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Abstract. The theory of multiplier modules of Hilbert C*-modules is recon-

sidered to obtain more properties of these special Hilbert C*-modules. The

property of a Hilbert C*-module to be a multiplier C*-module is shown to
be an invariant with respect to the consideration as a left or right Hilbert

C*-module in the sense of a C*-correspondence in strong Morita equivalence

theory. The interrelation of the C*-algebras of ”compact” operators, the Ba-
nach algebras of bounded module operators and the Banach spaces of bounded

module operators of a Hilbert C*-module to its C*-dual Banach C*-module are

characterized for pairs of Hilbert C*-modules and their respective multiplier
modules. The structures on the latter are always isometrically embedded into

the respective structures on the former. Examples for which continuation of
these kinds of bounded module operators from the initial Hilbert C*-module

to its multiplier module fails are given, however existing continuations turn

out to be always unique. Similarly, bounded modular functionals from both
kinds of Hilbert C*-modules to their respective C*-algebras of coefficients are

compared, and eventually existing continuations are shown to be unique.

Multiplier modules of (full) Hilbert C*-modules appeared in the literature during
investigations of extensions of Hilbert C*-modules in terms of short exact sequences.
There are several approaches to the subject, e.g. [14, 41, 11, 12, 10, 13] or [5, 6].
We follow the approach in [5, 6]. The goal was to generalize the extension theory of
C*-algebras to the context of full Hilbert C*-modules. The notion of a multiplier
module of a full Hilbert A-module over a C*-algebra A was justified by [5, Thm. 1.2]:
It is the largest essential extension of X up to unitary modular isomorphism of
Hilbert M(A)-modules, where M(A) is the multiplier C*-algebra of A. For details
see section 2. In the sequel to [5, 6], large parts of the extension theory of Hilbert
C*-modules have been described, e.g. in [4, 9, 1, 29, 3, 26, 22].

The aim of the present note is to fill in some missing facts from the point of view
of classical Hilbert C*-module theory and to describe pairs of Hilbert C*-modules
and their multiplier modules from the point of view of their common and partially
even differing properties. We get some results that contradict habits and opinions
from Hilbert and Banach space theory. So, some new examples complement the
existing points of view on the theory of Hilbert C*-modules.

Considering multiplier modules as full left Hilbert C*-modules X over a C*-
algebra A we obtain that they are at the same time full right Hilbert C*-modules

Date: February 2025.

1991 Mathematics Subject Classification. Primary 46L08; Secondary 46L05, 46H10, 47B48.
Key words and phrases. Hilbert C*-modules; multiplier modules; multiplier algebras; bounded

modular maps and operators.

1



2 MICHAEL FRANK

and multiplier modules over the respective C*-algebras KA(X). This reminds spe-
cial C*-correspondences, however no new type of Morita equivalence can be derived.
Considering pairs (X,M(X)) of Hilbert C*-modules and their multiplier modules
we consider the interrelations of comparable types of operator algebras of bounded
module operators over them and continuation problems of operators from X to
M(X), the same for bounded modular functionals. So, for ”compact” operator
algebras KA(X) is ∗-isometrically embedded into KM(A)(M(X)), but the former
might be smaller than the latter one. Furthermore, the Banach algebra of bounded
module operators EndM(A)(M(X)) is isometrically embedded into EndA(X), as
well as the Banach space EndM(A)(M(X),M(X)′) into EndA(X,X ′), and again
the former might be smaller than the latter one. Consequently, not any operator
of the smaller structures on X can be continued to a bounded operator on the
larger structures M(X) obeying strict convergence. If such a continuation exists it
is unique. The same picture can be obtained for bounded modular functionals on
M(X) and on X, respectively, so we discovered examples of pairs of Hilbert C*-
modules (X,M(X)) with X⊥ = {0} for which no general Hahn-Banach type theo-
rem can be discovered. Remarkably, there does not exist any non-trivial bounded
module map from M(X) to M(A) vanishing on X.

1. Introduction

We denote C*-algebras by A,B. In case a C*-algebra A is non-unital, general
C*-multiplier theory provides us with some derived structures like multiplier al-
gebras M(A), left and right multiplier algebras LM(A) and RM(A), resp., and
quasi-multiplier spaces QM(A). To calculate these linear spaces any faithful ∗-
representation of A on a Hilbert space H can be used. The calculation environment
is the von Neumann algebra generated by the faithfully ∗-represented C*-algebra
A, or B(H) itself, cf. [34, Ch. 3], [37]. The unital C*-algebra M(A) is defined as

M(A) = {m ∈ B(H) : ma, am ∈ A for any a ∈ A} .
The Banach algebras LM(A) = RM(A)∗ can be defined as

LM(A) = RM(A)∗ = {m ∈ B(H) : ma ∈ A for any a ∈ A} ,
whereas the involutive Banach space QM(A) can be obtained as

QM(A) = {m ∈ B(H) : bma ∈ A for any a, b ∈ A} .
Inventing different kinds of strict topologies intrinsic characterizations of these
structures as certain topological completions of A on bounded sets of A are avail-
able. For comprehensive sources we refer to the book by P. Ara and M. Matthieu [2]
and to [32, 33, 7, 16]. Note, that multiplier algebras might admit an entire lattice
of non-unital, two-sided, non-isomorphic ideals Aα such that M(Aα) = M(Aβ) for
any two of them, cf. [25]. Also, either M(A) = LM(A) and M(A) = QM(A) at the
same time, or LM(A) is strictly larger than M(A) and QM(A) is strictly larger
than LM(A), cf. [8, Cor. 4.18].

We would like to consider Hilbert C*-modules over (non-unital, in general) C*-
algebras and, in particular, their multiplier modules and related structures. By
convention all Hilbert C*-modules are right C*-modules, at the first glance. How-
ever, for full Hilbert A-modules one can obtain an operator-valued inner product
turning them into full left Hilbert KA(X)-modules, and vice versa. So, the point of
view decides which of the two Hilbert C*-module structures is primary and which
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is secondary. This kind of consideration will be used frequently in the present pa-
per. The interested reader is refered to the theory of strong Morita equivalence of
C*-algebras and to C*-correspondences or imprimitivity bimodules, see [39, 14].

A pre-Hilbert A-module over a C*-algebra A is an A-module X equipped with
an A-valued, non-degenerate mapping 〈., .〉 : X ×X → A being conjugate-A-linear
in the first argument and A-linear in the second one, and satisfying 〈x, x〉 ≥ 0 for
every x ∈ X. The map 〈., .〉 is called the A-valued inner product on X. A pre-
Hilbert A-module {X, 〈., .〉} is Hilbert if and only if it is complete with respect to

the norm ‖.‖ = ‖〈., .〉‖1/2A . We always assume that the complex linear structures
of A and X are compatible. A Hilbert A-module {X, 〈., .〉} over a C*-algebra A
is full if the norm-closed A-linear hull 〈X,X〉 of the range of the inner product
coincides with A. Two (full) Hilbert A-modules {X, 〈., .〉X} and {Y, 〈., .〉Y } over a
fixed C*-algebra A are unitarily equivalent (or unitarily isomorphic) iff there exists
a bounded invertible adjointable map T : X → Y such that 〈., .〉X = 〈T (.), T (.)〉Y
on X. The A-dual Banach A-module X ′ of a Hilbert A-module X is defined as the
set of all bounded A-linear maps from X into A. It might not be a Hilbert A-module
itself, cf. [16]. But, X is always canonically isometrically embedded into X ′ as a
Banach A-submodule via the identification of x ∈ X with 〈x, ·〉 ∈ X ′. Note, that
two A-valued inner products on a Hilbert A-module X inducing equivalent norms
on X might not be unitarily isomorphic, cf. [8, 16]. Thus, full Hilbert C*-modules
are always a triple of the C*-algebra A of coefficients, the Banach A-module X and
the A-valued inner product on X. We omit the explicit reference to the C*-valued
inner product in places where its definition formula is standard or only its existence
is important.

We are interested in properties of sets of bounded A-linear operators between
Banach and Hilbert C*-modules X. The set EndA(X) of all bounded module oper-
ators on Hilbert A-modules X forms a Banach algebra, whereas the set End∗A(X)
of all bounded module operators which possess an adjoint operator inside EndA(X)
has the structure of a unital C*-algebra. Note, that these two sets do not coincide
in general, cf. [36, 16]. An important subset of End∗A(X) is the set KA(X) of ”com-
pact” operators, which is defined as the norm-closure of the set of all finite linear
combinations of elementary operators

{θa,b ∈ EndA(X) : a, b ∈ X , θa,b(c) = b〈a, c〉 for every c ∈ X}.

It is a C*-subalgebra and a two-sided ideal of End∗A(X). In contrast to the well-
known situation for Hilbert spaces, the properties of an operator of being ”compact”
or possessing an adjoint depend strongly on the choice of the A-valued inner product
on X, i.e. these properties are not invariant for unitarily non-isomorphic C*-valued
inner products on X inducing equivalent norms, cf. [16].

We postpone a detailled introduction to multiplier modules of Hilbert C*-modules
to the next section. Our standard references to Hilbert C*-module theory are
[31, 39, 43].

Searching for intrinsic characterizations of Hilbert C*-modules, especially over
non-unital C*-algebras, the notions of orthonormal bases and of frames for Hilbert
spaces were rediscovered in the modular context of Hilbert C*-modules by D. R. Lar-
son and the author during 2018-2022, [17, 18, 19] and cf. [23]. The new theory
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started with the norm-convergent case. Remarkably, there was a shift in signifi-
cance towards modular frames, since far not all Hilbert C*-modules admit orthog-
onal bases. Also, certain classes of Hilbert C*-modules do not possess modular
frames, however the most usual classes of Hilbert C*-modules do. Theory and ap-
plications have been developed and extended since then. The type of convergence of
the defining series in the modular context has been widened to strict, weak, weak*
types or algebraic order type of convergences in cases.

In 2017 Lj. Arambašić and D. Bakić have made a significant progress in the un-
derstanding of Hilbert C*-modules over non-unital C*-algebras. They used the
strict completion picture to multiplier modules of X and introduced so called
outer frames of the multiplier modules M(X) to extend the available sets of norm-
convergent or strictly convergent modular frames of the related initial Hilbert C*-
modules X. It turned out that all outer and inner frames of countably generated or
algebraically finitely generated Hilbert C*-modules X in the sense of strict conver-
gence can be characterized by surjections of either End∗A(l2(A), X) or End∗A(AN , X)
for some N ∈ N, resp., [3, Thm. 3.18, Thm. 3.19, Prop. 3.22, Prop. 3.23]. By
the way, the notion of countably generatedness of Hilbert C*-modules over non-
unital C*-algebras has been formulated more precise. Lateron, M. Naroei Irani and
A. Nazari made steps towards inner and outer modular woven frames, cf. [35].

2. On multiplier modules

Let us show a way to define multiplier modules M(X) of given (full) Hilbert
A-modules X as a certain related Hilbert M(A)-module, and let us provide some
crucial properties of them. We start with a class of extensions of a given full Hilbert
A-module X as defined in [5]:

Definition 2.1. (cf. [5, Def. 1.1]) Let X be a full Hilbert C*-module over a given
(non-unital, in general) C*-algebra A. An extension of X is a triple (Y,B,Φ) such
that

(i) B is a C*-algebra containing A as a two-sided norm-closed ideal.
(ii) Y is a Hilbert B-module.
(iii) Φ : X → Y is a bounded module map satisfying 〈Φ(x),Φ(y)〉 = 〈x, y〉 for

any x, y ∈ X.
(iv) Im(Φ) = Y A = {zb : z ∈ Y, a ∈ A} = {x ∈ X : 〈x, x〉 ∈ A} (by the

Hewitt-Cohen factorization theorem, [38, Thm. 4.1], [39, Prop. 2.31], [24,
Thm. 23.22]).

The triple (Y,B,Φ) is an essential extension of X if A is an essential ideal of B.

Note, that Φ is an A-linear isometry of Hilbert A-modules and, hence, a uni-
tary map preserving A-valued inner products up to unitary equivalence, cf. [30],
[15, Thm. 5], [42, Thm. 1.1]. So, Y and Φ(Y ) are unitarily equivalent Hilbert
C*-modules. In the sequel we consider the C*-algebras A and B as a Hilbert A-
module and as a Hilbert B-module over itself, respectively, setting 〈a, b〉 = a∗b
for any two C*-algebra elements a, b. Then A and B are ∗-isometrically isomor-
phic to the C*-algebras KA(A) and KB(B), respectively. By [43, Prop. 2.2.16]
these ∗-isomorphisms extend to ∗-isomorphisms of M(A) and of M(B) with the
C*-algebras End∗M(A)(A) and End∗M(B)(B), respectively. We shall use these identi-
fications freely.



MULTIPLIER MODULES OF HILBERT C*-MODULES REVISITED 5

Definition 2.2. Let X be a (not necessarily full) Hilbert C*-module over a given
(non-unital, in general) C*-algebra A. Denote by M(X) the set of all adjointable
maps from A to X, i.e. M(X) = End∗A(A,X). Obviously, M(X) is a Hilbert M(A)-
module with the M(A)-valued inner product 〈z1, z2〉 = z∗1z2 for z1, z2 ∈M(X). The
resulting Hilbert M(A)-module norm coincides with the operator norm on M(X).
We call M(X) the multiplier module of X.

In [5]M(X) is shown to be an essential extension ofX identifingX and KA(A,X)
as the subset {za : z ∈ M(X), a ∈ A} isometrically. In fact, M(X) is the largest
essential extension of X, because M(A) is the largest essential extension of A
containing ∗-isomorphic copies of all C*-algebras B which contain ∗-isomorphic
copies of A as an essential ideal, [5, Thm. 1.2]. This justifies the point of view
on M(X) as a Hilbert C*-module version of the multiplier algebra in C*-theory.
For a given Hilbert A-module {X, 〈., .〉X} the respective multiplier module M(X)
is unique up to unitary isomorphism of Hilbert M(A)-modules.

Let us explain the definition of multiplier modules M(X) for non-full Hilbert
A-modules X. 〈X,X〉 is a two-sided norm-closed ideal of A. If X is a non-full
Hilbert A-module form the derived full Hilbert A-module Xc by adding a copy of
A as an orthogonal direct summand to X, Xc = X ⊕ A, 〈., .〉c = 〈., .〉X + 〈., .〉A.
Then construct its multiplier module M(Xc). Using the mapping picture of Def-
inition 2.2 of M(Xc) we see that M(X1 ⊕ X2) = M(X1) ⊕ M(X2) using mod-
ular projection operators onto each of the orthogonal summands. So, we have
an orthogonal decomposition M(Xc) = M(X) ⊕M(A), taking the first orthogo-
nal direct summand and Hilbert M(A)-module as the definition of the multiplier
module M(X) of X. Clearly, the (non-unital, in general) C*-algebra 〈X,X〉 is
a two-sided norm-closed ideal of A, and the C*-algebra 〈M(X),M(X)〉 is a two-
sided norm-closed ideal of M(A) containing 〈X,X〉. However, the latter might be
non-unital, so we should be more careful with their C*-algebraic interrelations. In
general, 〈X,X〉 is a two-sided norm-closed ideal in 〈M(X),M(X)〉. The unique-
ness results for the pairings (X,M(X)) are preserved. It is important to realize,
that M(X) might depend on the choice of the C*-algebra acting on X, e.g. for
X = A with A a non-unital C*-algebra we have M(AA) = End∗A(A,A) = M(A),
but M(AM(A)) = End∗M(A)(M(A), A) = A. Last but not least, if the C*-algebra A

is non-unital then for X = l2(A) the multiplier module M(l2(A)) equals to

M(l2(A)) = {{xn}n∈N : xn ∈M(A),Σnx
∗
nxn converges strictly w.r.t. A in M(A)} ,

cf. [5, Thm. 2.1]. This gives a good non-trivial example, in particular, for certain
non-σ-unital C*-algebras A, cf. [5, Ex. 2.2]. In particular, l2(M(A)) is smaller-
equal than M(l2(A)), generally speaking. For A = K(l2) and X = l2(A) one
obtains M(A) = B(l2) and M(X) = l2(M(A))′ ≡ M(A) = B(l2), the M(A)-dual
Banach M(A)-module of l2(M(A)), where

l2(M(A))′ =

{
m = {mi}ni=1 : mi ∈M(A),

∥∥∥∥∥
n∑
i=1

m∗imi

∥∥∥∥∥ ≤ Km <∞ for any n ∈ N

}
– a self-dual Hilbert W*-module over M(A) = B(l2), because A is stable, cf. [5,
Ex. 2.2] and [36].

Proposition 2.3.

(i) For a given pair of C*-algebras (A,M(A)), let X1, X2 be two full Hilbert
C*-modules over A such that their multiplier modules M(X1),M(X2) are
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unitarily isomorphic as Hilbert M(A)-modules. Then X1 and X2 are
unitarily isomorphic as Hilbert A-modules to M(X1)A ≡ M(X2)A. so,
the pairings (X,M(X)) are bound to each other for given C*-algebras
(A,M(A)) up to unitary equivalence.

(ii) Suppose, we have two non-∗-isomorphic C*-algebras A1 and A2 such that
they admit the same multiplier C*-algebra M(A). Let X1 be a full Hilbert
A1-module and X2 a full Hilbert A2-module such that M(X1) and M(X2)
are unitarily isomorphic as Hilbert M(A)-modules. Then X1 is not uni-
tarily isomorphic to X2 as a Hilbert M(A)-module.

The first assertion follows from (iv) of Definition 2.1 combining Φ2 with Φ−11 with
respect to the set {za : z ∈M(X), a ∈ A} in the largest essential extension M(X),
cf. [40, Prop. 1.4]. The second assertion can be illustrated by example, however
M(X1)A1 is obviously not isometrically isomorphic to M(X2)A2 by supposition.

Example 2.4. Let H be an infinite-dimensional Hilbert space, and K(H) and
B(H) the sets of compact linear operators and of bounded linear operators on it,
respectively. Consider the three C*-algebras

A2 =

(
K(H) 0

0 K(H)

)
, A1 =

(
K(H) 0

0 B(H)

)
,

M(A1) = M(A2) =

(
B(H) 0

0 B(H)

)
.

Let us describe these C*-algebras as (extended) Hilbert C*-modules over A1 and
find their multiplier modules with respect to A1.

X2 =

(
K(H) 0

0 K(H)

)
⊕
(
K(H) 0

0 B(H)

)
,

X1 =

(
K(H) 0

0 B(H)

)
⊕
(
K(H) 0

0 B(H)

)
,

M(X2) =

(
B(H) 0

0 K(H)

)
⊕
(
B(H) 0

0 B(H)

)
.

M(X1) =

(
B(H) 0

0 B(H)

)
⊕
(
B(H) 0

0 B(H)

)
.

By [40, Prop. 1.1] both X1 and X2 admit a canonical isometric modular embedding
into M(X1) and into M(X2), respectively, as Hilbert M(A1)-submodules. However,
the multiplier module of A2 with respect to A1, MA1

(A2), is a non-unital C*-
algebra.

Now, consider X1 as a full Hilbert A1-module and

X3 =

(
K(H) 0

0 K(H)

)
⊕
(
K(H) 0

0 K(H)

)
,

as a full Hilbert A2-module. Then M(X1) is unitarily isomorphic to M(X3) as a
Hilbert M(A1) ≡M(A2)-module, but X1 and X3 are not.

In general, for unital C*-algebras A = M(A) any Hilbert A-module X is its
own multiplier module M(X) = X, [5, Remark 1.11]. To see that, an intrinsic
topological characterization of multiplier modules for 〈X,X〉 ⊆ A being an essential
ideal of M(A) is useful.
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By [5] there exists a suitable variant of a strict topology on multiplier modules
M(X): Let A be a C*-algebra and X be a Hilbert A-module. Let the strict topology
on M(X) be induced jointly by the two families of semi-norms {z → za : a ∈ A}
and {‖〈z, x〉‖ : x ∈ X, ‖x‖ ≤ 1} for z ∈ M(X). It is a locally convex topology.
The multiplier module M(X) turns out to be complete with respect to this strict
topology, and M(X) is the strict completion of X, [5, Thm. 1.8, 1.9]. Moreover,
the strict completion is an idempotent operation, i.e. MM(A)(MA(X)) = MA(X).
Consequently, for unital C*-algebras A = M(A) and Hilbert A-modules X we have
X = M(X). The same is true whenever KA(X) is unital, cf. [5, Cor. 2.9].

For X,Y Hilbert A-modules each operator T ∈ End∗A(X,Y ) has an extension
TM ∈ End∗M(A)(M(X),M(Y )) of the same norm value obtained as the strict con-
tinuation of T . Therefore, it is uniquely determined. Moreover, every operator in
End∗M(A)(M(X),M(Y )) arises this way, i.e. the C*-algebras End∗M(A)(M(X),M(Y ))

and End∗A(X,Y ) are ∗-isomorphic, [5, Thm. 2.3]. Since a full Hilbert A-module X
is not only a right Hilbert A-module, but also a full left Hilbert KA(X)-module
by the theory of strong Morita equivalence of the C*-algebras A and KA(X),
X can be considered as a C*-correspondence or as an imprimitivity bimodule of
these two C*-algebras. By [28] the C*-algebra End∗A(X) can be considered as the
multiplier algebra of the C*-algebra KA(X). Consequently, M(X) is a full left
Hilbert M(KA(X))-module. So, for (full) Hilbert KA(X)-modules X the Hilbert
M(KA(X))-module M(X) can be identified with the (left) multiplier module of X
w.r.t. the pairing (KA(X),M(KA(X))), too. This makes the property of a (full)
Hilbert C*-module to be a multiplier module invariant under the choice of the point
of view as a (full) left or right Hilbert C*-module. For similar thoughts compare
with [5, pp. 20-21, (a)-(b)]

Theorem 2.5. Let A be a C*-algebra and M(A) be its multiplier algebra. Let X
be a full (right) Hilbert A-module and M(X) be its multiplier module, a full (right)
Hilbert M(A)-module. Then M(X) is also the full (left) multiplier module of the
(left) Hilbert KA(X)-module X with respect to the pairing of C*-algebras KA(X)
and M(KA(X)) = End∗A(X) = M(KM(A)(M(X))) = End∗M(A)(M(X)), and vice
versa.

Proof. By [5, Thm. 1.8, 1.9] the unit ball of M(X) is complete w.r.t. the locally
convex strict (right) topology induced jointly by the two families of semi-norms
{z → za : a ∈ A} and {‖〈z, x〉r‖ : x ∈ X, ‖x‖ ≤ 1} for z ∈ M(X). Also, the
unit ball of X generates the unit ball of M(X) strictly. By [4, Def. 2, Remark
3] the operator strict topology on X defined by the joint family of semi-norms
{x → T (x) : x ∈ X,T ∈ KA(X)} and {x → xa : a ∈ A} coincides with the
strict (right) topology on bounded sets of X and of M(X), and so on unit balls, in
particular. Consequently, X is dense in M(X) w.r.t. the operator strict topology
on X and on M(X). Note, that the operator strict topology is symmetric for full
C*-correspondences X in A and KA(X). By strong Morita equivalence via the C*-
correspondence X we can symmetrically conclude, that the unit ball of X is dense
w.r.t. the locally convex strict (left) topology induced jointly by the two families
of semi-norms {z → T (z) : T ∈ KA(X)} and {‖〈z, x〉l‖ : x ∈ X, ‖x‖ ≤ 1} for
z ∈ M(X). This gives the argument by [5, Thm. 1.8, 1.9] applied to the operator
point of view on X and on M(X). The ∗-isomorphisms of the respective operator
C*-algebras are shown in [5, Thm. 2.3]. �
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Remark 2.6. Let us check the idea of a stronger kind of strong Morita equiva-
lence restricting the set to multiplier module C*-correspondences. There is a good
class of pairwise strongly Morita equivalent C*-algebras {C,Mn(C),K(H) : n ∈
N, H any infinite −dimensional Hilbert space}, because it has been well investigated
in [4, 5, 22]. One has multiplier C*-correspondences whenever the left and/or right
Hilbert C*-module structure of C*-correspondences involves {C,Mn(C) : n ∈ N}.
The C*-algebras {K(H) : H any infinite−dimensional Hilbert space} may appear
among the strongly Morita equivalent ones at the other end. What about C*-
correspondences X connecting C*-algebras of type K(H) for infinite-dimensional
Hilbert spaces H? The minimal requirement to an equivalence relation is that an
object has to be equivalent to itself. Take K(H) and a full (left) Hilbert K(H)-
module serving as a C*-correspondence X of K(H) with itself, i.e. with the struc-
ture of a full (right) Hilbert K(H)-module. Then the full multiplier C*-module
M(X) = B(H) of X is a C*-correspondence of B(H) with itself and does not
belong to the set of K(H)-K(H) C*-correspondences any more. So, the set of
K(H)-K(H) C*-correspondences does not contain any multiplier module, similarly
for Hilbert spaces H of pairwise non-isomorphic infinite-dimensional dimensions.
The concept does not work.

3. On modular operators and functionals

The aim of this section is the investigation of the Banach algebras of all bounded
module maps EndA(X) and EndM(A)(M(X)) and their interrelations, as well as
the sets of all bounded module maps X ′ and M(X)′ over pairs of (full) Hilbert
A-modules X and their multiplier modules M(X) over M(A). To get non-trivial
examples we need examples of C*-algebras A such that their multiplier algebras
M(A) are strictly smaller than their left/right multiplier algebras. By [8, Cor. 4.18]
either M(A) = LM(A) and M(A) = QM(A) at the same time, or LM(A) is
strictly larger than M(A) and QM(A) is strictly larger than LM(A). For theory
and examples see the existing literature on different types of multiplier algebras
and local multiplier algebras, e.g. [7]. We give a simple example following [32, pp.
165-166].

Recall the C*-algebras c0, c and l∞ of all complex-valued sequences converging
to zero, converging at all and being bounded in norm, respectively. Change the
target C*-algebra C to the C*-algebra of all two-by-two valued matrices M2(C).
Consider the C*-algebra of all M2(C)-valued sequences with the sequence in the
upper left corner converging at all and with the sequences derived from the other
three positions being sequences converging to zero. We write A as a symbol

A =

(
c c0
c0 c0

)
.

Then we can find the derived (left/right/two-sided) multiplier algebras / spaces:

M(A) =

(
c c0
c0 l∞

)
, LM(A) = RM(A)∗ =

(
c l∞
c0 l∞

)
,

QM(A) =

(
c l∞
l∞ l∞

)
.

This can be calculated in the W*-algebra of all bounded M2(C)-valued sequences.
Note, that QM(A) = LM(A) + RM(A) 6= RM(A) ◦ LM(A) for this particular
example, a non-general situation.
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Theorem 3.1. Let A be a C*-algebra with multiplier algebra M(A). Let X be a
full Hilbert A-module and M(X) be its full multiplier module.

(i) The C*-algebra KA(X) of all ”compact” operators on X admits a ∗-isomor-
phic embedding into the C*-algebra KM(A)(M(X)) of all ”compact” oper-
ators on M(X). KA(X) is smaller than KM(A)(M(X)) if X 6= M(X).
Nevertheless, their multiplier algebras are ∗-isomorphic, i.e. EndA(X)∗ ∼=
EndM(A)(M(X))∗. If X 6= M(X) then the embedding is not a surjection.

(ii) There does not exist any bounded M(A)-linear map T0 : M(X) → M(X)
such that T0 6= 0 on M(X), but T0 = 0 on X ⊆M(X).

(iii) The Banach algebra EndM(A)(M(X)) admits an isometric embedding into
the Banach algebra EndA(X) by restricting an element on the domain
fromM(X) to X ⊆M(X). If the left multiplier algebra of KA(X) is larger
than the multiplier algebra of it, then EndM(A)(M(X)) can be smaller than
EndA(X), i.e. not every bounded module operator on X might admit an
bounded module operator continuation on M(X).

Proof. Since X ⊆M(X) elementary ”compact” operators on X can be extended to
M(X) preserving their operator norm by the strict density of X in M(X). The C*-
algebras of ”compact” operators on Hilbert C*-modules are generated linearly by el-
ementary operators w.r.t. the operator norm. So the isometric ∗-isomorphic embed-
ding of the C*-algebra KA(X) into the C*-algebra KM(A)(M(X)) follows. However,
the multiplier C*-algebras M(KA(X)) = EndA(X)∗ and M(KM(A)(M(X))) =
EndM(A)(M(X))∗ are always ∗-isomorphic by [5, Thm. 2.3].

Suppose, there exists a bounded M(A)-linear operator T0 on M(X) such that
T0 = 0 on X ⊆ M(X), but T0(m) 6= 0 for some m ∈ M(X). Let {xα : α ∈ I}
be a net of elements of X converging strictly to m, i.e. the nets {xαa : α ∈ I}
converge to ma ∈ X in norm for any a ∈ A. Consider the set {〈n, T0(ma)〉 :
a ∈ A,n ∈ M(X)}. All these values are equal to zero by supposition. Since
〈n, T0(ma)〉 = 〈n, T0(m)〉a = 0 for any a ∈ A and A is an essential ideal of M(A)
we conclude 〈n, T0(m)〉 = 0 for any n ∈M(X), forcing T0(m) = 0, a contradiction
to our assumption.

Restricting a bounded M(A)-linear operator on M(X) on the domain from
M(X) to X ⊆ M(X) one obtains a bounded A-linear operator on X. The norm
is preserved since X is strictly dense in M(X), there does not exist any non-trivial
bounded module operator on M(X) vanishing on X ⊆ M(X) and the norm is
preserved on the subalgebra End(M(A)(M(X))∗ ≡ EndA(X)∗ by [5, Thm. 2.3]. So,
the restriction of a non-adjointable operator is a non-adjointable operator, again.
In case, the left multiplier algebra LM(KA(X)) = EndA(X) is larger than the mul-
tiplier algebra M(KA(X)) = EndA(X)∗ (see example above) not all elements of
LM(KA(X)) \M(KA(X)) might be extendable to bounded module operators on
M(X): Indeed, if A = X is a C*-algebra with LM(A) ⊃M(A) thenM(X) = M(A)
and all elements of LM(A)\M(A) cannot be continued from X ⊂M(X) to M(X),
cf. [33, Thm. 1.5, 1.6], [8, Cor. 4.18]. �

We found that not any bounded module operator on a Hilbert C*-module might
admit a continuation to a bounded module operator of the same operator norm
value on its multiplier module. However, if such a continuation with the same
operator norm value exists it is unique.
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Remark 3.2. We demonstrate by example that the choice of the A-valued inner
product on Hilbert A-modules X within the class of A-valued inner products on
X inducing equivalent norms on X may lead to other unitarily non-equivalent
multiplier M(A)-modules. Return to the example at the beginning of the present
section. If the C*-algebra A defined there is equipped with the standard A-valued
inner product as a Hilbert A-module X then M(X) = M(A). Now, modify this
A-valued inner product setting 〈., .〉1 := 〈T (.), T (.)〉A for

T :=

(
1 1
0 1

)
∈ LM(A) \M(A) ,

where 0 is the zero sequence and 1 is the identity sequence. Clearly, T is a non-
adjointable invertible bounded A-linear operator on A, and 〈., .〉1 is an A-valued
inner product on A inducing an equivalent Hilbert module norm on A = X. A
simple calculation for elements of M(A) inside the C*-valued inner product 〈., .〉1
yields〈(

1 1
0 1

)
◦
(

c c0
c0 l∞

)
,

(
1 1
0 1

)
◦
(

c c0
c0 l∞

)〉
A

=

(
c c
c l∞

)
6∈M(A) .

Consequently, the A-valued inner product 〈., .〉1 cannot be extended to M(A), and
M(A) is not the multiplier module of the Hilbert A-module X1 = {A, 〈., .〉1}. So,
the Banach A-module A of the concrete example does not determine its multiplier
module alone, one has to take into account the particular A-valued inner product
on it. To calculate the multiplier module of X1 one can use the von Neumann
algebra of all bounded M2(C)-valued sequences as an environment. Then

〈S(x), a〉A = 〈x, S∗(a)〉1
= 〈T (x), T (S∗(a))〉X
= 〈T (x), (T−1)∗T ∗(T (S∗(a))〉X
= 〈T−1T (x), T ∗(T (S∗(a))〉X
= 〈x, (T ∗TS∗)(a)〉X

for any S ∈ End∗A,1(X,A), any x ∈ X, a ∈ A. Thus, T ∗TS∗ ∈ End∗A(A,X) =
{M(A), 〈., .〉M(A)}.

In 2022 J. Kaad and M. Skeide published an example of a singular extension of
the zero bounded C*-linear functional on a Hilbert C*-submodule Y in a Hilbert
C*-module X where the orthogonal complement of Y in X was supposed to be the
zero element of X, cf. [27]. The author proved that such phenomena cannot appear
for Hilbert C*-modules over monotone complete C*-algebras and for maximal one-
sided ideals of C*-algebras, cf. [21]. We should evaluate the pairs (X,M(X)) under
consideration.

Theorem 3.3. Let A be a C*-algebra with multiplier algebra M(A). Let X be a
full Hilbert A-module and M(X) be its full multiplier module.

(i) There does not exist any bounded M(A)-linear map f0 : M(X) → M(A)
such that f0 6= 0 on M(X), but f0 = 0 on X ⊆M(X).

(ii) The Banach M(A)-module M(X)′M(A) admits an isometric modular em-

bedding into the Banach A-module X ′A by restricting an element on the
domain from M(X) to X ⊆M(X). There exist examples such that X ′A is
strictly larger than the embedded copy of M(X)′M(A).
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Proof. Suppose, there exists a bounded M(A)-linear functional f0 : M(X)→M(A)
such that f0 = 0 on X ⊆M(X), but f0(m) 6= 0 for some m ∈M(X). Let {xα : α ∈
I} be a net of elements of X converging strictly to m, i.e. the nets {xαa : α ∈ I}
converge to ma ∈ X in norm for any a ∈ A. Consider the set {f0(ma) : a ∈ A}. All
these values are equal to zero by supposition. Since f0(ma) = f0(m)a = 0 for any
a ∈ A and A is an essential ideal of M(A) we conclude f0(m) = 0, a contradiction
to our assumption.

Restricting f ∈ M(X)′ to X ⊆ M(X) we obtain a bounded A-linear functional
of X ′. The norm is preserved, since X ist strictly dense in M(X) and there does
not exist any non-trivial bounded M(A)-linear functional on M(X) vanishing on
X ⊆ M(X). The example in the beginning of the present section can be read as
follows: Let A be a C*-algebra such that LMA) ⊃ M(A). Setting A = X we get
X ′ = LM(A) and M(X)′ = M(A)′ = M(A) since M(X) = M(X)′ is selfdual.
So X ′ ⊃ M(X)′ and a functional in LM(A) \ M(A) cannot be continued from
X ⊆M(X) to M(X). �

Consequently, there does not exist any general Hahn-Banach type theorem for
bounded C*-linear functionals for pairs (X,M(X)) of full Hilbert C*-modules X
and their multiplier modules M(X), cf. [20, 21]. However, if a bounded A-linear
functional from a full Hilbert A-module to the C*-algebra A admits a continuation
to a bounded M(A)-linear functional from its multiplier module to M(A) of the
same norm value then it is unique.

Theorem 3.4. Let A be a non-unital C*-algebra with multiplier algebra M(A).
Let X be a full Hilbert A-module and M(X) be its full multiplier module.

(i) There does not exist any bounded M(A)-linear map T0 : M(X)→M(X)′

such that T0 6= 0 on M(X), but T0 = 0 on X ⊆M(X).
(ii) The Banach space EndM(A)(M(X),M(X)′) admits an isometric embed-

ding into the Banach space EndA(X,X ′) by restricting an element on
the domain from M(X) to X ⊆ M(X). There exist examples such that
EndA(X,X ′) is strictly larger than the embedded copy of
EndM(A)(M(X),M(X)′).

Proof. Assume, there exists a bounded M(A)-linear map T0 : M(X)→M(X)′ such
that T0 6= 0 on M(X), but T0 = 0 on X ⊆ M(X). Then there exists a non-zero
element m ∈M(X) such that T0(m) ∈M(X)′, T0(m) 6= 0 on M(X), but T0(m) = 0
on M(X)A = X. This was excluded by Theorem 3.3, (i), a contradiction.

If we restrict an element T ∈ EndM(A)(M(X),M(X)′) to M(X)A = X we
obtain an element T ∈ EndA(X,X ′) of the same operator norm, since X is strictly
dense in M(X) and M(X)′A = X ′. The algebraic operations are preserved.

The example in the beginning of the present section shows: Let A be a C*-algebra
such that LMA) ⊃ M(A). Setting A = X we get EndA(X,X ′) = QM(KA(X))
and EndM(A)(M(X),M(X)′) = QM(KM(A)(M(X)), cf. [33, Thm. 1.6]. Since
QM(KA(X)) 6= LM(KA(X)), but QM(KM(A)(M(X))) = M(KM(A)(M(X))) =
M(M(A)) = M(A) by [8, Cor. 4.18], the assertion is demonstrated. �

Continuing Remark 3.2 the quasi-multiplier T ∗T of A of the example induces a
bounded modular map from X = A to X ′ = LM(A) that cannot be extended to a
bounded modular map of the same norm from M(X) = M(A) to M(X)′ = M(A).
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