Decomposing Terminating Rewrite Relations

Jörg Endrullis ${ }^{1}$ Dieter Hofbauer ${ }^{2}$ Johannes Waldmann ${ }^{3}$
${ }^{1}$ Department of Computer Science, Vrije Universiteit Amsterdam De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
Email: joerg@few.vu.nl
${ }^{2}$ Mühlengasse 16, D-34125 Kassel, Germany Email: dieter@theory.informatik.uni-kassel.de
${ }^{3}$ Hochschule für Technik, Wirtschaft und Kultur (FH) Leipzig
Fb IMN, PF 3011 66, D-04251 Leipzig, Germany.
Email: waldmann@imn.htwk-leipzig.de

Motivation and Outline

Remark (Motivation)

Construction of certificate automaton for match-boundedness. Up to now

- exact but inefficient algorithm [Matchbox03]
- approximation, fast but incomplete [Torpa04,Aprove05,TTTBox06]

This talk explains the algorithm of [Jambox05, Matchbox06]
(1) Decomposing string rewriting systems

- Decomposition
- Conjugates
- Deleting string rewriting
(2) Decomposing match-bounded systems
- Match-bounded string rewriting
- Improved decomposition for match(R)
- On-line construction of automata

Decomposition

We use the following classes of string rewriting systems (SRS):

- CF $=\{R|\forall(\ell \rightarrow r) \in R:|\ell| \leq 1\}$ (context-free SRS)
- $\mathrm{CF}_{0}=\{R|\forall(\ell \rightarrow r) \in R:|\ell|=0\} \subseteq \mathrm{CF}$
- $\mathrm{SN}=\left\{R \mid \rightarrow_{R}\right.$ is strongly normalizing (terminating) $\}$

We write R^{-}for $\{r \rightarrow \ell \mid(\ell \rightarrow r) \in R\}$.

Definition (Decomposition of R)

Let R be a SRS over Σ, let S and T be SRSs over $\Gamma \supseteq \Sigma$.
Then the pair (S, T) is a decomposition of R if

$$
\rightarrow_{R}^{*}=\left(\rightarrow_{S}^{*} \circ \rightarrow_{T}^{*}\right) \cap\left(\Sigma^{*} \times \Sigma^{*}\right) .
$$

If additionally $S \in \mathcal{S}$ and $T \in \mathcal{T}$ for classes of $\operatorname{SRS} \mathcal{S}$ and \mathcal{T}, then (S, T) is called an $(\mathcal{S}, \mathcal{T})$-decomposition of R.

Left and right inverse letters

$\left(\Sigma^{*}, \cdot\right)$ is a monoid, but concatenation is not invertible. We introduce formal left and right inverses of letters:

- $\bar{\Sigma}=\Sigma \uplus\{\vec{a}, \overleftarrow{a} \mid a \in \Sigma\}$

The behaviour of these is expressed by the rewriting system:

- $E=\{\vec{a} a \rightarrow \epsilon, a \overleftarrow{a} \rightarrow \epsilon \mid a \in \Sigma\}$

We extend \rightarrow and \leftarrow from letters to strings by:

- $\overrightarrow{a_{1} \cdots a_{n}}=\overrightarrow{a_{n}} \cdots \overrightarrow{a_{1}}$ and $\overleftarrow{a_{1} \cdots a_{n}}=\overleftarrow{a_{n}} \cdots \overleftarrow{a_{1}}$

Observe that $\vec{x} x \rightarrow_{E}^{*} \epsilon \leftarrow_{E}^{*} x \overleftarrow{x}$ for $x \in \Sigma^{*}$.
The above construction is standard. The congruence relation generated by \rightarrow_{E} is called the Shamir congruence in [Sak03] II.6.2.

Conjugates

Example

The system $R=\{a b \rightarrow c\}$ over $\Sigma=\{a, b, c\}$ has the conjugates $R,\{b \rightarrow \overleftarrow{a} c\},\{a \rightarrow c \vec{b}\},\{\epsilon \rightarrow \overleftarrow{a} c \vec{b}\},\{\epsilon \rightarrow \overleftarrow{b} \overleftarrow{a} c\},\{\epsilon \rightarrow c \vec{b} \vec{a}\}$.

By $C(R)$ we denote the union of all conjugates of R.

Theorem

Every SRS R has a context-free conjugate C and

- (C, E) is a (CF, $\left.S N \cap C F_{0}^{-}\right)$-decomposition of R
- ($C(R), E)$ is a decomposition of R

Conjugates

Example

The system $R=\{a b \rightarrow c\}$ over $\Sigma=\{a, b, c\}$ has the conjugates $R,\{b \rightarrow \overleftarrow{a} c\},\{a \rightarrow c \vec{b}\},\{\epsilon \rightarrow \overleftarrow{a} c \vec{b}\},\{\epsilon \rightarrow \overleftarrow{b} \overleftarrow{a} c\},\{\epsilon \rightarrow c \vec{b} \vec{a}\}$.

By $C(R)$ we denote the union of all conjugates of R.

Lemma

For every SRS R over Σ,
(1) $\rightarrow_{C(R) \cup E}^{*} \cap\left(\Sigma^{*} \times \Sigma^{*}\right) \subseteq \rightarrow_{R}^{*}$ (correctness)
(2) $\rightarrow_{R}^{*} \subseteq \rightarrow_{C}^{*} \circ \rightarrow_{E}^{*}$, (completeness) for every context-free conjugate C of R

Every SRS R has a context-free conjugate C and

- (C,E) is a (CF, SN $\cap \mathrm{CF}_{0}^{-}$)-decomposition of R
- $(C(R), E)$ is a decomposition of R

Conjugates

Example

The system $R=\{a b \rightarrow c\}$ over $\Sigma=\{a, b, c\}$ has the conjugates $R,\{b \rightarrow \overleftarrow{a} c\},\{a \rightarrow c \vec{b}\},\{\epsilon \rightarrow \overleftarrow{a} c \vec{b}\},\{\epsilon \rightarrow \overleftarrow{b} \overleftarrow{a} c\},\{\epsilon \rightarrow c \vec{b} \vec{a}\}$.

By $C(R)$ we denote the union of all conjugates of R.

Lemma

For every SRS R over Σ,
(1) $\rightarrow_{C}^{*}{ }_{(R) \cup E} \cap\left(\Sigma^{*} \times \Sigma^{*}\right) \subseteq \rightarrow_{R}^{*}$
(2) $\rightarrow_{R}^{*} \subseteq \rightarrow_{C}^{*} \circ \rightarrow_{E}^{*}$, for every context-free conjugate C of R
(correctness)
(completeness)

Theorem

Every SRS R has a context-free conjugate C and

- (C, E) is a (CF, $\mathrm{SN} \cap \mathrm{CF}_{0}^{-}$)-decomposition of R
- ($C(R), E)$ is a decomposition of R

Deleting string rewriting

Definition (Deleting string rewriting)

A SRS R over Σ is called deleting if there is an irreflexive partial ordering $>$ on Σ such that

$$
\forall(\ell \rightarrow r) \in R \exists a \in \ell \forall b \in r: a>b
$$

Lemma

For a SRS R, the following conditions are equivalent:
(1) There is a terminating context-free conjugate of R
(2) R is deleting.

Deleting string rewriting

Definition (Deleting string rewriting)

A SRS R over Σ is called deleting if there is an irreflexive partial ordering $>$ on Σ such that

$$
\forall(\ell \rightarrow r) \in R \exists a \in \ell \forall b \in r: a>b
$$

Lemma

For a SRS R, the following conditions are equivalent:
(1) There is a terminating context-free conjugate of R.
(2) R is deleting.

Corollary

Let R be a deleting string rewriting system, then
(1) R has a ($\mathrm{SN} \cap \mathrm{CF}, \mathrm{SN} \cap \mathrm{CF}_{0}^{-}$)-decomposition, and
(2) [HofWal04] R preserves regularity, R^{-}preserves context-freeness.

Example

$$
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\}
$$

is deleting with respect to the ordering $a>b>c>d>e$.
A terminating context-free conjugate of R is

$$
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Naive algorithm: closure under R.

Example

$$
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\}
$$

is deleting with respect to the ordering $a>b>c>d>e$.
A terminating context-free conjugate of R is

$$
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Naive algorithm: closure under R.

Example

$$
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\}
$$

is deleting with respect to the ordering $a>b>c>d>e$.
A terminating context-free conjugate of R is

$$
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Naive algorithm: closure under R.

Example

$$
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\}
$$

is deleting with respect to the ordering $a>b>c>d>e$.
A terminating context-free conjugate of R is

$$
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Naive algorithm: closure under R.

Example

$$
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\}
$$

is deleting with respect to the ordering $a>b>c>d>e$.
A terminating context-free conjugate of R is

$$
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Naive algorithm: closure under R.

\Longrightarrow the algorithm does not terminate!

Example (...continued)

$$
\begin{gathered}
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\} \\
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\} \\
E=\{a \overleftarrow{a} \rightarrow \epsilon, \vec{a} a \rightarrow \epsilon, b \overleftarrow{b} \rightarrow \epsilon, \vec{b} b \rightarrow \epsilon, \ldots, d \overleftarrow{d} \rightarrow \epsilon, \vec{d} d \rightarrow \epsilon\}
\end{gathered}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Off-line construction: use $\rightarrow_{R}^{*}=\left(\rightarrow_{C}^{*} \circ \rightarrow_{E}^{*}\right) \cap\left(\Sigma^{*} \times \Sigma^{*}\right)$
(1) closure under C

(3) closure under E
(3) restriction to Σ

Example (...continued)

$$
\begin{gathered}
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\} \\
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\} \\
E=\{a \overleftarrow{a} \rightarrow \epsilon, \vec{a} a \rightarrow \epsilon, b \overleftarrow{b} \rightarrow \epsilon, \vec{b} b \rightarrow \epsilon, \ldots, d \overleftarrow{d} \rightarrow \epsilon, \vec{d} d \rightarrow \epsilon\}
\end{gathered}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Off-line construction: use $\rightarrow_{R}^{*}=\left(\rightarrow{ }_{C}^{*} \circ \rightarrow_{E}^{*}\right) \cap\left(\Sigma^{*} \times \Sigma^{*}\right)$
(1) closure under C

(3) closure under E
(3) restriction to Σ

Example (...continued)

$$
\begin{gathered}
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\} \\
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\} \\
E=\{a \overleftarrow{a} \rightarrow \epsilon, \vec{a} a \rightarrow \epsilon, b \overleftarrow{b} \rightarrow \epsilon, \vec{b} b \rightarrow \epsilon, \ldots, d \overleftarrow{d} \rightarrow \epsilon, \vec{d} d \rightarrow \epsilon\}
\end{gathered}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Off-line construction: use $\rightarrow_{R}^{*}=\left(\rightarrow_{C}^{*} \circ \rightarrow_{E}^{*}\right) \cap\left(\Sigma^{*} \times \Sigma^{*}\right)$
(3) closure under C
(3) closure under E
(3) restriction to Σ

Example (...continued)

$$
\begin{gathered}
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\} \\
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\} \\
E=\{a \overleftarrow{a} \rightarrow \epsilon, \vec{a} a \rightarrow \epsilon, b \overleftarrow{b} \rightarrow \epsilon, \vec{b} b \rightarrow \epsilon, \ldots, d \overleftarrow{d} \rightarrow \epsilon, \vec{d} d \rightarrow \epsilon\}
\end{gathered}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Off-line construction: use $\rightarrow_{R}^{*}=\left(\rightarrow_{C}^{*} \circ \rightarrow_{E}^{*}\right) \cap\left(\Sigma^{*} \times \Sigma^{*}\right)$
(3) closure under C
(3) closure under E
(3) restriction to Σ

Example (...continued)

$$
\begin{gathered}
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\} \\
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\} \\
E=\{a \overleftarrow{a} \rightarrow \epsilon, \vec{a} a \rightarrow \epsilon, b \overleftarrow{b} \rightarrow \epsilon, \vec{b} b \rightarrow \epsilon, \ldots, d \overleftarrow{d} \rightarrow \epsilon, \vec{d} d \rightarrow \epsilon\}
\end{gathered}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Off-line construction: use $\rightarrow_{R}^{*}=\left(\rightarrow_{C}^{*} \circ \rightarrow_{E}^{*}\right) \cap\left(\Sigma^{*} \times \Sigma^{*}\right)$
(3) closure under C
(3) closure under E
(3) restriction to Σ

Example (...continued)

$$
\begin{gathered}
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\} \\
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\} \\
E=\{a \overleftarrow{a} \rightarrow \epsilon, \vec{a} a \rightarrow \epsilon, b \overleftarrow{b} \rightarrow \epsilon, \vec{b} b \rightarrow \epsilon, \ldots, d \overleftarrow{d} \rightarrow \epsilon, \vec{d} d \rightarrow \epsilon\}
\end{gathered}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Off-line construction: use $\rightarrow_{R}^{*}=\left(\rightarrow{ }_{C}^{*} \circ \rightarrow_{E}^{*}\right) \cap\left(\Sigma^{*} \times \Sigma^{*}\right)$
(3) closure under C
(3) closure under E
(3) restriction to Σ

Example (...continued)

$$
\begin{gathered}
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\} \\
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\} \\
E=\{a \overleftarrow{a} \rightarrow \epsilon, \vec{a} a \rightarrow \epsilon, b \overleftarrow{b} \rightarrow \epsilon, \vec{b} b \rightarrow \epsilon, \ldots, d \overleftarrow{d} \rightarrow \epsilon, \vec{d} d \rightarrow \epsilon\}
\end{gathered}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Off-line construction: use $\rightarrow_{R}^{*}=\left(\rightarrow_{C}^{*} \circ \rightarrow_{E}^{*}\right) \cap\left(\Sigma^{*} \times \Sigma^{*}\right)$
(3) closure under C
(3) closure under E
(3) restriction to Σ

Example (...continued)

$$
\begin{gathered}
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\} \\
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\} \\
E=\{a \overleftarrow{a} \rightarrow \epsilon, \vec{a} a \rightarrow \epsilon, b \overleftarrow{b} \rightarrow \epsilon, \vec{b} b \rightarrow \epsilon, \ldots, d \overleftarrow{d} \rightarrow \epsilon, \vec{d} d \rightarrow \epsilon\}
\end{gathered}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Off-line construction: use $\rightarrow_{R}^{*}=\left(\rightarrow_{C}^{*} \circ \rightarrow_{E}^{*}\right) \cap\left(\Sigma^{*} \times \Sigma^{*}\right)$
(3) closure under C
(3) closure under E
(3) restriction to Σ

Example (...continued)

$$
\begin{gathered}
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\} \\
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\} \\
E=\{a \overleftarrow{a} \rightarrow \epsilon, \vec{a} a \rightarrow \epsilon, b \overleftarrow{b} \rightarrow \epsilon, \vec{b} b \rightarrow \epsilon, \ldots, d \overleftarrow{d} \rightarrow \epsilon, \vec{d} d \rightarrow \epsilon\}
\end{gathered}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Off-line construction: use $\rightarrow_{R}^{*}=\left(\rightarrow_{C}^{*} \circ \rightarrow_{E}^{*}\right) \cap\left(\Sigma^{*} \times \Sigma^{*}\right)$
(1) closure under C
(3) closure under E
(3) restriction to Σ

Example (...continued)

$$
\begin{gathered}
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\} \\
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\} \\
E=\{a \overleftarrow{a} \rightarrow \epsilon, \vec{a} a \rightarrow \epsilon, b \overleftarrow{b} \rightarrow \epsilon, \vec{b} b \rightarrow \epsilon, \ldots, d \overleftarrow{d} \rightarrow \epsilon, \vec{d} d \rightarrow \epsilon\}
\end{gathered}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Off-line construction: use $\rightarrow_{R}^{*}=\left(\rightarrow_{C}^{*} \circ \rightarrow_{E}^{*}\right) \cap\left(\Sigma^{*} \times \Sigma^{*}\right)$
(1) closure under C
(3) closure under E
(3) restriction to Σ

Example (...continued)

$$
\begin{gathered}
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\} \\
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\} \\
E=\{a \overleftarrow{a} \rightarrow \epsilon, \vec{a} a \rightarrow \epsilon, b \overleftarrow{b} \rightarrow \epsilon, \vec{b} b \rightarrow \epsilon, \ldots, d \overleftarrow{d} \rightarrow \epsilon, \vec{d} d \rightarrow \epsilon\}
\end{gathered}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Off-line construction: use $\rightarrow_{R}^{*}=\left(\rightarrow{ }_{C}^{*} \circ \rightarrow_{E}^{*}\right) \cap\left(\Sigma^{*} \times \Sigma^{*}\right)$
(1) closure under C
(3) closure under E
(3) restriction to Σ

Example (...continued)

$$
\begin{gathered}
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\} \\
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\} \\
E=\{a \overleftarrow{a} \rightarrow \epsilon, \vec{a} a \rightarrow \epsilon, b \overleftarrow{b} \rightarrow \epsilon, \vec{b} b \rightarrow \epsilon, \ldots, d \overleftarrow{d} \rightarrow \epsilon, \vec{d} d \rightarrow \epsilon\}
\end{gathered}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Off-line construction: use $\rightarrow_{R}^{*}=\left(\rightarrow_{C}^{*} \circ \rightarrow_{E}^{*}\right) \cap\left(\Sigma^{*} \times \Sigma^{*}\right)$
(1) closure under C
(3) closure under E
(3) restriction to Σ

Example (...continued)

$$
\begin{gathered}
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\} \\
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\} \\
E=\{a \overleftarrow{a} \rightarrow \epsilon, \vec{a} a \rightarrow \epsilon, b \overleftarrow{b} \rightarrow \epsilon, \vec{b} b \rightarrow \epsilon, \ldots, d \overleftarrow{d} \rightarrow \epsilon, \vec{d} d \rightarrow \epsilon\}
\end{gathered}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Off-line construction: use $\rightarrow_{R}^{*}=\left(\rightarrow_{C}^{*} \circ \rightarrow_{E}^{*}\right) \cap\left(\Sigma^{*} \times \Sigma^{*}\right)$
(1) closure under C
(3) closure under E
(3) restriction to Σ

Example (...continued)

$$
\begin{gathered}
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\} \\
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\} \\
E=\{a \overleftarrow{a} \rightarrow \epsilon, \vec{a} a \rightarrow \epsilon, b \overleftarrow{b} \rightarrow \epsilon, \vec{b} b \rightarrow \epsilon, \ldots, d \overleftarrow{d} \rightarrow \epsilon, \vec{d} d \rightarrow \epsilon\}
\end{gathered}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Off-line construction: use $\rightarrow_{R}^{*}=\left(\rightarrow_{C}^{*} \circ \rightarrow_{E}^{*}\right) \cap\left(\Sigma^{*} \times \Sigma^{*}\right)$
(1) closure under C
(3) closure under E
(3) restriction to Σ

Example (...continued)

$$
\begin{gathered}
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\} \\
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\} \\
E=\{a \overleftarrow{a} \rightarrow \epsilon, \vec{a} a \rightarrow \epsilon, b \overleftarrow{b} \rightarrow \epsilon, \vec{b} b \rightarrow \epsilon, \ldots, d \overleftarrow{d} \rightarrow \epsilon, \vec{d} d \rightarrow \epsilon\}
\end{gathered}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Off-line construction: use $\rightarrow_{R}^{*}=\left(\rightarrow_{C}^{*} \circ \rightarrow_{E}^{*}\right) \cap\left(\Sigma^{*} \times \Sigma^{*}\right)$
(1) closure under C
(3) closure under E
(3) restriction to Σ

Example (...continued)

$$
\begin{gathered}
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\} \\
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\} \\
E=\{a \overleftarrow{a} \rightarrow \epsilon, \vec{a} a \rightarrow \epsilon, b \overleftarrow{b} \rightarrow \epsilon, \vec{b} b \rightarrow \epsilon, \ldots, d \overleftarrow{d} \rightarrow \epsilon, \vec{d} d \rightarrow \epsilon\}
\end{gathered}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Off-line construction: use $\rightarrow_{R}^{*}=\left(\rightarrow{ }_{C}^{*} \circ \rightarrow_{E}^{*}\right) \cap\left(\Sigma^{*} \times \Sigma^{*}\right)$
(3) closure under C
(3) closure under E
(3) restriction to Σ

Example (...continued)

$$
\begin{gathered}
R=\{b a \rightarrow c b, b d \rightarrow d, c d \rightarrow d e, d \rightarrow \epsilon\} \\
C=\{a \rightarrow \overleftarrow{b} c b, b \rightarrow d \vec{d}, c \rightarrow d e \vec{d}, d \rightarrow \epsilon\} \\
E=\{a \overleftarrow{a} \rightarrow \epsilon, \vec{a} a \rightarrow \epsilon, b \overleftarrow{b} \rightarrow \epsilon, \vec{b} b \rightarrow \epsilon, \ldots, d \overleftarrow{d} \rightarrow \epsilon, \vec{d} d \rightarrow \epsilon\}
\end{gathered}
$$

We construct an automaton A with $\mathcal{L}(A)=R^{*}(L)$ where $L=\{a, b\}^{*}$.
Off-line construction: use $\rightarrow_{R}^{*}=\left(\rightarrow{ }_{C}^{*} \circ \rightarrow_{E}^{*}\right) \cap\left(\Sigma^{*} \times \Sigma^{*}\right)$
(1) closure under C
(2) closure under E
(3) restriction to Σ

$$
\Longrightarrow R^{*}(L)=\left(a+c^{*} b\right)^{*}
$$

Match-bounded string rewriting

Following [GesHofWal04], we annotate letters by numbers.

- Extended alphabet: $\Gamma=\Sigma \times \mathbb{N}$ (we write a_{n} for (a, n) in Γ)

Define base : $\Gamma \rightarrow \Sigma$, height : $\Gamma \rightarrow \mathbb{N}$, lift ${ }_{n}: \Sigma \rightarrow \Gamma$ for $n \in \mathbb{N}$ by

$$
\operatorname{base}\left(a_{n}\right)=a, \operatorname{height}\left(a_{n}\right)=n, \operatorname{lift}_{n}(a)=a_{n}
$$

Definition (match $(R))$

For a SRS R over Σ where $\epsilon \notin \operatorname{lhs}(R)$ define a SRS over Γ :

$$
\begin{aligned}
& \operatorname{match}(R)=\left\{\ell^{\prime} \rightarrow \operatorname{lift}_{m+1}(r) \mid(\ell \rightarrow r) \in R, \operatorname{base}\left(\ell^{\prime}\right)=\ell,\right. \\
& \left.m=\min \text { height }\left(\ell^{\prime}\right)\right\}
\end{aligned}
$$

The SRS match (R) simulates R-rewriting: $\rightarrow_{R}^{*}=\operatorname{lift}_{0} \circ \rightarrow_{\text {match }(R)}^{*} \circ$ base
Example (match(\{aa $\rightarrow a b a\})$)
$a_{0} a_{0} \rightarrow a_{1} b_{1} a_{1}, a_{0} a_{1} \rightarrow a_{1} b_{1} a_{1}, a_{2} a_{1} \rightarrow a_{2} b_{2} a_{2}, a_{4} a_{8} \rightarrow a_{5} b_{5} a_{5}, \ldots$

Definition (Match-boundedness)

The system R is called match-bounded by $h \in \mathbb{N}$ if

$$
\rightarrow_{\operatorname{match}(R)}^{*}\left(\operatorname{lift}_{0}\left(\Sigma^{*}\right)\right) \subseteq(\Sigma \times\{0, \ldots, h\})^{*}
$$

Theorem

Every match-bounded SRS is terminating.

```
For a system S over \Sigma }\times\mathbb{N}\mathrm{ let Sh
```


Remark
Fach system match $h_{h}(R)$ is deleting w.r.t. $a_{m}>b_{n}$ if $m<n$. Hence we could apply the decomposition for deleting systems to match $h_{h}(R)$, but

Definition (Match-boundedness)

The system R is called match-bounded by $h \in \mathbb{N}$ if

$$
\rightarrow_{\operatorname{match}(R)}^{*}\left(\operatorname{lift}_{0}\left(\Sigma^{*}\right)\right) \subseteq(\Sigma \times\{0, \ldots, h\})^{*}
$$

Theorem

Every match-bounded SRS is terminating.
For a system S over $\Sigma \times \mathbb{N}$ let $S_{h}=\left.S\right|_{\Sigma \times\{0, \ldots, h\}}$.
If R is match-bounded by h then $\rightarrow_{R}^{*}=\operatorname{lift}_{0} \circ \rightarrow_{\text {match }_{h}(R)}^{*} \circ$ base

Remark

Each system match $_{h}(R)$ is deleting w.r.t. $a_{m}>b_{n}$ if $m<n$. Hence we could apply the decomposition for deleting systems to match $_{h}(R)$, but ...

Improved decomposition for $\operatorname{match}(R)$

Giving up uniqueness of the inverses to improve the decomposition:

$$
\begin{gathered}
E^{\prime}=\left\{\vec{a}_{i} a_{j} \rightarrow \epsilon, a_{j} \overleftarrow{a_{i}} \rightarrow \epsilon \mid a \in \Sigma, j \geq i \geq 0\right\} \\
C^{\prime}=\left\{a_{i} \rightarrow \operatorname{lift}_{i}(\overleftarrow{x}) \operatorname{lift}_{i+1}(r) \operatorname{lift}_{i}(\vec{y}) \mid(x a y \rightarrow r) \in R, a \in \Sigma, i \geq 0\right\}
\end{gathered}
$$

Example

Take $R=\{a a \rightarrow a b a\}$, and consider decompositions of $\operatorname{match}_{2}(R)$.

$$
\begin{array}{rlrl}
C_{2}^{\prime}=\{ & a_{0} & \rightarrow \overleftarrow{a_{0}} a_{1} b_{1} a_{1}, & C_{2}=C_{2}^{\prime} \uplus\{ \\
& a_{0} & \rightarrow a_{0} \rightarrow \overleftarrow{a_{1}} b_{1} a_{1} \overrightarrow{a_{0}}, & a_{1} a_{1}, a_{0} \rightarrow \overleftarrow{a_{2}} a_{1} b_{1} a_{1}, \\
& a_{1} \rightarrow \overleftarrow{a_{1}} b_{1} a_{1} \overrightarrow{a_{1}} a_{2} b_{2} a_{2}, & a_{0} \rightarrow a_{1} b_{1} a_{1} \overrightarrow{a_{2}}, \\
& a_{1} \rightarrow a_{2} b_{2} a_{2} a_{2}, \\
2 & \left.\overrightarrow{a_{1}}\right\} & & \left.a_{1} \rightarrow a_{2} b_{2} a_{2} \overrightarrow{a_{2}}\right\}
\end{array}
$$

C_{2}^{\prime} contains 4 rules, and $E_{2}^{\prime}=\left\{\overrightarrow{a_{0}} a_{0} \rightarrow \epsilon, \overrightarrow{a_{0}} a_{1} \rightarrow \epsilon, \ldots\right\}$ with 24 rules. In contrast, $C_{2}^{\prime} \subset C_{2}$ with $\left|C_{2}\right|=10$, while $E_{2} \subset E_{2}^{\prime}$ and $\left|E_{2}\right|=12$.

Theorem (match (R) decomposition)

(C^{\prime}, E^{\prime}) is a ($\mathrm{SN} \cap \mathrm{CF}, \mathrm{SN} \cap \mathrm{CF}_{0}^{-}$)-decomposition of match (R). $\left(C_{h}^{\prime}, E_{h}^{\prime}\right)$ is a $\left(\mathrm{SN} \cap \mathrm{CF}, \mathrm{SN} \cap \mathrm{CF}_{0}^{-}\right)$-decomposition of match $_{h}(R)$.

Corollary

Every match-bounded SRS has a (SN $\cap \mathrm{CF}, \mathrm{SN} \cap \mathrm{CF}^{-}$)-decomposition.
The improved decomposition yields a drastic reduction from C_{c} to C_{c}^{\prime} :

$$
\begin{array}{ll}
\left|C_{h}\right| \leq|R| \cdot m \cdot(h+1)^{m} & \left|E_{h}\right|=|\Sigma| \cdot O(h) \\
\left|C_{h}^{\prime}\right| \leq|R| \cdot m \cdot h & \left|E_{h}^{\prime}\right|=|\Sigma| \cdot O\left(h^{2}\right)
\end{array}
$$

Less rules in C imply smaller automata. E adds only ϵ-transitions.

Example

$$
\begin{aligned}
& R=\{c a a c \rightarrow a a a, b \rightarrow a c a, a b a \rightarrow b b\} \text { (RFC-match-bound 12) } \\
& \left|C_{12}\right|=64054 \quad\left|C_{12}^{\prime}\right|=286 \quad\left|E_{12}\right|=78 \quad\left|E_{12}^{\prime}\right|=546 \\
& |A|>10^{45} \quad\left|A^{\prime}\right|<10^{15}
\end{aligned}
$$

where $|A|,\left|A^{\prime}\right|$ are the automata sizes using the off-line construction.

Example (On-line construction for match-bound search)

$$
R=\{a a \rightarrow a b a\} \text { over } \Sigma=\{a, b\}
$$

On-line construction: for every R-redex we choose a conjugate $a \rightarrow r$, add a fresh path labeled with r, followed by closure under E.

- Automaton for lift ${ }_{0}(L)$
- $1 \xrightarrow{20} 1 \xrightarrow{a_{0}} 1$ is a match (R)-redex \Longrightarrow conjugate $a_{0} \rightarrow a_{1} b_{1} a_{1} \overrightarrow{a_{0}}$
- $4 \xrightarrow{\overrightarrow{a_{0}}} 1 \xrightarrow{a_{0}} 1$ is an E^{\prime}-redex, we add a transition $4 \xrightarrow{\epsilon} 1$
- $4 \xrightarrow{\overrightarrow{0_{0}}} 1 \xrightarrow{a_{1}} 2$ is an E^{\prime}-redex, we add a transition $4 \xrightarrow{\epsilon} 2$
- $3 \xrightarrow{a_{1}} 4 \xrightarrow{\epsilon} 1 \xrightarrow{a_{1}} 2$ is a match (R)-redex \Longrightarrow conjugate $a_{1} \rightarrow a_{2} b_{2} a_{2} \overrightarrow{a_{1}}$
- $7 \xrightarrow{\overrightarrow{a_{1}}} 4 \xrightarrow{\epsilon} 1 \xrightarrow{a_{1}} 2$ is an E^{\prime}-redex, we add a transition $7 \xrightarrow{\epsilon} 2$
- Now the automaton is compatible with match (R).

Hence R is match-bounded by 2 and therefore terminating.

Example (On-line construction for match-bound search)

$$
R=\{a a \rightarrow a b a\} \text { over } \Sigma=\{a, b\}
$$

On-line construction: for every R-redex we choose a conjugate $a \rightarrow r$, add a fresh path labeled with r, followed by closure under E.

- Automaton for $\mathrm{lift}_{0}(L)$
- $1 \xrightarrow{a_{0}} 1 \xrightarrow{a_{0}} 1$ is a match (R)-redex \Longrightarrow conjugate $a_{0} \rightarrow a_{1} b_{1} a_{1} \overrightarrow{a_{0}}$
- $4 \xrightarrow{a_{0}} 1 \xrightarrow{20} 1$ is an E^{\prime}-redex, we add a transition $4 \xrightarrow{\epsilon} 1$
- $4 \xrightarrow{\overrightarrow{a_{0}}} 1 \xrightarrow{a_{1}} 2$ is an E^{\prime}-redex, we add a transition $4 \xrightarrow{\epsilon} 2$
- $3 \xrightarrow{a_{1}} 4 \xrightarrow{\epsilon} 1 \xrightarrow{a_{1}} 2$ is a match (R)-redex \Longrightarrow conjugate $a_{1}-a_{2} b_{2} a_{2} \overrightarrow{a_{1}}$
- $7 \xrightarrow{a_{1}} 4 \xrightarrow{\epsilon} 1 \xrightarrow{a_{1}} 2$ is an E^{\prime}-redex, we add a transition $7 \xrightarrow{\epsilon} 2$
- Now the automaton is compatible with match (R).

Hence R is match-bounded by 2 and therefore terminating.

Example (On-line construction for match-bound search)

$$
R=\{a a \rightarrow a b a\} \text { over } \Sigma=\{a, b\}
$$

On-line construction: for every R-redex we choose a conjugate $a \rightarrow r$, add a fresh path labeled with r, followed by closure under E.

- Automaton for lift $_{0}(L)$
- $1 \xrightarrow{a_{0}} 1 \xrightarrow{a_{0}} 1$ is a match (R)-redex \Longrightarrow conjugate $a_{0} \rightarrow a_{1} b_{1} a_{1} \overrightarrow{a_{0}}$
- $4 \xrightarrow{\overrightarrow{a_{0}}} 1 \xrightarrow{a_{0}} 1$ is an E^{\prime}-redex, we add a transition $4 \xrightarrow{\epsilon} 1$
- $4 \xrightarrow{a 0} 1 \xrightarrow{\text { al }} 2$ is an E^{\prime}-redex, we add a transition $4 \xrightarrow{\epsilon} 2$
- $3 \xrightarrow{a_{1}} 4 \xrightarrow{\epsilon} 1 \xrightarrow{a_{1}} 2$ is a match (R)-redex \Longrightarrow conjugate $a_{1} \rightarrow a_{2} b_{2} a_{2} \overrightarrow{a_{1}}$
- $7 \xrightarrow{\overrightarrow{d_{1}}} 4 \xrightarrow{\epsilon} 1 \xrightarrow{a_{1}} 2$ is an E^{\prime}-redex, we add a transition $7 \xrightarrow{\epsilon} 2$
- Now the automaton is compatible with match (R).

Hence R is match-bounded by 2 and therefore terminating.

Example (On-line construction for match-bound search)

$$
R=\{a a \rightarrow a b a\} \text { over } \Sigma=\{a, b\}
$$

On-line construction: for every R-redex we choose a conjugate $a \rightarrow r$, add a fresh path labeled with r, followed by closure under E.

- Automaton for lift ${ }_{0}(L)$
- $1 \xrightarrow{a_{0}} 1 \xrightarrow{a_{0}} 1$ is a match (R)-redex \Longrightarrow conjugate $a_{0} \rightarrow a_{1} b_{1} a_{1} \overrightarrow{a_{0}}$
- $4 \xrightarrow{\overrightarrow{a_{0}}} 1 \xrightarrow{a_{0}} 1$ is an E^{\prime}-redex, we add a transition $4 \xrightarrow{\epsilon} 1$
- $4 \xrightarrow{\overrightarrow{a_{0}}} 1 \xrightarrow{a_{1}} 2$ is an E^{\prime}-redex, we add a transition $4 \xrightarrow{\epsilon} 2$
- $3 \xrightarrow{a_{1}} 4 \xrightarrow{\epsilon} 1 \xrightarrow{a_{1}} 2$ is a match (R)-redex \Longrightarrow conjugate $a_{1} \rightarrow a_{2} b_{2} a_{2} \overrightarrow{a_{1}}$
- $7 \stackrel{\overrightarrow{a_{1}}}{\rightarrow} 4 \xrightarrow{\epsilon} 1 \xrightarrow{a_{1}} 2$ is an E^{\prime}-redex, we add a transition $7 \xrightarrow{\epsilon} 2$
- Now the automaton is compatible with match (R).

Hence R is match-bounded by 2 and therefore terminating.

Example (On-line construction for match-bound search)

$$
R=\{a a \rightarrow a b a\} \text { over } \Sigma=\{a, b\}
$$

On-line construction: for every R-redex we choose a conjugate $a \rightarrow r$, add a fresh path labeled with r, followed by closure under E.

- Automaton for lift ${ }_{0}(L)$
- $1 \xrightarrow{a_{0}} 1 \xrightarrow{a_{0}} 1$ is a match (R)-redex \Longrightarrow conjugate $a_{0} \rightarrow a_{1} b_{1} a_{1} \overrightarrow{a_{0}}$
- $4 \xrightarrow{\overrightarrow{a_{0}}} 1 \xrightarrow{a_{0}} 1$ is an E^{\prime}-redex, we add a transition $4 \xrightarrow{\epsilon} 1$
- $4 \xrightarrow{\overrightarrow{a_{0}}} 1 \xrightarrow{a_{1}} 2$ is an E^{\prime}-redex, we add a transition $4 \xrightarrow{\epsilon} 2$
- $3 \xrightarrow{a_{1}} 4 \xrightarrow{\epsilon} 1 \xrightarrow{a_{1}} 2$ is a match (R)-redex \Longrightarrow conjugate $a_{1} \rightarrow a_{2} b_{2} a_{2} \overrightarrow{a_{1}}$
- Now the automaton is compatible with match (R).

Hence R is match-bounded by 2 and therefore terminating.

Example (On-line construction for match-bound search)

$$
R=\{a a \rightarrow a b a\} \text { over } \Sigma=\{a, b\}
$$

On-line construction: for every R-redex we choose a conjugate $a \rightarrow r$, add a fresh path labeled with r, followed by closure under E.

- Automaton for lift $_{0}(L)$

- $1 \xrightarrow{a_{0}} 1 \xrightarrow{a_{0}} 1$ is a match (R)-redex \Longrightarrow conjugate $a_{0} \rightarrow a_{1} b_{1} a_{1} \overrightarrow{a_{0}}$
- $4 \xrightarrow{\overrightarrow{a_{0}}} 1 \xrightarrow{a_{0}} 1$ is an E^{\prime}-redex, we add a transition $4 \xrightarrow{\epsilon} 1$
- $4 \xrightarrow{\overrightarrow{a_{0}}} 1 \xrightarrow{a_{1}} 2$ is an E^{\prime}-redex, we add a transition $4 \xrightarrow{\epsilon} 2$
- $3 \xrightarrow{a_{1}} 4 \xrightarrow{\epsilon} 1 \xrightarrow{a_{1}} 2$ is a match (R)-redex \Longrightarrow conjugate $a_{1} \rightarrow a_{2} b_{2} a_{2} \overrightarrow{a_{1}}$
- $7 \xrightarrow{\overrightarrow{a_{1}}} 4 \xrightarrow{\epsilon} 1 \xrightarrow{a_{1}} 2$ is an E^{\prime}-redex, we add a transition $7 \xrightarrow{\epsilon} 2$
- Now the automaton is compatible with match (R).

Hence R is match-bounded by 2 and therefore terminating.

Example (On-line construction for match-bound search)

$$
R=\{a a \rightarrow a b a\} \text { over } \Sigma=\{a, b\}
$$

On-line construction: for every R-redex we choose a conjugate $a \rightarrow r$, add a fresh path labeled with r, followed by closure under E.

- Automaton for lift ${ }_{0}(L)$
- $1 \xrightarrow{a_{0}} 1 \xrightarrow{a_{0}} 1$ is a match (R)-redex \Longrightarrow conjugate $a_{0} \rightarrow a_{1} b_{1} a_{1} \overrightarrow{a_{0}}$
- $4 \xrightarrow{\overrightarrow{a_{0}}} 1 \xrightarrow{a_{0}} 1$ is an E^{\prime}-redex, we add a transition $4 \xrightarrow{\epsilon} 1$
- $4 \xrightarrow{\overrightarrow{a_{0}}} 1 \xrightarrow{a_{1}} 2$ is an E^{\prime}-redex, we add a transition $4 \xrightarrow{\epsilon} 2$
- $3 \xrightarrow{a_{1}} 4 \xrightarrow{\epsilon} 1 \xrightarrow{a_{1}} 2$ is a match (R)-redex \Longrightarrow conjugate $a_{1} \rightarrow a_{2} b_{2} a_{2} \overrightarrow{a_{1}}$
- $7 \xrightarrow{\overrightarrow{a_{1}}} 4 \xrightarrow{\epsilon} 1 \xrightarrow{a_{1}} 2$ is an E^{\prime}-redex, we add a transition $7 \xrightarrow{\epsilon} 2$
- Now the automaton is compatible with match (R). Hence R is match-bounded by 2 and therefore terminating.

Example

To conclude, we consider the system

$$
R=\{c a a c \rightarrow a a a, b \rightarrow a c a, a b a \rightarrow b b\} .
$$

Jambox is the only termination prover that solved this problem in the recent termination competition, see
http://www.lri.fr/~marche/termination-competition/, problem SRS/secret2006/jambox-1.
The implementation of our on-line algorithm constructs an exactly compatible automaton with 27.957 states that certifies the RFC-match-bound 12. (time is 1,13 seconds on a Athlon 3200+)

R R. V. Book, M. Jantzen, and C. Wrathall.
Monadic Thue systems.
Theoret. Comput. Sci., 19:231-251, 1982.
(i) A. Geser, D. Hofbauer and J. Waldmann.

Match-bounded string rewriting systems.
Appl. Algebra Engrg. Comm. Comput., 15(3-4):149-171, 2004.
(1) A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema.

Finding finite automata that certify termination of string rewriting. Internat. J. Found. Comput. Sci. 16(3):471-486, 2005.

廋 D. Hofbauer and J. Waldmann.
Deleting string rewriting systems preserve regularity.
Theoret. Comput. Sci., 327(3):301-317, 2004.
围 J. Sakarovitch.
Eléments de Théorie des Automates.
Vuibert, Paris, 2003.

