Automated Exercises for	Automated Exercises - Why?
Constraint Programming	 lecture without homework exercises is useless
Johannes Waldmann (HTWK Leipzig)	 homework that is not discussed/graded is useless
	 no money to pay teaching assistants for grading
http://www.imn.htwk-leipzig.de/	 not enough time to discuss everything in class
~waldmann/talk/14/wlp/auto/	 automated and real-time grading helps student to understand the basics
September 16, 2014	 and frees class time for more interesting discussion
(Declarative) Constr. Programming	Exercise for Propositional SAT
 constraint program (w.r.t. structure S) is formula F in predicate logic 	(to show the general idea in a very straigthforward case)
► constraint <i>solver</i> answers the question <i>F</i> ∈ Theory(<i>S</i>)	 exercise instance: satisfiable formula F (in CNF)
In particular, if F is of shape ∃x ₁ ,, x _n : M, by giving a satisfying assignment	 solution: a satisfying assignment generator will produce random satisfiable F
aspects for teaching:(syntax and semantics of predicate logic)	 with given number of variables and clauses
 model application problems by constraints 	 doing the exercise, student will (learn semantics of propositional formulas)
 explain how solvers work Kroening, Strichman: <i>Decision Procedures</i> (Springer, 2008) 	 appreciate the "hard work" that the SAT solvers do
UNSAT proofs by resolution	A general model for automated exercises
exercise:	doing the exercise, student has to make choices general description (analogy)
 instance: unsatisfiable F in CNF solution: a resolution proof of the empty 	 exercise: non-deterministic algorithm
clause actually,	 student: acts as oracle automated grader: acts as verifier
 proof is DAG, represented as list of nodes root nodes are clauses from F 	how does this fit the teaching objetives?if the subject is NP, then very well
 each internal node is resolution step 	(obviously)if the subject is a deterministic algorithm (as
	used in constraint solvers), then what?
Exercises for Decision Methods	Exercise for solving FD constraints
 present the (invariants of the) algorithm via inference rules, 	via tree search, state is given by stack of domain assignments (variable \mapsto subset of domain)
as in (e.g.) Apt: Principles of Constraint Programming	 Decide: for variable, pick value, push others Solved, Backtrack, Inconsistent
 most often these rules are non-deterministic in a natural way 	$\frac{x \in D}{x = a \mid x \in D \setminus \{a\}} \text{ for } a \in D$
 this allows to apply our exercise model concrete algorithm corresponds to specific 	Stack [listToFM [(x, [0,1,2,3]), (y, [0,3])]]
 strategy in rule applications strategy is ignored in verifying the solutions 	== Decide x 1 ==>
 strategy is ignored in verifying the solutions but can be enforced implicitly (using wrong strategy takes too many steps) 	Stack [listToFM [(x, [1]), (y, [0,3])] ,listToFM [(x, [0, 2,3]), (y, [0,3])]]

<pre>Ex. for FD: Arc Consistency (P , mkSet [[0, 0, 0], [0, 1, 1], [0, 2, 2] , [0, 3, 3], [1, 0, 1], [1, 1, 2] , [1, 2, 3], [2, 0, 2], [2, 1, 3] , [3, 0, 3]]) current : Stack [listToFM [(x, [0])</pre>	 FD constraints (Exercise design) if constraint is unsat, then student has to produce a full search tree could be done by Decide/Backtrack only, but is impractical enforces the usage of arc consistency deductions if constraint is sat, then student could guess a solution and then just enter the corresponding Decide-steps (and avoid arc consistency considerations) Decide must always uses lowest value
 Exercise for DPLL with CDCL Davis, Putnam, Logeman, Loveland, solves SAT plain DPLL: just like FD tree search, unit propagation ≈ 1-consistency. Conflict Driven Clause Learning, Backjumping in case of conflict: learn a new clause <i>R</i> (the conflict "reason", must be inferrable from clauses used to obtain current assignment) jump back (and use <i>R</i> for unit propagation) student choices: what to learn, where to jump 	 DPLL Exercise Generator naive approach: since DPLL is complete method, it can be applied to <i>any</i> formula drawback: solutions (proof traces) vary greatly in length fair approach: generate formula find (shortest) proof trace (implement backtracking solver) choose formula where proof trace length is reasonable drawback: source code contains solver, students may exploit this
SAT and DPLL modulo Theory Syntax: F in CNF where clauses may contain• Boolean literals and • theory literals, e.g., $\neg(2x + 3 > 4y)$ state of search given by partial assigment (= set of literals) σ two kinds of conflicts: • Boolean conflict (F contains clause where all literals are false in σ) • Theory conflict (theory literals from σ are inconsistent)example: • Theory of linear inequalities (over \mathbb{Q}) • Solver: Fourier-Motzkin	 Conclusion, Discussion exercises for constraint programming automated generation of instances, grading of solutions use exercises (anonymously) at https: //autotool.imn.htwk-leipzig.de/cgi-bin/Trial.cgi?lecture=199 make our own autotool installation (run it in a VM, https://github.com/marcellussiegburg/autobuildtool)