
Sparse Tiling Through Overlap Closures for Termination of String Rewriting Alfons Geser (HTWK Leipzig), Dieter Hofbauer (ASW BA Saarland), Johannes Waldmann (HTWK Leipzig) FSCD 2019	 Preliminaries: Termination relation → is terminating (strongly normalizing) := there are no infinite →-chains notations: SN(→), SN(→_R), SN(R). methods for proving termination of rewriting: > syntactical (precedence on symbols) > semantical (interprete symbols by functions over well-founded domain) > transformational (SN(R) ⇐ SN(R')) > in particular: transformation that increases signature, give more room to pick predecence or interpretation > by <i>tiling</i>: new signature consists of <i>tiles</i> (blocks of adjacent letters)
Gener,Holbauer,Waldmann Sparse Tiling through Overlap Closures FSCD 2019 1/14 Preliminaries: Tiling • $S = \{aa \rightarrow aba\}$ does not remove letters • use tiles of width 2 (pairs of adjacent letters) $S_2 = \{[aa] \rightarrow [ab, ba]\}$, can simulate S-derivations S_2 removes letter $[aa]$: is terminating! • in general: need (left and right) padding ex. from rule $ab \rightarrow ba$, create $[aa][ab][ba] \rightarrow [ab][ba][aa], [aa][ab][bb] \rightarrow [ab][ba][ab],$ $[ba][ab][ba] \rightarrow [bb][ba][aa], [ba][ab][bb] \rightarrow [bb][ba][ab]$ • instance: root labelling (Sternagel, Middeldorp, RTA 2008) • our contribution: • use smaller set of tiles (for rewriting and for padding)	Geser,Hotbauer,Waldmann Sparse Tilling through Overlap Closures FSCD 2019 2/14 Sparse Tilling: Definition and Motivation • Ex. the bordered 3-tiles of string w = bbaab are btiles ₃ (w) = {⊲⊲b, ⊲bb, bba, aab, ab⊳, b⊳⊳} • Def. [Zalcstein 1972] strictly locally testable language Lang(T) = {w btiles(w) ⊆ T} • this paper: • use such languages to over-approximate R*(L) • represent T by finite automaton A, • constructed by completion • semantically label R by the partial algebra of A • to transform the termination problem of R on L. • sparse: T is the set of tiles that occur in rhs of forward closures (overlap closures, resp.)
only those that appear in (certain) infinite derivations Geser,Hofbauer,Waldmann Sparse Tiling through Overlap Closures FSCD 2019 3/14	Application: Matchbox wins Termcomp 2019 for SRS Geser,Hofbauer,Waldmann Sparse Tilling through Overlap Closures FSCD 2019 4/14
Right-hand Sides of Forward ClosuresDef. RFC(R) = smallest set $M \subseteq \Sigma^*$ with• (start) rhs(R) $\subseteq M$ • (inner step) (l, r) $\in R \land ulv \in M \Rightarrow urv \in M$ • (right extension) (l_1l_2, r) $\in R \land ul_1 \in M \Rightarrow ur \in M$ • Thm. (Dershowitz 1981) R terminates on $\Sigma^* \iff R$ terminates on RFC(R)• Ex. RFC($\{ab \rightarrow ba\}$) = b^+a . Cor.: is terminating.• Lemma: RFC(R) = ($R \cup forw(R)$)*(rhs(R)) where forw(R) = { $l_1 \rightarrow suffix r \mid (l_1l_2 \rightarrow r) \in R$ }.• Ex. RFC($\{ab \rightarrow ba\}$) = { $ab \rightarrow ba, a \rightarrow suffix ba$ }*(ba)	 Representing Sets of Tiles by Automata Def: the k-shift automaton (it remembers k - 1 most recent letters read) alphabet Σ ∪ {▷}, states tiles_{k-1}(⊲*Σ*▷*), initial state ⊲^{k-1}, final state ▷^{k-1}, transitions: p → A Suffix_{k-1}(pc) represents set of k-tiles tiles(A) := {pc p → A q} a c → b c → b → b → b → b → b → b → b → b
Geser,Holbauer,Waldmann Sparse Tiling through Overlap Closures FSCD 2019 5/14	$Lang(A) = (a + b)b^*c$ $Geser, Hofbauer, Waldmann \qquad Sparse Tilling through Overlap Closures \qquad FSCD 2019 \qquad 6/14$
 Prevention Closure of Tiling Automata spec: given k-shift A, R over Σ, find k-shift A' over Σ s.t. Lang(A) ⊆ Lang(A') U ∈ Lang(A') ∧ U →_R v ⇒ v ∈ Lang(A') implementation: when (l, r) ∈ CC_k(R) (right k-context closure) and p →_A q, add transitions and states such that p →_A q, until it stabilises by the k-shift property: given p and r, the path p →_A q is fully determined, and it will indeed end in q completion terminates since set of states is finite 	Closure Example ► for $R = \{ab^3 \rightarrow bbaab\}$, compute 3-shift approx. of $(R \cup \text{forw}(R))^*(\text{rhs}(R))$ $\rightarrow \textcircled{2} \qquad b \qquad b \qquad b \qquad b \qquad b \qquad b^2 \qquad $

