Sparse Tiling Through Overlap Closures for Termination of String Rewriting

Alfons Geser (HTWK Leipzig), Dieter Hofbauer (ASW BA Saarland), Johannes Waldmann (HTWK Leipzig)

FSCD 2019

- relation → is terminating (strongly normalizing) := there are no infinite →-chains notations: SN(→), SN(→_R), SN(R).
- methods for proving termination of rewriting

- in particular: transformation that increases signature, give more room to pick predecence or interpretation
- ...by tiling: new signature consists of tiles (blocks of adjacent letters)

- relation → is terminating (strongly normalizing) := there are no infinite →-chains notations: SN(→), SN(→_R), SN(R).
- methods for proving termination of rewriting:
 - syntactical (precedence on symbols)
 - semantical (interprete symbols by functions over well-founded domain)
 - ▶ transformational (SN(R) \Leftarrow SN(R'))
- in particular: transformation that increases signature, give more room to pick predecence or interpretation
- ...by tiling: new signature consists of tiles (blocks of adjacent letters)

- ► relation \rightarrow is terminating (strongly normalizing) := there are no infinite \rightarrow -chains notations: $SN(\rightarrow)$, $SN(\rightarrow_R)$, SN(R).
- methods for proving termination of rewriting:
 - syntactical (precedence on symbols)
 - semantical (interprete symbols by functions over well-founded domain)
 - ▶ transformational (SN(R) \leftarrow SN(R'))
- in particular: transformation that increases signature, give more room to pick predecence or interpretation
- ...by tiling: new signature consists of tiles (blocks of adjacent letters)

- ► relation \rightarrow is terminating (strongly normalizing) := there are no infinite \rightarrow -chains notations: $SN(\rightarrow)$, $SN(\rightarrow_R)$, SN(R).
- methods for proving termination of rewriting:
 - syntactical (precedence on symbols)
 - semantical (interprete symbols by functions over well-founded domain)
 - ▶ transformational $(SN(R) \Leftarrow SN(R'))$
- in particular: transformation that increases signature, give more room to pick predecence or interpretation
- ... by tiling: new signature consists of tiles (blocks of adjacent letters)

- ► relation \rightarrow is terminating (strongly normalizing) := there are no infinite \rightarrow -chains notations: $SN(\rightarrow)$, $SN(\rightarrow_R)$, SN(R).
- methods for proving termination of rewriting:
 - syntactical (precedence on symbols)
 - semantical (interprete symbols by functions over well-founded domain)
 - ▶ transformational $(SN(R) \Leftarrow SN(R'))$
- in particular: transformation that increases signature, give more room to pick predecence or interpretation
- ... by tiling: new signature consists of tiles (blocks of adjacent letters)

- relation → is terminating (strongly normalizing) := there are no infinite →-chains notations: SN(→), SN(→_R), SN(R).
- methods for proving termination of rewriting:
 - syntactical (precedence on symbols)
 - semantical (interprete symbols by functions over well-founded domain)
 - ▶ transformational $(SN(R) \Leftarrow SN(R'))$
- in particular: transformation that increases signature, give more room to pick predecence or interpretation
- ...by tiling: new signature consists of tiles (blocks of adjacent letters)

- relation → is terminating (strongly normalizing) := there are no infinite →-chains notations: SN(→), SN(→_R), SN(R).
- methods for proving termination of rewriting:
 - syntactical (precedence on symbols)
 - semantical (interprete symbols by functions over well-founded domain)
 - ▶ transformational $(SN(R) \Leftarrow SN(R'))$
- in particular: transformation that increases signature, give more room to pick predecence or interpretation
- ...by tiling: new signature consists of tiles (blocks of adjacent letters)

- ▶ $S = \{aa \rightarrow aba\}$ does not remove letters
- ▶ use tiles of width 2 (pairs of adjacent letters) $S_2 = \{[aa] \rightarrow [ab, ba]\}$, can simulate S-derivations S_2 removes letter [aa]: is terminating!
- in general: need (left and right) padding
 ex. from rule ab → ba, create
 [aa][ab][ba] → [ab][ba][aa], [aa][ab][bb] → [ab][ba][ab]
 [ba][ab][ba] → [bb][ba][aa], [ba][ab][bb] → [bb][ba][ab]
- ▶ instance: root labelling (Sternagel, Middeldorp, RTA 2008)
- our contribution:
 - use smaller set of tiles (for rewriting and for padding)
 only those that appear in (certain) infinite derivations

- ▶ $S = \{aa \rightarrow aba\}$ does not remove letters
- use tiles of width 2 (pairs of adjacent letters) $S_2 = \{[aa] \rightarrow [ab, ba]\}$, can simulate S-derivations S_2 removes letter [aa]: is terminating!
- in general: need (left and right) padding
 ex. from rule ab → ba, create
 [aa][ab][ba] → [ab][ba][aa], [aa][ab][bb] → [ab][ba][ab],
 [ba][ab][ba] → [bb][ba][aa], [ba][ab][bb] → [bb][ba][ab]
- ▶ instance: root labelling (Sternagel, Middeldorp, RTA 2008)
- our contribution

- ▶ $S = \{aa \rightarrow aba\}$ does not remove letters
- use tiles of width 2 (pairs of adjacent letters) $S_2 = \{[aa] \rightarrow [ab, ba]\}$, can simulate S-derivations S_2 removes letter [aa]: is terminating!
- in general: need (left and right) padding ex. from rule ab → ba, create [aa][ab][ba] → [ab][ba][aa], [aa][ab][bb] → [ab][ba][ab], [ba][ab][ba] → [bb][ba][aa], [ba][ab][bb] → [bb][ba][ab]
- instance: root labelling (Sternagel, Middeldorp, RTA 2008)
- our contribution:

- ▶ $S = \{aa \rightarrow aba\}$ does not remove letters
- use tiles of width 2 (pairs of adjacent letters) $S_2 = \{[aa] \rightarrow [ab, ba]\}$, can simulate S-derivations S_2 removes letter [aa]: is terminating!
- in general: need (left and right) padding ex. from rule ab → ba, create [aa][ab][ba] → [ab][ba][aa], [aa][ab][bb] → [ab][ba][ab], [ba][ab][ba] → [bb][ba][aa], [ba][ab][bb] → [bb][ba][ab]
- instance: root labelling (Sternagel, Middeldorp, RTA 2008)
- our contribution:

- ▶ $S = \{aa \rightarrow aba\}$ does not remove letters
- use tiles of width 2 (pairs of adjacent letters) $S_2 = \{[aa] \rightarrow [ab, ba]\}$, can simulate S-derivations S_2 removes letter [aa]: is terminating!
- in general: need (left and right) padding ex. from rule ab → ba, create [aa][ab][ba] → [ab][ba][aa], [aa][ab][bb] → [ab][ba][ab], [ba][ab][ba] → [bb][ba][aa], [ba][ab][bb] → [bb][ba][ab]
- ▶ instance: root labelling (Sternagel, Middeldorp, RTA 2008)
- our contribution:
 - use smaller set of tiles (for rewriting and for padding)
 only those that appear in (certain) infinite derivations

- ▶ $S = \{aa \rightarrow aba\}$ does not remove letters
- use tiles of width 2 (pairs of adjacent letters) $S_2 = \{[aa] \rightarrow [ab, ba]\}$, can simulate S-derivations S_2 removes letter [aa]: is terminating!
- in general: need (left and right) padding ex. from rule ab → ba, create [aa][ab][ba] → [ab][ba][aa], [aa][ab][bb] → [ab][ba][ab], [ba][ab][ba] → [bb][ba][aa], [ba][ab][bb] → [bb][ba][ab]
- instance: root labelling (Sternagel, Middeldorp, RTA 2008)
- our contribution:
 - use smaller set of tiles (for rewriting and for padding)
 - only those that appear in (certain) infinite derivations

- ▶ $S = \{aa \rightarrow aba\}$ does not remove letters
- use tiles of width 2 (pairs of adjacent letters) $S_2 = \{[aa] \rightarrow [ab, ba]\}$, can simulate S-derivations S_2 removes letter [aa]: is terminating!
- in general: need (left and right) padding ex. from rule ab → ba, create [aa][ab][ba] → [ab][ba][aa], [aa][ab][bb] → [ab][ba][ab], [ba][ab][ba] → [bb][ba][aa], [ba][ab][bb] → [bb][ba][ab]
- instance: root labelling (Sternagel, Middeldorp, RTA 2008)
- our contribution:
 - use smaller set of tiles (for rewriting and for padding)
 - only those that appear in (certain) infinite derivations

- ▶ Ex. the bordered 3-tiles of string w = bbaab are btiles₃(w) = { $\triangleleft \triangleleft b$, $\triangleleft bb$, bba, aab, $ab \triangleright$, $b \triangleright$ }
- Def. [Zalcstein 1972] strictly locally testable language Lang(T) = {w | btiles(w) ⊆ T}
- this paper:

application: Matchbox wins Termcomp 2019 for SRS

- ▶ Ex. the bordered 3-tiles of string w = bbaab are btiles₃(w) = { $\triangleleft \triangleleft b$, $\triangleleft bb$, bba, aab, $ab \triangleright$, $b \triangleright$ }
- Def. [Zalcstein 1972] strictly locally testable language Lang(T) = {w | btiles(w) ⊆ T}
- this paper:

application: Matchbox wins Termcomp 2019 for SRS

- ► Ex. the bordered 3-tiles of string w = bbaab are btiles₃(w) = { $\triangleleft \triangleleft b$, $\triangleleft bb$, bba, aab, $ab \triangleright$, $b \triangleright$ }
- ▶ Def. [Zalcstein 1972] strictly locally testable language Lang(T) = {w | btiles(w) $\subseteq T$ }
- this paper:
 - \blacktriangleright use such languages to over-approximate $R^*(L)$
 - represent *T* by finite automaton *A*,
 - ...constructed by completion
 - semantically label R by the partial algebra of A
 - ...to transform the termination problem of R on L
 - ► sparse: T is the set of tiles that occur in rhs of forward closures (overlap closures, resp.)
- application: Matchbox wins Termcomp 2019 for SRS

- ► Ex. the bordered 3-tiles of string w = bbaab are btiles₃(w) = { $\triangleleft \triangleleft b$, $\triangleleft bb$, bba, aab, $ab \triangleright$, $b \triangleright$ }
- Def. [Zalcstein 1972] strictly locally testable language Lang(T) = {w | btiles(w) ⊆ T}
- this paper:
 - ightharpoonup use such languages to over-approximate $R^*(L)$
 - represent T by finite automaton A,
 - ...constructed by completion
 - semantically label R by the partial algebra of A
 - ...to transform the termination problem of R on L
 - ► sparse: *T* is the set of tiles that occur in rhs of forward closures (overlap closures, resp.)
- application: Matchbox wins Termcomp 2019 for SRS

- ► Ex. the bordered 3-tiles of string w = bbaab are btiles₃(w) = { $\triangleleft \triangleleft b$, $\triangleleft bb$, bba, aab, $ab \triangleright$, $b \triangleright$ }
- ▶ Def. [Zalcstein 1972] strictly locally testable language Lang(T) = {w | btiles(w) $\subseteq T$ }
- this paper:
 - use such languages to over-approximate R*(L)
 - represent T by finite automaton A,
 - ...constructed by completion
 - semantically label R by the partial algebra of A
 - ...to transform the termination problem of *R* on *L*
 - ► sparse: *T* is the set of tiles that occur in rhs of forward closures (overlap closures, resp.)
- application: Matchbox wins Termcomp 2019 for SRS

- ► Ex. the bordered 3-tiles of string w = bbaab are btiles₃(w) = { $\triangleleft \triangleleft b$, $\triangleleft bb$, bba, aab, $ab \triangleright$, $b \triangleright$ }
- Def. [Zalcstein 1972] strictly locally testable language Lang(T) = {w | btiles(w) ⊆ T}
- this paper:
 - use such languages to over-approximate R*(L)
 - represent T by finite automaton A,
 - ...constructed by completion
 - semantically label R by the partial algebra of A
 - ... to transform the termination problem of R on L
 - sparse: T is the set of tiles that occur in rhs of forward closures (overlap closures, resp.)
- application: Matchbox wins Termcomp 2019 for SRS

- ▶ Ex. the bordered 3-tiles of string w = bbaab are btiles₃(w) = { $\triangleleft \triangleleft b$, $\triangleleft bb$, bba, aab, $ab \triangleright$, $b \triangleright$ }
- Def. [Zalcstein 1972] strictly locally testable language Lang(T) = {w | btiles(w) ⊆ T}
- this paper:
 - use such languages to over-approximate R*(L)
 - represent T by finite automaton A,
 - ...constructed by completion
 - semantically label R by the partial algebra of A
 - ...to transform the termination problem of R on L
 - sparse: T is the set of tiles that occur in rhs of forward closures (overlap closures, resp.)
- application: Matchbox wins Termcomp 2019 for SRS

- ► Ex. the bordered 3-tiles of string w = bbaab are btiles₃(w) = { $\triangleleft \triangleleft b$, $\triangleleft bb$, bba, aab, $ab \triangleright$, $b \triangleright$ }
- Def. [Zalcstein 1972] strictly locally testable language Lang(T) = {w | btiles(w) ⊆ T}
- this paper:
 - use such languages to over-approximate R*(L)
 - represent T by finite automaton A,
 - ...constructed by completion
 - semantically label R by the partial algebra of A
 - ... to transform the termination problem of R on L.
 - sparse: T is the set of tiles that occur in rhs of forward closures (overlap closures, resp.)
- application: Matchbox wins Termcomp 2019 for SRS

- ► Ex. the bordered 3-tiles of string w = bbaab are btiles₃(w) = { $\triangleleft \triangleleft b$, $\triangleleft bb$, bba, aab, $ab \triangleright$, $b \triangleright$ }
- Def. [Zalcstein 1972] strictly locally testable language Lang(T) = {w | btiles(w) ⊆ T}
- this paper:
 - ightharpoonup use such languages to over-approximate $R^*(L)$
 - represent T by finite automaton A,
 - ...constructed by completion
 - semantically label R by the partial algebra of A
 - ... to transform the termination problem of R on L.
 - sparse: T is the set of tiles that occur in rhs of forward closures (overlap closures, resp.)
- application: Matchbox wins Termcomp 2019 for SRS

- ▶ Ex. the bordered 3-tiles of string w = bbaab are btiles₃(w) = { $\triangleleft \triangleleft b$, $\triangleleft bb$, bba, aab, $ab \triangleright$, $b \triangleright$ }
- Def. [Zalcstein 1972] strictly locally testable language Lang(T) = {w | btiles(w) ⊆ T}
- this paper:
 - use such languages to over-approximate R*(L)
 - represent T by finite automaton A,
 - ...constructed by completion
 - semantically label R by the partial algebra of A
 - ... to transform the termination problem of R on L.
 - sparse: T is the set of tiles that occur in rhs of forward closures (overlap closures, resp.)
- application: Matchbox wins Termcomp 2019 for SRS

- ▶ Def. RFC(R) = smallest set $M \subseteq \Sigma^*$ with
 - ightharpoonup (start) rhs(R) $\subseteq M$
 - \blacktriangleright (inner step) $(I, r) \in R \land ulv \in M \Rightarrow urv \in M$
 - ▶ (right extension) $(l_1l_2, r) \in R \land ul_1 \in M \Rightarrow ur \in M$
- ► Thm. (Dershowitz 1981)
 R terminates on Σ* ←⇒ R terminates on RFC(R)
- ▶ Ex. RFC($\{ab \rightarrow ba\}$) = b^+a . Cor.: is terminating.
- ▶ Lemma: RFC(R) = (R \cup forw(R))*(rhs(R)) where forw(R) = { $I_1 \rightarrow_{\text{Suffix}} r \mid (I_1I_2 \rightarrow r) \in R$ }.
- ightharpoonup Ex. RFC($\{ab \rightarrow ba\}\) = \{ab \rightarrow ba, a \rightarrow_{Suffix} ba\}^*(ba)$

- ▶ Def. RFC(R) = smallest set $M \subseteq \Sigma^*$ with
 - ▶ (start) $rhs(R) \subseteq M$
 - \blacktriangleright (inner step) $(I, r) \in R \land ulv \in M \Rightarrow urv \in M$
 - ▶ (right extension) $(I_1I_2, r) \in R \land uI_1 \in M \Rightarrow ur \in M$
- ► Thm. (Dershowitz 1981)
 R terminates on Σ* ←⇒ R terminates on RFC(R)
- ▶ Ex. RFC($\{ab \rightarrow ba\}$) = b^+a . Cor.: is terminating.
- ▶ Lemma: RFC(R) = (R \cup forw(R))*(rhs(R)) where forw(R) = { $I_1 \rightarrow_{\text{Suffix}} r \mid (I_1I_2 \rightarrow r) \in R$ }.
- ightharpoonup Ex. RFC($\{ab \rightarrow ba\}$) = $\{ab \rightarrow ba, a \rightarrow_{Suffix} ba\}^*(ba)$

- ▶ Def. RFC(R) = smallest set $M \subseteq \Sigma^*$ with
 - ▶ (start) $rhs(R) \subseteq M$
 - ▶ (inner step) $(I, r) \in R \land ulv \in M \Rightarrow urv \in M$
 - ▶ (right extension) $(I_1I_2, r) \in R \land uI_1 \in M \Rightarrow ur \in M$
- ► Thm. (Dershowitz 1981)
 R terminates on Σ* ←⇒ R terminates on RFC(R)
- ▶ Ex. RFC($\{ab \rightarrow ba\}$) = b^+a . Cor.: is terminating.
- ▶ Lemma: RFC(R) = (R \cup forw(R))*(rhs(R)) where forw(R) = { $I_1 \rightarrow_{\text{Suffix}} r \mid (I_1I_2 \rightarrow r) \in R$ }.
- ightharpoonup Ex. RFC($\{ab \rightarrow ba\}$) = $\{ab \rightarrow ba, a \rightarrow_{Suffix} ba\}^*(ba)$

- ▶ Def. RFC(R) = smallest set $M \subseteq \Sigma^*$ with
 - ▶ (start) $rhs(R) \subseteq M$
 - ▶ (inner step) $(I, r) \in R \land ulv \in M \Rightarrow urv \in M$
 - ▶ (right extension) $(I_1I_2, r) \in R \land uI_1 \in M \Rightarrow ur \in M$
- ► Thm. (Dershowitz 1981)
 R terminates on Σ* ←⇒ R terminates on RFC(R)
- ▶ Ex. RFC($\{ab \rightarrow ba\}$) = b^+a . Cor.: is terminating.
- ▶ Lemma: RFC(R) = (R \cup forw(R))*(rhs(R)) where forw(R) = { $I_1 \rightarrow_{\text{Suffix}} r \mid (I_1I_2 \rightarrow r) \in R$ }.
- ightharpoonup Ex. RFC($\{ab \rightarrow ba\}$) = $\{ab \rightarrow ba, a \rightarrow_{Suffix} ba\}^*(ba)$

- ▶ Def. RFC(R) = smallest set $M \subseteq \Sigma^*$ with
 - ▶ (start) $rhs(R) \subseteq M$
 - ▶ (inner step) $(I, r) \in R \land ulv \in M \Rightarrow urv \in M$
 - ▶ (right extension) $(I_1I_2, r) \in R \land uI_1 \in M \Rightarrow ur \in M$
- ► Thm. (Dershowitz 1981) R terminates on $\Sigma^* \iff R$ terminates on RFC(R)
- ► Ex. RFC($\{ab \rightarrow ba\}$) = b^+a . Cor.: is terminating.
- ▶ Lemma: RFC(R) = (R \cup forw(R))*(rhs(R)) where forw(R) = { $I_1 \rightarrow_{\text{Suffix}} r \mid (I_1I_2 \rightarrow r) \in R$ }.
- ightharpoonup Ex. RFC($\{ab \rightarrow ba\}$) = $\{ab \rightarrow ba, a \rightarrow_{Suffix} ba\}^*(ba)$

- ▶ Def. RFC(R) = smallest set $M \subseteq \Sigma^*$ with
 - ▶ (start) $rhs(R) \subseteq M$
 - ▶ (inner step) $(I, r) \in R \land ulv \in M \Rightarrow urv \in M$
 - ▶ (right extension) $(I_1I_2, r) \in R \land uI_1 \in M \Rightarrow ur \in M$
- ► Thm. (Dershowitz 1981) R terminates on $\Sigma^* \iff R$ terminates on RFC(R)
- ▶ Ex. RFC($\{ab \rightarrow ba\}$) = b^+a . Cor.: is terminating.
- ▶ Lemma: RFC(R) = (R \cup forw(R))*(rhs(R)) where forw(R) = { $I_1 \rightarrow_{\text{Suffix}} r \mid (I_1I_2 \rightarrow r) \in R$ }.
- ightharpoonup Ex. RFC($\{ab \rightarrow ba\}$) = $\{ab \rightarrow ba, a \rightarrow_{Suffix} ba\}^*(ba)$

- ▶ Def. RFC(R) = smallest set $M \subseteq \Sigma^*$ with
 - ▶ (start) $rhs(R) \subseteq M$
 - ▶ (inner step) $(I, r) \in R \land ulv \in M \Rightarrow urv \in M$
 - ▶ (right extension) $(I_1I_2, r) \in R \land uI_1 \in M \Rightarrow ur \in M$
- ► Thm. (Dershowitz 1981) R terminates on $\Sigma^* \iff R$ terminates on RFC(R)
- ▶ Ex. RFC($\{ab \rightarrow ba\}$) = b^+a . Cor.: is terminating.
- ▶ Lemma: RFC(R) = (R \cup forw(R))*(rhs(R)) where forw(R) = { $I_1 \rightarrow_{\text{Suffix}} r \mid (I_1I_2 \rightarrow r) \in R$ }.
- ► Ex. RFC($\{ab \rightarrow ba\}$) = $\{ab \rightarrow ba, a \rightarrow_{Suffix} ba\}^*(ba)$

- ▶ Def. RFC(R) = smallest set $M \subseteq \Sigma^*$ with
 - ▶ (start) $rhs(R) \subseteq M$
 - ▶ (inner step) $(I, r) \in R \land ulv \in M \Rightarrow urv \in M$
 - ▶ (right extension) $(I_1I_2, r) \in R \land uI_1 \in M \Rightarrow ur \in M$
- Thm. (Dershowitz 1981) R terminates on $\Sigma^* \iff R$ terminates on RFC(R)
- ▶ Ex. RFC($\{ab \rightarrow ba\}$) = b^+a . Cor.: is terminating.
- ▶ Lemma: RFC(R) = (R \cup forw(R))*(rhs(R)) where forw(R) = { $I_1 \rightarrow_{\text{Suffix}} r \mid (I_1I_2 \rightarrow r) \in R$ }.
- ightharpoonup Ex. RFC($\{ab
 ightarrow ba\}$) = $\{ab
 ightarrow ba, a
 ightarrow_{Suffix} ba\}^*(ba)$

Representing Sets of Tiles by Automata

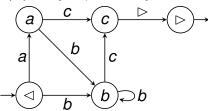
- ▶ Def: the k-shift automaton (it remembers k-1 most recent letters read) alphabet $\Sigma \cup \{\triangleright\}$, states tiles $_{k-1}(\lhd^*\Sigma^*\rhd^*)$, initial state \lhd^{k-1} , final state \rhd^{k-1} , transitions: $p \xrightarrow{c}_A \text{Suffix}_{k-1}(pc)$
- ightharpoonup represents set of k-tiles tiles $(A) := \{ pc \mid p \stackrel{\varepsilon}{\to}_A q \}$

Representing Sets of Tiles by Automata

- ▶ Def: the k-shift automaton (it remembers k-1 most recent letters read) alphabet $\Sigma \cup \{\triangleright\}$, states tiles $_{k-1}(\lhd^*\Sigma^*\rhd^*)$, initial state \lhd^{k-1} , final state \rhd^{k-1} , transitions: $p \xrightarrow{c}_A \text{Suffix}_{k-1}(pc)$
- ▶ represents set of k-tiles tiles(A) := { $pc \mid p \xrightarrow{c}_A q$ }

Representing Sets of Tiles by Automata

- ▶ Def: the k-shift automaton (it remembers k-1 most recent letters read) alphabet $\Sigma \cup \{\triangleright\}$, states tiles $_{k-1}(\lhd^*\Sigma^*\rhd^*)$, initial state \lhd^{k-1} , final state \rhd^{k-1} , transitions: $p \xrightarrow{c}_A \text{Suffix}_{k-1}(pc)$
- ▶ represents set of k-tiles tiles(A) := { $pc \mid p \xrightarrow{c}_A q$ }



Ex. 2-shift automaton A = b represents 2-tiles $\{ \langle a, \langle b, ab, ac, bb, bc, c \rangle \}$ Lang $(A) = (a+b)b^*c$

- ▶ spec: given k-shift A, R over Σ , find k-shift A' over Σ s.t.
 - ► Lang(A) \subseteq Lang(A')
 - ▶ $u \in \text{Lang}(A') \land u \rightarrow_R v \Rightarrow v \in \text{Lang}(A')$
- ▶ implementation: when $(I, r) \in CC_k(R)$ (right k-context closure) and $p \xrightarrow{I}_A q$, add transitions and states such that $p \xrightarrow{r}_A q$, until it stabilises
- ▶ by the *k*-shift property:
 - ⇒ given p and r, the path p →_λ q is fully determined,
 and it will indeed end in q
 - completion terminates since set of states is finite

- spec: given k-shift A, R over Σ, find k-shift A' over Σ s.t.
 - ▶ Lang(A) \subseteq Lang(A')
 - ▶ $u \in \text{Lang}(A') \land u \rightarrow_{B} v \Rightarrow v \in \text{Lang}(A')$
- implementation: when $(I, r) \in CC_k(R)$ (right k-context closure) and $p \xrightarrow{I}_A q$, add transitions and states such that $p \xrightarrow{r}_A q$, until it stabilises
- ▶ by the *k*-shift property:
 - given p and r, the path p ⇒_x q is fully determined, and it will indeed end in q
 - completion terminates since set of states is finite.

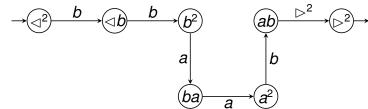
- ▶ spec: given k-shift A, R over Σ , find k-shift A' over Σ s.t.
 - ▶ Lang(A) \subseteq Lang(A')
 - ▶ $u \in \text{Lang}(A') \land u \rightarrow_R v \Rightarrow v \in \text{Lang}(A')$
- implementation: when $(I, r) \in CC_k(R)$ (right k-context closure) and $p \xrightarrow{f}_A q$, add transitions and states such that $p \xrightarrow{r}_A q$, until it stabilises
- ▶ by the *k*-shift property:

- ▶ spec: given k-shift A, R over Σ , find k-shift A' over Σ s.t.
 - ▶ Lang(A) \subseteq Lang(A')
 - ▶ $u \in \text{Lang}(A') \land u \rightarrow_R v \Rightarrow v \in \text{Lang}(A')$
- ▶ implementation: when $(I, r) \in CC_k(R)$ (right k-context closure) and $p \xrightarrow{I}_A q$, add transitions and states such that $p \xrightarrow{r}_A q$, until it stabilises
- by the *k*-shift property:

- spec: given k-shift A, R over Σ, find k-shift A' over Σ s.t.
 - ▶ Lang(A) \subseteq Lang(A')
 - ▶ $u \in \text{Lang}(A') \land u \rightarrow_R v \Rightarrow v \in \text{Lang}(A')$
- ▶ implementation: when $(I, r) \in CC_k(R)$ (right k-context closure) and $p \xrightarrow{I}_A q$, add transitions and states such that $p \xrightarrow{r}_A q$, until it stabilises
- by the k-shift property:
 - ▶ given *p* and *r*, the path $p \xrightarrow{r}_A q$ is fully determined, and it will indeed end in *q*
 - completion terminates since set of states is finite

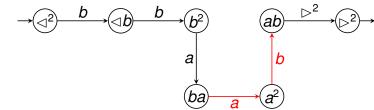
- ▶ spec: given k-shift A, R over Σ , find k-shift A' over Σ s.t.
 - ▶ Lang(A) \subseteq Lang(A')
 - ▶ $u \in \text{Lang}(A') \land u \rightarrow_R v \Rightarrow v \in \text{Lang}(A')$
- ▶ implementation: when $(I, r) \in CC_k(R)$ (right k-context closure) and $p \xrightarrow{I}_A q$, add transitions and states such that $p \xrightarrow{r}_A q$, until it stabilises
- by the k-shift property:
 - ▶ given p and r, the path $p \xrightarrow{r}_A q$ is fully determined, and it will indeed end in q
 - completion terminates since set of states is finite

- ▶ spec: given k-shift A, R over Σ , find k-shift A' over Σ s.t.
 - ▶ Lang(A) \subseteq Lang(A')
 - ▶ $u \in \text{Lang}(A') \land u \rightarrow_R v \Rightarrow v \in \text{Lang}(A')$
- ▶ implementation: when $(I, r) \in CC_k(R)$ (right k-context closure) and $p \xrightarrow{I}_A q$, add transitions and states such that $p \xrightarrow{r}_A q$, until it stabilises
- by the k-shift property:
 - ▶ given p and r, the path $p \xrightarrow{r}_A q$ is fully determined, and it will indeed end in q
 - completion terminates since set of states is finite



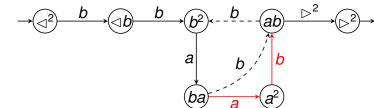
- ▶ ...this is the path for rhs(R)
- ▶ absent: $\triangleleft^2 \triangleright$, $\triangleleft \triangleright^2$, $\triangleleft \Sigma \triangleright$, $\triangleleft a\Sigma$, $\triangleleft ba$, $\Sigma a\triangleright$,

for R = {ab³ → bbaab}, compute 3-shift approx. of (R ∪ forw(R))*(rhs(R))

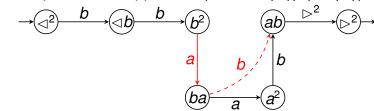


- ▶ \rightarrow a redex for $(ab \rightarrow_{Suffix} bbaab) \in forw(R)$
- ▶ absent: $\triangleleft^2 \triangleright$, $\triangleleft \triangleright^2$, $\triangleleft \Sigma \triangleright$, $\triangleleft a\Sigma$, $\triangleleft ba$, $\Sigma a\triangleright$, a

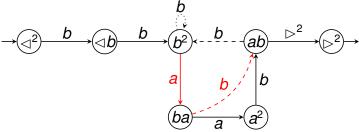
for R = {ab³ → bbaab}, compute 3-shift approx. of (R ∪ forw(R))*(rhs(R))



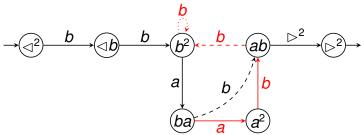
- ▶ \rightarrow a redex for $(ab \rightarrow_{Suffix} bbaab) \in forw(R)$ dashed: new edges for corresponding reduct
- ▶ absent: $\triangleleft^2 \triangleright$, $\triangleleft \triangleright^2$, $\triangleleft \Sigma \triangleright$, $\triangleleft a\Sigma$, $\triangleleft ba$, $\Sigma a \triangleright$, a



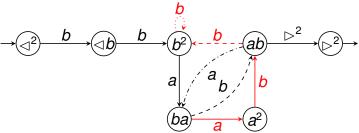
- ▶ \rightarrow a redex for $(ab \rightarrow_{Suffix} bbaab) \in forw(R)$
- ▶ absent: $\triangleleft^2 \triangleright$, $\triangleleft \triangleright^2$, $\triangleleft \Sigma \triangleright$, $\triangleleft a \Sigma$, $\triangleleft ba$, $\Sigma a \triangleright$, a



- → a redex for (ab →_{Suffix} bbaab) ∈ forw(R) dotted: new edge for corresponding reduct
- ▶ absent: $\triangleleft^2 \triangleright . \triangleleft \triangleright^2 . \triangleleft \Sigma \triangleright . \triangleleft a\Sigma . \triangleleft ba. \Sigma a \triangleright .$

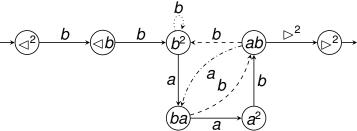


- ▶ \rightarrow a redex for $(ab^3a \rightarrow bbaaba) \in CC_1(R)$
- ▶ absent: $\triangleleft^2 \triangleright$, $\triangleleft \triangleright^2$, $\triangleleft \Sigma \triangleright$, $\triangleleft a\Sigma$, $\triangleleft ba$, $\Sigma a\triangleright$, a

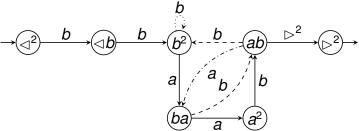


- → a redex for (ab³a → bbaaba) ∈ CC₁(R) dash-dotted: new edge for corresponding reduct
- ▶ absent: $\triangleleft^2 \triangleright . \triangleleft \triangleright^2 . \triangleleft \Sigma \triangleright . \triangleleft a\Sigma . \triangleleft ba . \Sigma a \triangleright . a^3$

for R = {ab³ → bbaab}, compute 3-shift approx. of (R ∪ forw(R))*(rhs(R))



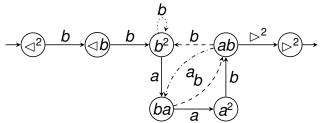
- ▶ absent: $\triangleleft^2 \triangleright$, $\triangleleft \triangleright^2$, $\triangleleft \Sigma \triangleright$, $\triangleleft a\Sigma$, $\triangleleft ba$, $\Sigma a \triangleright$, a^3



- ▶ absent: $\triangleleft^2 \triangleright$, $\triangleleft \triangleright^2$, $\triangleleft \Sigma \triangleright$, $\triangleleft a \Sigma$, $\triangleleft ba$, $\Sigma a \triangleright$, a^3

Semantic Labelling

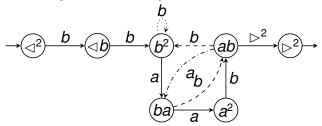
▶ for $R = \{ab^3 \rightarrow bbaab\}$,



- semantically labelled R is $R' = bba, bab, abb, b^3, bbx, bxy <math>\rightarrow b^3, b^3, bba, baa, aab, abx, bxy$ $baa, aab, abb, b^3, bbx, bxy \rightarrow bab, abb, bba, baa, aab, abx, bxy$ $aba, bab, abb, b^3, bbx, bxy \rightarrow abb, b^3, bba, baa, aab, abx, bxy$
- ▶ SN(R') by weights $b^3 \mapsto 8$, $bab \mapsto 4$, $abb \mapsto 3$, $bba \mapsto 3$

Semantic Labelling

▶ for $R = \{ab^3 \rightarrow bbaab\}$,

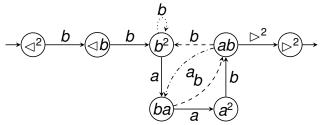


▶ semantically labelled R is R' = bba, bab, abb, b^3 , bbx, $bxy \rightarrow b^3$, b^3 , bba, baa, aab, abx, bxy baa, aab, abb, b^3 , bbx, $bxy \rightarrow bab$, abb, bba, baa, aab, abx, bxy aba, aab, abb, aab, abx, aab, abx, aab, abx, aab, abx, aab, abx, aab, aab, aab, abx, aab, aa

▶ SN(R') by weights $b^3 \mapsto 8$, $bab \mapsto 4$, $abb \mapsto 3$, $bba \mapsto 3$

Semantic Labelling

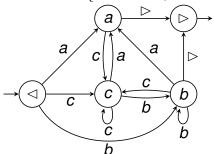
▶ for $R = \{ab^3 \rightarrow bbaab\}$,



- ▶ semantically labelled R is R' = bba, bab, abb, b^3 , bbx, $bxy \rightarrow b^3$, b^3 , bba, baa, aab, abx, $bxy \rightarrow bab$, abb, aba, aab, abb, aba, abb, aba, abb, aba, aba,
- ► SN(R') by weights $b^3 \mapsto 8$, $bab \mapsto 4$, $abb \mapsto 3$, $bba \mapsto 3$

Removing unreachable rules (Prop. 5.3)

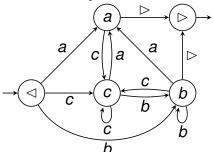
▶ Ex. 5.5 $R = \{ab \rightarrow bca, bc \rightarrow cbb, ba \rightarrow acb\}$.



- ▶ btiled_T($ab \rightarrow bca$) = \emptyset implies $SN(R) \iff SN(bc \rightarrow cbb, ba \rightarrow acb)$.
- ▶ we remove rule $ab \rightarrow bca$, even though A still contains redexes for $a \rightarrow_{Suffix} bca$.

Removing unreachable rules (Prop. 5.3)

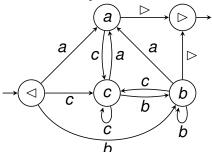
▶ Ex. 5.5 $R = \{ab \rightarrow bca, bc \rightarrow cbb, ba \rightarrow acb\}$.



- ▶ btiled_T($ab \rightarrow bca$) = \emptyset implies $SN(R) \iff SN(bc \rightarrow cbb, ba \rightarrow acb)$.
- ▶ we remove rule $ab \rightarrow bca$, even though A still contains redexes for $a \rightarrow_{Suffix} bca$.

Removing unreachable rules (Prop. 5.3)

▶ Ex. 5.5 $R = \{ab \rightarrow bca, bc \rightarrow cbb, ba \rightarrow acb\}$.



- ▶ btiled_T($ab \rightarrow bca$) = \emptyset implies SN(R) \iff SN($bc \rightarrow cbb$, $ba \rightarrow acb$).
- we remove rule $ab \rightarrow bca$, even though A still contains redexes for $a \rightarrow_{Suffix} bca$.

Killer example: $a^2b^2 \rightarrow b^3a^3$

- ▶ Theorem: each paper on SRS termination contains a termination proof for Zantema's (\approx 1993) problem
- ► Fact: as *z001*, it appears in the Termination Problems Data Base since the beginning of time (= 2003)
- tiling for RFC; with semantic labelling (All), rule removal (Rem), weights (W); showing (|R|, |∑|) for each step:

$$(1,2) \xrightarrow{RFC_{2}}^{RFC_{2}} (4,4) \xrightarrow{RFC_{5}}^{RFC_{5}} (3,4) \xrightarrow{RFC_{2}}^{RFC_{2}} (12,8) \xrightarrow{RFC_{3}}^{RFC_{3}} (105,26) \xrightarrow{W} (60,26)$$

$$\xrightarrow{RFC_{5}}^{RFC_{5}} (37,26) \xrightarrow{RFC_{2}}^{RFC_{2}} (97,44) \xrightarrow{W} (65,43) \xrightarrow{RFC_{5}}^{RFC_{5}} (36,43) \xrightarrow{W} (28,43)$$

$$\xrightarrow{RFC_{2}}^{RFC_{2}} (86,68) \xrightarrow{W} (50,62) \xrightarrow{RFC_{3}}^{RFC_{3}} (246,128) \xrightarrow{W} (42,84)$$

$$\xrightarrow{RFC_{5}}^{RFC_{5}} (2,44) \xrightarrow{W} (0,0)$$

Killer example: $a^2b^2 \rightarrow b^3a^3$

- ▶ Theorem: each paper on SRS termination contains a termination proof for Zantema's (\approx 1993) problem
- ► Fact: as z001, it appears in the Termination Problems Data Base since the beginning of time (= 2003)
- tiling for RFC; with semantic labelling (All), rule removal (Rem), weights (W); showing (|R|, |∑|) for each step:

$$\begin{array}{c} (1,2) \xrightarrow{RFC_2}^{RFC_2} (4,4) \xrightarrow{RFC_5}^{RFC_5} (3,4) \xrightarrow{RFC_2}^{RFC_2} (12,8) \xrightarrow{RFC_3}^{RFC_3} (105,26) \xrightarrow{W} (60,26) \\ \xrightarrow{RFC_5} (37,26) \xrightarrow{RFC_2}^{RFC_2} (97,44) \xrightarrow{W} (65,43) \xrightarrow{RFC_5}^{RFC_5} (36,43) \xrightarrow{W} (28,43) \\ \xrightarrow{RFC_2} (86,68) \xrightarrow{W} (50,62) \xrightarrow{RFC_3}^{RFC_3} (246,128) \xrightarrow{W} (42,84) \end{array}$$

 $\xrightarrow{RFC_5} (2,44) \xrightarrow{W} (0,0)$

Killer example: $a^2b^2 \rightarrow b^3a^3$

- ► Theorem: each paper on SRS termination contains a termination proof for Zantema's (≈ 1993) problem
- ► Fact: as z001, it appears in the Termination Problems Data Base since the beginning of time (= 2003)
- ▶ tiling for RFC; with semantic labelling (All), rule removal (Rem), weights (W); showing $(|R|, |\Sigma|)$ for each step:

$$\begin{array}{c} (1,2) \frac{\mathsf{RFC}_2}{\mathsf{All}} (4,4) \frac{\mathsf{RFC}_5}{\mathsf{Rem}} (3,4) \frac{\mathsf{RFC}_2}{\mathsf{All}} (12,8) \frac{\mathsf{RFC}_3}{\mathsf{All}} (105,26) \stackrel{\mathsf{W}}{\to} (60,26) \\ \frac{\mathsf{RFC}_5}{\mathsf{Rem}} (37,26) \frac{\mathsf{RFC}_2}{\mathsf{All}} (97,44) \stackrel{\mathsf{W}}{\to} (65,43) \frac{\mathsf{RFC}_5}{\mathsf{Rem}} (36,43) \stackrel{\mathsf{W}}{\to} (28,43) \\ \frac{\mathsf{RFC}_2}{\mathsf{All}} (86,68) \stackrel{\mathsf{W}}{\to} (50,62) \frac{\mathsf{RFC}_3}{\mathsf{All}} (246,128) \stackrel{\mathsf{W}}{\to} (42,84) \\ \frac{\mathsf{RFC}_5}{\mathsf{Rem}} (2,44) \stackrel{\mathsf{W}}{\to} (0,0) \end{array}$$

- ▶ Def: R terminates relative to S, notation: SN(R/S), if there is no $(R \cup S)$ -derivation with infinitely many R steps. Ex: $SN(aa \rightarrow aba/a \rightarrow aba)$.
- ightharpoonup (recap) SN(R) iff SN(R) on RFC(R).
- ► (Ex. 6.1) SN(R/S) on $RFC(R \cup S) \not\Rightarrow SN(R/S)$. $R = \{ab \rightarrow a\}, S = \{c \rightarrow bc\}, RFC(R \cup S) = a \cup b^+c$. But $abc \rightarrow_R ac \rightarrow_S abc$.
- ▶ Thm 6.7 SN(R/S) iff SN(R/S) on $ROC(R \cup S)$. using right-hand sides of *overlap* closures
- apply left-recursive characterisation of ROC (overlap closure with rule) (see Appendix of paper).
- ▶ interesting case: (Cor 7.1.5) if $tx \in S$ and $yv \in S$ and $(xwy, z) \in R$, then $tzv \in S$

- ▶ Def: R terminates relative to S, notation: SN(R/S), if there is no $(R \cup S)$ -derivation with infinitely many R steps. Ex: $SN(aa \rightarrow aba/a \rightarrow aba)$.
- ightharpoonup (recap) SN(R) iff SN(R) on RFC(R).
- ► (Ex. 6.1) SN(R/S) on $RFC(R \cup S) \Rightarrow SN(R/S)$. $R = \{ab \rightarrow a\}, S = \{c \rightarrow bc\}, RFC(R \cup S) = a \cup b^+c$. But $abc \rightarrow_R ac \rightarrow_S abc$.
- ▶ Thm 6.7 SN(R/S) iff SN(R/S) on $ROC(R \cup S)$. using right-hand sides of *overlap* closures
- apply left-recursive characterisation of ROC (overlap closure with rule) (see Appendix of paper).
- interesting case: (Cor 7.1.5) if $tx \in S$ and $yv \in S$ and $(xwy, z) \in R$, then $tzv \in S$

- ▶ Def: R terminates relative to S, notation: SN(R/S), if there is no $(R \cup S)$ -derivation with infinitely many R steps. Ex: $SN(aa \rightarrow aba/a \rightarrow aba)$.
- ightharpoonup (recap) SN(R) iff SN(R) on RFC(R).
- ▶ (Ex. 6.1) SN(R/S) on RFC($R \cup S$) \Rightarrow SN(R/S). $R = \{ab \rightarrow a\}, S = \{c \rightarrow bc\}, RFC(R \cup S) = a \cup b^+c.$ But $abc \rightarrow_R ac \rightarrow_S abc.$
- ▶ Thm 6.7 SN(R/S) iff SN(R/S) on $ROC(R \cup S)$. using right-hand sides of *overlap* closures
- apply left-recursive characterisation of ROC (overlap closure with rule) (see Appendix of paper).
- interesting case: (Cor 7.1.5) if $tx \in S$ and $yv \in S$ and $(xwy, z) \in R$, then $tzv \in S$

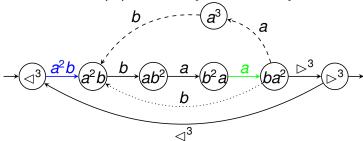
- ▶ Def: R terminates relative to S, notation: SN(R/S), if there is no $(R \cup S)$ -derivation with infinitely many R steps. Ex: $SN(aa \rightarrow aba/a \rightarrow aba)$.
- ightharpoonup (recap) SN(R) iff SN(R) on RFC(R).
- ▶ (Ex. 6.1) SN(R/S) on RFC($R \cup S$) \Rightarrow SN(R/S). $R = \{ab \rightarrow a\}, S = \{c \rightarrow bc\}, RFC(R \cup S) = a \cup b^+c.$ But $abc \rightarrow_R ac \rightarrow_S abc.$
- ▶ Thm 6.7 SN(R/S) iff SN(R/S) on $ROC(R \cup S)$. using right-hand sides of *overlap* closures
- apply left-recursive characterisation of ROC (overlap closure with rule) (see Appendix of paper).
- ▶ interesting case: (Cor 7.1.5) if $tx \in S$ and $yv \in S$ and $(xwy, z) \in R$, then $tzv \in S$

- ▶ Def: R terminates relative to S, notation: SN(R/S), if there is no $(R \cup S)$ -derivation with infinitely many R steps. Ex: $SN(aa \rightarrow aba/a \rightarrow aba)$.
- ightharpoonup (recap) SN(R) iff SN(R) on RFC(R).
- ► (Ex. 6.1) SN(R/S) on RFC($R \cup S$) \Rightarrow SN(R/S). $R = \{ab \rightarrow a\}, S = \{c \rightarrow bc\}, RFC(R \cup S) = a \cup b^+c.$ But $abc \rightarrow_R ac \rightarrow_S abc.$
- ▶ Thm 6.7 SN(R/S) iff SN(R/S) on $ROC(R \cup S)$. using right-hand sides of *overlap* closures
- apply left-recursive characterisation of ROC (overlap closure with rule) (see Appendix of paper).
- ▶ interesting case: (Cor 7.1.5) if $tx \in S$ and $yv \in S$ and $(xwy, z) \in R$, then $tzv \in S$

- ▶ Def: R terminates relative to S, notation: SN(R/S), if there is no $(R \cup S)$ -derivation with infinitely many R steps. Ex: $SN(aa \rightarrow aba/a \rightarrow aba)$.
- ightharpoonup (recap) SN(R) iff SN(R) on RFC(R).
- ▶ (Ex. 6.1) SN(R/S) on RFC($R \cup S$) \Rightarrow SN(R/S). $R = \{ab \rightarrow a\}, S = \{c \rightarrow bc\}, RFC(R \cup S) = a \cup b^+c.$ But $abc \rightarrow_R ac \rightarrow_S abc.$
- ▶ Thm 6.7 SN(R/S) iff SN(R/S) on $ROC(R \cup S)$. using right-hand sides of *overlap* closures
- apply left-recursive characterisation of ROC (overlap closure with rule) (see Appendix of paper).
- ▶ interesting case: (Cor 7.1.5) if $tx \in S$ and $yv \in S$ and $(xwy, z) \in R$, then $tzv \in S$

Example: Tiling for Overlap Closures

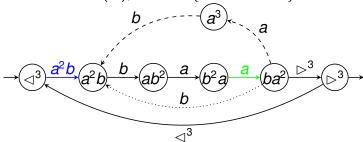
▶ 4-tiles for ROC(R), for $R = \{a^3 \rightarrow a^2b^2a^2\}$.



if $tx \in S$ and $yv \in S$ and $(xwy, z) \in R$, then $tzv \in S$ x is path to final state (since $x \in Suffix(S)$) y is path from initial state (since $y \in Prefix(S)$) use rewrite rule with border letters: $x \triangleright^{k-1} \triangleleft^{k-1} y \to z$ Ex: $aaa \cdot ab \to a^2b^2a^2 \cdot ab$, reduct needs dashed edges

Example: Tiling for Overlap Closures

▶ 4-tiles for ROC(R), for $R = \{a^3 \rightarrow a^2b^2a^2\}$.



if $tx \in S$ and $yv \in S$ and $(xwy, z) \in R$, then $tzv \in S$ x is path to final state (since $x \in Suffix(S)$) y is path from initial state (since $y \in Prefix(S)$) use rewrite rule with border letters: $x \triangleright^{k-1} \triangleleft^{k-1} y \to z$ Ex: $aaa \cdot ab \to a^2b^2a^2 \cdot ab$, reduct needs dashed edges

implemented as part of termination prover

```
https://gitlab.imn.htwk-leipzig.de/
waldmann/pure-matchbox
```

performance, including Termcomp 2019 (SRS)

- ? better proof search strategy for SRS Standard
- ? sparse tiling for TRS (RFC needs linearity)
- ? relation between matchbounds and tiling
- ? relation between tilings of different widths

- implemented as part of termination prover
 - https://gitlab.imn.htwk-leipzig.de/
 waldmann/pure-matchbox
- performance, including Termcomp 2019 (SRS)

Relative		matrices		Stand	Standard		MB, DP, matr.	
		no	yes			none	all	
tiling	no	1	72	tiling	no	100	1122	
unig	yes	176	225	uning	yes	512	1133	

- ? better proof search strategy for SRS Standard
- ? sparse tiling for TRS (RFC needs linearity)
- ? relation between matchbounds and tiling
- ? relation between tilings of different widths

- implemented as part of termination prover
 - https://gitlab.imn.htwk-leipzig.de/
 waldmann/pure-matchbox
- performance, including Termcomp 2019 (SRS)

Relative		matrices			Standard		MB, DP, matr.	
		no	yes				none	all
tiling	no	1	72	- tilinç	tiling	no	100	1122
unig	yes	176	225		unig	yes	512	1133

- ? better proof search strategy for SRS Standard
- ? sparse tiling for TRS (RFC needs linearity)
- ? relation between matchbounds and tiling
- ? relation between tilings of different widths

- implemented as part of termination prover
 - https://gitlab.imn.htwk-leipzig.de/
 waldmann/pure-matchbox
- performance, including Termcomp 2019 (SRS)

Relative		matrices		Standard		MB, DP, matr.		
		no	yes				none	all
tiling	no	1	72	- t	tiling	no	100	1122
	yes	176	225			yes	512	1133

- > ? better proof search strategy for SRS Standard
- ? sparse tiling for TRS (RFC needs linearity)
- ? relation between matchbounds and tiling
- ? relation between tilings of different widths

- ► implemented as part of termination prover
 - https://gitlab.imn.htwk-leipzig.de/
 waldmann/pure-matchbox
- performance, including Termcomp 2019 (SRS)

Relative		matrices		Standard		MB, DP, matr.		
		no	yes				none	all
tiling	no	1	72	- ti	tiling	no	100	1122
umig	yes	176	225			yes	512	1133

- ? better proof search strategy for SRS Standard
- ? sparse tiling for TRS (RFC needs linearity)
- ? relation between matchbounds and tiling
- ? relation between tilings of different widths

- implemented as part of termination prover
 - https://gitlab.imn.htwk-leipzig.de/
 waldmann/pure-matchbox
- performance, including Termcomp 2019 (SRS)

Relative		matrices			Standard		MB, DP, matr.	
		no	yes				none	all
tiling	no	1	72	-	tiling	no	100	1122
unig	yes	176	225			yes	512	1133

- > ? better proof search strategy for SRS Standard
- ? sparse tiling for TRS (RFC needs linearity)
- ? relation between matchbounds and tiling
- ? relation between tilings of different widths