
Coping with Semantics in XML Document Management  

Thomas Kudrass
Leipzig University of Applied Science, 

Department of Computer Science and Mathematics, D-04251 Leipzig
kudrass@imn.htwk-leipzig.de

This paper tells the story of a war waged unknowingly by many system architects
dealing with XML documents and databases. We discuss the semantic ambiguities
and deficiencies of XML that explain many mismatches we encounter when map-
ping XML documents to databases. As a remedy, we show the benefits of using
RM-ODP viewpoints to structure an XML document specification and an XML
management system as well. We discuss the usage of generic relationships, as
they are introduced in the General Relationship Model (GRM) for the specifica-
tion of the invariants in different document views. Moreover, we discuss the real-
ization issue for the storage of XML documents in databases. We give some exam-
ples how viewpoints and specification/realization may occur concurrently  in one
XML document which proves the need for semantic models in different document
views. 

1. Motivation
XML is emerging as the dominant standard for representing data on the internet [GP00]. It is
called the successor to HTML and is considered the lingua franca for data exchange in distrib-
uted applications. XML was originally designed as a universal media-independent publishing
format that supports all kinds of document users at every level. Today much effort is being
placed in combining XML and database technology to develop full-fledged document man-
agement systems. 

In spite of the enthusiasm generated by XML, but on the other side there are many misconcep-
tions regarding the semantics of XML. Some users refer to XML as "semantic markup" con-
trary to HTML. Others say "XML is just syntax - no semantics!". XML has merely the poten-
tial to improve the document semantics through markup because with XML as language, it is
possible to introduce new tags that represent some meta information. Like any other specifica-
tion language, it can be used to express the semantics of documents and their components to a
certain extent. Our projects are dealing with the development of XML management tools on
top of commercial DBMSs. Therefore, we have to analyze the limitations of XML regarding
semantics before implementing such a system. To capture of the various semantic aspects we
need a structure that helps to understand the XML/DB problem from different viewpoints.



The remainder of this paper is structured as follows: Section 2 introduces the basic problem of
XML regarding semantics. Section 3 discusses the main issues of XML-to-database mapping
implied by the lack of XML semantics. Section 4 outlines the RM-ODP concepts of view-
points and generic relationships applied to document modeling. Their usability for XML docu-
ment specifications is shown in section 5. Section 6 stresses the separation of concerns in the
realization of XML based systems. Finally, the conclusions sketch how to proceed when build-
ing those systems with databases.

2. About XML: A Semantic Perspective
HTML is just one of several markup languages on the market whose popularity has grown due
to its importance as the standard format for web documents. HTML defines a standard set of
tags with standardized meanings and standardized rules of use. So it is possible to define a log-
ical document structure with a predefined set of building blocks. By using Cascading Style
Sheets (CSS) it is also possible to separate the physical presentation of the document’s build-
ing blocks from the overall logical structure.

On the one hand, XML is a subset of SGML, the international standard for the exchange of
text documents, like HTML. On the other hand,  XML belongs to the abstraction layer of
SGML, i.e., it is a language to define specialized markup languages for different purposes. The
main reason for the increasing popularity of XML is that all the various languages defined in
XML can be parsed by a single standardized processor. 

User-defined  markup can structure the character data of a document and explain what they are
through the use of names. Naming has to be considered very carefully. The ISO standard RM/
ODP [ISO95a] states that a name is a term that refers to an entity in a given naming context.
XML Namespaces are not appropriate. Instead, interoperable systems require  access to a com-
mon sets of object semantics [BB00]. The need for shared ontologies has already been recog-
nized in some industries where XML can help in building open systems, for example in elec-
tronic commerce.

Even if we would have a solution for the naming problem there is no standard behavior de-
fined for the tags in an XML document. Specification of the behavior has to come from some-
where else. Some XML proponents say, the treatment of an element in an XML documents has
to be supplied programmatically (with scripts) or declaratively (with style sheets). Many au-
thors refer to presentation issues when discussing the behaviour of XML elements. This is
where Extensible Stylesheet Language (XSL) comes in. It provides means to transform an
XML document into a document with another logical structure. With XSL it becomes possible
to produce different logical layouts needed by various users. On the other hand, it is very flex-
ible in generating the presentation of a document by combining the power of XML with the
idea of a style-property vocabulary. The notion of a "stylesheet" provides only one type of pro-
cessing semantics (see CSS, XSL/Formatting Objects). But the term "stylesheet" reveals,  that
it is restricted to the presentation of document elements without considering the integrity of the
stored information. XML processors can easily check the well-formedness of an XML docu-



ment and also the validity with respect to a given Document Type Definition (DTD). However,
XML processors do not have an understanding of the document object semantics for which al-
most no predefined concepts are available in XML. 

Document-Centric vs. Data-Centric XML Documents

It is one of the main characteristics of XML that it provides a syntax for serializing any kind of
structured data that can be processed by standardized ubiquitous tools. The exchange of data
among systems as a document would be just a special case of using XML as a universal media-
independent publishing format. Therefore, we can distinguish between two types of docu-
ments with different requirements: document-centric and data-centric documents. Data-cen-
tric documents are documents that use XML for the data transport. Although XML is human-
readable, data-centric documents are designed for machine consumption. Usually the data are
only temporily stored as XML documents during the transport. Examples of such documents
are sales orders, stock quotes, flight schedules. Data-centric documents are characterized by a
fairly regular structure, fine-grained data, i.e. the elementary information unit are PCDATA el-
ements or attributes, and mostly no mixed content. The order, in which sibling elements and
PCDATA data occur, is generally not significant. Also prose-rich documents can be classified
as data-centric, if the text has a highly regular structure with parts common to all documents.
Document-centric documents are documents that are designed for a human reader, such as
books, journal articles, emails. They are characterized by a less regular structure, coarse-
grained data and lots of mixed content. The order, in which sibling elements and PCDATA oc-
cur, is almost always significant, particularly when the document is read serially by a human
being. 

Some documents can be considered hybrids of document-centric and data-centric documents.
Looking at them in more detail, they can be specified as compositions of different types of
documents, e.g. medical documents contain discrete pieces of data such as patient data, find-
ings, prescriptions, procedures.

As we will see later, the distinction between data-centric and document-centric documents is a
very simple requirements analysis with large impact on the implementation of a technical sys-
tem that manages XML documents. Management refers to all issues of handling the informa-
tion, for example store documents, retrieve whole documents, extract document parts, update
documents.  

3. XML - A Database Perspective 
Round-Trip Problem

When storing XML document, there is one important requirement, called round-tripping
[Bo00].  That is, an XML document is stored in a database (or somewhere else) and retrieved
as the "same" document back again. This is important for XML applications that need to re-
trieve exactly the document with exactly the same layout which includes things in XML like
CDATA sections, character entities, comments, and processing instructions. It is also vital to



many applications which are required by law to keep exact copies of documents. Round-trip-
ping is less important to data-centric applications which care about the content of the docu-
ment represented in elements, text, and attributes. The order of sibling elements or attributes
may be important in some cases of data-centric applications. Take, for example, the position of
items on sales orders: you typically list first the PC, followed by RAM, cables, peripherals,
etc. However, as independent items in a database the order is immaterial.

Schema Definition

Document Type Definitions (DTDs) describe the structure of XML documents and are like a
schema for them. A DTD specifies the structure of an XML element by specifying the names
of its sub-elements and attributes. The sub-element structure is specified using the operators *
(set with zero or more elements), + (set with one or more elements), ? (optional), and | (OR).
All values are assumed to be string values, unless the type is ANY in which case the value can
be an arbitrary XML fragment. There is a special attribute, ID, which can occur once for each
element. ID uniquely identifies an element within a document and can be referenced through
an (untyped) IDREF attribute in another element. XML Schemas are extensions to DTDs. One
of the main differences between those and DTDs is that they allow typing of values and set
size specifications (like cardinality constraints in associations). Although they provide some
constructs such as hierarchy, sequence, choice, attributes, and opaque references, DTDs or
XML Schemas are ill-suited to express the semantics of the content of the document elements.
The reason is that they had been designed for serialization of data as a prerequisite for  data ex-
change among systems. In that case the interacting systems are themselves responsible for the
enforcement of the data integrity constraints that cannot be expressed with XML. If we want to
store an XML document into a database we encounter all the problems caused by the semantic
deficiencies of XML. The main issues and caveats are discussed subsequently.

From XML to Databases: Common Mapping Problems

Attributes vs. Element Text: Is the data stored in attributes or element text? Some authors rec-
ommend the extensive use of attributes in XML. They argue from an implementation point of
view because using attributes instead of sub-elements reduces the number of nodes in the tree
representation of the document which can be handled easier at the API (e.g., in DOM). At-
tributes can have a list of values and even a default value. On the other hand, attributes cannot
be nested.

Meaning of Attributes: Without a semantic model, you may encounter some ambiguities re-
garding the interpretation of an attribute. Consider the example of a customer‘s order. Some
components of an order could be expressed as sub-elements such as line items or customer
number. Let’s assume we add an attribute to the order element "expiry date 11/2001".
Does that mean the order will expire in Nov. 2001 if the delivery is not possible until then? Or
does it mean the information about the order can be thrown away in Nov 2001? Or is it just the
expiry date of the credit card date, if another meaning to this name would be added? The ex-



ample underscores the need for an explicit information model because relying on "data names"
may lead to serious problems.  

Null Values: In the database world there is a concept of null values, different from a value of 0
(for numbers) or zero length (for a string). This has to be adequately expressed in an XML
document considering the different semantics of different kinds of null values. XML supports
null data through optional element types and attributes. In the XML Schema specification
there is even a provision for null values in the sense of database null values. xsl:null =
’true’ indicates that the element’s text value is null, not the empty string. So far there is no
concept of null for attributes. Following the standard requires to use element text for values
that can be null. But this may conflict with other rules when to use attributes.  

Comments, Processing Instructions: Most XML-to-relational mapping algorithms ignore some
XML document components such as comments or processing instructions. Obviously, they are
considered not to be content of the document.

Markup: Entities are placeholders for some piece of text or single characters. Thus, they are
substituted in the physical presentation of the document. They are visible in a logical layout
view as it is supported by XML editors. Among them markup characters that are not used for
markup raise special problems. Take as an example the string &lt;foo/&gt; This is con-
sidered content and would be stored in exactly the same way. Query languages, such as SQL,
cannot interpret column values as markup and don’t understand entity usage. Therefore, a
search for the string "<foo/>" would fail in a database that is not XML-aware because it does
not consider the logical structure of the document.  

Links: There are some constructs to express associations among document elements. They can
be specified by links (XLink, XPointer) or by attribute values (ID: identifier value / IDREF:
"foreign key" value). Their usage is up to the creator of the document. Hence, there can be
more hidden associations in the document. For an association specified by ID/IDREF it is im-
possible to derive a non-ambiguous representation in a relational database. At first glance, you
would map this to primary key/foreign key relationships. In this case the behavioral semantics
would be added arbitrarily during the database design. Note that the link concept had been
originally designed for documents and document fragments, e.g., XPointers can easily point to
document subtrees using XPath. From a content point of view there may be some more associ-
ations and constraints among the data stored in the document. This applies particularly to data-
centric XML applications. For them the XML link mechanisms are not adequate, and it would
be more convenient to use another language to express the constraints (such as SQL DDL). 

Ordered Composition: When mapping XML documents into databases, the problem arises
how to deal with sibling orders. Data-centric applications don’t require a strict order of the el-
ements provided that they can be identified properly. Therefore, the effort to introduce artifi-
cial numbers for them in a database can be discarded. Sibling elements might by arbitrarily or-
dered, as there is no defined order among tuples of a relation. XML does not provide means to
specify this aspect. The reason might be the implicit assumption that the whole text has to pre-



serve the order in which it is stored. Yet, this applies only to document-centric documents
whose elements may be an ordered composition of sub-elements (cf. section 4, GRM).

Other Invariants: Take identity constraints as an example. With XML it is nearly impossible to
specify that an attribute value must be unique across all  objects of the same type within the
document. The reason is that constraints can only be defined on the level of instances, not
schemas. Collective state (invariants) and collective behavior cannot be directly handled in
this manner, so that possibly some artificial objects ("performers") ought to be created. There-
fore, a set of all concerned objects has to be constructed (e.g. using XPath expression), before
the constraint can be enforced. Both the specification and the implementation of an identity
constraints can be done better in a database environment. Identity constraints cannot be treated
properly in XML, once the data is transformed into an XML document. They also represent a
view on the document content that goes far beyond what XML was originally intended to do. 

4. Using RM-ODP for Document Management
Viewpoints

In order to describe an XML document it has to be analyzed from different viewpoints, as it is
good practice to separate concerns. An XML document can be discussed from three different
viewpoints each representing relevant document properties to different users [KC95]:

• physical presentation view

• logical layout view

• content view

A physical presentation view considers the presentation of  a document that can be very differ-
ent, dependent on the media. A document can be seen as a composition of characters with
some properties such as font, size, style. Regarding hypermedia documents also bitmaps can
be components of a document. Any placeholders such as XML character entities have been re-
solved in the presentation view.

A logical layout view considers the logical layout. An XML document, like every other kind
of document, can be logically structured. Thus, a document can be interpreted as a composi-
tion of  prose components (paragraphs, sections, lists, list items) and other objects (e.g.,
frames, code sections). In case of document-centric documents this composition is mostly or-
dered for a human reader. 
A document with a given logical layout has many possible physical presentation views that
depend on the media, screen size, or paper size. Therefore, the logical layout plays an impor-
tant role for the presentation of human-readable documents because the components can be
presented in a uniform and consistent way. The idea can be found in any text processor, XML
uses so-called Formatting Objects for the same purpose. 



A content view considers intellectual content. In a content view a document can be interpreted
as a composition of information objects suchs as title, author, abstract, body, bibliography. The
content can be organized in a hierarchical structure as in "conventional" documents or can be
flat as in relational databases.
The typical approach is to start with the document content and to map it into a logical layout
that has to be transformed into a physical presentation. Today’s XML systems usually do not
support all three of the viewpoints and restrict themselves to the logical layout or the physical
presentation.

RM-ODP defines five basic viewpoints of a system and its environment: enterprise viewpoint,
information viewpoint, computational viewpoint, engineering viewpoint and technology view-
point [ISO95a]. In this paper we argue mainly with the information viewpoint and the technol-
ogy viewpoint. The information viewpoint focuses on the semantics of information and infor-
mation processing. The information semantics can be specified by an invariant schema using
the General Relationship Model (GRM) [KR94,ISO95]. The technology viewpoint focuses on
the choice of technology for a system. 

A viewpoint can be expanded into the specification of a new system at a different abstraction
layer with the basic viewpoints. Therefore, we can look at the physical presentation view and
describe an information model with some invariants for it. The model could be very simple,
just a composition of characters. An invariant schema in the presentation view could specify
character set, font information, or page size.  The presentation medium can be specified in the
technology viewpoint, e.g., paper, electronic file, screen. Each viewpoint has to be described
in a viewpoint language. For example, the information viewpoint is typically described
through data or object modelling, whereas the computational viewpoint may be specified by
interaction diagrams. We apply the idea of viewpoints to understand the problems of dealing
with content in XML document management as it will be discussed in the next section. 

General Relationship Model (GRM)

The GRM can be used to describe relationships among things like documents and their ele-
ments. It provides some generic relationships with a well-defined behavioral semantics that
apply everywhere (composition, subtyping, reference). Moreover, there exist other (non-ge-
neric) relationships that are defined in the same manner, for example the "realization" relation-
ship [Kil99].

We have to focus on the composition relationship that can be encountered very often in docu-
ment modeling. According to RM-ODP, a composition of objects is defined as a "combination
of two or more objects yielding a new object at a different abstraction level of abstraction. The
characteristics of the new objects are determined by the objects being combined and by the
way they are combined" [ISO95a]. Besides the composition the reference relationship is need-
ed. It means that the referencing object determines properties of the referenced object that can
exist independently from the referencing object.



5. Separating Concerns in the Specification of XML Documents 
Content View vs. Logical Layout

First, we have to understand the boundaries between content and logical layout which is a pre-
requisite for the lossless storage of XML documents in a database.  A document reference
model based on RM-ODP is described in [KC95]. Accordingly, a document is a composition
of document content elements, e.g., abstract, body, legal disclaimers. The document reference
model proposes an extendible set of subtypes of document content elements. XML is an ac-
ceptable language for representing document-centric documents in the information viewpoint
of the content view. A user can define the necessary content elements in a DTD or in an XML
Schema. These languages provide some restricted constructs to express structural constraints.
The behavioral semantics is implicitly defined. For example, XML Schema enables to define
cardinality constraints for the composition of a content element from other elements. The doc-
ument becomes invalid by any violation of constraints defined in the schema. There are some
implicit assumptions about content elements: they occur once only within a document - except
from references-  provided that they correspond with some large-grained information unit
(e.g., paragraph section, picture). There is only a small amount of data that is common to all
documents such as copyright notices, corporate addresses, or product logos. This amount is so
small in relation to the total that some redundany in the content view can be tolerated.

The content view of data-centric documents differs significantly from document-centric docu-
ments with respect to the invariants that have to be specified because there may be large over-
laps among documents or content elements. Take as an example an order system of a web shop
that could be used - with minimal changes - for a bricks-and-mortar store as well. A sales order
consists of header information, such as order number, order date, customer number, and one or
more line items that contain a part number, quantity, and price. Because of the hierarchical ap-
proach inherent to XML, the header information can be stored in a single document as a parent
element with multiple fixed children. If the header information is extended by customer data,
such as name and address, then we have the problem to duplicate the customer information in
each sales order. The same question applies to the many-to-many relationship between orders
and parts in our example. This relationship can be referred to as a composition: non-hierarchi-
cal, assembly, non-ordered. In our application, there may exist more user-defined integrity con-
straints that correspond to invariants, for example:
- the overall value of an order must exceed a certain minimum
- a customer can submit at most five orders
- if a customer is deleted all of his orders have to be cancelled

As stated above, XML provides a small set of simple integrity constructs in XML schema to
specify validity that can be checked by an XML parser. From an XML point of view it does
not make sense to provide further means to specify more complex constraints because only a
database engine could efficiently deal with them. Therefore, we should choose another lan-
guage or tool for the specification of the information viewpoint for the content of data-centric
documents. In data-centric documents there are lots of choices how to map the content model



to a logical layout. There are different choices how the resulting logical layout of the document
could look like, similar to database views. Some examples are:
- list of customers each with a list of orders each with a list of items
- list of orders each with customer data in the header and a list of items
- list of items each with a list of assigned orders having the customer information

There is an alternative how to specify the association between customers and orders in the in-
formation viewpoint of the content view: The customer information would be stored separate-
ly and referenced by an XLink in the sales order document. With the link approach we would
use an implementation concept for associations between document elements - analogous to
pointers [Kil94]. We should avoid this to prevent a confusion of different basic viewpoints
within the content view. 
In a logical layout view the use of XLinks or XPointers is useful for the handling of common
layout elements, such as, e.g., corporate logos, in document-centric documents.

Specification of Operations

Users in each view have different ways to manipulate the information contained in the docu-
ment. Each viewpoint provides operations that are specific for it. Because XML does not ex-
plicitly use the three different document views it provides operations and languages that mix
different viewpoints. For example, XPath provides all types of retrieval operations: value-
based, structure-based, text-oriented, and metadata search. At first glance, it looks very power-
ful but the underlying document tree model makes set-oriented queries cumbersome. The
same applies to other declarative query languages such as XQuery or XML-QL. It is hard to
express invariants in the information viewpoint which has to be done at the level of types, not
instances. There is some ongoing effort to specify an update language, XUpdate, that is based
on XPath und inherits its weaknesses with respect to invariants because it has been designed
from a different viewpoint.

The Document Object Model (DOM) provides  a standard model and an application program-
ming interface for XML documents. As a platform and language independent interface it en-
ables to retrieve content, structure and metadata of a document and to update them. Because
there is no explicit boundary between logical layout view and the content view in XML the
DOM provides operations of both viewpoints on the level of instances, for example insert data,
remove a child node.   Whereas the handling of document-centric documents with a tree-based
logical structure is supported by the DOM interface, the requirements of data-centric docu-
ments are not considered. In order to specify the information viewpoint within the content
view, another language is needed. Set-oriented operations - as they are known in a relational
data model - and complex constraints cannot be specified with the DOM interface. The same
applies to content-based retrieval such as full-text search operations. 



6. Realization of XML Document Management
Consider the implementation of a management system for XML documents. This can be seen
as a realization relationship between a "source" activity (e.g., specification) and a "target" ac-
tivity (e.g., design) [Kil99]. As already mentioned, we can apply the basic five viewpoints
within each viewpoint of the document reference model. This can help us to understand the
problems we have encountered in the past regarding the lossless storage of XML documents in
a database. 

Everything that can be defined in XML is both specification and realization. Compared to con-
ventional database or software design, there is nothing for XML documents, apart from edi-
tors. XML does not provide an abstraction that would create a new semantic level in which
one can be absolutely precise. Thus, the specification of XML documents is like programming
without analysis.

The realization of the storage function for XML documents can differ significantly in all three
viewpoints. The content view of a data-centric document can better be stored in a relational
DBMS, because it provides SQL constructs to express semantic data constraints in the docu-
ment (for examples see [FK99, STH+99]). There can be different logical layout views of data-
centric documents. They may be stored separately as XML template files and combined with
the content via placeholders (e.g., rowset markup). Different logical layouts can simply be pro-
duced using XSLT. There is one risk with respect to the effort of the W3C to enhance XML
Schema and XML query languages. If XML Schema would provide all primitives to define
what things are, how they are related and how to deal with them, then it would result in a full-
fledged data model as it is defined in a DBMS. A DBMS has the knowledge to manage the
data accordingly and provides all data-oriented functionality, such as integrity enforcement,
data manipulation, retrieval, optimization. A well-established example how to separate con-
cerns is to centralize these functions in a DBMS away from file-processing applications. With-
out considering this, we would re-invent DBMS functionality - possibly on top of a DBMS -
by developing software modules, viz. XML processors, that deal with XML documents on be-
half of other software module. All semantics would be back in application programs built by
using XML technology. Not to mention the DBMS know-how regarding the optimization and
physical data organization. That’s why we must keep the borderlines clear among  different
document views. XML processors can deal with the logical layout view or provide tools for
the presentation, as for example XML-to-HTML transformation, but they should not focus on
the content. 

Native XML database systems are a better choice for document-centric documents from the
technology viewpoint because they can enforce XML-specific constraints in a more natural
way than traditional DBMS systems [SAG00]. In that case, XML is used as the language to
describe the information viewpoint of the document as a composition of sub-elements (e.g.,
article, book). 



7. Conclusions  
Generic information modelling concepts promote the understanding of XML document man-
agement. The current XML technology provides lots of tools and languages, but there is al-
most no guidance for a precise semantic specification of the content or the logical structure of
the document. New standards such as XML Schema or XLink aggravate these problems be-
cause they increase the number of syntactic alternatives how to specify the semantics of the
XML document. Our conclusions can be seen as a roadmap how to proceed when building an
XML system with databases.

• Analyze the requirements first before building an XML system

XML documents have different characteristics and can simply be classified into two catego-
ries, viz. data oriented and document-oriented. Each of these categories implies different busi-
ness requirements to the XML system. The requirements comprise the functionality an XML
system has to provide, i.e., queries, updates, import and export functions. There may be a
broad range of queries from full-text search to set-oriented queries as in SQL. This has a huge
impact on the choice of the technology that may be a combination of several platforms (for ex-
ample: relational DBMS plus file system).

• Think in viewpoints to understand the semantics 

An XML document can be discussed from three contextual views as they are already known
for many years. Usually, they can be found in combination because XML languages do not re-
ally enforce a separation of concerns. Our examples have shown the mixed occurrence of the
content view and the logical structure in an XML document. This has to be understood before
the document will be stored in some other system. Therefore, a viewpoint can be expanded
into the specification of a new system at a different abstraction layer with the complete range
of the basic five RM/ODP viewpoints. This idea was very helpful to understand the problem of
integrity maintenance in XML documents because there is a different set of invariants regard-
ing the logical structure and the document content. The information viewpoint on the content
view may require a different language to express the invariant schema in comparison with the
information viewpoint of the logical layout view. This applies in particular to data-centric doc-
uments with "hidden" data semantics.

• Use generic relationships for constraint modelling

XML provides both a language and a restricted set of concepts to express constraints. Users
who try to specify all invariants in an information viewpoint should not stick to the XML of-
ferings. Instead they should use GRM concepts representing relationship patterns that always
exist despite of the XML capabilities. Among them are all subtypes of composition and the
reference relationship. Some cases have been discussed in the paper, for example, the different
composition of document elements dependent on the document type and the contextual view.
The generic relationships can be used in the information viewpoint throughout all document
views provided they are clearly separated.



• Beware of the difference between specification and realization

The current XML standard does not consider the difference between specification and realiza-
tion. The realization pattern can be encountered repeatedly because an XML database system
consists of several design layers: XML document layer, logical database design (according to
the mapping algorithm), physical database design. These layers have to be separated clearly in
order to fulfil other non-functional requirements like storage und location transparency. 

Acknowledgments
My thanks are due to Haim Kilov and Alex Buchmann who gave constructive comments. The
work was supported by the Saxonian Department of Science and Art (Sächsisches Ministerium
für Wissenschaft und Kunst) through the HWP program. 

References
[BB00] C. Bornhövd, A. P. Buchmann: Semantically Meaningful Data Exchange in Loosely Cou-

pled Environments, 6th International Conference on Information Systems Analysis and
Synthesis, ISAS'00, Orlando, Fl., 2000.

[Bo01] R. Bourret: XML and Databases, http://www.rpbourret.com/xml/XMLAndDatabases.html

[FK99] D. Florescu, D. Kossmann: Storing and Querying XML Data using an RDBMS. 
Data Engineering, Sept. 1999, Vol.22, No.3.

[GP00] C.E. Goldfarb, P. Prescod: The XML Handbook, Addison Wesley, 2000. 

[ISO95a] ISO/IEC JTC1/SC21: Open Distributed Processing - Reference Model -Part 2: Founda-
tions,, IS 10746-2/ITU-T Recommendation X.902, 1995.

[ISO95b] ISO/IEC JTC1/SC21: Information Technology. Open Systems Interconnection - Manage-
ment Information Services - Structure of Management Information - Part 7: General Rela-
tionship Model, 1995 (ISO/IEC 10165-7.2).

[KC95] H. Kilov, L. Cuthbert: A model for document management, Computer Communications,
Vol. 18, No. 6, Elsevier Science B.V., 1995.

[Kil94] H. Kilov: On Understanding hypertext: are links essential?, ACM Software Engineering
Notes, Vol. 19, No. 1, Jan. 1994.   

[Kil99] H. Kilov: Business Specifications - The Key to Successful Software Engineering, Prentice
Hall, 1999.   

[KR94] H. Kilov, J. Ross: Information Modeling: an Object-Oriented Approach, Prentice Hall,
1994. 

[SAG01] Software AG: Tamino XML Database, http://www.softwareag.com/tamino, 2001. 

[STH+99] J. Shanmugasundaram et. al: Relational Databases for Querying XML Documents: 
Limitations and Opportunities., Proc. 25th VLDB conference, 1999.


	1. Motivation
	2. About XML: A Semantic Perspective
	3. XML - A Database Perspective
	4. Using RM-ODP for Document Management
	5. Separating Concerns in the Specification of XML Documents
	6. Realization of XML Document Management
	7. Conclusions
	Acknowledgments
	References

