
Simon Peyton Jones (Microsoft Research)

Tokyo Haskell Users Group
April 2010

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The quick death

G
ee

k
s

P
ra

ct
it

io
n

er
s

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The slow death

G
ee

k
s

P
ra

ct
it

io
n

er
s

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The complete
absence of death

G
ee

k
s

P
ra

ct
it

io
n

er
s Threshold of immortality

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The committee
language

G
ee

k
s

P
ra

ct
it

io
n

er
s

1,000,000

1

100

10,000

The second life?

G
ee

k
s

P
ra

ct
it

io
n

er
s

“Learning Haskell is a great way of
training yourself to think functionally
so you are ready to take full advantage

of C# 3.0 when it comes out”
(blog Apr 2007)

“I'm already looking at
coding problems and my

mental perspective is now
shifting back and forth

between purely OO and more
FP styled solutions”

(blog Mar 2007)

1990 1995 2000 2005 2010

langpop.com langpop.com Oct 2008

langpop.com Oct 2008

1976 packages

533 developers

256 new packages
Jan-Mar 2010

11.5 uploads/day

4k downloads/day

Parallelism is a big
opportunity for Haskell

• The language is naturally

parallel (the opposite of
Java)

• Everyone is worried about
how to program parallel
machines

 Explicit threads
 Non-deterministic by design

 Monadic: forkIO and STM

 Semi-implicit
 Deterministic

 Pure: par and seq

 Data parallel
 Deterministic

 Pure: parallel arrays

 Shared memory initially; distributed memory eventually;
possibly even GPUs

 General attitude: using some of the parallel
processors you already have, relatively easily

main :: IO ()

 = do { ch <- newChan

 ; forkIO (ioManager ch)

 ; forkIO (worker 1 ch)

 ... etc ... }

f :: Int -> Int

f x = a `par` b `seq` a + b

 where

 a = f (x-1)

 b = f (x-2)

 Explicit threads
 Non-deterministic by design

 Monadic: forkIO and STM

 Semi-implicit
 Deterministic

 Pure: par and seq

 Data parallel
 Deterministic

 Pure: parallel arrays

 Shared memory initially; distributed memory eventually;
possibly even GPUs

 General attitude: using some of the parallel
processors you already have, relatively easily

main :: IO ()

 = do { ch <- newChan

 ; forkIO (ioManager ch)

 ; forkIO (worker 1 ch)

 ... etc ... }

f :: Int -> Int

f x = a `par` b `seq` a + b

 where

 a = f (x-1)

 b = f (x-2) Today’s
focus

Locks and condition
variables

After 30 years of research, the
most widely-used co-ordination
mechanism for shared-memory

task-level concurrency is....

Locks and condition
variables

(invented 30 years ago)

After 30 years of research, the
most widely-used co-ordination
mechanism for shared-memory

task-level concurrency is....

16

A 10-second review:

 Races: due to forgotten locks

 Deadlock: locks acquired in “wrong” order.

 Lost wakeups: forgotten notify to condition
variable

 Diabolical error recovery: need to restore
invariants and release locks in exception
handlers

 These are serious problems. But even worse...

17

Scalable double-ended queue: one lock per cell

No interference if
ends “far enough”

apart

But watch out when the queue
is 0, 1, or 2 elements long!

18 Microsoft Confidential

Coding style
Difficulty of concurrent

queue

Sequential code Undergraduate

19

Coding style
Difficulty of concurrent

queue

Sequential code Undergraduate

Locks and

condition

variables

Publishable result at

international conference

20

Coding style
Difficulty of concurrent

queue

Sequential code Undergraduate

Locks and

condition

variables

Publishable result at

international conference

Atomic blocks Undergraduate

21

atomic { ... sequential get code ... }

 To a first approximation, just write the
sequential code, and wrap atomic around it

 All-or-nothing semantics: Atomic commit

 Atomic block executes in Isolation

 Cannot deadlock (there are no locks!)

 Atomicity makes error recovery easy
(e.g. exception thrown inside the get code)

ACID

One possibility:

 Execute <code> without taking any locks

 Each read and write in <code> is logged to a
thread-local transaction log

 Writes go to the log only, not to memory

 At the end, the transaction tries to commit
to memory

 Commit may fail; then transaction is re-run

Optimistic

concurrency

atomic { ... <code> ... }

Realising STM in

Haskell

• Effects are explicit in the type system

– (reverse “yes”) :: String -- No effects

– (putStr “no”) :: IO () -- Can have effects

• The main program is an effect-ful
computation

– main :: IO ()

main = do { putStr (reverse “yes”)
 ; putStr “no” }

Reads and
writes are
100% explicit!

You can’t say (r
+ 6), because
r :: Ref Int

main = do { r <- newRef 0
 ; incR r
 ; s <- readRef r
 ; print s }

incR :: Ref Int -> IO ()
incR r = do { v <- readRef r
 ; writeRef r (v+1)
 }

newRef :: a -> IO (Ref a)
readRef :: Ref a -> IO a
writeRef :: Ref a -> a -> IO ()

main = do { r <- newRef 0
 ; fork (incR r)
 ; incR r
 ; ... }

incR :: Ref Int -> IO ()
incR r = do { v <- readRef f; writeRef r (v+1) }

 fork spawns a thread
 it takes an action as its argument

fork :: IO a -> IO ThreadId

A

race

 atomic is a function, not a syntactic
construct

 A worry: what stops you doing incR
outside atomic?

atomic :: IO a -> IO a

main = do { r <- newRef 0
 ; fork (atomic (incR r))
 ; atomic (incR r)
 ; ... }

 Better idea:

atomic :: STM a -> IO a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a
-> STM ()

incT :: TVar Int -> STM ()
incT r = do { v <- readTVar r; writeTVar r (v+1) }

main = do { r <- atomic (newTVar 0)
 ; fork (atomic (incT r))
 ; atomic (incT r)
 ; ... }

 Notice that:

 Can’t fiddle with TVars outside atomic
block [good]

 Can’t do IO inside atomic block [sad,
but also good]

 No changes to the compiler
(whatsoever). Only runtime system and
primops.

 ...and, best of all...

atomic :: STM a -> IO a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

 An STM computation is always executed atomically
(e.g. incT2). The type tells you.

 Simply glue STMs together arbitrarily; then wrap with
atomic

 No nested atomic. (What would it mean?)

incT :: TVar Int -> STM ()

incT r = do { v <- readTVar r; writeTVar r (v+1) }

incT2 :: TVar Int -> STM ()
incT2 r = do { incT r; incT r }

foo :: IO ()
foo = ...atomic (incT2 r)...

Composition

is THE way

we build big

programs

that work

 STM monad supports exceptions:

 In the call (atomic s), if s throws an exception,
the transaction is aborted with no effect; and
the exception is propagated into the IO monad

 No need to restore invariants, or release locks!

 See paper for the question of the exception
value itself

throw :: Exception -> STM a
catch :: STM a -> (Exception -> STM a) -> STM a

Three new ideas
retry
orElse
always

 retry means “abort the current transaction
and re-execute it from the beginning”.

 Implementation avoids the busy wait by using
reads in the transaction log (i.e. acc) to wait
simultaneously on all read variables

withdraw :: TVar Int -> Int -> STM ()
withdraw acc n = do { bal <- readTVar acc
 ; if bal < n then retry;
 ; writeTVar acc (bal-n) } retry :: STM ()

 No condition variables!

 Retrying thread is woken up
automatically when acc is written. No
lost wake-ups!

 No danger of forgetting to test
everything again when woken up; the
transaction runs again from the
beginning.
e.g. atomic (do { withdraw a1 3
 ; withdraw a2 7 })

 Because retry can appear anywhere inside an
atomic block, including nested deep within a
call.
 e.g. atomic (do { withdraw a1 3
 ; withdraw a2 7 })

 Waits for a1>3 AND a2>7, without changing
withdraw

 Contrast:
 atomic (a1 > 3 && a2 > 7) { ...stuff... }
which breaks the abstraction inside
“...stuff...”

atomic (do {
 withdraw a1 3
 `orelse`
 withdraw a2 3
 ; deposit b 3 })

Try this
...and if it

retries,

try this

...and

and then

do this

orElse :: STM a -> STM a -> STM a

transfer :: TVar Int -> TVar Int
 -> TVar Int -> STM ()

transfer a1 a2 b = do
 { withdraw a1 3
 `orElse`
 withdraw a2 3

 ; deposit b 3 }

atomic
 (transfer a1 a2 b
 `orElse`
 transfer a3 a4 b)

 transfer has an orElse, but calls to
transfer can still be composed with
orElse

 A transaction is a value of type (STM t)
 Transactions are first-class values
 Build a big transaction by composing little

transactions: in sequence, using choice, inside
procedures....

 Finally seal up the transaction with
 atomic :: STM a -> IO a

 No nested atomic! But orElse is like a nested
transaction

 No concurrency within a transaction!

Nice equations:

– orElse is associative (but not
commutative)

– retry `orElse` s = s

– s `orElse` retry = s

(STM is an instance of MonadPlus)

 The route to sanity is by establishing
invariants that are assumed on entry,
and guaranteed on exit, by every
atomic block

 We want to check these guarantees. But
we don’t want to test every invariant
after every atomic block.

 Hmm.... Only test when something read
by the invariant has changed.... rather
like retry

always :: STM Bool -> STM ()

newAccount :: STM (TVar Int)

newAccount = do { v <- newTVar 0

 ; always (do { cts <- readTVar v

 ; return (cts >= 0) })

 ; return v }

An arbitrary

boolean-valued

STM computation

Any transaction that modifies

the account will check the

invariant (no forgotten checks)

 always adds a new invariant to a global pool
of invariants

 Conceptually, every invariant is checked after
every transaction

 But the implementation checks only invariants
that read TVars that have been written by
the transaction

 ...and garbage collects invariants that are
checking dead TVars

always :: STM Bool -> STM ()

• Everything so far is intuitive and arm-
wavey

• But what happens if it’s raining, and you
are inside an orElse and you throw an
exception that contains a value that
mentions...?

• We need a precise specification!

No way to wait for complex conditions
We have

one

 Atomic blocks (atomic, retry, orElse) are a real
step forward

 It’s like using a high-level language instead of
assembly code: whole classes of low-level
errors are eliminated.

 Not a silver bullet:

– you can still write buggy programs;

– concurrent programs are still harder to write than
sequential ones;

– aimed at shared memory

 But the improvement is very substantial

