Proving Non-Joinability
 using Weakly Monotone Algebras

Bertram Felgenhauer (AoE) Johannes Waldmann (HTWK Leipzig)

IWC 2019

Motivation

\rightarrow Def: peak: $s^{*} \leftarrow \cdot \rightarrow^{*} t$, joinable: $s \rightarrow^{*} \cdot{ }^{*} \leftarrow t$ confluent: each peak is joinable

Motivation

\rightarrow Def: peak: $s^{*} \leftarrow \cdot \rightarrow^{*} t$, joinable: $s \rightarrow^{*} \cdot{ }^{*} \leftarrow t$ confluent: each peak is joinable

- non-joinable: $\rightarrow^{*}(s) \cap \rightarrow^{*}(t)=\varnothing$. If \rightarrow is non-terminating, then $\rightarrow^{*}(s), \rightarrow^{*}(t)$ can be infinite.

Motivation

- Def: peak: $s^{*} \leftarrow \cdot \rightarrow^{*} t$, joinable: $s \rightarrow^{*} \cdot{ }^{*} \leftarrow t$ confluent: each peak is joinable
- non-joinable: $\rightarrow^{*}(s) \cap \rightarrow^{*}(t)=\varnothing$. If \rightarrow is non-terminating, then $\rightarrow^{*}(s), \rightarrow^{*}(t)$ can be infinite.
- ... and need to be described in some finite way, e.g., as finite automata $A \supseteq \rightarrow^{*}(s), B \supseteq \rightarrow^{*}(t)$. then check emptiness of $A \cap B$ (Zankl et al., 2011)

Motivation

- Def: peak: $s^{*} \leftarrow \cdot \rightarrow^{*} t$, joinable: $s \rightarrow^{*} \cdot{ }^{*} \leftarrow t$ confluent: each peak is joinable
- non-joinable: $\rightarrow^{*}(s) \cap \rightarrow^{*}(t)=\varnothing$. If \rightarrow is non-terminating, then $\rightarrow^{*}(s), \rightarrow^{*}(t)$ can be infinite.
- ... and need to be described in some finite way, e.g., as finite automata $A \supseteq \rightarrow^{*}(s), B \supseteq \rightarrow^{*}(t)$. then check emptiness of $A \cap B$ (Zankl et al., 2011)
- this paper:

Motivation

- Def: peak: $s^{*} \leftarrow \cdot \rightarrow^{*} t$, joinable: $s \rightarrow^{*} \cdot{ }^{*} \leftarrow t$ confluent: each peak is joinable
- non-joinable: $\rightarrow^{*}(s) \cap \rightarrow^{*}(t)=\varnothing$. If \rightarrow is non-terminating, then $\rightarrow^{*}(s), \rightarrow^{*}(t)$ can be infinite.
- ... and need to be described in some finite way, e.g., as finite automata $A \supseteq \rightarrow^{*}(s), B \supseteq \rightarrow^{*}(t)$. then check emptiness of $A \cap B$ (Zankl et al., 2011)
- this paper:
- use weighted automata A, B, representing weakly monotone algebras,

Motivation

\checkmark Def: peak: $s^{*} \leftarrow \cdot \rightarrow^{*} t$, joinable: $s \rightarrow^{*} \cdot{ }^{*} \leftarrow t$ confluent: each peak is joinable

- non-joinable: $\rightarrow^{*}(s) \cap \rightarrow^{*}(t)=\varnothing$. If \rightarrow is non-terminating, then $\rightarrow^{*}(s), \rightarrow^{*}(t)$ can be infinite.
- ... and need to be described in some finite way, e.g., as finite automata $A \supseteq \rightarrow^{*}(s), B \supseteq \rightarrow^{*}(t)$. then check emptiness of $A \cap B$ (Zankl et al., 2011)
- this paper:
- use weighted automata A, B, representing weakly monotone algebras,
- such that Kronecker product algebra (represents $x \mapsto A(x) \cdot B(x))$ has bounded weights

Motivation

\checkmark Def: peak: $s^{*} \leftarrow \cdot \rightarrow^{*} t$, joinable: $s \rightarrow^{*} \cdot{ }^{*} \leftarrow t$ confluent: each peak is joinable

- non-joinable: $\rightarrow^{*}(s) \cap \rightarrow^{*}(t)=\varnothing$.

If \rightarrow is non-terminating, then $\rightarrow^{*}(s), \rightarrow^{*}(t)$ can be infinite.

- ... and need to be described in some finite way, e.g., as finite automata $A \supseteq \rightarrow^{*}(s), B \supseteq \rightarrow^{*}(t)$. then check emptiness of $A \cap B$ (Zankl et al., 2011)
- this paper:
- use weighted automata A, B, representing weakly monotone algebras,
- such that Kronecker product algebra (represents $x \mapsto A(x) \cdot B(x))$ has bounded weights
- such that bound is less than $A(s) \cdot B(t)$.

Example (Ex. 1)

- non-joinability of $a g$, bh with respect to $\mathcal{R}=$
$\{g \rightarrow a g, g \rightarrow i, h \rightarrow b h, h \rightarrow i, i \rightarrow a b i, a b \rightarrow b a, b a \rightarrow a b\}$

Example (Ex. 1)

- non-joinability of $a g$, bh with respect to $\mathcal{R}=$
$\{g \rightarrow a g, g \rightarrow i, h \rightarrow b h, h \rightarrow i, i \rightarrow a b i, a b \rightarrow b a, b a \rightarrow a b\}$
- algebras $A: s \mapsto \#_{a}(s)-\#_{b}(s), B: s \mapsto \#_{b}(s)-\#_{a}(s)$,

Example (Ex. 1)

- non-joinability of $a g$, bh with respect to $\mathcal{R}=$
$\{g \rightarrow a g, g \rightarrow i, h \rightarrow b h, h \rightarrow i, i \rightarrow a b i, a b \rightarrow b a, b a \rightarrow a b\}$
- algebras $A: s \mapsto \#_{a}(s)-\#_{b}(s), B: s \mapsto \#_{b}(s)-\#_{a}(s)$,
- for $s \in \rightarrow_{\mathcal{R}}^{*}(a g): 1 \leq A(s)$ note: $(h \rightarrow b h)$ not usable

Example (Ex. 1)

- non-joinability of $a g$, bh with respect to $\mathcal{R}=$
$\{g \rightarrow a g, g \rightarrow i, h \rightarrow b h, h \rightarrow i, i \rightarrow a b i, a b \rightarrow b a, b a \rightarrow a b\}$
- algebras $A: s \mapsto \#_{a}(s)-\#_{b}(s), B: s \mapsto \#_{b}(s)-\#_{a}(s)$,
- for $s \in \rightarrow_{\mathcal{R}}^{*}(a g): 1 \leq A(s) \quad$ note: $(h \rightarrow b h)$ not usable - for $s \in \rightarrow_{\mathcal{R}}^{*}(b h): 1 \leq B(s)$ note: $(g \rightarrow a g)$ not usable

Example (Ex. 1)

- non-joinability of $a g, b h$ with respect to $\mathcal{R}=$
$\{g \rightarrow a g, g \rightarrow i, h \rightarrow b h, h \rightarrow i, i \rightarrow a b i, a b \rightarrow b a, b a \rightarrow a b\}$
- algebras $A: s \mapsto \#_{a}(s)-\#_{b}(s), B: s \mapsto \#_{b}(s)-\#_{a}(s)$,
- for $s \in \rightarrow_{\mathcal{R}}^{*}(a g): 1 \leq A(s) \quad$ note: $(h \rightarrow b h)$ not usable - for $s \in \rightarrow_{\mathcal{R}}^{*}(b h): 1 \leq B(s)$ note: $(g \rightarrow a g)$ not usable
- for all $s: A(a g)+B(b h)=2 \not \leq 0=A(s)+B(s)$

Example (Ex. 1)

- non-joinability of $a g, b h$ with respect to $\mathcal{R}=$
$\{g \rightarrow a g, g \rightarrow i, h \rightarrow b h, h \rightarrow i, i \rightarrow a b i, a b \rightarrow b a, b a \rightarrow a b\}$
- algebras $A: s \mapsto \#_{a}(s)-\#_{b}(s), B: s \mapsto \#_{b}(s)-\#_{a}(s)$,
- for $s \in \rightarrow_{\mathcal{R}}^{*}(a g): 1 \leq A(s) \quad$ note: $(h \rightarrow b h)$ not usable
- for $s \in \rightarrow_{\mathcal{R}}^{*}(b h): 1 \leq B(s)$ note: $(g \rightarrow a g)$ not usable
- for all $s: A(a g)+B(b h)=2 \neq 0=A(s)+B(s)$
- cannot separate $\rightarrow_{\mathcal{R}}^{*}(a g)$ from $\rightarrow_{\mathcal{R}}^{*}(b h)$ with regular languages since:

$$
\rightarrow_{\mathcal{R}}^{*}(a g) \supseteq\left\{a^{n} b^{m} i \mid n>m\right\}, \quad \rightarrow_{\mathcal{R}}^{*}(b h) \supseteq\left\{a^{n} b^{m} i \mid n<m\right\}
$$

Example (Ex. 1)

- non-joinability of $a g, b h$ with respect to $\mathcal{R}=$
$\{g \rightarrow a g, g \rightarrow i, h \rightarrow b h, h \rightarrow i, i \rightarrow a b i, a b \rightarrow b a, b a \rightarrow a b\}$
- algebras $A: s \mapsto_{a}(s)-\#_{b}(s), B: s \mapsto \#_{b}(s)-\#_{a}(s)$,
- for $s \in \rightarrow_{\mathcal{R}}^{*}(a g): 1 \leq A(s) \quad$ note: $(h \rightarrow b h)$ not usable
- for $s \in \rightarrow_{\mathcal{R}}^{*}(b h): 1 \leq B(s)$ note: $(g \rightarrow a g)$ not usable
- for all $s: A(a g)+B(b h)=2 \neq 0=A(s)+B(s)$
- cannot separate $\rightarrow_{\mathcal{R}}^{*}(a g)$ from $\rightarrow_{\mathcal{R}}^{*}(b h)$ with regular languages since:

$$
\rightarrow_{\mathcal{R}}^{*}(a g) \supseteq\left\{a^{n} b^{m} i \mid n>m\right\}, \quad \rightarrow_{\mathcal{R}}^{*}(b h) \supseteq\left\{a^{n} b^{m} i \mid n<m\right\}
$$

- represent A, B as arctically $(\{-\infty\} \cup \mathbb{Z}$, max, +) weighted automata, with one state each.
Encode non-usability by $A(h)=-\infty, B(g)=-\infty$.

Abstract Non-Joinability Criterion (Thm. 3)

- Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be weakly monotone Σ-algebras such that \mathcal{R} is weakly oriented by both \mathcal{A} and \mathcal{B}, $s, t \in \mathcal{T}(\Sigma)$ be ground terms
and $\delta: \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}$ be a pre-homomorphism between weakly monotone Σ-algebras.
Then s and t are non-joinable provided that for some $c \in \mathcal{C}$,

1. $\delta\left([s]^{\mathcal{A}},[t]^{\mathcal{B}}\right) \not \leq c$, and
2. $f^{\mathcal{C}}(c, \ldots, c) \leq c$ for all $f \in \Sigma$.

Abstract Non-Joinability Criterion (Thm. 3)

- Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be weakly monotone Σ-algebras such that \mathcal{R} is weakly oriented by both \mathcal{A} and \mathcal{B}, $s, t \in \mathcal{T}(\Sigma)$ be ground terms and $\delta: \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}$ be a pre-homomorphism between weakly monotone Σ-algebras.
Then s and t are non-joinable provided that for some $c \in \mathcal{C}$,

1. $\delta\left([s]^{\mathcal{A}},[t]^{\mathcal{B}}\right) \notin c$, and
2. $f^{\mathcal{C}}(c, \ldots, c) \leq c$ for all $f \in \Sigma$.

- application (Ex. 7, compatible tree automata method)
- A, B: finite automata; weakly oriented: \mathcal{R}-closed
- C: their Cartesian product automaton (for intersection)
- c: reachable states in C

Abstract Non-Joinability Criterion (Thm. 3)

- Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be weakly monotone Σ-algebras such that \mathcal{R} is weakly oriented by both \mathcal{A} and \mathcal{B}, $s, t \in \mathcal{T}(\Sigma)$ be ground terms and $\delta: \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}$ be a pre-homomorphism between weakly monotone Σ-algebras.
Then s and t are non-joinable provided that for some $c \in \mathcal{C}$,

1. $\delta\left([s]^{\mathcal{A}},[t]^{\mathcal{B}}\right) \not \leq c$, and
2. $f^{\mathcal{C}}(c, \ldots, c) \leq c$ for all $f \in \Sigma$.

- application (Ex. 7, compatible tree automata method)
- A, B: finite automata; weakly oriented: \mathcal{R}-closed
- C: their Cartesian product automaton (for intersection)
- c: reachable states in C
- next: extend to weighted automata, restrict to strings

Algebras from Finite Weighted Algebra

- (S, \leq) a totally ordered semi-ring, e.g., natural numbers $(\mathbb{N},+, \cdot, 0,1)$, arctic integers ($\mathbb{A}, \max ,+,-\infty, 0$), Booleans $(\mathbb{B}, \vee, \wedge, \mathbf{F}, \mathbf{T})$.

Algebras from Finite Weighted Algebra

- (S, \leq) a totally ordered semi-ring, e.g., natural numbers $(\mathbb{N},+, \cdot, 0,1)$, arctic integers ($\mathbb{A}, \max ,+,-\infty, 0$), Booleans $(\mathbb{B}, \vee, \wedge, \mathbf{F}, \mathbf{T})$.
- S-weighted tree automaton A over alphabet Σ :
- set of states Q,
- family of transition mappings $\mu_{k}: \Sigma_{k} \rightarrow\left(Q^{k} \times Q \rightarrow S\right)$,
- root weight vector $\nu: Q \rightarrow S$.

The algebra μ_{A} of this automaton has domain $(Q \rightarrow S, \leq)$. (Q-indexed vectors of S values, ordered point-wise)

Algebras from Finite Weighted Algebra

- (S, \leq) a totally ordered semi-ring, e.g., natural numbers $(\mathbb{N},+, \cdot, 0,1)$, arctic integers ($\mathbb{A}, \max ,+,-\infty, 0$), Booleans $(\mathbb{B}, \vee, \wedge, \mathbf{F}, \mathbf{T})$.
- S-weighted tree automaton A over alphabet Σ :
- set of states Q,
- family of transition mappings $\mu_{k}: \Sigma_{k} \rightarrow\left(Q^{k} \times Q \rightarrow S\right)$,
- root weight vector $\nu: Q \rightarrow S$.

The algebra μ_{A} of this automaton has domain $(Q \rightarrow S, \leq)$. (Q-indexed vectors of S values, ordered point-wise)

- Kronecker product automaton $A \odot B$ with states $Q_{A} \times Q_{B}$, $\mu_{A \odot B}(f)\left(\left(v_{A}, v_{B}\right),\left(p_{A}, p_{B}\right)\right)=\mu_{A}(f)\left(v_{A}, p_{A}\right) \odot \mu_{B}(f)\left(v_{B}, p_{B}\right)$

Algebras from Finite Weighted Algebra

- (S, \leq) a totally ordered semi-ring, e.g., natural numbers $(\mathbb{N},+, \cdot, 0,1)$, arctic integers ($\mathbb{A}, \max ,+,-\infty, 0$), Booleans $(\mathbb{B}, \vee, \wedge, \mathbf{F}, \mathbf{T})$.
- S-weighted tree automaton A over alphabet Σ :
- set of states Q,
- family of transition mappings $\mu_{k}: \Sigma_{k} \rightarrow\left(Q^{k} \times Q \rightarrow S\right)$,
- root weight vector $\nu: Q \rightarrow S$.

The algebra μ_{A} of this automaton has domain $(Q \rightarrow S, \leq)$. (Q-indexed vectors of S values, ordered point-wise)

- Kronecker product automaton $A \odot B$ with states $Q_{A} \times Q_{B}$, $\mu_{A \odot B}(f)\left(\left(v_{A}, v_{B}\right),\left(p_{A}, p_{B}\right)\right)=\mu_{A}(f)\left(v_{A}, p_{A}\right) \odot \mu_{B}(f)\left(v_{B}, p_{B}\right)$
- current implementation is for strings only, as matrix interpretations do not commute with \odot

Implementation: Noko Leipzig

- for proving Nonkonfluenz (and it rhymes with a TV series)

Implementation: Noko Leipzig

- for proving Nonkonfluenz (and it rhymes with a TV series)
- Noko Leipzig is part of Matchbox https://gitlab.imn. htwk-leipzig.de/waldmann/pure-matchbox

Implementation: Noko Leipzig

- for proving Nonkonfluenz (and it rhymes with a TV series)
- Noko Leipzig is part of Matchbox https://gitlab.imn. htwk-leipzig.de/waldmann/pure-matchbox
- core functionality: prove non-joinability

Implementation: Noko Leipzig

- for proving Nonkonfluenz (and it rhymes with a TV series)
- Noko Leipzig is part of Matchbox https://gitlab.imn. htwk-leipzig.de/waldmann/pure-matchbox
- core functionality: prove non-joinability
- input: SRS \mathcal{R} over $\Sigma ; s, t \in \Sigma^{*} ; d, b \in \mathbb{N}$.

Implementation: Noko Leipzig

- for proving Nonkonfluenz (and it rhymes with a TV series)
- Noko Leipzig is part of Matchbox https://gitlab.imn. htwk-leipzig.de/waldmann/pure-matchbox
- core functionality: prove non-joinability
- input: SRS \mathcal{R} over $\Sigma ; s, t \in \Sigma^{*} ; d, b \in \mathbb{N}$.
- output (if successful): arctically weighted automata A, B with d states, weights represented by b bits, and arctic vector $c \in\left(Q_{A} \times Q_{B} \rightarrow \mathbb{A}\right)$, that fulfil the conditions of Theorem 3

Implementation: Noko Leipzig

- for proving Nonkonfluenz (and it rhymes with a TV series)
- Noko Leipzig is part of Matchbox https://gitlab.imn. htwk-leipzig.de/waldmann/pure-matchbox
- core functionality: prove non-joinability
- input: SRS \mathcal{R} over $\Sigma ; s, t \in \Sigma^{*} ; d, b \in \mathbb{N}$.
- output (if successful): arctically weighted automata A, B with d states, weights represented by b bits, and arctic vector $c \in\left(Q_{A} \times Q_{B} \rightarrow \mathbb{A}\right)$, that fulfil the conditions of Theorem 3
- transform to a Boolean satisfiability problem with the Ersatz library (Kmett 201?), solve with Minisat (Sörensen 200?)

Implementation: Noko Leipzig

- for proving Nonkonfluenz (and it rhymes with a TV series)
- Noko Leipzig is part of Matchbox https://gitlab.imn. htwk-leipzig.de/waldmann/pure-matchbox
- core functionality: prove non-joinability
- input: SRS \mathcal{R} over $\Sigma ; s, t \in \Sigma^{*} ; d, b \in \mathbb{N}$.
- output (if successful): arctically weighted automata A, B with d states, weights represented by b bits, and arctic vector $c \in\left(Q_{A} \times Q_{B} \rightarrow \mathbb{A}\right)$, that fulfil the conditions of Theorem 3
- transform to a Boolean satisfiability problem with the Ersatz library (Kmett 201?), solve with Minisat (Sörensen 200?)
- performance in CoCo 2019 (for SRS): 6 unique NO answers, two (Cops 1034, 1131) using automata.

An Example (21538)

- rules $R=R_{1} \cup R_{2}$ where
$R_{1}=\{b a \rightarrow c a b, c a \rightarrow a b a\}, R_{2}=\{d a \rightarrow b d d, d c \rightarrow c b b\}$

An Example (21538)

- rules $R=R_{1} \cup R_{2}$ where
$R_{1}=\{b a \rightarrow c a b, c a \rightarrow a b a\}, R_{2}=\{d a \rightarrow b d d, d c \rightarrow c b b\}$
- peak $s=c b b a \leftarrow d c a \rightarrow d a b a=t$

An Example (21538)

- rules $R=R_{1} \cup R_{2}$ where
$R_{1}=\{b a \rightarrow c a b, c a \rightarrow a b a\}, R_{2}=\{d a \rightarrow b d d, d c \rightarrow c b b\}$
- peak $s=c b b a \leftarrow d c a \rightarrow d a b a=t$

$$
a:-1, b: 1, c: 0, d: 1
$$

$$
a: 1, b:-1, c: 0
$$

$B=$

An Example (21538)

- rules $R=R_{1} \cup R_{2}$ where
$R_{1}=\{b a \rightarrow c a b, c a \rightarrow a b a\}, R_{2}=\{d a \rightarrow b d d, d c \rightarrow c b b\}$
- peak $s=c b b a \leftarrow d c a \rightarrow d a b a=t$

$$
a:-1, b: 1, c: 0, d: 1
$$

$$
a: 1, b:-1, c: 0
$$

- $A(s)=-1, B(t)=3, \forall x: A(x) \cdot B(x) \in\{-\infty, 0\}$

An Example (21538)

- rules $R=R_{1} \cup R_{2}$ where
$R_{1}=\{b a \rightarrow c a b, c a \rightarrow a b a\}, R_{2}=\{d a \rightarrow b d d, d c \rightarrow c b b\}$
- peak $s=c b b a \leftarrow d c a \rightarrow d a b a=t$

$$
a:-1, b: 1, c: 0, d: 1
$$

$$
a: 1, b:-1, c: 0
$$

$$
B=
$$

- $A(s)=-1, B(t)=3, \forall x: A(x) \cdot B(x) \in\{-\infty, 0\}$
- $A \odot B$ is (weakly increasing and) not constant (if last d vanishes, it jumps from $-\infty$ to 0)

An Example (21538)

- rules $R=R_{1} \cup R_{2}$ where
$R_{1}=\{b a \rightarrow c a b, c a \rightarrow a b a\}, R_{2}=\{d a \rightarrow b d d, d c \rightarrow c b b\}$
- peak $s=c b b a \leftarrow d c a \rightarrow d a b a=t$

$$
a:-1, b: 1, c: 0, d: 1
$$

$$
a: 1, b:-1, c: 0
$$

- $A=$

- $A(s)=-1, B(t)=3, \forall x: A(x) \cdot B(x) \in\{-\infty, 0\}$
- $A \odot B$ is (weakly increasing and) not constant (if last d vanishes, it jumps from $-\infty$ to 0)
- notes: A is constant on $R_{1} . R_{2}$ is not usable for s.

An Example (21538)

- rules $R=R_{1} \cup R_{2}$ where
$R_{1}=\{b a \rightarrow c a b, c a \rightarrow a b a\}, R_{2}=\{d a \rightarrow b d d, d c \rightarrow c b b\}$
- peak $s=c b b a \leftarrow d c a \rightarrow d a b a=t$

$$
a:-1, b: 1, c: 0, d: 1
$$

$$
a: 1, b:-1, c: 0
$$

$\triangleright A=\rightarrow \rightarrow$

$$
B=
$$

- $A(s)=-1, B(t)=3, \forall x: A(x) \cdot B(x) \in\{-\infty, 0\}$
- $A \odot B$ is (weakly increasing and) not constant (if last d vanishes, it jumps from $-\infty$ to 0)
- notes: A is constant on $R_{1} . R_{2}$ is not usable for s.
- cannot be separated by regular languages? cannot be separated by arctic automata with just one state?

Another Example (14848)

- rules $\{d c \rightarrow d b b, c b \rightarrow b c c, d b \rightarrow d c d, b c \rightarrow b c b\}$.

Another Example (14848)

- rules $\{d c \rightarrow d b b, c b \rightarrow b c c, d b \rightarrow d c d, b c \rightarrow b c b\}$.
- peak $s=d c d c \leftarrow d b c \rightarrow d b c b=t$.

Another Example (14848)

- rules $\{d c \rightarrow d b b, c b \rightarrow b c c, d b \rightarrow d c d, b c \rightarrow b c b\}$.
- peak $s=d c d c \leftarrow d b c \rightarrow d b c b=t$.

Another Example (14848)

- rules $\{d c \rightarrow d b b, c b \rightarrow b c c, d b \rightarrow d c d, b c \rightarrow b c b\}$.
- peak $s=d c d c \leftarrow d b c \rightarrow d b c b=t$.

Another Example (14848)

- rules $\{d c \rightarrow d b b, c b \rightarrow b c c, d b \rightarrow d c d, b c \rightarrow b c b\}$.
- peak $s=d c d c \leftarrow d b c \rightarrow d b c b=t$.

Another Example (14848)

- rules $\{d c \rightarrow d b b, c b \rightarrow b c c, d b \rightarrow d c d, b c \rightarrow b c b\}$.
- peak $s=d c d c \leftarrow d b c \rightarrow d b c b=t$.

Related Work, Discussion

- contains "compatible tree automata method" (Zankl et al. 2011) as special case
- is certainly related to Disproving Confluence by... Ordering (Aoto, 2013), ... but how exactly?
Both show that $\delta\left([s]^{\mathcal{A}},[t]^{\mathcal{B}}\right) \not \leq \delta\left([u]^{\mathcal{A}},[u]^{\mathcal{B}}\right)$ for all u. Aoto: \mathcal{B} as opposite of \mathcal{A}, check $[s]^{\mathcal{A}} \notin[t]^{\mathcal{A}}$, rules out that

$$
\left([s]^{\mathcal{A}},[t]^{\mathcal{B}}\right) \leq\left([u]^{\mathcal{A}},[u]^{\mathcal{B}}\right) \Longleftrightarrow[s]^{\mathcal{A}} \leq[u]^{\mathcal{A}} \leq[t]^{\mathcal{A}}
$$

We establish upper bound on $\delta\left([u]^{\mathcal{A}},[u]^{\mathcal{B}}\right)$ by induction on u.

Related Work, Discussion

- contains "compatible tree automata method" (Zankl et al. 2011) as special case
- is certainly related to Disproving Confluence by... Ordering (Aoto, 2013), ... but how exactly?
Both show that $\delta\left([s]^{\mathcal{A}},[t]^{\mathcal{B}}\right) \not \leq \delta\left([u]^{\mathcal{A}},[u]^{\mathcal{B}}\right)$ for all u.
Aoto: \mathcal{B} as opposite of \mathcal{A}, check $[s]^{\mathcal{A}} \not \mathbb{Z}[t]^{\mathcal{A}}$, rules out that

$$
\left([s]^{\mathcal{A}},[t]^{\mathcal{B}}\right) \leq\left([u]^{\mathcal{A}},[u]^{\mathcal{B}}\right) \Longleftrightarrow[s]^{\mathcal{A}} \leq[u]^{\mathcal{A}} \leq[t]^{\mathcal{A}}
$$

We establish upper bound on $\delta\left([u]^{\mathcal{A}},[u]^{\mathcal{B}}\right)$ by induction on u.

- implementation (constraint solving) is expensive too much for tight CoCo settings
- "killer examples" (no Boolean automaton at all, not 1-state arctic automaton) are few, and far between

