Termination of $\{aa \rightarrow cb, bb \rightarrow ca, cc \rightarrow ba\}$

Dieter Hofbauer (Kassel) and Johannes Waldmann (Leipzig)

3 August 05

The general setting: Let \succ be a well-founded order on a non-empty set D, and let \succeq denote its reflexive closure. Let $i: \Sigma \to (D \to D)$ be a mapping which is extended to Σ^* by $i(\epsilon)(d) = d$ and i(xs)(d) = i(x)(i(s)(d)) for $x \in \Sigma$, $s \in \Sigma^*$, $d \in D$. Further assume strict monotonicity, i.e., for $x \in \Sigma$ and $d, d' \in D$, $d \succ d'$ implies $i(x)(d) \succ i(x)(d')$. For a proof of the following standard result see e.g. Theorem 4 in [Zantema, Termination of string rewriting proved automatically].

Lemma 1. Let R and S be string rewriting systems over alphabet Σ such that

```
-i(\ell)(d) \succ i(r)(d) for all \ell \to r in R and d \in D, -i(\ell)(d) \succeq i(r)(d) for all \ell \to r in S and d \in D.
```

Then R is terminating relative to S.

Proposition 1. $Z_{086} = \{aa \rightarrow cb, bb \rightarrow ca, cc \rightarrow ba\}$ is terminating.

Proof. Let $\Sigma = \{a, b, c\}$. Consider the interpretation $i : \Sigma \to (\mathbb{N}^4 \to \mathbb{N}^4)$ with

$$i(a)(u, v, x, y) = (u + y, y, v + 2y + 2, v),$$

$$i(b)(u, v, x, y) = (u + v, 2v + y + 1, v, 0),$$

$$i(c)(u, v, x, y) = (u + 2y, x + y, v + 2y + 1, 0),$$

Let $(u, v, x, y) \succ (u', v', x', y')$ if u > u' and $v \ge v'$, $x \ge x'$, $y \ge y'$, and let \succeq be the reflexive closure of \succ . Note that \succ is well-founded on \mathbb{N}^4 , and that i(x) is strictly monotone for each $x \in \Sigma$. As is easily verified,

$$i(aa)(u, v, x, y) = (u + v + y, v, 2v + y + 2, y)$$

$$\succeq (u + v, v, 2v + y + 2, 0) = i(cb)(u, v, x, y),$$

$$i(bb)(u, v, x, y) = (u + 3v + y + 1, 4v + 2y + 3, 2v + y + 1, 0)$$

$$\succ (u + 2v + y, 2v + 2y + 2, 2v + y + 1, 0) = i(ca)(u, v, x, y),$$

$$i(cc)(u, v, x, y) = (u + 2y, v + 2y + 1, x + y + 1, 0)$$

$$\succeq (u + 2y, v + 2y + 1, y, 0) = i(ba)(u, v, x, y).$$

By the lemma above, termination of $S = \{aa \to cb, cc \to ba\}$ implies termination of Z_{086} . Termination of S is trivial: choose weights $a, c \mapsto 1$ and $b \mapsto 0$.

To illustrate, here ist the sequence of interpretations for a rewrite sequence starting from aabb:

```
a(4,3,8,0)
                 c(4,3,8,0)
                                   c(2,3,5,0)
                                                     b(2,3,1,0)
                 b(4,7,3,0)
a(1,0,5,3)
                                   c(2,4,3,0)
                                                    a(1,1,4,0)
b(1,3,0,0) \rightarrow_1 b(1,3,1,0) \rightarrow_2 a(0,0,3,1) \rightarrow_3 a(0,0,3,1)
b(0,1,0,0)
                 b(0,1,0,0)
                                   b(0,1,0,0)
                                                     b(0,1,0,0)
                                     (0,0,0,0)
 (0,0,0,0)
                   (0,0,0,0)
                                                       (0,0,0,0)
                 b(2,3,1,0)
                                   b(1,3,1,0)
                                                     b(1,3,1,0)
                                   c(0,1,3,0)
                 c(1,1,4,0)
                                                     b(0,1,0,0)
             \rightarrow_4 b (1,3,1,0) \rightarrow_5 c (0,2,1,0) \rightarrow_6 a (0,0,2,0)
                 b(0,1,0,0)
                                  a(0,0,2,0)
                                                    a(0,0,2,0)
                   (0,0,0,0)
                                     (0,0,0,0)
                                                       (0,0,0,0)
```

Note the strict decreases in steps 2 and 5.