
Symbolic Enumeration of One-Rule String
Rewriting Systems
Alfons Geser1, Johannes Waldmann2, and Mario Wenzel3

1 Fakultät EIT, HTWK Leipzig, Germany alfons.geser@htwk-leipzig.de
2 Fakultät IMN, HTWK Leipzig, Germany johannes.waldmann@htwk-leipzig.de
3 Fakultät IMN, HTWK Leipzig, Germany

Abstract
The purpose of the enumeration of one-rule string rewriting systems is to benchmark methods for
proving termination automatically, in particular, to extract interesting cases that merit further
attention. We report on a new enumeration approach that represents sets of rewriting systems
as the set of models of a binary decision diagram. We relate this to methods and results from
the literature, and present preliminary results of experiments.

Digital Object Identifier 10.4230/LIPIcs...

1 Motivation

Rewriting is a model of computation. The termination status of a rewriting system — does
it terminate or not? — is a practically relevant piece of information. Small, hard examples of
a restricted shape play a crucial role. They allow to uncover, demonstrate and communicate
weaknesses of existing approaches and they drive the invention of new methods. One example
of a shape restriction is the restriction to unary symbols which means the switching to string
rewriting.

The restriction of size and shape may or may not weaken the descriptive power. E.g.,
termination is decidable for one-rule string rewriting systems (SRSs) l→ r with l ∈ 0∗1∗ [13]
whence it is, particularly, not Turing-complete. On the other hand, termination of one-rule
term rewriting is undecidable. And there are one-element bases for combinatory logic, which
are Turing-complete. The study of restricted systems per se is justified by finding out the
thresholds between these classes.

Small string rewriting termination problems have indeed triggered new approaches.
The first automated termination proof for Zantema’s problem [16] a2b2 → b3a3 obtained
from (RFC) matchbounds [6] was later generalized to term rewriting [8].
The first termination proof (automated or not) for Zantema’s other problem a2 → bc, b2 →
ac, c2 → ab by matrix interpretations [7] was also generalized later to term rewriting [2]
and to complexity analysis [12].

2 Explicit Enumeration

Small hard examples are found by enumerating all small instances, and filtering out those
that are

easy, in the sense that they belong to a class that is known to have a decidable termination
problem; or
redundant, in the sense that there is a smaller system that is known to have the same
termination status. Here, “smaller” is with respect to a well-founded order that is a
refinement of the order by size.

© Alfons Geser and Johannes Waldmann and Mario Wenzel;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

alfons.geser@htwk-leipzig.de
johannes.waldmann@htwk-leipzig.de
http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Symbolic Enumeration of One-Rule String Rewriting Systems

For instance, if |l| ≥ |r| then l → r is easy: it terminates iff l 6= r. Or, if there is a
bijective renaming φ of letters such that φ(l)→ φ(r) is lexicographically smaller, then l→ r

is redundant. A system l→ r is also redundant if there is a bijective renaming φ of letters
such that φ(l̃) → φ(r̃) is smaller, where s̃ denotes the reversal of string s. We call l → r

canonical if it is not redundant in either of these two ways.
The overhead of an enumeration can be reduced substantially if one avoids some of the

systems that are easy or redundant. Kurth [9] enumerates all length-increasing, canonical
one-rule SRSs l → r for |r| ≤ 6. Geser [4] extends this enumeration to |r| ≤ 9. Both
enumerations follow this approach:

foreach System s in canonical_systems { if not (easy (s)) then print (s) }

3 Symbolically Representing Sets of Rewriting Systems as BDDs

We present a radically different approach that avoids explicit enumeration: We represent
SRSs as models of binary decision diagrams (BDDs [1]). We represent all rules l → r of
a certain shape (fixed length of l and r) and a fixed alphabet as assignments of Boolean
variables, using some encoding scheme. We formulate criteria P1, P2, . . . of rewriting systems
as Boolean formulas P ′1, P ′2, . . . compatible with the chosen encoding.

Instead of explicitly enumerating all l→ r and then checking criteria P1, P2, . . . one after
another, we compute the BDD representation P ′ of P ′1 ∧ P ′2 ∧ . . . and then enumerate the
models of P ′:

foreach Assignment a in models (P1 and P2 and ...) { print (decode (a)) }

Additional advantages of this approach are:
we can count the number of models without actually enumerating them,
we can use any Boolean combination of criteria to investigate relations between them,
e.g., implications.

4 Criteria related to Termination of Standard Rewriting

The following criteria are used. These are either obvious or well-known, except for (two-letter)
coding.

Redundancy criteria:
l→ r is not canonical. A canonical rule is lexicographically minimal in the equivalence
class of rules w.r.t. renaming or reversal.

reversal: ab→ baa is transformed to ba→ aab

renaming: ab→ baa is transformed by {a 7→ b, b 7→ a} to ba→ abb

The equivalence class of ab → baa, restricted to alphabet {a, b} is {ab → baa, ba →
abb, ba→ aab, ab→ bba}. The minimal element w.r.t. the order rl <lex r

′l′ is ba→ aab.
l → r is bordered, i.e. both l and r begin and end with the same non-empty string [4].
Example: abba→ abaaba is bordered by a, and the termination problem is reduced to
[bb]→ [b][][b], over alphabet {[], [b], [bb]}.
two-letter-coding. For example, bca → aabc is reduced to [bc]a → aa[bc] via the code
{a, bc}, where [bc] is treated as a single letter.

Ease criteria:
l→ r deletes a letter: Σ(l) 6⊆ Σ(r).

A. Geser and J. Waldmann and M. Wenzel XX:3

Kurth’s Criterion A: a letter occurs more often in l than in r. This class includes the
deleting rules.
Kurth’s Criterion D: l is not a factor of r, and either there are no overlaps between the
end of l and the begin of r or there are no overlaps between the end of r and the begin of
l. Example: aba→ aaabb. The end of aaabb has no overlaps with the begin of aba.
Loops of length one: l is a factor of r.
Loops of length two (by analysis of overlaps).
McNaughton’s criterion [11]: there exists an inhibitor i ∈ Σ(r) \ Σ(l).
Sénizergues’ criterion [13]: l has the shape a∗b∗.
l→ r is grid [5]: there is a letter c with |l|c > 0 and |l|c ≥ |r|c Example: bbab→ abbaaabaa.
This class includes the Criterion A rules.

5 Implementation

Our implementation (https://gitlab.imn.htwk-leipzig.de/waldmann/srs-count) uses
Haskell and the well-known BDD C-library CUDD [14].

We use the “one-hot” encoding for letters where the i-th variable being true means this
letter is the i-th letter of Σ while all other variables for that letter are false. A word is a list
of letters and a rule is a pair of words. In total, the encoding of l → r uses (|l|+ |r|) · |Σ|
propositional variables.

Criteria from Section 4 are expressed with the help of predicates for equality and order
on letters, for the prefix relation on words, and so on. A consistency predicate expresses
the one-hot property. It is always part of the main conjunction. Other predicates, or their
negation, can be included via command line arguments. The most expensive criterion is
canonicity w.r.t. reversal and renaming, where the number of BDD operations depends
exponentially on the size of the alphabet.

The implementation computes the BDD and enumerates its models and decodes them to
SRSs. Termination provers matchbox [15] and TTT2 [10] can be called for further filtering.

srs-count -n True -R True -a True -i False, -g False -o False
--results 20 --matchbox no 3 6 9

This example call computes the first 20 systems with a left-hand side of size 6, a right-hand
side of size 9 and a size-3 alphabet that are canonical by re(n)aming and (R)eversal-and-
(R)enaming, use (a)ll 3 letters of the alphabet, do not have an (i)nhibitor, are not a (g)rid-rule
and do not have a loop of length (o)ne, while matchbox still has a non-termination proof.

Additionally, we allow the enumeration to be split or restricted using patterns (globs) like
–globleft="ab*", which would restrict the left-hand side to words of the language a · b · Σ∗.
This replaces Boolean variables by constants, and makes for smaller BDDs. For a complete
enumeration, we apply several such patterns to distribute the computation across multiple
computers.

6 Results

We confirmed that symbolic and explicit enumeration agree for |r| ≤ 9. Table 1 shows
the numbers obtained by an explicit enumeration, using Geser’s original implementation,
of all length-increasing, canonical one-rule SRSs (“all”), and of those SRSs that satisfy
both |l| ≥ |Σ| and |r| ≥ |l| + |Σ| (“restricted”). The number of non-grid, non-inhibitor
systems, obtained through filtering, is the same in both cases. Further filtering out 1-loop

https://gitlab.imn.htwk-leipzig.de/waldmann/srs-count

XX:4 Symbolic Enumeration of One-Rule String Rewriting Systems

and Criterion D yields the next column. The final column shows the number after further
filtering out 2-loop and bordered (“fast check criteria”). The table illustrates that the explicit
generate-and-filter approach quickly becomes prohibitively expensive and less useful since
the share of interesting systems becomes smaller as the system size grows.

Using symbolic enumeration, we were able to reproduce the results from the second-to-last
column up to |r| ≤ 8 in less than 10 seconds (|r| ≤ 9 in 3½ minutes) on a 3.2 GHz processor.

|r| all restricted non-grid, ..., non-1-loop, non-fast-
non-inhibitor non-crit-D criteria

2 2 1 0 0 0
3 21 2 2 0 0
4 226 20 8 1 0
5 3 929 103 30 7 4
6 96 029 1 699 207 68 45
7 3 151 054 18 345 1 618 540 440
8 130 792 338 396 184 16 594 4 994 4 265
9 6 641 134 837 6 642 933 196 476 49 814 43 535

10 ? 173 514 078 2 710 745 562 258 493 855
11 ? 4 039 563 892 42 735 641 7 213 316 6 346 721

Table 1 Numbers of length-increasing, canonical one-rule SRSs

In order to obtain fresh hard termination problems, we have enumerated and filtered all
one-rule SRS with |r| ≤ 14 and |Σ| no larger than 3, using all stated criteria except criterion
D (which was a recent addition to our implementation).

This left about 7.66·109 systems, which we have filtered using matchbox [15], applying only
RFC match bounds for termination, and forward closure enumeration for non-termination,
and spending no more than 1 second per problem (on our machines). Enumeration and
filtering took 30.000 CPU hours, approximately.

This left 671 systems, on which we ran TTT2 [10] and AProVE [3] on starexec, using
300 seconds as a timeout. We obtained 226 systems where termination currently cannot be
shown automatically, and which we will submit for TPBD. Four random examples are:

aabaaaa→ aaaaaabaab, babbaabba→ abbaabbabba,

bababababaa→ aababababababa, cabababa→ ababababccccca.

7 Extension to Termination of Cycle Rewriting

Recently, there has been an interest in cycle rewriting [17]. A string rewriting system R

over Σ defines a cycle rewriting relation ◦→R on Σ∗ that is the composition of the standard
conjugacy relation uv ≡ vu with the standard rewrite relation →R.

Our approach for symbolically enumerating interesting one-rule rewriting systems is easily
applicable for cycle rewriting, and in fact we simply use our existing implementation, and
switch off a few criteria. From the list of properties in Section 4, we omit the following
because their applicability needs further research: Kurth’s criterion D, the grid criterion and
Sénizergues’ criterion. Note that we can use the inhibitor criterion for reduction: If R has an
inhibitor, then cycle termination of R is equivalent to standard termination of R, which is
(in that case) decidable.

A. Geser and J. Waldmann and M. Wenzel XX:5

For cycle termination, there was no previous enumeration. We generated 3.1 · 106 length-
increasing systems without the applicable properties with |r| ≤ 9 and |Σ| no larger than 3.
The initial generation took 5½ minutes on a 2.1 GHz i3 processor.

These are the 6 smallest one-rule SRSs for which matchbox could not determine the
status of cycle termination:

baba→ abaaabab, ababba→ aabbabab, abaaba→ aababaab,

baba→ abaaaabab, baabba→ aabbaaabb, ababbab→ abbababba.

References
1 Sheldon B. Akers. Binary Decision Diagrams. IEEE Trans. Computers, 27(6):509–516,

1978.
2 Jörg Endrullis, Johannes Waldmann, and Hans Zantema. Matrix Interpretations for Prov-

ing Termination of Term Rewriting. J. Autom. Reasoning, 40(2-3):195–220, 2008.
3 Jürgen Giesl et al. Automated Program Verification Environment. http://aprove.

informatik.rwth-aachen.de/, 2016.
4 Alfons Geser. Is Termination Decidable for String Rewriting With Only One Rule. Habil-

itationsschrift, Universität Tübingen, 2001.
5 Alfons Geser. Decidability of Termination of Grid String Rewriting Rules. SIAM J. Com-

put., 31(4):1156–1168, 2002.
6 Alfons Geser, Dieter Hofbauer, and Johannes Waldmann. Match-Bounded String Rewriting

Systems. Appl. Algebra Eng. Commun. Comput., 15(3-4):149–171, 2004.
7 Dieter Hofbauer and Johannes Waldmann. Termination of String Rewriting with Matrix

Interpretations. In Frank Pfenning, editor, RTA 2006, volume 4098 of LNCS, pages 328–342.
Springer, 2006.

8 Martin Korp and Aart Middeldorp. Match-bounds revisited. Inf. Comput., 207(11):1259–
1283, 2009.

9 Winfried Kurth. Termination und Konfluenz von Semi-Thue-Systemen mit nur einer Regel.
Dissertation, Technische Universität Clausthal, 1990.

10 Harald Zankl Martin Korp, Christian Sternagel and Aart Middeldorp. Tyrolean Termina-
tion Tool 2. http://cl-informatik.uibk.ac.at/software/ttt2/, 2014.

11 Robert McNaughton. Semi-Thue Systems with an Inhibitor. J. Autom. Reasoning, 26:409–
431, 1997.

12 Georg Moser, Andreas Schnabl, and Johannes Waldmann. Complexity Analysis of Term
Rewriting Based on Matrix and Context Dependent Interpretations. In Ramesh Hariharan,
Madhavan Mukund, and V. Vinay, editors, FSTTCS 2008, volume 2 of LIPIcs, pages
304–315. Schloss Dagstuhl - LZI, 2008.

13 Géraud Sénizergues. On the Termination Problem for One-Rule Semi-Thue System. In
Harald Ganzinger, editor, RTA-96, volume 1103 of LNCS, pages 302–316. Springer, 1996.

14 Fabio Somenzi. CUDD: CU Decision Diagram Package Release 3.0.0. http://vlsi.
colorado.edu/~fabio/CUDD, 2015.

15 Johannes Waldmann. Pure Matchbox. https://gitlab.imn.htwk-leipzig.de/
waldmann/pure-matchbox, 2016.

16 Hans Zantema and Alfons Geser. A Complete Characterization of Termination of 0p1q →
1r0s. Appl. Algebra Eng. Commun. Comput., 11(1):1–25, 2000.

17 Hans Zantema, Barbara König, and H. J. Sander Bruggink. Termination of Cycle Rewriting.
In Gilles Dowek, editor, RTA-TLCA 2014, volume 8560 of LNCS, pages 476–490. Springer,
2014.

http://dx.doi.org/10.1109/TC.1978.1675141
http://dx.doi.org/10.1007/s10817-007-9087-9
http://dx.doi.org/10.1007/s10817-007-9087-9
http://aprove.informatik.rwth-aachen.de/
http://aprove.informatik.rwth-aachen.de/
http://dx.doi.org/10.1007/s00200-004-0162-8
http://dx.doi.org/10.1007/s00200-004-0162-8
http://dx.doi.org/10.1007/11805618_25
http://dx.doi.org/10.1007/11805618_25
http://dx.doi.org/10.1016/j.ic.2009.02.010
http://cl-informatik.uibk.ac.at/software/ttt2/
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2008.1762
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2008.1762
http://dx.doi.org/10.1007/3-540-61464-8_61
http://vlsi.colorado.edu/~fabio/CUDD
http://vlsi.colorado.edu/~fabio/CUDD
https://gitlab.imn.htwk-leipzig.de/waldmann/pure-matchbox
https://gitlab.imn.htwk-leipzig.de/waldmann/pure-matchbox
http://dx.doi.org/10.1007/s002009900019
http://dx.doi.org/10.1007/s002009900019
http://dx.doi.org/10.1007/978-3-319-08918-8_33

	Motivation
	Explicit Enumeration
	Symbolically Representing Sets of Rewriting Systems as BDDs
	Criteria related to Termination of Standard Rewriting
	Implementation
	Results
	Extension to Termination of Cycle Rewriting

