
Check Your (Students’) Proofs
— With Holes

Dennis Renz Sibylle Schwarz Johannes Waldmann
HTWK Leipzig, Germany

WFLP 2020

Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020 1 / 1

Programming by Proving (Exercise)
data N = Z | S N -- unary (Peano) numbers
doubleN :: N -> N
doubleN Z = Z ; doubleN (S x) = S (S (doubleN x))

data B = Zero | Even B | Odd B -- binary
value :: B -> N ; value Zero = Z
value (Even x) = doubleN (value x)
value (Odd x) = S (doubleN (value x))

-- implement succB and prove lemma:
succB :: B -> B ; succB Zero = _
succB (Even x) = _ ; succB (Odd x) = _
Lemma succ :

forall b :: B : value (succB b) .=. S (value b)
Proof by induction on b :: B ... QED

Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020 2 / 1

Programming by Proving (partial Solution)
derive program (function succB) from specification (lemma
succ) by writing the proof (replacing the dots “...”) and filling
holes (underscores) in the program to make the proof work.

S (value (Odd x))
(by def value) .=. S (S (doubleN (value x)))
(by def doubleN) .=. doubleN (S (value x))
(by IH) .=. doubleN (value (succB x))
(by def value) .=. value (Even (succB x))
(by def succB) .=. value (succB (Odd x))

E. W. Dijkstra: put the horse (proof) before the cart (program)!
This exercise is an example for the Cyp proof language (Durner
and Noschinski 2013; Traytel 2019)
with our extensions: holes in programs and proofs;
also: types, integration of Cyp proof checker in auto-grader.

Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020 3 / 1

Cyp (Check Your Proofs)
programming language: subset of Haskell
I algebraic data types (data)
I function definitions with pattern matching and recursion
I no local names (no let, where, case, λ)
I higher-order types, but no type classes

proof language:
I by rewriting (equational reasoning)
I by extensionality (for equality of functions)
I by case analysis (on algebraic data types)
I by induction (on (recursive) algebraic data types)

original Cyp: separation of theory (program, axioms, goals)
(given by instructor) from proofs (to be written by student)

Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020 4 / 1

What Cyp can do, and cannot do
can do:
I associativity of Peano-plus, List-append

(induction on first argument)
I map f . map g .=. map (f . g)

(extensionality, induction)
what about merge :: Ord a => [a] -> [a] -> [a]?
I no type classes, but can pass dictionary as extra argument

:: (a -> a -> Bool) -> [a] -> [a] -> [a]

I cannot do induction on pair of arguments!
perhaps insert::(a->a->Bool) -> a -> [a] -> [a]?
I needs “if (≤) is transitive, then . . . ”, but have no implication!

still, equational reasoning and structural induction is plenty
enough for our students (Bachelor Comp. Sci. 4th semester)

Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020 5 / 1

Holes
I hole = missing sub-tree of program or proof
I motivation for introducing holes:

I original Cyp: each goal (in the theory) acts as a
proof-hole, there were no program-holes.
Leads to “prove this program correct” exercises (that’s
cart before horse!)

I we can now give partial programs and partial proofs
(e.g., one branch of a case analysis)

I Cyp handles submissions with holes gracefully:
I assume hole can be filled,
I continue checking other parts of proof
I reject in the end.

I for step-wise development, cf. typed holes in Agda, GHC

Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020 6 / 1

Types
I original Cyp is untyped: if theory (given by instructor) is

type-correct, proof (by student) cannot go wrong type-wise?
I Cyp accepted monomorphic proof for polymorphic lemma

data U = U; Lemma eek : x .=. y;
Proof by case analysis on x :: U ... QED
... False (by eek) .=. True

I added Hindley-Milner typing for programs, lemmas, proofs,
Lemma eek : forall x :: a, y :: a: x .=. y
Proof by case analysis on x :: U -- rejected

using Typing Haskell in Haskell (Jones, 2000)
I is needed for program-holes anyway

(otherwise, student could write nonsense programs)

Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020 7 / 1

Summary/What else is in the paper
I we introduced holes in programs and in proofs, added a

type checker, and integrated with Leipzig autotool
I we used Cyp/autotool for automated homework in a lecture

recently (50 students, 4th semester Comp. Sci. Bachelor)
I examples: plain rewriting (no induction); Peano arithmetics;

lists: length, append, map, fold; trees: mirror, inorder, size
I source code (GPL), documentation, examples: https:

//gitlab.imn.htwk-leipzig.de/waldmann/cyp

Appendix: remarks on implementation (methods, libraries used)
I ASTs: source location information in ASTs,

and hiding them via GHC’s pattern synonyms
I pretty-printing: avoid, print parts of original input instead
I matching for ASTs: short source code via generic traversals

(Scrap Your Boilerplate, Lämmel and Peyton Jones 2003)
Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020 8 / 1

https://gitlab.imn.htwk-leipzig.de/waldmann/cyp
https://gitlab.imn.htwk-leipzig.de/waldmann/cyp

Discussion: Semantics of Cyp Programs
goal: provable property of Cyp program P should be observable
when running P as a Haskell program
I note the similarity (it could be automated)

Lemma succ
forall b::B : value(succB b) .=. S(value b)

leancheck $ \ (b :: B) ->
value (succB b) == S (value b)

pattern matching: Haskell: top-down, Cyp: non-deterministically
I after f Z = False ; f Z = True, Cyp accepts

False (by def f) .=. f Z (by def f) .=. True

possible future work:
I require naming of rule (f.1, f.2) in rewrite proof step
I enforce disjointness of patterns (reject this definition of f)

Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020 9 / 1

Discussion: overlapping clauses

This (and next slide) was asked in reviews.
Thanks for careful reading, will be helpful in paper’s next version,
didn’t manage to update for pre-proceedings, but discuss now:
I Q: GHC’s -Woverlapping-patterns does not detect

f (S x) y = _; f x (S y) = _
A: Indeed! To keep the paper correct, that option should be
renamed (to -Wredundant-patterns :-) see https:
//gitlab.haskell.org/ghc/ghc/-/issues/18643

I Q: in Curry (Hanus et al., 1995), overlapping clauses define
a non-deterministic function, and Cyp’s statements about
convertibility of expressions by rewriting are correct.

A: Yes. So, “Cyp for Curry” next? Do it! (. . . and cite us.)

Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020 10 / 1

https://gitlab.haskell.org/ghc/ghc/-/issues/18643
https://gitlab.haskell.org/ghc/ghc/-/issues/18643

Discussion: termination of Cyp programs

I Q: . . . suggest to annotate programs with a function to
project arguments to a simple well founded domain (N, Nk)

I A: we would then need a similar mechanism in proofs by
induction? Otherwise, cannot prove properties of such
functions?
our suggestion (in the paper): require the student to mark
the (structurally) decreasing argument
reason (not stated in the paper): that argument likely is the
induction variable.

Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020 11 / 1

