5. Übung im Modul "Grundlagen der Künstlichen Intelligenz"

Sommersemester 2020

zu lösen bis 13. Mai 2020

Aufgabe 5.1:

Finden Sie durch prädikatenlogische Resolution Antworten für das logische Programm P:

```
Q(X,X).
R(b,c).
R(a,c).
Q(X,Z) :- Q(Y,Z), R(X,Y).
```

und die Anfragen

```
a. ?- Q(a,c).b. ?- Q(X,c).
```

$$d. ?- Q(X,Y).$$

Aufgabe 5.2:

- a. Modellieren Sie die folgende Sachverhalte als logisches Programm:
 - Regelmenge:
 - R1 Feldwege sind befahrbar.
 - R2 Landstraßen sind befahrbar.
 - R3 Flüsse sind in Flussrichtung befahrbar.

Definieren Sie durch eine zusätzliche Regel ein zweistelliges Prädikat "erreichbar", welches die Erreichbarkeit (über einen oder mehrere aufeinanderfolgende Streckenabschnitte) repräsentiert.

- Faktenmenge:
 - F1 Feldwege gibt es zwischen A und C und zwischen B und D.
 - F2 Landstraßen gibt es zwischen C und D und zwischen B und E.
 - F3 Flüsse fließen von A nach B und von E nach D.
- b. Beantworten Sie die folgenden Fragen durch Resolution. Bestimmen Sie jeweils alle Antworten. Überprüfen Sie Ihre Antworten mit Hilfe eines Prolog-Interpreters.
 - (a) Ist D von A erreichbar?
 - (b) Welche Orte sind von B erreichbar?
 - (c) Von welchen Orten ist B erreichbar?

Aufgabe 5.3 (war 4.3 in Serie 4)

Zeigen Sie Satz 3.5 (prädikatenlogische Resolutionsregel ist korrekt) mit Hilfe der Modellmengen, d.h. für je zwei Klausen $l_1 \vee \cdots \vee l_m \vee l$ und $\neg l' \vee k_1 \vee \cdots \vee k_m$ mit Literalen l und l' mit $\mathsf{mgu}(l,l') = \sigma$ gilt

$$\forall x_1 \cdots \forall x_k \left((l_1 \vee \cdots \vee l_m \vee l) \wedge (\neg l' \vee k_1 \vee \cdots \vee k_m) \right) \models (l_1 \vee \cdots \vee l_m \vee k_1 \vee \cdots \vee k_m) \sigma$$

Aufgabe 5.4 (war 4.5 in Serie 4)

Bei der Transformation von durch Skolemisierung entstandene Formeln in Klauselform sind immer Sätze. Warum?

Zu jeder solchen Formel

$$\varphi = \forall x_1 \cdots \forall x_k \left(\bigwedge_{i \in \{1, \dots, m\}} \bigvee_{j \in \{1, \dots, n_i\}} l_{i,j} \right)$$

mit prädikatenlogischen Literalen $_{i,j}$ lässt sich wie folgt in eine Menge prädikatenlogischer Klauseln transformieren.

$$\Phi = \left\{ \bigvee_{j \in \{1, \dots, n_1\}} l_{1,j}, \dots, \bigvee_{j \in \{1, \dots, n_m\}} l_{m,j} \right\}$$

Dabei werden die Allquantoren ignoriert. Man beachte, dass damit φ und Φ im Allgemeinen nicht dieselbe Modellmenge haben.

Geben Sie für die folgende Formeln $\varphi_i \in \mathsf{FOL}(\Sigma, \mathbb{X})$ für $\Sigma = (\Sigma_F, \Sigma_R)$ mit $\Sigma_F = \{(f, 1)\}$ und $\Sigma_R = \{(p, 2), (q, 2), (r, 2)\}$ an

$$\varphi_1 = \forall x \exists y \, (p(x) \to q(x,y))$$

$$\varphi_2 = \forall x \exists y \, (\forall z (p(x,z) \land q(f(y),z) \to r(x,y)) \lor \neg \forall x (r(x,y) \to (q(f(x),y) \lor r(x,f(z)))))$$

- a. die durch Skolemisierung aus φ entstandene Formel ψ und deren Signatur Σ' ,
- b. eine Klauselform η von ψ ,
- c. ein Modell \mathcal{A} der Formel η ,
- d. ein Modell \mathcal{B} der Formel φ , welches für die Symbole in Σ mit \mathcal{A} übereinstimmt,
- e. die wie oben definiert aus η berechnete Klauselmenge Φ ,
- f. ein Modell für Φ , welches kein Modell für η ist.

 Ψ ist die Menge von Sätzen, die durch Generalisierung jeder Klausel (\forall -Quantifizierung jeder freien Variablen) aus Φ entsteht. Geben Sie an

- g. Ψ ,
- h. ein Modell für Ψ , welches kein Modell für η ist.