
Automation for Exercises
in Computer Science

and Mathematics

Johannes Waldmann, HTWK Leipzig

HTWK, 12 November 2018

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 12 November 2018 1 / 1



Exercise: Greatest Common Divisor
I exercise:

I instance: numbers a,b ∈ Z, e.g.,
a = 30,b = 17

I solution: numbers c,d ∈ Z such that
ac + bd divides both a and b

I example submission: (-1, 2), response:
a * c + b * d = 4
4 does not divide 30 (remainder is 2)

I solution can be obtained via extended Euclid’s
algorithm (but system only checks the result, not
how it was obtained)

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 12 November 2018 2 / 1



Exercise Instance Generator

I teacher sets parameters for generator
Param
{ lower = 10 , upper = 50
, max_divisor = 10
}

I then system generates a fresh problem instance
per student

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 12 November 2018 3 / 1



Exercise: RSA public key decryption

I problem instance: public key (e,m) and
encrypted message c, e.g., e = 7,m = 55, c = 9

I problem solution: plaintext message p with
pe ≡ c (mod m)

I systematic solution:
I n = φ(m) = φ(5 · 11) = 4 · 10 = 40,
I gcd(e,n) = gcd(7,40) = 1 = 7 · 23− 40 · 4,
I c23 ≡ p7·23 ≡ p1 (mod 55).
I c23 ≡ 14 (mod 55)

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 12 November 2018 4 / 1



Exercise: Electrical Circuits
I instance: circuit descrition with holes

Circuit { ground = Node 0 , output = Node 2
, components = [ ( Node 1 , Voltage_Source_Input , Node 0 )

, ( Node 1, Resistor _, Node 2)
, ( Node 2, Capacitor _, Node 0)
, ( Node 2, Inductor _, Node 0) ] }

and input/output behaviour for specific input
functions (impulse, sine wave, . . . )

I solution: complete circuit description
, ( Node 2, Capacitor (1.5 Farad), Node 0)

that realizes given behaviours close enough
Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 12 November 2018 5 / 1



More Exercises
I graph “theory”, discrete mathematics:

I instance: graph G,
solution: Hamiltonian Circuit in G

I instance: graph G, number k ,
solution: conflict-free k -colouring of G

I logic:
I instance: propositional logic formula in CNF

solution: a satisfying assignment
I instance: formula in 1st order predicate logic

solution: a model of the formula
I principles of programming languages

I static typing, also polymorphic
Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 12 November 2018 6 / 1



Leipzig autotool — General Design

for each type of exercise:
I types: Config, Instance, Solution

(each with pretty-printer, parser, API doc)
I functions:

I grade: Instance × Solution→ Bool
I → Bool × Text
I describe: Instance→ Text
I initial: Instance→ Solution
I generate: Config × Seed→ Instance

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 12 November 2018 7 / 1



Leipzig autotool — Components
I collection of exercise types

as (stateless) semantics server (XML-RPC)
I plugin for Olat LMS (learning management

system)
I stand-alone autotool LMS with

I data base (problems, students, grades,. . . )
I web front-end (for student, for teacher, . . .
I . . . display highscores: small/early solutions)

I since ≈ 2000, open-source (GPL), Haskell,
≈ 1500 modules, ≈ 15 MB source
https://gitlab.imn.htwk-leipzig.de/
autotool/all0

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 12 November 2018 8 / 1

https://gitlab.imn.htwk-leipzig.de/autotool/all0
https://gitlab.imn.htwk-leipzig.de/autotool/all0


Leipzig autotool — Applications
at HTWK Leipzig, IMN, since 2003, in lectures on
I Modellierung (discrete mathematics and logic)
I Algorithms and Data Structures
I Automata and Formal Languages
I Advanced (i.e., Functional) Programming
I Artificial Intelligence
I Principles of Programming Languages
I Theory of Computation
I Constraint Programming

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 12 November 2018 9 / 1



Experience - Students, Teachers

I autotool is: always available, always correct,
always patient

I teaching/grading assistant is: available for few
hours a week only (if at all – staff costs money,
which we generally don’t have)

I autotool homework exercises prepare students
for discussing “real homework” (that is, proofs)
in classes

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 12 November 2018 10 / 1



Experience - Implementation

I each exercise type is a domain specific
language (concrete syntax, abstract syntax,
semantics)

I implementation of the grading algorithm (=
semantics) is always the easiest part

I the hard part is the design
I what type of exercise helps the student to

understand a specific concept?
I how can we write the instance generator?

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 12 November 2018 11 / 1



Design Goals for Exercises
I grading:

I should give reasonable explanation for
wrong submissions (not just “it’s wrong”)

I without giving away the correct solution
I generator:

I each instance: non-trivial, but manageable,
I set of instances:

sufficiently distinct, but of similar difficulty
I concrete syntax:

I Haskell syntax for tuples, lists, records
I except: (model) programming languages

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 12 November 2018 12 / 1



Design Principles for Exercises
I basic approach: verify property of an object

example: any NP complete problem, e.g., SAT
I but this does not check whether the student

used a certain algorithm to construct this object
I several exercise types implement

non-deterministic algorithms (= inference
systems)
student has to find an execution path (inference
tree, proof), examples:
I Resolution (derive empty clause)
I Hilbert style deduction (derive formula)
I (balanced) search tree operations

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 12 November 2018 13 / 1



Example: Algorithms on Search Trees

I instance: AVL trees s, t , pattern p, e.g.,
[Insert 92,*,*,*,*,Insert 51,*,Delete 38]

solution: sequence q of operations that
matches p and transforms s to t

I this exercise is not to implement operations,
but to give correct (black-box) implementation
so that students can explore their properties

I underlying design principle: sudoku,
that is, create “holes” that students have to fill in

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 12 November 2018 14 / 1



Design Principle: AST Sudoku
I start from any exercise type with

grade: Instance × Solution→ Bool
I build generator that produces correct pairs
I Instance ∈ Term(Σ), Solution ∈ Term(Γ),

from Term to Pattern: introduce (several)
I variables for subtrees
I variables for function symbols

I “sudoku” variant of this exercise:
I instance: (pi ,ps) ∈ Pat(Σ)× Pat(Γ)
I solution: a correct instance of (pi ,ps)

I unlike Sudoku, solution is not necessarily unique
Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 12 November 2018 15 / 1



Sounds Great - I Want This!
I autotool is free software (GPL):

you can download, compile, install, use!
source/instruction: https://gitlab.imn.
htwk-leipzig.de/autotool/all0

I TODO (contributions welcome)
I translation (most exercises German-only,

some English-only, some have both texts)
I more exercise types (requires: 1. design

skills, 2. Haskell skills)
I integration with other LMS (learning

management systems)

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 12 November 2018 16 / 1

https://gitlab.imn.htwk-leipzig.de/autotool/all0
https://gitlab.imn.htwk-leipzig.de/autotool/all0

