Sparse Tiling Through Overlap Closures for Termination of String Rewriting

Alfons Geser (HTWK Leipzig), Dieter Hofbauer (ASW BA Saarland), Johannes Waldmann (HTWK Leipzig)

FSCD 2019

Preliminaries: Termination

- relation \rightarrow is terminating (strongly normalizing)
$:=$ there are no infinite \rightarrow-chains notations: $\mathrm{SN}(\rightarrow), \mathrm{SN}\left(\rightarrow_{R}\right), \mathrm{SN}(R)$.

Preliminaries: Termination

- relation \rightarrow is terminating (strongly normalizing)
$:=$ there are no infinite \rightarrow-chains notations: $\mathrm{SN}(\rightarrow), \mathrm{SN}\left(\rightarrow_{R}\right), \mathrm{SN}(R)$.
- methods for proving termination of rewriting:

Preliminaries: Termination

- relation \rightarrow is terminating (strongly normalizing)
$:=$ there are no infinite \rightarrow-chains
notations: $\mathrm{SN}(\rightarrow), \mathrm{SN}\left(\rightarrow_{R}\right), \mathrm{SN}(R)$.
- methods for proving termination of rewriting:
- syntactical (precedence on symbols)

Preliminaries: Termination

- relation \rightarrow is terminating (strongly normalizing)
$:=$ there are no infinite \rightarrow-chains
notations: $\mathrm{SN}(\rightarrow), \mathrm{SN}\left(\rightarrow_{R}\right), \mathrm{SN}(R)$.
- methods for proving termination of rewriting:
- syntactical (precedence on symbols)
- semantical (interprete symbols by functions over well-founded domain)

Preliminaries: Termination

- relation \rightarrow is terminating (strongly normalizing)
$:=$ there are no infinite \rightarrow-chains
notations: $\mathrm{SN}(\rightarrow), \mathrm{SN}\left(\rightarrow_{R}\right), \mathrm{SN}(R)$.
- methods for proving termination of rewriting:
- syntactical (precedence on symbols)
- semantical (interprete symbols by functions over well-founded domain)
- transformational $\left(\mathrm{SN}(R) \Leftarrow \mathrm{SN}\left(R^{\prime}\right)\right)$

Preliminaries: Termination

- relation \rightarrow is terminating (strongly normalizing)
$:=$ there are no infinite \rightarrow-chains
notations: $\mathrm{SN}(\rightarrow), \mathrm{SN}\left(\rightarrow_{R}\right), \mathrm{SN}(R)$.
- methods for proving termination of rewriting:
- syntactical (precedence on symbols)
- semantical (interprete symbols by functions over well-founded domain)
- transformational $\left(\mathrm{SN}(R) \Leftarrow \mathrm{SN}\left(R^{\prime}\right)\right)$
- in particular: transformation that increases signature, give more room to pick predecence or interpretation

Preliminaries: Termination

- relation \rightarrow is terminating (strongly normalizing)
$:=$ there are no infinite \rightarrow-chains notations: $\mathrm{SN}(\rightarrow), \mathrm{SN}\left(\rightarrow_{R}\right), \mathrm{SN}(R)$.
- methods for proving termination of rewriting:
- syntactical (precedence on symbols)
- semantical (interprete symbols by functions over well-founded domain)
- transformational $\left(\mathrm{SN}(R) \Leftarrow \mathrm{SN}\left(R^{\prime}\right)\right)$
- in particular: transformation that increases signature, give more room to pick predecence or interpretation
- ... by tiling: new signature consists of tiles (blocks of adjacent letters)

Preliminaries: Tiling

- $S=\{a a \rightarrow a b a\}$ does not remove letters

Preliminaries: Tiling

- $S=\{a a \rightarrow a b a\}$ does not remove letters
- use tiles of width 2 (pairs of adjacent letters) $S_{2}=\{[a a] \rightarrow[a b, b a]\}$, can simulate S-derivations S_{2} removes letter [aa]: is terminating!

Preliminaries: Tiling

- $S=\{a a \rightarrow a b a\}$ does not remove letters
- use tiles of width 2 (pairs of adjacent letters) $S_{2}=\{[a a] \rightarrow[a b, b a]\}$, can simulate S-derivations S_{2} removes letter [aa]: is terminating!
- in general: need (left and right) padding ex. from rule $a b \rightarrow b a$, create [aa][ab][ba] \rightarrow [ab][ba][aa], $[a a][a b][b b] \rightarrow[a b][b a][a b]$, $[b a][a b][b a] \rightarrow[b b][b a][a a],[b a][a b][b b] \rightarrow[b b][b a][a b]$

Preliminaries: Tiling

- $S=\{a a \rightarrow a b a\}$ does not remove letters
- use tiles of width 2 (pairs of adjacent letters) $S_{2}=\{[a a] \rightarrow[a b, b a]\}$, can simulate S-derivations S_{2} removes letter [aa]: is terminating!
- in general: need (left and right) padding ex. from rule $a b \rightarrow b a$, create [aa][ab][ba] \rightarrow [ab][ba][aa], [aa][ab][bb] \rightarrow [ab][ba][ab], $[b a][a b][b a] \rightarrow[b b][b a][a a],[b a][a b][b b] \rightarrow[b b][b a][a b]$
- instance: root labelling (Sternagel, Middeldorp, RTA 2008)

Preliminaries: Tiling

- $S=\{a a \rightarrow a b a\}$ does not remove letters
- use tiles of width 2 (pairs of adjacent letters) $S_{2}=\{[a a] \rightarrow[a b, b a]\}$, can simulate S-derivations S_{2} removes letter [aa]: is terminating!
- in general: need (left and right) padding ex. from rule $a b \rightarrow b a$, create [aa][ab][ba] \rightarrow [ab][ba][aa], [aa][ab][bb] \rightarrow [ab][ba][ab], $[b a][a b][b a] \rightarrow[b b][b a][a a],[b a][a b][b b] \rightarrow[b b][b a][a b]$
- instance: root labelling (Sternagel, Middeldorp, RTA 2008)
- our contribution:

Preliminaries: Tiling

- $S=\{a a \rightarrow a b a\}$ does not remove letters
- use tiles of width 2 (pairs of adjacent letters) $S_{2}=\{[a a] \rightarrow[a b, b a]\}$, can simulate S-derivations S_{2} removes letter [aa]: is terminating!
- in general: need (left and right) padding ex. from rule $a b \rightarrow b a$, create [aa][ab][ba] \rightarrow [ab][ba][aa], [aa][ab][bb] \rightarrow [ab][ba][ab], $[b a][a b][b a] \rightarrow[b b][b a][a a],[b a][a b][b b] \rightarrow[b b][b a][a b]$
- instance: root labelling (Sternagel, Middeldorp, RTA 2008)
- our contribution:
- use smaller set of tiles (for rewriting and for padding)

Preliminaries: Tiling

- $S=\{a a \rightarrow a b a\}$ does not remove letters
- use tiles of width 2 (pairs of adjacent letters) $S_{2}=\{[a a] \rightarrow[a b, b a]\}$, can simulate S-derivations S_{2} removes letter [aa]: is terminating!
- in general: need (left and right) padding ex. from rule $a b \rightarrow b a$, create [aa][ab][ba] \rightarrow [ab][ba][aa], [aa][ab][bb] \rightarrow [ab][ba][ab], $[b a][a b][b a] \rightarrow[b b][b a][a a],[b a][a b][b b] \rightarrow[b b][b a][a b]$
- instance: root labelling (Sternagel, Middeldorp, RTA 2008)
- our contribution:
- use smaller set of tiles (for rewriting and for padding)
- only those that appear in (certain) infinite derivations

Sparse Tiling: Definition and Motivation

- Ex. the bordered 3-tiles of string $w=b b a a b$ are btiles $_{3}(w)=\{\triangleleft \triangleleft b, \triangleleft b b, b b a, a a b, a b \triangleright, b \triangleright \triangleright\}$

Sparse Tiling: Definition and Motivation

- Ex. the bordered 3-tiles of string $w=b b a a b$ are btiles $_{3}(w)=\{\triangleleft \triangleleft b, \triangleleft b b, b b a, a a b, a b \triangleright, b \triangleright \triangleright\}$
- Def. [Zalcstein 1972] strictly locally testable language $\operatorname{Lang}(T)=\{w \mid \operatorname{btiles}(w) \subseteq T\}$

Sparse Tiling: Definition and Motivation

- Ex. the bordered 3-tiles of string $w=b b a a b$ are btiles $_{3}(w)=\{\triangleleft \triangleleft b, \triangleleft b b, b b a, a a b, a b \triangleright, b \triangleright \triangleright\}$
- Def. [Zalcstein 1972] strictly locally testable language $\operatorname{Lang}(T)=\{w \mid \operatorname{btiles}(w) \subseteq T\}$
- this paper:

Sparse Tiling: Definition and Motivation

- Ex. the bordered 3-tiles of string $w=b b a a b$ are btiles $_{3}(w)=\{\triangleleft \triangleleft b, \triangleleft b b, b b a, a a b, a b \triangleright, b \triangleright \triangleright\}$
- Def. [Zalcstein 1972] strictly locally testable language $\operatorname{Lang}(T)=\{w \mid \operatorname{btiles}(w) \subseteq T\}$
- this paper:
- use such languages to over-approximate $R^{*}(L)$

Sparse Tiling: Definition and Motivation

- Ex. the bordered 3-tiles of string $w=b b a a b$ are btiles $_{3}(w)=\{\triangleleft \triangleleft b, \triangleleft b b, b b a, a a b, a b \triangleright, b \triangleright \triangleright\}$
- Def. [Zalcstein 1972] strictly locally testable language $\operatorname{Lang}(T)=\{w \mid \operatorname{btiles}(w) \subseteq T\}$
- this paper:
- use such languages to over-approximate $R^{*}(L)$
- represent T by finite automaton A,

Sparse Tiling: Definition and Motivation

- Ex. the bordered 3-tiles of string $w=b b a a b$ are btiles $_{3}(w)=\{\triangleleft \triangleleft b, \triangleleft b b, b b a, a a b, a b \triangleright, b \triangleright \triangleright\}$
- Def. [Zalcstein 1972] strictly locally testable language $\operatorname{Lang}(T)=\{w \mid \operatorname{btiles}(w) \subseteq T\}$
- this paper:
- use such languages to over-approximate $R^{*}(L)$
- represent T by finite automaton A,
- ... constructed by completion

Sparse Tiling: Definition and Motivation

- Ex. the bordered 3-tiles of string $w=b b a a b$ are btiles $_{3}(w)=\{\triangleleft \triangleleft b, \triangleleft b b, b b a, a a b, a b \triangleright, b \triangleright \triangleright\}$
- Def. [Zalcstein 1972] strictly locally testable language $\operatorname{Lang}(T)=\{w \mid \operatorname{btiles}(w) \subseteq T\}$
- this paper:
- use such languages to over-approximate $R^{*}(L)$
- represent T by finite automaton A,
- ... constructed by completion
- semantically label R by the partial algebra of A

Sparse Tiling: Definition and Motivation

- Ex. the bordered 3-tiles of string $w=b b a a b$ are btiles $_{3}(w)=\{\triangleleft \triangleleft b, \triangleleft b b, b b a, a a b, a b \triangleright, b \triangleright \triangleright\}$
- Def. [Zalcstein 1972] strictly locally testable language $\operatorname{Lang}(T)=\{w \mid \operatorname{btiles}(w) \subseteq T\}$
- this paper:
- use such languages to over-approximate $R^{*}(L)$
- represent T by finite automaton A,
- ... constructed by completion
- semantically label R by the partial algebra of A
- ... to transform the termination problem of R on L.

Sparse Tiling: Definition and Motivation

- Ex. the bordered 3-tiles of string $w=b b a a b$ are btiles $_{3}(w)=\{\triangleleft \triangleleft b, \triangleleft b b, b b a, a a b, a b \triangleright, b \triangleright \triangleright\}$
- Def. [Zalcstein 1972] strictly locally testable language Lang $(T)=\{w \mid \operatorname{btiles}(w) \subseteq T\}$
- this paper:
- use such languages to over-approximate $R^{*}(L)$
- represent T by finite automaton A,
- ... constructed by completion
- semantically label R by the partial algebra of A
- ...to transform the termination problem of R on L.
- sparse: T is the set of tiles that occur in rhs of forward closures (overlap closures, resp.)

Sparse Tiling: Definition and Motivation

- Ex. the bordered 3-tiles of string $w=b b a a b$ are btiles $_{3}(w)=\{\triangleleft \triangleleft b, \triangleleft b b, b b a, a a b, a b \triangleright, b \triangleright \triangleright\}$
- Def. [Zalcstein 1972] strictly locally testable language Lang $(T)=\{w \mid \operatorname{btiles}(w) \subseteq T\}$
- this paper:
- use such languages to over-approximate $R^{*}(L)$
- represent T by finite automaton A,
- ... constructed by completion
- semantically label R by the partial algebra of A
- ...to transform the termination problem of R on L.
- sparse: T is the set of tiles that occur in rhs of forward closures (overlap closures, resp.)
- application: Matchbox wins Termcomp 2019 for SRS

Right-hand Sides of Forward Closures

- Def. $\operatorname{RFC}(R)=$ smallest set $M \subseteq \Sigma^{*}$ with

Right-hand Sides of Forward Closures

- Def. $\operatorname{RFC}(R)=$ smallest set $M \subseteq \Sigma^{*}$ with
- (start) $\operatorname{rhs}(R) \subseteq M$

Right-hand Sides of Forward Closures

- Def. $\operatorname{RFC}(R)=$ smallest set $M \subseteq \Sigma^{*}$ with
- (start) rhs $(R) \subseteq M$
- (inner step) $(I, r) \in R \wedge u l v \in M \Rightarrow u r v \in M$

Right-hand Sides of Forward Closures

- Def. $\operatorname{RFC}(R)=$ smallest set $M \subseteq \Sigma^{*}$ with
- (start) rhs $(R) \subseteq M$
- (inner step) $(I, r) \in R \wedge u l v \in M \Rightarrow u r v \in M$
- (right extension) $\left(l_{1} l_{2}, r\right) \in R \wedge u l_{1} \in M \Rightarrow u r \in M$

Right-hand Sides of Forward Closures

- Def. $\operatorname{RFC}(R)=$ smallest set $M \subseteq \Sigma^{*}$ with
- (start) rhs $(R) \subseteq M$
- (inner step) $(I, r) \in R \wedge u l v \in M \Rightarrow u r v \in M$
- (right extension) $\left(l_{1} l_{2}, r\right) \in R \wedge u l_{1} \in M \Rightarrow u r \in M$
- Thm. (Dershowitz 1981)
R terminates on $\Sigma^{*} \Longleftrightarrow R$ terminates on $\operatorname{RFC}(R)$

Right-hand Sides of Forward Closures

- Def. $\operatorname{RFC}(R)=$ smallest set $M \subseteq \Sigma^{*}$ with
- (start) rhs $(R) \subseteq M$
- (inner step) $(I, r) \in R \wedge u l v \in M \Rightarrow u r v \in M$
- (right extension) $\left(l_{1} l_{2}, r\right) \in R \wedge u l_{1} \in M \Rightarrow u r \in M$
- Thm. (Dershowitz 1981)
R terminates on $\Sigma^{*} \Longleftrightarrow R$ terminates on $\operatorname{RFC}(R)$
- Ex. $\operatorname{RFC}(\{a b \rightarrow b a\})=b^{+} a$. Cor.: is terminating.

Right-hand Sides of Forward Closures

- Def. $\operatorname{RFC}(R)=$ smallest set $M \subseteq \Sigma^{*}$ with
- (start) $\operatorname{rhs}(R) \subseteq M$
- (inner step) $(I, r) \in R \wedge u l v \in M \Rightarrow u r v \in M$
- (right extension) $\left(l_{1} l_{2}, r\right) \in R \wedge u l_{1} \in M \Rightarrow u r \in M$
- Thm. (Dershowitz 1981)
R terminates on $\Sigma^{*} \Longleftrightarrow R$ terminates on $\operatorname{RFC}(R)$
- Ex. $\operatorname{RFC}(\{a b \rightarrow b a\})=b^{+} a$. Cor.: is terminating.
- Lemma: $\operatorname{RFC}(R)=(R \cup \text { forw }(R))^{*}(\operatorname{rhs}(R))$ where forw $(R)=\left\{I_{1} \rightarrow\right.$ suffix $\left.r \mid\left(I_{1} I_{2} \rightarrow r\right) \in R\right\}$.

Right-hand Sides of Forward Closures

- Def. $\operatorname{RFC}(R)=$ smallest set $M \subseteq \Sigma^{*}$ with
- (start) rhs $(R) \subseteq M$
- (inner step) $(I, r) \in R \wedge u l v \in M \Rightarrow u r v \in M$
- (right extension) $\left(l_{1} l_{2}, r\right) \in R \wedge u l_{1} \in M \Rightarrow u r \in M$
- Thm. (Dershowitz 1981)
R terminates on $\Sigma^{*} \Longleftrightarrow R$ terminates on $\operatorname{RFC}(R)$
- Ex. $\operatorname{RFC}(\{a b \rightarrow b a\})=b^{+} a$. Cor.: is terminating.
- Lemma: $\operatorname{RFC}(R)=(R \cup \text { forw }(R))^{*}(\operatorname{rhs}(R))$ where forw $(R)=\left\{I_{1} \rightarrow\right.$ suffix $\left.r \mid\left(I_{1} I_{2} \rightarrow r\right) \in R\right\}$.
- Ex. RFC $(\{a b \rightarrow b a\})=\{a b \rightarrow b a, a \rightarrow \text { Suffix } b a\}^{*}(b a)$

Representing Sets of Tiles by Automata

- Def: the k-shift automaton
(it remembers $k-1$ most recent letters read) alphabet $\Sigma \cup\{\triangleright\}$,
states tiles ${ }_{k-1}\left(\triangleleft^{*} \Sigma^{*} \triangleright^{*}\right)$, initial state \triangleleft^{k-1}, final state \triangleright^{k-1}, transitions: $p \xrightarrow{c}{ }_{A}$ Suffix $_{k-1}(p c)$

Representing Sets of Tiles by Automata

- Def: the k-shift automaton
(it remembers $k-1$ most recent letters read) alphabet $\Sigma \cup\{\triangleright\}$, states tiles ${ }_{k-1}\left(\triangleleft^{*} \Sigma^{*} \triangleright^{*}\right)$, initial state \triangleleft^{k-1}, final state \triangleright^{k-1}, transitions: $p \xrightarrow{c}{ }_{A}$ Suffix $_{k-1}(p c)$
- represents set of k-tiles tiles $(A):=\left\{p c \mid p \xrightarrow{c}_{A} q\right\}$

Representing Sets of Tiles by Automata

- Def: the k-shift automaton
(it remembers $k-1$ most recent letters read) alphabet $\Sigma \cup\{\triangleright\}$,
states tiles ${ }_{k-1}\left(\triangleleft^{*} \Sigma^{*} \triangleright^{*}\right)$, initial state \triangleleft^{k-1}, final state \triangleright^{k-1}, transitions: $p \xrightarrow{c}{ }_{A}$ Suffix $_{k-1}(p c)$
- represents set of k-tiles tiles $(A):=\left\{p c \mid p \xrightarrow{c}_{A} q\right\}$
- Ex. 2-shift automaton $A=$
 represents 2-tiles $\{\triangleleft a, \triangleleft b, a b, a c, b b, b c, c \triangleright\}$ $\operatorname{Lang}(A)=(a+b) b^{*} c$

Rewrite Closure of Tiling Automata

- spec: given k-shift A, R over Σ, find k-shift A^{\prime} over Σ s.t.

Rewrite Closure of Tiling Automata

- spec: given k-shift A, R over Σ, find k-shift A^{\prime} over Σ s.t.
- Lang $(A) \subseteq \operatorname{Lang}\left(A^{\prime}\right)$

Rewrite Closure of Tiling Automata

- spec: given k-shift A, R over Σ, find k-shift A^{\prime} over Σ s.t.
- Lang $(A) \subseteq \operatorname{Lang}\left(A^{\prime}\right)$
- $u \in \operatorname{Lang}\left(A^{\prime}\right) \wedge u \rightarrow_{R} v \Rightarrow v \in \operatorname{Lang}\left(A^{\prime}\right)$

Rewrite Closure of Tiling Automata

- spec: given k-shift A, R over Σ, find k-shift A^{\prime} over Σ s.t.
- Lang $(A) \subseteq \operatorname{Lang}\left(A^{\prime}\right)$
- $u \in \operatorname{Lang}\left(A^{\prime}\right) \wedge u \rightarrow_{R} v \Rightarrow v \in \operatorname{Lang}\left(A^{\prime}\right)$
- implementation:
when $(I, r) \in \mathrm{CC}_{k}(R)$ (right k-context closure) and $p \xrightarrow{\prime} A$,
add transitions and states such that $p \xrightarrow{r}_{A} q$, until it stabilises

Rewrite Closure of Tiling Automata

- spec: given k-shift A, R over Σ, find k-shift A^{\prime} over Σ s.t.
- Lang $(A) \subseteq \operatorname{Lang}\left(A^{\prime}\right)$
- $u \in \operatorname{Lang}\left(A^{\prime}\right) \wedge u \rightarrow_{R} v \Rightarrow v \in \operatorname{Lang}\left(A^{\prime}\right)$
- implementation:
when $(I, r) \in \mathrm{CC}_{k}(R)$ (right k-context closure) and $p \xrightarrow{\prime} A$,
add transitions and states such that $p \xrightarrow{r}_{A} q$, until it stabilises
- by the k-shift property:

Rewrite Closure of Tiling Automata

- spec: given k-shift A, R over Σ, find k-shift A^{\prime} over Σ s.t.
- Lang $(A) \subseteq \operatorname{Lang}\left(A^{\prime}\right)$
- $u \in \operatorname{Lang}\left(A^{\prime}\right) \wedge u \rightarrow_{R} v \Rightarrow v \in \operatorname{Lang}\left(A^{\prime}\right)$
- implementation:
when $(I, r) \in \mathrm{CC}_{k}(R)$ (right k-context closure) and $p \xrightarrow{\prime} A$,
add transitions and states such that $p \stackrel{r}{r}_{A} q$, until it stabilises
- by the k-shift property:
- given p and r, the path $p \xrightarrow{r}_{A} q$ is fully determined, and it will indeed end in q

Rewrite Closure of Tiling Automata

- spec: given k-shift A, R over Σ, find k-shift A^{\prime} over Σ s.t.
- Lang $(A) \subseteq \operatorname{Lang}\left(A^{\prime}\right)$
- $u \in \operatorname{Lang}\left(A^{\prime}\right) \wedge u \rightarrow_{R} v \Rightarrow v \in \operatorname{Lang}\left(A^{\prime}\right)$
- implementation:
when $(I, r) \in \mathrm{CC}_{k}(R)$ (right k-context closure) and $p \xrightarrow{\prime} A$,
add transitions and states such that $p \xrightarrow{r}_{A} q$, until it stabilises
- by the k-shift property:
- given p and r, the path $p \xrightarrow{r}_{A} q$ is fully determined, and it will indeed end in q
- completion terminates since set of states is finite

Closure Example

- for $R=\left\{a b^{3} \rightarrow b b a a b\right\}$, compute 3-shift approx. of $(R \cup \text { forw }(R))^{*}(\operatorname{rhs}(R))$

- ... this is the path for $\operatorname{rhs}(R)$

Closure Example

- for $R=\left\{a b^{3} \rightarrow b b a a b\right\}$, compute 3-shift approx. of $(R \cup \text { forw }(R))^{*}(\operatorname{rhs}(R))$

- \rightarrow a redex for $\left(a b \rightarrow_{\text {Suffix }} b b a a b\right) \in \operatorname{forw}(R)$

Closure Example

- for $R=\left\{a b^{3} \rightarrow b b a a b\right\}$, compute 3-shift approx. of $(R \cup \text { forw }(R))^{*}(\operatorname{rhs}(R))$

$-\rightarrow$ a redex for $\left(a b \rightarrow_{\text {Suffix }} b b a a b\right) \in \operatorname{forw}(R)$ dashed: new edges for corresponding reduct

Closure Example

- for $R=\left\{a b^{3} \rightarrow b b a a b\right\}$, compute 3-shift approx. of $(R \cup \text { forw }(R))^{*}(\operatorname{rhs}(R))$

- \rightarrow a redex for $(a b \rightarrow$ Suffix $b b a a b) \in \operatorname{forw}(R)$

Closure Example

- for $R=\left\{a b^{3} \rightarrow b b a a b\right\}$, compute 3 -shift approx. of $(R \cup \text { forw }(R))^{*}(\operatorname{rhs}(R))$ b

$-\rightarrow$ a redex for $\left(a b \rightarrow_{\text {suffix }} b b a a b\right) \in$ forw (R) dotted: new edge for corresponding reduct

Closure Example

- for $R=\left\{a b^{3} \rightarrow b b a a b\right\}$, compute 3-shift approx. of $(R \cup \text { forw }(R))^{*}(\operatorname{rhs}(R))$

$-\rightarrow$ a redex for $\left(a b^{3} a \rightarrow b b a a b a\right) \in C_{1}(R)$

Closure Example

- for $R=\left\{a b^{3} \rightarrow b b a a b\right\}$, compute 3-shift approx. of $(R \cup \text { forw }(R))^{*}(\operatorname{rhs}(R))$

$-\rightarrow$ a redex for $\left(a b^{3} a \rightarrow b b a a b a\right) \in C_{1}(R)$ dash-dotted: new edge for corresponding reduct

Closure Example

- for $R=\left\{a b^{3} \rightarrow b b a a b\right\}$, compute 3-shift approx. of $(R \cup \text { forw }(R))^{*}(\operatorname{rhs}(R))$
b

- represents the set of tiles $T=$ $\{\triangleleft \triangleleft b, \triangleleft b b, b b a, b b b, b a a, b a b, a a b, a b a, a b b, a b \triangleright, b \triangleright \triangleright\}$.

Closure Example

- for $R=\left\{a b^{3} \rightarrow b b a a b\right\}$, compute 3-shift approx. of $(R \cup \text { forw }(R))^{*}(\operatorname{rhs}(R))$
b

- represents the set of tiles $T=$ $\{\triangleleft \triangleleft b, \triangleleft b b, b b a, b b b, b a a, b a b, a a b, a b a, a b b, a b \triangleright, b \triangleright \triangleright\}$.
\rightarrow absent: $\triangleleft^{2} \triangleright, \triangleleft \triangleright^{2}, \triangleleft \Sigma \triangleright, \quad \triangleleft a \Sigma, \triangleleft b a, \Sigma a \triangleright, \quad a^{3}$

Semantic Labelling

- for $R=\left\{a b^{3} \rightarrow b b a a b\right\}$,

Semantic Labelling

- for $R=\left\{a b^{3} \rightarrow b b a a b\right\}$,

- semantically labelled R is $R^{\prime}=$ $b b a, b a b, a b b, b^{3}, b b x, b x y \rightarrow b^{3}, b^{3}, b b a, b a a, a a b, a b x, b x y$ $b a a, ~ a a b, a b b, b^{3}, b b x, b x y \rightarrow b a b, a b b, b b a, b a a, a a b, a b x, b x y$ $a b a, b a b, a b b, b^{3}, b b x, b x y \rightarrow a b b, b^{3}, b b a, b a a, a a b, a b x, b x y$

Semantic Labelling

- for $R=\left\{a b^{3} \rightarrow b b a a b\right\}$,

- semantically labelled R is $R^{\prime}=$ $b b a, b a b, a b b, b^{3}, b b x, b x y \rightarrow b^{3}, b^{3}, b b a, b a a, a a b, a b x, b x y$ $b a a, ~ a a b, a b b, b^{3}, b b x, b x y \rightarrow b a b, a b b, b b a, b a a, a a b, a b x, b x y$ $a b a, b a b, a b b, b^{3}, b b x, b x y \rightarrow a b b, b^{3}, b b a, b a a, a a b, a b x, b x y$
- $\mathrm{SN}\left(R^{\prime}\right)$ by weights $b^{3} \mapsto 8, b a b \mapsto 4, a b b \mapsto 3, b b a \mapsto 3$

Removing unreachable rules (Prop. 5.3)

- Ex. 5.5 $R=\{a b \rightarrow b c a, b c \rightarrow c b b, b a \rightarrow a c b\}$.

Removing unreachable rules (Prop. 5.3)

- Ex. 5.5 $R=\{a b \rightarrow b c a, b c \rightarrow c b b, b a \rightarrow a c b\}$.

- btiled $_{T}(a b \rightarrow b c a)=\emptyset$ implies $\mathrm{SN}(R) \Longleftrightarrow \mathrm{SN}(b c \rightarrow c b b, b a \rightarrow a c b)$.

Removing unreachable rules (Prop. 5.3)

- Ex. 5.5 $R=\{a b \rightarrow b c a, b c \rightarrow c b b, b a \rightarrow a c b\}$.

- btiled $_{T}(a b \rightarrow b c a)=\emptyset$ implies $\mathrm{SN}(R) \Longleftrightarrow \mathrm{SN}(b c \rightarrow c b b, b a \rightarrow a c b)$.
- we remove rule $a b \rightarrow b c a$, even though A still contains redexes for $a \rightarrow$ suffix $b c a$.

Killer example: $a^{2} b^{2} \rightarrow b^{3} a^{3}$

- Theorem: each paper on SRS termination contains a termination proof for Zantema's (≈ 1993) problem

Killer example: $a^{2} b^{2} \rightarrow b^{3} a^{3}$

- Theorem: each paper on SRS termination contains a termination proof for Zantema's (\approx 1993) problem
- Fact: as z001, it appears in the Termination Problems Data Base since the beginning of time $(=2003)$

Killer example: $a^{2} b^{2} \rightarrow b^{3} a^{3}$

- Theorem: each paper on SRS termination contains a termination proof for Zantema's (\approx 1993) problem
- Fact: as z001, it appears in the Termination Problems Data Base since the beginning of time $(=2003)$
- tiling for RFC; with semantic labelling (All), rule removal (Rem), weights (W); showing ($|R|,|\Sigma|$) for each step:

$$
\begin{aligned}
& (1,2) \frac{\mathrm{RFC}_{2}}{\mathrm{All}_{2}}(4,4) \underset{\mathrm{Rem}}{\stackrel{\mathrm{RFC}_{5}}{\leftrightarrows}}(3,4) \frac{\mathrm{RFC}_{2}}{\mathrm{All}_{2}}(12,8) \frac{\mathrm{RFC}_{3}}{\mathrm{All}}(105,26) \xrightarrow{\mathrm{W}}(60,26) \\
& \underset{\text { Rem }}{\mathrm{RFC}_{5}}(37,26) \xrightarrow[\mathrm{RAll}^{\mathrm{RFC}_{2}}]{\text { AI }}(97,44) \xrightarrow{\mathrm{W}}(65,43) \underset{\mathrm{Rem}}{\mathrm{RFC}_{5}}(36,43) \xrightarrow{\mathrm{W}}(28,43) \\
& \frac{\mathrm{RFC}_{2}}{\mathrm{All}}(86,68) \xrightarrow{\mathrm{W}}(50,62) \frac{\mathrm{RFC}_{3}}{\mathrm{All}_{3}}(246,128) \xrightarrow{\mathrm{W}}(42,84) \\
& \underset{\mathrm{Rem}}{\mathrm{RFC}_{5}}(2,44) \xrightarrow{\mathrm{W}}(0,0)
\end{aligned}
$$

Overlap Closures and Relative Termination

- Def: R terminates relative to S, notation: $\mathrm{SN}(R / S)$, if there is no ($R \cup S$)-derivation with infinitely many R steps.
Ex: $\mathrm{SN}(a a \rightarrow a b a / a \rightarrow a b a)$.

Overlap Closures and Relative Termination

- Def: R terminates relative to S, notation: $\mathrm{SN}(R / S)$, if there is no $(R \cup S)$-derivation with infinitely many R steps.
Ex: $\mathrm{SN}(a a \rightarrow a b a / a \rightarrow a b a)$.
- (recap) $\mathrm{SN}(R)$ iff $\mathrm{SN}(R)$ on $\mathrm{RFC}(R)$.

Overlap Closures and Relative Termination

- Def: R terminates relative to S, notation: $\mathrm{SN}(R / S)$, if there is no $(R \cup S)$-derivation with infinitely many R steps.
Ex: $\mathrm{SN}(a a \rightarrow a b a / a \rightarrow a b a)$.
- (recap) $\mathrm{SN}(R)$ iff $\mathrm{SN}(R)$ on $\operatorname{RFC}(R)$.
- (Ex. 6.1) $\mathrm{SN}(R / S)$ on $\mathrm{RFC}(R \cup S) \nRightarrow \mathrm{SN}(R / S)$. $R=\{a b \rightarrow a\}, S=\{c \rightarrow b c\}, \operatorname{RFC}(R \cup S)=a \cup b^{+} c$. But $a b c \rightarrow_{R} a c \rightarrow_{s} a b c$.

Overlap Closures and Relative Termination

- Def: R terminates relative to S, notation: $\operatorname{SN}(R / S)$, if there is no $(R \cup S)$-derivation with infinitely many R steps.
Ex: $\mathrm{SN}(a a \rightarrow a b a / a \rightarrow a b a)$.
- (recap) $\mathrm{SN}(R)$ iff $\mathrm{SN}(R)$ on $\operatorname{RFC}(R)$.
- (Ex. 6.1) $\mathrm{SN}(R / S)$ on $\mathrm{RFC}(R \cup S) \nRightarrow \mathrm{SN}(R / S)$. $R=\{a b \rightarrow a\}, S=\{c \rightarrow b c\}, \operatorname{RFC}(R \cup S)=a \cup b^{+} c$.
But $a b c \rightarrow_{R}$ ac $\rightarrow_{s} a b c$.
- Thm 6.7 $\mathrm{SN}(R / S)$ iff $\mathrm{SN}(R / S)$ on $\mathrm{ROC}(R \cup S)$. using right-hand sides of overlap closures

Overlap Closures and Relative Termination

- Def: R terminates relative to S, notation: $\mathrm{SN}(R / S)$, if there is no ($R \cup S$)-derivation with infinitely many R steps.
Ex: $\mathrm{SN}(a a \rightarrow a b a / a \rightarrow a b a)$.
- (recap) $\mathrm{SN}(R)$ iff $\mathrm{SN}(R)$ on $\operatorname{RFC}(R)$.
- (Ex. 6.1) $\mathrm{SN}(R / S)$ on $\mathrm{RFC}(R \cup S) \nRightarrow \mathrm{SN}(R / S)$. $R=\{a b \rightarrow a\}, S=\{c \rightarrow b c\}, \operatorname{RFC}(R \cup S)=a \cup b^{+} c$.
But $a b c \rightarrow_{R}$ ac $\rightarrow_{s} a b c$.
- Thm 6.7 $\mathrm{SN}(R / S)$ iff $\mathrm{SN}(R / S)$ on $\mathrm{ROC}(R \cup S)$. using right-hand sides of overlap closures
- apply left-recursive characterisation of ROC (overlap closure with rule) (see Appendix of paper).

Overlap Closures and Relative Termination

- Def: R terminates relative to S, notation: $\mathrm{SN}(R / S)$, if there is no $(R \cup S)$-derivation with infinitely many R steps.
Ex: $\mathrm{SN}(a a \rightarrow a b a / a \rightarrow a b a)$.
- (recap) $\mathrm{SN}(R)$ iff $\mathrm{SN}(R)$ on $\operatorname{RFC}(R)$.
- (Ex. 6.1) $\mathrm{SN}(R / S)$ on $\operatorname{RFC}(R \cup S) \nRightarrow \mathrm{SN}(R / S)$. $R=\{a b \rightarrow a\}, S=\{c \rightarrow b c\}, \operatorname{RFC}(R \cup S)=a \cup b^{+} c$. But $a b c \rightarrow_{R} a c \rightarrow_{s} a b c$.
- Thm 6.7 $\mathrm{SN}(R / S)$ iff $\mathrm{SN}(R / S)$ on $\mathrm{ROC}(R \cup S)$. using right-hand sides of overlap closures
- apply left-recursive characterisation of ROC (overlap closure with rule) (see Appendix of paper).
- interesting case: (Cor 7.1.5)
if $t x \in S$ and $y v \in S$ and $(x w y, z) \in R$, then $t z v \in S$

Example: Tiling for Overlap Closures

- 4-tiles for $\operatorname{ROC}(R)$, for $R=\left\{a^{3} \rightarrow a^{2} b^{2} a^{2}\right\}$.

Example: Tiling for Overlap Closures

- 4-tiles for $\operatorname{ROC}(R)$, for $R=\left\{a^{3} \rightarrow a^{2} b^{2} a^{2}\right\}$.

- if $t x \in S$ and $y v \in S$ and $(x w y, z) \in R$, then $t z v \in S$ x is path to final state (since $x \in \operatorname{Suffix}(S)$) y is path from initial state (since $y \in \operatorname{Prefix}(S)$)
use rewrite rule with border letters: $x \triangleright^{k-1} \triangleleft^{k-1} y \rightarrow z$ Ex: aaa $a b \rightarrow a^{2} b^{2} a^{2} \cdot a b$, reduct needs dashed edges

Implementation, Experiments, Questions

- implemented as part of termination prover https://gitlab.imn.htwk-leipzig.de/ waldmann/pure-matchbox

Implementation, Experiments, Questions

- implemented as part of termination prover
https://gitlab.imn.htwk-leipzig.de/
waldmann/pure-matchbox
- performance, including Termcomp 2019 (SRS)

Relative	matrices	
	no	yes
no	1	72
yes	176	225

Standard	MB, DP, matr.		
	none	all	
tiling	no	100	1122
	yes	512	1133

Implementation, Experiments, Questions

- implemented as part of termination prover https://gitlab.imn.htwk-leipzig.de/ waldmann/pure-matchbox
- performance, including Termcomp 2019 (SRS)

Relative	matrices		Standard	MB, DP, matr.	
	no	yes		none	all
no	1	72	tiling no	100	1122
yes	176	225	yes	512	1133

- ? better proof search strategy for SRS Standard

Implementation, Experiments, Questions

- implemented as part of termination prover https://gitlab.imn.htwk-leipzig.de/ waldmann/pure-matchbox
- performance, including Termcomp 2019 (SRS)

Relative	matrices		Standard	MB, DP, matr.	
	no	yes		none	all
no	1	72	iling no	100	1122
yes	176	225	yes	512	1133

- ? better proof search strategy for SRS Standard
- ? sparse tiling for TRS (RFC needs linearity)

Implementation, Experiments, Questions

- implemented as part of termination prover https://gitlab.imn.htwk-leipzig.de/
waldmann/pure-matchbox
- performance, including Termcomp 2019 (SRS)

Relative	matrices		Standard	MB, DP, matr.	
	no	yes		none	all
no	1	72	iling no	100	1122
yes	176	225	yes	512	1133

- ? better proof search strategy for SRS Standard
- ? sparse tiling for TRS (RFC needs linearity)
- ? relation between matchbounds and tiling

Implementation, Experiments, Questions

- implemented as part of termination prover https://gitlab.imn.htwk-leipzig.de/
waldmann/pure-matchbox
- performance, including Termcomp 2019 (SRS)

Relative	matrices		Standard	MB, DP, matr.	
	no	yes		none	all
no	1	72	tiling no	100	1122
yes	176	225	yes	512	1133

- ? better proof search strategy for SRS Standard
- ? sparse tiling for TRS (RFC needs linearity)
- ? relation between matchbounds and tiling
- ? relation between tilings of different widths

