Matrix Interpretations for Proving Termination of Term Rewriting

Jörg Endrullis¹ Johannes Waldmann² Hans Zantema³

¹Department of Computer Science, Vrije Universiteit Amsterdam De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands. Email: joerg@few.vu.nl

²Hochschule für Technik, Wirtschaft und Kultur (FH) Leipzig Fb IMN, PF 30 11 66, D-04251 Leipzig, Germany. Email: waldmann@imn.htwk-leipzig.de

³Department of Computer Science, Technische Universiteit Eindhoven P.O. Box 513, 5600 MB Eindhoven, The Netherlands. Email: h.zantema@tue.nl

Motivation

Matrix interpretations for termination proofs for string rewriting were developed by Hofbauer and Waldmann [HW06]. It allowed them to prove termination for $\{aa \rightarrow bc, bb \rightarrow ac, cc \rightarrow ab\}$.

We extend this approach to:

• term rewriting

by taking linear combinations of matrix interpretations

• dependency pairs [GTSK05, HM04] and top-termination

Outline

Preliminaries

- Term rewriting systems
- (Relative) termination

2 Monotone algebras

- Σ-algebra and monotonicity
- Weakly monotone algebras

3 Matrix interpretations

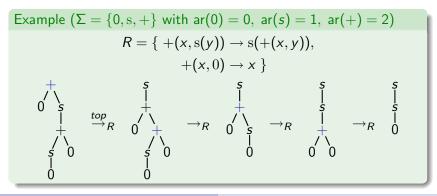
- Relative termination
- Top-termination and Dependency Pairs
- Implementation and Performance Measurements

Term rewriting systems (Relative) termination

Term rewriting systems (TRS)

Let \mathcal{X} be a set of variable symbols, we use x, y, z, ... as variables.

- A signature Σ is a ranked alphabet with arity ar: $\Sigma \rightarrow N$.
- The set of terms $\mathcal{T}(\Sigma, \mathcal{X}) \approx$ finite trees over Σ , \mathcal{X} .
- A TRS *R* is a set of rewrite rules $\ell \to r \in \mathcal{T}(\Sigma, \mathcal{X}) \times \mathcal{T}(\Sigma, \mathcal{X})$.



Jörg Endrullis, Johannes Waldmann , Hans Zantema

Matrix Interpretations for Termination of Term Rewriting

Definition (Termination, $SN(\rightarrow)$)

A relation \rightarrow is well-founded, terminating or strong normalization $(SN(\rightarrow))$ if no infinite sequence $t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow \ldots$ exists.

Definition (Relative termination, $SN(\rightarrow_1 / \rightarrow_2)$)

A binary relation \rightarrow_1 is terminating relative to a binary relation \rightarrow_2 if no $\rightarrow_1 \cup \rightarrow_2$ sequence contains infinitely many \rightarrow_1 steps.

Observe that $SN(R) \Leftrightarrow SN(R/\emptyset)$.

 Σ -algebra and monotonicity Weakly monotone algebras

Definition (Σ -algebra $(A, [\cdot])$) A Σ -algebra $(A, [\cdot])$ consists of a set A, and for every $f \in \Sigma$ an interpretation function $[f]: A^{ar(f)} \to A$.

Example (Proving SN(R)... usual approach: polynomials over **N**) $R = \{ +(x, s(y)) \to s(+(x, y)), +(x, 0) \to x \}$ l et $A = \mathbf{N}$ and [0] = 1 [s](x) = x + 1 $[+](x, y) = x + 2 \cdot y$ Terms are functions depending on the values of their variables: $[+(x, s(y)), \alpha] = \alpha(x) + 2 \cdot \alpha(y) + 2 \quad [+(x, 0), \alpha] = \alpha(x) + 2$ $[s(+(x,y)),\alpha] = \alpha(x) + 2 \cdot \alpha(y) + 1 \qquad [x,\alpha] = \alpha(x)$ Both rules are strictly decreasing w.r.t. > for all $\alpha: \mathcal{X} \to \mathbf{N}$ and [0], [s], [+] are monotone in all arguments. This implies SN(R).

Jörg Endrullis, Johannes Waldmann , Hans Zantema

Matrix Interpretations for Termination of Term Rewriting

Example (SN(R/S))Consider $R = \{f(f(x)) \rightarrow f(g(f(x)))\}, S = \{f(x) \rightarrow g(f(x))\}.$ We choose $A = \mathbf{N}^2$, symbol interpretations: $[\mathbf{f}](\vec{x}) = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \cdot \vec{x} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad [\mathbf{g}](\vec{x}) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \vec{x} + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ Let $\alpha: \mathcal{X} \to A$ be arbitrary; write $\vec{x} = \alpha(x)$. We obtain $[f(f(x))] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \cdot \vec{x} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} >^? \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \cdot \vec{x} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = [f(g(f(x)))]$ $[f(x)] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \cdot \vec{x} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} >^{?} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \cdot \vec{x} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} = [g(f(x))]$ Both rules seem to be decreasing? But S does not terminate!

We need two relations > (strictly dec.), \gtrsim (weakly dec.) where \gtrsim is not the union of > and equality.

 Σ -algebra and monotonicity Weakly monotone algebras

Weakly monotone Σ -algebras

Definition (Weakly monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$)

- ... is a Σ -algebra $(A, [\cdot])$ equipped with relations >, \gtrsim on A s.t.
 - > is well-founded,
 - $> \cdot \gtrsim \subseteq >$ (compatibility), and
 - for all $f\in\Sigma$ the function [f] is monotone with respect to \gtrsim

Definition (Extended monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$)

- ... is a weakly monotone Σ -algebra in which moreover
 - for all $f\in\Sigma$ the function [f] is monotone with respect to >

A function [f] is monotone w.r.t. \gtrsim on A iff $a_j \gtrsim b_j$ always implies $[f](a_1, \dots, a_j, \dots, a_n) \gtrsim [f](a_1, \dots, b_j, \dots, a_n)$

 $\Sigma\text{-}algebra$ and monotonicity Weakly monotone algebras

Let $(A, [\cdot])$ be a Σ -algebra and > a binary relation on A. We extend > from A to $\mathcal{T}(\Sigma, \mathcal{X})$ by $\ell > r \iff [\ell, \alpha] > [r, \alpha] \quad \forall \alpha \colon \mathcal{X} \to A$

Let R, S be TRSs over a signature Σ .

Theorem (Relative termination) Let $(A, [\cdot], >, \gtrsim)$ be an extended monotone Σ -algebra such that • $R \subseteq \gtrsim$ and $S \subseteq \gtrsim$, then $SN((R \setminus >)/(S \setminus >))$ implies SN(R/S).

Theorem (Top-termination)

Let $(A, [\cdot], >, \gtrsim)$ be a weakly monotone Σ -algebra such that • $R \subseteq \gtrsim$ and $S \subseteq \gtrsim$, then $SN((R >)_{top}/S)$ implies $SN(R_{top}/S)$.

Jörg Endrullis, Johannes Waldmann , Hans Zantema

Matrix Interpretations for Termination of Term Rewriting

 $\Sigma\text{-}algebra$ and monotonicity Weakly monotone algebras

Let $(A, [\cdot])$ be a Σ -algebra and > a binary relation on A. We extend > from A to $\mathcal{T}(\Sigma, \mathcal{X})$ by $\ell > r \iff [\ell, \alpha] > [r, \alpha] \quad \forall \alpha \colon \mathcal{X} \to A$

Let R, S be TRSs over a signature Σ .

Theorem (Relative termination) Let $(A, [\cdot], >, \gtrsim)$ be an extended monotone Σ -algebra such that • $R \subseteq \gtrsim$ and $S \subseteq \gtrsim$, then $SN((R \setminus >)/(S \setminus >))$ implies SN(R/S).

Theorem (Top-termination)

Let $(A, [\cdot], >, \gtrsim)$ be a weakly monotone Σ -algebra such that • $R \subseteq \gtrsim$ and $S \subseteq \gtrsim$, then $SN((P) \geq) = \langle S \rangle$ implies $SN(P = \langle S \rangle)$

then $SN((R \setminus >)_{top}/S)$ implies $SN(R_{top}/S)$.

Relative termination Top-termination and Dependency Pairs Implementation and Performance Measurements

Matrix interpretations for (relative) termination

We construct extended monotone algebras $(N^d, [\cdot], >, \gtrsim)$. We define > and \gtrsim on N^d by

$$(v_1,\ldots,v_d) > (u_1,\ldots,u_d) \iff v_1 > u_1 \land \forall i : v_i \ge u_i$$

 $(v_1,\ldots,v_d) \gtrsim (u_1,\ldots,u_d) \iff \forall i : v_i \ge u_i$

As interpretations [f] we choose

$$[f](\vec{v_1},\ldots,\vec{v_n}) = F_1\vec{v_1}+\cdots+F_n\vec{v_n}+\vec{f}$$

• matrices $F_1, \ldots, F_n \in \mathbf{N}^{d \times d}$ with $\forall i: (F_i)_{1,1} \ge 1$, and • a vector $\vec{f} \in \mathbf{N}^d$

Note that \gtrsim does not coincide with the union of > and equality.

Example

Consider $R = \{f(f(x)) \rightarrow f(g(f(x)))\}, S = \{f(x) \rightarrow g(f(x))\}\}$. We choose $A = \mathbb{N}^2$, symbol interpretations:

$$[f](\vec{x}) = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \cdot \vec{x} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad [g](\vec{x}) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \vec{x} + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Let α : $\mathcal{X} \to A$ be arbitrary; write $\vec{x} = \alpha(x)$. We obtain
$$[f(f(x))] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \cdot \vec{x} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} > \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \cdot \vec{x} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = [f(g(f(x)))]$$

$$[f(x)] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \cdot \vec{x} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \gtrsim \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \cdot \vec{x} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} = [g(f(x))]$$

We conclude SN(R/S).

Observe that there exists no extended monotone algebra in which \gtrsim coincides with the union of > and equality. Hence for relative termination the general notion of extended monotone algebra is essential; well-founded monotone algebras are not sufficient.

Relative termination Top-termination and Dependency Pairs Implementation and Performance Measurements

Dependency Pairs

Let R be a TRS over Σ . We define

• the defined symbols $D(R) = {root(\ell) \mid \ell \to r \in R}$,

For every $f \in \Sigma$ let $f_{\#}$ be a fresh symbol with the same arity as f. By $t_{\#}$ we denote $f_{\#}(t_1, \ldots, t_n)$ for $t = f(t_1, \ldots, t_n) \in \mathcal{T}(\Sigma, \mathcal{X})$.

Definition (Dependency Pairs [GTSK05, HM04])

The set of dependency pairs of R is defined by

$$\mathsf{DP}(R) = \{\ell_{\#} \rightarrow r'_{\#} \mid \ell \rightarrow r \in R, \ r' \trianglelefteq r \text{ with } \mathsf{root}(r) \in D(R)\}$$

Theorem

We have $SN(R) \Leftrightarrow SN(DP(R)_{top}/R)$.

Matrix interpretations for top-termination

We construct weakly monotone algebras $(N^d \cup N, [\cdot], >, \gtrsim)$. On N^d we define $>= \emptyset$,

$$(v_1,\ldots,v_d)\gtrsim (u_1,\ldots,u_d)\iff \forall i:v_i\geq u_i$$

and on ${\bm N}$ we define $>\,=\,>_{{\bm N}},\,\gtrsim\,=\,\geq_{{\bm N}}.$

For $f \in \Sigma$ we choose $F_1, \ldots, F_n \in \mathbf{N}^{d \times d}$ and $\vec{f} \in \mathbf{N}^d$:

$$[f](\vec{v_1},\ldots,\vec{v_n}) = F_1\vec{v_1}+\cdots+F_n\vec{v_n}+\vec{f}$$

For $f_{\#} \in \Sigma_{\#}$ we choose row vectors $\vec{f_1}, \dots, \vec{f_1} \in \mathbf{N}^d$ and $c_f \in \mathbf{N}$ $[f_{\#}](\vec{v_1}, \dots, \vec{v_n}) = \vec{f_1}\vec{v_1} + \dots + \vec{f_n}\vec{v_n} + c_f$

Example

Consider the TRS consisting of the following rule.

$$\mathrm{g}(\mathrm{g}(\mathrm{s}(x),y),\mathrm{g}(z,u)) \to \mathrm{g}(\mathrm{g}(y,z),\mathrm{g}(x,\mathrm{s}(u)))$$

We have 3 dependency pairs:

(2) and (3) can easily be removed by counting the symbols, i.e.

•
$$[g_{\#}](x, y) = [g](x, y) = 1 + x + y$$

•
$$[s](x) = x + 1$$

as polynomial interpretation over N.

The original rule and the first dependency pair remain...

Relative termination Top-termination and Dependency Pairs Implementation and Performance Measurements

We choose dimension d = 2 ($A_s = \mathbf{N}^2$, $A_{\#} = \mathbf{N}$) with $[g_{\#}](\vec{x_0}, \vec{x_1}) = (1, 0) \cdot \vec{x_0} + (0, 1) \cdot \vec{x_1}$ $[\mathbf{g}](\vec{x_0}, \vec{x_1}) = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \cdot \vec{x_0} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \vec{x_1}$ $[\mathbf{s}](\vec{x_0}) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \vec{x_0} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ • $g(g(s(x), y), g(z, u)) \rightarrow g(g(y, z), g(x, s(u)))$ $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \cdot \vec{x} + \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \cdot \vec{y} + \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \cdot \vec{z} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \vec{u} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ \geq $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \cdot \vec{x} + \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \cdot \vec{y} + \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \cdot \vec{z} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \vec{u} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ • $g_{\#}(g(s(x), y), g(z, u)) \rightarrow g_{\#}(g(y, z), g(x, s(u)))$ $(1,0) \cdot \vec{x} + (1,0) \cdot \vec{v} + (1,0) \cdot \vec{z} + (0,1) \cdot \vec{u} + (1)$ $(1,0) \cdot \vec{x} + (1,0) \cdot \vec{y} + (1,0) \cdot \vec{z} + (0,0) \cdot \vec{u} + (0)$

Matrix Interpretations for Termination of Term Rewriting

Example (Variant of TPDB 2006/secret2006/jambox - 5)

We want to prove SN(R) for

$$\mathsf{R} = \{ a(a(y,0),0) \to y,$$

 $\mathbf{c}(\mathbf{a}(\mathbf{c}(\mathbf{c}(y)),x)) \to \mathbf{a}(\mathbf{c}(\mathbf{c}(\mathbf{a}(x,0)))),y) \}$

There is only one interesting dependency pair:

$$c_{\#}(a(c(c(y)), x)) \rightarrow c_{\#}(c(c(a(x, 0))))$$

The following symbol interpretations prove termination:

$$[a](\vec{x_0}, \vec{x_1}) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \vec{x_0} + \begin{pmatrix} 2 & 3 & 3 \\ 0 & 3 & 3 \\ 0 & 0 & 0 \end{pmatrix} \cdot \vec{x_1} + \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$[g](\vec{x}) = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \cdot \vec{x} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad [0] = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$[c_{\#}](\vec{x}) = (1, 0, 3) \cdot \vec{x} + (1)$$

Implementation

The basic algorithm finds a matrix interpretation that allows to remove rules from a termination problem. The inputs are:

- a pair of rewrite systems (R,S) over signature Σ
- a goal $g \in {\text{Full}, \text{Top}}$ for $\mathsf{SN}(R/S)$ or $\mathsf{SN}(R_{\mathsf{top}}/S)$
- dimension d, initial bits b, result bits b'

The implementation of the algorithm has two stages:

- It produces a system I of inequalities between polynomials of unknowns (constraints on coefficients in vectors and matrices)
- By putting bounds (2^b 1) on the range of the variables, the problem becomes finite and can be translated into a boolean satisfiability problem *F*. Then we call a SAT solver (SatELiteGTI, [EB05]) to find a satisfying assignment.

Preliminaries Relative termination Monotone algebras Top-termination and Dependency Pairs Matrix interpretations Implementation and Performance Measurements

Performance of the matrix method on the TPDB 2005

method	dimension d	initial bits b	result bits b'	YES
direct	1	4	5	141
direct	2	2	3	219
direct	3	3	4	225
dependency pairs	1	4	5	433
dependency pairs	2	1	2	503
dependency pairs	2	2	3	505
dependency pairs	3	2	3	507
dependency pairs	4	2	3	509
dependency pairs +	4	2	3	538

- direct method = pure matrix interpretations
- dependency pairs = combination of matrix interpretations with the dependency pairs framework (DP graph approximation, usable rules criterion [GTSK05, HM04] and the sub-term criterion [HM04])
- dependency pairs + = extension by the transformation of applicative TRSs into functional form [GTSK05], and rewriting of right hand sides [Zan05]

Preliminaries Relative termination Monotone algebras Top-termination and Dependency Pairs Matrix interpretations Implementation and Performance Measurements

Conclusions

The idea of matrix interpretations for termination proofs for string rewriting was developed by Hofbauer and Waldmann [HW06]. It allowed them to prove termination for $\{aa \rightarrow bc, bb \rightarrow ac, cc \rightarrow ab\}$.

In this paper we showed how to extend this approach to term rewriting successfully. A crucial ingredient is taking linear combinations of matrix interpretations for symbols of arity > 1.

In the results on the benchmark database TPDB we see a big jump when increasing the dimension from 1 (representing linear polynomial interpretations) to 2. Increasing the dimension from 2 to higher values only yields a minor improvement, while then the sizes of the satisfiability formulas strongly increase.

N. Eén and A. Biere.

Effective preprocessing in sat through variable and clause elimination.

In *SAT*, 2005.

- J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termination of higher-order functions. In *FroCoS*, 2005.
- N. Hirokawa and A. Middeldorp. Dependency pairs revisited.
 In *RTA*, 2004.
- D. Hofbauer and J. Waldmann.
 Termination of string rewriting with matrix interpretations.
 In *RTA*, 2006.
- 📔 H. Zantema.

Reducing right-hand sides for termination.

Jörg Endrullis, Johannes Waldmann , Hans Zantema Matrix Interpretations for Termination of Term Rewriting