
Automated Exercises for
Constraint Programming

Johannes Waldmann (HTWK Leipzig)

http://www.imn.htwk-leipzig.de/
~waldmann/talk/14/wlp/auto/

September 16, 2014

http://www.imn.htwk-leipzig.de/~waldmann/talk/14/wlp/auto/
http://www.imn.htwk-leipzig.de/~waldmann/talk/14/wlp/auto/

Automated Exercises - Why?
I lecture without homework exercises is

useless
I homework that is not discussed/graded is

useless
I no money to pay teaching assistants for

grading
I not enough time to discuss everything in

class
I automated and real-time grading helps

student to understand the basics
I and frees class time for more interesting

discussion

(Declarative) Constr. Programming
I constraint program (w.r.t. structure S)

is formula F in predicate logic
I constraint solver answers the question

F ∈ Theory(S)

I in particular, if F is of shape ∃x1, . . . , xn : M,
by giving a satisfying assignment

aspects for teaching:
I (syntax and semantics of predicate logic)
I model application problems by constraints
I explain how solvers work

Kroening, Strichman: Decision Procedures
(Springer, 2008)

Exercise for Propositional SAT
(to show the general idea in a very
straigthforward case)

I exercise
I instance: satisfiable formula F (in CNF)
I solution: a satisfying assignment

I generator
I will produce random satisfiable F
I with given number of variables and clauses

doing the exercise, student will
I (learn semantics of propositional formulas)
I appreciate the “hard work” that the SAT

solvers do

UNSAT proofs by resolution

exercise:
I instance: unsatisfiable F in CNF
I solution: a resolution proof of the empty

clause
actually,

I proof is DAG, represented as list of nodes
I root nodes are clauses from F
I each internal node is resolution step

A general model for automated
exercises

doing the exercise, student has to make choices
general description (analogy)

I exercise: non-deterministic algorithm
I student: acts as oracle
I automated grader: acts as verifier

how does this fit the teaching objetives?
I if the subject is NP, then very well

(obviously)
I if the subject is a deterministic algorithm (as

used in constraint solvers), then what?

Exercises for Decision Methods
I present the (invariants of the) algorithm via

inference rules,
as in (e.g.) Apt: Principles of Constraint
Programming

I most often these rules are
non-deterministic in a natural way
this allows to apply our exercise model

I concrete algorithm corresponds to specific
strategy in rule applications

I strategy is ignored in verifying the solutions
I but can be enforced implicitly (using wrong

strategy takes too many steps)

Exercise for solving FD constraints
via tree search, state is given by stack of domain
assignments (variable 7→ subset of domain)

I Decide: for variable, pick value, push others
I Solved, Backtrack, Inconsistent

x ∈ D
x = a | x ∈ D \ {a}

for a ∈ D

Stack [listToFM [(x, [0,1,2,3]), (y, [0,3])]]

== Decide x 1 ==>

Stack [listToFM [(x, [1]), (y, [0,3])]
,listToFM [(x, [0, 2,3]), (y, [0,3])]]

Ex. for FD: Arc Consistency
(P , mkSet

[[0, 0, 0], [0, 1, 1], [0, 2, 2]
, [0, 3, 3], [1, 0, 1], [1, 1, 2]
, [1, 2, 3], [2, 0, 2], [2, 1, 3]
, [3, 0, 3]])

current : Stack [listToFM [(x, [0])
, (y, [0, 1, 2, 3])]]

step : Arc_Consistency_Deduction
{ atoms = [P (x, x, y)]
, variable = y, restrict_to = [1] }

these elements cannot be excluded
from the domain of the variable, because the
given assignment is a model for the atoms:

[(0, listToFM [(x, 0), (y, 0)])]

FD constraints (Exercise design)
if constraint is unsat, then . . .

I student has to produce a full search tree
I could be done by Decide/Backtrack only,

but is impractical
I enforces the usage of arc consistency

deductions

if constraint is sat, then . . .
I student could guess a solution
I and then just enter the corresponding

Decide-steps (and avoid arc consistency
considerations)

I Decide must always uses lowest value

Exercise for DPLL with CDCL
Davis, Putnam, Logeman, Loveland, solves SAT

plain DPLL: just like FD tree search,
unit propagation ≈ 1-consistency.

Conflict Driven Clause Learning, Backjumping
in case of conflict:

I learn a new clause R (the conflict “reason”,
must be inferrable from clauses used to
obtain current assignment)

I jump back (and use R for unit propagation)
student choices: what to learn, where to jump

DPLL Exercise Generator
naive approach:

I since DPLL is complete method, it can be
applied to any formula

I drawback: solutions (proof traces) vary
greatly in length

fair approach:
I generate formula
I find (shortest) proof trace (implement

backtracking solver)
I choose formula where proof trace length is

reasonable
I drawback: source code contains solver,

students may exploit this

SAT and DPLL modulo Theory
Syntax: F in CNF where clauses may contain

I Boolean literals and
I theory literals, e.g., ¬(2x + 3 > 4y)

state of search given by partial assigment (= set
of literals) σ
two kinds of conflicts:

I Boolean conflict (F contains clause where
all literals are false in σ)

I Theory conflict (theory literals from σ are
inconsistent)

example:
I Theory of linear inequalities (over Q)
I Solver: Fourier-Motzkin

Conclusion, Discussion

I exercises for constraint programming
I automated generation of instances, grading

of solutions
I use exercises (anonymously) at
https:
//autotool.imn.htwk-leipzig.de/
cgi-bin/Trial.cgi?lecture=199

I make our own autotool installation
(run it in a VM, https://github.com/
marcellussiegburg/autobuildtool)

https://autotool.imn.htwk-leipzig.de/cgi-bin/Trial.cgi?lecture=199
https://autotool.imn.htwk-leipzig.de/cgi-bin/Trial.cgi?lecture=199
https://autotool.imn.htwk-leipzig.de/cgi-bin/Trial.cgi?lecture=199
https://github.com/marcellussiegburg/autobuildtool
https://github.com/marcellussiegburg/autobuildtool

