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Preliminaries: Termination

I relation→ is terminating (strongly normalizing)
:= there are no infinite→-chains
notations: SN(→),SN(→R),SN(R).

I methods for proving termination of rewriting:
I syntactical (precedence on symbols)
I semantical (interprete symbols by functions over

well-founded domain)
I transformational (SN(R)⇐ SN(R′))

I in particular: transformation that increases signature,
give more room to pick predecence or interpretation

I . . . by tiling: new signature consists of tiles (blocks of
adjacent letters)
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Preliminaries: Tiling

I S = {aa→ aba} does not remove letters
I use tiles of width 2 (pairs of adjacent letters)

S2 = {[aa]→ [ab,ba]}, can simulate S-derivations
S2 removes letter [aa]: is terminating!

I in general: need (left and right) padding
ex. from rule ab → ba, create
[aa][ab][ba]→ [ab][ba][aa], [aa][ab][bb]→ [ab][ba][ab],
[ba][ab][ba]→ [bb][ba][aa], [ba][ab][bb]→ [bb][ba][ab]

I instance: root labelling (Sternagel, Middeldorp, RTA 2008)
I our contribution:

I use smaller set of tiles (for rewriting and for padding)
I only those that appear in (certain) infinite derivations
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Sparse Tiling: Definition and Motivation
I Ex. the bordered 3-tiles of string w = bbaab are

btiles3(w) = {CCb,Cbb,bba,aab,abB,bBB}
I Def. [Zalcstein 1972] strictly locally testable language

Lang(T ) = {w | btiles(w) ⊆ T}
I this paper:

I use such languages to over-approximate R∗(L)
I represent T by finite automaton A,
I . . . constructed by completion
I semantically label R by the partial algebra of A
I . . . to transform the termination problem of R on L.
I sparse: T is the set of tiles that occur in rhs of forward

closures (overlap closures, resp.)
I application: Matchbox wins Termcomp 2019 for SRS
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Right-hand Sides of Forward Closures

I Def. RFC(R) = smallest set M ⊆ Σ∗ with
I (start) rhs(R) ⊆ M
I (inner step) (l , r) ∈ R ∧ ulv ∈ M ⇒ urv ∈ M
I (right extension) (l1l2, r) ∈ R ∧ ul1 ∈ M ⇒ ur ∈ M

I Thm. (Dershowitz 1981)
R terminates on Σ∗ ⇐⇒ R terminates on RFC(R)

I Ex. RFC({ab → ba}) = b+a. Cor.: is terminating.
I Lemma: RFC(R) = (R ∪ forw(R))∗(rhs(R)) where

forw(R) = {l1 →Suffix r | (l1l2 → r) ∈ R}.
I Ex. RFC({ab → ba}) = {ab → ba,a→Suffix ba}∗(ba)
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Representing Sets of Tiles by Automata
I Def: the k -shift automaton

(it remembers k − 1 most recent letters read)
alphabet Σ ∪ {B},
states tilesk−1(C∗Σ∗B∗), initial state Ck−1, final state Bk−1,
transitions: p c→A Suffixk−1(pc)

I represents set of k -tiles tiles(A) := {pc | p c→A q}

I Ex. 2-shift automaton A =
C b

a c B

a

b

b

c

c

b

B

represents 2-tiles {Ca,Cb,ab,ac,bb,bc, cB}
Lang(A) = (a + b)b∗c
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Rewrite Closure of Tiling Automata
I spec: given k -shift A, R over Σ, find k -shift A′ over Σ s.t.

I Lang(A) ⊆ Lang(A′)
I u ∈ Lang(A′) ∧ u →R v ⇒ v ∈ Lang(A′)

I implementation:
when (l , r) ∈ CCk (R) (right k -context closure)
and p l→A q,
add transitions and states such that p r→A q,
until it stabilises

I by the k -shift property:
I given p and r , the path p r→A q is fully determined,

and it will indeed end in q
I completion terminates since set of states is finite
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Closure Example
I for R = {ab3 → bbaab},

compute 3-shift approx. of (R ∪ forw(R))∗(rhs(R))

C2 Cb b2

ba a2

ab B2b b

a

a

b

B2

b

b

b

a

I . . . this is the path for rhs(R) → a redex for
(ab →Suffix bbaab) ∈ forw(R)
dashed: new edges for corresponding reduct → a redex
for (ab →Suffix bbaab) ∈ forw(R)
dotted: new edge for corresponding reduct → a redex for
(ab3a→ bbaaba) ∈ CC1(R)
dash-dotted: new edge for corresponding reduct
represents the set of tiles T =
{CCb,Cbb,bba,bbb,baa,bab,aab,aba,abb,abB,bBB}.

I absent: C2B,CB2,CΣB, CaΣ,Cba,ΣaB, a3
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Semantic Labelling
I for R = {ab3 → bbaab},

C2 Cb b2

ba a2

ab B2b b

a

a

b

B2

b

b

b

a

I semantically labelled R is R′ =

bba,bab,abb,b3,bbx ,bxy → b3,b3,bba,baa,aab,abx ,bxy

baa,aab,abb,b3,bbx ,bxy → bab,abb,bba,baa,aab,abx ,bxy

aba,bab,abb,b3,bbx ,bxy → abb,b3,bba,baa,aab,abx ,bxy

I SN(R′) by weights b3 7→ 8,bab 7→ 4,abb 7→ 3,bba 7→ 3
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Removing unreachable rules (Prop. 5.3)
I Ex. 5.5 R = {ab → bca,bc → cbb,ba→ acb}.

C c

a

b

B

a

c

b

B

b

c

Baac

bc

I btiledT (ab → bca) = ∅ implies
SN(R) ⇐⇒ SN(bc → cbb,ba→ acb).

I we remove rule ab → bca, even though A still contains
redexes for a→Suffix bca.

Geser,Hofbauer,Waldmann Sparse Tiling through Overlap Closures FSCD 2019 10 / 14

Killer example: a2b2 → b3a3

I Theorem: each paper on SRS termination contains a
termination proof for Zantema’s (≈ 1993) problem

I Fact: as z001, it appears in the Termination Problems Data
Base since the beginning of time (= 2003)

I tiling for RFC; with semantic labelling (All), rule removal
(Rem), weights (W); showing (|R|, |Σ|) for each step:

(1,2)
RFC2−→

All
(4,4)

RFC5−→
Rem

(3,4)
RFC2−→

All
(12,8)

RFC3−→
All

(105,26)
W→ (60,26)

RFC5−→
Rem

(37,26)
RFC2−→

All
(97,44)

W→ (65,43)
RFC5−→
Rem

(36,43)
W→ (28,43)

RFC2−→
All

(86,68)
W→ (50,62)

RFC3−→
All

(246,128)
W→ (42,84)

RFC5−→
Rem

(2,44)
W→ (0,0)
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Overlap Closures and Relative Termination
I Def: R terminates relative to S, notation: SN(R/S), if there

is no (R ∪ S)-derivation with infinitely many R steps.
Ex: SN(aa→ aba/a→ aba).

I (recap) SN(R) iff SN(R) on RFC(R).
I (Ex. 6.1) SN(R/S) on RFC(R ∪ S) 6⇒ SN(R/S).

R = {ab → a},S = {c → bc},RFC(R ∪ S) = a ∪ b+c.
But abc →R ac →S abc.

I Thm 6.7 SN(R/S) iff SN(R/S) on ROC(R ∪ S).
using right-hand sides of overlap closures

I apply left-recursive characterisation of ROC (overlap
closure with rule) (see Appendix of paper).

I interesting case: (Cor 7.1.5)
if tx ∈ S and yv ∈ S and (xwy , z) ∈ R, then tzv ∈ S
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Example: Tiling for Overlap Closures
I 4-tiles for ROC(R), for R = {a3 → a2b2a2}.

C3 a2b ab2 b2a ba2 B3

a3

a2b b a a B3

C3

ab

b

I if tx ∈ S and yv ∈ S and (xwy , z) ∈ R, then tzv ∈ S
x is path to final state (since x ∈ Suffix(S))
y is path from initial state (since y ∈ Prefix(S))
use rewrite rule with border letters: xBk−1Ck−1y → z
Ex: aaa · ab → a2b2a2 · ab, reduct needs dashed edges
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Implementation, Experiments, Questions
I implemented as part of termination prover

https://gitlab.imn.htwk-leipzig.de/
waldmann/pure-matchbox

I performance, including Termcomp 2019 (SRS)
Relative matrices

no yes

tiling no 1 72
yes 176 225

Standard MB, DP, matr.
none all

tiling no 100 1122
yes 512 1133

I ? better proof search strategy for SRS Standard
I ? sparse tiling for TRS (RFC needs linearity)
I ? relation between matchbounds and tiling
I ? relation between tilings of different widths
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