Automated Exercises for
Constraint Programming

Johannes Waldmann (HTWK Leipzig)

http://www.imn.htwk-leipzig.de/
~waldmann/talk/14/wlp/auto/

September 16, 2014

http://www.imn.htwk-leipzig.de/~waldmann/talk/14/wlp/auto/
http://www.imn.htwk-leipzig.de/~waldmann/talk/14/wlp/auto/

Automated Exercises - Why?

» lecture without homework exercises is
useless

» homework that is not discussed/graded is
useless

» N0 money to pay teaching assistants for
grading

» not enough time to discuss everything in
class

» automated and real-time grading helps
student to understand the basics

» and frees class time for more interesting
discussion

(Declarative) Constr. Programming
» constraint program (w.r.t. structure S)
is formula F in predicate logic

» constraint solver answers the question
F € Theory(S)

» in particular, if F is of shape 3x1,...,x,: M,
by giving a satisfying assignment
aspects for teaching:
» (syntax and semantics of predicate logic)
» model application problems by constraints
» explain how solvers work

Kroening, Strichman: Decision Procedures
(Springer, 2008)

Exercise for Propositional SAT

(to show the general idea in a very
straigthforward case)

» exercise

» instance: satisfiable formula F (in CNF)
» solution: a satisfying assignment

» generator

» will produce random satisfiable F
» with given number of variables and clauses

doing the exercise, student will
» (learn semantics of propositional formulas)

» appreciate the “hard work” that the SAT
solvers do

UNSAT proofs by resolution

exercise:
» instance: unsatisfiable F in CNF

» solution: a resolution proof of the empty
clause

actually,
» proof is DAG, represented as list of nodes
» root nodes are clauses from F
» each internal node is resolution step

A general model for automated
exercises

doing the exercise, student has to make choices
general description (analogy)

» exercise: non-deterministic algorithm
» student: acts as oracle
» automated grader: acts as verifier
how does this fit the teaching objetives?
» if the subject is NP, then very well
(obviously)

» if the subject is a deterministic algorithm (as
used in constraint solvers), then what?

Exercises for Decision Methods

»

present the (invariants of the) algorithm via
inference rules,

as in (e.g.) Apt: Principles of Constraint
Programming

most often these rules are
non-deterministic in a natural way

this allows to apply our exercise model
concrete algorithm corresponds to specific
strategy in rule applications

strategy is ignored in verifying the solutions
but can be enforced implicitly (using wrong
strategy takes too many steps)

Exercise for solving FD constraints
via tree search, state is given by stack of domain
assignments (variable — subset of domain)

» Decide: for variable, pick value, push others

» Solved, Backtrack, Inconsistent
xeD

forae D
x=a|xeD\{a} ©

Stack [listToFM [(x, [0,1,2,3]1), (y, [0,3]1)]
== Decide x 1 ==>

Stack [listToFM [(x, [1 1),
,1listToFM [(x, [0, 2,31), (y, [0,3]1)]

Ex. for FD: Arc Consistency

(P, mkSet
(rro o o1, €0, 1, 11, [0, 2, 2]
, [0, 3, 31, 01,0, 11, [1, 1, 2]
, L1, 2,31, 02,0, 21, 2,1, 3]
, [3, 0, 31 1)

current : Stack [listToFM [(x, [O 1)
, (y, 00,1, 2, 3 1) 1]

step : Arc_Consistency_Deduction
{ atoms = [P (%, x, v)]
, variable = vy, restrict_to = [1] }

these elements cannot be excluded
from the domain of the variable, because the
given assignment is a model for the atoms:
[(0, listToFM [(x, O), (vy, 0) 1) 1

FD constraints (Exercise design)
if constraint is unsat, then . ..
» student has to produce a full search tree

» could be done by Decide/Backtrack only,
but is impractical

» enforces the usage of arc consistency
deductions
if constraint is sat, then ...
» student could guess a solution

» and then just enter the corresponding
Decide-steps (and avoid arc consistency
considerations)

» Decide must always uses lowest value

Exercise for DPLL with CDCL

Davis, Putnam, Logeman, Loveland, solves SAT

plain DPLL: just like FD tree search,
unit propagation ~ 1-consistency.

Conflict Driven Clause Learning, Backjumping
in case of conflict:

» learn a new clause R (the conflict “reason”,
must be inferrable from clauses used to
obtain current assignment)

» jump back (and use R for unit propagation)
student choices: what to learn, where to jump

DPLL Exercise Generator
naive approach:
» since DPLL is complete method, it can be
applied to any formula
» drawback: solutions (proof traces) vary
greatly in length
fair approach:
» generate formula
» find (shortest) proof trace (implement
backtracking solver)
» choose formula where proof trace length is
reasonable
» drawback: source code contains solver,
students may exploit this

SAT and DPLL modulo Theory

Syntax: F in CNF where clauses may contain
» Boolean literals and
» theory literals, e.g., =(2x + 3 > 4y)

state of search given by partial assigment (= set
of literals) o
two kinds of conflicts:

» Boolean conflict (F contains clause where
all literals are false in o)

» Theory conflict (theory literals from o are
inconsistent)

example:
» Theory of linear inequalities (over Q)
» Solver: Fourier-Motzkin

Conclusion, Discussion

» exercises for constraint programming

» automated generation of instances, grading
of solutions

» Use exercises (anonymously) at
https:
//autotool.imn.htwk-leipzig.de/
cgi-bin/Trial.cgi?lecture=199

» make our own autotool installation
(runitina VM, https://github.com/
marcellussiegburg/autobuildtool)

https://autotool.imn.htwk-leipzig.de/cgi-bin/Trial.cgi?lecture=199
https://autotool.imn.htwk-leipzig.de/cgi-bin/Trial.cgi?lecture=199
https://autotool.imn.htwk-leipzig.de/cgi-bin/Trial.cgi?lecture=199
https://github.com/marcellussiegburg/autobuildtool
https://github.com/marcellussiegburg/autobuildtool

