Wintersemester 2016/17

Studiengang Angewandte Mathematik, Informatik, u.a.

Prof. Dr. B. Engelmann

Übungsaufgaben Numerik I

Serie 4, letzter Abgabetermin 03. 01. 2017

Thema: Lineare Ausgleichsprobleme

1. Zu jeder Matrix $A \in R^{m \times n} (m \ge n)$ vom Rang n und jeden Spaltenvektor $b \in R^m$ gibt es genau einen Vektor $x^* \in R^n$ mit $\|Ax^* - b\|_2 \le \|Ax - b\|_2$ $\forall x \in R^n$.

 x^* heißt die Quadratmittellösung des im Fall m > n überbestimmten linearen Gleichungssystems Ax = b bzw. die Lösung des linearen Ausgleichsproblems. Schreiben Sie ein Programm, welches eine Prozedur HOUSE verwendet und die Lösung unter Verwendung von Householder-Transformationen bestimmt.

Eingabedaten: M,N Dimensionen m,n

A[1..M, 1..N+1] enthält (A|b)

Ausgabedaten: A[1..M, 1..N+1] enthält (R| c) und die Householder-

vektoren

R[1..N] enthält die Hauptdiagonalelemente r_{ii}

X[1..N] enthält x^*

RES enthält $||Ax^* - b||_2$

SING Fehlerausgang.

Lösen Sie die folgenden Testprobleme unter Verwendung der Prozedur. Überprüfen Sie ihren Algorithmus zunächst an einem Beispiel aus der Übung. Lassen Sie jeweils einen Kontrollausdruck der Eingabe- und Ausgabedaten anfertigen. Testbeispiele:

(a)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \\ -1 & -2 & -1 \\ 1 & 0 & -1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$

(b) Gegeben sind 12 Punkte (t_i, y_i)

Bestimmen Sie für n = 2, 3, 4, 5, 6 rationale Funktionen

$$f_n(t) = \frac{x_1}{t} + \frac{x_2}{t+1} + \frac{x_3}{t+2} + \dots + \frac{x_n}{t+n-1}$$
o, dass
$$\sum_{i=1}^{12} (f_n(t_i) - y_i)^2$$

minimal wird (Lineares Ausgleichsproblem für $x_1, x_2, ..., x_n$).

2. Ein neu entdeckter Himmelskörper, der sich auf einer Umlaufbahn um die Sonne bewegt, wurde in 10 Positionen vermessen. In einem in der Bahnebene liegenden angepaßten kartesischen Koordinatensystem sind die Positionen (x_i, y_i) in der folgenden Tabelle angegeben

Beobachtun g	\mathcal{X}_{i}	${\mathcal Y}_i$
1	-1.024940	-0.398269
2	-0.949898	-0.322894
3	-0.866114	-0.265256
4	-0.773392	-0.216557
5	-0.671372	-0.177152
6	-0.559524	-0.147582
7	-0.437067	-0.128618
8	-0.302909	-0.121353
9	-0.155493	-0.127348
10	-0.007464	-0.148885

Die Bahn des Himmelskörpers ist eine Ellipse, in deren einem Brennpunkt die Sonne steht. Die Bahngleichung

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + a_1x + a_2y + a_0 = 0$$

kann nach Division durch a_{11} in die Form gebracht werden

$$x^2 = ay^2 + bxy + cx + dy + e.$$

Bestimmen Sie die Koeffizienten a,b,c,d,e als Lösung eines linearen Ausgleichsproblems und nutzen Sie zur numerischen Lösung die Prozedur HOUSE.

3. Für die nachfolgenden Sauerstoff-Stickstoff-Verbindungen sind die Molekulargewichte festgestellt worden. Bestimmen Sie mittels Methode der kleinsten Quadrate daraus die Atomgewichte von Stickstoff und Sauerstoff mit 4 Dezimalstellen.

4. Gegeben ist das lineare Gleichungssystem Ax = b mit

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -2 & -1 \\ -1 & 5 & 3 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ -2 \\ 0 \end{pmatrix}$$

- (a) Zeigen Sie, dass das System unlösbar ist.
- (b) Bestimmen Sie die Menge der Quadratmittellösungen und die entsprechenden Vektoren der Residuen und ihre euklidische Norm.