

Related Work, Discussion

- contains "compatible tree automata method" (Zankl et al. 2011) as special case
- ► is certainly related to *Disproving Confluence by...Ordering* (Aoto, 2013), ... but how exactly? Both show that $\delta([s]^{\mathcal{A}}, [t]^{\mathcal{B}}) \leq \delta([u]^{\mathcal{A}}, [u]^{\mathcal{B}})$ for all *u*. Aoto: \mathcal{B} as *opposite* of \mathcal{A} , check $[s]^{\mathcal{A}} \leq [t]^{\mathcal{A}}$, rules out that

$$([\boldsymbol{s}]^{\mathcal{A}},[\boldsymbol{t}]^{\mathcal{B}}) \leq ([\boldsymbol{u}]^{\mathcal{A}},[\boldsymbol{u}]^{\mathcal{B}}) \iff [\boldsymbol{s}]^{\mathcal{A}} \leq [\boldsymbol{u}]^{\mathcal{A}} \leq [\boldsymbol{t}]^{\mathcal{A}}$$

We establish upper bound on $\delta([u]^{\mathcal{A}}, [u]^{\mathcal{B}})$ by induction on u.

IWC 2019 9/9

- implementation (constraint solving) is expensive too much for tight CoCo settings
- "killer examples" (no Boolean automaton at all, not 1-state arctic automaton) are few, and far between

B. Felgenhauer and J. Waldmann Proving Non-Joinability using Weakly Monotone Algebras