One-Dimensional Tiling Systems and Termination of String Rewriting

> Alfons Geser (HTWK Leipzig), Dieter Hofbauer (ASW BA Saarland), Johannes Waldmann (HTWK Leipzig)

> > Theorietag 2018

Geser, Hofbauer, Waldmann

Tiling Systems and Termination of String Rewriting

Termination of String Rewriting

- ▶ string rewriting system (SRS) R: set of rules examples: $R = \{ab \rightarrow bc\}, S = \{aa \rightarrow aba\}$
- ► rewrite relation \rightarrow_R : apply rule in context aaba \rightarrow_R abca \rightarrow_R bcca, aaaa \rightarrow_S aabaa \rightarrow_S ababaa \rightarrow_S abababa.
- ▶ relation \rightarrow is *terminating* iff there are no infinite \rightarrow -chains
- ► relation → is terminating on M iff there are no infinite →-chains starting in M
- ► \rightarrow_R is terminating: count occurences of *a* \rightarrow_S is terminating? does not remove letters!

Tiling

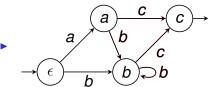
- $S = \{aa \rightarrow aba\}$ does not remove letters
- use tiles of width 2 (pairs of adjacent letters)
 S₂ = {[aa] → [ab, ba]}, can simulate S-derivations
 S₂ removes letter [aa]: is terminating!
- in general: need (left and right) padding
 ex. from rule ab → ba, create
 [aa][ab][ba] → [ab][ba][aa], [aa][ab][bb] → [ab][ba][ab],
 [ba][ab][ba] → [bb][ba][aa], [ba][ab][bb] → [bb][ba][ab]
- this talk (new): use smaller set of tiles for padding: only those that appear in (certain) infinite derivations

Right-hand Sides of Forward Closures

- ▶ Def. $\operatorname{RFC}(R)$ = smallest set $M \subseteq \Sigma^*$ with
 - (start) $rhs(R) \subseteq M$
 - (inner step) $(I, r) \in R \land ulv \in M \Rightarrow urv \in M$
 - ▶ (right extension) $(I_1I_2, r) \in R \land uI_1 \in M \Rightarrow ur \in M$
- ► Thm. (Dershowitz 1981) *R* terminates on $\Sigma^* \iff R$ terminates on RFC(*R*)
- ► Ex. $RFC({ab \rightarrow ba}) = b^+a$. Cor.: is terminating.
- Plan for rest of this talk:
 - over-approximate RFC(R) by a tiling system T
 - represent set of tiles by finite automaton A
 - add transitions and states according to Def. RFC
 - completion terminates by choice of set of states
 - ► *R*-derivations from RFC(*R*) ~ Tiled_T(*R*)-derivations

Representing Sets of Tiles by Automata

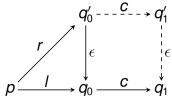
- ▶ bordered tiles, Ex. Tiles₂($\lhd abbbc \triangleright$) = { $\lhd a, ab, bb, bc, c \triangleright$ }
- for set *T* of bordered tiles of width *k* over Σ
 Def. Lang(*T*) := {*w* | Tiles_k(⊲*w*⊳) ⊆ *T*}
 strictly locally testable language (Zalcstein 1972)
- automaton with states Q(A) ⊆ Σ^{<k}, initial state ε, transitions: p →_A suffix of length min(k − 1, |pc|) of pc
- represents set of tiles Tiles(A) = {pc | p →_A q} bordered tiles from initial state, final states
- Prop. Lang(A) = Lang(Tiles(A))



 ${f Tiles}(A) = \{ \lhd a, \lhd b, ab, ac, bb, bc, c
angle \}$ ${f Lang}(A) = (a+b)b^*c$

Rewrite Closure of Tiling Automata

- ▶ specification: given A, R over Σ , find A' over Σ such that
 - Lang(A) \subseteq Lang(A')
 - $u \in \text{Lang}(A') \land u \rightarrow_R v \Rightarrow v \in \text{Lang}(A')$
- approach: $A' = \lim A_i$ where $A_0 = A$,
 - ▶ when $(I, r) \in R$ and $p \xrightarrow{I}_{A_i} q$ and $\neg (p \xrightarrow{r}_{A_i} q)$, add transitions and states such that $p \xrightarrow{r}_{A_{i+1}} q$.
- cannot apply directly because of determinism.



Introduce ϵ transitions, push them to the right, until $q'_k = q_k$

Closure Example and Application

• $R = \{cc \rightarrow bc, ba \rightarrow ac\}$, right ext. $\{c \triangleright \rightarrow bc, b \triangleright \rightarrow ac\}$

а

h

а

h

 $RFC(R) \subseteq Lang(A)$ for

► Tiled_k(*I*, *r*) = {(Tiled_k(*xly*), Tiled_k(*xry*)) | $x, y \in \triangleleft^? \Sigma^{<k} \triangleright^?$ } derivations w.r.t. *R* and Tiled_k(*R*) are bi-similar

 ϵ

- Tiled_T(I, r) = Tiled_k(I, r) \cap T^{*} \times T^{*},
- ► Thm: if Lang(T) is closed w.r.t. R, then R terminates on Lang(T) iff Tiled_T(R) terminates.
- ▶ in Ex., Tiled_{*T*}(*R*) = \emptyset , *R* terminates on RFC(*R*), thus, on Σ^* .

Implementation, Extension

- implemented as part of termination prover https://gitlab.imn.htwk-leipzig.de/ waldmann/pure-matchbox
- solves classical test case {a²b² → b³a³} quickly (e.g., using 336 tiles of width 12)
- can solve some (randomly generated) benchmarks that other termination provers can't ... and vice versa
- extension: use overlap closures for relative termination solves rbeans: {baa → abc, ca → ac, cb → ba}/{{e → b}} (open in all previous Termination Competitions)
- ongoing work: relation of our "tiling and closures" method to lengths of derivations