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Exercise: Greatest Common Divisor
I exercise:

I instance: numbers a,b ∈ Z, e.g.,
a = 30,b = 17

I solution: numbers c,d ∈ Z such that
ac + bd divides both a and b

I example submission: (-1, 2), response:
a * c + b * d = 4
4 does not divide 30 (remainder is 2)

I solution can be obtained via extended Euclid’s
algorithm (but system only checks the result, not
how it was obtained)
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Exercise Instance Generator

I teacher sets parameters for generator
Param
{ lower = 10 , upper = 50
, max_divisor = 10
}

I then system generates a fresh problem instance
per student
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Exercise: RSA public key decryption

I problem instance: public key (e,m) and
encrypted message c, e.g., e = 7,m = 55, c = 9

I problem solution: plaintext message p with
pe ≡ c (mod m)

I systematic solution:
I n = φ(m) = φ(5 · 11) = 4 · 10 = 40,
I gcd(e,n) = gcd(7,40) = 1 = 7 · 23− 40 · 4,
I c23 ≡ p7·23 ≡ p1 (mod 55).
I c23 ≡ 14 (mod 55)
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Exercise: Electrical Circuits
I instance: circuit descrition with holes

Circuit { ground = Node 0 , output = Node 2
, components = [ ( Node 1 , Voltage_Source_Input , Node 0 )

, ( Node 1, Resistor _, Node 2)
, ( Node 2, Capacitor _, Node 0)
, ( Node 2, Inductor _, Node 0) ] }

and input/output behaviour for specific input
functions (impulse, sine wave, . . . )

I solution: complete circuit description
, ( Node 2, Capacitor (1.5 Farad), Node 0)

that realizes given behaviours close enough
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More Exercises
I graph “theory”, discrete mathematics:

I instance: graph G,
solution: Hamiltonian Circuit in G

I instance: graph G, number k ,
solution: conflict-free k -colouring of G

I logic:
I instance: propositional logic formula in CNF

solution: a satisfying assignment
I instance: formula in 1st order predicate logic

solution: a model of the formula
I principles of programming languages

I static typing, also polymorphic
Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 12 November 2018 6 / 1



Leipzig autotool — General Design

for each type of exercise:
I types: Config, Instance, Solution

(each with pretty-printer, parser, API doc)
I functions:

I grade: Instance × Solution→ Bool
I → Bool × Text
I describe: Instance→ Text
I initial: Instance→ Solution
I generate: Config × Seed→ Instance
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Leipzig autotool — Components
I collection of exercise types

as (stateless) semantics server (XML-RPC)
I plugin for Olat LMS (learning management

system)
I stand-alone autotool LMS with

I data base (problems, students, grades,. . . )
I web front-end (for student, for teacher, . . .
I . . . display highscores: small/early solutions)

I since ≈ 2000, open-source (GPL), Haskell,
≈ 1500 modules, ≈ 15 MB source
https://gitlab.imn.htwk-leipzig.de/
autotool/all0
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Leipzig autotool — Applications
at HTWK Leipzig, IMN, since 2003, in lectures on
I Modellierung (discrete mathematics and logic)
I Algorithms and Data Structures
I Automata and Formal Languages
I Advanced (i.e., Functional) Programming
I Artificial Intelligence
I Principles of Programming Languages
I Theory of Computation
I Constraint Programming
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Experience - Students, Teachers

I autotool is: always available, always correct,
always patient

I teaching/grading assistant is: available for few
hours a week only (if at all – staff costs money,
which we generally don’t have)

I autotool homework exercises prepare students
for discussing “real homework” (that is, proofs)
in classes
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Experience - Implementation

I each exercise type is a domain specific
language (concrete syntax, abstract syntax,
semantics)

I implementation of the grading algorithm (=
semantics) is always the easiest part

I the hard part is the design
I what type of exercise helps the student to

understand a specific concept?
I how can we write the instance generator?
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Design Goals for Exercises
I grading:

I should give reasonable explanation for
wrong submissions (not just “it’s wrong”)

I without giving away the correct solution
I generator:

I each instance: non-trivial, but manageable,
I set of instances:

sufficiently distinct, but of similar difficulty
I concrete syntax:

I Haskell syntax for tuples, lists, records
I except: (model) programming languages
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Design Principles for Exercises
I basic approach: verify property of an object

example: any NP complete problem, e.g., SAT
I but this does not check whether the student

used a certain algorithm to construct this object
I several exercise types implement

non-deterministic algorithms (= inference
systems)
student has to find an execution path (inference
tree, proof), examples:
I Resolution (derive empty clause)
I Hilbert style deduction (derive formula)
I (balanced) search tree operations
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Example: Algorithms on Search Trees

I instance: AVL trees s, t , pattern p, e.g.,
[Insert 92,*,*,*,*,Insert 51,*,Delete 38]

solution: sequence q of operations that
matches p and transforms s to t

I this exercise is not to implement operations,
but to give correct (black-box) implementation
so that students can explore their properties

I underlying design principle: sudoku,
that is, create “holes” that students have to fill in
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Design Principle: AST Sudoku
I start from any exercise type with

grade: Instance × Solution→ Bool
I build generator that produces correct pairs
I Instance ∈ Term(Σ), Solution ∈ Term(Γ),

from Term to Pattern: introduce (several)
I variables for subtrees
I variables for function symbols

I “sudoku” variant of this exercise:
I instance: (pi ,ps) ∈ Pat(Σ)× Pat(Γ)
I solution: a correct instance of (pi ,ps)

I unlike Sudoku, solution is not necessarily unique
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Sounds Great - I Want This!
I autotool is free software (GPL):

you can download, compile, install, use!
source/instruction: https://gitlab.imn.
htwk-leipzig.de/autotool/all0

I TODO (contributions welcome)
I translation (most exercises German-only,

some English-only, some have both texts)
I more exercise types (requires: 1. design

skills, 2. Haskell skills)
I integration with other LMS (learning

management systems)
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