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Example (String Rewriting)
I Given a linear interpretation [·] for Σ = {a,b},

how would you compute [aabb], [bbbaaa]?
I Naive computation: [a[a[bb]]], [b[b[b[a[aa]]]]]

total 8 multiplications
I More efficient: c = [aa],d = [bb], [cd ], [b[d [ca]]]

total 6 multiplications
I Concrete→ symbolic computation (produce a

constraint system that describes compatibility of
unknown interpretation with rewrite system)

I Goal: Compress terms. Questions: W.r.t. which
cost measure? Efficient compression algorithm
(perhaps approximative)
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Example (Term Rewriting)
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I Normal bottom-up
evaluation: Four
multiplications

I Instead, evaluate
F1 ·G1 first: Three
multiplications (we
will call (f ,1,g) a
digram with positive
sharing)

A. Bau, M. Lohrey, E. Noeth, J. Waldmann Compression of Rewriting Systems for Termination AnalysisRTA’13, Eindhoven 3 / 19

Example (Term Rewriting)

h

f

g

x

f

g

y

I Normal bottom-up
evaluation: Four
multiplications

I Instead, evaluate
F1 ·G1 first: Three
multiplications (we
will call (f ,1,g) a
digram with positive
sharing)

A. Bau, M. Lohrey, E. Noeth, J. Waldmann Compression of Rewriting Systems for Termination AnalysisRTA’13, Eindhoven 3 / 19



Example (Term Rewriting)

f

g

h

x y

I Normal bottom-up
evaluation: Four
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F1 ·G1 · H1 and
F1 ·G1 · H2,

I Instead, evaluate
F1 ·G1 first.
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Overview

I Introduction
I Cost Function
I Compression by Digrams
I Adaption of TreeRePair
I Experiments
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Cost of Terms

I Consider matrix interpretations: k -ary symbol f
interpreted by function

(x1, . . . , xk) 7→ F0 + F1x1 + . . . + Fkxk

where F0 vector, F1, . . . ,Fk matrices
I Interpretation of term t ∈ Term(Σ,V ) is function

[t ] also of this shape with |Var(t)| arguments
I Cost of a term t is number of matrix-by-matrix

multiplications needed to compute [t ] bottom-up
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Cost of Terms

Definition
The (matrix multiplication) cost of a term
t = (D, λ) ∈ Term(Σ,V ) is

cost(t) =
∑

p∈D\{ε},λ(p)/∈V

|Var(t |p)|.

The cost of a tuple (t1, . . . , tm) of terms is∑m
i=1 cost(ti).
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Example:

h(c(s(x), c(s(0), y)), z)

I cost(t4) = 0

I cost(t2) = 1

I cost(t3) = 1

I cost(t1) = 2

I cost(t) = 4
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Compression by Digrams
I A digram is h = (f , i ,g) where f ∈ Σk ,g ∈ Σl .

This is a (k − 1 + l)-ary symbol, with expansion
h(x1, . . . , xi−1, y1, . . . , yl , xi+1, . . . , xk)→
f (x1, . . . , xi−1,g(y1, . . . , yl), xi+1, . . . , xk)

I The cost of a digram h = (f , i ,g) is the arity of g
because that many multiplications are needed to
get the coefficients of (y1, . . . , yl)

I The set S ⊆ Term(Σ,V ) can be represented by
set S′ ⊆ Term(Σ ∪ D,V ),
where D = digrams (possibly nested),
S = expand(S′)

I Cost of S′ is cost of digrams + cost of terms
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Example (Digrams)

Example

Compressed term list:

([h,2, c](x , y , z), [[h,1, c],1, s](y , x , z)|
[h,1, c], [h,2, c], [[h,1, c],1, s]

Expansion:

(h(x , c(y , z)), h(c(s(y), x), z)
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Example continued
h

x c

y z

⇒

[h, 2, c]

x y z

h

c

s

y

x

z

⇒

[[h, 1, c], 1, s]

y x z

Figure : The replaced digrams from the previous example.
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Previous work (Lohrey et al. (2011))

I Unit cost (each node costs 1) models size
compression,

I Has been used to compress XML documents
I The exact compression problem is NP-hard
I Approximative, iterative algorithm: in each step

pick the digram with largest savings
I On-the-fly update of savings is possible (results

in linear time algorithm)
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TreeRePair (Lohrey et al 2011)
input: a term list t = (t1, . . . , tm)
d := ε (a list of digrams)
while there exists a digram d with maxSize(d , t) > 1
do

let d be a digram with
maxSize(d , t) ≥ maxSize(d ′, t) for all digrams d ′

let u such that t →maxOcc(d ,t) u
t := u; d := (d ,d)

endwhile
output: (t | d)

maxOcc(d , t) : max. list of non-overlapping digrams
maxSize(d , t) := |maxOcc(d , t)|
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Our contributions

I Define non-uniform cost model, suitable for
computing coefficients of linear interpretations

I Implement efficiently (keep the algorithmic idea
of TreeRePair)

I Adapt to the dependency pairs transformation
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Compression and DP Transform
I Dependency Pairs transformation creates

(many) additional rules, in extended (marked)
signature

I matrix interpretations for DP transformed
systems use two-sorted algebra (base sort:
vectors, top sort: scalars)

I interpretation of marked terms can be done in
the top sort completely (starting from the top,
vector-by-matrix multiplications only, not
matrix-by-matrix)

I compress the original system as usual
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Experiments-Settings

I We use restricted version of Matchbox (to
isolate the compression effect)
https://github.com/jwaldmann/matchbox

I Matrix interpretations as only non-cheap method
I Four settings: No compression, compression,

Dependency Pairs w/o compression and DP
with compression
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Performance Data (from TPDB)

method cost CNF-size (var, cl.)

no compression 1.61 · 106 4.04 · 108,3.23 · 109

compression 5.18 · 105 1.30 · 108,1.04 · 109

dependency pairs (DP) 1.51 · 106 1.92 · 109,6.22 · 109

DP and compression 4.39 · 105 1.11 · 109,3.63 · 109

Table : Total cost and CNF-size with and without compression,
for 3027 systems from TPDB

Both costs and CNF-size are approximately 1/3 of the size of
their non- compressed counterparts.
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Performance Data (from TPDB)

method av. time yes # yes inst.

no compression 11.9 584
compression with MCTreeRePair 12.2 628
dependency pairs (DP) 1.85 681
DP and compression 4.10 709

Table : Influence of compression on the matchbox termination
prover.
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Discussion

I Cost models matrix-by-matrix multiplications
only

I Matrix-by-vector (for absolute coefficients)?
I Vector-by-matrix (for marked terms)?
I . . . and what about additions?
I In general, matrix multiplication chain problem
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