
Automation for Exercises
in Computer Science

and Mathematics

Johannes Waldmann, HTWK Leipzig

HTWK, 3 May 2018

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 3 May 2018 1 / 18

Example: problem instance
I topic: terms over a given many-sorted signature,
I equivalently, type-correct use of an API

write an expression of type Cherry , given

Pear c;
static Tomato a (Pear x , Pear y);
static Tomato b

(Cherry x , Cherry y , Tomato z);
static Pear d (Cherry x);
static Cherry e

(Tomato x , Tomato y , Pear z);

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 3 May 2018 2 / 18

Example: submission and evaluation
infer type for expression: a (c , d (c))
function declaration is
static Tomato a (Pear x , Pear y)
number of arguments matches declaration? Yes.
check argument number 1 [...]
check argument number 2
infer type for expression: d (c)
function declaration is

static Pear d (Cherry x)
number of arguments matches declaration? Yes.
check argument number 1

infer type for expression: c
is variable with declaration: Pear c
has type: Pear

type of argument matches declaration? No.
Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 3 May 2018 3 / 18

Example: Conf. of Instance Generator

I teacher sets these parameters
Conf { max_arity = 3

, types = [Apple, Pear
, Orange, Cherry, Tomato]

, min_symbols = 5 , max_symbols = 5
, min_size = 7 , max_size = 15
}

I then a generator program will produce problem
instances for students

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 3 May 2018 4 / 18

Example: Polymorphic Typing
Give an expression of type
Fozzie<Kermit, Kermit>
in the signature class S {
static <T2> Piggy<Piggy<Animal>>

statler (Piggy<T2> x , Piggy<T2> y);
static <T2> Kermit waldorf (Piggy<T2> x);
static Piggy<Fozzie<Animal, Animal>> bunsen ();
static <T2, T1> T1

chef (Piggy<Piggy<T2>> x , Piggy<Piggy<T1>> y);
static <T2> Fozzie<Kermit, T2>

rowlf (T2 x, Animal y); }

S.<Kermit>rowlf
(S.<Fozzie<Animal,Animal>>waldorf

(S.bunsen()), ...
Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 3 May 2018 5 / 18

More Examples

I graph “theory”, discrete mathematics:
I instance: graph G,

solution: Hamiltonian Circuit in G
I instance: graph G, number k ,

solution: conflict-free k -colouring of G
I logic:

I instance: propositional logic formula in CNF
solution: a satisfying assignment

I instance: formula in 1st order predicate logic
solution: a model of the formula

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 3 May 2018 6 / 18

Leipzig autotool — General Design

for each type of exercise:
I types: Config, Instance, Solution

(each with pretty-printer, parser, API doc)
I functions:

I grade: Instance × Solution→ Bool
I → Bool × Text
I describe: Instance→ Text
I initial: Instance→ Solution
I generate: Config × Seed→ Instance

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 3 May 2018 7 / 18

Leipzig autotool — Components
I collection of exercise types

as (stateless) semantics server (XML-RPC)
I plugin for Olat LMS (learning management

system)
I stand-alone autotool LMS with

I data base (problems, students, grades,. . .)
I web front-end (for student, for teacher, . . .
I . . . display highscores: small/early solutions)

I since ≈ 2000, open-source (GPL), Haskell,
≈ 1500 modules, ≈ 15 MB source
https://gitlab.imn.htwk-leipzig.de/
autotool/all0

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 3 May 2018 8 / 18

Leipzig autotool — Applications
at HTWK Leipzig, IMN, since 2003, in lectures on

I Modellierung (discrete mathematics and logic)
I Algorithms and Data Structures
I Automata and Formal Languages
I Advanced (i.e., Functional) Programming
I Artificial Intelligence
I Principles of Programming Languages
I Theory of Computation
I Constraint Programming

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 3 May 2018 9 / 18

Experience - Students, Teachers

I autotool is: always available, always correct,
always patient

I teaching/grading assistant is: available for few
hours a week only (if at all – staff costs money,
which we generally don’t have)

I autotool homework exercises prepare students
for discussing “real homework” (that is, proofs)
in classes

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 3 May 2018 10 / 18

Experience - Implementation

I each exercise type is a domain specific
language (concrete syntax, abstract syntax,
semantics)

I implementation of the grading algorithm (=
semantics) is always the easiest part

I the hard part is the design
I what type of exercise helps the student to

understand a specific concept?
I how can we write the instance generator?

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 3 May 2018 11 / 18

Design Goals for Exercises
I grading:

I should give reasonable explanation for
wrong submissions (not just “it’s wrong”)

I without giving away the correct solution
I generator:

I each instance: non-trivial, but manageable,
I set of instances:

sufficiently distinct, but of similar difficulty
I concrete syntax:

I Haskell syntax for tuples, lists, records
I except: (model) programming languages

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 3 May 2018 12 / 18

Design Principles for Exercises
I basic approach: verify property of an object

example: any NP complete problem, e.g., SAT
I but this does not check whether the student

used a certain algorithm to construct this object
I several exercise types implement

non-deterministic algorithms (= inference
systems)
student has to find an execution path (inference
tree, proof), examples:

I Resolution (derive empty clause)
I Hilbert style deduction (derive formula)
I (balanced) search tree operations

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 3 May 2018 13 / 18

Example: Algorithms on Search Trees

I instance: AVL trees s, t , pattern p, e.g.,
[Insert 92,*,*,*,*,Insert 51,*,Delete 38]

solution: sequence q of operations that
matches p and transforms s to t

I this exercise is not to implement operations,
but to give correct (black-box) implementation
so that students can explore their properties

I underlying design principle: sudoku,
that is, create “holes” that students have to fill in

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 3 May 2018 14 / 18

Design Principle: AST Sudoku
I start from any exercise type with

grade: Instance × Solution→ Bool
I build generator that produces correct pairs
I Instance ∈ Term(Σ), Solution ∈ Term(Γ),

from Term to Pattern: introduce (several)
I variables for subtrees
I variables for function symbols

I “sudoku” variant of this exercise:
I instance: (pi ,ps) ∈ Pat(Σ)× Pat(Γ)
I solution: a correct instance of (pi ,ps)

I unlike Sudoku, solution is not necessarily unique
Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 3 May 2018 15 / 18

Sounds Great - I Want This!
I autotool is free software (GPL):

you can download, compile, install, use!
source/instruction: https://gitlab.imn.
htwk-leipzig.de/autotool/all0

I TODO (contributions welcome)
I translation (most exercises German-only,

some English-only, some have both texts)
I more exercise types (requires: 1. design

skills, 2. Haskell skills)
I integration with other LMS (learning

management systems)

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 3 May 2018 16 / 18

Discussion (this slide added after talk)
I Q: autotool should give feedback based on models of

students’ learning process (and errors)
A: Nice to have. Background see https:
//www.uu.nl/staff/JTJeuring#tabPublicaties

I Q: autotool tutorials for students? A: Concrete syntax is
mostly uniform, semantics is discussed in lectures.
Students have to adapt to (but that’s exactly the point):

I use textual input (not graphical)
I read and understand error messages

I Q: tutorials for teachers? A: see https:
//gitlab.imn.htwk-leipzig.de/autotool/
all0#documentation-papers-talks-theses

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 3 May 2018 17 / 18

Discussion: Can this work?
I some properties are not decidable (equivalence

of context free grammars, of programs, . . .)
I use tests instead (e.g., 1000 shortest

strings and 1000 random strings)
I do not check the property, but a formal

proof of that property
(need to define and implement syntax and
semantics for proofs)

I change the question to use a decidable
approximation instead,
e.g., program equivalence: forget states,
obtain regular trace language

Johannes Waldmann, HTWK Leipzig Automation for Exercises in CS and Maths HTWK, 3 May 2018 18 / 18

