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“Learning Haskell is a great way of 
training yourself to think functionally 
so you are ready to take full advantage 

of C# 3.0 when it comes out”  
(blog Apr 2007) 

“I'm already looking at 
coding problems and my 

mental perspective is now 
shifting back and forth 

between purely OO and more 
FP styled solutions”  

(blog Mar 2007) 
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1976 packages 

533 developers 

256 new packages 
Jan-Mar 2010 

11.5 uploads/day 

4k downloads/day 



 

Parallelism is a big 
opportunity for Haskell 

 
• The language is naturally 

parallel (the opposite of 
Java) 

• Everyone is worried about 
how to program parallel 
machines 



 Explicit threads 
 Non-deterministic by design 

 Monadic: forkIO and STM 

 Semi-implicit 
 Deterministic 

 Pure: par and seq 

 Data parallel 
 Deterministic 

 Pure: parallel arrays 

 Shared memory initially; distributed memory eventually; 
possibly even GPUs 

 General attitude: using some of the parallel 
processors you already have, relatively easily 

main :: IO ()  

  = do { ch <- newChan 

 ; forkIO (ioManager ch) 

 ; forkIO (worker 1 ch) 

 ... etc ... } 

f :: Int -> Int 

f x = a `par` b `seq` a + b 

 where 

  a = f (x-1) 

  b = f (x-2) 
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 where 

  a = f (x-1) 

  b = f (x-2) Today’s 
focus 





Locks and condition 
variables 

After 30 years of research, the 
most widely-used co-ordination 
mechanism for shared-memory 

task-level concurrency is.... 



Locks and condition 
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(invented 30 years ago) 

After 30 years of research, the 
most widely-used co-ordination 
mechanism for shared-memory 

task-level concurrency is.... 
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A 10-second review: 

 Races: due to forgotten locks   

 Deadlock: locks acquired in “wrong” order.  

 Lost wakeups: forgotten notify to condition 
variable 

 Diabolical error recovery: need to restore 
invariants and release locks in exception 
handlers 

 

 These are serious problems.  But even worse... 
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Scalable double-ended queue: one lock per cell 

No interference if 
ends “far enough” 

apart 

But watch out when the queue 
is 0, 1, or 2 elements long! 
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Coding style 
Difficulty of concurrent 

queue 

Sequential code Undergraduate 

Locks and 

condition 

variables 

Publishable result at 

international conference 

Atomic blocks Undergraduate 
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atomic { ... sequential get code ... } 

 To a first approximation, just write the 
sequential code, and wrap atomic around it 

 All-or-nothing semantics: Atomic commit 

 Atomic block executes in Isolation 

 Cannot deadlock (there are no locks!) 

 Atomicity makes error recovery easy  
(e.g. exception thrown inside the get code) 

ACID 



One possibility: 

 Execute <code> without taking any locks 

 Each read and write in <code> is logged to a 
thread-local transaction log 

 Writes go to the log only, not to memory 

 At the end, the transaction tries to commit 
to memory 

 Commit may fail; then transaction is re-run 

Optimistic  

concurrency 

atomic { ... <code> ... } 



Realising STM in 

Haskell 



• Effects are explicit in the type system 

– (reverse “yes”) :: String -- No effects 

– (putStr “no”) :: IO ()    -- Can have effects 

• The main program is an effect-ful 
computation 

– main :: IO () 

 

main = do { putStr (reverse “yes”) 
   ; putStr “no” } 



Reads and 
writes are 
100% explicit!  

  
You can’t say (r 
+ 6), because  
r :: Ref Int 

main = do { r <- newRef 0 
 ; incR r 
 ; s <- readRef r 
 ; print s } 
 
incR :: Ref Int -> IO () 
incR r = do { v <- readRef r 
  ; writeRef r (v+1) 
   } 

newRef :: a -> IO (Ref a) 
readRef :: Ref a -> IO a 
writeRef :: Ref a -> a -> IO () 



main = do { r <- newRef 0 
 ; fork (incR r) 
 ; incR r 
 ; ... } 
 

incR :: Ref Int -> IO () 
incR r = do { v <- readRef f; writeRef r (v+1) } 

 fork spawns a thread 
 it takes an action as its argument 

 

fork :: IO a -> IO ThreadId 

A 

race 



 atomic is a function, not a syntactic 
construct 

 A worry: what stops you doing incR 
outside atomic? 

atomic :: IO a -> IO a 

main = do { r <- newRef 0 
 ; fork (atomic (incR r)) 
 ; atomic (incR r) 
 ; ... } 



 Better idea: 

 

 

 

 

atomic  :: STM a -> IO a 
newTVar  :: a -> STM (TVar a) 
readTVar  :: TVar a -> STM a 
writeTVar  :: TVar a -> a 
-> STM () 

incT :: TVar Int -> STM () 
incT r = do { v <- readTVar r; writeTVar r (v+1) }  

main = do { r <- atomic (newTVar 0) 
 ; fork (atomic (incT r)) 
 ; atomic (incT r) 
 ; ... } 



 Notice that: 

 Can’t fiddle with TVars outside atomic 
block [good] 

 Can’t do IO inside atomic block [sad, 
but also good] 

 No changes to the compiler 
(whatsoever).  Only runtime system and 
primops. 

 ...and, best of all...  

atomic :: STM a -> IO a 
newTVar :: a -> STM (TVar a) 
readTVar :: TVar a -> STM a 
writeTVar :: TVar a -> a -> STM () 



 An STM computation is always executed atomically 
(e.g. incT2).  The type tells you. 

 Simply glue STMs together arbitrarily; then wrap with 
atomic 

 No nested atomic.  (What would it mean?) 

incT :: TVar Int -> STM () 

incT r = do { v <- readTVar r; writeTVar r (v+1) }  

incT2 :: TVar Int -> STM () 
incT2 r = do { incT r; incT r }  

foo :: IO () 
foo = ...atomic (incT2 r)... 

Composition 

is THE way 

we build big 

programs 

that work 



 STM monad supports exceptions: 
  

 

 

 In the call (atomic s), if s throws an exception, 
the transaction is aborted with no effect; and 
the exception is propagated into the IO monad 

 No need to restore invariants, or release locks! 

 See paper for the question of the exception 
value itself 

throw :: Exception -> STM a 
catch :: STM a -> (Exception -> STM a) -> STM a 



Three new ideas 
retry 
orElse 
always 



 retry means “abort the current transaction 
and re-execute it from the beginning”. 

 Implementation avoids the busy wait by using 
reads in the transaction log (i.e. acc) to wait 
simultaneously on all read variables 

withdraw :: TVar Int -> Int -> STM () 
withdraw acc n = do { bal <- readTVar acc 
 ; if bal < n then retry; 
 ; writeTVar acc (bal-n) } retry :: STM () 



 No condition variables!   

 Retrying thread is woken up 
automatically when acc is written.  No 
lost wake-ups! 

 No danger of forgetting to test 
everything again when woken up; the 
transaction runs again from the 
beginning. 
e.g. atomic (do { withdraw a1 3 
 ; withdraw a2 7 }) 



 Because retry can appear anywhere inside an 
atomic block, including nested deep within a 
call. 
 e.g. atomic (do { withdraw a1 3 
        ; withdraw a2 7 }) 

 Waits for a1>3 AND a2>7, without changing 
withdraw 
 

 Contrast:  
 atomic (a1 > 3 && a2 > 7) { ...stuff... } 
which breaks the abstraction inside 
“...stuff...” 



atomic (do { 
 withdraw a1 3 
  `orelse` 
 withdraw a2 3 
  ; deposit b 3 }) 

Try this 
...and if it 

retries, 

try this 

...and 

and then 

do this 

orElse :: STM a -> STM a -> STM a 



transfer :: TVar Int -> TVar Int 
        -> TVar Int -> STM () 
 
transfer a1 a2 b = do 
 { withdraw a1 3 
  `orElse` 
    withdraw a2 3 
 
 ; deposit b 3 } 

atomic 
 (transfer a1 a2 b 
  `orElse` 
  transfer a3 a4 b) 

 transfer has an orElse, but calls to 
transfer can still be composed with 
orElse 



 A transaction is a value of type (STM t) 
 Transactions are first-class values 
 Build a big transaction by composing little 

transactions: in sequence, using choice, inside 
procedures.... 

 Finally seal up the transaction with 
 atomic :: STM a -> IO a 

 No nested atomic!  But orElse is like a nested 
transaction 

 No concurrency within a transaction! 



Nice equations: 

– orElse is associative (but not 
commutative) 

– retry `orElse` s = s 

– s `orElse` retry = s 
 
(STM is an instance of MonadPlus) 



 The route to sanity is by establishing 
invariants that are assumed on entry, 
and guaranteed on exit, by every 
atomic block 

 We want to check these guarantees. But 
we don’t want to test every invariant 
after every atomic block. 

 Hmm.... Only test when something read 
by the invariant has changed.... rather 
like retry 



always :: STM Bool -> STM () 

newAccount :: STM (TVar Int) 

newAccount = do { v <- newTVar 0 

  ; always (do { cts <- readTVar v 

   ; return (cts >= 0) }) 

  ; return v } 

An arbitrary 

boolean-valued 

STM computation 

Any transaction that modifies 

the account will check the 

invariant (no forgotten checks) 



 always adds a new invariant to a global pool 
of invariants 

 Conceptually, every invariant is checked after 
every transaction 

 But the implementation checks only invariants 
that read TVars that have been written by 
the transaction 

 ...and garbage collects invariants that are 
checking dead TVars 

always :: STM Bool -> STM () 



• Everything so far is intuitive and arm-
wavey 

• But what happens if it’s raining, and you 
are inside an orElse and you throw an 
exception that contains a value that 
mentions...? 

• We need a precise specification! 



No way to wait for complex conditions 
We have 

one 



 Atomic blocks (atomic, retry, orElse) are a real 
step forward 

 It’s like using a high-level language instead of 
assembly code: whole classes of low-level 
errors are eliminated. 

 Not a silver bullet:  

– you can still write buggy programs;  

– concurrent programs are still harder to write than 
sequential ones;  

– aimed at shared memory   

 But the improvement is very substantial 

 

 


