cbr:works 4

Compendium

Copyright by tec:inno GmbH.
All rights reserved.

This document is subject to change without notice

Disclaimer:

THIS DOCUMENT IS PROVIDED FOR
INFORMATIONAL PURPOSES ONLY.

The information contained in this document represents
the current view of TECINNO on the issues discussed as
of the date of publication.

INFORMATION PROVIDED IN THIS DOCUMENT IS
PROVIDED 'AS IS’ WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND FREEDOM FROM
INFRINGEMENT.

tec:inno GmbH

Sauerwiesen 2

D-67661 Kaiserslautern

Tel: +49 (0) 6301 606 400
Fax: +49 (0) 6301 606 409

cbrworks@tecinno.com
support@tecinno.com
http://www.tecinno.com

CBR-Works 4 - Compendium

Content ... i
Preface...ooee i, 1
The CBR-Shell ... 2
1.1 Introduction.........cceeeeeiriiiiiieeeeeeiie e, 2
1.2 Structure Modelingcccoeeeeeveiinnnnnn. 4
CONCEPLS. ittt 4
TYPES oo 8
1.3 Case Base Building
and Maintenance...........cccceeeeeeeeeennnn. 10
1.4 Reusing Data.........cccceeeeeeeeeeiiiiiinennnns 12
1.5 Consulting the Case Base................. 13
Common Consultationccceeeeeeeeeeeeennn... 14
Strategic QUEeStIONINGcccvvevieeieeeeeeiiies 14
1.6 SUMMANY ..o 15
Similarity of Taxonomiesc........ 16
2.1 Introduction.........ccccevveeiiiiieeiiiieeeeennn. 16
2.2 Different Use of Taxonomies............. 17
2.3 Knowledge Contained in Taxonomies19
BasiC NOLIONScvvvveeeiiiiiiiiieieee e 20
Semantic of Taxonomy Nodes....................... 20
Similarity Between Leaf Nodes...................... 21
Assigning Similarity Values for Leaf Nodes... 23
Semantic and Similarity of Inner Nodes......... 24
2.4 SUMMATY ..o 31
Similarity Measures for
Case Representations...........cccceeevveeenee 34
3.1 Introduction............ccoevvieeeeiiiiiiieneeeees 34
3.2 Example Use of Class Hierarchies
and Object Similarities....................... 37
3.3 Computing Object Similarities 41

CBR-Works 4 - Compendium

BasiC NOtIONS......cooiviiiiiiiiiiiiieeieee e 41
Basic Considerations about
Object Similaritiesccccceeeeeeeeenn. 41
Different Semantics of Nodes........................ 43
Inter-Class Similarity Between
Concrete ObjectSccovevveiieeeeeeennn. 45
Semantics and Inter-Class Similarity
of Abstract Objects.........cccceveeeeeeeenn. 46
3.4 SUMMATIY c.oviiiiiiee e 51
Rules for CBR ..., 52
4.1 Introduction............cocoiiiiiiiiiiiiiiieeeeeee 53
4.2 Representing and Using
Background Knowledge 54
Kinds of RUIES..........cociviiiiiiiie e, 54
Components for Handling
Background Knowledge.................... 58
Impact of the Object-Oriented
Case Representationcccceeee..... 60
4.3 Detailed Description of Rules............ 64
Completion RUIEScoooiiiiiiiiiiiie s 64
Adaptation RUIEScccvvviiiiiiiiiiiii, 69
Maintaining Case—Based
Reasoning Systems...........cccceevvvvvvvennnne 73
5.1 Introduction...........ccccouvvvviviininiiiieeenen 73
5.2 Knowledge Representation 74
The Domain Schema and the Case Base 75
Similarity and Retrievalccccccceeeeeeeennnn. 76
5.3 The Maintenance Operations............ 77
Characteristics of Maintenance Operations... 78
Example Maintenance Operations................. 81
5.4 Quality Changes During
MaiNteNANCE.ovveiiiiiiiiiiiiiieeeeeeeeen, 83
Evaluation MatrixXcoocoiiiiieiienieeeieiies 84
Quality Changesccoovviiiiiiiiiiieiee e 85
5.5 The Overall Architecture.................... 87
Methodology for Building and
Maintaining CBR Applications 90
6.1 Introduction.............ccccvvvviriiiiiiiiieeenee 90

CBR-Works 4 - Compendium

6.2 Methodology Approach 91
Experience Factory..........cccooveeeeveeeeeevesccinnns 92
Software Process Models..........ccccccuveeennnnen. 93
Structure of the Experience Packet............... 95

Documentation of the Experience Packet...... 97
Using and Maintaining the
Experience Packet........ccccceeeeeiiinnnns 99

Bibliography......ccccoooiiiiiiiiiiii 101

CBR-Works 4 - Compendium

Preface

TECINNO' sCBR-Worksfamily of productsallows
for the easy assembling of case-based applications
for customer and sales support. CBR-Works pre-
sents aline of software tools to be used for the de-
velopment and maintenance of such applications.

This compendium provides an overview of CBR-
Works 4 and the underpinning mechanisms and
methodologiesit is using.

Beginning with a concise introduction to the abili-
tiesof CBR-Works, thefollowing chapterswill |ead
youto the background of Case-based Reasoning, the
application of rules and similarities, and strategies
for model maintenance for keeping the case base up-
to-date.

1

1.1

CBR-Works 4 - Compendium

The CBR-Shell

Nowadays, a proper tool for Case-Based Reasoning
hasto fulfill awide range of tasks beyond smplere-
trieval. This chapter gives a brief overview of the
abilities and features of the tool CBR-Workswhich
provides support for the design process of a Case-
Based application aswell asfor maintenance and re-
trieval. CBR-Works aso provides the ability to re-
use existing data from common database systems
and may act as server for distributed accessto acase
base, including retrieval and case base management.

Introduction

Case-Based Reasoning (CBR) becomes more and
more popular for companies, improving and en-
hancing their customer and sales support by intro-
ducing “intelligent applications’. Using a Case-
Based application not only provides stored product
catal ogs or experience knowledge (the cases) to cus-
tomers of a company. But also, by capturing prob-
lems and solutions a corporate memory is built, so
the knowledge is no longer distributed in the work-
ers minds but accessible to everyone in a company.

Besides collecting cases, applying Case-Based Rea-
soning necessitatesa CBR-Tool supporting retrieval
of matching cases aswell as modeling and maintain-
ing of the case base. Companies store information
about their products in common database systems.
Hence, asthe amount of stored datais rather large,

The CBR-Shell 2

CBR-Works 4 - Compendium

the CBR-Tool’ sability of easy (re)using thoseinfor-
mation isimportant.

Another fundamental characteristic of a CBR-Tool
Isto cover the complete cycle of Case-Based Rea
soning, i.e., retrieving cases similar to auser’ s spec-
ification, reusing aretrieved case as proposed
solution, testing a solved case for success during the
revisioning process, and retaining a new solution
given in form of the revised case by including the
experiences (the case) into the existing case base.

CBR-Worksisashell for Case-Based application
building. Besides the retrieval of cases, it supports
modeling the cases’ structure and maintaining the
case base. Its consultation mechanism also covers
the whole CBR-Cycle from retrieving to revising.
Though CBR-Works is designed as a complete en-
vironment, it may also act as a CBR-Server for sev-
era clients by the use of CQL (Case Query
Language). Last but not least, CBR-Works offersan
open interface to build a Case-Based application
from existing data stored in common database sys-
tems.

Games
Office

<4— has-part
—— has-attribute
Figure 1-1:
Structure of
a simplified PC-
Domain’s case

W Processor
Memory

PC-System
V\ : . Graphics Card
Sound card

Controller Bus-Type

Capacity
Bus-Type

Storage

Medium

The following sections give a brief overview of the
abilities and features of CBR-Works. It will intro-
ducethetool’ selementsthat are used for building an

The CBR-Shell 3

1.2

121

CBR-Works 4 - Compendium

application. Toillustrate the building process, asim-
plified PC-Domainisused asdepicted in figure 1- 1.
This example will be used throughout this chapter.

Thefollowing two sections describe the common el -
ementsused for building acase basein CBR-Works.
Section 1.3 gives a concise description on mainte-
nancein CBR-Works. In section 1.4 theinterfacefor
reusing dataistersely discussed. Thisisfollowed by
an overview on how to consult acase basein section
1.5.

Structure Modeling

CBR-Works is suited for intelligent solutionsin a
variety of domains and environments. Its graphical
editors support the user to design complex knowl-
edge models. An object-oriented approachisusedin
CBR-Works to design the underlying structure of
cases. Thisstructure can be edited and maintainedin
an easy and intuitive way.

Concepts

In CBR-Works, concepts define the structure of the
cases. They are defined in hierarchy similar to a
class-model hierarchy including inheritance. Each
concept consists of attributes which can be either
atomic (defined by atype) or complex (has-part re-
lationship to another concept).

For retrieval purposes, attributes have three addi-
tional, functional properties: one for defining its
weight, i.e., itsimportance in respect to the other at-
tributes of the concept, a property for defining
whether an attribute is discriminant for retrieval or
will be ignored, and another property defining if an

The CBR-Shell 4

CBR-Works 4 - Compendium

attribute is mandatory for a case to be valid. More-
over, for every attribute a question and an annota-
tion may be given that can be used by clients when
asking for the value and to refer to further informa-
tion about an attribute.

In figure 1-1 each rectangle may be seen as a con-
cept. For example, storage consists of the two com-
plex attributes controller and Medium, and again the
|atter consists of the two atomic attributes capacity
and Bus-Type.

Concept Similarity

Beside attributes, the type of similarity can be spec-
ified for every concept. The concept’s similarity
consists of two parts: the similarity of a concept’s
contents (contents-based similarity) and the similar-
ity between concepts (structure-based similarity).

The contents-based similarity of a concept is com-
puted based on the attributes defined in the concept.
It may be one of the following:

» Average: All attribute similarities contribute to
the contents-based similarity by computing
their average.

* Euclidean: Geometric interpretation of the
contents-based similarity (distance between
two concepts, based on its contents).

e Minimum: The lowest attribute similarity
defines the contents-based similarity.

e Maximum: The highest attribute similarity
defines the contents-based similarity.

The CBR-Shell 5

Figure 1-2:
Example of
contents-based
similarity using
Average

CBR-Works 4 - Compendium

04

An example for acontents-based similarity isgiven
infigure 1-2. Here, the similarity between the usage
parts of two PC-Domain cases is computed using
Average. Thenumbersarethe computed similarities
between two objects which are connected by a cor-
responding arc. The upper similarity computes as
average of the lower ones.

Hard Disk

| Hard Disk || cD-ROM ||

TAPE |

Figure 1-3:
Example for
structure-based
similarity:

a) concept-hierar-
chy for Medium
b) structure-
based similarity
between two PC-
Domain cases
where Medium is
the common fa-
ther

(@ (b)

The structure-based similarity defines similarities
between concepts independent of their contents. In-
side a concept-hierarchy, the similarity of concepts
to each other may be explicitly or implicitly defined
by using ataxonomic view of the hierarchy.

In the PC-Domain a concept-hierarchy could be de-
fined likein figure 1-3a. Assuming theinitial taxo-
nomic view of the hierarchy as base for the
structure-based similarity, it computesto

level of common father _An examplefor atwo-level tax-

number of levels .
onomy Is shown in figure 1-3b.

The CBR-Shell 6

CBR-Works 4 - Compendium

The concept’ s similarity computes as a weighted
sum of structure-based and contents-based similari-
ties.

Rules

Additionally, rules may be specified for each con-
cept, either being completion or adaptation rules.
Completion rules apply to cases of a case base as
well asto aquery whenever anew valueisgiven for
an attribute. If some attribute values depend on each
other, completion rules ease handling by automati-
cally setting appropriate values. Adaptation rules
get activated only after retrieval and they are used to
combine attribute values of the query and retrieved
cases and to apply the result to atarget case. That
way, slightly modified cases are created which may
fit the customers need better than the retrieved case.

Each rule, for adaptation aswell as completion, con-
sists of two parts: a condition part and a conclusion
part. The condition part defines a conjunction of
conditions. A condition may either be a predicate or
asimple calculation over attributes (of theaccording
concept), constants (defined using concepts or
types), or local variables (computed by previous
conditions). The conclusion part consists of actions
being executed if al conditions of the condition part
arefulfilled. An action may be an assignment of val-
uesto attributes (atomic aswell as complex), acom-
mand to open anatifier (e.g., to report
inconsistencies due to agiven value), or changesto
retrieval-influencing values (e.g., filters and
weights).

For example, to keep consistency for the storage
component of a Pc-System, acompletion rule may
be defined to ensure that a medium will fit to a spec-

The CBR-Shell 7

1.2.2

Table 1-1:
Elementary
Types in CBR-
Works

CBR-Works 4 - Compendium

Ified controller. If a Medium gets defined having a
Bus-Type different to an already specified control-
ler, anotifier will opento inform the customer about
thisinconsistency. More complex, an adaptation
rule may be defined choosing a, e.g, different, fitting
Controller replacing the previously specified one.

Types

Similar to concepts, typesaredefined hierarchically.
New types are defined by building subtypes of the
existing elementary types shown in table 1-1. They
differ in their usability: atype may be used immedi-
ate or derived. While immediate types cover the
whole range of possible values of atype, derived
types get restricted in their range by defining an enu-
meration of elements of its elementary typeor, in
case of numeric types, by specifying an interval.

Integer immediate and derived
Real immediate and derived
Date immediate and derived
Time immediate and derived
Boolean immediate only

String immediate and derived
Symbol immediate and derived
Ordered Symbol |derived only
Taxonomy derived only
Reference derived only

Additional to the type Symbol, Ordered Symbol pro-
vides atotal and Taxonomy a partial order over a
given enumeration of values. For example, Hard

The CBR-Shell 8

Figure 1-4:
Taxonomy
over selected
Processors

Table 1-2:
Constructional
Types in
CBR-Works

CBR-Works 4 - Compendium

Disk being defined using Taxonomy introduces a
partial order of the values compatibility regarding
Bus-Types as shown in figure 1-4.

B-"5% Hand Dk
B IDE
B-% Enhancad-IDE
& Cluaréum Firskiall Ex
&% B DTTA
& Seagale MINA
B% 303
B ‘Wids SCSI1
B LW SCS
Furthermore, constructional types are available for
defining intervals and sets using defined, elementa-
ry types. Here, intervals are restricted to ordered
types where sets may be defined over any elementa-
ry type or one of its derivatives (see table 1-2 for re-

strictions).

Type Value-Type Restriction

Set All but Boolean
Interval Ordered Types (e.g., Ordered Symbol,
Integer, Real)

Type Similarity

For each type derived from elementary types, simi-
larities may be defined describing major parts of the
expertsknowledgewhichisnecessary for intelligent
retrieval. The definition ranges from value-to-value
specifications in form of atable over special, type-
depending similarities (e.g., for string types) to
functional specification by graphs. Furthermore, an
interface is given to define a programmatic similar-
ity for any derived type. An example of functional
similarity is given in figure 1-5 regarding a custom-
ers “feeling of an acceptable price” being different
in aretrieved case to a specified value in the query.

The CBR-Shell 9

CBR-Works 4 - Compendium

A higher price only isaccepted up to aspecific limit
quickly dropping the higher it is. The Situation is
similar offering productswith lower prices, asacus-
tomer usually thinks of lower quality by alower
price once the negative limit is passed.

M
0.8
0B

Vi L}
d___FF’_FF .z
e LG E - LETY

nirmnil=nhy

e T
Figure 1-5:
Example of a
similarity-function
for the price of a
computer

1.3

ZBES 1758 ars ars 1750 1625 ¥

For derivatives of constructional types, predefined
similarity functions are given based on intersection
and inclusion of sets or intervals.

In CBR-Works, it is possible to define more than
one similarity for each type as the decision which
similarity to use may depend on values selected for
retrieval. This decision may be formulated using
completion rules for concepts.

Case Base Building and Maintenance

The heart of a CBR-System isthe case base contain-
ing the active knowledge of the domain to be repre-
sented. Each case' s structure is defined by the
underlying concept and its data represents exactly
one information entity.

Cases in the Case Base.

In CBR-Works, the case base consists of a number
of virtual case bases each of which isfounded on
one of the concepts being marked as case-concept,
I.e., conceptswhich are specified for being the struc-

The CBR-Shell 10

Figure 1-6:
Example for
cases of multiple,
virtual case
bases. The Stor-
age of each PC-
System is defined
as complex
attribute
belonging to the
PC-System case
while the Main-
board is defined
as reference
pointing to

the according
Mainboard case

CBR-Works 4 - Compendium

ture of cases. These virtual case bases may not be
seen stand-al one, but the compl ete set of virtual case
bases is united into the CBR-Works' case base.

Inthe PC-Domain, several virtual case basesmay be
useful, e.g., not only storing complete PC-Systems
as cases but al'so monitor exchangeable components
like Hard Disk and Mainboard cases. Hence, PC-Sys-
tem cases having the same Mainboard refer to the
same case instead of having the same data twicein
the case base (see figure 1-6). As a side-effect, the
effort on keeping the consistency of the case base
according to changesin the specification of referred
information is reduced.

A casein CBR-Works has four possible states: un-
confirmed, confirmed, protected, and obsolete. Usu-
aly, new cases become unconfirmed being
unrevised or incomplete casesnot valid for retrieval.
Revised cases become either confirmed which al-
lows for retrieval or protected which additionally
protects the case from changes. Old cases, no longer
validfor retrieval but probably useful for further sta-
tistics, become obsolete.

The CBR-Shell 11

1.4

CBR-Works 4 - Compendium

Case Base Maintenance.

Important for a consistent case base is the mainte-
nance of its cases concerning validity of values and
changes to the underlying model of the domain.

Therefore, CBR-Works provides several mecha-
nisms ensuring that each case which is confirmed or
protected to be valid regarding model ed type-ranges
after inserting or modifying a case in the case base
aswell as changing the structure of the model, e.g.,
changing therange of atype. Inthelatter and similar
operations, appropriate actions to the case base are
sel ectable, being necessary to keep consistency and
prevent data loss due to changes in the model, e.g.,
remapping values of cases when changing the type
of attributes.

Reusing Data

Building a CBR-System from scratch is necessary
and appropriate for domainsthat are not availablein
electronic form. For information being stored in,
e.g., adatabase, a CBR-Tool must be able to reuse
such data rather than having the user to remodel the
domain and manually add all information to the case
base.

CBR-Works supports connections to electronic in-
formation via the open database connection
(ODBC) system. Hence, any source (e.g., sheet or
database) which contains the domain-data can be
connected to CBR-Works for import of structure
and data to build up the CBR-System. Here, con-
cepts are build from tables or views being defined
by the source, and types may be generated from the
contents of each column. Relations between tables
are modeled by either using references or aggrega-

The CBR-Shell 12

CBR-Works 4 - Compendium

tion. In case of aggregation, theinformation givenin
related tables becomes part of a case. Using refer-
ences necessitates the referenced concept also being
marked as concept for building cases.

> Type PC-1

+—» Concept _ _ - -7

- (Mpinboard

/4
@f@,

,

C,
Ss

Table:PC-System

Figure 1-7:
Creation of a PC-
System case out
of a database

1.5

Table:Mainboard

After building the domain model that bases on the
source information, the cases are imported into the
case base using the sameinterface served by ODBC.
Each row of atable becomes one case, including ag-
gregated concepts built of rows from related tables
and referencesto casesbuilt from rel ated table-rows
(seefigure 1-7).

Consulting the Case Base

For querying the case base and retrieving casesfrom
it, CBR-Works offers several interfacesfor console
using aswell asfor clients usng CBR-Works as
server. The so called consultation of the case base
coversthe whole Case-Based Reasoning Cycle. Not
only providing retrieval-mechanisms but also the
possibility to revise and to retain suggested or con-
firmed solutions in form of cases. In CBR-Works,
the revision step also includes adaptation of cases
using the appropriate rules.

The CBR-Shell 13

CBR-Works 4 - Compendium

1.5.1 | Common Consultation

15.2

Generally, consultation happens either by using
firsthand access to CBR-Works as a CBR-Console
or by remotely accessing the case base with CBR-
Works acting as a Server.

In addition to requested values, a query consists of
further information like filters and weights for at-
tribute-values, being hard constraints in opposition
to the rather soft constraints provided by similarity-
measures. Other additional information is: a thresh-
old to lay down the minimal similarity a case may
have to be valid as solution, options for completion
of the query’ s values and adaptation of retrieved
cases, and optionsfor defining the virtual case bases
to be considered.

Strategic Questioning

Besides the common consultation, strategic ques-
tioning of attribute-valuesinteractively leadsto sug-
gested solutions. Here, algorithmic mechanisms ask
for values in order to quickly reduce the number of
possible solutions.

The predefined strategy of information gain oper-
ates on retrieved cases and computes the gain of in-
formation for every undefined attribute of the query
according to its ability to partition the space of solu-
tions.

A second strategy bases on modeled importance
ranking, where the modeler determines the order of
sel ected questions. Questions not explicitly ordered
by this ranking are handled using the strategy of in-
formation gain which is normalized to the range be-
tween zero and the lowest ranking given.

The CBR-Shell 14

CBR-Works 4 - Compendium

1.6 | Summary

CBR-Works can be seen as a CBR-Shell providing
all necessary tools to model, maintain and consult a
case base. Moreover, CBR-Works is able to reuse
information already stored in electronic form. For
simple representation of the added value and power
brought in by CBR, an integrated WWW-Server
with adapted generic interface supports online re-
trieval without additional programming.

The following chapters will lead into more details
and partially academic views on mechanisms and
methodology of CBR and CBR-Works.

The CBR-Shell 15

2

2.1

CBR-Works 4 - Compendium

Similarity of Taxonomies

Introduction

In current academic and commercial CBR systems,
cases are often represented in an object-oriented
fashion. Cases are collections of objects, each of
which is described by a set of attribute-value pairs.
The structure of an object is described by an object
classthat definesthe set of attributestogether with a
type (set of possible values) for each attribute. Usu-
ally, the similarity between a query and a case from
the case baseis computed in abottom up fashion: for
each attribute, alocal similarity measure determines
the similarity between two attribute values and for
each object (and the case) aglobal similarity mea-
sure determines the similarity between two objects
(or between the case and the query) based on the lo-
cal similarities of the belonging attributes.

For defining attribute types (sets of possible at-
tribute values), taxonomies are widely used. A tax-
onomy isan n-ary treein which the nodes represent
symbolic values. The symbols at any node of the
tree can be used as attribute valuesin acase or aque-
ry. Unlike a plain symbol type, which only lists pos-
sible attribute values, a taxonomy represents an
additional relationship between the symbolsthrough
their position within the taxonomy-tree. Thisrela-
tionship expressesknowledge about the similarity of
the symbols in the taxonomy.

Similarity of Taxonomies 16

2.2

[S3Virge Card |

CBR-Works 4 - Compendium

Although taxonomies are widely used, thereis cur-
rently no clear picture of what knowledge about |o-
cal similaritiesis captured in ataxonomy. The
impression that similarity measures are usually con-
structed in an ad hoc manner also holds for local
similarity measures for taxonomy type attributes.
This chapter analyzes severa situationsin which
taxonomies are used in different ways and proposes
asystematic way of specifying local similarity mea-
sures for taxonomy types. The proposed similarity
measures have a clear semantics and are easy to
compute at run-time.

Different Use of Taxonomies

We now describe four examples in which the taxon-
omy shown in figure 2-1 is used.

Graphics Card
| S3 Graphics Card | [MGA Graphics Card |
[S3Trio Card | [Matrox Mill. 220 | [Matrox Mystique |
22

|ELSA 2000 | |Stea|th3D200 ||MiroVideo | |VGAV64 |

Figure 2-1:
Taxonomy of
Graphics Cards.

Example 1a

Consider aCBR system for the sales support of Per-
sonal Computers. A Caserepresentsan available PC
from the stock. The case representation contains an
attribute “graphics card”, and the taxonomy from
Figure 1 represents the set of possible values. Con-
sider a case ¢, with the ELSA 2000 card and a case
C, with Matrox Mystique card. If we assume that a
customer enters a query to our hypothetical CBR

Similarity of Taxonomies 17

CBR-Works 4 - Compendium

system in which she/he specifiesthat she/hewantsa
Miro Video graphics card, then c; iscertainly closer
than c,, because Miro Video and Elsa 2000 have
more in common (e.g. the S3 chip) than the Miro
Video and the Matrox Mystique. In general, we
could use a similarity measure that assesses similar-
ity based on the distance between case and the query
value in the taxonomy tree.

Example 1b

Imagine, the customer statesin the query arequest
for a S3 Graphics Card. Then, any of the graphics
cardsin the S3 sub-tree are perfectly suited. Hence,
we expect the local similarity value between this
query and case ¢, (from example 1a) to be 1. From
this consideration we can conclude that whenever
the query value islocated above the case value, the
similarity measure should be 1.

Example 2a

Consider atrouble-shooting CBR system for PCsin
which cases encode diagnostic situations and faults
that have occurred previously. The domain expert
describes a fault that can occur with any S3 card.
Therefore, the respective case contains the attribute
value S3 Graphics Card. Assume now, a PC user
has a problem and she/he states that thereisan Elsa
2000 card in the PC, than the local similarity for the
graphics card attribute should be equal to 1 because
the case matches exactly w.r.t. this attribute. From
this consideration we can conclude that whenever
the case value is located above the query value the
similarity measure should be 1.

Similarity of Taxonomies 18

2.3

CBR-Works 4 - Compendium

Example 2b

For the same trouble-shooting example, imagine
now adifferent query in which the user does not ex-
actly know what kind of graphicscardisinstaledin
the PC, but she/he knows that it isa S3 Trio card.
She/Hetherefore enters S3 Trio as attribute valuein
thequery. Again, the case about S3 car ds mentioned
in Example 2a matches exactly because, whatever
graphicscard the user has, weknownitisan S3 card
and the situation described in the case applies. How-
ever, if we consider adifferent case that describes a
problem with the Miro Video card, then this case
does not match exactly. Since we don’t know what
graphicscard the user has(it can beaMiro Video but
it can also be a VGA V64) we expect alocal similar-
ity value lessthan 1. Therefore we cannot conclude
that whenever the query value is located above the
case value the similarity measure should be 1.

Although we have used the same taxonomy in all
four examples, it is obvious that they have to be
treated differently for the similarity computation. In
the query and cases from example 1a, only |eaf
nodesfrom the taxonomy are used. Theexamples1b
to 2b make use of inner nodes of the taxonomy, but
in each exampl e the semantics of the inner nodesis
different which lead to different similarity mea-
sures.

Knowledge Contained in Taxonomies

We now analyze the knowledge that is contained in
taxonomies. We will show that ataxonomy contains
two different kinds of knowledge:

Similarity of Taxonomies 19

Figure 2-2:
Illustration of
basic notions

231

2.3.2

CBR-Works 4 - Compendium

1. Knowledge about classes of objects! (repre-
sented by inner nodes).

2. Knowledge about the similarity between |eaf
nodes.

<Kj, K> K2

%

Basic notions

We briefly introduce a few notions (see figure 2-2)
that will be further used in this chapter. Let K be an
inner node of the taxonomy, then Ly denotes the set
of all leaf notes from the sub-tree starting at K. Fur-
ther, K, < K, denotesthat K ; isa successor node of
K, i.e., Ky ison apath from K to the root node.
Moreover, <K3,K > stands for the node that isthe
nearest common predecessor of K5 and Ky, i.e.,
<K3,K4> = K3 and <K3,K4> = K4 and it does not ex-
istanode K’< <K3,K > suchthat K’ 2Kz and K’ 2
K4 holds.

Semantic of Taxonomy Nodes

In ataxonomy, we must distinguish between |eaf
nodes and inner nodes. Leaf nodes represent con-

1. Here, the word object is not meant in the sense of the
object-oriented paradigm.

Similarity of Taxonomies 20

2.3.3

CBR-Works 4 - Compendium

crete objects® of the real world, e.g., existing graph-
ics cards. Inner nodes, however, describe classes of
real world objects. An inner node K represents a
class with certain properties that all of the concrete
objectsfrom theleaf nodes L havein common. Un-
like classes that occur in the object-oriented para-
digm, the classes that are represented by the inner
nodes of ataxonomy are not described intentionally
by a set of properties, but extensionally through the
set of concrete objects Lk that belong to the class.
Therefore, an inner node K stands for the set Ly of
real world objects.

In the taxonomy shown in figure 2-1, the leaf nodes
represent existing graphics cards and the inner
nodes represent classes of graphics cards. For in-
stance, S3 Virge stands for all graphics cardswith
the S3 Virge chip on them, i.e, for the set of cards
{ Elsa 2000, Stealth 3D 2000} .

When a CBR application devel oper builds a taxono-
my, she/he should introduce useful sets of real-
world objects, i.e., setsthat are likely to occur in a
case or aquery. The taxonomy defines unique
names (like S3 Virge) for these sets which are then
used as abbreviations. Since the sets that are repre-
sented by these inner nodes are defined by the tax-
onomy itself, they are the samein al of the

examples shown above, e.g., S3 Virgealways stands
for { Elsa 2000, Sealth 3D 2000} . However, the
meaning of thisset isquite different in the examples
aswe will discussin detail in section 2.3.5.

Similarity Between Leaf Nodes

Besides the definition of classes of objects, ataxon-
omy also encodes some knowledge about the simi-

Similarity of Taxonomies 21

CBR-Works 4 - Compendium

larity of the real-world objects, i.e., knowledge
about the similarity of the leaf nodes of the taxono-
my. The inner nodes cluster real-world objects that
have some properties in common. The deeper we
decent in the taxonomy, the more features do the ob-
jects, that the inner node represents, have in com-
mon. For example, all real-world objects (leaf
nodes) from the hierarchy in Fig. 1 havein common
that they are all graphics cards. The objects below
the S3 graphics card node have in common that the
all use some kind of S3 chip, and the objects below
the S3 Trio node have in common that they all use
the specific S3 Trio chip. We can now define local
similarity as a measure of how many features the
compared objects have in common. The more fea
tures are shared, the higher isthe smilarity. For ex-
ample, the similarity between Elsa 2000 and Sealth
3D200 is higher than the similarity between Elsa
2000 and VGA V64.

This consideration leads to the following general
constraint for defining the local similarity measure
for the leaf nodes of a taxonomy:

1) sim(K,Kl)SSim(K,Kz)IF<K,K1>><K,K2>

It states that the similarity between the leaf node K
and K, issmaller than thesimilarity between the |l eaf
node K and K, if the nearest common predecessor of
K and K islocated below the nearest common pre-
decessor of K and K. It does not state anything
about the relationship between sm(K4,K5) and
sm(K3,K,4) unless K;=Ks. Please note that this con-
straint defines an ordinal similarity measure, i.e., if
the value K is given in the query, a partial order of
all casesisinduced.

Similarity of Taxonomies 22

CBR-Works 4 - Compendium

2.3.4 | Assigning Similarity Values for Leaf Nodes

The taxonomy only represents the constraint shown
above, but does not define numeric values for the
similarity between two leaf node objects. However,
several models of similarity computation require a
numeric value (e.g. from theinterval [0..1]) to ex-
press the local similarity, because thisvalue is fur-
ther used in the computation of a global similarity.
For this purpose, we have to add additional knowl-
edge to the taxonomy. Basically, there can be differ-
ent ways of doing thisin away, that the resulting
cardinal similarity measure is compatible with the
constraint. We now present anew approachwhichis
quite ssmple and easy to use, but nevertheless very
powerful.

Every inner node K; of the taxonomy is annotated
with asimilarity value SU[0..1], such that the fol-
lowing condition holds: if K;>K, then §;<S,. The
deeper the nodes are located in the hierarchy, the
larger the similarity value can become. The seman-
tic of the similarity valueis asfollows:

The value § represents a lower bound for the simi-
larity of two arbitrary objects fromthe set L;,
or written formally: [x, ¥ Ly, sin{x %) §

Any two objectsfrom L; are at |east similar to each
other with the value S, but there similarity can be
higher. The similarity value that is assigned to a
node should bejustified by thefeaturesthat all of the
objectsthat belong to thisinner node (class) havein
common. The fact that the objects belong to this
class and have common properties justifies that we
can state alower bound for there similarity. Howev-
er, objects belonging to one class can of course aso
belong to a more narrow class further down in the

Similarity of Taxonomies 23

2.3.5

CBR-Works 4 - Compendium

taxonomy, which means that these objects share
even more properties and therefore possibly have a
higher similarity. We therefore define the similarity
between to objects as follows:

AL if Ky = K,

@ dm(Ky,Ky) = %5<K1’K2> otherwise

Sck1 k2> isthesimilarity value assigned to the node
<K1,K5>, i.e., the nearest common predecessor of
Kl and K2.

It can be shown that this similarity definition pre-
serves constraint (1).

Example

If we assign the similarity values from table 2-1 to
the taxonomy from figure 2-1, the similarities that
are shown in table 2-2 arise.

Semantic and Similarity of Inner Nodes

If we now recall again the examples that we have
presented in section 2.2, it is obvious that the
"graphicscard” attribute must be treated differently
in the different examples, although they all use the
same taxonomy. From that it becomes clear, that
some additional knowledge which we have not yet
discussed, playsaroleduring similarity assessment.
However, thisknowledge isnot contained in the tax-
onomy itself.

The knowledge that we are looking for isthe knowl-
edge about the semantic of the inner nodes, i.e., the
semantic of the set of concrete objects that they rep-
resent. In our example, the question is: what does it

Similarity of Taxonomies 24

Table 2-1:
Similarity
between leaf
nodes

Table 2-2:
Similarity Values

CBR-Works 4 - Compendium

mean when the case or query containsthe statement:
"graphics card: S3 Graphics Card’?

Value Similarity
0.2

Graphics Card
S3 Graphics Card | 0.5

S3 Virge 0.7
S3 Trio 0.9
MGA 0.8

In fact, there are different interpretations of this
statement that are now discussed.

Any value in the query

The user specifiesthe value K in the query. This

means that she/he islooking for a case that contains
oneof thevaluesfromtheset Ly . Intheexample 1b,
the user wants an S3 graphics card, but he does not
care whether it isa Elsa 2000, Stealth 3D 200, Miro
Video, or an VGA V64. It is clear that the local sim-
ilarity between this query and any of these four |eaf
nodesisequal to 1. But what about the similarity to
any other leaf node? To answer this question more
systematically, we can define the required retrieval

Similarity of Taxonomies 25

CBR-Works 4 - Compendium

result indirectly as follows: Instead of submitting a
single query to the system that contains an inner
node K, the user could alternatively submit several
gueries to the system, one for each concrete value
from Li and merge the retrieval results, i.e., select
the case with the highest similarity. The result of us-
ing the query with the inner node K should yield the
same case with the same simil arity asthe merging of
the multiple retrievals. To achieve this, the similari-
ty measure for the inner node must select the maxi-
mum similarity that arises from each of the |eaf
nodes.

Any value in case

The case contains an inner node K, which describes
asituation in which the caseisvalid for al attribute
values of the set L. Thisleadsto akind of general-
ized case. The generalized case (in which the at-
tribute value K is used) stands for the set of cases
that results by replacing K by al of the members of
the set L. In Example 2a, the case representing a
fault for any S3 graphics cards stands for a set of
four cases, each of which represents afault for the
Elsa 2000, Sealth 3D 200, Miro Video, and the VGA
V64, respectively. Here, the inner node is used to
keep the number of casesin the case base small.
However, theretrieval result should of course not be
affected. Therefore, theresult of havingacaseinthe
case-base that contains an inner node K should be
the same than having all casesin the case base, one
for each concrete value from L. Since we are |ook-
ing for the most similar case, we again haveto assess
the similarity for the inner node by selecting the
maximum similarity that arisesfrom each of theleaf
nodes.

Similarity of Taxonomies 26

Table 2-3:
Combination of
different seman-
tics for taxonomy
values in query
and case

CBR-Works 4 - Compendium

Uncertainty

Thissituation differssignificantly fromthe previous
two. Here, the use of an inner node K meansthat we
don’t know the exact value for this attribute, but we
know that it is one from the set L. In Example 2b,
we know that the user has a S3 Trio card which
meansit can be one from the set { Miro Video, VGA
V64}. Thiskind of uncertainty can occur in queries
aswell asin cases. The user can think of this uncer-
tainty in different ways: treating it optimistically,
pessimistically, or as an average case.

We can now define the local similarity SIM(Q,C)
between aquery value Q and theacasevalue C each
of which can be either aleaf node, an inner node
with the "any value” interpretation or an inner node
withthe” uncertainty” interpretation. Thisleadsto 9
possi ble combinations shown in figure 2-3. Seven of
the 9 combinationsin the table are marked with aro-
man number that isfurther used to reference thefor-
mulas for computing the similarity. These are the
onesthat occur most likely. However, the following
considerations can easily be extend aso to the two
missing combinations.

Query / Case

Leaf Node

Any Value

Uncertainty

In the following, ssim(g,c) denotes the similarity be-
tween two leaf nodes, g from the query and ¢ from
the case. It can be computed as shown in section
234

Similarity of Taxonomies 27

CBR-Works 4 - Compendium

I': Only the similarity between leaf nodesis comput-
ed and hence SM(Q,C) = sm(Q,C) holds.

I1: The query contains aleaf node and the case con-
tains an inner node representing a set of values each
of which isa correct value for the case. Therefore,
the use of this set in the attribute isashortcut for the
use of several cases, one for each value in the set.
Sincewe are looking for the most similar casein the
cases base, the similarity between the query and our
case containing theinner nodeisequal to the highest
similarity between the query and one of the values
from the set. Hence, the following holds:

. =1 if g<C
SM(q,C) = max{sim(q,c)|c OLc}= %(qu otherwise

This definition ensures, that the similarity isthe
same as the similarity that arises when each of the
caseswith leaf node values would have been stored
in the case base. This measure is appropriate for ex-
ample 2a.

[11: Here, the specification of thisinner node can be
viewed asashortcut for posing several queriestothe
system, one for each of the values from the set that
the node represents. Sincewe are againinterestedin
the most similar case, we can again select the most
similar attribute value from the set. Hence the fol-
lowing holds:

. =1 if c<Q
SM(Q,c) = max{sim(q,c)|q OLg}= %«3@ , otherwise

This measure is appropriate for example 1b.

IV: Thisisacombination of Il and I1]. We are look-
ing for the highest possible similarity between two

Similarity of Taxonomies 28

CBR-Works 4 - Compendium

objects from the two sets since both, the query and
the case, represent aternatives that are suited equal -
ly well. Hence, the following holds:

| AL if C<QorQ<C
SIM(Q,C) = max{sim(q,c)|q OLo,d L3 %@q otherwise

V: The case containsan inner node which represents
aset of valuesfrom which only onevalueisactually
correct for the case, but we don’t know which one.
Therefore, our similarity measure hasto reflect this
lack of information. There are three possible ap-
proaches: we can assess the similarity in apessmis-
tic or optimistic fashion, or we can follow an
averaging approach:

Pessimistic approach: We assess the similarity be-
tween the known object (in the query) and the par-
tially unknown object (in the case) by computing the
lower bound for the similarity asfollows:

SM(0,C) = min{sim(q,c)|c OL:)= S<q,C>

Optimistic approach: We assess the similarity be-
tween the known object (in the query) and the par-

tially unknown object (in the case) by computing the
upper bound for the similarity, which resultsin the
same formulathat was already shown in 1.

Aver age appr oach: We assess the similarity be-
tween the known object (in the query) and the par-
tially unknown object (in the case) by computing the
expected value of the similarity asfollows:

SM(3.C) = 3 oy P(C) (Sim(,c)

where P(c) isthe probability that the value of the at-
tribute under consideration hasthe value c given the

Similarity of Taxonomies 29

CBR-Works 4 - Compendium

fact that we know that c[L - and given the known
information about the current case. Since P(c) is
hard to determine, we can, for example, estimate
P(c) by V|L |, assuming that all attribute values are
equally distributed and that all attributes are inde-
pendent.

VI: The uncertain information is contained in the
query; theinformation in the case is certain. This
caseisquite similar to the previous case V, i.e., we
can again use a pessimistic, an optimistic, or an av-
erage approach. The only changeintheformulasfor
similarity computation isthe fact that the minimum,
maximum, and sum operations are now performed
using the elements from the query L o and not the el-
ements form the case.

V1I: The uncertain information is contained in the
guery and in the case. The similarity iscomputed as
follows;

Pessimistic approach:
SM(Q,C) = min{sim(qg,c)|c OL.,c LQ:} S<Q,C>

Optimistic approach:

. gl if C<QorQ<C
SM(Q,C) = max{sim(q,c)|q OLq,dI L3 %Q’q otherwi se

Average approach:
SM(Q,C) = ZCDLC,@ Lo P(c) IP(q) sim(q,)

We seethat in al of these cases (except for the av-
erage approach to uncertainty), similarity between
inner nodes can be computed very easily by deter-
mining the position of the query and the case value
in the taxonomy and by looking up the similarity

Similarity of Taxonomies 30

2.4

CBR-Works 4 - Compendium

value at the appropriate taxonomy node. This en-
ables the use of taxonomiesin CBR.

Summary

We have shown that taxonomiesrepresent two kinds
of knowledge: first, knowledge about classes of ob-
jects and second, knowledge about the similarity be-
tween leaf nodes which represent real-world
objects. We have presented a new approach for de-
fining a numeric similarity-value between |eaf
nodes by assigning similarity values to the inner
nodes of the taxonomy. Moreover, we have shown
that additional knowledgeisrequired to decide how
the similarity between inner nodes of the taxonomy
can be computed. This knowledge states how the
classes (set of real-world objects) have to be inter-
preted: as any value from the set or asakind of un-
certainty. However, independent on the kind of
interpretation, there is a quite ssmple way of com-
puting the similarity between two inner nodes, if the
proposed approach to determine the similarity be-
tween leaf nodesis used.

From these considerations we can see that a taxono-
my can be used (and should be used because of the
simple computation of similarities) if

e anattribute shall contain a set of valuesin the
guery and/or in the case and

» these setsrepresent either uncertainty or alist
of equally well suited objects and

e wecan definein advance a hierarchy of dis-
joint sets of similar objects that can occur in
the query or the case.

Similarity of Taxonomies 31

CBR-Works 4 - Compendium

Thesethreerules of thumb can be used as guidelines
withinasimilarity definition method of acase-based
reasoning methodol ogy.

In our discussion, we restricted oursel ves to taxono-
mies of basic objects which don’'t have an internal
structure. However, our considerations also apply to
the generalization/specialization hierarchy of the
object classesin an object-oriented data (or case)
model. Thisinheritance hierarchy is of the same na-
ture than the taxonomies we have just discussed.
The only difference isthat the objects, which arein-
stances of classes, have an additional internal struc-
ture, i.e., each object is described by a set of
attributes.

The global similarity measures (e.g. weighted sum
of local similarities from the attributes) used up to
now in most CBR systems only allow to compare
two objects from the same object class. They do not
state anything about how objects of different object
classes can be compared.

From our considerations, we suggest to compute the
global similarity between to objects (possibly from
different classes) based on two components:

e aninter-object similarity stating the similarity
of the objects based on those attributes of the
nearest common superclass. This superclass
contains those attributes that both objects have
in common.

e anintra-object similarity stating the similarity
between objects on the basis of the classto
which they belong. For this purpose, we can
directly apply our considerations about taxono-
mies. We can assign asimilarity value to each

Similarity of Taxonomies 32

CBR-Works 4 - Compendium

object class of the inheritance hierarchy and
use them to compute the intra-object similarity.

We combine inter and intra-object similarity multi-
plicatively to aglobal object similarity. Thereby, the
intra-object similarity states the maximal similarity
that two objects of different classes can have.

Similarity of Taxonomies 33

3

3.1

CBR-Works 4 - Compendium

Similarity Measures for Case
Representations

Object-oriented case representations require ap-
proaches for similarity assessment that allow to
compare two differently structured objects, in par-
ticular, objects belonging to different object classes.
Currently, such similarity measures are devel oped
more or lessin an ad-hoc fashion. It is mostly un-
clear, how the structure of an object-oriented case
model, e.g., the class hierarchy, influences similari-
ty assessment. Intuitively, it isobviousthat the class
hierarchy contains knowledge about the similarity
of the objects.

However, how this knowledge relates to the knowl-
edge that could be represented in similarity mea-
suresis not obvious at al. This chapter analyzes
several situationsinwhich classhierarchiesare used
in different ways for case modeling and proposes a
systematic way of specifying similarity measures
for comparing arbitrary objects from the hierarchy.
The proposed similarity measures have a clear se-
mantics and are computationally inexpensive to
compute at run-time.

Introduction

Several recent CBR systems apply object-oriented

techniques for representing cases. Such representa-
tions are particularly suitable for complex domains
inwhich caseswith different structures occur. Cases

Similarity Measures for Case Representations 34

CBR-Works 4 - Compendium

are represented as collections of objects, each of
which is described by a set of attribute-value pairs.
The structure of an object is described by an object
class that defines the set of attributes (also called
slots) together with atype (set of possible values or
sub-objects) for each attribute. Object classesare ar-
ranged in aclass hierarchy, that is, usualy an-ary
treein which sub-classesinherit attributesaswell as
their definition from the parent class (predecessor).

Moreover, we distinguish between simple at-
tributes, which have a ssmple type like Integer or
Symbol, and so-called relational attributes. Rela-
tional attributes hold compl ete objects of some (ar-
bitrary) class from the class hierarchy. They
represent adirected binary relation, e.g., apart-of re-
lation, between the object that defines the relational
attribute and the object to which it refers. Relationa
attributes are used to represent complex case struc-
tures. Theability to relate an object to another object
of an arbitrary class (or an arbitrary sub-classfroma
specified parent class) enables the representation of
cases with different structuresin an appropriate

way.

Similarity measures for such object-oriented repre-
sentations are often defined by thefollowing general
scheme: The god isto determine the similarity be-
tween two objects, i.e., one object representing the
case (or apart of it) and one object representing the
query (or apart of it). We call this similarity object
similarity (or global similarity). The object similar-
ity isdetermined recursively in abottom up fashion,
i.e., for each simple attribute, alocal similarity mea-
sure determines the similarity between the two at-
tribute values, and for each relational slot an object
similarity measure recursively compares the two re-

Similarity Measures for Case Representations 35

CBR-Works 4 - Compendium

lated sub-objects. Then the similarity values from
the local similarity measures and the object similar-
ity measures, respectively, are aggregated (e.g., by a
weighted sum) to the object similarity between the
objects being compared.

Unfortunately, such object similarity measures are
currently developed more or less in an ad-hoc fash-
ion. Itismostly unclear, how the structure of the ob-
ject-oriented case model, e.g., the class hierarchy,
influences similarity assessment. Intuitively, it is
obviousthat the class hierarchy contains knowledge
about the similarity of the objects. Objects that are
closer in the hierarchy should normally be more
similar to each other than objects which are more
distant in the hierarchy.

However, how thisknowledge relates to knowledge
that could be represented in similarity measuresthat
also consider the local similarity of the attributesis
not obvious at all. Consequently, there is no clear
view about how the similarity between two objects
belonging to two different object classes should be
determined. Therefore, many existing CBR systems
and applications restrict object similarity to the
comparing objects of the same object classonly, not
taking advantage of the high flexibility that object-
oriented representations provide.

This chapter provides aframework for object simi-
larities that allow to compare objects of different
classes while considering the knowledge contained
in the class hierarchy itself. We will show that
knowledge about similarity contained in class hier-
archiesis quite similar to the knowledge contained
in taxonomies of symbols, which has been analyzed
in the previous chapter. The next section presents

Similarity Measures for Case Representations 36

3.2

CBR-Works 4 - Compendium

four related examples of how class hierarchies can
be used and what kind of object similarities are ap-
propriate. Based on these examples a new frame-
work for determining object similaritiesis
developed.

Example Use of Class Hierarchies
and Object Similarities

We now describe possible uses of class hierarchies
in different related application examplesin which
personal computers are represented as part of the
case. The class hierarchy (figure 3-1) contains a
classfor representing a PC aswell asdifferent class-
es for representing components.

The PC class contains attributes like “ processor”,
“hard-disk”, and“price’ (inherited from” Technical
Object”) which are used to describe the properties of
aPCindetail. Because a PC consists of aset of com-
ponents (part-of-relation) which have properties
themselves most attributes are relational (printed in
italicfont). Likefor ssimple attributes, it is necessary
toassign arelational attribute aclass, for exampleto
express that the relational attribute “ hard-disk” can
only have an instance of the object class Hard Disk.
In the example the class Hard Disk has no sub-class-
es and consequently, every object that this attribute
refersto has the same structure, i.e., the same set of
attributes. In contrast, the relational slot “optional
storage” does not have a unique class, because the
object-class Sorage Device has several direct and
indirect sub-classes. Hence, the attribute can relate
to objects of different structures, but they till have
a common super-class (e.g., Sorage Device) and
therefore share at least some common attributes. In

Similarity Measures for Case Representations 37

CBR-Works 4 - Compendium

our example, one PC can have asecond hard-disk as
optional storage device, while another PC can have
a CD-ROM described by afew different attributes
(e.g., type of laser) than a hard-disk.

Technical Object
price: Real
PC Storage Device Processor
processor: Processor manufacturer: Symbol manufacturer: Symbol
hard-disk: Hard Disk capecity: Real speed: Real
floppy-disk: Floppy Disk access time: Real type: Symbol
optional storage: Sorage Device
M agnetic Storage Device Optic Storage Device

build-in

type-of-magnetic-surface: Symbol

size: {3,5; 5,25} read-speed: Integer

type-of-laser: Symbol

Streamer | Floppy Disk | [Hard Dis«| [cD-ROM | [writeable O. S D.

Figure 3-1:

A part class
hierarchy in an
example domain

write-speed: | nteger

| CD-Writer | |CD-RW|

Consider again the “optional storage” attribute.
Now we describe four examplesin which this at-
tribute is used differently. We first would like to fo-
cus on the knowledge contained in the class
hierarchy and therefore don’t take different values
for simple attributes into account.

Example 1a

Consider a CBR system for the sales support of Per-
sonal Computers. A case represents an available PC
from the stock. Consider a case c; with asecond
hard-disk as optional storage device and a case c,
with a CD-Writer. If we assume that a customer en-

Similarity Measures for Case Representations 38

CBR-Works 4 - Compendium

ters a query to such a CBR system in which she/he
specifies that she/lhe wants a CD-ROM, then ¢, is
certainly closer than c,, because a CD-ROM and a
CD-Writer have obviously more in common than a
hard-disk and aCD-ROM. In general, we could use
asimilarity measure that assesses similarity based
on the distance between the class of the case object
(of the respective relational attribute) and the class
of the query object in the class hierarchy.

Example 1b

Imagine the customer states in the query arequest
for an optic storage device, i.e., in the query, the re-
lational attribute refersto an instance of the class
”Optic Storage Device’. Then any of the devicesin
the Optic Storage Device sub-tree are perfectly suit-
ed. Hence, we expect the similarity value for the re-
lational slot between this query and case ¢, (from
Example 1a) to be equal to 1. From this consider-
ation we can conclude that whenever the class of the
query object islocated above the class of the case
object, the similarity should be 1.

Example 2a

Consider now atrouble-shooting CBR system for
PCsin which cases encode diagnostic situations and
faults that have occurred previoudy. The domain
expert describesafault that can occur with any optic
storage device. Therefore, the respective case con-
tains an instance of the class Optic Sorage Device
in the relational attribute “optional storage device”.
Now, assuming a PC user has a problem and she/he
states that there is a CD-RW device in the PC, then

1. We assume that similarity measures compute values
between 0 and 1.

Similarity Measures for Case Representations 39

CBR-Works 4 - Compendium

the similarity for the respective relational dot
should be equal to 1 because the case matches exact-
ly w.r.t. this attribute. From this consideration we
can conclude that whenever the class of the case ob-
ject islocated above the class of the query object the
similarity should be 1.

Example 2b

For the same trouble-shooting example, imagine
now adifferent query in which the user does not ex-
actly know what kind of storage deviceisinstalled
in the PC, but she/he knows that it is awriteable op-
tic storage device. Therefore, she/he enters an in-
stance of the class Writeable Optic Storage Device
asattribute value in the query. Again, the case about
the Optic Storage Device mentioned in Example 2a
matches exactly because, whatever storage device
the user has, we known it is an Optic Sorage.
Hence, the situation described in the case applies.
However, if we consider a different case that de-
scribes a problem with a CD-RW device, then this
case does not match exactly. Since we don’t know
what writeable optic storage device the user has (it
can bea CD-Writer but it can also be aCD-RW) we
expect asimilarity valuelessthan 1 to represent this
kind of uncertainty. Therefore, we cannot conclude
that whenever the class of the query object islocated
above the class of the case object the similarity
should be 1.

Although these four examples are based on the same
class hierarchy, it is obvious that they have to be
treated differently for the similarity computation. In
the query and in the cases from example 1a, only in-
stances of classes without subclasses are used. The
examples 1b to 2b make use of abstract classes

Similarity Measures for Case Representations 40

3.3

3.3.1

Figure 3-2:
Illustration of
basic notions

3.3.2

CBR-Works 4 - Compendium

(classes with subclasses) of the hierarchy, but in
each exampl e the semantics of the use these abstract
classesis different, which must lead to different
similarity measures.

Computing Object Similarities

Basic Notions

We briefly introduce afew notions (figure 3-2) that
will befurther usedinthischapter. Let K bean inner
node of the class hierarchy, then Ly denotes the set
of all leaf nodes (classes) from the sub-tree starting
at K. Further, K, <K, denotesthat K, isasuccessor
node (sub-class) of K,. Moreover, <K3,K 4> stands
for the most specific common object class of K 3 and
K4, i.e., <K3,K4> > K3 and <K3,K4> > K4 and it
does not exist anode K’ < <K 3,K 4> such that K’ >
Kz and K’ = K4 holds.

Basic Considerations about Object Similar-
ities

In general, the similarity computation between two
objects can be divided into two steps: the computa-

Similarity Measures for Case Representations 41

CBR-Works 4 - Compendium

tion of an intra-class similarity S M; 4 and the
computation of an inter-class similarity SM;per-

Intra-Class Similarity

The common properties of the two objects can be
used to theintra-class similarity. For thisit is neces-
sary to take the most specific common class of the
two objects and to compute the similarity based on
the attributes of thisclassonly. By considering only
the attributes of the most specific common class, the
object similarity computation can be done as usual,
since the objects being compared are from the same
class. Thatis, local similaritiesor object similarities
are computed for all attributes and the resulting val-
ues are aggregated to the intra-class similarity, e.g.,
by aweighted sum. Formally written:

SM;a(0,0) :CD(SimAl(q.Al,C.Al) ----- Sim% (0.A,,cA)

where ® isthe aggregation function, g.A; and c.A;
denote the value of the attribute A; in the query and
case object, respectively, and sim,; isthelocal or
object similarity of the attribute A;.

Inter-Class Similarity

The intra-class similarity alone would not be an ad-
eguate object similarity for the two objects. For ex-
ample, in the domain shown in Fig. 1 two instances
of Hard Disk and CD-ROM can have an intra-class
similarity of 1, provided that they have the same val-
ues in the attributes which they inherit from their
common superclass “ Storage Device’. But it is ob-
viousthat thereisasignificant difference between a
hard disk and a CD-ROM. Hence, the similarity
should definitely be lessthan 1. It isimportant to
note that the difference between two objectsis not
represented by their shared attributes but by the

Similarity Measures for Case Representations 42

S5

CBR-Works 4 - Compendium

structure of the class hierarchy. Therefore, it is nec-
essary to usethis structureto compute an inter-class
similarity for the two objects. Thisinter-class simi-
larity represents the highest possible similarity of
two objects, independent of their attribute values,
but dependent on the positions of their object classes
inthe hierarchy. Formally, the inter-class similarity
S Minter(Q,C) is defined over the classes of the ob-
jects from the query and case being compared.

Thefinal object similarity ssm(q,c) between aquery
object g and a case object ¢ can then be computed,
by the product of the inter- and the intra-class simi-
larity, i.e.:

sim(qg,c) = 9M. _(q,c) (BM . (class(q),class(c))

intra inter

where class(q) and class(c) denotethe object class of
the object g and c, respectively.

Next, we analyze how the inter-class similarity
should be determined, which is quite similar to the
similarity computation between two symbols ar-
ranged in ataxonomy.

Different Semantics of Nodes

Inaclasshierarchy aswell asin ataxonomy of sym-
bols, we must distinguish between leaf nodesand in-
ner nodes. In ataxonomy leaf nodes represent
concrete objectsof thereal world. Inner nodes, how-
ever, describe classes of real world objects. Aninner
nodeK representsaclasswith certain propertiesthat
all of the concrete objects from the leaf nodes L
have in common. Unlike classesthat occur in the ob-
ject-oriented paradigm, the classes that are repre-
sented by the inner nodes of ataxonomy are not

Similarity Measures for Case Representations 43

CBR-Works 4 - Compendium

described intentionally by a set of properties, but ex-
tensionally through the set of concrete objects L
that belong to the class. Therefore, an inner node K
stands for the set Lk of real world objects.

If welook at the class hierarchy showninFig. 1, we
can notice adifference in the semantics of its nodes
compared to the semantics of taxonomy nodes.
While aleaf node of ataxonomy represents a con-
crete object of the real world, aleaf node of aclass
hierarchy is naturally a class and therefore repre-
sents a set of objects. As shown above, inner nodes
of ataxonomy describe classes of real world objects,
butif welook at theinner nodesof class-hierarchies,
we can see that these nodes represent abstract class-
es. Because of this, such anode does not represent a
set of real world objects, but a set of abstract ob-
jects. Theinstances which belong exclusively to the
class “ Storage Device” or “Optic Storage Device”
for example are obviously not objects of the rea
world. However, abstract objects are sets of real
world objects. An instance of “Optic Storage De-
vice”, for example, can be used as abbreviation for
the set of all instances of the classes “CD-ROM”,
“CD-Writer”, and “CD-RW” that have the same at-
tribute-values in the common attributes as the re-
spective “ Optic Storage Device” instance, e.g., the
same manufacturer, the same capacity, the same ac-
cess time, and the same speed.

Thereisaso adifference in the use of the two dif-
ferent structures. A taxonomy tree consists of the
symbols that are directly used as values for the at-
tributes. On the other hand, the classes of a class hi-
erarchy are not used asvaluesfor therelational slots
themselves, but the instances of the classes. If we
takethisfact into account, wewill seethat now there

Similarity Measures for Case Representations 44

3.34

CBR-Works 4 - Compendium

Is no difference in the semantics of the correspond-
ing values, because the taxonomy symbols must be
compared with theinstances and not with the classes
of the class hierarchy. Aninstance of aclasswithout
subclasses (aleaf node of the hierarchy) represents
a concrete object of the real world, and as we have
seen before an instance of an abstract class (inner
node) can be treated as a set of real world objects.
This semanticsis equivalent to the semantics of the
taxonomy nodes. Therefore, it is possible to apply
the similarity measures used to compute similarities
between taxonomy symbolsfor computing of thein-
ter-class similarity between objects.

Inter-Class Similarity Between Concrete
Objects

A class hierarchy encodes some knowledge about
the inter-class similarity of the real-world objects,
I.e., the instances of the leaf nodes. The deeper we
descend in the class hierarchy, the more featuresthe
instances of the classes will have in common. We
can therefore define the inter-class similarity asa
measure of how many " features’ ! the compared ob-
jects have in common. The more "features” are
shared, the higher is the inter-class similarity. For
example, the inter-class similarity between a CD-
Writer and a CD-RW is higher than the inter-class
similarity between a CD-Writer and a CD-ROM.

This consideration leads to the following general
constraint for defining the inter-class similarity for
the instances of the leaf nodes of a class hierarchy:

1. Here, feature does not necessarily mean attribute
in the case representations.

Similarity Measures for Case Representations 45

3.3.5

CBR-Works 4 - Compendium

M (K K)) £ My (K KS) O IF <K,K1>><K,K2>

inter
Because the class hierarchy only represents the con-
straint shown above but does not define numeric
values for the similarity between two leaf node ob-
jects (that are used for the computation of an object
similarity), it is necessary to add additional knowl-
edge to the hierarchy. For this purposeit is possible
to annotate every inner node K; with asimilarity val-
ue §U[0..1], such that the following condition
holds: if K;>K, then $;<S,. The semantics of the
similarity valueis asfollows:

The value S; represents alower bound for the inter-
class similarity of two arbitrary instances of the
classes from the set L, or formally written:

OX,Y OLy, SM, 1 (X,Y) 2 §

inter

With regard to this semantics one may definethein-

ter-class similarity between two objects as follows:
& if K, =K,

SMinter(Kl'KZ) = &(K K > otherwise
1Ko

Semantics and Inter-Class Similarity of
Abstract Objects

If we now recall again the examples that we have
presented in section 2.2, it is obvious that the ” op-
tional storage” attribute must be treated differently
in the different examples, although they all use the
same class hierarchy. From that it becomes clear
that some additional knowledge which we have not
yet discussed plays arole during similarity assess-
ment. However, this knowledge is not contained in
the class hierarchy itself.

Similarity Measures for Case Representations 46

CBR-Works 4 - Compendium

The knowledge that we are looking for isthe knowl-
edge about the semantics of the instances of inner
nodes, i.e., the semantics of the abstract objects,
which can be treated as sets of real-world-objects
(see section 3.3.4). In our example, the question is:
what does it mean when the case or query contains
the statement:

optional storage: <an Optic Storage Device instance >

In fact, there are different interpretations of this
statement that will be further discussed.

Any value in the query

The user specifies an abstract object k in the query.
Thismeansthat she/heislooking for acasethat con-
tains areal-world-object that matches with the fea-
tures of the specified abstract object, i.e., acase that
contains an object that belongsto aclassof L. This
was the situation in example 1b.

Any value in case

The case contains an abstract object k, which de-
scribes a situation in which the caseisvalid for all
objects that are aspecialization of k. Thisleadsto a
kind of generalized case. This occurred in example
2a

Uncertainty

Thissituation differssignificantly fromthe previous
ones. Here, the use of an abstract object k meansthat
we do not know the concrete object for thisrelation-
al slot, but we know that it is a specialization of k.
This situation occurred in example 2b.

Depending on the appropriate semantics we can
now define an inter-class similarity measure S M; ;.
o (Q,C) which computes a value for the inter-class

Similarity Measures for Case Representations a7

Table 3-1:
Combinations of
different seman-
tics for objects in

query and case

CBR-Works 4 - Compendium

similarity between two objects Q and C where each
can be either aleaf node (concrete object), an inner
node (abstract object) with the " any value’ interpre-
tation or an inner node (abstract object) with the
"uncertainty” interpretation. This leads to nine pos-
sible combinations shown in Table 1. Seven of the
nine combinationsin the table are marked with aro-
man number that isfurther used to reference the for-
mulas for computing the similarity. These are the
onesthat occur most likely. However, the following
considerationscan easily be extended also to thetwo
missing combinations.

Leaf Node

Any Value
concrete abstract abstract
object object object

Leaf Node | Il \Y
concrete
object

Any Value [l v
abstract

Uncertainty

object

Uncertainty R\ VIl
abstract
object

I Only the similarity between concrete objects must
be computed as described in section 2.3.4.

I1: Theqguery containsaconcrete object and the case
contains an abstract object (inner node) representing
a set of concrete objects each of which isa correct
object for the case. Therefore, the use of thisabstract
object in the attribute is a shortcut for the use of sev-
eral cases, onefor each concrete object belonging to
the abstract object. Since we are looking for the

Similarity Measures for Case Representations 48

CBR-Works 4 - Compendium

most similar case in the case base, the object simi-
larity, and therefore also the inter-class similarity,
between the query and our case containing the ab-
stract object is equal to the highest similarity be-
tween the query and one of the concrete objects.
Hence, the following holds:

H if Q<C
SM inter (Q,C) = max{IM inter Q.Cc)Ico LC} = ESQC otherwise
(QC)

Thisdefinition ensuresthat thesimilarity isthe same
as the similarity that arises when each of the con-
crete objects would have been stored in the case
base. This measure is appropriate for example 2a.

[11: Here, the specification of this abstract object
can be viewed as a shortcut for posing several que-
ries to the system, one for each of the concrete ob-
jectsfrom the set that the abstract object represents.
Since we are again interested in the most similar
case, we should again select the most smilar con-
crete object from the set. Hence, the following
holds:

=] if C<Q
IM e (Q.C) = max{ IM (Q",C) |QT L} = ESQC otherwise
(@)

This measure is appropriate for example 1b.

IV: Thisisacombination of Il and I11. We are [ook-
ing for the highest possible similarity between two
concrete objects from the two sets represented by
the abstract objects since both, the query and the
case, represent alternatives that are suited equally
well. Hence, the following holds.

H if C<QorQ<C
sMinter (Q’C) = maX{SMinter (Q,’C,) |Q,D LQ'C,D LC} - &QC otherwise
Q)

Similarity Measures for Case Representations 49

CBR-Works 4 - Compendium

V': The case contains an abstract object which repre-
sents a set of concrete objects from which only one
valueis actually correct for the case, but we don’t
know which one. Therefore, our similarity measure
hasto reflect this lack of information. There are
three possible approaches: we can assess the simi-
larity in a pessimistic or optimistic fashion, or we
can follow an averaging approach. We only demon-
strate the pessimistic approach; see (Bergmann,
1998c) for more details on the other approaches.

Pessimistic approach: We assess the similarity be-
tween the known object (in the query) and the par-
tially unknown object (in the case) by computing the
lower bound for the similarity asfollows:

3 Mntef(Q’C) =mi n§| Mnter(Q’C’) |C’D I—c} = S<Q9

V1: The uncertain information is contained in the
guery; the information in the caseis certain. This
caseis quite similar to the previous case V. For the
pessimistic approach holds:

SM(Q.C) =min8IM,(Q.C) |QULy} = Seg

VI1I: The uncertain information is contained in the

guery and in the case. The similarity iscomputed as

follows for the pessimistic approach:
IM,(Q,C) = mi{SIM, .. (Q',C) |COL.,QOLy} = S<Q,C>
In all of these cases, theinter-class similarity can be
computed very easily by determining the position of
the class of the query object and the case object in
the class hierarchy and by looking up the similarity
value associated with the most specific common su-
per class.

Similarity Measures for Case Representations 50

CBR-Works 4 - Compendium

3.4 | Summary

The described object similarities are realized as part
of the recent version of CBR-Works 4. The ap-
proach was applied for the CBR-Works Support
Center (hotline support for troubleshooting Work-
stations and CAD software).

Currently, thereis no other work that proposes sim-
Ilarity measures for object-oriented case representa-
tionsthat make use of the class hierarchy, relational
attributes, and flexible local similarity measuresfor
simple attributes. However, similarity measures for
different kinds of structured representations are dis-
cussed throughout the CBR and instance-based
learning literature during recent years.

To some extend, object-oriented representations can
be compared to representations in first-order logic
where a case is a conjunction of atomic formulas.
Each atomic formula P(id,as,...,a,) standsfor asin-
gle object. The argument id of the formula denotes
an object identification and the remaining argu-
mentsay,...,a, represent the attributes. Relational at-
tributes can be represented by using the object
identifications as attribute values.

Similarity Measures for Case Representations 51

CBR-Works 4 - Compendium

4 Rules for CBR

When problems are solved through reasoning from
cases, the primary kind of knowledgeiscontainedin
the specific cases which are stored in the case base.
However, in many situations additional general
knowledge (we call it background-knowledge) isre-
quired to cope with the requirements of an applica-
tion. In CBR-Works, such general knowledgeis
integrated into the reasoning processin away that it
complements the knowledge contained in the cases.
This general knowledge itself is not sufficient to
perform any kind of model-based problem solving,
but it is required to interpret the available cases ap-
propriately.

Background knowledge is expressed by two differ-
ent kinds of rules:

e Completion rules are formalised by the know!-
edge engineer during the development of the
descriptive model. They describe how to infer
additional features out of known features of an
old case or the current query case.

e Adaptation rules are formalised by the knowl-
edge engineer during the development of the
descriptive model. They describe how an old
case can be adapted to fit the current query.

Rules for CBR 52

4.1

CBR-Works 4 - Compendium

Introduction

Genera knowledge (rules) is sometimes available
and necessary to better explore and interpret the
available cases. Such general knowledge may de-
scribe constraints which directly lead to the exclu-
sion of acasefor reasoning. An other kind of general
knowledge may state a strict dependency of onefea-
ture of a case on severa other features of the same
case. Thisalowsto infer additional, previously un-
known features from the known ones. Furthermore,
some applications require an adaptation of are-
trieved case according to the actual problem at hand.
Therefore, general knowledge isrequired to specify
such an adaptation. Even if adaptation abilities are
much more essential for synthetic tasks such as de-
sign or planning, severa applications from thefield
of classification, diagnosis, or decision support as
addressed in CBR-Works also require at least some
minimal adaptation capabilities.

To use background knowledge should not affect the
previously developed methods for integrating in-
duction and case-based reasoning. It is aspired to
keep the required inference mechanisms which han-
dle the background knowledge mostly independent
from the kind of integration that is chosen for a spe-
cific application. Moreover, it iscrucia to avoid in-
creased retrieval times as a consequence of asearch-
intensive inference procedure. The primary type of
reasoning is still a combination of case-based and
inductive reasoning. The background knowledge is
not intended to be a substitution for the knowledge
contained in the cases but an addition of general
knowledge to the specific knowledge of the cases.

Rules for CBR 53

4.2

42.1

4.2.1a

CBR-Works 4 - Compendium

Representing and Using Back-
ground Knowledge

In CBR-Works, background knowledge is ex-
pressed in the form of rules of different kinds. This
section first introduces the kinds of rules which we
have identified useful. Then, the impact of the ob-
ject-oriented case-representation paradigmfollowed
by CBR-Works on the specific representation and
interpretation of the rulesis discussed in general.
Thereafter, the detail ed representation of al kindsof
rulesis specified and the related semantics are ex-
plained. Finally, methods for efficient rule interpre-
tation are presented.

Kinds of Rules

In CBR-Workswe haveidentified two kinds of rules
to be essential:

e Completion rulesinfer additional features out
of known features of an old case or the query.
Thereby, these rules compl ete description of a
case.

e Adaptation rules describe how an old case can
be adapted to fit to the current query.

In the following we will explain these two kinds of
rulesinformally before going into the details of their
representation and processing.

Completion Rules

In several situations, features of a case description
are directly dependent on several other features.
When the user enters some of the featuresin the que-
ry, she/he should generally not be demanded to enter

Rules for CBR 54

Figure 4-1:
Completing case
descriptions

CBR-Works 4 - Compendium

the values of features which are absolutely deter-
mined by the information she/he has already en-
tered. But not having these valuesin the query case
leads to alessinformed similarity assessment.
Therefore, we propose completion rules to extend
the description of acase (seefigure4-1). Theserules
apply to the cases of the case base aswell asto the
query case which is entered during consultation.
Completion rules are used to infer values of at-
tributes of the case description which are directly
dependent on some other attributes of the case.

Preconditions

Completion
Rule

Conclusions

Completed
Case

Thereby, additional attributes can be assigned aval-
ue without asking the user. Furthermore, the occur-
rence of inconsistent values can be reduced. The
attributes which are derived using the completion
rules can then be used during the similarity assess-
ment. Such a similarity assessment is based on the
knowledge of more attributes and should conse-
guently be more precise. Since the completion rules
will be used to derive attributes of a case description

Rules for CBR 55

CBR-Works 4 - Compendium

which the user might also enter, the rules must be
known to betruein all situations. Uncertain, or just
probable rules are not considered here. Therefore,
an inference drawn using the rulesis aways consid-
ered absolutely correct and cannot be changed by
the user.

Figure 4-1 shows these preconditions and conclu-
sions of acompletion rule. The rule is based on the
values of attributes given in a specific caseand asa
result of the application the rule may add certain at-
tribute values to this case.

Informal example

As an example, recall the travel agency domain in-
troduced already. Assume a case representation for
ajourney which includes the specification of the
number of adults and the number of children which
areinvolved in the journey. Moreover, assume that
the representation al so specifies the total number of
persons because for severa journeys only the total
number of people isimportant (e.g. in an apart-
ment). Inthissituation, the following general ruleis
useful:

The total number of persons is always the sum of
the number of children and the number of adults.
Thisrule avoidsto enter the value for the total num-
ber of persons when the number of children and the
number of adultsisalready entered by theuser. Ina
similar manner, completion rules may also be used
to compute the number of roomswhich are required

for a certain number of people.

Rules for CBR 56

Figure 4-2:
Cases used for
Adaptation

CBR-Works 4 - Compendium

Retrieved
Case

Preconditions

Adaptation
Rule

Conclusions

Target
Case

Asshownin figure 4-2, adaptation rules combine at-
tributes of the retrieved case, attributes of the cur-
rent case, and already derived attributes of thetarget
case in the precondition of therule. In arule’s con-
clusion, the attribute values for the target case are
derived.

Informal example

Imagine once again a situation from the travel agen-
cy domain. Suppose, the user’s query specifies a
journey with aduration of two weeks. Furthermore,
assumethat themost similar case which satisfiesthe
user best isajourney which usually takes one week.
Sincethe pricefor thisjourney iscalculated on aone
week basis, it must be adapted to correctly refer to
the two week journey as specified in the query. For
this purpose, the following adaptation ruleis useful :

If the duration specified in the query case is
longer than the duration specified in the retrieved
case, then the price specified in the target case is
computed by adding the price of the retrieved
case and the price for accommodation for the
additional time period.

Rules for CBR 57

4.2.2

CBR-Works 4 - Compendium

Since the transportation costs are aready included
in the retrieved case adapting the price for atwo
week vacation by just adding the additional accom-
modation costsis a useful adaptation strategy in the
travel agency business.

Components for Handling Background
Knowledge

Figure 4-3 shows how these kinds of rules are used
together with the CBR-Works system. Two addi-
tional componentsarerequired for the processing of
the rules. One component is necessary for the com-
pletion of case descriptions. Thiscomponent isused
to complete previous cases before they are stored in
the case-base and to complete the query case which
isentered by the user. The CBR-Works system then
works only on completed cases. The task of the sec-
ond component is the adaptation of one of there-
trieved cases to the query case. This component
computesatarget case (solution) out of theretrieved
case and the current completed query case. Thistar-
get case isthen completed and stored again into the
case-base for future use.

In the following we want to characterise the two dif-
ferent kinds of rulesin general before discussing
their detailed representation and processing.

Rules for CBR 58

CBR-Works 4 - Compendium

Query

(e

Case Completion Component Completion
Rures

Completed
Query

.

Completed

Retrieval Component

'
-

Cases

— |

Case Adaptation

store new case

Figure 4-3:
Components for
processing
Background
Knowledge

Rules for CBR 59

4.2.3

Figure 4-4:
Example of an
inheritance
hierarchy

CBR-Works 4 - Compendium

Impact of the Object-Oriented Case Repre-
sentation

The case representation of the whole CBR-Works
system is object-oriented. The object structureitself
is defined within the descriptive model. It supports
inheritance between classes as well as arbitrary re-
lations between two objects. In the following, we
want to make the distinction between theinheritance
and arbitrary relations more clear. Figure 4-4 gives
an example of an inheritance hierarchy.

root
class

—

Class.C1
Slot: S1

Class.C2 Class.C4 Class:.C5
Slot: S2 Slot: 4 Slot: S5

Class.C3
Slot: S3

Thisfigure shows five classes, which are derived
from the root class of the hierarchy. The classes C1,
C4 and C5 are directly derived from the root class.
Objects of these classes only contain the slotswhich
are directly specified in the respective class. No
dlots are inherited from the root class. Inheritance
becomes relevant for the classes C2 and C3. The

Rules for CBR 60

Figure 4-5:
Example of
Relational Slots

CBR-Works 4 - Compendium

class C2 inheritsthe slot S1 from class C1 and class
C3 inherits the dots S2 from C2 and S1 from C1.

The mechanism of inheritance has to be clearly dis-
tinguished from the ability to specify relations be-
tween different kinds of objects. In the descriptive
model, arelation is declared by arelational slot. A
relational slot isa slot which does not hold abasic
value but awhol e object of some class. For example,
Figure 6 showstwo classes C2 and C4 with relation-
al dots. The slot R1 of class C2 can hold an object
of the class C4 and the slot R2 of class C4 can hold
an object of the class Cb.

Class.C2 Sot: R1 Class.C4 [got: R2 Class.C5

Slot: S2 I Slot: 4 Slot: S5

In adescriptive model of adomain, inheritance and
relations usually occur simultaneously. So, relation-
a dots are inherited from a superclass in the same
manner as slots which hold a basic value are inher-
ited. If theinheritance asshowninfigure 4-4 and the
relations as shown in figure 4-5 are specified simul-
taneoudly, then the class C3 aso inheritstherela
tional dot R1 from its superclass C2.

Obviousdly, this object-oriented representation has a
strong impact on the detailed mechanisms which
handle the rules. Within this kind of case represen-
tation, the classesarethe most natural placeto attach
the rules. Within the scope of aclass, arule hasadi-
rect access to the slots which are defined for that
class and to those slots which are inherited from its
superclasses. Additionally, rules must be given ac-
cessto dots of those objectswhich arerelated to the

Rules for CBR 61

CBR-Works 4 - Compendium

object the rule belongs to. In the same manner as

slots are inherited from the supercass to a class, the
rules can also be inherited. Ruleswhich are defined
for a superclass are always valid for all subclasses.

Figure 4-6 shows an example of the ssmultaneous
occurrence of the inherited and related objects al-
ready shown in the figures 4-4 and 4-5. Additional-
ly, the figure shows different rules which are
attached to the classes and specifies the dotsto
which these rules have access to. The figure shows
five different classes C1,..., C5 where C2 is a sub-
classof C1 and C3 isasubclass of C2. Each class
has one none-relational dlot, i.e. slots which can
hold values of basic types, but not objects. These
slots are named S1,..., S5 respectively. Moreover,
class C2 and class C4 have relational slots R1 and
R2, respectively. To illustrate the scope of the rules
associated with thefive classes, the dotsthat can be
accessed by each of the rules are shown. For exam-
ple, we can see that Rule-2 has access to the dlots of
its own class (S2), to the slots of its superclasses
(S1), and to the dlots which are available in related
classes (4, S5). Tomakeaprecisereferenceto slots
of related classes, the relation itself (e.g. R1) must
always be noted together with the respective slot (a
possible notation would be: R1->34 or R1->R2-
>S5). Due to the inheritance of therules, Rule-1is
also valid for all objects of the classes C2 and C3,
but of course not for objects of the classes C4 and C5
since class C1 is not a superclass of C4 and C5.

Exploring the object-oriented representation also for
the rules enables an efficient way of expressing

background knowledge. Dueto therule inheritance,
knowledge which applies to many different objects
can be expressed in rules which are attached to the

Rules for CBR 62

CBR-Works 4 - Compendium

respective superclass these objects belong to. More-
over, therestricted set of slotsarule can access still
mai ntainsthe principle of information encapsulation
of object-oriented representations.

Class.C1
Slot: S1

Rule-1
Accessto S1

Class.C2 . Class:.C4 . Class.C5
Slot: Rll Slot: R2
Slot: 4 Slot: S5

Slot: S2
ARuIeZ Eule4
ccessto ccessto
S1.S2.94.55 NS5 Accessto S5

Class.C3
Slot: S3

Rule-3

Accessto

S1,52,54,55,S3

I:I Class \ Inheritance
O Rule —» Reation

Figure 4-6:
Example: Scope
of Rules in the
Object-Oriented
Case Represen-
tation

Rules for CBR 63

4.3

43.1

CBR-Works 4 - Compendium

Detailed Description of Rules

In the following, we want to explain the representa-
tion of the two kinds of rulesin more detail.

Completion Rules

Sets of rules for classes

Rules for completing the description of an old case
or the current case are attached to the classes defined
in the descriptive model of the case representation.
Each class in the descriptive model can have an ar-
bitrary number of completion rules. All completion
rules that are present for a class are always active.
Each rule appliesto all objectsof thisclassin acase.
The set of rules must be consistent in the sense that
it isnot allowed for two or more rulesto infer con-
tradictory values for the same slot in the same case.
In general, the consistency of a descriptive model
cannot be checked automatically in advance. How-
ever, the event of an inconsistency must be checked
in the running system and a respective error report
must be given to the user.

Components of arule

Each completion rule consists of two parts: apre-
condition part and a conclusion part. The precondi-
tion part defines a conjunction of conditions. Each
condition must be expressed in terms of the accessi-
ble slots with respect to the class to which the rule
belongs to. A condition can compare the value of a
slot with respect to values of other slots, constants,
or local variables. Moreover, the precondition can
also be used to specify an arbitrary function which
calculatesanew value using the existing slot values.
The conclusion part of arule consists of a set of ac-

Rules for CBR 64

CBR-Works 4 - Compendium

tions which are executed if the precondition is ful-
filled, i.e. al conditionsin the precondition are
fulfilled. An action in the conclusion of arule can
assign avalueto adlot or it can create a new object
for arelational dot.

Precondition part of a completion rule

The precondition of arule consists of aset of condi-
tions. The set of these conditionsistreated as con-
junction, i.e. all conditions of the precondition of the
rule must befulfilled to firetherule. Additionally, a
condition may occur in negated form. Then, this
condition must not be true to fire the rule. Local
variables may occur in the precondition of arule.
These variables can becomeinstantiated by acertain
condition and can be accessed or tested in conditions
evaluated afterwards in the samerule.

A condition can be of three different types:

e Built-in predicates:
A condition can be expressed by using a built-
in predicate to compare two vaues. The two
values to be compared can be any slot that lies
within the scope of the rule, any constant
value, or any local variable (see below). How-
ever, one obvious restriction is that the two
values to be compared are of the same type or
from the same class of objects. Dependent on
the type of values, different built-in predicates
are available.

* External functions and predicates:
External functions and predicates can be used
to define any kind of user-specific predicates
which cannot be expressed by the built-in con-
ditions. The external functions must be imple-

Rules for CBR 65

CBR-Works 4 - Compendium

mented in the underlying programming
language of the CBR-Works-system. In addi-
tion to defining a predicate for testing certain
conditions, external functions can also be used
to compute a new value which can be returned
to the rule for an assignment to aslot.

e A-kind-of test:
Using the object-oriented features of the case-
representation, arelated object can be from
different classes. However, by the definition of
arelational slot, an object’'s classis already
specified, but objects of all respective sub-
classes are valid objects for such adot. There-
fore, the a-kind-of test can be used to examine
the actual class of arelated object.

Built-in predicates

For the definition of the conditions, several built-in
predicates are available:

The equality (=) and inequality (<>) predicate can
be used to compare any two values or objects of the
same type or class. For basic values (integer, real,
string, symbol, ordered symbol, taxonomy, bool-
ean, date, and time), the equality predicate evaluates
to trueif the two values to be compared are identi-
cal. For two objects, the equality predicate evaluates
totrueif both objectsare from the sameclassand all
filled slots of the two objects are themselves equal.
Theequality of thefilled dotsisdefined by applying
this equality definition recursively. If the equality-
predicate is used for a slot which does not hold any
value, the predicate evaluatesto false. Theinequal-
ity predicate expresses negation of the equality
predicate. It evaluatesto trueif the equality predi-
cate evaluatesto false and vice versa.

Rules for CBR 66

CBR-Works 4 - Compendium

The less-than (<, <=) and greater-than (>, >=) pred-
icates can be used to compare two values from or-
dered or partially ordered basic types. These types
are: integer, real, ordered_symbol, taxonomy, date,
and time. The predicates cannot be used to compare
symbols, booleans or objects. While the definition
of the predicatesisobviousfor ordered types, thein-
terpretation of the order for taxonomies needsto be
explained. We defineavalue x to belessthany (x <
y) if and only if y is below x in the taxonomy.

The setinclusion (in) predicates can be used to com-
pare two values from an interval type. The condi-
tion: 11in12 holdsif and only if the lower bound of
I1isgreater or equal than the lower bound of 12 and
if the upper bound of 11 islessor equal than the up-
per bound of 12.

Variables in rules

Variables may also occur in the precondition of a
rule as a means of sharing values between different
conditions contained in the precondition of the
same rule. These variables are aways local to the
current rule. Variables can hold any kind of basic
values, objects, or it can hold the class name of an
object only. Variables become instantiated by the
first (left-most) condition which is either an equal-
predicate (=), an a-kind-of test, or an external func-
tion which calculates and returns anew value. An
equality predicate can instantiate the variable with
the current value of the slot (abasic value or awhole
object). The a-kind-of-test assigns the variable with
the name of the class of the tested relational object.
The external function intantiates the variable with
the value which is computed by thisfunction. Anin-
stantiated variable can then be used in any further

Rules for CBR 67

CBR-Works 4 - Compendium

conditions. Moreover, avariable can also be used in
an action of the conclusion part of the rule. The val-
ue of the variable can then be assigned to anew sl ot.
Moreover, a new object of aclass contained in a
variable can be created and assigned to a dlot.

Conclusion part of a completion rule

The conclusion of arule consists of aset of actions.
An action can be either the assignment of avalueto
adlot or the creation of anew object which is stored
in arelational dot:

Sot assignment:

A slot can be assigned a constant value, the
value of another slot, or the value of avariable
which was instantiated in the precondition of a
rule. If avalue is assigned to adlot, then the
slot must not have avalue before or the value it
currently has must be the same value that the
valuetheruletriesto assign to the slot. The sit-
uation in which two different rules can fireand
assign adifferent value to the same dlot is
explicitly forbidden. Such a situation would
indicate an inconsistency within the set of
rules. Please note that rules which include
some kind of "uncertainty” are not the target of
this background-knowledge task. All rules are
assumed to lead to "certain” consequences and
should therefore not lead to contradictory val-
ues. However, a contradiction between arule
inference and awrong value entered by the
user may still occur. In this situation, an
inconsistency in the users query must be
assumed and reported to the user. This prop-
erty can be employed to implement different

Rules for CBR 68

CBR-Works 4 - Compendium

kinds of consistency checks for the current
user query.

e Creation of objects:
The second kind of action that may occur in
the conclusion of aruleisthe creation of new
objectsfor relational slots. Thisisnecessary to
be able to extend the object structure of a case
itself. With the creation of a new object, the
name of the class of the object must be speci-
fied. The name of the class can be stated by
specifying the name directly or by selecting a
variable which isinstantiated by an a-kind-of
condition in the precondition of the same rule.
If the relational slot for which the object
should be created is still empty, then the new
object is created (with empty slots) and
directly linked to the dlot. If the relational dlot
already contains an object, then this object
must be of the same class or it must be a super-
class of the object which should be created. If
the latter is the case, the existing object is
replaced by the more specific (sub-class)
object which isto be created, but the filled
slots of the old object are directly copied into
the same dlots of the new object. It is not
allowed to create an object which is of a com-
pletely different classthan the object which the
slot aready contains. Such asituation is aso
an indication for an inconsistency in the rules
or for an inconsistent user query.

4.3.2 Adaptation Rules

The basic difference between completion rules and
adaptation rulesisthat completion rulesonly refer to

Rules for CBR 69

CBR-Works 4 - Compendium

one case, while adaptation rules always refer to
three cases, namely the query case, the retrieved
case, and the target case (see adso figure 4-2). These
three different cases have to be taken into account
when specifying the preconditions and the conclu-
sion of adaptation rules.

Precondition part of an adaptation rule

Asfor completion rules, the precondition of an ad-
aptation rule also consists of a conjunction of condi-
tions which are specified by predicates over certain
slot values, constants, or variables. For adaptation
rules, the same three kinds of conditions do exist as
for the completion rules, namely built-in predicates,
external functions and predicates, as well as a-kind-
of testsfor relational slots. Each time adlot isrefer-
enced in acondition, it must be explicitly stated out
of which case this slot hasto be taken. Slots can be
taken from theretrieved case, the query case, or also
fromthetarget case. Thedot valueswhich arefrom
the retrieved case are those which are stored in the
most similar case that isretrieved. The slot values
which are from the query case are those values
which are specified by the user as a query, and the
values which are from the target case are values
which have been already determined by other adap-
tation rules.

Conclusion part of an adaptation rule

Asfor completion rules, the conclusion part of an
adaptation rule also consists of a set of actions. An
action can be either the assignment of aslot or the
creation of a new object. Within an action of an ad-
aptation rule, only the target case can be modified,
but not the retrieved case or the current case.

Rules for CBR 70

CBR-Works 4 - Compendium

Different object structures for the retrieved case and
the current case

Asaready stated, rulesare directly connected to the
classes of the case description. For the completion
rules, each rule attached to a class ssmply appliesto
all objects of this class which are contained in the
case description. But for adaptation rules, objects
out of three different cases must be accessed within
the precondition of asingle rule. If there is more
than one object of the same classin a case, the ques-
tion ariseswhich of the objectsof theretrieved case,
the query case, and the target case are addressed
within the precondition of arule.

To cope with this problem, we introduce the addi-
tional requirement that the three objects (from the
retrieved case, the current case and the solution
case) must all occur in the same "context". Two ob-
jects from two different classes are in the same con-
text if

» both objects are the root object of the respec-
tive case or

* thetwo objects can be reached by following
the same relational dlots starting from the root
objects of two cases.

Thisdefinitionisillustrated in figure 4-7, where the
object structure of two cases C and C' is shown.

Rules for CBR 71

Figure 4-7:
Example Object
structure for two

cases

CBR-Works 4 - Compendium

CaseC CaseC
ol root object ol
QOty &!otsz QOty &!otsz
02 03 02 03
iﬂ ot S1 iﬂ ot S2 iﬂ ot S1 i& ot S1
o4 05 o4 05’

Each case consists of five objects, and we want to
assume that all objects are instances of the same
class. In this example, the objects 0l and o1’ arein
the same context because both are the root object of
their case. Furthermore, the objects 02 and 02’ arein
the same context because they can both be reached
viathe same relational slot S1 from the root object.
Following the same argument, 03 and 03’ areasoin
the same context as well as 04 and o4'. But 05 and
05’ are not in the same context becausein case C, 05
must be accessed from 03 viathe slot S2 while 05’
must be accessed from 03’ viathe ot S1.

Rules for CBR 72

5

5.1

CBR-Works 4 - Compendium

Maintaining Case—Based
Reasoning Systems

This chapter describes an architecture which sup-
portsthe user of aCBR system during the modelling
and maintaining of the used knowledge. Different
mai ntenance operations are described and charac—
terised along different dimensions. We give an over-
view of possible oper—ations with their resulting re-
pair strategies. Exemplary, we describe two
operations in detail. We examine the impact of

mai ntenance operations to the overall CBR system
which leads to the design of an evaluation compo-
nent. Asaresult, we describe our architecturefor the
maintenance of a CBR system. We close with a
short discussion.

Introduction

Much research and implementation effort has been
spent on building Case-Based Reasoning (CBR)
systems, but only few on their maintenance. Now, as
the systems are commercially used, the need for
maintenance is akey issue for overtime success.

Mai ntenance was compl etel y underestimated during
the first commercially usage of expert systems, for
example rule-based systems. These systems were
working at |aboratiesin aresearch environment with
small rule bases but were not maintainable in large
business applications for “real world” problems.
Also recent research projects identified a need for

Maintaining Case—Based Reasoning Systems 73

5.2

CBR-Works 4 - Compendium

mai ntenance support for knowledge- based sys-
tems.

This chapter presents an approach for the mainte-
nance of CBR systems and a resulting architecture.
In afirst attempt, we focus on CBR systemsfor clas-
sification tasks without an adaptation component.
The goal of such an architecture is the support of
mai ntenance operations and repair operations dur-
ing changes of the system. Maintenance operations
are made by the user in order to modify the system
in an intended manner. Repair operations are per-
formed after amaintenance operation has happened
to keep the system consistent. Further, an evaluation
component is offered which enables the user to esti-
mate the effect of the maintenance operation on the
system. As aresult, the lifetime of a CBR system
can be extended and the modelling and maintenance
costs are reduced.

First, we introduce a formal terminology which en-
ables us to formalise possible maintenance opera-
tions which occur. The operations are characterised
by a set of dimensionsin order to specify their im-
pact on the CBR system. Next, we give two detailed
examples of maintenance operations and we define
our resulting maintenance architecture in detail.

Knowledge Representation

Maintenance is the execution of operations which
change the domain schema and the case base in or-
der to eliminateformer modelling errorsor to update
the system according to changes of factsin redlity.
The domain schema describes*“how” the cases|ook
like and the case base represents the known cases

Maintaining Case—Based Reasoning Systems 74

5.21

CBR-Works 4 - Compendium

from the past. First, we will define the domain sche-
ma and the case base.

The Domain Schema and the Case Base

We assume an object—oriented approach with a do-
main schema DS= {0;,..., 0.}, where the concepts®
0; represent concrete entities in the real world and
are probably linked by inheritance and has-part rela-
tions. Thecasebase CB = {cy,..., Cy} consistsof aset
of casesc; . These are instances of aspecial concept
0, 0 DS(root concept), which defines the complete
schema of a case.

Each concept 0; = {ng, SIM,, fiy, ..., I} con-
sistsof thename n,, , aset of possiblelocal similar-

ity measures SIM,, 2 and afinite set of featuresf,
for each concept.

Theroot concept o, = {n,, SIM,,, 'y, ..., , d)3
has an additional feature d, which contains the class
for each case.

Let T = {t,...,t} *beaset of atomic typesand

the above mentioned domain schema DS the set of
all possible complex types.

1. Contrary to objects a concept isonly a set of
attributes without according methods

2. One similarity measure out of SIM,, is marked
specially with ahat. It is actually used for the simi-
larity calculation.

3. dOD = {d,,...,d} , Distheset of possible
classes. We assume that the classis defined in the
root concept which does not limit our approach

Maintaining Case—Based Reasoning Systems 75

5.2.2

CBR-Works 4 - Compendium

m

FF = g 7 T isthe set of all
0 ' T

features, then afeature f; O F is defined as atri-
plef; = (n;, &, w;) where n; isthe name of the
feature, We specifiesaweight which denotestheim-

portance of the feature used for similarity calcula-
tion and e OT0O DS isanaomic or complex
type. Atomic types are al predefined types by the
CBR system like Integer, Real, Symbol, Boolean,
etc. If afeature has acomplex typethisrepresents a
has—part relation in the domain schema. Further-
more, inheritance results from an is-arelation be-
tween concepts and means that one concept inherits

all features from all superconcepts.t The domain
schema and the case base define the complete do-
main model.

Similarity and Retrieval

After we have defined our domain schema and the
case base, we have to specify how similarity is cal-
culated during theretrieval. A query

g=1{dy ..., q,l} Isan instance of the root concept

4.t = (n, v, SIM,) wherenti specifies the type-
name, v t i the value—range for the type and
SIM ti aset of possible local similarity mea-
sures in which the activated similarity mea-
sure is marked specially by a hat.

1. If o iskind-of 0; , that is concept o; inherits
from superconcept o; , and
0 = {n,, simg, fiy, ..., f1} then

0 = {ng, SIMg, fix. ... fif By, il)

Maintaining Case—Based Reasoning Systems 76

5.3

CBR-Works 4 - Compendium

o, where the classd is unknown. During aretrieval,

the most similar cases are searched in the case base.
Similarity is defined by local and global similarity

measures. Thelocal similarity measures are defined
for each type t; and each concept o; as a set of possi-

ble measures;

O. , 0
SIM,, = [Slmlt', ...,Slmmt'D and

N 'O

O. o ,
SIM, = Ds|mlo', .y SiMy, T
0 "0

Each of these sets contains one specially marked
~—~ ti ~—~

o
measure sim i or sim which identifies the mea-
sure used for the similarity calculation. The local
similarity measures for concepts are combinations
of thelocal similarity measuresfor the features, e.g.
aweighted sum

|.

. 0 ~
sim (g.¢) = % w, [5im, (g, C,)
a=1
where e aisthe type (either complex or atomic) for

featuref,2 and|; isthe cardinality of featuresof g and

c. Thelocal similarity measures for types are calcu-
lated directly. The globa similarity measure
sim(g,c) between aquery g and acasecisdefined as

sim(qg,c) = si mor(q, C).

The Maintenance Operations

After we have defined the knowledge inside a CBR
system, we are now able to specify the characteris-

Maintaining Case—Based Reasoning Systems 77

DR

CBR-Works 4 - Compendium

tics of maintenance operations and the operations
themselves. The characterisation will help usto de-
termine the kind of changes which result from the
operations on the CBR system.

Characteristics of Maintenance Operations

We discovered three major dimension which can be
described as follows:

Atomic vs. Composed Operations

Thefirst dimension divides operations into atomic
or composed ones. A composed operation can be re-
placed by a sequence of atomic operations which
does the intended changes on the model. An opera-
tion isatomic if it can only be replaced by a se-
guence which contains one or moreillega
operations. These are operations which corrupt the
integrity of features, concepts, types and cases.

An example for an atomic operation is the deletion
of afeature of an concept which can only be handled
in one single step, whereas the movement of such a
feature from one concept to another isacomplex op-
eration. It is composed of two atomic operations,
namely delete feature and add feature.

Purpose: If an operation is atomic, the repair is
done immediately afterwards. Otherwise, in the
complex case, the repair is done sequentially after
every atomic operation.

Effects on the Knowledge Containers

Maintenance has an impact on the represented
knowledge inside the CBR system. The parts of the
system which are affected have to be determined.
For a distinction of the different parts we use the

Maintaining Case—Based Reasoning Systems 78

CBR-Works 4 - Compendium

knowledge containers vocabulary knowledge, re-
trieval knowledge, adaptation knowledge and case
knowledge. The vocabulary container defines the
terms for the description of the domain schema DS
and the case base CB, the retrieval container in-
cludesall knowledge for theretrieval of similar cas-
es, the adaptation container is used during the
transformation of retrieved solution cases, and the
case container holds the casesin the case base.

Which of these containers are touched by a mainte-
nance operation determines the scope of a succeed-
ing repair. Operations can change one or more
container(s). If we change the name of afeature,
only the vocabulary is changed, the simi— larity
measures and the cases remain. On the other hand,
adding afeature to a concept concerns the vocabu-
lary, because anew name and relating instances are
introduced, aswell astheretrieval and the case base,
because a similarity measure has to be defined for
the new feature and the cases have to be updated
with values for the new feature.

Purpose: This dimension determines which con-
tainers have to be repaired.

Unambiguousness of Maintenance and Repair Oper-
ations

During the execution of maintenance operationsand
their repair operations several flows are possible.
Each flow represents a specia way to maintain and
repair. Thisresults from the fact that there are vari-
ous realisations to implement a maintenance and re-
pair operation. Each different kind of such an
implementa—tion resultsin aconcrete flow. The dif-
ferent flows are realised by different scripts which
combine repair operations. If only one flow exists,

Maintaining Case—Based Reasoning Systems 79

CBR-Works 4 - Compendium

we call an operation including its repair unambigu-
ous. Otherwise, it iscalled ambiguous. If the system
offersdifferent flowsthe user can choose from a set
of scriptsto maintain and repair in an intended man-
ner. Beside thiskind of user interaction, it can also

be necessary to ask the user for certain valuesin or-
der to update the system.

An unambiguous operation for example, isrename
feature, whereas add feature to a concept is an ex-
amplefor an ambiguousoperation. When thefeature
isinserted into the model, morethan oneflow is pos-
sible. During the update of the case base new values
for the new feature have to be assigned to the exist-
ing cases. Three different scripts solvethisproblem:
case base update where the user enters avalue for
each case (CBUg,), case base update where the us-
ersenters adefault for all cases (CBUpy), and case
base update via a given algorithm which definesthe
values (CBUAV)

Asaresult, repair operations request user interac-
tions or may work automatically. Consequently, the
user has to select one of the repair scripts. If the op-
era—tion is ambiguous the user has also to interact
during the repair of a system. For a detailed descrip-
tion of the possible maintenance operations and re-
pair scripts see the appendix.

Purpose: This characteristic limits the possible re-
pair operations after a maintenance operation and
the user’ s involvement during repair.

Simply spoken, the first dimension defines “when”
repair takes place, the second “where” we have to
repair and the third the “ how-to”.

Maintaining Case—Based Reasoning Systems 80

CBR-Works 4 - Compendium

5.3.2 | Example Maintenance Operations

Typically, operations are used on several entities of
aCBR system. These are the already defined cases,
concepts, features of concepts, and types of features.
On every entity at least add—, delete— and change—
operations are available. In the following, we
present two example operations and discuss them
according to the dimensions we described in the pre-
vioussection. Thefirst oneiseasy to handle because
it is atomic, unambiguous and affects only one con-
tainer. The second, is a composed operation which
is ambiguous, affects several containersand is con-
sequently more difficult to manage.

The change weight of a feature operation

Description: This operation changes the weight of
an existing feature. Name, type and similarity mea-
sure of the feature are untouched. Formally, the op-
eration is denoted as:

f= (nf’ ef’Wf) - f = (nf’ ef’vvf)

Atomicity: Changing the weight of afeatureisan
atomic operation. It cannot be split into further op-
erations and repair takes place after the operation.

Container

Affectability: The case base as well as the vocabu-
lary container is untouched because the cases and
the vocabulary need not to be updated. The similar-
ity container has changed after the operation and
therefore the similarity calculation, too.

Unambiguousness. The result of this operation is
unambiguous. No user interaction for repair isre-
quired. Thisoperationiseasy to handle and requires
no further repair operations of the system by arepair

Maintaining Case—Based Reasoning Systems 81

Figure 5-1:
move concept
Operation

CBR-Works 4 - Compendium

script. Such scripts are used to keep a system consis-
tent by a sequence of suggested operations.

The move concept operation

Description: Theoperation movesaconcept or aset
of concepts from one location to another one in the
concept hierarchy. The operation excludes or in-
cludes all subconcepts of the moved concept.

This means that the operation moves only the con-
cept or the concept with al derived subconcepts.
The scope of several features may change: features
inherited by the previous superconcepts are not vis-
ible anymore. Instead, the features of the new super-
concepts get visible after the movement. Thisis
illustrated in figure 5-1. As a consequence naming
conflicts may occur.

Atomicity: Thiscomplex operation can be splitinto
several atomic operations. If only one concept is
moved these are: delete all features of the concept,
delete concept, add concept and add all features to
the new concept. If the whole subtreeis moved, this
operation sequence has to be perormed recursively
on all concepts and subconcepts.

Container Affectability: In general, the movement
of a concept affects all containers, the vocabulary,

Maintaining Case—Based Reasoning Systems 82

5.4

CBR-Works 4 - Compendium

the retrieval and the case base. The vocabulary
changes by the changed inheritance of the features.
The affectability on the similarity calculation is
caused by possible new featureswhich are inherited
from superconcepts. Also the case base hasto be
changed on the basis of schema modification. New
values have to be acquired for the new appearing
features and values for obsolete features have to be
deleted. The structure of the casesitself has been
changed.

Unambiguousness: There are two possible user in-
teractions. Thefirst oneisthedecisionif the concept
only or the whole subtree should be moved. Second,
new valuesfor the new inherited features have to be
guestioned from the user. This can be realised by
system-stored default values, by asking the user for
default values, which are used for all cases, or by
asking him for each case’ s value. All these repair
operations are realised by different scripts which
perform the desired operations. We have identified
many maintenance operations and have discussed
them like the both above.

Quality Changes During Maintenance

Maintenance operations and the succeeding repair
affect the overall outcome of a CBR system. This
holds for analytical aswell asfor synthetical sys-
tems. Because of our restriction to CBR systemsfor
classification tasks, we are able to use either cross—
validation or aleave-one-out test to estimate the sys-
tems quality. We know that this restriction is con-
siderable because the quality estimation in other
analytical systems like decision support systemsis
much more difficult. This holds especially for syn-

Maintaining Case—Based Reasoning Systems 83

5.4.1

CBR-Works 4 - Compendium

thetical CBR systems because of their novel result-
ing solutions.

Because of the unpredictability of the effects of the
mai ntenance operations and their repair to the sys-
temin general, it is necessary to offer an evaluation
component to the user. This component measures
the effects and visualises them so that the user can
estimate if the system has changed in the intended
manner.

In afirst attempt, we use the leave-one-out test to
measure the classification results because of itshigh
degree of visualisation combined with its ssmple us-
age. As already mentioned, this should be seen asa
starting point.

Evaluation Matrix

The class of aquery qis predicted by retrieving the
k—nearest neighboursR = {ry,...,r} of thequery and
applying amajority vote method. L et p,, denotethe
probability that the query isamember of the class
aOA. Itisdefined as:

S 8q BIM(, r)?
— 00

Pg, a " and
> sim(a,r)
ro0Q0
Mm ifa, = a
S =0

- 10 otherwise

where a, 0 K denotes the class of caser.! The pre-
diction of the CBR system isthe class with the high-

Maintaining Case—Based Reasoning Systems 84

Figure 5-2:
Quality Matrix
LOO

5.4.2

CBR-Works 4 - Compendium

est probability calculated from the set of the k
nearest neighbours. To visualise the outcome of the
system, we take a matrix built by a leave-one-out
test based on the k—earest neighbour. Thislooks as
givenin Figure 2.

C1 | C11---. Cak
Co Coq---. Coi

Cn Cn1- -~ Cnk

If |CB| = nthistest providesa (k + 1) x n - matrix.
Row i isformed by excluding case

G = {fi,....fy ,ac} fromthecasebase, retrieving
the k—nearest nei ghbours with query ¢; and sorting
the remaining cases according to their similarity.
Thiswill resultinarow r; = (¢ | Giq ,.-., Cjk)- Thisis
donefor al casesin the case base and leadsto the (k
+ 1) x n—matrix LOO.

Quality Changes

Maintenance operations have effects on the above
mentioned matrix with differ— ent impacts. We dis-
tinguish five different levels. The goal isto present
the user the changes after a maintenance operation
for evaluation purposes. The levels themselves are
distinguished by theimpact of the changes. Thefive
levels are:

1. The operation does not affect the matrix LOO
a all. All rows and even the similarity values
of each entry remain.

1. If thenumerator in the definition of py 4 iSO, then pg ¢
issetto 0.

Maintaining Case—Based Reasoning Systems 85

CBR-Works 4 - Compendium

2. Thesmilarity values of one or more entries of
the matrix LOO are changed by the operation
but the order of the matrix entries still remains
the same.

3. Cases permute in one or more rows of the
matrix LOO. Theretrieval provides the same
k—nearest neighbours as before but in another
order.

4. One or more rows of the matrix LOO differ
from the rows before applying the operation.
The retrieval now provides other cases from
the case base.

5. Thesize of the case base has changed which
has an effect to the size and contents of the
whole matrix LOO. Thisresultsfrom adding or
removing cases from the case base.

Further, it should be mentioned if the classification

of a case has changed or not by the evaluation com-

ponent. This may happen at all levels, except the
first one.

It isnot possibleto predict the exact level of quality
changes for maintenance operations in general.
However, we offer an opportunity which presents
the im— pact of the maintenance operations to the
system. This can be seen as a source of information
for the user to evaluate the performed maintenance
operations.

However, until now the visualisation of such evalu-
ation resultsis an un— touched topic in CBR re-
search. Effective visualisation tools are missing,
espe—cially for large case bases. Such a toolset
would be achallengefor further research and would
also improve alot of other CBR techniques.

Maintaining Case—Based Reasoning Systems 86

CBR-Works 4 - Compendium

5.5 | The Overall Architecture

After we have described the different parts of our
mai ntenance component, we present the integration
of this component into a CBR system. As already
men- tioned, a CBR system consists of the knowl-
edge containers and amodelling tool, which isused
for manipulating the containers. A change of the
contents of one container may have an effect to the
other ones.

The goal of our architecture isto preserve the sys-
tem’ sconsistency and to enable the user to deal with
the above mentioned effects. An overview of the ar-
chitecture is shown in figure 5-3.

The maintenance component, is placed between the
user and the modelling tool. The maintenance com-
ponent consists of three parts, the maintenance in—

terface, the history/undo tool and the quality evalu-
ator. A typical maintenance step goes as follows:

The user sends amodel change request to the main-
tenance interface, which includes a lookup table
with al maintenance operations, possible repair
scriptsand inver se operations. An inverse operation
restores the system to the state before the execution
of the maintenance operation. The maintenance op-
eration is enacted with the modelling tool and possi-
ble repairs are performed. Additionaly, the

mai ntenance interface logs the executed model
changesin the history/undo tool.

Maintaining Case—Based Reasoning Systems 87

CBR-Works 4 - Compendium

| ‘ ‘ ‘ ‘ 13
%3 Vocabulary | Similarity | Case Base | Adaptation ‘g
x| B
m
O
I3 Modeling Tool
=
O i

model
change
I .
S log :
g History/Undo Tool
S Maintenance undo T
Q |
% ! Interface
S| Quality Evaluator |-
=y optional ! Tevauation
S user |l I
= interaction: g
unao i
o reuest Yk |
|| request :: request |
-] | U%r .. o
Figure 5-3:

Layout of the
Architecture

After the maintenance operation, the user has the
possibility to analyse the resulting system with the
quality evaluator. So, acomparison between the sys-
tem’ squality before and after the maintenance oper-
ationispossible. The quality evaluator visualisesthe
differences between the systems according to the
differ— ent levels defined in section 5.4.2. If there-
sult of the maintenance operation is unsatisfactory,
the user can perform an undo operation. The undo
tool looks up the last operation and sends an undo
request to the maintenance interface. The interface
fetches the inverse operation from the lookup table

Maintaining Case—Based Reasoning Systems 88

CBR-Works 4 - Compendium

and executes it. User Maintenance Interface Histo-
ry/Undo Tool Quality Evaluator log undo Mainte-
nance Component Vocabulary Similarity Case Base
Adaptation Modeling Tool current CBR systemsre-
quest undo quality check request eval uation request
change model model change contents optional user
interaction.

In general, inverse operations exist for all mainte-
nance opera— tions. Some require the storage of
nearly the whole system, for ex— ample, if the com-
plete case base has been affected. Due to the stor—
age amount, thisis often not fea— sible. We found
two work—aroundsfor this problem. Thewhole sys—
tem (or case base) can be dumped to disk before
such an operation in order to reload it. Second, the
user can be warned, that no undo for thisand all
former operationsis possible. The system can offer
both methods and the user can specify the method he
prefersin the system preferences.

Maintaining Case—Based Reasoning Systems 89

6

6.1

CBR-Works 4 - Compendium

Methodology for Building and
Maintaining CBR Applications

This chapter presents a brief overview of the INRE-
CA-Il methodology for building and maintaining
CBR applications. It is based on the experience fac-
tory and the software process modeling approach
from software engineering. CBR devel opment and
mai ntenance experience is documented using soft-
ware process models and stored in athree-layered
experience packet.

Introduction

Today, there are already afew companieswhich are
specialized in developing CBR applications. Their
problem is that they mostly develop their applica-
tionsin an ad-hoc manner: They do not have guide-
lines or methods which could help their developers
in performing anew project and there are no waysto
preserve experience made in performed projectsfor
future use. This can cause serious problems when
members of the staff leave, taking their experience
withthem, and new staff hasto betrained. Theresult
isan inefficient or ineffective system development,
which cannot be sustained by contemporary organi-
zations. From these problems, the need for a meth-
odology to support the development and
maintenance of CBR applications arson afew years
ago and several approaches in that direction have
been proposed. A methodology describes the devel -
opment of a software system using asystematic and

MethodologyforBuildingandMaintaining CBRApplications

6.2

CBR-Works 4 - Compendium

disciplined approach. It gives guidelines about the
activities that need to be performed in order to suc-
cessfully devel op acertain kind of product, e.g., any
kind of software system, asin our case, a CBR ap-
plication. A methodology shall use awell-defined
terminology, which makesit also possibleto collect
experiencesmadein past projectsin astructured and
reusable way to improve future projects. One of the
main driving forces behind the devel opment and the
use of amethodology relates to the need for quality
in both the products and processes of the develop-
ment of computer-based systems. The use of an ap-
propriate methodology will provide significant
quantifiable benefits in terms of productivity (e.g.
reduce therisk of wasted efforts), quality (e.g. inclu-
sion of quality deliverables), and communication (a
reference for both formal and informal communica-
tion between members of the devel opment team and
between the devel oper and the client) and it will pro-
vide a solid base for management decision making
(e.g. planning, resource all ocation, and monitoring).

This chapter describes the methodology approach
which is based on two relatively new areas in soft-
ware engineering (SE): experience factory and soft-
ware process modeling. We developed a

methodol ogy based on recent SE techniques which
isenriched by up-to-date experience on building and
maintaining CBR applications.

Methodology Approach

Our approach to a CBR development methodology
Isitself very "CBR-like”. In a nutshell, it captures
previous experience from CBR development and
storesit in a so-called experience packet (aterm

MethodologyforBuildingandMaintaining CBRApplications

CBR-Works 4 - Compendium

from the experience factory approach). The entities
being stored in the experience packet are software
process models, or fragmentsof it such asprocesses,
products, or methods. The experience packet is or-
ganized on three level s of abstraction: acommon ge-
nericlevel at thetop, acookbook-level inthemiddle,
and a specific project level at the bottom.

6.2.1 Experience Factory
Characterize, Proiect
Set Goals, Suojegrt
Choose Process |« . PP
Experience
in Models
execution
plans
Execute
> Analyse
Process Lessons
Learned
Project Organisation Experience Factory
Figure 6-1:
The Experience
Factory Approach | T1he experience factory ideais mptlvated by the ob-
(Basili, Caldiera, = Servation that any successful business requires a
& Rombach, = combination of technical and managerial solutions
1994) * which includes awell-defined set of product needs

to satisfy the customer, assist the developer in ac-
complishing those needs and create competencies
for future business; a well-defined set of processes
to accomplish what needs to be accomplished, to

MethodologyforBuildingandMaintaining CBRApplications

6.2.2

CBR-Works 4 - Compendium

control development, and to improve overall busi-
ness; a closed-loop process that supports learning
and feedback.

The key technologies for supporting these require-
mentsinclude: modeling, measurement, the reuse of
processes, products and other forms of knowledge
relevant to the (software) business. An experience
factory isalogical and/or physical organization that
supports project devel opments by analyzing and
synthesizing all kinds of experience, acting asare-
pository for such experience, and supplying that ex-
perience to various projects on demand (see figure
6-1). An experience factory packages experience by
building informal, formal or schematized models
and measures of various software processes, prod-
ucts, and other forms of knowledge via people, doc-
uments, and automated support. The main product
of an experience factory is an experience packet.
The content and the structure of an experience pack-
et vary based upon the kind of experience clustered
in the packet.

Software Process Models

Software process modeling is an approach that is
highly important in the context of the experience
factory approach. Software process modelsdescribe
the engineering of a product, e.g., the software that
has to be produced. Unlike early approachesin SE,
the software development is not considered to fol-
low asinglefixed process model with aclosed set of
predefined steps. A tailored process model particu-
larly suited for the current project must be devel-
oped in advance. Software process models include
technical SE processes (like requirements engineer-

MethodologyforBuildingandMaintaining CBRApplications

CBR-Works 4 - Compendium

Ing, design of the system to be built, coding, €etc.),
managerial SE processes (like management of prod-
uct related documentation, project management,
quality assurance, etc.), and organizational process-
es (covering those parts of the business processin
which the software system will be embedded and
that need to be changed in order to make best use of
the new software system). From timeto time, such a
model hasto be refined or changed during the exe-
cution of the project if thereal world software devel-
opment process and the model do not match any
longer.

Several representation formalisms for process mod-
els have been already developed. Although the par-
ticular names that are used vary from one
representation to another, all representations have a
notation of processes, methods, products, goals, and
resources. A processisasingle step that hasto be
carried out in a software development project. Each
process has a defined goal and it consumes, produc-
es, or modifies certain products. Usually, the goal of
aprocessisto create or modify the products. Prod-
ucts include the executabl e software system as well
as the documentation like design documents or user
manuals. For enacting a process, there can be sever-
al aternative methods that describe how to actually
enact the process. When the process is enacted, an
appropriate method must be chosen. We distinguish
between simple and complex methods. A simple
method can be atextual description like aguideline
of what has to be done to reach the goal of the pro-
cess. A complex method decomposes a process into
a set of sub-processes that exchange certain by-
products in the course of achieving the goal of the
main process.

MethodologyforBuildingandMaintaining CBRApplications

6.2.3

CBR-Works 4 - Compendium

In this methodology, software process models are
used to represent the CBR devel opment experience
that is stored in the experience packet. Software pro-
cesses being represented can be either very abstract,
I.e., they can just represent some very coarse devel-
opment steps such as. domain model definition, sim-
ilarity measure definition, case acquisition. But they
can aso bevery detailed and specific for aparticular
project, such as: analyze data from Analog Device
Inc. operational amplifier (OpAmp) product data-
base, select relevant OpAmp specification parame-
ters, etc. The software process modeling approach
allows to construct such a hierarchically organized
set of process models. Abstract processes can be de-
scribed by complex methodswhich arethemselvesa
set of more detailed processes. We make use of this
property to structure the experience packet.

Structure of the Experience Packet

The experience packet is organized on three levels
of abstraction: a common generic level at the top, a
cookbook-level in the middle, and a specific project
level at the bottom (figure 6-2).

Common Generic Descriptions

At thislevel, processes, products, and methods are
collected that are common for alarge spectrum of
different CBR applications. These descriptions are
the basic building blocks of the methodology. The
documented processes usually appear during the de-
velopment of most CBR applications. The docu-
mented methods are very general and widely
applicable and give general guidance of how the re-
spective processes can be enacted. At this common
level, processes are not necessarily connected to a

MethodologyforBuildingandMaintaining CBRApplications

CBR-Works 4 - Compendium

complete product flow that describes the devel op-
ment of a complete CBR application. They can be
isolated entities that can be combined in the context
of a particular application or application class.

Experience Packet

Software

Common Generic Level

building development blocks, independent from
application class or specific CBR project

Process

Models

application class, independent of a specific CBR project

Cookbook-Level: Experience Modules
combination of different blocks for a particular

Specific Project Level

specific for a particular CBR project

Figure 6-2:
Structure of the
Experience
Packet

Cookbook-Level: Experience Modules

At thislevel, processes, products, and methods are
tailored for a particular class of applications (e.g.,
help desk, technical maintenance, product catalog).
For each application class, the cookbook-level con-
tains an experience module. Such an experience
module is akind of recipe describing how an appli-
cation of that kind should be devel oped and/or main-
tained. Thereby, the items (processes, methods, and
products) contained in such a module provide spe-
cific guidance for the development of a CBR appli-
cation of thisapplication class. Usually, theseitems
are more concrete versions of items described at the
common level. Unlike processes at the common lev-
el, all processes which are relevant for an applica-
tion class are connected and build a product flow
fromwhich aspecific project plan can be devel oped.

MethodologyforBuildingandMaintaining CBRApplications

6.2.4

CBR-Works 4 - Compendium

Specific Project Level

The specific project level describes experiencein
the context of a single particular project that had al-
ready been carried out in the past. It contains project
specific information such asthe particul ar processes
that were carried out, the effort that was spent for
these processes, the products (e.g. domain model)
that have been produced and methodsthat have been
selected to actually perform the processes and peo-
ple that had been involved in executing the particu-
lar processes.

Documentation of the Experience Packet

Processes, products, methods, agents, and tools be-
ing stored in the experience packet are documented
using a set of different types of sheets. A sheetisa
particular form that is designed to document one of
theitems. It contains several predefined fieldsto be
filled aswell aslinksto other sheets (see examplein
the Appendix). We have developed four types of
sheets(for products, processes, simple methods, and
complex methods) for documenting generic pro-
cesses that occur on the top and the middle layer of
the experience packet and six types of sheets (four
sheetsfor products, processes, simple methods, and
complex methods, and two additional sheetsfor tool
and agent descriptions) for documenting specific
processes for the specific project level of the experi-
ence packet. Figure 6-3 shows the four generic de-
scription sheets. One kind of sheet isused to
describe generic processes. Generic process sheets
contain references to the respective input, output,
and modified products of the process. Each product
is documented by a separate generic product de-
scription sheet. Each process description sheet also

MethodologyforBuildingandMaintaining CBRApplications

Figure 6-3:
Overview of
generic descrip-
tion sheets

CBR-Works 4 - Compendium

contains links to one or several generic methods. A
generic method can either be a generic simple meth-
od (which is elementary and does not contain any
references to other description sheets) or it can be a
generic complex method. Such a generic complex
method connects several sub-processes (each of
which is again documented as a separate generic
process description) which may exchange some by-
products (documented as separate generic product
descriptions).

Generic
Process

. sub-process
applicable methods

input,
output,
modified
product

Generic
Complex
Method

Generic
Simple
Method

by-product

Generic
Product

A particular methodology tool was implemented
which supports the management of the experience
packet and the different modulesit consists of . It
supports the filling of the different sheets, checks
consistency, and creates the required links. It ex-
portsthe experience packet asan HTML network in
which each sheet becomes a separate HTML page
that includeslinksto therelated pages. Therefore, it
Is possible to investigate the experience packet via
Intranet/Internet using a standard Web browser.

MethodologyforBuildingandMaintaining CBRApplications

6.2.5

CBR-Works 4 - Compendium

Using and Maintaining the Experience
Packet

When anew CBR project is being planned, the rele-
vant experience from the experience packet must be
selected and reused. The experience modules of the
cookbook-level are particularly useful for building a
new application that directly fallsinto one of the
covered application classes. We consider the experi-
ence modulesto be the most valuable knowledge of
the methodology. Therefore, we suggest to start the
“retrieval” 1 by investigating the cookbook-level and
only using the common generic level asfall-back.
Furthermore, it isimportant to maintain the experi-
ence packet, i.e., to make sure that new experience
isentered if required. For using and maintaining the
experience packet we propose the following proce-
dure:

1. ldentify whether the new application to be
realized fallsinto an application classthat is
covered by an experience module of the cook-
book. If thisisthe case then goto step 2a; else
goto step 3.

2. @) Analyze the generic processes, products and
methods that are proposed for this application
class.

b) Select the most similar particular applica-
tion from the specific project level related to
this module and analyze the specific descrip-
tion sheets in the context of the current appli-
cation.

1. Upto now, thisretrieval is not supported by atool,
but through an index schema. However, support for
retrieval (e.g. aCBR approach) is considered
important for the future.

MethodologyforBuildingandMaintaining CBRApplications

CBR-Works 4 - Compendium

c) Develop a new project plan and workflow
for the new application based on the informa-
tion selected in steps 2a and 2b. Goto step 4.

3. Develop anew project plan and workflow for
the new application by selecting and combin-
ing some of the generic processes, products
and methods from the common generic level;
make these descriptions more concrete and
modify them if necessary.

4. Execute the project by enacting the project
plan. Record the experience during the enact-
ment of this project.

5. Decide whether the new project contains new
valuable information that should be stored in
the experience packet. If thisis the case, goto
step 6, else stop.

6. Document the project using the specific
description sheets and enter them into the spe-
cific project level of the experience packet
(supported by the methodology tool).

7. If possible, create a new experience module by
generalizing the particular application
(together with other similar applications) to an
application class and generalize the specific
descriptions into generic descriptions. Add the
new to the current cookbook (supported by the
methodology tool).

8. If new generic processes, methods, or products
could be identified that are of a more general
interest, i.e., relevant for more than the appli-
cation classidentified in step 7, then add them
to the common generic level (supported by the
methodology tool).

MethodologyforBuildingandMaintaining CBRApplications

[Aam9l]

[AaP94]

[AIW97]

[BBF9g]

[BBGI74]

[BBGO7h]

CBR-Works 4 - Compendium

Bibliography

Aamodt, A.: A knowledge-intensive approach to
problem solving and sustained learning. Ph.D. Dis-
sertation, University of Trondheim, Norwegian In-
stitute of Technology (1991)

Aamodt, A., Plaza, E.: Case-Based Reasoning:
Foundational Issues, Methodological Variationsand
System Approaches, AlCom - Artificial Intelligence
Communications, IOSPress, Vol. 7: 1 (March 1994)
39-59

Althoff, K.-D., Wilke, W.: Potential uses of case-
based reasoning in the experience-based construc-
tion of software systems. In: R. Bergmann & W.
Wilke (eds.), Proceedings of the 51 German Work-
shop in Case-Based Reasoning (GWCBR' 97), L SA-
97-01E, Centre for Learning Systems and Applica-
tions (LSA), University of Kaiserdautern (1997)

Bergmann, R., Breen, S., Fayal, E., Goker, M.,
Manago, M., Schumacher, J., Schmitt, S, Stahl, A.,
Wess, S. & Wilke, W.: Collecting experience on the
systematic devel opment of CBR applications using
the INRECA-II Methodology (1998)

Bergmann, R., Breen, S., Goker, M., Johnston, R.,
Schumacher, J., Stahl, A., Traphoner, R., Wilke, W.:
Initial methodology for building and maintaining a
CBR application. INRECA-Deliverable (1997)

Bergmann, R., Breen, S., Goker, M., Johnston, R.,
Schumacher, J., Traphoner, R., Wilke, W.: Cook-

101

[BCRY4]

[BeA9S]

[BeE95]

[Berog]

[Bes9g]

[Boo91]

[BPWO4]

CBR-Works 4 - Compendium

book for building and maintaining a CBR applica-
tion. INRECA-Deliverable (1997)

Basili, Caldiera, Rombach: The Experience Factory.
In J. Marciniak (Ed.) Encyclopedia of Software En-
gineering - Vol 1. New York: Wiley (1994)

Bergmann, R. & Althoff, K.-D.: Methodology for
building CBR applications. Chapter 12 of Lenz,
Bartsch-Sporl, Burkhard, Wess (Eds). Case-Based
Reasoning Technology. LNAI 1400, Springer
(1998)

Bergmann, R. & Eisenecker, U.: Fallbasiertes
Schlief3en zur Unterstitzung der Wiederverwend-
ung objektorientierter Software: Eine Fallstudie.
Proceedings der 3. Deutschen Expertensystemta-
gung, XPS-95, pp. 152-169, Infix-Verlag (1995)

Bergmann, R.: On the use of taxonomies for repre-
senting case features and local similarity measures.
In Gierl & Lenz (Eds.) 6" German Workshop on
CBR (1998)

Bergmann, R., Stahl, A.: Similarity Measures for
Obj ect-Oriented Case Representations, Proceedings
of the European Workshop on Case-Based Reason-
ing, EWCBR'98

Booch, G.: Object—Oriented Design with Applica-
tions. Benjamin/Cummings (1991)

Bergmann, R. Pews. G., Wilke, W.: Explanation-
based similarity: A unifying approach for integrat-
ing domain knowledge into case-based reasoning
for diagnosis and planning tasks. In Wess, S, Al-
thoff, K.-D., and Richter M.M. (Eds.) Topicsin
Case-Based Reasoning, Lecture Notesin Al, pp.
182-197 (1994)

102

CBR-Works 4 - Compendium

[BuM94] Bunke, H. & Messmer, B.: Similarity measures for

[BWAO7]

[BWS97]

[BWT94]

[BWW94]

[For82]

[FBF77]

structured representations. In Wess, Althoff & Rich-
ter (Eds.) Topicsin Case-Based Reasoning, pp. 106-
118, LNAI 837, Springer (1994)

Bergmann, R., Wilke, W., Althoff, K.-D., Breen, S.,
Johnston, R.: Ingredients for Developing a Case-
Based Reasoning Methodology. In: R. Bergmann &
W. Wilke (eds.), Proceedings of the 5" German
Workshop in Case-Based Reasoning (GWCBR' 97),
LSA-97-01E, University of Kaiserslautern, pp. 49-
58.

Bergmann, R., Wilke, W., Schumacher, J.: Using
software process modeling for building acase-based
reasoning methodology: Basic approach and case
study. In: D. Leake & E. Plaza (eds.) Case-Based
Reasoning Research and Development (1C-
CBR’97). Lecture Notesin Al. Springer, pp. 509-
518.

Bergmann, R., Wess, S., Traphoner, R., Breen, S.:
Using Background Knowledge in the Integrated
System: Specification and Approach, ESPRIT
project 6322, Deliverable, Kaiserdautern (1994)

Bergmann, R., Wess, S., Wilke, W.: Using Rulesto
Represent Background Knowledge for CBR, Deliv-
erable of the INRECA Esprit Project (1994)

Forgy, C.L.: Rete: A fast algorithm for the many
pattern/many object pattern match problem. Artifi-
cial Intelligence, 19, pp. 17-37 (1982)

Friedman, JH., Bentley, J.L., Finkel, R.A.: Anago-
rithm for finding best matches in logarithmic ex-
pected time. ACM Trans. math. Software, 3, pp.
209-226 (1977)

103

CBR-Works 4 - Compendium

[GRB98] Goker, M., Roth-Berghofer, T. Bergmann, R., Pant-

[Hewos]

[Kol93]

[Lal87]

[LBBYS]

[MaB94]

[OsB96]

[Plags]

[RoV95]

leon, T., Traphoner, R., Wess, S, & Wilke, W.: The
development of HOMER: A case-based CAD/CAM
hel p-desk support tool (1998)

Heister, F. & Wilke, W.: An Architecture for Main-
taining Case-Based Reasoning Systems. Proceed-
ings of the European Workshop on Case-Based
Reasoning, EWCBR'98 (1998)

Kolodner, J.: Case-Based Reasoning, Morgan Kauf-
mann Publishers, San Mateo (1993)

Lalonde, W.R.: A novel rule base facility for Small-
talk. Proceedings of the ECOOP'87, pp. 193-198
(1987)

Lenz, M., Bartsch-Sporl, B., Burkhard, H.-D.,
Wess, S. (eds.): Case-Based Reasoning Technology,
From Foundations to Applications, Springer-Ver-
lag, Berlin/Heidelberg (1998)

Manago, M. Bergmann, R. et a.: CASUEL: A com-
mon case representation language. Deliverable of
the INRECA Esprit Project (1994)

Osborne H., Bridge, D.: A case base similarity
framework. In Smith & Faltings (Eds.) Advancesin
Case-Based Reasoning, pp. 309-325, LNAI 1168,.
Springer (1996)

Plaza, E.: Casesasterms: A feature term approach

to the structured representation of cases. In Veloso

& Aamodt (Eds.) Case-Based Reasoning Research
and Development, pp. 265-276, LNAI 1010, Spring-
er (1995)

Rombach, Verlage: Directions in Software Process
Research. Advancesin Computers, Vol. 41, Aca-
demic Press (1995)

104

CBR-Works 4 - Compendium

[Ric95] Richter, M. M.: The knowledge contained in simi-

[Sul9g]

[SKH97]

[VBHO3]

[WAD94]

[WeK 91]

[Wes95]

larity measures. Invited Talk on the ICCBR-95. ht-
tp://wwwagr.informatik.uni—kl.de/~Isa/f CBR/
Richtericcbro5remarks.html (1995)

Schulz S.: CBR-Works - A State-of-the-Art Shell
for Case-Based Application Building, Proceedings
of the German Workshop on Case-Based Reason-
ing, GWCBR'99 (1999)

Sanders, K., Kettler, B., Hendler, J.: The case for
graph-structured representations. In Leake & Plaza
(Eds.) Case-Based Reasoning Research and Devel-
opment, LNAI 1266, Springer (1997)

Vol A., Batsch-Sporl, B., Hovestadt, L., Jantke,
K.P., Peterson, U., Strube, G.: FABEL: Projektsta-
tus, Perspektiven und Potentiale, Fabel Report No.
16, Gesellschaft fur Mathematik und Datenverarbe-
itung mbH, Sankt Augustin, Germany (1993)

Wess, S., Althoff, K.-D., Derwand, G.: Using k-d
treesto improve the retrieval step in case-based rea-
soning. In Wess, S., Althoff, K.-D., and Richter
M.M. (Eds.) Topicsin Case-Based Reasoning, Lec-
ture Notesin Al, Springer-Verlag, pp. 167-181
(1994)

Weiss, S. M., Kulikowski, C. A.: Computer Systems
That Learn -- Classification and Prediction Methods
from Statistics, Neural Nets, Machine Learning, and
Expert Systems. Morgan Kaufmann (1991)

Wess, S.: Fallbas ertes Problemldsen in wissens-
basi erten Systemen zur Entschei dungsunterstiitzung
und Diagnostik, Ph.D. Dissertation, University of
Kaiserdlautern (1995)

105

CBR-Works 4 - Compendium

[Wil98] Wilke, W.: Knowledge Management for Intelligent
Sales Support in Electronic Commerce, Ph.D. Dis-
sertation, University of Kaiserdlautern (1998)

[TEC99a] CBR-Works3- Reference Manual, Teclnno GmbH,
Kaiserdautern (1999)

[TEC99b] Introduction to the Case-Query-Language, Teclnno
GmbH, Kaiserdautern (1998)

[Tver7] Tversky, A.: Features of Similarity. Psychological
Review, 84, pp. 327-352 (1977)

106

	cbr:works 4
	Compendium
	Content
	Preface
	1 The CBR-Shell
	1.1 Introduction
	1.2 Structure Modeling
	1.2.1 Concepts
	1.2.2 Types

	1.3 Case Base Building and Maintenance
	1.4 Reusing Data
	1.5 Consulting the Case Base
	1.5.1 Common Consultation
	1.5.2 Strategic Questioning

	1.6 Summary

	2 Similarity of Taxonomies
	2.1 Introduction
	2.2 Different Use of Taxonomies
	2.3 Knowledge Contained in Taxonomies
	2.3.1 Basic notions
	2.3.2 Semantic of Taxonomy Nodes
	2.3.3 Similarity Between Leaf Nodes
	2.3.4 Assigning Similarity Values for Leaf Nodes
	2.3.5 Semantic and Similarity of Inner Nodes

	2.4 Summary

	3 Similarity Measures for Case Representations
	3.1 Introduction
	3.2 Example Use of Class Hierarchies and Object Similarities
	3.3 Computing Object Similarities
	3.3.1 Basic Notions
	3.3.2 Basic Considerations about Object Similarities
	3.3.3 Different Semantics of Nodes
	3.3.4 Inter-Class Similarity Between Concrete Objects
	3.3.5 Semantics and Inter-Class Similarity of Abstract Objects

	3.4 Summary

	4 Rules for CBR
	4.1 Introduction
	4.2 Representing and Using Background Knowledge
	4.2.1 Kinds of Rules
	4.2.2 Components for Handling Background Knowledge
	4.2.3 Impact of the Object-Oriented Case Representation

	4.3 Detailed Description of Rules
	4.3.1 Completion Rules
	4.3.2 Adaptation Rules

	5 Maintaining Case–Based Reasoning Systems
	5.1 Introduction
	5.2 Knowledge Representation
	5.2.1 The Domain Schema and the Case Base
	5.2.2 Similarity and Retrieval

	5.3 The Maintenance Operations
	5.3.1 Characteristics of Maintenance Operations
	5.3.2 Example Maintenance Operations

	5.4 Quality Changes During Maintenance
	5.4.1 Evaluation Matrix
	5.4.2 Quality Changes

	5.5 The Overall Architecture

	6 Methodology for Building and Maintaining CBR Applications
	6.1 Introduction
	6.2 Methodology Approach
	6.2.1 Experience Factory
	6.2.2 Software Process Models
	6.2.3 Structure of the Experience Packet
	6.2.4 Documentation of the Experience Packet
	6.2.5 Using and Maintaining the Experience Packet

	Bibliography

