of this modification, the admissibility constraint of
KBO can be eased as follows:

I Definition 4. A weight function w is said to be admissible for &F and σ iff every unary
symbol f s.t. w(f) = 0 and σ(f) = [1] is greatest in &F , i.e. f &F g for every g ∈ F .

In the remainder of this note, we always assume admissibility. Note that a unary symbol
f of weight 0 need not be greatest in &F , if σ(f) = [ ].

I Example 5. Consider again the constraints in Example 1. Suppose w, >F and σ satisfy
w(s) > w(p) = 0, σ(s) = [1], σ(p) = [ ], and s >F p. Then, F(s(x)) �KBO F(p(s(x))) because
of cases (2b–ii) and (2b–i), and p(s(x)) %KBO x because of case (1).

Note that in the above example, it also holds that s(x) �KBO p(s(x)). Hence, �KBO is
not a simplification order anymore, or not even a reduction order. Nonetheless, we can show
the following result which is sufficient for the DP framework:

I Theorem 6. The KBO pair 〈%KBO,�KBO〉 is a reduction pair.

Due to lack of space, we only present a proof for well-foundedness of �KBO. We prove
the following auxiliary lemma first:

I Lemma 7. If ~sσ(f) ∈ SN(�KBO) and s �KBO t, then t ∈ SN(�KBO).

Proof. By induction on the quadruple 〈w(s), f, [~sσ(f)], |t|〉, which is ordered by the lexico-
graphic composition of >, >F , �lex

KBO and >. Trivially, it is sufficient to consider t = g(~tm).
Let [j1, . . . , jm′ ] = σ(g).
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Suppose w(s) > w(t). Then we have w(s) > w(t) ≥ w(tjk
) and hence s �KBO tjk

for
every k ∈ {1, . . . ,m′}. By the induction hypothesis on the fourth component, we obtain
tjk
∈ SN(�KBO). Thus for arbitrary u s.t. t �KBO u, the induction hypothesis on the

first component yields u ∈ SN(�KBO).
Suppose w(s) = w(t). First we show tjk

∈ SN(�KBO) for every k ∈ {1, . . . ,m′}. It is
trivial if no such k exists, i.e. if σ(g) = [ ]. Hence suppose σ(g) 6= [ ].

If w(t) = w(tjk
), then g must be unary with w(g) = 0 and σ(g) = [1]. Because of the

admissibility, only case (2b–ii) can be applied for s �KBO g(t1) = t. Hence, we obtain
si1 %KBO t1 and thus t1 ∈ SN(�KBO), since si1 ∈ SN(�KBO).
If w(t) > w(tjk

), then s �KBO tjk
by case (1). By the induction hypothesis on the

fourth component, tj ∈ SN(�KBO).
Now let us consider arbitrary u s.t. t �KBO u. Since we have either f >F g or f ∼F g

and [~sσ(f)] �lex
KBO [~tσ(g)], 〈w(s), f, [~sσ(f)], |t|〉 is greater than 〈w(t), g, [~tσ(g)], |u|〉. Hence,

the induction hypothesis yields u ∈ SN(�KBO). J

I Lemma 8. The relation �KBO is well-founded.

Proof. Let us show s ∈ SN(�KBO) for every term s by induction on |s|. Suppose s =
f(~sn) �KBO t. By the induction hypothesis, we have ~sn ∈ SN(�KBO) and thus ~sσ(f) ∈
SN(�KBO). Hence by Lemma 7, we get t ∈ SN(�KBO). J

3 Refinements

In this section, we refine %KBO in order to encompass the polynomial order (POLO) that is
induced by the weight function.

I Definition 9. The empty status function is the partial status σ s.t. σ(f) = [ ] for all f ∈ F .

KBO induced by the quasi-precedence &F = F2 and the empty status is quite similar to
POLO induced by the interpretation A: fA(~xn) = w(f) +

∑n
i=1 xi. However, the latter is

slightly more powerful; the constraint x % p(x) can be satisfied by POLO s.t. pA(x) = x,
but the weak part of KBO cannot satisfy this constraint even if w(p) = 0.

In [6], %KBO is refined s.t. x %KBO c for a minimal constant c. In our setting, a similar
refinement can be applied for non-constants:

I Proposition 10. Let s ∈ V and t = g(~tm) s.t.
|t|s ≤ 1 and |t|x = 0 for every x ∈ V \ {s},
w(t) = w0,
g is minimal w.r.t. &F , and
σ(g) = [ ].

Then for any term s′ = f(~sn), s′ %KBO t[s 7→ s′]. J

Hence, we refine s %KBO t by adding the following subcase for case (2) of Definition 3
(note that the first two conditions above are already satisfied in case (2)):

c. s %KBO t if s ∈ V and t = g(~tm) s.t. g is minimal w.r.t. &F and σ(g) = [ ].

I Example 11. Consider the following set of constraints:

F(s(x), y) � F(p(s(x)), p(y)) F(x, s(y)) % F(p(x), p(s(y))) p(s(x)) % x

Let σ(p) = [ ], σ(F) = [1], w(s) > w(p) = 0 and p be minimal w.r.t. &F . As analogous to
Example 5, the first and the third constraints are satisfied. For the second constraint, it

WST2013
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yields x % p(x), for which case (c) of the refined %KBO applies. Note that the argument
of p cannot be filtered by an argument filter, because of the third constraint. Hence the
refinement of [6] does not work for this example.

We can also refine %KBO when the right-hand side is a variable.

I Proposition 12. Let s = f(~sn) and t ∈ Var(s) s.t.
σ(f) = [ ], and
for any g ∈ F , f &F g if σ(g) = [ ] and f >F g otherwise.

Then for any term t′ = g(~tm), s[t 7→ t′] %KBO t′. J

Hence, we refine s %KBO t by adding the following subcase for case (2):

d. s %KBO t if s = f(~sn) and t ∈ V s.t. σ(f) = [ ] and for any g ∈ F , f &F g if
σ(g) = [ ] and f >F g otherwise.

It is easy to prove the following result:

I Theorem 13. Let 〈w,w0〉 be a weight function, σ the empty status function and &F = F2.
Then the refined KBO is equivalent to POLO1 induced by the carrier set {n ≥ w0} and the
interpretation fA(~xn) := w(f) +

∑n
i=1 xi. J

I Example 14. Consider the following set of constraints:

F(g(h(x))) � F(h(g(g(h(h(x)))))) g(h(x)) % x

Because of the second constraint, arguments of g and h cannot be filtered. Then the first
constraint requires w(g) = w(h) = 0 and moreover one of the following alternatives to hold:

σ(g) = σ(h) = [ ] and g >F h: In this case, the second constraint can be satisfied only if
%KBO is refined by case (d).
σ(h) = [1] and g >F h: This case is not admissible.
σ(g) = [1], σ(h) = [ ] and g &F h: In this case the second constraint cannot be satisfied.

Hence the set of constraints can be satisfied by KBO with partial status only if it is refined
by case (d). Note that POLO (and LPO) cannot satisfy the set of constraints, since the first
rule is not simply terminating and neither g nor h may have 0-coefficient.

4 Experiments and Future Work

We implemented our method via an SMT encoding that extends [9]. For the DP framework, we
implemented a simple estimation of dependency graphs, and strongly connected components are
sequentially processed in order of size where smaller ones are precedent. We also implemented
usable rules w.r.t. argument filters following the encoding proposed in [1].

The experiments2 are run on a server equipped with two quad-core Intel Xeon W5590
processors running at a clock rate of 3.33GHz and 48GB of main memory, though only one
thread of SMT solver runs at once. As the SMT solver, we choose z3 4.3.1. The test set of
termination problems are the 1463 TRSs from the TRS Standard category of TPDB 8.0.63

and 1315 from the SRS Standard category. Timeout is set to 60 seconds.

1 Note that cA ≥ w0 > 0 is required for every constant c.
2 Detailed results are available at http://www.sakabe.i.is.nagoya-u.ac.jp/~ayamada/WST2013/.
3 The Termination Problems Data Base. http://termination-portal.org/wiki/TPDB.
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Table 1 Experiments

Solo Combination Combination (SRS)
Method yes T.O. time yes T.O. time yes T.O. time

KBO 439 3 1079.23 565 5 1008.69 117 467 28654.39
Def. 3 463 4 1255.77 583 5 1036.46 120 468 28780.43

Prop. 10 464 4 1305.19 584 5 1044.68 120 468 28853.21
Prop. 12 464 4 1275.01 584 5 1036.92 121 474 29356.51

Prop. 10+12 465 4 1323.83 585 5 1049.84 121 474 29380.88

In Table 1, the ‘Method’ field indicates the reduction pair processor used. ‘KBO’ row is
the standard KBO with (total) status and ‘Def. 3’ is the KBO with partial status. ‘Prop. 10’
and ‘Prop. 12’ applies the refinement of Proposition 10 and Proposition 12, resp. All the
methods are with quasi-precedences, argument filters and usable rules.

‘Solo’ field only applies the reduction pair processor indicated by the ‘Method’ field.
Partial status gives measurable increase in the number of successes (indicated by ‘yes’ field),
though the efficiency is affected (‘time’ field). Each refinement of Section 3 gains one success
with probably acceptable increase in runtime.

‘Combination’ field applies several reduction pair processors first: It applies the linear
POLO (with/without max) with coefficient at most 1, and then LPO with quasi-precedence
and status. In this situation partial status becomes more attractive; the increase in number
of successes remains measurable, while increase of runtime gets dramatically smaller. For
‘Combination (SRS)’ field, it applies linear POLO before the indicated processor.

Despite the benefit observed in our experimental implementation, all the TPDB examples
our tool proved terminating are also proved terminating by existing termination tools such
as AProVE. Our next task is to apply partial status to other extensions of KBO (e.g. [4, 7, 8])
to further increase the number of successful termination proofs.
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