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Automatic Termination
• using weighted finite automata

• that can be found automatically

unified view of

• (standard) matrix method (2006)

• arctic matrix method (2008)
• match bound method (2003)

including some history, some alternate views and
explanations, some directions for extensions
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Termination of Programs
Alan Turing: Checking a large routine, 1949.

. . . Finally the checker has to verify that the
process comes to an end. Here again he should
be assisted by the programmer giving a further
definite assertion to be verified. This may take the
form of a quantity which is certain to decrease
continually and vanish when the machine stops. To
the pure mathematician it is natural to give an
ordinal number . . . (n− r)ω2 + (r − s)ω + k.

http://www.turingarchive.org/browse.php/B/8
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Combinatorial Group Theory
Max Dehn (1911): for a group presentation, e.g.,
(X = {a, b}, R = {a2 = 1, b3 = 1, a−1ba = b−1})),
and w1, w2 ∈ X∗, decide word problem w1 ↔∗R w2.

small cancellation theory, Dehn’s algorithm,. . .

. . . let w = bcd . . . find suitable w′ = bt−1d of
shorter length. A finite number of such
reductions . . .

(cited in: Lyndon, Schupp: Combinatorial Group
Theory, 1977, Sect. V.4)
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Languages and Rewriting (I)
• grammars are rewrite systems

• operations on languages by rewriting
(completion) of automata

e.g., REG is closed w.r.t. monadic (= inverse
context-free) rewriting (rhs of length ≤ 1)

Proof: given a finite automaton, add transitions
(only - not states)

(Ronald Book, Matthias Jantzen, Celia Wrathall,
1982)
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Languages and Rewriting (II)
For the solitaire game

• rules R = {OXX → XOO, XXO → OOX},
• solved positions L = O∗XO∗,

the set of solvable positions R−∗(L) is a regular
language. (Folklore theorem. Exercise in book by
Zohar Manna, 1974.)
Exercise in book by Jean Berstel, 1979: the
congruence of {OXX → XOO} is a rational
transduction (thus REG-preserving)
Bala Ravikumar, 2004: change-bounded rewriting
is REG-preserving, R is change-bounded (by 4).
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Automata and Paths
an automaton A = (Σ, Q, I, F, δ) determines, for
each pair of states, a set of paths.

composition of paths:

• sequential: p
u
→ q ∧ q

v
→ r ⇒ p

u·v
→ r

• parallel:

p0
u1→ p1 . . . pk−1

uk→ pk

∨ p0
u1→ p′1 . . . p′k−1

uk→ pk

⇒ p0
u1·...·uk→ pk

A computes a function Q× Σ∗ ×Q→ {0, 1} = B
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Weighted Automata
count the number of paths:

// I

Σ
�� a // M

Σ
�� b // F

Σ
��

//

attach weights to transitions and combine:
sequential: multiplication, parallel: addition

computes a function Q× Σ∗ ×Q→ N
e.g., A(I, aabb, F ) = 4, A(I, abab, F ) = 3.

with initial and final weights I, F : Q→ N,
global weight function A : Σ∗ → N given by
A(w) =

∑

{I(p) · A(p, w, q) · F (q) | p, q ∈ Q}
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Automata = Matrices

1 // p

Σ:1
�� a:1 // q

Σ:1
�� b:1 // r

Σ:1

�� 1 //
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
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0

0

1






,

algebraic view of automaton: A(w) = I · ([w] · F )

algebra domain: weight vectors D = (Q→ N),

algebra operations: for x ∈ Σ, [x] : D → D
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Weighted Automata/Languages
• Marcel Schützenberger, On a Definition of a

Family of Automata, 1961.

• Jean Berstel, Christophe Reutenauer: Rational
Series and Their Languages, 1988.

formal power series in non-commuting
variables:
coefficient of monomial = weight of word

• Manfred Droste, Werner Kuich, Heiko Vogler:
Handbook of Weighted Automata, 2009.
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Automata and Rewriting
A is (globally) compatible with a rewrite system R:

∀u, v ∈ Σ∗ : u→R v ⇒ A(u) > A(v)

if weight domain (N, >) is well-founded,

then automaton A certifies termination of R

// I

Σ:1
�� a:1 // M

Σ:1
�� b:1 // F

Σ:1
��

//

is compatible with R = {ab→ ba}

e.g., A(I, aabb, F ) = 4, A(I, abab, F ) = 3.

but how to prove this?
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Testing Compatibility
• ∀p, q ∈ Q : A(p, l, q) ≥ A(p, r, q)

• ∀u, v ∈ Σ∗ : ∃i, p, q, f ∈ Q :

i
u // p

l

  

r

>>
q v // f ∧ A(p, l, q) > A(p, r, q)

Let A′ = A plus {p
D
→ q | A(p, l, q) > A(p, r, q)}

then check Σ∗ ·D · Σ∗ ⊆ supp(A′)
where supp : (N, +, ·, 0, 1)→ (B,∨,∧, 0, 1)

This test is PSPACE.
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Simplified Compatibility (I)
“E/P” method: I = (1, . . . ), F = (. . . , 1)T ,

[x] ∈







1 . . . ∗
... . . . ...
∗ . . . 1






, [l]− [r] ∈

(

. . . 1
...

)

corresponds to (extended) monotone algebra

• domain: (. . . , 1)T ,
• strict order: x1 > y1 ∧ x2 ≥ y2 ∧ . . . ∧ xd ≥ yd

• weak order: x1 ≥ y1 ∧ . . . ∧ xd ≥ yd

Endrullis, W., Zantema 2006
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An Example Automaton

1 //GFED@ABC1

a:1,c:1

��

Σ:1




a:4,c:2
//

b:2

##G
GGGGGGGGG

GFED@ABC2
c:1

{{wwwwwwwwww

GFED@ABC3
Σ:1

;;wwwwwwwwww
b:2

**

a:1
##G

GGGGGGGGG

b:2{{wwwwwwwwww

GFED@ABC5

Σ:1

MM1
oo GFED@ABC4

a:2,c:2

OO

Σ:1
ccGGGGGGGGGG

a:2,c:4
oo

(Dieter Hofbauer, J.W., 2006) strictly compatible w.

{a2 → bc, b2 → ac, c2 → ab} (Hans Zantema, 2003)
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Simplified Compatibility (II)

“M/M” method: [x] ∈M ∧ [l]− [r] ∈M

where M = {m | ∀i∃j : mij > 0}

Hofbauer/W 2006;

Pierre Courtieu, Gladys Gbedo, Olivier Pons 2009

what is the corresponding algebra (domain, order)?
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Weighted Tree Automata
• Σ-algebra of weight vectors D = (Q→ N)
• interpret f ∈ Σk by multilinear [f ] : Dk → D

e.g., (x, y) 7→ x + x · y + y
• restrict to sums of unary linear functions:

path-separated weighted tree automaton

[f ] : (~v1, . . . , ~vk) 7→M1 · ~v1 + . . . + Mk · ~vk + ~a

weight of tree is sum of weights of paths.

Jörg Endrullis, Hans Zantema, J.W.:
Matrix Interpretations for TRS, 2006.
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Exotic semirings
• generalize weight domain: B, N, . . . semirings

• tropical (N ∪ {+∞}, min, +, +∞, 0)

named after Imre Simon, Univ. Sao Paulo
investigated Finite Power Property, and Star
Height Problem of regular languages
(Limited Subsets of a Free Monoid, 1978)

• artic (N ∪ {−∞}, max, +,−∞, 0)

the “opposite” of tropical

• “fuzzy” (N ∪ {−∞, +∞}, min, max, +∞,−∞)
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Motivation, Applications
degrees of polynomials: addition 7→ max,
multiplication 7→ plus (= the arctic semiring)

limits of “warped” classical operations:

x⊕b y = logb(b
x + by), x⊗ y = x + y = logb(b

x · by)

for b→ +∞: arctic, for b→ +0: tropical

(large deviation theory, tropical algebraic geometry,
idempotent analysis)

tropical = (min,plus) = shortest-path algebra
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Arctic Termination

need a different local compatibility condition:

standard plus is strict: y > y′ ⇒ x + y > x + y′

arctic plus (= max) is not: max(3, 2) = max(3, 1)

but it is half strict:
x > x′ ∧ y > y′ ⇒ max(x, y) > max(x′, y′)

use x≫ y := x > y ∨ x = y = −∞

and require [l]≫ [r] pointwise.

Adam Koprowski, J.W., 2008
including formal verification in Color/Coq.
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Quasi-Periodic → Arctic
R = {bab→ a3, a3 → b3}, proof by Aleksey Nogin,
Carl Witty 2006; Hans Zantema, J.W., 2007

x 0 1 2 3 4 5 . . .

[a](x) 1 2 3 4 5 6 . . .

[b](x) 0 3 3 3 6 6 . . .

[aab](x) 3 6 6 6 9 9 . . .

[aaa](x) 3 4 5 6 7 8 . . .

[abb](x) 0 3 3 3 6 6 . . .
translation to arctic (period = dimension)
(Adam Koprowski, J.W., 2009), used by Matchbox
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Match bounds

∀(l, r) ∈ R : ∀p
l
→A q : ∃p

r
→A q

such that max of l labels > max of r labels.
example R = {a2b2 → b3a3} I
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��
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����
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��
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•
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3

1
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1
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2 // •

b3
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•b3oo F #4
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•

b3

0
a3

0
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1
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• b3

1

99rrrrrr

a2

2
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b2

2
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•
b2
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a3

// •

b3
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a3

// •

b3

\\::::::::::

a3
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Alfons Geser, Dieter Hofbauer, J.W. 2003
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Match bounds and Semirings
• the automaton is actually weighted in the

semiring (N ∪ {−∞, +∞}, min, max, +∞,−∞)
• there is an implicit “min” in the notion of

“match-compatibility”
• local compatibility does not imply compatibility

A(ulv) > A(urv), since range A is finite.
• globally, use semiring of multisets of labels.
• matchbounds for relative termination.

relative rules may keep −∞. (J.W. 2007)
• observation: R/S match-bounded
∧ S match-bounded⇒ R match-bounded.
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Find Compatible Automata
• constraint solving: for fixed dimension,
• describe compatibility by constraint system

standard: QF_NIA, arctic: QF_LIA,
match: QF_IDL

• apply SMT solver (Barcelogic, Yices, Z3, . . . )
• for fixed bit width, transform to QF_BV
• then SMT solver (Boolector, . . . )
• transform to CNF,

then SAT solver (Minisat, . . . )

• completion
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Automata by Completion
• problem: for automaton A, rewrite system R,

compute B with L(B) = R∗(L(A)).

• algorithm: for each (l→ r) ∈ R, p
l
→A q,

ensure that p
r
→A q by adding paths

• for weighted automata:
condition A(p, l, q) > A(p, r, q).

• problems:

• non-termination because of added states
• non-linearities (for TRS)
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Completion for Matchbounds
• can construct language closure w.r.t. rewriting

at the same time
• this is used in the RFC method (prove

match-boundedness on right hand sides of
forward closures)

• state re-use heuristics (Alfons Geser, Dieter
Hofbauer, Hans Zantema, J.W.)

• for non-linear TRS: quasi-deterministic tree
automata (Martin Korp and Aart Middeldorp)
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Completion for (plus,times)
termination proof for {a2b2 → b3a3}
by MultumNonMulta (Dieter Hofbauer, 2006):
start with redex path, add edges, increase weights.

IΣ:1 77

a:1 // • a:1 // • b:1 //

a:1

aa • b:1 //

b:1

aa

Σ:2

yy

F Σ:1
uu

note change of direction:

• fuzzy semiring: zero (= +∞) is highest,
completion goes forward (redex→ reduct)

• in standard semiring on N: zero is lowest,
completion goes backward (reduct→ redex)RTA, Brasilia, July 09 – p.26/35



Exact construction of automata

R is deleting w.r.t. > on Σ: for each (l→ r) ∈ R,
there is x ∈ l larger than each y ∈ r.

R match-bounded⇒ annotated R is deleting.

R deleting⇒ exists C, E with→∗R=→∗C ◦ →
∗
E

where C terminating and context-free (SNCF)
and E inverse CF (rhs of length ≤ 1, in fact = 0)

Corr.: R preserves REG, R− preserves CF

(Jörg Endrullis, Dieter Hofbauer, J.W., WST 2006)
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Decomposition f. Deleting SRS

for rule (l = uxv → r) ∈ R, use
(x→ u←rv→) ∈ C,

E = {xx← → ǫ, x→x→ ǫ | x ∈ Σ}

→∗R=→∗C ◦ →
∗
E by this diagram (and confluence)

• r // •

v→

��

ǫ

((QQQQQQQQQQQQQQ

•

ǫ
66mmmmmmmmmmmmmm

u

((QQQQQQQQQQQQQQ •

•

u←

OO

x // •

v
66mmmmmmmmmmmmmm

and C terminating iff R deleting.

very efficient implementation in Jambox (2005)RTA, Brasilia, July 09 – p.28/35



Relative Termination
• R S for rewriting systems R, S with R ⊇ S

and (R \ S) is terminating relative to S, that is,
from R, all non-S rules “could be removed”.

• is transitive, R
∗
∅ implies R terminating.

•
M(W,n)

:= {(R, S) | there is a W -weighted
automaton with ≤ n states strictly compatible
with R \ S and weakly compatible with S }
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Matrix Termination Hierarchy

hierarchy
M(W,d) s

for (pairs of) rewrite systems

• semiring W (standard, arctic, fuzzy)

• dimension d

• number of proof steps s

the usual questions about hierarchies:

• is it infinite (in d, in s)?

• are the levels decidable?
• which of the obvious inclusions are strict?
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Some Results on the Hierarchy (I)
easy observation: these are decidable:

• M(R≥0, d) Tarski, QEPCAD

• M(arctic, d) linear inequalities

• M(matchbounds, d) difference logic

relations between proofs over different domains:

• obvious inclusions N ⊆ Q≥0 ⊆ Alg≥0 ⊆ R≥0

• matchbounds→ multisets→ weight functions
→ tropical
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Some Results on the Hierarchy (II)
Andreas Gebhardt and J.W. (WATA 2008)

• M(N, 0) ⊂M(N, 1) ⊂M(N, 2) ⊂M(N, 3)

• Amitsur-Levitski Theorem
(polynomial identities in matrix rings)
⇒ dimension hierarchy is infinite

• derivation lengths
⇒ proof length hierarchy is infinite

• M(N, ∗)∗ ⊂M(Q≥0, ∗)
∗

. . . for relative termination
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Derivational Complexity
• dcR(s) = sup{k | ∃t, t′ : |t| ≤ s ∧ t→k

R t′}

• termination proof by interpretation
automatically gives complexity information

• general plan: from proof method,
infer complexity class.
(Andreas Weiermann, Dieter Hofbauer, and
others)

• recent interest in polynomial bounds
(Georg Moser and others).
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D.C. and Weighted Automata
growth bounds for matrix interpretations:

• arctic, tropical, fuzzy (matchbounds): linear

• standard (no restrictions: exponential)
• upper triangular shape:
∀i > j : mij = 0 ∧ ∀i : mii ≤ 1
implies polynomial, degree ≤ size− 1

• easy improvement:
degree ≤ #{i : ∃x ∈ Σ : [x]ii > 0}

all diagonals = (1, 0, . . . , 0, 1)⇒ linear
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Challenges in Matrix Complexity
• polynomial matrix growth is decidable

(ET0L growth functions, formal power series)

⇒ implement decision procedure
as constraint system (Matchbox/poly)

• other semirings for growth information

• relate to density of (regular) languages

DL(n) = |L ∩ Σn|

proof of the pudding: {a2 → bc, b2 → ac, c2 → ab}
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