
Rule-Based Generation of XML DTDs
from UML Class Diagrams

Thomas Kudrass, Tobias Krumbein
Leipzig University of Applied Sciences,

Department of Computer Science and Mathematics, D-04251 Leipzig
{kudrass|tkrumbe}@imn.htwk-leipzig.de

Abstract. We present an approach of how to extract automatically an XML
document structure from a conceptual data model that describes the content
of a document. We use UML class diagrams as the conceptual model that can
be represented in XML syntax (XMI). The algorithm we present in the paper
is implemented as a set of rules that transform the UML class diagram into
an adequate document type definition (DTD). The generation of the DTD
from the semantic model corresponds with the logical XML database design
with the DTD as the database schema description. Therefore, we consider
many semantic issues, such as the dealing with relationships, how to express
them in a DTD in order to minimize the loss of semantics. Since our algo-
rithm is based on XSLT stylesheets, its transformation rules can be modified
in a very flexible manner in order to consider different mapping strategies
and requirements.

Keywords: UML, DTD, XML, Schema Generation

1 Introduction

Conceptual modeling of information is a widely accepted method of database design. It
improves the quality of the databases, supports an early recognition of design errors and
reduces the cost of the development process. A conceptual schema facilitates the com-
munication with the domain expert since it abstracts from the implementation. Due to
the analogy of the relational database design we must embrace a 3-level information ar-
chitecture for XML databases, also known as document viewpoints [1]. This architec-
ture allows the data modeler to start by focusing on conceptual domain modeling issues
rather than implementation issues. At the conceptual level, the focus is on data struc-
tures, semantic relationships between data and integrity constraints (information view-
point). The information of an XML document can be arranged in a logical structure
(logical level) and is stored dependent on the type of the document (physical level).

Currently, DTDs are the most common way to specify an XML document schema,
which corresponds with the logical structure of the document. The textual description
of a DTD facilitates the communication in the WWW and the processing with XML
parsers. There is a number of tree-based graphical tools for developing the document
structure, such as XML Spy or XML Authority. But there are almost no established
methods that explicitly model the information of an XML document at the conceptual
level. The more complex the data is, the harder is it for the designer to produce the cor-

rect document schema. UML makes it easier to visualize the conceptual model and to
express the integrity constraints.

There are only a few publications on the automatic generation of XML document sche-
mas from conceptual models. Conrad et al. [2] propose a set of transformation rules for
UML class diagrams into XML DTDs. In this paper, UML associations are only trans-
lated into XLinks and there is no complete algorithm available. Another approach is to
extract semantic information from the relational database schema as it is proposed in
[3]. The authors ignore many semantic issues like cardinality or key constraints. In [4]
the authors propose an algorithm for the automatic generation of XML DTDs from an
(Extended) Entity Relationship Diagram. They intend an implementation by recon-
structing the ER schema from a relational database schema. Another interesting ap-
proach is presented in [5] that describes a mapping of UML class diagrams into XML
Schema definitions using the 3-level design approach. They represent the logical design
level by UML class diagrams, which are enhanced by stereotypes to express the XML
Schema facilities. EER schemas and UML class diagrams have much in common,
which makes it possible to adapt mapping procedures from both source models for the
generation of DTDs. On one hand, there is a variety of mapping strategies for the logical
XML database design. On the other hand, there are almost no reports on working im-
plementations. This paper contributes a mapping algorithm for the automatic generation
of DTDs using stylesheets to represent the transformation rules. Our approach is open
since the algorithm is adaptable by changing rules. In the same way, the rules can be
applied to the generation of another target schema, such as XML Schema or even a re-
lational schema.

This paper is organized as follows: Section 2 gives an overview of UML class diagrams
that are used for modeling data structures. For every diagram element, different map-
ping strategies are discussed, which can be expressed in transformation rules to gener-
ate an adequate DTD representation. Section 3 is an overview about the complete algo-
rithm for the generation of DTDs from UML class diagrams that are implemented as
rules. This algorithm is illustrated on a sample model. Then the implementation with
XSLT - based on XMI - and the rules of the XSLT stylesheet are described. Options and
limitations of the mapping approach in section 4 are discussed. As a conclusion, the as-
sessment of the experiences are given in section 5.

2 Mapping UML Class Diagrams into XML Structures

2.1 Elements of UML Class Diagrams
The primary element of class diagrams is the class. A class definition is divided into
three parts: class name (plus stereotypes or properties), attributes and operations of the
class. A class can be an abstract one. Attributes can be differentiated into class attributes
(underlined) and instance attributes. An attribute definition consists of: visibility (pub-
lic, protected, private), attribute name, multiplicity, type, default value and possibly
other properties. Derived attributes can be defined, i.e. their values can be computed
from other attribute values. They are depicted by a ’/’ prefix before the name. UML
types can be primitive or enumeration types or complex types. Classes can be arranged
in a generalization hierarchy which allows multiple inheritance.

Associations describe relationships between classes in UML, which are represented by
lines, for example an association between classes A and B. The multiplicity r..s at the
B end specifies that an instance of A can have a relationship with at least r instances and
at most s instances of B. Associations can be comprised more than two classes. Those
n-ary associations are represented by a rhomb in the diagram. Associations can be
marked as navigable, which means that the association can be traversed only along in
one direction. Yet the default is a bidirectional association. In order to specify attributes
of an association, an association class has to be defined additionally.

Besides general associations UML provides special types of associations. Among them
is the aggregation representing a part-of semantics (drawn by a small empty diamond
in the diagram). The composition as another type is more restrictive, i.e., a class can
have at most one composition relationship with a parent class (exclusive) and its life
span is coupled with the existence of the super class. It is represented by a black dia-
mond at the end of the composite class. Qualified association is a special type of asso-
ciation. Qualifiers are attributes of the association, whose values partition the set of in-
stances associated with an instance across an association.

The elements of an UML model can be modularized and structured by the usage of
packages.

2.2 Mapping of Classes and Attributes
UML classes and XML elements have much in common: Both have a name and a
number of attributes. Hence a class is represented by an element definition; operations
do not have an XML equivalent. The generated XML element has the same name as the
UML class. The elements need to be extended by an ID attribute in order to refer them
from other parts of the document. Note that the object identity applies only within the
scope of one document. Abstract classes should be mapped to parameter entities to sup-
port the reuse of their definitions by their subclasses. It is also possible to define an el-
ement for an abstract class without declaring it within the package element.

Classes with the stereotype enumeration are separately handled as enumeration data-
types. For all attributes that have an enumeration class as a datatype, an enumeration list
is defined with the attribute names of the enumeration class as values. Other stereotypes
are represented as prefixes of the element name or attribute name.

UML attributes can be transformed into XML attributes or subelements. A representa-
tion as XML attribute is restricted to attributes of primitive datatypes and therefore not
applicable to complex or set-valued attributes. A workaround solution is the usage of
the NMTOKENS type for XML attributes, although this excludes attribute values con-
taining blanks. A default value, a fixed value and a value list in a DTD can be assigned
to attributes which is not possible for elements.

UML element XML attribute XML element

primitive datatypes supported supported
complex datatypes not supported supported
multiplicity [0..1] and [1..1] all

Table 1: Attributes vs. elements at DTD generation

The last entry of table 1 highlights a serious problem for an automatic transformation
of UML attributes into elements. XML attributes are always defined within a certain el-
ement, whereas elements are globally defined within the whole document. Therefore
name conflicts may occur when UML attributes are transformed into XML elements.

There are some UML constructs which cannot be translated into an adequate document
type definition: The visibility properties of UML attributes cannot be transformed due
to the lack of encapsulation in XML. The property {frozen} determines that an attribute
value can be assigned once and remains static, which cannot be mapped properly to an
equivalent XML construct. The only workaround solution is to define an initial value
as default with the property fixed in a DTD. Class attributes are also not supported in
XML; they can be marked by naming conventions in the automatic transformation. An
adequate transformation of derived attributes into XML would require access to other
document parts which implies the transformation of the derivation expression into an
XPath expression. Derived attributes are ignored because they do not
carry information.

2.3 Mapping of Associations

2.3.1 Approaches for Binary Associations
The most crucial issue of the transformation algorithm is the treatment of UML associ-
ations. There are different procedures on how to represent associations in a DTD but all
of them result in some loss of information regarding the source model. There are four
approaches, which are subsequently discussed.

• nested elements (hierarchical relationship)

• ID/IDREF references of elements

• references via association element

• references with XLink and XPointer

Hierarchical relationship
The hierarchical relationship is the "natural" relationship in XML because it corre-
sponds with the tree structure of XML documents. Elements are nested within their par-

property string not supported supported
default value default property not supported
fixed value #FIXED ’value’ not supported
value list enumeration supported not supported
scope of definition local global

UML element XML attribute XML element

Table 1: Attributes vs. elements at DTD generation

Figure 1: Mapping of non-hierarchical relationships

A Bp..q r..s

ent elements which implies some restrictions. The existence of the subelement depends
on the parent element. If B is represented as subelement of A, the upper bound of its
multiplicity q is restricted to 1. Usually p must also be 1. Otherwise, alternative map-
pings have to be defined, e.g. the definition of B as subelement of the root element. The
main obstacle for the nesting of elements is the creation of redundancies in case of
many-to-many relationships. It depends on the application profile as to how far redun-
dancy in the document can be tolerated. For example, read-only applications may ac-
cept redundancy within a document because it fastens the access to related information.
From the viewpoint of the logical XML database design the hierarchical approach ap-
pears inappropriate.

Regarding hierarchical representation, it is also difficult to deal with recursive associa-
tions or relationship cycles between two or more classes. The XML documents have a
document tree of indefinite depth. This can be avoided by treating each association as
optional - regardless of the constraint definition in the class diagram.

ID/IDREF references
The ID/IDREF relationship is expressed by adding an ID attribute to elements to be ref-
erenced. The references are implemented by attributes of type IDREF (single reference)
or IDREFS (multiple reference). Depending on the multiplicity p..q the reference at-
tribute ref of B is defined as follows:

There are serious restrictions, which obstruct a semantically correct mapping. The
"type" IDREFS accepts duplicate reference whereas the multiplicity in UML denotes
the number of distinct instances of an association. For a better representation of multiple
references, it is also possible to define an element with an IDREF attribute and with the
multiplicity in the parent element. The main drawback is the lacking type safety in the
ID/IDREF representation. IDREF can reference elements of any type. The type infor-
mation could by expressed by naming conventions for the reference attributes without
enforcing the integrity. Bidirectional associations are represented by two ID/IDREF
references in the DTD. However, this approach cannot guarantee a mutual reference be-
tween two element instances that take part in a bidirectional association.

References via association elements
For each association an association element is introduced that references both partici-
pating elements using IDREF attributes (analogous to relations for many-to-many rela-
tionships in RDBMS). The association elements are included as subelements of the doc-
ument root. There are no references in the class elements. The association element gets
the name of the association, the references are labeled according to the association roles.

p q Definition of the reference attribute of B

0 1 <!ATTLIST B ref IDREF #IMPLIED>
0 * <!ATTLIST B ref IDREFS #IMPLIED>
1 1 <!ATTLIST B ref IDREF #REQUIRED>
1 * <!ATTLIST B ref IDREFS #REQUIRED>

Table 2: Mapping of multiplicity constraints

The approach produces XML documents with minimal redundancy, because every in-
stance needs to be stored only once within the document.

The multiplicity values cannot be expressed adequately by association elements. We
can merely define how many elements are related by an association instance. This does
not consider participation constraints for the element instances. Association elements
are particularly useful for n-ary associations and attributed associations only, because
of their limitations.

References with XLinks
XLinks have been invented for hyperlink documents that are referencing each other,
which makes it possible to reference different document fragments. The extended fea-
tures provided by XLinks have been considered. The association element is represented
as extended link. A locator element is needed for each associated element to identify it.
The association itself is established by arc elements that specify the direction. The use
of XLinks has been explored by [2]. However, this approach has no type safety.

2.3.2 Association Classes
An association class is an association with class features. So the transformation has to
consider the mapping of both a class and an association. Therefore, the four mapping
approaches for associations, as sketched above, apply for association classes as well.

The association class is mapped to an association element that is nested towards the par-
ent element in the hierarchical approach (for functional relationships only). The associ-
ation attributes and the child element in the hierarchical approach are added to the as-
sociation element.

Using ID/IDREF references requires the introduction of two references to consider bi-
directional relationships. Thus, the attributes of the association class would be stored
twice. It could not be guaranteed that those attributes are the same in two mutually ref-
erencing elements. Thus the mapping has to be enhanced by an association element.

The association elements contain the attributes of the corresponding association class.
Associations of each multiplicity are dealt with the same way.

References with extended XLinks is comparable with association elements with the
same conclusion as mentioned above.

It is also possible to resolve the association class and represent it as two separate asso-
ciations. Note that the semantics of bidirectional associations cannot be preserved ade-
quately with that mapping.

2.3.3 N-ary Associations
N-ary associations can also be treated by using one of the four mapping approaches for
associations. Simple hierarchical relationships or ID/IDREF references are not appro-
priate; they support binary associations at best. Better mappings are association ele-
ments and extended XLinks, because they can contain the attributes of n-ary associa-
tions and represent an association with references to all association ends. Alternatively,
the n-ary association can be resolved into n binary associations between every class and
the association element.

2.3.4 Other Properties of Associations / Limitations
Each end of an association can be assigned the {ordered} property to determine the or-
der of the associated instances. It is not possible to define the order of element instances
in a DTD.

The direction of an association cannot be preserved by mapping approaches that repre-
sent just bidirectional associations. This applies to: hierarchical relationships, associa-
tion elements, extended XLinks.

UML provides association properties regarding changeability: {frozen} and {addonly}.
Addonly allows an instance to join more associations instances without deleting or
changing existing ones. Both properties cannot be expressed in XML.

There are no means to represent access properties of associations in XML.

In UML, a qualifier can be defined at an association end to restrict the set of instances
that can take part in the association. The described mapping procedures do not support
qualifiers as they cannot guarantee type safety.

XOR constraints specify the participation of an instance in one of many possible asso-
ciations in UML. In a DTD, one can define alternative subelements, listed by |. When
exporting the UML class diagram into XMI with the Unisys Rose XML Tool the XOR
constraints are represented only as comments in XMI, which are split up among differ-
ent elements. So the information about the UML elements related by the constraint can-
not be preserved during the transformation.

2.4 Mapping of Generalization
There is no generalization construct in the DTD standard. The most relevant aspect of
generalization is the inheritance of attributes of the superclass. There are two reasonable
approaches to represent inheritance in the DTD: parameter entities and embedded ele-
ments. Parameter entities are defined for attributes and subelements of superclasses.
They are inherited by the subclass using parameter entities in the definition of the cor-
responding element in XML. Alternatively, the superclass element can be embedded
completely into the subclass element. To express the substitution relationship between
a superclass and its subclasses, the use of a superclass element is substituted by a choice
list that contains the superclass element and all its subclass elements. Another solution
is the embedding of the subclasses into the superclass. The best way to represent a su-
perclass with different subclasses is to use a choice list in the element definition of the
superclass. So the subclass element is nested within the superclass element giving up its
identity.

2.5 Further Mapping Issues
The aggregation relationship of UML embodies a simple part-of semantics whereas the
existence of the part does not depend on the parent. Therefore aggregations are treated
like associations.

Compositions can be mapped through hierarchical relationships according to the previ-
ous proposal for associations, because nested elements are dependent on the existence
of their parent elements and, hence, represent the semantics of compositions.

Packages are represented as elements without attributes. The name of the element is the
package name. All elements of the classes and packages are subelements of their pack-
age element.

3 Generation of DTDs from Class Diagrams

3.1 Algorithm
Among different alternatives, discussed in the section above, an overview is given about
the transformation methods which have been implemented as rules instead of a conven-
tional algorithm (for further details see [6]).

3.2 Sample Model
The following UML example (figure 2) illustrates the transformation algorithm. There
is an abstract superclass Person as generalization of Employee and Manager, all
of them belong to the package People. The model contains several bidirectional asso-
ciations: a one-to-one relationship between Manager and Department, a one-to-
many relationship between Department and Employees, a many-to-many relation-
ship between Employees and Projects as well as a unidirectional relationship be-
tween Department and Project. The association between Company and Em-
ployees is an attributed one-to-many relationship that is represented by the associa-
tion class Contract. Furthermore, a Company is defined as a composition of 1..n
Departments.

UML Element XML DTD

class element, with ID attribute
abstract class element but not subelement of the parent element
attribute attribute of the corresponding class element
stereotype prefix of the element name or attribute name
package element without attributes
association reference element, with IDREF attribute referencing the

associated class
association class association class element with IDREF references to both

associated classes (resolve the association class)
qualified association currently not mapped
aggregation like association
composition reference element, with subordinated class element (hierar-

chical relationship)
generalization superclass is nested within subclass element
association constraint currently not mapped
n-ary association association element with IDREF references to all associated

classes (resolve the n-ary association)

Table 3: Mapping of UML elements to DTDs

<!ELEMENT sample (People, Company*, Project*, Contract*)>
<!ELEMENT People (Employee*, Manager*)>
<!ELEMENT Person EMPTY>
<!ATTLIST Person
 id ID #REQUIRED
 name CDATA #REQUIRED
 address.street CDATA #REQUIRED
 address.zip CDATA #REQUIRED
 address.city CDATA #REQUIRED>
<!ELEMENT Employee (Person, Ref_Employee.Department,
 Ref_Employee.Project+, Ref_Employee.Company)>
<!ATTLIST Employee
 id ID #REQUIRED
 job CDATA #REQUIRED>
 <!ELEMENT Ref_Employee.Department EMPTY>
 <!ATTLIST Ref_Employee.Department
 Department IDREF #REQUIRED>
 <!ELEMENT Ref_Employee.Project EMPTY>
 <!ATTLIST Ref_Employee.Project
 Project IDREF #REQUIRED>
 <!ELEMENT Ref_Employee.Company EMPTY>
 <!ATTLIST Ref_Employee.Company
 Contract IDREF #REQUIRED>

Figure 2: UML class diagram of sample model

<!ELEMENT Manager (Person, Ref_Manager.Department)>
<!ATTLIST Manager ... >
 <!ELEMENT Ref_Manager.Department EMPTY>
 <!ATTLIST Ref_Manager.Department
 Department IDREF #REQUIRED>
<!ELEMENT Company (Ref_Company.Employee*,
 Ref_Company.Department+)>
<!ATTLIST Company ... >
 <!ELEMENT Ref_Company.Employee EMPTY>
 <!ATTLIST Ref_Company.Employee
 Contract IDREF #REQUIRED>
 <!ELEMENT Ref_Company.Department (Department)>
<!ELEMENT Department (Ref_Department.Employee*,
 Ref_Department.Manager, Ref_Department.Project*)>
<!ATTLIST Department ... >
 <!ELEMENT Ref_Department.Employee EMPTY>
 <!ATTLIST Ref_Department.Employee ... >
 <!ELEMENT Ref_Department.Manager EMPTY>
 <!ATTLIST Ref_Department.Manager ... >
 <!ELEMENT Ref_Department.Project EMPTY>
 <!ATTLIST Ref_Department.Project ... >
<!ELEMENT Project (Ref_Project.Employee+)>
<!ATTLIST Project ... >
 <!ELEMENT Ref_Project.Employee EMPTY>
 <!ATTLIST Ref_Project.Employee ... >
<!ELEMENT Contract (Ref_Contract.Company,
 Ref_Contract.Employee)>
<!ATTLIST Contract ... >
 <!ELEMENT Ref_Contract.Company EMPTY>
 <!ATTLIST Ref_Contract.Company
 Company IDREF #REQUIRED>
 <!ELEMENT Ref_Contract.Employee EMPTY>
 <!ATTLIST Ref_Contract.Employee
 Employee IDREF #REQUIRED>

3.3 Implementation
The XMI format (XML Metadata Interchange) makes it possible to represent an UML
model in an XML format. This implementation is based on the XMI version 1.1 [7]. The
XMI standard describes the generation of DTDs from a meta model as well as the gen-
eration of an XMI document from any model, provided they are MOF compliant (Meta
Object Facility).

UML class models are edited with the CASE tool Rational Rose. The model informa-
tion can be stored in XMI documents using the Unisys Rose XML Tool as an extension.
Since XMI is a standard, the original tool is not relevant for the next transformation
steps.

The actual transformation is implemented with XSLT (eXtensible Stylesheet Language
Transformation) that can process the XMI document as any other XML document.
XSLT is a language to transform XML documents into other XML documents or even
other formats. The stylesheet document consists of rules that specify how the document
tree of the source document has to be transformed into the target tree. The rules called
template rules have two parts: a search pattern (source tree) and a template applied for
matching patterns.

In this implementation, there are two categories of template rules: Some template rules
have a pattern that must match with certain XMI elements that are relevant for the con-
ceptual data model. Among them is the UML:Class template that transforms a UML
class description into the corresponding element definition in the DTD. Some other
templates are just auxiliary templates without matching XMI elements. Instead, they are
invoked by other templates that make use of their functionality. The transformation pro-
gram starts with the root template rule. Subsequently the template rules are shown as
they are currently implemented.

/ (Root Template)
The root template is called first. It checks the XMI version, determines the first model
element and calls the next matching template.

UML:Model | UML:Package
Because UML:Model and UML:Package elements have the same structure and are
transformed the same way, they are combined in the same template. The UML:Model

Other
CASE Tool

Rational Rose

XMI Document

Transformation
Tool

DTD

Oracle XML
Developer Kit

(XDK)

Other XML
Processor

XML Schema

Unisys Rose XML
Tool

export

XML
Database

use

XSLT

Figure 3: Overall structure of the DTD generation

element is the root element of the UML model and comprises all other elements like
UML packages. For each package an element type is created. The name of the element
corresponds with the complete package name. Possible stereotypes appear as a prefix
before the package name. The definition of the package element is completed by the list
of names of all packages, classes (that are not abstract and not parts of another class in
a composition), association classes and n-ary associations that are the topmost level
within the package. Afterwards, for each subelement of the package element the appro-
priate template is activated.

UML:Class
For each UML:Class element an element type is defined in the DTD. The name of the
element corresponds with the class name. The name of a possible stereotype appears as
prefix before the class name. Next, the content of the class element - i.e., all superclass-
es, complex attributes and associations - are extracted. They are determined by an
XPath query on the XMI document. For example, the superclasses are represented in
the UML:Generalization.parent element. The superclass is determined by the
reference represented by the xmi.idref attribute. The superclass appears as a sube-
lement of the current element. An element with the name of the attribute and the class
name as a prefix before the attribute name is defined for all complex attributes. In XMI,
the associations of a class cannot be found within the class element. Instead, they have
to be queried throughout the whole XMI document where they are represented as asso-
ciation elements. Once an association of a class has been found it is processed by calling
the Multiplicity template. This template needs the name of the association ele-
ment and the cardinality as parameters. The chosen naming convention for association
elements is: Ref_Classname.Rolename. In the third step, all simple datatype at-
tributes of a class are defined. Each class receives an ID attribute to make it a potential
target of element references. The attributes of a class can be extracted from the
UML:Attribute elements. Finally, the templates createComplexAttrib-
uteElements and createAssociationElements are called to define the nec-
essary complex elements and reference elements with the IDREF attribute. Those ref-
erence elements have been included into the class definition and are defined by this tem-
plate.

UML:AssocationClass
This algorithm transforms an association class into a class and two associations. So it
works the same way as the UML:Class template. In addition, two or more associations
have to be defined for each associated class involved in it. The attributes of association
classes are treated like attributes of usual classes.

UML:Association
This template is exclusively called by n-ary associations because only these associations
are embedded in a package element. It defines an element for the n-ary association with
the name of this association and associations for each associated class involved in it.

Multiplicity
Unlike the other templates above, this template does not process the content of the XMI
document but the content of the three received parameters that control the transforma-
tion. They are: the name of the reference element of the association, the lower and the
upper bound of the cardinality. The transformation of the cardinality is based on the
rules represented in table 4. The repeated generation of ref attributes is realized by re-
cursive calls of the template.

createComplexAttributeElements
This template is called from the UML:Class and the UML:AssociationClass
templates. It defines an element with the name of the attribute and the class name as a
prefix before the attribute name for all complex attributes of a class. The content of this
element is the element of the complex datatype.

createAssociationElements
This template is also called from both the UML:Class and the UML:Association-
Class templates. It determines all associations of a class and defines the reference el-
ements of an association. Those reference elements have been included into the DTD
before (cf. UML:Class template). For each reference element an IDREF attribute is
defined. The name of the attribute is composed of the name of the target class to be ref-
erenced. At association classes two more reference elements are generated for the newly
created association.

Stereotype
The Stereotype template checks for stereotypes for all UML elements. Those are
referenced by the stereotype element via object IDREFS in XMI.

Name
This template determines the name of the current UML element. The name is stored ei-
ther in the name attribute of the element or in the UML:ModelElement.name sub-
element in the XMI definition.

Cardinality Result of Transformation

0..n ref*
1..n ref+
2..n (ref, ref+)
0..1 ref?
1..1 ref
0..2 (ref?, ref?)
1..2 (ref, ref?)
m..n (ref, ref, ref?, ref?) Example: m=2, n=4

Table 4: Transformation of cardinality constraints into DTD

4 Options and Limitations

A number of options are available when mapping the document definition from the con-
ceptual level to the logical level. Section 2 has already outlined alternatives for most
UML elements. It just requires the change of template rules to vary certain transforma-
tion steps. For example, by changing the template rules the mapping of UML attributes
can be modified. In the same way rules can be substituted to implement alternative map-
pings for the generalization relationship: Instead of nesting elements, the use of param-
eter entities can be a viable alternative for an adequate representation in the DTD.

In order to assess the quality of the transformation the loss of information has to be de-
termined. This can be done by a reverse transformation of the generated DTD. The fol-
lowing UML elements could not be represented in the DTD. Therefore they are not con-
sidered at the reverse transformation:

• stereotypes of associations, aggregations, compositions, generalizations

• name of associations, aggregations, compositions, generalizations

• dependencies

• type integrity of associations

• qualified associations

• data type of attributes

Dependencies have not been transformed because their definition bases mainly on the
class behavior, which cannot be expressed in a DTD. In this implementation, the full
syntax of the DTD has not yet been used. Among the elements that also should be in-
cluded are entities and notations.

When transforming a conceptual data model into a DTD two fundamental drawbacks
inherent to the DTD have to be dealt with:

DTD supports weak typing only. So only the CDATA type for strings is available. Nu-
meric or other data types cannot be expressed adequately. Accordingly, the right type
of document content cannot be guaranteed by an XML DBMS using DTDs.

Another serious drawback is the lacking type safety of references. Neither ID/IDREF
nor XLink can define the target type of a reference. The only workaround used was a
naming convention for elements and attributes to denote the original relationship. DTD
cannot define elements with subelements in an arbitrary order. Furthermore, there are
no object-oriented constructs such as generalization or any semantic relationships. The
uniqueness constraint for key values cannot be enforced by a definition in a DTD.
Also Rational Rose has some limitations. Therefore it is not possible to define attributes
with a multiplicity greater than one and n-ary associations. On the other hand, the mul-
tiplicity of the aggregate end of an aggregation or composition can exceed one in Ra-
tional Rose.

5 Conclusion

This paper presents a very flexible method for the logical XML database design by
transforming the conceptual data model represented in UML. UML was primarily cho-
sen because of its widespread and growing use. Yet it would also be possible to use the

extended ER model to describe the XML document at the conceptual level. In this ap-
proach, the conceptual model and the XML representation of the document content
were strictly separated. Therefore, XML specific constructs in the conceptual model are
not involved as they can be found, e.g., in DTD profiles for UML [8] or XML exten-
sions of the ER model [9]. This methodology is well-suited for the storage of data-cen-
tric documents exchanged among different applications. Vendors of XML database sys-
tems are able to process document schemas when storing the XML documents in the
database. So the result of this transformation can easily be combined with an XML
DBMS such as Tamino (by Software AG), which accepts DTDs as document schema.

The design of the transformation stylesheets has to consider the interplay of the tem-
plates when modifying some of the mapping rules to implement a different strategy. A
well-designed set of templates as presented in this paper is the precondition to adapt this
transformation tool to other target models as well. Currently we are working on map-
ping algorithms that produce an XML Schema definition as an output of the transfor-
mation process. For that purpose, some of these transformation rules have to be rewrit-
ten to consider the extended semantic capabilities beyond those of DTDs.

Acknowledgement

This work has been funded by the Saxonian Department of Science and Art (Säch-
sisches Ministerium für Wissenschaft und Kunst) through the HWP program.

References

[1] H. Kilov, L. Cuthbert: A model for document management,
Computer Communications, Vol. 18, No. 6, Elsevier Science B.V., 1995.

[2] R. Conrad, D. Scheffner, J.C. Freytag: XML Conceptual Modeling Using UML,
Proc. Conceptual Modeling Conference ER2000, Salt Lake City, USA, Springer Verlag,
2000, pp. 558-571.

[3] G. Kappel, E. Kapsammer, S. Rausch-Schott, W. Retschitzegger: X-Ray - Towards Inte-
grating XML and Relational Database Systems,
Proc. 19th Conference on Conceptual Modeling (ER2000), Salt Lake City, 2000.

[4] C. Kleiner, U. Liepeck: Automatic generation of XML-DTDs from conceptual database
schemas (in German), Datenbank-Spektrum 2, dpunkt-Verlag, 2002, pp. 14-22.

[5] N. Routledge, L. Bird, A. Goodschild: UML and XML Schema,
Proc. 13th Australasian Database Conference (ADC2002), Melbourne, 2002.

[6] T. Krumbein: Logical Design of XML Databases by Transformation of a Conceptual Sche-
ma, Masters Thesis (in German), HTWK Leipzig, 2003, available at tkrumbe@imn.htwk-
leipzig.de.

[7] OMG: XML Metadata Interchange,
http://www.omg.org/cgi-bin/doc?formal/00-11-02.pdf, 2001.

[8] D. Carlson: Modeling XML Applications with UML: Practical E-Business Applications,
Boston, Addison Wesley, 2001.

[9] G. Psaila: ERX - A Conceptual Model for XML Documents,
Proc. of the ACM Symposium of Applied Computing, Como, 2000.

	Rule-Based Generation of XML DTDs from UML Class Diagrams
	1 Introduction
	2 Mapping UML Class Diagrams into XML Structures
	2.1 Elements of UML Class Diagrams
	2.2 Mapping of Classes and Attributes
	2.3 Mapping of Associations
	2.4 Mapping of Generalization
	2.5 Further Mapping Issues

	3 Generation of DTDs from Class Diagrams
	3.1 Algorithm
	3.2 Sample Model
	3.3 Implementation

	4 Options and Limitations
	5 Conclusion

