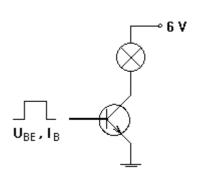
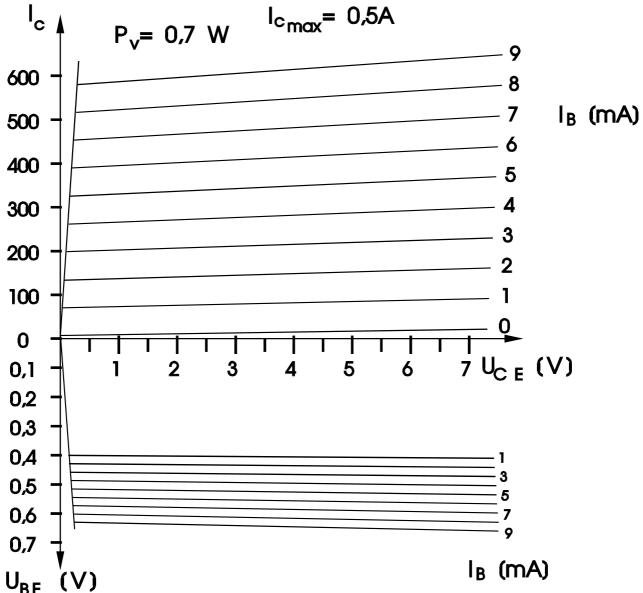
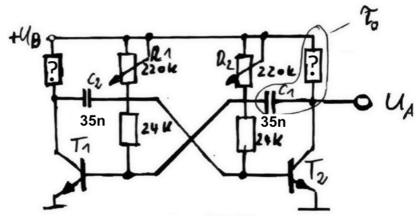
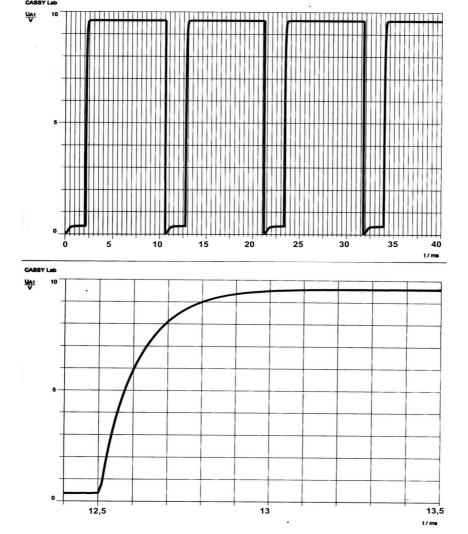
Übungsaufgaben 13 Transistorschaltungen

- 1. Es soll eine Verstärkerschaltung dimensioniert werden, die Steuersignale einer elektronischen Schaltung (L: $I_E = 0$, $U_E = 0$; H: $I_E = \hat{I}$, $U_E = \hat{U}$) für den Betrieb einer Glühlampe (6 V; 2,4 W) auswertet, wobei die Glühlampe als Kollektorwiderstand in einer Emitterschaltung (Kennlinie des Transistors s. Abb. 2) betrieben wird , s. Abb. 1.
- a) Zeichnen Sie die Widerstandsgerade in das Kennlinienfeld ein und kennzeichnen Sie die beiden Lagen des Arbeitspunktes, bei dem die Glühlampe hell leuchtet bzw. völlig dunkel ist!
- b) Hieraus resultieren Anforderungen an die Steuerimpulse am Eingang der Transistorschaltung. Bei welchem Eingangssignal (Strom/Spannung) ist die Glühlampe hell, bei welchem dunkel? Wie groß müssen \hat{I} und \hat{U} demnach mindestens sein? Wie groß ist die Leistungsverstärkung der Schaltung?
- c) Verändern Sie die Schaltung so, dass die Helligkeit der Glühlampe regelbar wird, dimensionieren Sie das/die notwendige/n Bauelement/e!

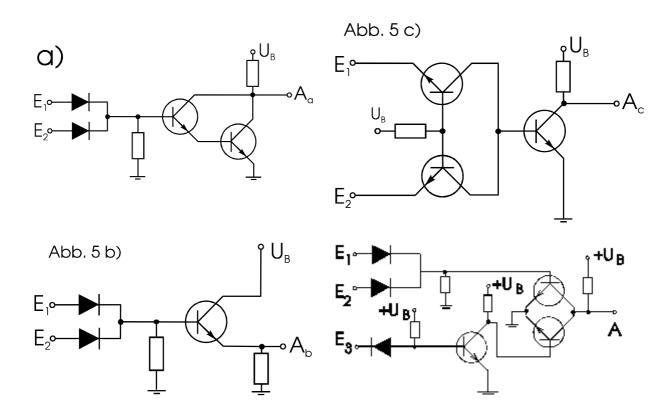




Abb.1 Verstärkerschaltung

- 2. Ein astabiler Multivibrator wurde nach nebenstehender Schaltung aufgebaut. Eine Messung der Ausgangsspannung liefert die dargestellte Zeitabhängigkeit (s. Grafik).
- a) Bestimmen Sie aus der Grafik die Werte der veränderlichen Widerstände R_1 und R_2 , sowie die


Zeitkonstante τ_0 .

b) Welchen Wert hat der Wider-



astabiler Multivibrator

stand in der gekennzeichneten RC-Kombination? Zur besseren Auswertung ist in einer zweiten Grafik ein Ausschnitt zeitlich gedehnt dargestellt.

5.) Bestimmen Sie die logischen Funktionen der Digitalschaltungen, kennzeichnen Sie logische Grundeinheiten.

