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Motivation
I Def: peak: s ∗← · →∗ t , joinable: s →∗ · ∗← t

confluent: each peak is joinable
I non-joinable: →∗(s)∩→∗(t) = ∅.

If→ is non-terminating, then→∗(s),→∗(t) can be infinite.
I . . . and need to be described in some finite way,

e.g., as finite automata A ⊇ →∗(s), B ⊇ →∗(t).
then check emptiness of A ∩ B (Zankl et al., 2011)

I this paper:
I use weighted automata A, B,

representing weakly monotone algebras,
I such that Kronecker product algebra (represents

x 7→ A(x) · B(x)) has bounded weights
I such that bound is less than A(s) · B(t).
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Example (Ex. 1)
I non-joinability of ag,bh with respect to R =
{g → ag,g → i ,h→ bh,h→ i , i → abi ,ab → ba,ba→ ab}

I algebras A : s 7→ #a(s)−#b(s), B : s 7→ #b(s)−#a(s),
I for s ∈ →∗R(ag) : 1 ≤ A(s) note: (h→ bh) not usable
I for s ∈ →∗R(bh) : 1 ≤ B(s) note: (g → ag) not usable
I for all s : A(ag) + B(bh) = 2 6≤ 0 = A(s) + B(s)

I cannot separate→∗R(ag) from→∗R(bh) with regular
languages since:

→∗R(ag) ⊇ {anbmi | n > m}, →∗R(bh) ⊇ {anbmi | n < m}

I represent A,B as arctically ({−∞} ∪ Z,max,+) weighted
automata, with one state each.
Encode non-usability by A(h) = −∞,B(g) = −∞.
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Abstract Non-Joinability Criterion (Thm. 3)
I Let A, B, C be weakly monotone Σ-algebras

such that R is weakly oriented by both A and B,
s, t ∈ T (Σ) be ground terms
and δ : A× B → C be a pre-homomorphism between
weakly monotone Σ-algebras.
Then s and t are non-joinable provided that for some c ∈ C,

1. δ([s]A, [t ]B) 6≤ c, and
2. f C(c, . . . , c) ≤ c for all f ∈ Σ.

I application (Ex. 7, compatible tree automata method)
I A,B: finite automata; weakly oriented: R-closed
I C: their Cartesian product automaton (for intersection)
I c: reachable states in C

I next: extend to weighted automata, restrict to strings
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Algebras from Finite Weighted Algebra
I (S,≤) a totally ordered semi-ring, e.g.,

natural numbers (N,+, ·,0,1),
arctic integers (A,max,+,−∞,0), Booleans (B,∨,∧,F,T).

I S-weighted tree automaton A over alphabet Σ:
I set of states Q,
I family of transition mappings µk : Σk → (Qk ×Q → S),
I root weight vector ν : Q → S.

The algebra µA of this automaton has domain (Q → S,≤).
(Q-indexed vectors of S values, ordered point-wise)

I Kronecker product automaton A� B with states QA ×QB,
µA�B(f )((vA, vB), (pA,pB)) = µA(f )(vA,pA)� µB(f )(vB,pB)

I current implementation is for strings only,
as matrix interpretations do not commute with �
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Implementation: Noko Leipzig
I for proving Nonkonfluenz (and it rhymes with a TV series)
I Noko Leipzig is part of Matchbox https://gitlab.imn.

htwk-leipzig.de/waldmann/pure-matchbox

I core functionality: prove non-joinability
I input: SRS R over Σ; s, t ∈ Σ∗; d ,b ∈ N.
I output (if successful): arctically weighted automata A,B

with d states, weights represented by b bits,
and arctic vector c ∈ (QA ×QB → A),
that fulfil the conditions of Theorem 3

I transform to a Boolean satisfiability problem with the Ersatz
library (Kmett 201?), solve with Minisat (Sörensen 200?)

I performance in CoCo 2019 (for SRS): 6 unique NO
answers, two (Cops 1034, 1131) using automata.
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I performance in CoCo 2019 (for SRS): 6 unique NO
answers, two (Cops 1034, 1131) using automata.
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An Example (21538)
I rules R = R1 ∪ R2 where

R1 = {ba→ cab, ca→ aba},R2 = {da→ bdd ,dc → cbb}
I peak s = cbba← dca→ daba = t

I A =

a : 1,b : −1, c : 0

, B =

a : −1,b : 1, c : 0,d : 1

d : 2

a : 1

I A(s) = −1,B(t) = 3,∀x : A(x) · B(x) ∈ {−∞,0}
I A� B is (weakly increasing and) not constant

(if last d vanishes, it jumps from −∞ to 0)
I notes: A is constant on R1. R2 is not usable for s.
I cannot be separated by regular languages? cannot be

separated by arctic automata with just one state?
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Another Example (14848)
I rules {dc → dbb, cb → bcc,db → dcd ,bc → bcb}.
I peak s = dcdc ← dbc → dbcb = t .

I A =
f g

h

d : 1

d : −1

b:1d :−1

c : 0

b : −1 , B =

p q

b : 1,d : −1 b : 1, c : 1

d : 1

c : 0
I

A� B =
f,p g,p

h,p f,q

d : 0

d : −2b : 2
d : −2

b : 0

d : 0

c : 0
I A(s) = −2,B(t) = 3
I ∀x : A(x) · B(x) ≤ 0
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Related Work, Discussion
I contains “compatible tree automata method” (Zankl et al.

2011) as special case
I is certainly related to Disproving Confluence by. . . Ordering

(Aoto, 2013), . . . but how exactly?
Both show that δ([s]A, [t ]B) 6≤ δ([u]A, [u]B) for all u.
Aoto: B as opposite of A, check [s]A 6≤ [t ]A, rules out that

([s]A, [t ]B) ≤ ([u]A, [u]B) ⇐⇒ [s]A ≤ [u]A ≤ [t ]A

We establish upper bound on δ([u]A, [u]B) by induction on u.
I implementation (constraint solving) is expensive —

too much for tight CoCo settings
I “killer examples” (no Boolean automaton at all, not 1-state

arctic automaton) are few, and far between
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