

Neuron Data Elements Environment
Elements Application Services

V e r s i o n 4 . 1

C Programmer’s Guide

© Copyright 1986–1997, Neuron Data, Inc. All Rights Reserved.

This software and documentation is subject to and made available only
pursuant to the terms of the Neuron Data License Agreement and may be
used or copied only in accordance with the terms of that agreement. It is
against the law to copy the software except as specifically allowed in the
agreement. This document may not, in whole or in part, be copied
photocopied, reproduced, translated, or reduced to any electronic medium
or machine-readable form without prior consent, in writing, from Neuron
Data, Inc.

Use, duplication, or disclosure by the U.S. Government is subject to
restrictions set forth in the Neuron Data License Agreement and in
subparagraph (c)(1) of the Commercial Computer Software-Restricted
Rights Clause at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013;
subparagraph (d) of the Commercial Computer Software—Licensing clause
at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does
not represent a commitment on the part of Neuron Data. THE SOFTWARE
AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION,
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. FURTHER, NEURON DATA DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS
REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE
SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Open Interface Element™, Data Access Element™, Intelligent Rules
Element™, and Web Element™ are trademarks of, and are developed and
licensed by Neuron Data, Inc., Mountain View, California. NEXPERT
OBJECT® and NEXPERT® are registered trademarks of, and are developed
and licensed by, Neuron Data, Inc., Mountain View, California.

Other brand or product names are the trademarks or registered trademarks
of their respective holders.

Contents 1

Preface
Purpose of this Manual .. xvii
Audience .. xvii
How to Use This Manual ... xvii
Related Manuals...xviii

1. Introducing EE Application Services
Introduction ..1

Building Block Mechanisms ...1
Data Source/View Mechanism..2
Application Services Classes ..2

2. Using Data Source/View
Using Data Source/View in an Application ..5
Propagating Events..5
Controlled Access to Data Sources ..6

Locking Data in Table Datasources. ..7
Locking Data in List Datasources. ...8

Data Source/View Examples ...8
OI Example ...8
DA Example ..9
IR Example ..9

Data Source Internals...9
Internals for OI Core Data Sources..10
Internals for DA Data Sources..10

RecordSetDataSource Implementation ...10
Properties from VariantTable ...10
Methods from VariantTable ...11

Internals for IRE Data Sources ...12
Example ...14
Input Table (LBox) ...14
Selection table (ListBox) ..15
IRE Text Edit ...17

3. Tree Datasource: Managing Hierarchical Data
Concepts ..19

Tree Datasource ..20
Node ..20
Tree ..21
Node Accessor ..23
Cursor ..25
Edit Object ...26

Options for the TVIEW and BROWS Views...31
cursor ...31
C Programmer’s Guide iii

Contents

initexpandlevel ...32
autosize ..33

Building a Tree Datasource ..33
Creating and Destroying a Tree Datasource ..33
Creating and Destroying a Node Accessor ..34
Creating and Destroying an Edit Object ...35
Adding Nodes ..36
Managing Memory ..45

Editing a Tree Datasource...48
Datasource-Level Editing ...50
Node-Level Editing ...55

Advanced Topics..56
Node-Count Functions ..56
Managing the Cursor ..59
Acting on Multiple Nodes ..59
Persistent Data Storage and Relational Tables ..61

4. Graph Datasource: Managing Graph Data
Concepts ..63

Graph Datasource ..63
Node ..64
Edge ...67
Graph ...70
Accessor ...74
Cursor ..76
Edit Object ...78

Options for the DGRAM View..84
autosize ..85
cursor ...86
readonly ...87
Diagrammer ..87
Custom Node and Link Options ...102

Building a Graph Datasource...117
Creating a Graph Datasource ...117
Creating and Destroying an Edit Object ...118
Creating Accessors ...118
Creating Nodes ..122
Creating Edges ...129

5. Args Class
Overview...133
API Overview ...133
Scanning the List of Command Arguments...134

6. ArNum Class
Overview...137
API Principle...137
Macros..137
Constructors and Destructor ..138
iv C Programmer’s Guide

Contents

Clone, Copy, Reset ...138
Changing the Length of the Array ..139
Global Queries ..139
Accessing Elements..139
Finding Elements ...140
Adding Elements..141
Removing Elements ...141
Sorting..142
Removing Duplicates ..142

7. ArObj Class
Overview...145
 API Principle..145
Constructors and Destructor ..148
Clone, Copy, Reset ...148
Changing the Length ...148
Global Queries ..148
Accessing Elements..149
Finding Elements ...149
Adding Elements..150
Removing Elements ...151
Sorting..152
Removing Duplicates ..152

8. ArPtr Class
Technical Overview ...153

API Principles ...153
Macros ...153

Constructors and Destructor ..154
Constructors ...154
 Destructor ..154

Clone, Copy, Reset ...154
Changing the length of the array...155
Global Queries ..155
Accessing Elements..155
Finding Elements ...156
Adding Elements..157
Removing elements ...158
Sorting..158
Removing Duplicates ..159

9. ARRay Class
Overview...161

10. ARRec Class
Overview...163

API Principle ...163
Macros ...163

Constructors and Destructor ..164
Constructors ...164
 Destructor ..164

Clone, Copy, Reset ...164
Changing the length ..164
C Programmer’s Guide v

Contents

Global Queries ..165
Accessing Elements..165
Finding Elements ...165
Adding elements ..166
Removing Elements ...167
Sorting..167
Removing Duplicates ..168

11. Avl Class
Overview...169
Data Structures ...169
AvlTree and AvlNode Classes ...170
AvlNode Class..170
Constructors and Destructor ..170
Convenience Functions ...170
Accessing the AvlNode Key...171
Scanning AvlNodes ...171
AvlTree Class..172
Constructors and Destructor ..172
Queries...172
Propagating an Action...173
 Current Node API...173

12. Base Class
Technical Summary ...177
Basic Data Types ..177
BoolEnum..181
CpyEnum ..181
CmpEnum ...182
PerfEnum...182
VertEnum and HorzEnum..183
Version Enum ...183
Debugging Macros...184
Exit Status..187
Miscellaneous Basic Macros ...188

13. BBuf Class
Overview...191

Examples: ..191
Examples: ..191

BBuf Class..193
Specialization Flags..193
Data Structures ...193
Constructors and Destructor ..194

Constructors ...194
Destructor ...195

Read and Write Operations ..195
Seek Operations..196
Accessing Private Fields..197
Installing Custom Paging Methods...199
vi C Programmer’s Guide

Contents

14. Cell Class
Technical Summary ...201
Data Structures ...201
Cell Range Operations...202

15. Char Class
Technical Summary ...203
Environment Variables..205
Data Structures ...205
Character Length..207
Character Code...207
Basic Character Classification ..209
Basic Character Conversion..210
Conversions between ASCII and EBCDIc ..212

16. Cs Class
Overview...215
Code Sets ...215
Creating and Destroying...219

Constructors ...219
 Destructor ..219

Convenience Functions ...219
Convenience Macros..220
Predefined Code Sets...221
Local Macros ...222
ISO LATIN1 Character Information Definition...222
ASCII Character Information Definition ..222
JIS0208 Character Information Definition ..222
JIS0201 Character Information Definition ..223

17. Ct Class
Technical Summary ...225
Data Types ..226
Enumerated Types ...226
Creating and Disposing ..229
Member Functions ...230

18. Ds Module
Design Overview..235
Classes..235
View Interface...235
Edition Interface ...236
Update Interface...237
Contained/Container Data Source Interface ...237
Creating and Disposing ..237
Class ...238

Edition Operation ..238
Modifications Implementation ..238
Data Source ...238
C Programmer’s Guide vii

Contents

19. Err Class
Overview...239

Disciplined Exceptions ..239
Error Handling And Reporting ...240
Entry/Exit Macros ...241
Error Recovery ...241
Retry ...241
Signalling A Failure ...242
Fatal Errors ..243
Error Contexts ..244
Error Tracing ..245
Global Variables And Initialization ..245
Advanced Error Reporting ...247
Summary Of Error Handling And Reporting ...247
Reporting Errors for Calls to Third Party APIs ...248

Data Structures ...249
ErrFrame API for Error Reporting and Discrimination ...249

ErrFrame Class ...250
Macros..251

Context Messages and Tracing ..251
Misc Macros For Error Reporting ..252
ERR_LIB, ERR_EXTERN...252
Initialization Macros..253
Fatal Errors..253
Signaling Failures...253
Generating Warnings ..254
Querying the Error State ...254
Assertions..254
Error Reporting ..255
Error Conditions Signaled by Error Module..255
Exiting from the Application..255
UNIX Exception Handling..255
W16 Exceptions Handling ..256
Mac Exceptions Handling...257

20. File Class
Technical Summary ...259
Data Structures ...263
Enumerated Types ...264
Accessing File Attributes ..266
Checking Existence and Access Rights of a File ..270
Opening and Closing a File ..271
Querying and Changing Position in a File ...273
Reading and Writing ...276
Miscellaneous Functions ...280
Default Search Path..281
Direct access to native File I/O ..282
Errors ...283
viii C Programmer’s Guide

Contents

21. FMgr Class
Technical Summary ...285
Data Types ..285
Enumerated Types ...288
Querying and Changing File/Directory Attributes..293
Finding File Type by Mac Type or by File Extension ...295
Creating ...298
Copying ...298
Moving...299
Deleting ...301
Performing an Action ..303

22. FName Class
Technical Summary ...307
Data Types ..311
Enumerated Types ...313
File Name Syntax ...316
Find Path Name Syntax...317
Checking Path Name Validity..317
Evaluating Variable Expressions ...318
Conversion between Syntaxes..319
Conversion Status ..320
Extracting File Components ...321
Directories Specified as Paths or as Files ..322
Top Directory..324
Current Volume / Current Directory ...324
Parent Directory ...326
Home Directory..326
Absolute / Relative Parts..327
Comparing File Names ...328
 Generating Temporary and Backup File Names..328

23. Hash Class
Overview...331
Data Structures ...331

NDHashInfo ...331
Constructors and Destructor ..332
Convenience Functions ...332

Resetting a Hash Table ..333
Creating and Disposing Hash Tables..333

Defining a Hash Table ...333
Querying the Hash Table Information..334
Using Hash Tables ...335
Perform An Action On All The Entries...335
Default Methods...336

Default Hashing ...336
Default Comparison ..336
Default String Cloning ..336

Hash Table Entries ...336
Statistics ...337
C Programmer’s Guide ix

Contents

24. Heap Class
Overview...339
Heap Class...339
Constructor and Destructor..339
Convenience Functions ...340
Heap Size...340
Heap Manipulation..340

25. ISet Class
Overview...343
Data Structures ...343
Constructors and Destructor Interval Sets ...343
Special Intervals ...344
Adding and Removing Intervals ...344
Comparing and Combining Two Sets...345

26. MCH Class
Technical Summary ...347
Compiler Information ...352

27. Nfier Class
Overview...355
Creating and Disposing ..356
Broadcasting a Notification ..356
Notifier Client Creation and Destruction ...356
Associating Client Data with the Notifier Client Pointer...357
Notifier Client Registration and Unregistration..357

Convienience: Unregistration, destruction and deallocation357
Convienience: Allocation, construction and registration358
Convienience: Unregistration, destruction and deallocation358

28. Pack Class
Overview...359

Short Description of the Compression Algorithms: ...359
Choice of a Compression Algorithm: ..359

Constructors and Destructor ..360
API Usage..361

Compression ...361
Decompression ...361

Worst Case Performances ...362
RLE (Run Length Encoding) ..362
PackBits..362
CCITT Fax Compression...363

Overview ...363
Examples: ..363

General Case ...364

29. Plfd Class
Overview...365

Scope of Documented API ..365
Permanent Field Data Types ..365

Field Categories ..366
x C Programmer’s Guide

Contents

Data Structures ...366
WARNING: ...366

30. Point Class
Overview...367
Constructors / Destructor ..367
Sets and Queries ...368

31. Pool Class
Overview...371

Pool oriented memory management ...371
Pool Definition..372
Constructors and Destructor ..372

Constructors ...372
Destructor ...373

Setting/Querying the Information on a Memory Pool ..373
Allocating and Deallocating ...373
Statistics ...374

32. Ptr Class
Technical Overview ...375
Data Types ..375
Enumerated Types ...376
Alignment ...377
Alloc, Free, and Realloc...377
Functions for Memory Copy, Move, Set...379
Statistics ...381
Low-level Byte Copies...381
Machine-Independent Memory Representations for Integers382
Memory Representations for Strings ..383
Errors Signalled by Ptr Class..384

33. RClas Class
Persistent Data..387
Class Registration...388
Allocation/Deallocation ...389
Member Functions ...389

Accessing the Class Callbacks ..389
Querying Database of Resource Classes...390
Testing Inheritance ..390
Setting the Class Callbacks ...391

34. Rect Class
Technical Summary ...393
Point Functions...394
Rect Functions ..395
Rectangles Defined by Origin and Extent ..397
Rectangles Defined by Beginning and End..398

35. Res Class
Technical Summary ...399
Creating and Disposing ..404
Saving To a Resource Database ...405
C Programmer’s Guide xi

Contents

Output to a Text Resource File...405
Resource Library Initialization...405
Loading and Finding Resources ..407
Accessing the Name of a Resource..410
Accessing Client Data of a Resource ...411
Accessing Children of a Resource ...411
Accessing the Class of A Resource ..412
Resource States ...412
Resource Notifications ..412
Sending Notifications ..415

Sending versus Posting ...415
Sending A Notification With Data ..415

Responding to a Notification ...418
Control Data..418
Command Management ...418

Command Routing ..419
General Purpose ...419
Command Sources ...419
Handling Command Notifications ..420

Resource Scripting ...420
Error Handling Utilities ..420

36. Rgn Class
Technical Summary ...421
Enumerated Types ...421
Empty Region ...422
Region Rectangular Bounds ...422
Region Translation...422
Comparisons with other Regions ..423
Operations between Two Regions...423
Operations between a Region and a Rectangle ...424
Regions Specified by a Polygon ...425
Performing an Action on Each Rectangle Component of a Region..............................426

37. RLib Class
Technical Summary ...427
Accessing Libraries ..427
Loading, Unloading, and Closing ...428

38. SBuf Class
Technical Summary ...431
Simple Queries ...431
Iteration ...432
Miscellaneous Queries...432
Changing Contents ..433
Case Conversion...434
Matching..435

39. Scrpt Class
Technical Summary ...437

Widget Scripts ..437
Variables ..438
Script Data Types ...438
xii C Programmer’s Guide

Contents

Statements ...438
SELF ...439

Using the Scripting Environment ..439
Extending the Script Language..440

Registering Constants ...440
Registering Events ...440
Registering Verbs ...441

Running a Script in Standalone Applications..444
Bare Scripts..445

40. Set Class
Overview...447
Constructors and Destructor ..447
Special Shared Sets...447
Adding, Removing, Accessing Elements..448
Comparing and Combining Two Sets...449

41. Str Class
Technical Summary ...451
Data Types ..453
Cloning and Disposing..455
Set and Append..457
String Length ..458
Iterating through Strings...458
Writing into String Buffers ...460
Basic String Comparisons ...464
Testing Matches..465
Searching ...467
Scanning of Numeric Values ..470
Formating the Numeric Values..473
Basic Conversions ..475
Loading from Resources ...477
Conversions Between Code Types ..477

42. StrL Class
Technical Summary ...479
Class ...479
Accessing the Strings...479

43. StrR Class
Technical Summary ...483
Class ...483
Loading a String Resource..483
Accessing Text ..484
Accessing the Id..484

44. Var Class
Type System..485
“Variant” Management ...487
Class ...487
Conversion Methods ...487
Information Methods...490
C Programmer’s Guide xiii

Contents

45. VarDs Class
Variant Data Source Value..493
Notifications..494
Variant Data Source...494

46. VarGr
Design Overview..495
Graph Properties ..495

Graph Title ..495
Node and Edge Accessors ..496

Node Accessor ..496
Clone a node accessor ...497
Edge Accessors ...497
“All” Edge Accessor ..497
Clone an Edge Accessor ..498
“In” edge accessor ..498
Clone an “in” edge accessor ...499
“Out” Edge Accessor ...499
Clone an “Out” Edge Accessor ..500
Undirected Edge Accessor ..501
Clone an Undirected Edge Accessor ...502

Node Accessors Navigation ...502
Edge-Accessor Navigation..504

“All” Edge Accessors ..504
“In” Edge Accessors ..505
“Out” Edge Accessors ...505
Undirected Edge Accessors ..506

Adding and Removing Nodes ...507
Adding and Removing Edges ..508
Graph-Node Properties...509

Accessor Validity ...509
Node Counts ...509
Node ID ...510
Node Value ...510
Node XOrigin ...511
Node YOrigin ...512
Node Height ...512
Node Width ..513
Additional Node Properties ...513

Graph-Edge Properties..514
Accessor Validity ...514
Edge Count ...515
Edge ID ..515
Edge Value ..516
Directed Edge ...516
Additional Edge Properties ..517

Node-Relationship Discovery ..518
Getting and Setting the Cursors...518
xiv C Programmer’s Guide

Contents

Convenience Methods...519
Advanced Objects and Methods..519

Node and Edge Objects ...520
Edit Objects ...527
Modification Descriptions ..527
Class Operations ..527

47. VarLs Class
Design Overview..529
Class ...529
Reading and Writing in the List...529

List Title ...529
Row Titles ...530
Row Values ...530

Modifying the List..531
Reading and Setting the Cursor Row..531
Edition Objects..532
Modification Descriptions ..533
Notifications..533

48. VarTb Class
Technical Overview ...535
Class ...535
Table Interaction...535

Read Support ..535
Row Title ...536
TableTitle...536
Reading and Setting the Cursor Row and Column ..537
Edition Support ..537
Edition Objects..539
Modifications Queries ...540
Row Interaction ..541
Column Interaction..541
Cell Interaction ...541
Virtual Interface Implementation ..541

Variant List Implementation ..541
Variant List Row Implementation ...541
Variant List Row Implementation ...541
Variant List Cell Implementation ..541

49. VarTr
Design Overview..543
Tree-Datasource Properties ..543

Tree Title ...543
Node Accessors ..544
Node-Accessor Navigation...544

Convenient Navigation ...545
Adding and Removing Nodes ...546
Class Operations ..547

Tree-Node Properties ..547
Tree-Node Discovery and Navigation ..547
C Programmer’s Guide xv

Contents

Reading and Setting the Cursor...547
Modifying the Tree Datasource ...548

Tree-Node Values ..548
Tree-Node IDs ..549

Modifying the Tree-Node Datasource ..549
Modification Descriptions ..550

50. VStr Class
Technical Summary ...551
Changing Contents ..551
Queries...553
Concatenation, Insertion, Deletion ..553
Comparisons ...554
Loading Resources...555
Arrays Of Strings ...555

Index ...557
xvi C Programmer’s Guide

Preface 2

Purpose of this Manual

This manual describes Open Interface Element™, the C language
application programming interface (API) for developing applications with
graphical user interfaces for any standard windowing system. The Open
Interface API is a highly modular ANSI C library. The modules group calls
by categories that closely follow standard interface functionality.

In this document “Open Interface Element™” and “Open Interface” will be
used interchangeably.

Audience

This manual is designed for people who understand programming
concepts, the C language, and Open Interface. If you are not familiar with
programming concepts, you may need to review an introductory
programming book before you use the API. If you are not familiar with
Open Interface, you may need to review the Programming Guide. For a
complete list of available documents, see Related Manuals below.

How to Use This Manual

To communicate the API’s functionality to you in this manual, we have
chosen to adhere to the organization of the software itself. This approach
was adopted in favor of the traditional chapter-oriented reference manual
for several reasons. Most importantly it permits you to transfer your
experience using the Open Interface API directly into using this manual to
locate call descriptions. Therefore the body of this reference documents
each call in alphabetical order, by software module.

Overall, we believe this yields a significant usability improvement. Because
the API is already highly modular and the calls themselves follow a
standard naming convention that places the module name in front of the
call, you will always be able to find the call by deciding which module it
belongs to. To aid in this task, the Reference Manual includes a standard
table of contents and running page heads.

Document table of contents
A standard listing of all the calls contained in this volumen of
the reference following this Preface. Because all calls are
organized by module name they appear in alphabetical order.
Although, you may notice that each module’s data structures
and enumerated types always begin a new module.
C Programmer’s Guide xvii

Preface

Page heads
If you have acquainted yourself with the organization of the
API, you are ready to use the reference to locate calls. To help
you find the desired module and call, each page shows the
module name printed across the top of the page. Simply
flipping the top corner of the page will reveal this information.

Related Manuals

This manual is a member of the Open Interface document set. Each
document addresses a different aspect of the product. To avoid duplicating
information between manuals, references to related topics in other manuals
are given when needed. It is therefore recommended that you familiarize
yourself with the complete set of Open Interface documents as follows.

Programming Guide

Reference Manual: Volume 1 and Volume 2

Reference Manual Supplement

User’s Guide
xviii C Programmer’s Guide

Chapter

1 Introducing EE Application
Services 1

Introduction

The Elements Environment Application Services (EAS) provide the support
layer for built-in memory and print management, graphic primitives, error
handling, file I/O, asynchronous event management, and string
manipulation services to reduce the development time spent coding these
low-level, platform specific functions. These services enable the portability
of the graphical presentation layers of an application as well as the
integration layers.

EAS provides is the underlying support for Internationalization to allow
quick ports of applications to any of a dozen single-byte or double-byte
foreign languages including Japanese.

Internationalization features include character sets, porting support and
rendering, edit-in-place, standard or native in-text widgets, and string
manipulation services.

Building Block Mechanisms

In addition to these low-level services, EE Application Services feature
higher level application development services that provide more complex
building blocks which you can use to assemble your application.

These building block mechanisms, such as the Data Source/View
mechanism, free the application developer from performing repetitive
coding tasks related to the manipulation of data, data sources, and the
display of data for complex widgets such as tables and list boxes.
C Programmer’s Guide 1

Chapter

Introducing EE Application Services

1

Data Source/View Mechanism

Data Source/View is a mechanism designed to provide underlying
bi-directional linkage protocols between views and data sources for
applications written in C, C++, and scripts.

The Data Source View mechanism allows you to present and access the
same data (such as information from a database) in multiple views, such as
a spreadsheet-like table, a choice box, or an input field.

This manual describes the architecture of the data source/view mechanism
and includes information for using it in developing applications. The
OOScript language class definitions that support the Data Source/View
mechanism are described in Chapter 2, “Core Reference”, of the OOScript
Language Reference manual.

Application Services Classes

The EE Application Services or (Core Services) are provided through
C/C++ or OOScript language classes. These classes include:
■ VStr
■ Str
■ SBuf
■ Base
■ APP
■ CT
■ File
■ FMgr
■ FName
■ MCH
■ Ptr

Epsilon6

Epsilon6

Epsilon6
2 C Programmer’s Guide

Application Services Classes
■ Variant...
■ Data Source...
■ Resource (Rlib, RClass,...)

The C/C++ classes are described in the OIE API Reference. The OOScript
Language Reference describes the equivalent classes for scripting.
C Programmer’s Guide 3

Chapter Introducing EE Application Services1
4 C Programmer’s Guide

Chapter
2 Using Data Source/View 2

The Data Source/View (DS/V) mechanism provides a data-centric as
opposed to widget-centric approach to programming. The following
sections describe the high-level tasks required for using the DS/V
mechanism to create applications. DS/V examples and internals for the
Open Interface Element (OIE), Intelligent Rules Element (IRE), and the Data
Access Element are also included.

Using Data Source/View in an Application

The typical procedure for using Data Source/Views is as follows:

1. Create and initialize a data source from a server (Core, DA, or IR) or use
the Resource Manager method, LoadInit(), to load and initialize a data
source of a given type:

– VariantDataSource
– VariantListDataSource
– VariantTableDataSource
– RecordSetDataSource
– NxDataSource
– NxTableDataSource

2. Create one or more view or views.

3. Register a view (ListBox, ChoiceBox, TextEdit or CheckBox) to a data
source.

Note: Some data sources support only certain views. For more
information about datasource views, see the OOScript
Programmer’s Guide.

4. Set the view option using the property you want from the ViewOptions
metaclass.

Note: For a complete list of view options, see the OOScript
Programmer’s Guide.

5. Populate the data source with data. Populating the data source can also
be done prior to registering the view.

Propagating Events

When a view (widget) is registered to a data source, the view's default
notification handler is reset to the DSV handler as appropriate for the type
C Programmer’s Guide 5

Chapter Using Data Source/View2
of widget. It is important to allow DSV to still process these notifications.
The following events are handled by DSV for each type of view:

CBOX_NFY...
■ MOUSECLICK
■ KEYCHAR
■ ELTSELECTED
■ ELTDRAW
■ GETELTSTRING
■ END

CBUT_NFY....
■ HIT
■ PROPOSE
■ END

LBOX_NFY....
■ CELLDRAW
■ CELLSTRING
■ END
■ ENDEDIT
■ SELOPERATION
■ STARTEDIT
■ VALIDATE

TED_NFY....
■ END
■ KEYCHAR
■ QUERYVALIDATE
■ VALIDATE
■ HIT

Note: If you are using callbacks, you must use the default procedure for
these events or you will disable the data source update mechanism.

Controlled Access to Data Sources

To prevent conflicts in accessing the same data, the Data Source/View
mechanism provides synchronized and controlled access by allowing only
one view to modify the data at any one time.

Simple data manipulations (typically cell-type operations) do not require an
explicit edit to be initiated on the data source. Data updates are handled,
transparently, by the view registration default methods. When data is
changed through the views, an "atomic" edition is performed on the data
source that begins an edition, updates the data and ends.

Programmatic control over data source updating can be done when an
application updates data sources by explicitly beginning an edition on the
data source, performing the updates, and ending or aborting the edition.
6 C Programmer’s Guide

Controlled Access to Data Sources
Complex operations require building an edition. A complex operation
might be performing multiple operations (locally or globally, in the case of
a list or table) on a data source.

The following procedure describes the steps you must follow to implement
synchronization and controlled access:

1. Before modification of data takes place, you must make an Edition
authorization request. This request locks the data source or part of the
data source.

2. Request to start a edition on a data source (or a subset of a data source
such as a cell, row or column in the case of a table).

– If the data source has an open edition (i.e., is locked) the request is
denied.

– If the there is an open edition, the views will access the data from
the data source in a read-only mode.

3. Once the data source is locked, you can make any changes to the data
source or the part you locked. You can make your changes to the data
source through the edition.

4. End or abort the edition.

When all updates to the data are complete, you must do one of the
following:
– “end” the data source edition (all changes are made).
– "abort" the edition (all changes are not made).

Note: In this release, Data Source Views only supports “End”
or “Abort” i.e., all changes are made or none are made.

5. If the owner of the data source (in the case of IR or DA data sources) has
updated the data during your edition, your attempt to end the edition
and update the data source may be rejected.

6. If your request has been granted, you obtain a lock on the data source
(or subset). No one, other than you or the owner of the data source, can
abort the edition.

Note: For IR data sources, the owner is the Rules Processor. For
DA data sources, the owner is DA itself.

Locking Data in Table Datasources.

In table data sources, Data Source/Views can lock data at any one of the
following levels:
■ Cell
■ Row
■ Column
■ Entire Table

The locking is exclusive. If you lock a cell and try to also lock the same row
or lock the entire table, the lock request is rejected.
C Programmer’s Guide 7

Chapter Using Data Source/View2
Locking Data in List Datasources.

In list data sources, Data Source/Views can lock data at any of the following
levels:
■ Cell
■ Entire list

Controlled Access Example

Here is an example of an edit operation upon initializing a table datasource:

edit := internal_ds.StartEdit();
if(!isnull(edit));

edit.RowColumnCount(2,7);

edit.ColumnTitle(0) = "Company";
edit.ColumnTitle(1) = "Contact";
edit.ColumnTitle(2) = "Address";
edit.ColumnTitle(3) = "City";
edit.ColumnTitle(4) = "State";
edit.ColumnTitle(5) = "Zip";
edit.ColumnTitle(6) = "YTD Purchases";

edit.CellValue(0,0) = "XYZ Corporation";
edit.CellValue(0,1) = "Jane Doe";
edit.CellValue(0,2) = "123 Main Street";
edit.CellValue(0,3) = "Anytown";
edit.CellValue(0,4) = "CA";
edit.CellValue(0,5) = "10001-0000";
edit.CellValue(0,6) = 12500.00;

edit.CellValue(1,0) = "Sony";
edit.CellValue(1,1) = "Doris Doubleday";
edit.CellValue(1,2) = "268 River Oaks Parkway";
edit.CellValue(1,3) = "San Jose";
edit.CellValue(1,4) = "CA";
edit.CellValue(1,5) = "94041-1230";
edit.CellValue(1,6) = 80000.00;

edit.End();

Data Source/View Examples

The following examples illustrate the use of the Data Source/Views
mechanism using Neuron Data’ s OOScript language. The coding is similar
in C/C++.

OI Example

The following example links a TextEdit to a VariantDataSource with a
simple atomic edition performed automatically by setting the value of the
VariantDataSource.

Linking a TextEdit to a Variant Data Source

// "ted" a TextEdit object reference

// "coreserver" a reference to the Core server

// Create a datasource.
ds := coreserver.VariantDataSources.Create();

ds.Init(); // initialize
8 C Programmer’s Guide

Data Source Internals
ds ="hello"; //"atomic" edition performed here

ds.RegisterView(ted);

// the TextEdit then displays the data in the ds data source

DA Example

The following example links a DA DatabaseViewDataSource (created from
a DatabaseView) to a ListBox.

Linking a DA DatabaseViewData Source to a List Box

// "databaseview" a DatabaseView object reference

// "lbox" a ListBox object reference

// "coreserver" a reference to the Core server

// "daeserver" a reference to the DA Core server

// "databaseview" has already been populated with data from

// a database somewhere...

databaseview :=

daeserver.DatabaseViewDataSources.CreateFromDatabaseView;

DatabaseView.RegisterView(lbox);

// the ListBox then displays the data in the data source

IR Example

The following example links a Text Edit with a IR slot with automatic and
implicit controlled edition.

Linking a TextEdit with an NXP slot

// Assume that a Text Edit object reference is in the ted
variable

// and nxsvr contains the Nx serve

ds := nxsvr.NxTableDataSources.Create();

ds.Atom = nxsvr.Objects.Car.Color; // assuming that Car.Color
is a slot in NXP

ds.Strategy = nxsvr.Engine.VSTRAT_VFWRD;

ds.RegisterView(ted);

// the rest (local update, forwarding the data,...) is handled
// automatically by the IRE data source

Data Source Internals

Data Source Internals defines the relationships and inheritance of the data
sources for the OIE, DAE, and IRE.
C Programmer’s Guide 9

Chapter Using Data Source/View2
Internals for OI Core Data Sources

The OI Core data sources VariantDataSource, VariantListDataSource
and VariantTableDataSources can all be created dynamically or stored as
persistent resources.

The data that they contain must (in the present release) be assigned at
runtime. Data in these data sources cannot be persistently stored.

Internals for DA Data Sources

The DA class RecordSetDataSource is a subclass of the
VariantTableDataSource, and inherits all of the methods and properties
from that data source.

The RecordSetDataSource maintains a “contains a” relationship with the
RecordSet that it was created from. This means that there is only one copy
of the data. The views registered to a RecordSetDataSource are viewing the
data that is in the RecordSet itself.

Note: A RecordSet is created and saved in an RC file. Since the data source
needs to rely on a mechanism to derive its data, the RecordSet needs
to be loaded manually and initialized in the database view or the
Resource (RC file?) must be explicitly loaded.

RecordSetDataSource Implementation

The RecordSetDataSource inherits the VariantTableDataSource
interfaces, but certain operations possible through this interface are not
suitable for a RecordSet, such as setting row titles (there are no row titles in
the RecordSet).

The tables below describe the properties and methods from the
VariantTable as applied to the RecordSetDataSource. Properties or
methods not listed below are not implemented.

Properties from VariantTable

The VariantTable class provides some standard operations for handling
modifications to the RecordSet through its properties. If you change the
property of a datasource, depending upon the options you set, you will
change the data contained or represented in the RecordSet and views. The
final data storage mechanism (database, flat file) is not changed until it is
explicitly updated.

The following VariantTableDataSource properties can be used to perform
operations on the RecordSetDataSource.

Use this property... To...
RowCount Return the number of records in the RecordSet.

ColumnCount Return the number of columns in the RecordSet

ColumnTitle Return the name of the column in the RecordSet

CursorRow Perform either a Get or Set CursorRow operation:
10 C Programmer’s Guide

Internals for DA Data Sources
The following VariantTableDataSource properties can be used to perform
operations on the DatabaseViewDataSource.

For more information about the VariantTable class, refer to Chapter 2, “Core
Reference,” of the OOScript Language Reference manual.

Methods from VariantTable

The VariantTable class provides some standard operations for handling
modifications to the RecordSet. The following VariantTable methods can be
used to perform operations on the RecordSetData Source.

Use a CursorRow Set to set the current record position in
the RecordSet.

Use a CursorRow Get to return the current record
position in the RecordSet.

Cells Perform a Get or a Set:

Use a Cell Get to retrieve the value from the RecordSet
for the specified row (record) and column.

Use a Cell Set to set the value into the RecordSet for the
specified row (record) and column.

Use this property... To...
RowCount Return the number of records in the DatabaseView.

ColumnCount Return the number of columns in the DatabaseView.

ColumnTitle Return the name of the column in the DatabaseView

CursorRow Perform either a Get or Set CursorRow operation:

Use a CursorRow Set to set the current record position in
the DatabaseView.

Use a CursorRow Get to return the current record
position in the DatabaseView.

Cells Perform a Get or a Set:

Use a Cell Get to retrieve the value from the
DatabaseView for the specified row (record) and column.

Use a Cell Set to set the value into the DatabaseView for
the specified row (record) and column.

Use this Method... To...
AddColumn Not implemented.

AddRow Add a record to the RecordSet at the specified index.

RowColumnCount Not implemented.

RemoveRow Not implemented.

RemoveColumn Not implemented.

Use this property... To...
C Programmer’s Guide 11

Chapter Using Data Source/View2
Using the RecordSet contained in a RecordSetDataSource

The RecordSet that is contained in a RecordSetDataSource needs to be used
to update the database when necessary. You can invoke the following
methods on a RecordSetDataSource to update a RecordSet.

When to Use RecordSet Data

In general, once you have created a RecordSetDataSource from a RecordSet,
you should avoid updating the data in the RecordSet using its own
interface. Only the basic operations of adding and removing rows on the
RecordSet will be reflected in the RecordSetDataSource. Full control over
updating data and positioning the current record in a RecordSet is provided
through the RecordSetDataSource interface.

You should use the data in the RecordSet, when you need to update the
backend database with the values that have been updated in the RecordSet.
It is then more convenient to extract the data from the RecordSet using its
own interface for operations like parameter binding.

Internals for IRE Data Sources

In the same way that you create data sources from Core or DA data, you can
create data sources from IR data. The update is done automatically
(deferred is not currently supported).

Note: User input is forwarded to the inference engine only after a
Continue/Start. In the case of the table: slot value changes or objects
added or deleted from a class are reflected automatically in the data
source.

IRE supports two types of data sources: atomic data sources which are
instances of the class NxDataSource, and table data sources which are
instances of the class NxTableDataSource. The NxDataSources are used to
display values of IRE slots into Text Edits or into button states, while
NxTableDataSources are used to display the slot values of objects of a
specific class or sub-objects of a specific object.

You should use the IRE data sources whenever you want to either present
multiple views of slots values or whenever you want to have the changes of
the slot values dynamically updated on the screen while the IRE rule
processor is running. Whether the user changes the values or the IRE rule
processor, the slots are updated immediately (no deferred) and all views
synchronized if the correct options have been set on the views (see the view
option cursor). You just need to create a data source, set its IOE properties,
associate it with one or more views and eventually set the view options.

Use this Method... To...
AddRecord Add a row to the end of the RecordSetDataSource.

RemoveNthRecord Delete a row from the RecordSetDataSource.
12 C Programmer’s Guide

Internals for IRE Data Sources
Creating IRE data sources are a little bit different from the Data Access data
sources. IRE Data sources have additional properties to be set at creation:
■ Atom

In the case of an atomic data source, the Atom property should be set
to the IRE slot whose value will be displayed or edited. In the case of a
table data source, the Atom property should be set to either the IRE
class whose direct children objects (and indirect objects through
subclasses) will be displayed, or the IRE object whose direct children
objects will be displayed.

■ ColumnProperty(Index)– only for NxTableDataSources

This property defines the mapping between the data sources columns
and the IRE properties of the Atom. The mapping isn’t always on a one-
to-one basis. The column of data (derived from a data source) shown in
a view might have less IRE slot properties than the original object
property actually contains. The ViewOption property of the Data
Source controls what data is displayed. For each column (Index) of the
data source, you should associate the IOE object reference of a IRE
property of the IRE atom.

Figure 2-1 Mapping of data, data source, and view

Note: You should first define the dimensions of your data
source tables prior setting the ColumnProperty() on a
data source. This can be done by using the method
RowColCount (x,y) where x is the number of rows (0 for
infinite), and y the number of columns (0 for infinite).

■ Strategy

This property defines which strategy will be applied when
volunteering the value back to the IRE slots after the user updated the
value from the views. If the Strategy property of the data source is not
set, the IRE data source will update the IRE slots using the strategy
defined in the DefaultVolunteerStrategy property of the Engine
meta-class. Refer to the IRE IOE server Reference for the list of potential
values for this property.

Currently the IRE data sources are supporting only the following
views: Text Edits and buttons for single data sources, ListBoxes for table
data sources.

slot

p1

p5

data

NX data source

Listbox View

p2

p3

p4
p2

p3
p5

p2 p5

You can derive a small subset of original data at the data source layer and
use an even smaller subset of that for your view.
C Programmer’s Guide 13

Chapter Using Data Source/View2
Note: There is no special behavior for choice boxes. You need
to get the value of slots and stored them in choice items.

Example

The following example links an IRE class Tanks with three IRE properties
Name, Level, HasProblem:

Linking IRE class with IRE properties

ds := nxsvr.NxTableDataSources.Create();

ds.Atom = nxsvr.Classes.Tanks;

ds.RowColCount (0,3);

ds.ColumnProperty(0)= nxsvr.Properties.Name;

ds.ColumnProperty(1)= nxsvr.Properties.Level;

ds.ColumnProperty(2)= nxsvr.Properties.Hasproblem;

ds.RegisterView(myLBox);

The following VariantTable properties and methods, when applied to the
NxTableDataSource, perform the specified changes. Properties or methods
not listed below are not supported.

Note: RowColumnCount, AddRow, AddColumn, RemoveColumn and
RemoveRow are not allowed operations on NxTableDataSources.
You need to directly use the methods Delete/CreateObject on the IRE
class/object.

If the IRE Rule processor adds or removes objects from the class or object the
data source is based on the view will be updated accordingly.

As you design an application usually you have two types of tables:
■ An input table where the user can edit the values.
■ A selection table where the user can select a current row.

Input Table (LBox)

In the case of an input table, the data source transparently handles the
update of the back-end data (IRE slots) and the updates of the other views

Use this method or
property...

To...

RowCount Return the number of records in the NxTableDataSource.

ColumnCount Return the number of columns in the NxTableDataSource.

ColumnTitle Return the name of the column in the NxTableDataSource.

CursorRow Perform a Get or Set operation:

Get: Returns current record position in the
NxTableDataSource.

Set: Sets the current record position in the
NxTableDataSource.

Cells Perform a Get or Set operation:

Get: Retrieves the value from the NxTableDataSource for the
specified row (IRE object) and column.

Set: Sets the value into the NxTableDataSource for the
specified row (IRE object) and column.
14 C Programmer’s Guide

Internals for IRE Data Sources
registered to this data source. The IRE data sources uses the strategy set on
the data source or the Default Volunteer Strategy set on the Engine Object
to volunteer back the value tot he IRE slot, when the cell edition is done.

Listbox views are by default input table if a Text Edit has been attached for
edition (Refer to the LBox editor section of the Open Interface User’s Guide).
Non-editable columns can be defined through the view option
“noeditcolumn” and specifying the range of non-editable columns. If you
do set the headers on the listbox the data source will display automatically
the name of the IRE object for each listbox row, and the name of the
property for each listbox column. The title of these headers can be changed
by setting the Title property of the data source columns and/or rows.

To start the edition, you should use the following keys:
■ double click (cell edition)
■ CTR+e (cell edition)
■ CTR+m (continued edition)
■ ESC (abort edition)

Note: You still need to attach a Text Edit to the listbox to set the View in an
edit mode

The following example shows an input table with one column that is
non-editable:

Input table with non-editable column

on event WGTSINITIALIZED

tanks := rulesvr.Classes.tanks;

rProps := rulesvr.Properties;

// Use a table data source to link the listbox to the

// class Tanks

ds := rulesvr.NxTableDataSources.Create();

ds.RowColumnCount(0,3);// set the size of the data

// source

ds.Atom = tanks;

ds.RegisterView(SELF);

// set the column mapping with field and column labels

ds.ColumnProperty(0) = rProps.Name;

 ds.Columns(0).Title = "Tanks";

ds.ColumnProperty(1) = rProps.level;

 ds.Columns(1).Title = "Level";

ds.ColumnProperty(2)= rProps.problem;

 ds.Columns(2).Title = "Has Problem";

// set the view non editable for columns 0 and 2

SELF.ViewOptions.UneditableColumns = "[0...0][2...2]";

end event

Selection table (ListBox)

In the case of a selection table, the data source transparently handles the
selection but you should trap the CELLSELECTED event of the view or set
a callback for CellSelectedProc, to process the selection update. If the cursor
property of the data source has been set to “controls”, the data source just
C Programmer’s Guide 15

Chapter Using Data Source/View2
sets the current row to the row selected by the user. And you can get the
current row index by looking up the property CursorRow of the data
source, while the property CursorColumn indicates the current column of
the selection.

The current cell contents (text) can be access through the property cells as
follows:

currentCellContents = string
(SELF.Data.Cells(SELF.Data.CursorRow,

dsEmp.CursorColumn))

Note: From the view you can access the data source by using the property
Data of the Litsbox object.

Listbox views are selection table if you set the Listbox selection flag (in
particular, Single vs. multiple selections) on the Listbox. (Refer to the LBox
editor section of the Open Interface User’s Guide). If you do set the headers
on the listbox the data source will display automatically the name of the IRE
object for each listbox row, and the name of the property for each listbox
column. The title of these headers can be changed by setting the RowTitle
and ColumnTitle properties of the data source.

The following example registers a listbox to a data source at its initialization.
This is a selection table which sets the contents of another data source based
on the information contained in the current cell (1 column listbox).

Registering a listbox to a data source

on event WGT_INITIALIZED

dsEmp := nxsvr.NxTableDataSources.Create();

dsEmp.Atom = nxsvr.Classes.employees;

dsEmp.RowColumnCount(0,1);

dsEmp.ColumnProperty(0) = nxsvr.Properties.name;

dsEmp.RegisterView(SELF);

SELF.ViewOptions.CursorOption = "controls";

end event

on event LBOX_CELLSELECTED

dsEmp := SELF.Data;

theEmployee = string (dsEmp.Cells(dsEmp.CursorRow, 0));

if (theEmployee == "Unknown") // verify whether the

// Employee is a valid IRE object

return;

if (isnull(dsEmp2)) // verify whether the other data
// source has been created

return;

dsEmp2.Atom := nxsvr.Objects.$theEmployee;

dsEmp2.RowColumnCount(0,2);

dsEmp2.ColumnProperty(0) = nxsvr.Properties.nature;

dsEmp2.ColumnProperty(1) = nxsvr.Properties.amount;

end event

In this particular example, the “$” is used to force the evaluation of the
variable theEmployee prior the resolution of the object expression. DsEmp2
is in fact set to the IRE object whose name is value of theEmployee.
16 C Programmer’s Guide

Internals for IRE Data Sources
IRE Text Edit

The following example links a Text Edit with a IRE slot with automatic and
implicit controlled edition.

Linking a Text Edit with an IRE slot

// Assume that a Text Edit object reference is in the ted

// variable nxr contains the Nx server

ds := nxsvr.NxTableDataSource.Create();

ds.Atom := nxsvr.Object.Car.Color; // assuming that Car.Color
// ia a valid slot in IRE

ds.Strategy = nxsvr.Engine.VSTRAT_VFWRD;

ds.RegisterView(ted);

// the rest (local update, forwarding the data,...) is handled

// automatically by the NEXPERT data source
C Programmer’s Guide 17

Chapter Using Data Source/View2
18 C Programmer’s Guide

Chapter
3 Tree Datasource: Managing
Hierarchical Data 3

A tree datasource is a container of hierarchically organized nodes. The tree
datasource is similar to the other datasources—for example, list (sequential)
and table (tabular) datasources—in that it is based on a specific data model.
In this case, the data model is a hierarchy.

You can display the contents of the tree datasource in the TVIEW and
BROWS views, which are supplied by the Open Interface Element. The
Elements Environment datasource/views mechanism supports the interface
between the datasource and the TVIEW and BROWS views.

This chapter discusses these topics:
■ Concepts
■ Options for the TVIEW and BROWS Views
■ Building a Tree Datasource
■ Editing a Tree Datasource
■ Advanced Topics

Note: Data stored in the tree datasource is not persistent. However, you can
write a routine to traverse the datasource and write its contents to a
persistent data-storage medium, such as a local hard disk or
database.

If you haven’t already done so, read the chapters on the TVIEW and
BROWS widgets in the Open Interface Element C Programmer’s Guide . See
Chapter 3 of this book for information about registering a view with a
datasource.

Concepts

Storing information based on a hierarchical data model, the tree datasource
is founded on these basic concepts:
■ Tree Datasource
■ Node
■ Tree
■ Node Accessor
■ Cursor
■ Edit Object

This section discusses the preceding concepts, which are then used in
“Building a Tree Datasource” on page 33 to tell you how to program a tree
datasource.
C Programmer’s Guide 19

Chapter Tree Datasource: Managing Hierarchical Data3
Tree Datasource

The tree datasource—an object of the VARTR class—is a container class that
stores and manages hierarchically arranged nodes. When you dispose the
tree datasource, any contained objects are also disposed.

Using the APIs supplied with the tree datasource (VARTR object), you can:
■ Program the creation and destruction of nodes contained by the

datasource object
■ Enumerate the nodes in the datasource by index and traverse them

using the methods in the VARTR API

Node

A node is the elementary component of a tree. Each node has these
properties:
■ ID and Value
■ Navigational References

As Figure 3–1 shows, each node stores references to:
■ Its parent node
■ The next sibling or root node
■ The previous sibling or root node
■ Its first child node

If any of these references accesses a memory location where no node exists,
then the reference indicates that the current node is the last valid node. For
example, if the Parent reference accesses an empty node location, the node
is a root node, which has no parent.

Figure 3–1 The Structure of a Node

ID and Value

Each node in the tree datasource has an ID property and a Value property.
Both the ID and Value properties:
■ Store variant data
■ Can contain any variant-supported type

For example, ID may be a variant containing a string, while Value may be
an object reference.

ID

You can assign any variant data to a node ID property. Node IDs need not
be unique, but they may be more useful if they are. You can set the ID:
■ When you create a node

ID Value

Parent

Prev
Next

FirstChild
20 C Programmer’s Guide

Concepts
■ During a separate editing session

A unique node ID can be very helpful. This is especially true if you need to
associate it with the primary key of a relational-database table. For example,
if a node represents an employee in an organization, you may want to:
■ Set ID to an employee number
■ Set Value to the employee name
■ Then associate the node with a row from a table datasource that shares

a common employee number

Value

Like the node ID property, you can set the node Value to any variant value.
The Value property represents the “data” part of the node contents. You can
use the node Value any way you want. For example, you may simply set it
to an employee name in an organizational hierarchy, or you may set it to an
employee number that acts as a key to display employee data stored in a
row of a table datasource.

Navigational References

Each node supports API tree traversal through these mechanisms:
■ Parent Reference
■ Next and Previous Sibling References
■ First Child Reference

These references provide access to the corresponding nodes relative to the
currently accessed nodes. For more information about accessing nodes, see
“Node Accessor” on page 23.

Parent Reference

The parent reference, which Figure 3–1 shows as “Parent,” provides access
to the parent node. If the current node is a root node, the parent reference is
meaningless.

Next and Previous Sibling References

The sibling references, which Figure 3–1 shows as “Next” and “Prev,”
provides access to the next and previous sibling nodes, respectively. If the
current node is a root node, these references provide access to the next and
previous root nodes, respectively.

First Child Reference

The first child reference, which Figure 3–1 shows as “FirstChild,” provides
access to the first child node. After accessing the first child node, you can use
the first child reference again to descend deeper into the hierarchy.
Alternately, you can use the sibling references to access the siblings of the
first child node.

Tree

A tree is a hierarchical node network that emanates from a single root node.
A tree datasource may store one or more trees. Each tree has exactly one root
C Programmer’s Guide 21

Chapter Tree Datasource: Managing Hierarchical Data3
node. Therefore, the tree datasource can contain only as many trees as it
does root nodes.

The notion of a subtree is also supported to a limited extent. A subtree may
be based on any node in the datasource. While you can remove an entire
subtree, there is no API support for “relocating” a subtree to a new position
in the datasource. In other words, you cannot use the API to assign a subtree
to a new parent node.

These concepts are instrumental in the description of trees and tree
navigation:
■ Root Node
■ Parent-Child Node Relationship
■ Sibling Node Relationship

Root Node

A root node is a node that has no parent node, but can have child nodes. This
is the topmost node in a tree hierarchy. It is always the first node created
after the tree datasource is created.

Root nodes each have one unique feature that differentiates them from
non-root nodes: they have no parent node. As Figure 3–2 shows, the Parent
reference of a root node accesses an empty node location:

Figure 3–2 Unique Characteristics of a Root Node

Relative to a root node, you can position a node accessor. With a node accessor,
you can add child nodes and other root nodes (from which you can build
other trees) to the tree datasource. Like the maximum number of child
nodes, the number of root nodes is limited by the size of an Int16 datatype
on each platform.

Parent-Child Node Relationship

The parent-child relationship is a convenient way to explain the
relationships in the tree datasource. Figure 3–3 shows how node references
establish the relationships between parent nodes and their child nodes:

ID Value

Parent

Prev
Next

FirstChild

{¯}
22 C Programmer’s Guide

Concepts
Figure 3–3 Parent-Child Node Relationship

Any node can have child nodes. Any tree in the tree datasource can expand
to the full extent of the memory available in the executing system. For any
parent node, the number of child nodes than can be indexed by the tree
datasource is limited to the size of an Int32 datatype. For example, if you are
using 16-bit integers, a parent node can have no more than 216 child nodes.

Sibling Node Relationship

In addition to child nodes, each node can have sibling nodes. In Figure 3–3,
the Prev reference of the first child accesses an empty node location; there is
no “previous sibling.” Likewise, the Next reference of the last sibling node
accesses an empty node location; there is no “next sibling.”

Node Accessor

A node accessor is a node indexing mechanism that references and traverses
the nodes in the tree datasource. You cannot access the nodes directly,
therefore you must use a node accessor to access them.You must also use
accessors to identify the node in a node-level edit operation.

You need at least one node accessor to traverse—using the
VARTRNODEACCESSOR API—the nodes in a tree datasource. After
moving the node accessor to the appropriate node in the hierarchy, your

ID Value

Parent

Prev
Next

FirstChild

ID Value

Parent

Prev
Next

FirstChild

ID Value

Parent

Prev
Next

FirstChild

{¯}

.

.

.

ID Value

Parent

Prev
Next

FirstChild

{¯}
C Programmer’s Guide 23

Chapter Tree Datasource: Managing Hierarchical Data3
application can modify either the datasource structure or the node
properties.

This code fragment shows how to create and destroy a node accessor:

/* Declare a tree-datasource pointer variable. */
VarTrPtr treeDs;

/* Declare a node-accessor pointer variable. */
VarTrNodeAccessorPtr nodeAccessor;
...
/* Assign a tree-datasource object to the tree-datasource
 pointer variable. */
treeDs = VARTR_Create();

/* Assign a node-accessor object to the node-accessor pointer
 variable. */
nodeAccessor = VARTRNODEACCESSOR_Create();
...
/* Destroy the node accessor. */
VARTRNODEACCESSOR_Dispose(nodeAccessor);
...
/* Destroy the tree datasource. */
RES_Release((ResPtr)treeDs);

Using the APIs, you can create edit objects to support either node-level or
datasource-level modifications using the node accessors. For more
information about node accessors, see “Adding Nodes” on page 36 and
“Destroying a Node-Accessor Object” on page 46.

With a node accessor, you can traverse the node hierarchy using functions
in the VARTRNODEACCESSOR API. With these functions, you can move
the accessor relative to its current node location. You can also move it
directly to a specific location using the indexing scheme shown in
Figure 3–4:

Figure 3–4 Node Indexing in the Tree Datasource

The sibling index in Figure 3–4 ranges from 0 to n–1, where n is a one-based
counter that represents the number of sibling nodes at a particular level of
the hierarchy. The origin of a tree is the root node. The sibling index of the

First Root First Child

Second Child

First Child

Second Child

Second Root

First Child

Second Child

First Child

Second Child

First Child

Second Child

First Child

Second Child

0

1

0 0

0

0

0

0

1

1

1

1

1

Sibling

0 to n–1

0

1

(n–1)

Index:
1

24 C Programmer’s Guide

Concepts
first root node is 0. The index of the last root node is the number of root
nodes minus one (n–1).

The zero-based sibling index is useful when moving the node accessor
directly to the nth root, child, or sibling node (see “Adding Nodes” on page
36 for examples of how to use the API). The following functions return
one-based counters:
■ GetNumRoots()
■ GetNumChildren()
■ GetNumSiblings()

These functions work well with the GoNthRoot(), GoNthChild(), and
GoNthSibling() functions to position the node accessor on the next empty
node location. These are further described in “Node-Count Functions” on
page 56.

The sibling index applies to root nodes, too, even though they do not share
a common parent node. Each tier of the hierarchy uses the same index
scheme. Using the sibling index, combined with the depth of the node in the
hierarchy, a composite index of this form uniquely identifies each node in
the datasource:

(<root index>, <child index>, ..., <tier <n> index>)

where the number of indices in the composite index equals the tier number,
n, of the node being represented. The order of the sibling indices in the
composite index is from most significant to least significant, or from the root
level downward.

For example, using the preceding notation in Figure 3–4, the node, “First
Root”->“Second Child”->“First Child,” has a composite index of (0,1,0).

Cursor

The tree datasource supports a node cursor, which is a property of the tree
datasource. Like the Title property, you can set and get the cursor. You can:
■ Set the cursor by associating it with a node accessor using the

VARTR_SetCursor(vartr, accessor) function
■ Then access the node at the current cursor location using the

VARTR_GetCursor(vartr) function

When a TVIEW or BROWS view is registered with a tree datasource, you
can set a view option to either control the datasource cursor through the
view or simply reflect the current location of the datasource cursor as it
traverses the internal hierarchy.

This code fragment shows how to set and get a cursor:

/* Declare a tree-datasource pointer variable. */
VarTrPtr treeDs;

/* Declare a browser pointer variable. */
BrowsPtr browsWgt;

/* Declare a node-accessor pointer variable. */
VarTrNodeAccessorPtr nodeAccessor;

/* Declare two variant pointer variables. */
VarPtr varID, varValue;
...
/* Assign a browser object to the browser pointer variable. */
C Programmer’s Guide 25

Chapter Tree Datasource: Managing Hierarchical Data3
browsWgt = BROWS_Create();

/* Assign a tree-datasource object to the tree-datasource
 pointer variable. */
treeDs = VARTR_Create();

/* Register the browser with the tree datasource. */
DS_RegisterView((DsPtr)treeDs, (ResPtr)win->browsWgt);
DS_SetViewOptions((DsPtr)treeDs, (ResPtr)win->browsWgt,
 "cursor", "CONTROLS");

/* Assign a node-accessor object to the node-accessor pointer
 variable. */
nodeAccessor = VARTRNODEACCESSOR_Create();

/* Assign variant objects to the variant-pointer variables. */
varID = VAR_New();
varValue = VAR_New();

/* Set a cursor at the location of the node accessor. */
VARTR_SetCursor(treeDs, nodeAccessor);

/* Position the node accessor and edit the tree. */
...
/* Use "convenience" API functions to edit the ID and Value
 properties of the node at the current cursor location. */
VAR_SetStr(varID, "0000");
VAR_SetStr(varValue, "Node");
VARTR_SetNodeID(treeDs, VARTR_GetCursor(treeDs), varID);
VARTR_SetNodeValue(treeDs, VARTR_GetCursor(treeDs), varValue);
...
// Destroy the variant objects.
VAR_Delete(varID);
VAR_Delete(varValue);

/* Destroy the node accessor. */
VARTRNODEACCESSOR_Dispose(nodeAccessor);

/* Destroy the tree datasource. */
RES_Release((ResPtr)treeDs);

“Destroying a Node-Accessor Object” on page 46 shows an alternative use
of the GetCursor() function. For information about setting the cursor
behavior, see “Options for the TVIEW and BROWS Views” on page 31.

Edit Object

To perform edit operations on the tree datasource or the nodes it contains,
your application must use an edit object. The tree datasource uses edit objects
to:
■ Create working copies of the data
■ Protect the datasource from corruption resulting from simultaneous

editing sessions sharing a common datasource

The tree datasource supports these editing levels:
■ Datasource Editing
■ Node Editing

If the data to be modified is locked by another view, no edit object can be
created. This locks your application out of the data. To prevent your
application from hanging when it encounters a data lock, you can create
your edit object within a conditional construct that checks for the
availability of the data and supplies an alternative if the data is locked.
26 C Programmer’s Guide

Concepts
Editing the datasource includes the following four steps:

1. Create an edit object

2. Execute the edit operations

3. Commit the edit operations

4. Destroy the edit object

In addition to the direct approach to managing edit objects, a set of
“convenience” APIs supplies functions that manage the edit objects
automatically for single edit operations. For more information about the
“convenience” APIs, see “Convenience API Functions” on page 29.

Datasource Editing

When you want to modify the structure of the datasource—for example, to
create new nodes—your application needs a datasource edit object. When a
datasource edit object is created to support an editing operation for one
view, no other view can create an edit object for that datasource. This
includes node edit objects for editing node data, because the node you may
want to edit may also be edited during the datasource-level editing session.

The datasource edit object is created, locking the datasource, when an object
of the VARTR class executes the StartEdit() function. This is a public
function inherited from the DS class. The tree datasource is unlocked when
the DSEDIT_End() function executes, as shown in this example:

/* Declare pointer variables. */
VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;

/* Declare a datasource-level edit pointer. */
VarTrEditPtr editTreeDs;

/* Create objects and assign them to pointer variables. */
treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();

/* Execute the StartEdit() function to create a datasource edit
 object, and assign it to the datasource edit pointer. */
editTreeDs = VARTR_StartEdit(treeDs);

/* Position the node accessor and edit the tree. */
VARTRNODEACCESSOR_GoNthRoot(VARTR_GetNumRootNodes(treeDs));
VARTREDIT_AddNode(editTreeDs, nodeAccessor);
...
VARTRNODEACCESSOR_GoFirstRoot(nodeAccessor);
VARTREDIT_RemoveNode(editTreeDs, nodeAccessor);

/* Execute the DSEDIT_End() function. */
DSEDIT_End((DsEditPtr)editTreeDs);

/* Destroy other objects. */
VARTRNODEACCESSOR_Dispose(nodeAccessor);
RES_Release((ResPtr)treeDs);

When the DSEDIT_End() function executes, all tree modifications are
committed, and the datasource-level lock is released.

Node Editing

When you want to edit the data properties of a node in a tree
datasource—for example, to change the node Value—your application
needs only a node edit object, not a datasource edit object. Instead of locking
C Programmer’s Guide 27

Chapter Tree Datasource: Managing Hierarchical Data3

the entire datasource from access by other views, you only need to lock the
node you want to modify.

A node edit object is created, locking the accessed node, when an object of
the VARTR class executes the StartNodeEdit() function. This is a public
function inherited from the DS class. All edit operations are committed, the
edit object is destroyed, and the accessed node is unlocked when the
DSEDIT_End() function executes, as this example shows:

/* Declare pointer variables. */
VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
VarPtr varID, varValue;

/* Declare a node-level edit pointer. */
VarTrNodeEditPtr editNode;

treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
varID = VAR_New();
varValue = VAR_New();

/* Position the node accessor and edit nodes. */
VARTRNODEACCESSOR_GoFirstRoot(nodeAccessor);
while (VARTR_IsNodeValid(treeDs, nodeAccessor)) {
 VARTRNODEACCESSOR_GoNext(nodeAccessor);
}

/* Datasource-level edit object created, edits committed, and
 edit object destroyed by the AddNode() function. See
 "Convenience API Functions" for more information. */
VARTR_AddNode(treeDs, nodeAccessor);

/* Execute the StartNodeEdit() function to create a node-level
 edit object, and assign it to the node-level edit pointer. */
editNode = VARTR_StartNodeEdit(treeDs, nodeAccessor);

/* StartNodeEdit() returns NULL if the node accessor is not on a
 valid node. The following conditional ensures that the edit
 operations are not attempted if the edit object was not
 created. */
if (editNode != NULL) {
 VAR_SetStr(varID, "0000");
 VAR_SetStr(varValue, "New Node");
 VARTRNODEEDIT_SetID(editNode, varID);
 VARTRNODEEDIT_SetValue(editNode, varValue);
 ...
/* Commit the edit operations and dispose of the node-level edit
 object. */
 DSEDIT_End((DsEditPtr)editNode);
} /* End if. */
...
/* Dispose of other objects. */
VAR_Delete(varID);
VAR_Delete(varValue);
VARTRNODEACCESSOR_Dispose(nodeAccessor);
RES_Release((ResPtr)treeDs);

The code in the preceding example creates a node edit object after the
VARTR_AddNode() function, because the “convenience” API functions
create their own edit objects. The AddNode() function would fail to execute
if a node edit object was created before it. As with datasource edit objects,
all node modifications are committed and the node-level lock is released
when the DSEDIT_End() function executes.
28 C Programmer’s Guide

Concepts
Convenience API Functions

When editing a tree datasource, you can use either the standard APIs or the
convenience APIs to complete the edit operations. When using the standard
APIs, you must:

1. Create an edit object to start the edit operation

2. Perform any necessary editions to the datasource

3. Commit the edit operation

4. Destroy the edit object

When using the “convenience” APIs, steps 1, 3, and 4 from the preceding list
are completed automatically. You can perform both:
■ Node Editing with the “Convenience” APIs
■ Datasource Editing with the “Convenience” APIs

In other words, your application can use the “convenience” API to edit the
datasource or its contents without formally creating an edit object. For
example, when the VARTR_AddNode(vartr, accessor) function executes:
■ An edit object is automatically created
■ The new node is added at the location specified by the node accessor
■ The edit operations are committed
■ The edit object is destroyed

The “convenience” API functions are useful for performing single edit
operations. However, these functions can inhibit performance when used to
perform batch edit operations.

Datasource Editing with the “Convenience” APIs

If you want to change the ID and Value properties of a specific node in the
datasource, the “convenience” API functions are most useful. To directly
manage the required edit object would add some unnecessary complexity
to your application logic.

In the next example, a datasource edit object is create by the “convenience”
function, VARTR_AddNode(). This creates a datasource edit object, adds a
node, commits the node addition to the datasource, and destroys the edit
object.

/* Declare pointer variables. */
VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;

/* Initialize the pointer variables. */
treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();

/* Move the node accessor to the next empty root-node
 location. */
VARTRNODEACCESSOR_GoFirstRoot(nodeAccessor);
while (VARTR_IsNodeValid(treeDs, nodeAccessor)) {
 VARTRNODEACCESSOR_GoNext(nodeAccessor);
}

/* Add a node using the "convenience" API. A datasource edit
 object is created, edit operations are committed, and the
 edit object is destroyed by the mTreeDs->AddNode()
 function. */
VARTR_AddNode(treeDs, nodeAccessor);
...
C Programmer’s Guide 29

Chapter Tree Datasource: Managing Hierarchical Data3
/* Dispose of other objects. */
VAR_Delete(varID);
VAR_Delete(varValue);
VARTRNODEACCESSOR_Dispose(nodeAccessor);
RES_Release((ResPtr)treeDs);

If the preceding code fragment was intended to build a hierarchy of
nodes—for example, a datasource with 10 root nodes, each with 10 children,
and so on—the “convenience” API functions would not be appropriate. For
such operations, use batched edit operations as described in “Datasource
Editing” on page 27.

Node Editing with the “Convenience” APIs

If you want to change the ID and Value properties of a specific node in the
datasource, the “convenience” API functions are most useful. To directly
manage the required edit object would add some unnecessary complexity
to your application logic.

In the next example, a node edit object is create by each of the convenience
API functions, VARTR_SetNodeID() and VARTR_SetNodeValue(). Each
of these functions creates a node edit object, commits its edit operation, and
destroys the edit object.

/* Declare pointer variables. */
VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
VarPtr varID, varValue;

/* Initialize the pointer variables. */
treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
varID = VAR_New();
varValue = VAR_New();

/* Move the node accessor to the next empty root-node
 location. */
VARTRNODEACCESSOR_GoFirstRoot(nodeAccessor);
while (VARTR_IsNodeValid(treeDs, nodeAccessor)) {
 VARTRNODEACCESSOR_GoNext(nodeAccessor);
}

/* Add a node using the "convenience" API. A datasource edit
 object is created, edit operations are committed, and the
 edit object is destroyed by the mTreeDs->AddNode()
 function. */
VARTR_AddNode(treeDs, nodeAccessor);

/* Set the variant objects to some initializing values. */
VAR_SetStr(varID, "0000");
VAR_SetStr(varValue, "New Node");

/* Set the node ID and Value properties using the "convenience"
 APIs. A node edit object is created, edit operations are
 committed, and the edit objects are destroyed by each of the
 following two functions. */
VARTR_SetNodeID(treeDs, nodeAccessor, varID);
VARTR_SetNodeValue(treeDs, nodeAccessor, varValue);
...
/* Dispose of other objects. */
VAR_Delete(varID);
VAR_Delete(varValue);
VARTRNODEACCESSOR_Dispose(nodeAccessor);
RES_Release((ResPtr)treeDs);

If the preceding code fragment was intended to traverse and initialize each
node in the hierarchy, the “convenience” API functions would not be
30 C Programmer’s Guide

Options for the TVIEW and BROWS Views
appropriate. For such operations, use batched edit operations as described
in “Node Editing” on page 27.

Options for the TVIEW and BROWS Views

The tree datasource supports these view options for the TVIEW and
BROWS views:
■ cursor
■ initexpandlevel
■ autosize (BROWS view, only)

To set view options, use the third and fourth parameters of the
DS_SetViewOption() function, as shown here:

DS_SetViewOption(<datasource>, (ResPtr)<win>-><view>,
 {["cursor", "{CONTROLS|REFLECTS}"] |
 ["initexpansionlevel", "{0..<n>}"] |
 ["autosize", "{FALSE|TRUE}"]
 });

cursor

The cursor view option determines whether the view cursor controls or
reflects the position of the datasource cursor. The cursor view option has
two possible settings: CONTROLS (the default) and REFLECTS. Here is
the format for the setting the “cursor” option:

DS_SetViewOption(<datasource>, (ResPtr)<win>-><view>,
 "cursor", "{CONTROLS|REFLECTS}");

With cursor set to CONTROLS, the cursor position (active node) in the
view determines the position of the datasource cursor. This ensures that the
datasource cursor and view cursor are synchronized.

With cursor set to REFLECTS, the view cursor reflects the current location
of the datasource cursor. This setting ensures that the view is continually
updated when the node accessor is moved programmatically.

When multiple views are registered with a common datasource, each
registered view can manipulate the position of the datasource cursor if
cursor is set to CONTROLS. For example, if two views control the position
of the datasource cursor, moving one view cursor changes the position of
the datasource cursor, which the other registered view reflects.

In this example, the tviewWgt cursor reflects the current location of the
datasource cursor, while browsWgt controls the position of the datasource
cursor:

VarTrPtr treeDs;
BrowsPtr browsWgt;
TViewPtr tviewWgt;
...
DS_RegisterView((DsPtr)treeDs, (ResPtr)win->browsWgt)
DS_RegisterView((DsPtr)treeDs, (ResPtr)win->tviewWgt)
...
DS_SetViewOption((DsPtr)treeDs, (ResPtr)win->tviewWgt,
 "cursor", "REFLECTS");
DS_SetViewOption((DsPtr)treeDs, (ResPtr)win->browsWgt,
 "cursor", "CONTROLS");
C Programmer’s Guide 31

Chapter Tree Datasource: Managing Hierarchical Data3
If both view cursors control the position of the datasource cursor, any
change in the cursor position of one view is automatically reflected in the
other view.

initexpandlevel

The initexpandlevel option sets the number of levels to which the root node
expands in the display when the view is registered with a tree datasource.
Here is the syntax for using the initexpandlevel option:

DS_SetViewOption(<datasource>, (ResPtr)<view>,
 "initexpandlevel", "{0..<n>}");

where n is the number of levels of expansion from the root node in the
treeDs hierarchy. The default expansion level depends on the type of view
to which it applies. By default, BROWS views are fully expanded (n
expansion levels displayed), while TVIEW views are collapsed to root
nodes only (zero expansion levels displayed).

Warning: If two views sharing a common tree datasource have initial
expansion levels that differ, the displayed views may also differ,
depending on the setting of the cursor option.

In the following code fragment, assume the tree datasource, treeDs, has six
expansion levels. Widgets tviewWgt and browsWgt share treeDs as a
common datasource with browsWgt controlling the datasource cursor and
tviewWgt reflecting it. However, if the browsWgt cursor is placed on a level
4 node, the tviewWgt cursor is unable to reflect its position in the display,
because it is initially expanded only to two expansion levels.

VarTrPtr treeDs;
BrowsPtr browsWgt;
TViewPtr tviewWgt;
...
DS_RegisterView((DsPtr)treeDs, (ResPtr)win->browsWgt)
DS_RegisterView((DsPtr)treeDs, (ResPtr)win->tviewWgt)
...
DS_SetViewOption((DsPtr)treeDs, (ResPtr)win->tviewWgt,
 "cursor", "REFLECTS");
DS_SetViewOption((DsPtr)treeDs, (ResPtr)win->browsWgt,
 "cursor", "CONTROLS");
DS_SetViewOption((DsPtr)treeDs, (ResPtr)win->tviewWgt,
 "initexpandlevel", "2");
DS_SetViewOption((DsPtr)treeDs, (ResPtr)win->browsWgt,
 "initexpandlevel", "6");

In the next example, however, the tviewWgt cursor can correctly reflect the
position of the datasource cursor, because it is expanded to the same level
as the browsWgt widget, which controls the datasource cursor:

VarTrPtr treeDs;
BrowsPtr browsWgt;
TViewPtr tviewWgt;
DS_RegisterView((DsPtr)treeDs, (ResPtr)win->browsWgt)
DS_RegisterView((DsPtr)treeDs, (ResPtr)win->tviewWgt)
...
DS_SetViewOption((DsPtr)treeDs, (ResPtr)win->tviewWgt,
 "cursor", "REFLECTS");
DS_SetViewOption((DsPtr)treeDs, (ResPtr)win->browsWgt,
 "cursor", "CONTROLS");
DS_SetViewOption((DsPtr)treeDs, (ResPtr)win->tviewWgt,
 "initexpandlevel", "6");
DS_SetViewOption((DsPtr)treeDs, (ResPtr)win->browsWgt,
 "initexpandlevel", "6");
32 C Programmer’s Guide

Building a Tree Datasource
autosize

For BROWS views only, you can set the autosize option to TRUE to create
automatically sized nodes. With autosize enabled, all bounding boxes for
the sibling nodes at a given expansion level have the maximum width for
nodes at that level. Here is the syntax for using the autosize option:

DS_SetViewOption(<datasource>, (ResPtr)<view>,
 {"autosize", "{FALSE|TRUE}");

The default value for the autosize option is FALSE. With the default setting,
the bounding-box widths are based on the string lengths of the node Value
properties.

This code fragment shows how to enable the autosize option:

VarTrPtr treeDs;
BrowsPtr brows1;
DS_RegisterView((DsPtr)treeDs, (ResPtr)win->brows1)
...
DS_SetViewOption((DsPtr)treeDs, (ResPtr)win->brows1,
 "autosize", "TRUE");

Building a Tree Datasource

A tree datasource is a container of hierarchically arranged nodes. It can
consist of one or more trees. Each node has variant ID and Value properties.
These may be supplied when the node is created or during a separate
editing session.

Building a tree datasource involves these tasks:
■ Creating and Destroying a Tree Datasource
■ Creating and Destroying a Node Accessor
■ Creating and Destroying an Edit Object
■ Adding Nodes
■ Managing Memory

The preceding list is somewhat simplified, but does explain the basic
process, parts of which you may need to reiterate.

If you are constructing your datasource hierarchy interactively using the
BROWS and TVIEW views—probably a more realistic approach—see
“Editing a Tree Datasource” on page 48 for examples that show the
programmatic aspect of the datasource/views relationship. For more
information about options for the supported view widgets, see “Options for
the TVIEW and BROWS Views” on page 31.

Creating and Destroying a Tree Datasource

Before you can begin creating trees in the tree datasource, your application
must first create a tree datasource. This code fragment creates treeDs as a
VarTrPtr variable and initializes treeDs to the value returned by
VARTR_Create():

/* Declare a pointer variable for the tree datasource. */
VarTrPtr treeDs;
...
/* Create a tree-datasource object and assign it to the pointer
 variable. */
treeDs = VARTR_Create();
C Programmer’s Guide 33

Chapter Tree Datasource: Managing Hierarchical Data3
...
/* Destroy the tree-datasource object. */
RES_Release((ResPtr)treeDs);

The preceding code fragment creates and destroys a tree datasource with
the structure shown in Figure 3–5. The simple box in Figure 3–5 represents
the memory location of the datasource object, treeDs.

Figure 3–5 Untitled Tree Datasource

The examples in the following sections build on this simple representation
to construct a tree structure hierarchically from left (parents) to right
(children). For more information about tree datasources, see “Tree
Datasource” on page 20.

After the datasource object has served its purpose, use the RES_Release()
function to destroy it. For more information about memory management,
see “Destroying the Tree-Datasource Object” on page 46.

Creating and Destroying a Node Accessor

A node accessor is an indexing mechanism that references the nodes in the
hierarchy. With a node accessor, you can use the tree-datasource APIs to
traverse the hierarchy. You need a node accessor in two instances:
■ When you are simply updating information about a particular node
■ When you are making structural changes—such as adding or removing

nodes—to the tree datasource

This code fragment shows how to create and destroy a node accessor:

/* Declare a tree-datasource pointer variable. */
VarTrPtr treeDs;

/* Declare a tree-edit pointer variable. */
VarTrEditPtr editTreeDs;

/* Declare a node-accessor pointer variable. */
VarTrNodeAccessorPtr nodeAccessor;
...
/* Assign a tree-datasource object to the tree-datasource
 pointer variable. */
treeDs = VARTR_Create();

/* Assign a tree-level edit object to the tree-edit pointer
 variable. */
editTreeDs = VARTR_StartEdit(treeDs);

/* Assign a node-accessor object to the node-accessor pointer
 variable. */
nodeAccessor = VARTRNODEACCESSOR_Create();
...
/* Destroy the node accessor. */
VARTRNODEACCESSOR_Dispose(nodeAccessor);
...

This creates nodeAccessor as a VarTrNodeAccessorPtr variable and
initializes nodeAccessor to the value returned by
VARTRNODEACCESSOR_Create(). When your application is finished
with the node accessor, use the
VARTRNODEACCESSOR_Dispose(accessor) function to free the memory

34 C Programmer’s Guide

Building a Tree Datasource

allocated for it. For more information about memory management, see
“Destroying a Node-Accessor Object” on page 46.

For more information about tree-datasource edit objects, see “Node
Accessor” on page 23.

Creating and Destroying an Edit Object

To build a tree datasource, you have to modify its hierarchical structure. To
do so, you need a datasource edit object. This code fragment creates and
destroys a datasource edit object, editTreeDs:

VarTrPtr treeDs;

/* Declare a datasource-edit pointer variable. */
VarTrEditPtr editTreeDs;
...
treeDs = VARTR_Create();

/* Assign an edit object to the datasource-edit pointer
 variable. */
editTreeDs = VARTR_StartEdit(treeDs);

/* Edit operations defined. */
...
/* Commit edit operations to the datasource and destroy the edit
 object. */
DSEDIT_End((DsEditPtr)editTreeDs);
...

In this example, editTreeDs is a VarTrEditPtr variable and is assigned a
datasource edit object—the value returned by the VARTR_StartEdit()
function. When the DSEDIT_End() function executes, all editing operations
are committed to the datasource, and the edit object is destroyed. For more
information about tree-datasource edit objects, see “Datasource Editing” on
page 27.

As a first use of the datasource edit object, assign a title to the datasource, as
shown here:

VarTrPtr treeDs;
VarTrEditPtr editTreeDs;
...
treeDs = VARTR_Create();
editTreeDs = VARTR_StartEdit(treeDs);

/* Set the title of the tree datasource. */
VARTREDIT_SetTitle(editTreeDs, "Tree Datasource");

/* Commit editing operations to the datasource and destroy the
 edit object. */
DSEDIT_End((DsEditPtr)editTreeDs);

Note the use of the string literal in quotation marks. Unlike the node ID and
Value properties, the VARTREDIT_SetTitle() function accepts a string as
the datasource title. Building on the example from Figure 3–5, executing the
preceding VARTREDIT_SetTitle() function adds a title to the tree
datasource, as Figure 3–6 shows:

Figure 3–6 Titled Tree Datasource

Tree Datasource
C Programmer’s Guide 35

Chapter Tree Datasource: Managing Hierarchical Data3
Adding Nodes

After creating a node accessor, you use the VARTRNODEACCESSOR API
to position the node accessor where you want to create a node. You must
perform these tasks when:
■ Creating the First Root Node
■ Creating Child Nodes and Siblings
■ Creating Additional Trees

Creating the First Root Node

To create the first root node, you need:
■ A tree datasource
■ A datasource edit object
■ A node accessor

Building on the structure in Figure 3–6, the next task in creating your tree
datasource is to add the first root node to it, which Figure 3–7 shows:

Figure 3–7 Creating the First Root Node in a Tree Datasource

These are the typical tasks in creating the first root node:

1. Moving the Node Accessor to the First Unoccupied Root-Node
Location

2. Adding a Node

3. Setting the Node ID and Value Properties

This code fragment shows how to implement these steps to create the first
root node:

VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
VarPtr varID, varValue;
VarTrEditPtr editTreeDs;

treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
varID = VAR_New();
varValue = VAR_New();
editTreeDs = VARTR_StartEdit(treeDs);

/* Set the title of the tree datasource. */
VARTR_SetTitle(mEditTreeDs, "Tree Datasource");

/* Move the node accessor to the first unoccupied root-node
 location. */
VARTRNODEACCESSOR_GoNthRoot(nodeAccessor,
 VARTR_GetNumRoots(treeDs));

/* Add a node at the first empty root-node location. */
VARTREDIT_AddNode(editTreeDs, nodeAccessor);

Tree Datasource

Tree Datasource

Tree Datasource First Root Node
36 C Programmer’s Guide

Building a Tree Datasource
/* Set the node ID and Value properties. */
VAR_SetStr(varID, "New");
VAR_SetStr(varValue, "First Root Node");
VARTREDIT_SetNodeID(editTreeDs, nodeAccessor, varID);
VARTREDIT_SetNodeValue(editTreeDs, nodeAccessor, varValue);

DSEDIT_End((DsEditPtr)editTreeDs);
...
VAR_Delete(varID);
VAR_Delete(varValue);
VARTRNODEACCESSOR_Dispose(nodeAccessor);
RES_Release((ResPtr)treeDs);

You can also create the first root node using a “convenience” API. This
creates and disposes of the edit object for you. This code fragment shows
how to use the “convenience” functions to create the first root node in the
datasource:

VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
VarPtr varID, varValue;

treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
varID = VAR_New();
varValue = VAR_New();

/* Set the title of the tree datasource using the "convenience"
 API. */
VARTR_SetTitle(treeDs, "Tree Datasource");

/* Move the node accessor to the first unoccupied root-node
 location. */
VARTRNODEACCESSOR_GoFirstRoot(nodeAccessor);
while (VARTR_IsNodeValid(treeDs, nodeAccessor) {
 VARTRNODEACCESSOR_GoNext(nodeAccessor);
}

/* Add a node. */
VARTR_AddNode(treeDs, nodeAccessor);

/* Set the node ID and Value properties using "convenience" API
 functions. */
VAR_SetStr(varID, "New");
VAR_SetStr(varValue, "First Root Node");
VARTR_SetNodeID(treeDs, nodeAccessor, varID);
VARTR_SetNodeValue(treeDs, nodeAccessor, varValue);
...

VAR_Delete(varID);
VAR_Delete(varValue);
VARTRNODEACCESSOR_Dispose(nodeAccessor);
RES_Release((ResPtr)treeDs);

The “convenience” API functions:

1. Create an edit object.

2. Perform the specified operation.

3. Dispose of the edit object when the operation is complete.

Tip: Because these “convenience” functions create and dispose of an
edit object for each operation, they are not very efficient for
performing batches of editing operations.
C Programmer’s Guide 37

Chapter Tree Datasource: Managing Hierarchical Data3
Moving the Node Accessor to the First Unoccupied Root-Node Location

When you are creating the first root node in a tree datasource, traversing the
datasource to find the first unoccupied root node is very simple. All of the
functions in the VARTRNODEACCESSOR API move the accessor to the
same node. The VARTRNODEACCESSOR_GoFirstRoot() function is
used for simplicity and clarity in the preceding code fragment.

The following traversal approach is a more universal. That is because it
moves the node accessor to the first unoccupied root-node location,
regardless of the number of root nodes in the datasource.

/* Declarations. */
VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
...
/* Assignments. */
treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
...
/* Move the node accessor to the first unoccupied root-node
 location. */
VARTRNODEACCESSOR_GoNthRoot(nodeAccessor,
 VARTR_GetNumRoots(treeDs));
...

In this case, the number of existing root nodes is used as an argument for the
VARTRNODEACCESSOR_GoNthRoot() function. The value returned by
the VARTR_GetNumRoots() function is a one-based counter, while the
VARTRNODEACCESSOR_GoNthRoot() function expects a zero-based
index. This ensures that the node accessor points to the next unoccupied
root node.

Warning: The VARTR_GetNumRoots() function returns the number of
root nodes in the datasource at the time the edit object is created.
Do not use this return value as a control-loop counter, unless the
edit object is created and destroyed within the loop, as the
“convenience” API functions do.

You may want to use this nested construct to check the validity of the node
before adding a new node:

/* Declarations. */
VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
...
/* Assignments. */
treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
...
/* Move the node accessor to the first unoccupied root-node
 location. */
VARTRNODEACCESSOR_GoFirstRoot(nodeAccessor);
while (VARTR_IsNodeValid(treeDs, nodeAccessor))
 VARTRNODEACCESSOR_GoNext(nodeAccessor);
}
...

Adding a Node

After positioning the node accessor at the first unoccupied node location,
execute the VARTREDIT_AddNode() function to add a node:

/* Declarations. */
VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
38 C Programmer’s Guide

Building a Tree Datasource
...
/* Assignments. */
treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
...
/* Move the node accessor to the first unoccupied root-node
 location. */
VARTRNODEACCESSOR_GoFirstRoot(nodeAccessor);
while (VARTR_IsNodeValid(treeDs, nodeAccessor))
 VARTRNODEACCESSOR_GoNext(nodeAccessor);
}
VARTR_AddNode(treeDs, nodeAccessor);
...

Note: You can also “insert” nodes in the hierarchy. For more information,
see “Inserting Nodes versus Adding Nodes” on page 51.

Setting the Node ID and Value Properties

Although setting the node ID and Value properties are optional tasks when
you are building the node hierarchy, you may want to add a routine to your
code to ensure the uniqueness of the node IDs. The ID field, and possibly
the Value field, must be unique when associating a node with row data in a
table datasource.

To add data to the nodes as you create them, you can use the “convenience”
API functions—VARTR_SetNodeID() and VARTR_SetNodeValue()—to
set the ID and Value properties. Alternately, the application can end the
datasource-level editing session and start a node-level editing session. For
more information, see “Node-Level Editing” on page 55.

Creating Child Nodes and Siblings

After creating the first root node, you can methodically create multiple
generations of child and sibling nodes. Creating child and sibling nodes is
similar to creating the first root node. In each case, you:

1. Move the node accessor to the appropriate node location.

2. Add a node.

3. Optionally set the node ID and Value properties.

Creating the First Child Node

Continuing with the structure in Figure 3–7, the next task in building your
tree datasource is to add the first child node, as Figure 3–8 shows:

Figure 3–8 Creating the First Child Node

To create the first child node, use the VARTRNODEACCESSOR API to
traverse the node hierarchy, relative to the first root node, to the first
unoccupied child node. This code fragment shows how to create the first

Tree Datasource First Root Node

Tree Datasource First Root Node

Tree Datasource First Root Node First Child Node
C Programmer’s Guide 39

Chapter Tree Datasource: Managing Hierarchical Data3
child node, using the VARTRNODEACCESSOR_GoFirstChild() function
to position the node accessor:

VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
VarPtr varID, varValue;
VarTrEditPtr editTreeDs;

treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
varID = VAR_New();
varValue = VAR_New();
editTreeDs = VARTR_StartEdit(treeDs);

/* Move the node accessor to the first unoccupied root-node
 location. */
VARTRNODEACCESSOR_GoNthRoot(nodeAccessor,
 VARTR_GetNumRoots(treeDs));

/* Add a node at the first empty root-node location. */
VARTREDIT_AddNode(editTreeDs, nodeAccessor);

/* Set the node ID and Value properties. */
VAR_SetStr(varID, "0");
VAR_SetStr(varValue, "First Root Node");
VARTREDIT_SetNodeID(editTreeDs, nodeAccessor, varID);
VARTREDIT_SetNodeValue(editTreeDs, nodeAccessor, varValue);

/* Relative to the first root node, move the node accessor to
 the first unoccupied child-node location. */
VARTRNODEACCESSOR_GoFirstChild(nodeAccessor);

/* Add a node at the first child-node location. */
VARTREDIT_AddNode(editTreeDs, nodeAccessor);

/* Set the node ID and Value properties. */
VAR_SetStr(varID, "0,0");
VAR_SetStr(varValue, "First Child Node");
VARTREDIT_SetNodeID(editTreeDs, nodeAccessor, varID);
VARTREDIT_SetNodeValue(editTreeDs, nodeAccessor, varValue);
DSEDIT_End((DsEditPtr)editTreeDs);

VAR_Delete(varID);
VAR_Delete(varValue);
VARTRNODEACCESSOR_Dispose(nodeAccessor);
RES_Release((ResPtr)treeDs);

The following traversal approach is more universal. This is because it moves
the node accessor to the first unoccupied child-node location, regardless of
the number of child nodes.

/* Declarations. */
VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;

/* Assignments. */
treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
...
/* Relative to the first root node, move the node accessor to
 the first unoccupied child-node location. */
VARTRNODEACCESSOR_GoFirstRoot(nodeAccessor);
if (VARTR_IsNodeValid(treeDs, nodeAccessor)) {
 while (VARTR_IsNodeValid(treeDs, nodeAccessor))
 VARTRNODEACCESSOR_GoNext(nodeAccessor);
 } /* End while. */
} /* End if. */
...

In this case, the number of existing sibling nodes is used as an argument for
the VARTRNODEACCESSOR_GoNthSibling() function. The value
40 C Programmer’s Guide

Building a Tree Datasource

r));
returned by the VARTR_GetNumSiblings() function is a one-based
counter, while the VARTRNODEACCESSOR_GoNthSibling() function
expects a zero-based index. This ensures that the node accessor points to the
next unoccupied sibling node.

Warning: Like the VARTR_GetNumRoots() function, the
VARTR_GetNumSiblings() function returns the number of
sibling nodes relative to the node accessor when the edit object is
created. Do not use this return value as a control-loop counter,
unless the edit object is created and destroyed within the loop.

This approach first checks the validity of the root node. If the root node is
valid, the node accessor moves to the next empty child location, as in the
preceding example.

/* Declarations. */
VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;

/* Assignments. */
treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
...
/* Relative to the first root node, move the node accessor to
 the first unoccupied child-node location. */
VARTRNODEACCESSOR_GoFirstRoot(nodeAccessor);
if (VARTR_IsNodeValid(treeDs, nodeAccessor)) {
 VARTRNODEACCESSOR_GoNthChild(nodeAccessor,
 VARTR_GetNumChildren(treeDs,
 nodeAccesso
} /* End if. */
...

Creating Sibling Nodes

Building on the structure in Figure 3–8, the next task in creating your tree
datasource is to add the second child, or next sibling, node, as Figure 3–9
shows:

Figure 3–9 Creating the Second Child Node

To create the second child node, move the node accessor, relative to the first
child node, to the first unoccupied sibling node. This code fragment shows
how to create the second child node, which Figure 3–10 shows, using the
VARTRNODEACCESSOR_GoNext() function to position the node
accessor:

VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;

Tree Datasource First Root Node First Child Node

Tree Datasource First Root Node First Child Node

Tree Datasource First Root Node First Child Node

Second Child Node
C Programmer’s Guide 41

Chapter Tree Datasource: Managing Hierarchical Data3
VarPtr varID, varValue;
VarTrEditPtr editTreeDs;

treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
varID = VAR_New();
varValue = VAR_New();
editTreeDs = VARTR_StartEdit(treeDs);

/* Move the node accessor to the first unoccupied root-node
 location. */
VARTRNODEACCESSOR_GoNthRoot(nodeAccessor,
 VARTR_GetNumRoots(treeDs));

/* Add a node at the first empty root-node location. */
VARTREDIT_AddNode(editTreeDs, nodeAccessor);

/* Set the node ID and Value properties. */
VAR_SetStr(varID, "0");
VAR_SetStr(varValue, "First Root Node");
VARTREDIT_SetNodeID(editTreeDs, nodeAccessor, varID);
VARTREDIT_SetNodeValue(editTreeDs, nodeAccessor, varValue);

/* Relative to the first root node, move the node accessor to
 the first child-node location. */
VARTRNODEACCESSOR_GoFirstChild(nodeAccessor);

/* Add a node at the first child-node location. */
VARTREDIT_AddNode(editTreeDs, nodeAccessor);

/* Set the node ID and Value properties. */
VAR_SetStr(varID, "0,0");
VAR_SetStr(varValue, "First Child Node");
VARTREDIT_SetNodeID(editTreeDs, nodeAccessor, varID);
VARTREDIT_SetNodeValue(editTreeDs, nodeAccessor, varValue);

/* Relative to the first child node, move the node accessor to
 the first unoccupied sibling-node location. */
VARTRNODEACCESSOR_GoNext(nodeAccessor);

/* Add a node at the first child-node location. */
VARTREDIT_AddNode(editTreeDs, nodeAccessor);

/* Set the node ID and Value properties. */
VAR_SetStr(varID, "0,1");
VAR_SetStr(varValue, "Second Child Node");
VARTREDIT_SetNodeID(editTreeDs, nodeAccessor, varID);
VARTREDIT_SetNodeValue(editTreeDs, nodeAccessor, varValue);
DSEDIT_End((DsEditPtr)editTreeDs);

VAR_Delete(varID);
VAR_Delete(varValue);
VARTRNODEACCESSOR_Dispose(nodeAccessor);
RES_Release((ResPtr)treeDs);

The following traversal method is more universal. This is because it moves
the node accessor to the first unoccupied child-node location, regardless of
the number of children.

The next code fragment, the internal while loop moves the node accessor to
the first unoccupied child-node location, regardless of the number of
children. After each pass through the while loop:
■ A node is added.
■ The node accessor is returned to the parent-node.

In this example, the “convenience” API functions are used to clarify the
application logic. An Int16 constant, maxNodes, is set to 10 to limit the
number of children that are created:
42 C Programmer’s Guide

Building a Tree Datasource

ssor));
/* Declarations. */
VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
Int16 i, maxNodes;
...
/* Assignments. */
treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
...
/* Relative to the first root node, create nodes at, the first
 10 child-node locations. */
VARTRNODEACCESSOR_GoFirstRoot(nodeAccessor);
for (i = VARTR_GetNumChildren(treeDs, nodeAccessor),
 maxNodes = 10; i < maxNodes; i++) {
 VARTRNODEACCESSOR_GoFirstChild(nodeAccessor);
 while (VARTR_IsNodeValid(treeDs, nodeAccessor)) {
 VARTRNODEACCESSOR_GoNthChild(nodeAccessor,
 VARTR_GetNumChildren(treeDs,
 nodeAcce
 }
 VARTR_AddNode(treeDs, nodeAccessor);
 VARTRNODEACCESSOR_GoParent(nodeAccessor);
}
...

Figure 3–10 Creating the Next Sibling Node

Creating Additional Trees

To create additional trees, you need additional root nodes. Using each root
node as a starting point, you can build trees by employing the programming
techniques discussed in “Creating Child Nodes and Siblings” on page 39.
Figure 3–11 shows the creation of a second root node, from which you can
methodically build another tree:

Tree Datasource First Root Node First Child Node

Second Child Node

Third Child Node

Fourth Child Node

Fifth Child Node

Sixth Child Node

Seventh Child Node

Eighth Child Node

Ninth Child Node

Tenth Child Node
C Programmer’s Guide 43

Chapter Tree Datasource: Managing Hierarchical Data3
Figure 3–11 Creating Additional Trees

To create additional root nodes, move the node accessor to the first root
node, then use the VARTRNODEACCESSOR_GoNext() function, as
needed, to move the accessor to the first unoccupied root node. This code
fragment shows how to create a second root node:

VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
VarPtr varID, varValue;
VarTrEditPtr editTreeDs;

treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
varID = VAR_New();
varValue = VAR_New();
editTreeDs = VARTR_StartEdit(treeDs);

/* Move the node accessor to the first unoccupied root-node
 location. */
VARTRNODEACCESSOR_GoFirstRoot(nodeAccessor);
while (VARTR_IsNodeValid(treeDs, nodeAccessor))
 VARTRNODEACCESSOR_GoNext(nodeAccessor);
}
VARTREDIT_AddNode(editTreeDs, nodeAccessor);

/* Set the node ID and Value properties. */
VAR_SetStr(varID, "1");
VAR_SetStr(varValue, "Second Root Node");
VARTREDIT_SetNodeID(editTreeDs, nodeAccessor, varID);
VARTREDIT_SetNodeValue(editTreeDs, nodeAccessor, varValue);
DSEDIT_((DsEditPtr)editTreeDs);

First Root NodeTree Datasource First Child Node

nth Child Node

First Root NodeTree Datasource First Child Node

nth Child Node

First Root NodeTree Datasource First Child Node

nth Child Node

Second Root Node
44 C Programmer’s Guide

Building a Tree Datasource
...
VAR_Delete(varID);
VAR_Delete(varValue);
VARTRNODEACCESSOR_Dispose(nodeAccessor);
RES_Release((ResPtr)treeDs);

You can also use this traversal approach to move the node accessor directly
to the first unoccupied root-node location, regardless of the number of root
nodes:

/* Declarations. */
VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
...
/* Assignments. */
treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();

/* Move the node accessor to the first unoccupied root-node
 location. */
VARTRNODEACCESSOR_GoNthRoot(nodeAccessor,
 VARTR_GetNumRoots(treeDs));
...

In this case, the number of existing root nodes is used as an argument for the
VARTRNODEACCESSOR_GoNthRoot() function. The value returned by
the VARTR_GetNumRoots() function is a one-based counter, while the
VARTRNODEACCESSOR_GoNthRoot() function expects a zero-based
index. This ensures that the node accessor points to the next unoccupied
root node.

Managing Memory

Memory usage accumulates as you create objects for your datasource,
regardless of the specific object type. To adequately manage your memory
usage, you should destroy an object after it has served its purpose.

The code fragments that show you how to work with the tree datasource
consistently illustrate the destruction of edit objects. However, you should
also destroy both the tree-datasource and node-accessor objects.

This code fragment shows a general framework for creating and destroying
objects; the pairs of creation and destruction calls are indented for clarity:

/* Declare a tree-datasource pointer variable. */
 VarTrPtr treeDs;

 /* Declare an edit pointer variable. */
 VarTrEditPtr editTreeDs;

 /* Declare a node-accessor pointer variable. */
 VarTrNodeAccessorPtr nodeAccessor;
...
/* Assign a tree-datasource object to the tree-datasource
 pointer variable. */
 treeDs = VARTR_Create();

 /* Assign an edit object to the tree-edit pointer variable.
*/
 editTreeDs = VARTR_StartEdit(treeDs);

 /* Assign a node-accessor object to the node-accessor
 pointer variable. */
 nodeAccessor = VARTRNODEACCESSOR_Create();

 /* Position the node accessor and edit the tree. */
 ...
C Programmer’s Guide 45

Chapter Tree Datasource: Managing Hierarchical Data3
 /* Destroy the node-accessor object. */
 VARTRNODEACCESOR_Destruct(nodeAccessor);

 ...
 /* Commit the changes and destroy the edit object. */
 DSEDIT_End((DsEditPtr)editTreeDs);

 ...
/* Destroy the tree-datasource object. */
RES_Release((ResPtr)treeDs);

The formal creation and destruction of the datasource-level edit object,
illustrated in the preceding code fragment, is most useful when performing
editing operations in batches. For single operations, the “convenience” API
is effective. This is because, using the cursor as a node reference, it
automatically creates an edit object, completes the editing operation, and
disposes of the edit object—all in one step.

Destroying the Tree-Datasource Object

The tree-datasource object may be the object least often destroyed in your
application. However, good object construction and destruction habits can
minimize application errors created by memory leaks.

For example, an application that sequentially loads and unloads several
different organizational hierarchies continues to increase its memory usage
if the datasource objects are not destroyed and created again when needed.
Simply disassociating a view from a datasource—DS_UnregisterView()
function—is not enough to avoid memory leaks in your application.

This code fragment shows how to create and destroy a tree datasource:

/* Declare a tree-datasource pointer variable. */
VarTrPtr treeDs;
...
/* Assign a tree-datasource object to the tree-datasource
 pointer variable. */
treeDs = VARTR_Create();
...
/* Destroy the tree-datasource object. */
RES_Release((ResPtr)treeDs);

Before destroying your tree datasource, you will undoubtedly need to
compose a routine to traverse the hierarchy and write the data to a
persistent storage medium, such as a flat-file format on a local hard disk.
You might want to associate each node in the tree datasource with a row in
a table datasource, using the query mechanism supplied by the Data Access
Element.

Destroying a Node-Accessor Object

Depending on the logic of your application, you may want to create
multiple node accessors or aliases to a single node accessor. If you create
multiple node-accessor objects and assign them to pointer variables, you
must destroy each of them separately, as shown here:

/* Declare a tree-datasource pointer variable. */
VarTrPtr treeDs;

/* Declare a tree-edit pointer variable. */
VarTrEditPtr editTreeDs;

/* Declare three node-accessor pointer variables. */
VarTrNodeAccessorPtr nodeAccessor_1;
VarTrNodeAccessorPtr nodeAccessor_2;
46 C Programmer’s Guide

Building a Tree Datasource
VarTrNodeAccessorPtr nodeAccessor_3;
...
/* Assign a tree-datasource object to the tree-datasource
 pointer variable. */
treeDs = VARTR_Create();

/* Assign a node-accessor objects to the node-accessor
 pointer variables. */
nodeAccessor_1 = VARTRNODEACCESSOR_Create();
nodeAccessor_2 = VARTRNODEACCESSOR_Create();
nodeAccessor_3 = VARTRNODEACCESSOR_Create();

/* Move the node accessors and edit the tree datasource. */
...
/* Destroy each of the node accessors separately. */
VARTRNODEACCESOR_Dispose(nodeAccessor_1);
VARTRNODEACCESOR_Dispose(nodeAccessor_2);
VARTRNODEACCESOR_Dispose(nodeAccessor_3);
...
/* Destroy the tree-datasource object. */
RES_Release((ResPtr)treeDs);

You can also set aliases to a node accessor by assigning the node-accessor
pointer returned by the VARTR_GetCursor() function to a node-accessor
pointer variable. This code fragment shows how you might use such aliases
to your node accessor:

/* Declare a tree-datasource pointer variable. */
VarTrPtr treeDs;

/* Declare multiple node-accessor pointer variables. */
VarTrNodeAccessorPtr nodeAccessor;
VarTrNodeAccessorPtr manager;
VarTrNodeAccessorPtr employee;
...
/* Assign a tree-datasource object to the tree-datasource
 pointer variable. */
treeDs = VARTR_Create();

/* Assign a node-accessor object to the node-accessor
 pointer variable. */
nodeAccessor = VARTRNODEACCESSOR_Create();

/* Set a cursor at the location of the node accessor. */
VARTR_SetCursor(treeDs, nodeAccessor);

/* Assign two node-accessor objects returned by the
 GetCursor() function to the extra node-accessor
 variables. */
manager = VARTR_GetCursor(treeDs);
employee = VARTR_GetCursor(treeDs);
...
/* Move the node accessor and aliases, and edit the tree
 datasource. */
...
/* Dispose of the node-accessor object. */
VARTRNODEACCESOR_Dispose(nodeAccessor);

/* Destroy the tree-datasource object. */
RES_Release((ResPtr)treeDs);

In the preceding example, only nodeAccessor must be destroyed, because
manager and employee are only aliases to the node-accessor object,
nodeAccessor. Upon destroying the node accessor object, the two aliases
become meaningless.
C Programmer’s Guide 47

Chapter Tree Datasource: Managing Hierarchical Data3
Editing a Tree Datasource

The concept of “editing” the tree datasource described in this section is
based on the assumption that you are using one or more views to control the
movement of the cursor in the datasource. You should keep this in mind
when evaluating the code examples in this section.

When editing a tree datasource, these editing levels apply:
■ Datasource-Level Editing
■ Node-Level Editing

The notion of “subtree” locking is not yet supported, so editing operations
must lock either the entire tree or a single node. Editing operations involve
these steps:

1. Move the node accessor to a specific location.

2. Create either a datasource or a node edit object.

3. Perform editing operations.

4. End the editing operation and commit the modifications.

All editing operations require a node-accessor pointer with a node-accessor
object assigned to it. For information about node-accessor declarations, see
“Creating and Destroying a Node Accessor” on page 34.

In addition to the node accessor, you need either a datasource-level or
node-level edit object. Specifically, you need:
■ A datasource edit object when modifying a tree structure
■ A node edit object to limit modifications to the node ID and Value

properties

The edit object is a working copy of the tree or node you are editing. All
modifications are committed to the datasource when the DSEDIT_End()
function executes.

Note: See “Datasource Editing” on page 27 and “Node Editing” on page 27
for more information about datasource and node edit objects,
respectively.

After declaring the node accessor and the required edit objects, you can
position the node accessor on any node location in the tree datasource. You
can traverse the tree datasource to complete any datasource-level or
node-level editing operations using the node-accessor API listed in
Table 3–1:

Table 3–1 Basic Functions for Traversing the Tree Datasource

Function Description
GoFirstRoot(accessor) Move accessor to the first root node.

GoFirstChild(accessor) Move accessor to the first child node
relative to the current accessor location.

GoFirstSibling(accessor) Move accessor to the first sibling node of the
current accessor location.

GoParent(accessor) Move accessor to the parent node of the
current accessor location.
48 C Programmer’s Guide

Editing a Tree Datasource
The functions in Table 3–2 require the indexing system described in “Tree
Datasource” on page 20. Note that nodes are indexed from 0.

Table 3–2 “Convenience” Functions for Traversing the Tree Datasource

The functions in Table 3–3 comprise a useful API with which to retrieve
information from the tree datasource and the nodes it contains:

Table 3–3 Functions for Getting Miscellaneous Information

GoPrev(accessor) Move accessor to the previous sibling node
of the current accessor location.

GoNext(accessor) Move accessor to the next sibling node of
the current accessor location.

Function Description
GoNthRoot(accessor, index) Move accessor to the nth root node,

specified by index (zero-based), of the tree
datasource.

GoNthChild(accessor, index) Move accessor to the nth child node,
specified by index (zero-based), relative to
the current accessor location.

GoNthSibling(accessor, index) Move accessor to the nth sibling node,
specified by index (zero-based), relative to
the current accessor location.

GoID(accessor, id) Move accessor to the node with the
specified id.

Function Description
GetTitle(treeDs) Get the title of the tree datasource, treeDs.

GetNumRoots(treeDs) Get the number (one-based) of root nodes
in the tree datasource, treeDs.

GetNumChildren(treeDs, accessor) Get the number (one-based) of child nodes
relative to the current accessor location.

GetNumSiblings(treeDs, accessor) Get the number (one-based) of sibling
nodes relative to the current accessor
location.

QueryNodeID(treeDs, accessor, idPtr) Copy the data setting of the node ID
property at the current accessor location to
the address to which idPtr points.

QueryNodeValue(treeDs, accessor, valuePtr) Copy the data setting of the node Value
property at the current accessor location to
the address to which valuePtr points.

GetNodeID(treeDs, accessor) Get a pointer to the variant object that
stores the data of the node ID property at
the current accessor location.

GetNodeValue(treeDs, accessor) Get a pointer to the variant object that
stores the data of the node Value property
at the current accessor location.

IsNodeValid(treeDs, accessor) Returns a boolean value indicating
whether a node exists at the current
accessor location.

Function Description
C Programmer’s Guide 49

Chapter Tree Datasource: Managing Hierarchical Data3
This code shows how to create and dispose of a datasource edit object:

VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;

/* Declare a datasource-level edit pointer. */
VarTrEditPtr editTreeDs;
...
treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();

/* Assign a datasource edit object to the edit pointer. */
editTreeDs = VARTR_StartEdit(treeDs);
...

/* Commit the edit operations, and destroy the edit object. */
DSEDIT_End((DsEditPtr)editTreeDs);

You can use the datasource edit object to edit at the node level, too. If you
want to restrict modifications to the node level only, this code shows how to
create and dispose of a node edit object:

VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;

/* Declare a datasource-level edit pointer. */
VarTrEditPtr editTreeDs;
...
treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();

/* Assign a node edit object to the edit pointer. */
editTreeDs = VARTR_StartNodeEdit(treeDs, nodeAccessor);
...
DSEDIT_End((DsEditPtr)editTreeDs);
...

Modifications are committed when you call the DSEDIT_End() function.
This also releases the data lock that was created when the
VARTR_StartEdit() function executed. If you call another
VARTR_StartEdit() before the DSEDIT_End() function executes, the
StartEdit() function will fail, because the data is still locked.

Datasource-Level Editing

When you make structural changes to a tree datasource, you need a
datasource edit object. This locks the entire datasource to prevent
simultaneous editing of the datasource from another view.

These are datasource-level editing operations:
■ Setting the Title of the Tree Datasource
■ Inserting Nodes versus Adding Nodes
■ Modifying Node Data Using the “Convenience” API
■ Removing a Node
■ Removing a Tree

The functions in Table 3–4 support the structural modifications to the tree
datasource and are supplied by the VARTREDIT API.
50 C Programmer’s Guide

Editing a Tree Datasource

;

Table 3–4 Functions for Structural Modifications to the Tree Datasource

Setting the Title of the Tree Datasource

The tree datasource has a Title property to which you can assign a string
value using the VARTREDIT_SetTitle(vartr, string) function. Likewise,
you can retrieve the current title assigned to the tree datasource using the
VARTR_GetTitle(vartr) function.

Inserting Nodes versus Adding Nodes

You can add a node at any valid node-accessor location. If a node is already
present, the new node is inserted before the existing node. If there is no node
at the current accessor location, you can add a node.

Figure 3–12 shows the insertion of a “third” child node between the “first”
and “second” child nodes. The inserted node becomes the sibling of the first
two nodes.

Figure 3–12 Inserting a Child Node

This code fragment shows how to programmatically insert a child node,
“third,” with the node-accessor position at the “second” node location:

VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
VarPtr varValue;

treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
varValue = VAR_New();

/* Empty accessor location. */
VARTRNODEACCESSOR_GoNthRoot(VARTR_GetNumRoots(treeDs,
 nodeAccessor));

/* Add first root node. */
VARTR_AddNode(treeDs, nodeAccessor);
VAR_SetStr(varValue, "root");
VARTR_SetNodeValue(treeDs, nodeAccessor, varValue);

/* Empty accessor location. */
VARTRNODEACCESSOR_GoNthChild(VARTR_GetNumChildren(treeDs,
 nodeAccessor))

Function Description
SetTitle(treeDs) Sets the Title property of the tree

datasource, treeDs.

AddNode(accessor) Add a node at the current accessor location.

RemoveNode(accessor) Remove the node at the current accessor
location. Child nodes of the node to be
removed become the children of the parent
node of the removed node.

RemoveTree(accessor) Remove the hierarchy beneath the current
accessor location.

root

first

second root

first

third

second
C Programmer’s Guide 51

Chapter Tree Datasource: Managing Hierarchical Data3
/* Add first child node. */
VARTR_AddNode(treeDs, nodeAccessor);
VAR_SetStr(varValue, "first");
VARTR_SetNodeValue(treeDs, nodeAccessor, varValue);

/* Empty accessor location. */
VARTRNODEACCESSOR_GoNext(nodeAccessor);

/* Add second child node. */
VARTR_AddNode(treeDs, nodeAccessor);
VAR_SetStr(varValue, "second");
VARTR_SetNodeValue(treeDs, nodeAccessor, varValue);

/* Add the third child node at the "second" node location. */
VARTR_AddNode(treeDs, nodeAccessor);
VAR_SetStr(varValue, "third");
VARTR_SetNodeValue(treeDs, nodeAccessor, varValue);

VAR_Delete(varID);
VAR_Delete(varValue);
VARTRNODEACCESSOR_Dispose(nodeAccessor);
RES_Release((ResPtr)treeDs);

If you add a node at an unoccupied accessor location, a new node is created
with a Next reference that accesses an empty node location. In other words,
the new node is the last node in the sibling or root list.

VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
VarPtr varValue;

treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
varValue = VAR_New();

/* Empty root-level accessor location. */
VARTRNODEACCESSOR_GoNthRoot(VARTR_GetNumRoots(treeDs));

/* Add first root node. */
VARTR_AddNode(treeDs, nodeAccessor);
VAR_SetStr(varValue, "1st root");
VARTR_SetNodeValue(treeDs, nodeAccessor, varValue);

/* Empty root-level accessor location. */
VARTRNODEACCESSOR_GoNext(nodeAccessor);

/* Add second root node. */
VARTR_AddNode(treeDs, nodeAccessor);
VAR_SetStr(varValue, "2nd root");
VARTR_SetNodeValue(treeDs, nodeAccessor, varValue);
...
/* Empty root-level accessor location. */
VARTRNODEACCESSOR_GoNext(nodeAccessor);

/* Add nth root node. */
VARTR_AddNode(treeDs, nodeAccessor);
VAR_SetStr(varValue, "nth root");
VARTR_SetNodeValue(treeDs, nodeAccessor, varValue);
...
VAR_Delete(varID);
VAR_Delete(varValue);
VARTRNODEACCESSOR_Dispose(nodeAccessor);
RES_Release((ResPtr)treeDs);

Modifying Node Data Using the “Convenience” API

Using the “convenience” functions supplied with the VARTREDIT class,
you can perform these node-level editing operations using a datasource edit
object:
52 C Programmer’s Guide

Editing a Tree Datasource
■ Setting the Node ID
■ Setting the Node Value

You can set the node ID using the VARTREDIT_SetNodeID() function.
Likewise, you can set the value using the VARTREDIT_SetNodeValue()
function.

With the “convenience” functions in Table 3–5, you can easily modify node
data during a datasource editing session. You do not need a node edit
object. However, you do need a datasource edit object to prevent editing of
the datasource from other views.

Table 3–5 “Convenience” Functions for Modifying Node Data

This code fragment uses the “convenience” API to set the node ID of the
first child of the first root to “0,0” and to set the node Value to “first child”:

VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
VarTrEditPtr editTreeDs;
VarPtr varID, varValue;

treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
varID = VAR_New();
varValue = VAR_New();
editTreeDs = VARTR_StartEdit(treeDs);

/* Create the first root node. */
VARTRNODEACCESSOR_GoFirstRoot(nodeAccessor);
VARTREDIT_AddNode(editTreeDs, nodeAccessor);

/* Go to the first child of the first root node. */
VARTRNODEACCESSOR_GoFirstChild(nodeAccessor);
VARTREDIT_AddNode(editTreeDs, nodeAccessor);

/* Set the node ID and node value. */
VAR_SetStr(varID, "0,0");
VAR_SetStr(varValue, "first child");
VARTREDIT_SetNodeID(editTreeDs, nodeAccessor, varID);
VARTREDIT_SetNodeValue(editTreeDs, nodeAccessor, varValue);
DSEDIT_End((DsEditPtr)editTreeDs);
...
VAR_Delete(varID);
VAR_Delete(varValue);
VARTRNODEACCESSOR_Dispose(nodeAccessor);
RES_Release((ResPtr)treeDs);

Removing a Node

When you remove a node from the tree hierarchy, child nodes become the
children of the parent of the node being removed. If the node being removed
is a root node, its child nodes become root nodes.

Function Description
SetNodeID(editTreeDs,
 accessor, id)

Set the ID property of the node at
the current accessor location to id.

SetNodeValue(editTreeDs,
 accessor, value)

Set the Value property of the
node at the current accessor
location to value.
C Programmer’s Guide 53

Chapter Tree Datasource: Managing Hierarchical Data3
Figure 3–13 shows the nodes with labels that indicate their positions in the
hierarchy. Note that the immediate child nodes of the root node become root
nodes.

Figure 3–13 Removing a Node

This code fragment shows how to edit the tree structure on the left side of
Figure 3–13 to produce the structure on the right:

VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
VarTrEditPtr editTreeDs;

treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
editTreeDs = VARTR_StartEdit(treeDs);

/* Create the tree structure on the left side of
 Figure 3–13. */
...
/* Go to the second child node of the first root node. */
VARTRNODEACCESSOR_GoFirstRoot(nodeAccessor);
VARTRNODEACCESSOR_GoNthChild(nodeAccessor, 1);

/* Remove a node. */
VARTREDIT_RemoveNode(editTreeDs, nodeAccessor);
DSEDIT_End((DsEditPtr)editTreeDs);
...
VARTRNODEACCESSOR_Dispose(nodeAccessor);
RES_Release((ResPtr)treeDs);

Removing a Tree

When you remove a tree or subtree from the tree hierarchy, the child nodes
of the current node are removed recursively. If the accessed node is a root
node, VARTREDIT_RemoveTree() removes the entire tree. Figure 3–14
shows the nodes with labels that indicate their positions in the hierarchy:

Figure 3–14 Removing a Tree

This code fragment shows how to edit the tree structure on the left side of
Figure 3–14 to produce the structure on the right:

0

0_0

0_1

0_2

0_1_0

0_1_1

0_1_2

0

0_0

0_2

0_1_0

0_1_1

0_1_2

0

0_0

0_1

0_2

0_1_0

0_1_1

0_1_2

0
0_0

0_2
54 C Programmer’s Guide

Editing a Tree Datasource
VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
VarTrEditPtr editTreeDs;

treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
editTreeDs = VARTR_StartEdit(treeDs);

/* Create the tree structure on the left side of
 Figure 3–14. */
...
/* Go to the second child of the first root node. */
VARTRNODEACCESSOR_GoFirstRoot(nodeAccessor);
VARTRNODEACCESSOR_GoNthChild(nodeAccessor, 1);

/* Remove a tree. */
VARTREDIT_RemoveTree(editTreeDs, nodeAccessor);
DSEDIT_End((DsEditPtr)editTreeDs);
...
VARTRNODEACCESSOR_Dispose(nodeAccessor);
RES_Release((ResPtr)treeDs);

Node-Level Editing

There are only two operations you can perform at the node level:
■ Setting the Node ID
■ Setting the Node Value

You can use the functions in Table 3–6 to get and set node data. While all of
these are useful, only VARTRNODEEDIT_SetID() and
VARTRNODEEDIT_SetValue() require you to declare a node edit object.

Table 3–6 Functions for Getting and Setting Node Data

Function Description
QueryNodeID(treeDs, accessor, idPtr) Copy the ID property of the node at the

current accessor location to the address
stored by idPtr.

QueryNodeValue(treeDs, accessor, valuePtr) Copy the Value property of the node at the
current accessor location to the address
stored by valuePtr.

GetNodeID(treeDs, accessor) Get a pointer to the variant object that
stores the data of the ID property at the
current accessor location.

GetNodeValue(treeDs, accessor) Get a pointer to the variant object that
stores the data of the Value property of the
node at the current accessor location.

SetID(editNode, id) Set the ID property of the node at the
current accessor location to id.

SetValue(editNode, value) Set the Value property of the node at the
current accessor location to value.

SetNodeID(editTreeDs, accessor, id) Set the ID property of the node at the
current accessor location to id.

SetNodeValue(editTreeDs, accessor, value) Set the Value property of the node at the
current accessor location to value.

IsNodeValid(treeDs, accessor) Get a boolean value indicating whether a
node exists in the tree datasource at the
current accessor location.
C Programmer’s Guide 55

Chapter Tree Datasource: Managing Hierarchical Data3
Setting the Node ID

You can:
■ Get a copy of the node ID using VARTR_QueryNodeID()
■ Get a pointer to the ID using VARTR_GetNodeID()
■ Set the ID using VARTRNODEEDIT_SetID()

Thiscode sets the node ID of the first child of the first root to “0,0” and sets
the node value to “first child”:

VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
VarTrNodeEditPtr editNode;
VarPtr varID, varValue;

treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
varID = VAR_New();
varValue = VAR_New();

/* Go to the first child of the first root node. */
VARTRNODEACCESSOR_GoFirstRoot(nodeAccessor);
VARTR_AddNode(treeDs, nodeAccessor)

VARTRNODEACCESSOR_GoFirstChild(nodeAccessor);
VARTR_AddNode(treeDs, nodeAccessor)

/* Set the node ID and node value. */
editNode = VARTR_StartNodeEdit(treeDs, nodeAccessor);
VAR_SetStr(varID, "0,0");
VAR_SetStr(varValue, "first child");
VARTRNODEEDIT_SetID(editTreeDs, nodeAccessor, varID);
VARTRNODEEDIT_SetValue(editTreeDs, nodeAccessor, varValue);
DSEDIT_End((DsEditPtr)editNode);
...
VAR_Delete(varID);
VAR_Delete(varValue);
VARTRNODEACCESSOR_Dispose(nodeAccessor);
RES_Release((ResPtr)treeDs);

Setting the Node Value

You can:
■ Get a copy of the Value using VARTR_QueryNodeValue()
■ Get a pointer to the Value using VARTR_GetNodeValue()
■ Set the Value using VARTRNODEEDIT_SetValue()

Advanced Topics

The following issues are more advanced topics that provide very useful
information when creating a datasource application:
■ Node-Count Functions
■ Managing the Cursor
■ Acting on Multiple Nodes
■ Persistent Data Storage and Relational Tables

Node-Count Functions

In the examples supplied in the following sections, these node-count
functions in the VARTR API are used to help traverse the tree datasource:
56 C Programmer’s Guide

Advanced Topics
■ GetNumRoots()
■ GetNumChildren()
■ GetNumSiblings()

Before planning the logic of your application, you should familiarize
yourself with the basic behaviors of these node-count functions. These
functions return the number of applicable nodes that are present in the
datasource at the time you create the edit object. The current number of
applicable nodes is not reflected until the editing operations are committed
to the datasource.

The following code fragment does not work. In this case, the while loop
never terminates, because the edit operations are not committed to the
datasource before each evaluation of the control criterion. Specifically, the
VARTR_GetNumRoots() function returns the same value on each cycle of
the loop, so the control criterion never evaluates FALSE.

VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
VarTrEditPtr editTreeDs;
Int16 maxRoots;

treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
editTreeDs = VARTR_StartEdit(treeDs);

/* Add nodes as long as the number of root nodes is less than
 maxRoots. */
maxRoots = 10;
while (VARTR_GetNumRoots(treeDs) < maxRoots) {
 VARTRNODEACCESSOR_GoNthRoot(VARTR_GetNumRoots(treeDs),
 nodeAccessor);
 VARTREDIT_AddNode(editTreeDs, nodeAccessor);
}
...
DSEDIT_End((DsEditPtr)editTreeDs);

However, if you create and destroy the edit object within the while
loop—effectively, the same as using the “convenience” API function— you
can use the return value from the VARTR_GetNumRoots() function as a
counter. In this example, the VARTR_StartEdit() and DSEDIT_End()
functions are located, respectively, as the first and last executable lines of
code within the while loop:

VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
VarTrEditPtr editTreeDs;
Int16 maxRoots;

treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
editTreeDs = VARTR_StartEdit(treeDs);

maxRoots = 10;
while (VARTR_GetNumRoots(treeDs) < maxRoots) {
 /* Create edit object. */
 editTreeDs = VARTR_StartEdit(treeDs);
 VARTRNODEACCESSOR_GoNthRoot(nodeAccessor,
 VARTR_GetNumRoots(treeDs));
 VARTREDIT_AddNode(editTreeDs, nodeAccessor);
 /* Commit the edit operations and destroy the edit object. */
 DSEDIT_End((DsEditPtr)editTreeDs);
}
...
C Programmer’s Guide 57

Chapter Tree Datasource: Managing Hierarchical Data3

The preceding example is the same as using the “convenience” API as
shown here:

VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
Int16 maxRoots;

treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();

maxRoots = 10;
while (VARTR_GetNumRoots(treeDs) < maxRoots) {
 VARTRNODEACCESSOR_GoNthRoot(nodeAccessor,
 VARTR_GetNumRoots(treeDs));
 /* Create edit object, add a node, commit the edit operations
 and, destroy the edit object. */
 VARTR_AddNode(treeDs, nodeAccessor);
}
...

The next code fragment does not work. Upon initial examination, this
appears to be a simpler way to perform the intended tasks of the two
preceding examples:

VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
VarTrEditPtr editTreeDs;
Int16 i, maxRoots;

treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
editTreeDs = VARTR_StartEdit(treeDs);

i = 0;
maxRoots = 10;
VARTRNODEACCESSOR_GoFirstRoot(nodeAccessor);
while (VARTR_IsNodeValid(treeDs, nodeAccessor) &&
 (i < maxRoots))
 VARTREDIT_AddNode(editTreeDs, nodeAccessor);
 VARTRNODEACCESSOR_GoNext(nodeAccessor);
 i++;
}
...
DSEDIT_End((DsEditPtr)editTreeDs);

In the preceding code fragment, the IsNodeValid() control-loop criterion
evaluates FALSE after only the first pass through the loop, because the node
created in the first pass is not yet committed to the datasource.

In this code fragment, the Int16 declaration and while loop create the same
nodes as the preceding code fragment, except that the nodes are created as
children of the parent node instead of as siblings of the first child:

VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessor;
VarPtr varID, varValue;
VarTrEditPtr editTreeDs;

treeDs = VARTR_Create();
nodeAccessor = VARTRNODEACCESSOR_Create();
varID = VAR_New();
varValue = VAR_New();

/* Using the "convenience" API, add a node at the next empty
 root-node location. */
VARTRNODEACCESSOR_GoNthRoot(nodeAccessor,
VARTR_GetNumRoots(treeDs));
VARTR_AddNode(treeDs, nodeAccessor);

/* Set variants and use them to set the node ID and Value
 properties. */
58 C Programmer’s Guide

Advanced Topics
varID->SetStr("r0000");
varValue->SetStr("First Root Node");
VARTR_SetNodeID(treeDs, nodeAccessor, varID);
VARTR_SetNodeValue(treeDs, nodeAccessor, varValue);

/* Add nodes as long as the number of root nodes is less than
 maxNodes. */
Int16 maxNodes = 10;
while (VARTR_GetNumChildren(treeDs, nodeAccessor) < maxNodes)
{

/* Create a datasource edit object, and assign it to the edit
 pointer variable. */
 editTreeDs = VARTR_StartEdit(treeDs);

/* Descend from the parent to the next "empty" child-node
 location. */
 VARTRNODEACCESSOR_GoNthChild(nodeAccessor,
 VARTR_GetNumChildren(treeDs, nodeAccessor));

/* Add a node and set the node ID and Value properties. */
 VARTREDIT_AddNode(editTreeDs, nodeAccessor);
 varID->SetStr("c0000");
 varValue->SetStr("Child Node");
 VARTREDIT_SetNodeID(editTreeDs, nodeAccessor, varID);
 VARTREDIT_SetNodeValue(editTreeDs, nodeAccessor, varValue);

/* Commit the changes to the datasource, and destroy the edit
 object. */
 DSEDIT_End((DsEditPtr)editTreeDs);

/* Return the node accessor to the parent node. */
 VARTRNODEACCESSOR_GoParent(nodeAccessor);
}

/* Dispose of the accessor and datasource. */
VARTRNODEACCESSOR_Dispose(nodeAccessor);
RES_Release((ResPtr)treeDs);

In this case, the number of existing child nodes is used as an argument for
the VARTRNODEACCESSOR_GoNthChild() function. The value
returned by the VARTR_GetNumChildren() function is a one-based
counter, while the VARTRNODEACCESSOR_GoNthChild() function
expects a zero-based index. This ensures that the node accessor points to the
next unoccupied sibling node.

Managing the Cursor

When building or editing the tree datasource interactively through a view
widget, you can set a cursor in the datasource to follow the movement of the
cursor in the view. The functions in Table 3–7 supply cursor management
for the tree datasource:

Table 3–7 Cursor Functions

Acting on Multiple Nodes

Some datasource editing operations may require more than one node
accessor. One example of the use of multiple node accessors is for moving
or copying a node, or a subtree represented by the node, to a new location

Function Description
SetCursor(treeDs, accessor) Set accessor as the datasource cursor.

GetCursor(treeDs) Get the datasource cursor.
C Programmer’s Guide 59

Chapter Tree Datasource: Managing Hierarchical Data3
in the hierarchy. This is the same as assigning the node, subtree, or copy a
new parent.

Figure 3–15 shows the child nodes of the first root being assigned the second
root node as a new parent node:

Figure 3–15 Assigning Child Nodes a New Parent Node

This code fragment uses the “convenience” API functions to perform this
operation in the tree datasource using two node accessors,
nodeAccessorFrom and nodeAccessorTo:

VarTrPtr treeDs;
VarTrNodeAccessorPtr nodeAccessorFrom;
VarTrNodeAccessorPtr nodeAccessorTo;
VarPtr varID, varValue;

treeDs = VARTR_Create();
nodeAccessorFrom = VARTRNODEACCESSOR_Create();
nodeAccessorTo = VARTRNODEACCESSOR_Create();
varID = VAR_New();
varValue = VAR_New();

/* Using the "convenience" APIs, create the initial hierarchy:
 one root root node with the three children and a second root
 node with no children. */
VARTRNODEACCESSOR_GoFirstRoot(nodeAccessorFrom);
VARTR_AddNode(treeDs, nodeAccessorFrom);
VAR_SetStr(varID, "0");
VAR_SetStr(varValue, "First Root Node");
VARTR_SetNodeID(treeDs, nodeAccessorFrom, varID);
VARTR_SetNodeValue(treeDs, nodeAccessorFrom, varValue);

VARTRNODEACCESSOR_GoFirstChild(nodeAccessorFrom);
VARTR_AddNode(treeDs, nodeAccessorFrom);
VAR_SetStr(varID, "0,0");
VAR_SetStr(varValue, "First Child Node");
VARTR_SetNodeID(treeDs, nodeAccessorFrom, varID);
VARTR_SetNodeValue(treeDs, nodeAccessorFrom, varValue);

VARTRNODEACCESSOR_GoNext(nodeAccessorFrom);
VARTR_AddNode(treeDs, nodeAccessorFrom);

First Root NodeTree Datasource First Child Node

Second Child Node

Third Child Node

Second Root Node

First Root NodeTree Datasource

First Child Node

Second Child Node

Third Child Node

Second Root Node
60 C Programmer’s Guide

Advanced Topics

VAR_SetStr(varID, "0,1");
VAR_SetStr(varValue, "Second Child Node");
VARTR_SetNodeID(treeDs, nodeAccessorFrom, varID);
VARTR_SetNodeValue(treeDs, nodeAccessorFrom, varValue);

VARTRNODEACCESSOR_GoNext(nodeAccessorFrom);
VARTR_AddNode(treeDs, nodeAccessorFrom);
VAR_SetStr(varID, "0,2");
VAR_SetStr(varValue, "Third Child Node");
VARTR_SetNodeID(treeDs, nodeAccessorFrom, varID);
VARTR_SetNodeValue(treeDs, nodeAccessorFrom, varValue);

VARTRNODEACCESSOR_GoNthRoot(nodeAccessorFrom,
 VARTR_GetNumRoots(treeDs));
VARTR_AddNode(treeDs, nodeAccessorFrom);
VAR_SetStr(varID, "1");
VAR_SetStr(varValue, "Second Root Node");
VARTR_SetNodeID(treeDs, nodeAccessorFrom, varID);
VARTR_SetNodeValue(treeDs, nodeAccessorFrom, varValue);

/* Move the "From" accessor to the first root node. */
VARTRNODEACCESSOR_GoFirstRoot(nodeAccessorFrom);

/* Move the "To" accessor to the second root-node. */
VARTRNODEACCESSOR_GoNthRoot(nodeAccessorTo, 1);

/* Execute the while loop until all children of the first root
 node are relocated. */
while (VARTR_IsNodeValid(treeDs, nodeAccessorFrom)) {

 /* Move the "From" accessor to the FIRST child of the first
 root node. */
 VARTRNODEACCESSOR_GoFirstChild(nodeAccessorFrom);

 /* Move the "To" accessor to the LAST EMPTY child location of
 the second root node. */
 VARTRNODEACCESSOR_GoNthChild(nodeAccessorTo,
 mTreeDs->GetNumChildren(nodeAccessorTo));

 /* Add new child with ID and Value properties of the "From"
 node. */
 VARTR_AddNode(treeDs, nodeAccessorTo);
 VARTR_SetNodeID(treeDs, nodeAccessorTo,
 VARTR_GetNodeID(treeDs, nodeAccessorFrom));
 VARTR_SetNodeValue(treeDs, nodeAccessorTo,
 VARTR_GetNodeValue(treeDs, odeAccessorFrom));

 /* Remove the child node from the first root. */
 VARTR_RemoveNode(treeDs, nodeAccessorFrom);

 /* Move the "From" and "To" node accessors to the first and
 second root nodes, respectively. */
 VARTRNODEACCESSOR_GoParent(nodeAccessorFrom);
 VARTRNODEACCESSOR_GoParent(nodeAccessorTo);
}
VAR_Delete(varID);
VAR_Delete(varValue);
VARTRNODEACCESSOR_Dispose(nodeAccessorFrom);
VARTRNODEACCESSOR_Dispose(nodeAccessorTo);
RES_Release((ResPtr)treeDs);

Persistent Data Storage and Relational Tables

The tree datasource has no mechanism for persistent data storage.
However, you can design your own scheme for writing data to, and reading
data from, a persistent storage medium. You may want to store the
hierarchy in a flat-file format. Alternately, you could create a database
C Programmer’s Guide 61

Chapter Tree Datasource: Managing Hierarchical Data3
schema or spreadsheet file to store the pertinent information for the
hierarchy.

Relying on the uniqueness of the node ID, you can also use the inherent
hierarchical design of the tree datasource to store node information as part
of the corresponding row data in a table datasource. You would construct
the table datasource indirectly by a query to a relational table. You could
then design an algorithm to reconstruct the tree datasource from the row
data—one row for each node—in the table datasource each time the
application executes.

To associate nodes with row data from a relational table, use a table
datasource to store extended data pertaining to the node. Allow the tree
datasource to store the relationship between the rows. In this case, each
node ID in the tree datasource is unique and corresponds to a column value
in exactly one row in the relational table.
62 C Programmer’s Guide

Chapter
4 Graph Datasource:
Managing Graph Data 4

A graph datasource is a container of freely arranged nodes and edges. The
graph datasource is similar to the other datasources—for example, list
(sequential), table (tabular), and tree (hierarchical) datasources—because it
is based on a specific data model. In this case, the data model is a graph,
which combines hierarchical and neighbor relationships.

You can display the contents of the graph datasource in a DGRAM view,
which is supplied by the Open Interface Element. The Elements
Environment datasource/views mechanism supports the interface between
the datasource and the DGRAM view.

This chapter discusses these topics:
■ Concepts
■ Options for the DGRAM View
■ Building a Graph Datasource

Note: Data stored in the graph datasource is not persistent. However, you
can write a routine to traverse the datasource and write its contents
to a persistent data-storage medium, such as a local hard disk or
database.

If you haven’t already done so, read the chapter on the DGRAM widget in
the Open Interface Element C User’s Guide . See Chapter 2 of this book for
information about registering a view with a datasource.

Concepts

The graph datasource stores information for a graph data model. These
concepts describe its use:
■ Graph Datasource
■ Node
■ Edge
■ Graph
■ Accessor
■ Cursor
■ Edit Object

This section discusses thee preceding concepts, which are then used in
“Building a Graph Datasource” on page 117 to tell you how to program a
graph datasource.

Graph Datasource

The graph datasource—an object of the VARGR class—is a container class
that stores and manages nodes and the edges that define the relationships
C Programmer’s Guide 63

Chapter Graph Datasource: Managing Graph Data4
between them. When your application disposes of a graph datasource, any
contained objects are also disposed.

Using the APIs supplied with the graph datasource (VARGR object), your
application can add and remove nodes and edges contained by the
datasource object. You can also use the methods in the VARGR API to
enumerate the nodes and edges in the datasource and to traverse them with
an index.

Node

A node is one of the two basic components of a graph (the other being edge;
see “Edge” on page 67). Each node has these properties:
■ ID and Value
■ XOrigin and YOrigin
■ Height and Width
■ Custom Node Properties
■ Edge References

Each node also has references to its:
■ “In” edges
■ “Out” edges
■ Undirected edges

The API uses these references to traverse the graph datasource. In the
conceptual figures that follow, beginning with Figure 4–1, these references
are named, respectively:
■ InEdge
■ OutEdge
■ UndirEdge

Figure 4–1 Structure of a Node

As Figure 4–1 shows, each node has references to its:
■ Parents
■ Children
■ Neighbors

If any of these references accesses a memory location where no edge exists,
then the reference indicates that the current edge is the last valid edge. If the
InEdge reference has access to no valid edge location, then the edge is a root
node, which has no parent. Likewise, if the OutEdge reference has access to
no valid edge location, then the node has no children.

ID Value

XOrigin

Width

Custom Properties

InEdge

YOrigin

Height

OutEdge

UndirEdge
64 C Programmer’s Guide

Concepts
You can also think of the edge references in Figure 4–1 as the edge-reference
mechanisms shown in Figure 4–2:

Figure 4–2 Edge-Reference Mechanisms

The arrows in the edge-reference mechanism in Figure 4–2 represent the
edges that connect the related nodes. The arrows in Figure 4–1, on the other
hand, refer to the edges that define the node relationships.

You can use the functions in the VARGRNODEACCESSOR API to:
■ Get the number of related parent, child, and neighbor nodes
■ Access any of them by index

For more information about node accessors, see “Node Accessor” on page
74.

ID and Value

Each node in the graph datasource has an ID property and a Value
property. Both the ID and Value properties store variant (VAR) data and
can contain any variant-supported type. For example, the ID property may
be expressed as a variant containing a string, while the Value property may
be an object reference.

ID

You can assign any variant data to a node ID property. Node IDs need not
be unique, but they may be more useful if they are. You can assign data to
the ID property when you create a node or during separate edit sessions.

A unique node ID can be very helpful, especially if you need to associate it
with the primary key of a relational-database table. For example, if a node
represents a device on a computer network, you may want to set the node
ID to its asset number, set the Value to the device name, and associate the
node with a row in a table datasource that shares the same asset number.

Value

Like the node ID, you can set the node Value property to any variant type.
The Value property represents the “data” part of the node contents. Your
use of the Value may range from an employee name in an organizational
hierarchy to an employee number acting as a key to display employee data
stored in a row of a table datasource.

XOrigin and YOrigin

You can use the XOrigin and YOrigin properties to store the x and y
coordinates, respectively, of the upper left corner of the bounding box for
the node when it is represented in the DGRAM view. Specifically, XOrigin
and YOrigin store the number of pixels from the left side and top of the
DGRAM view.

From Parents

From Neighbors

“In” Edges

“Out” Edges

“Undir” Edges

To Children

To Neighbors
C Programmer’s Guide 65

Chapter Graph Datasource: Managing Graph Data4
Note: XOrigin and YOrigin can actually store any variant data.

Height and Width

You can use the Height and Width properties to store the lengths, in pixels,
of the sides of the bounding box for a node in the DGRAM view.

If you do not set these properties, the size of the node is determined by the
DGRAM view options or the default sizes for the view widget. If there are
values, however, they override any defaults that the view supplies.

Note: As with the XOrigin and YOrigin properties, you can set the Height
and Width properties to any variant value.

For more information about DGRAM view options, see “Options for the
DGRAM View” on page 84.

Custom Node Properties

Custom node properties are additional properties that you can define, which
qualify individual nodes or collections of nodes. You can create a property
and set or get its value using the VARGR and VARGREDIT APIs. For more
information, see “Custom Node Properties” on page 103.

Edge References

Each node has three edge references to support navigation to its parent, child,
and neighbor nodes. Edge references are used by the APIs to traverse and
edit the graph datasource.

Edges are either directed—that is, “in” or “out” edges—or undirected. A node
may have any number of parents, children, and neighbors. Any two nodes
can have multiple edges relating them. If a pair of nodes is related through
multiple edges, all of the edges must be either directed or undirected. Two
nodes cannot be related through both directed and undirected edges.

Directed-Edge References

A reference to a directed edge defines a parent-child (hierarchical or
antecedent) node relationship. In Figure 4–11:
■ The OutEdge reference of the parent node defines the link from the

parent or “source” node to the directed edge.
■ The ToNode reference of the directed edge defines the link to the child

or “target” node.

Also in Figure 4–11:
■ The InEdge reference of the child node defines the link from the child

node to the directed edge.
■ The FromNode reference of the directed edge defines the link back to

the parent node.

Undirected-Edge References

A reference to an undirected edge defines a neighbor node relationship. In
Figure 4–12:
■ The UndirEdge reference of one neighbor defines the link to the

undirected edge.
66 C Programmer’s Guide

Concepts
■ The ToNode reference of the undirected edge defines the link to the
neighboring node.

Also in Figure 4–12:
■ The UndirEdge reference of the neighboring node defines the link to the

undirected edge.
■ The FromNode of the undirected edge defines the link back to the initial

neighbor node.

Edge

An edge is one of the two basic components of a graph (the other being node;
see “Node” on page 64). It indicates a relationship between any two nodes
in a graph datasource. Edges cannot exist apart from nodes. As a result, an
edge becomes undefined if the node at either end of it is removed.

Each edge has these properties:
■ ID and Value
■ Directed
■ Custom Properties

In addition to these properties, each edge also references the nodes at either
end of it. Figure 4–3 shows these as “FromNode” and “ToNode.” These
references respectively access either:
■ The parent and child nodes
■ The nth and nth+1 neighbor nodes

Figure 4–3 Edge Structure

Alternately, you can think of the references in Figure 4–3 as the node
references shown in Figure 4–4 and Figure 4–5. In these edge-centric figures,
the node-reference arrows represent the OutEdge and InEdge references of
the respective parent and child nodes.

Figure 4–4 Node-Reference Mechanisms for Parent-Child Nodes

In Figure 4–5, the node-reference mechanism uses connecting lines without
arrows to represent neighbor relationships. Undirected edges still use
ToNode and FromNode references to access the nodes at either end, but

ID Value
Directed

Custom Properties

FromNode

ToNode

From Parent
“From” Node

“To” Node
To Child
C Programmer’s Guide 67

Chapter Graph Datasource: Managing Graph Data4
they are significant only when traversing the nodes to find a particular node
using an index.

Figure 4–5 Node-Reference Mechanisms for Neighbor Nodes

ID and Value

Each edge in the graph datasource has an ID property and a Value
property. Both the ID and Value properties store variant data. For example,
the ID may be set to a variant containing a string, while the Value may be
an object reference.

ID

You can assign any variant data to an edge ID property. Edge IDs need not
be unique, but they may be more useful if they are. You can set the IDs when
you create the edge or during a separate edit session.

Like the node ID, a unique edge ID can be very helpful, especially if you
need to associate it with the primary key of a relational-database table. If a
node represents a device on a network, an edge may represent the cable that
connects the networked devices, which also needs a unique asset number.
You can set its asset number to the edge ID, set the cable name to the Value,
and associate the node with a row in a table datasource that shares the asset
number.

Following this paradigm, you may consider the nodes “active” network
components, while the edges are “passive” components. All components in
the network are material resources, each requiring an asset number. For
cable that is ordered in bulk, an asset number may be used for an entire roll.
Edges that represent segments of bulk-ordered cable in the graph
datasource may all share a common edge ID. Other passive components
that are separately ordered, such as cables for peripheral devices and
software keys, may have different asset numbers and unique edge IDs.

Value

Edge Value properties, like edge IDs, are variant types. They represent the
“data” part of the edge contents. You may use the Value property to simply
elaborate on the relationship between the two nodes at either end of the
edge, or you may adopt numerous other uses for it.

Directed

Each edge has a Directed property that indicates whether the edge is
directed or undirected:
■ If the Directed property is TRUE, the edge connects a parent node to a

child node.
■ If the Directed property is FALSE, the edge connects two neighbor

nodes.

From Neighbor
“From” Node

“To” Node
To Neighbor
68 C Programmer’s Guide

Concepts
Any two nodes can have multiple edges relating them. If multiple edges
relate a pair of nodes, all of the edges must be either directed or undirected.
Two nodes cannot be related through both directed and undirected edges.

While you can define multiple directed or multiple undirected edges
between nodes, you cannot define both directed and undirected edges
between a pair of nodes. The node relationship in Figure 4–6 is invalid,
because both directed and undirected edges relate the two nodes.

Figure 4–6 Not Supported: Combining Directed and Undirected Edges

Directed Edges

A directed edge indicates a parent-child, or antecedent, relationship between
two nodes. Each directed edge can access, through the FromNode reference,
to the node whose OutEdge reference accesses it. Each directed edge also
can access, through the ToNode reference, the node whose InEdge reference
accesses it. For an illustration of this relationship, see “Parent-Child Node
Relationship” on page 72.

As shown in Figure 4–7, the parent-child relationship loosely describes a
hierarchical node relationship. Because any two nodes may have multiple
directed edges defining their relationship, one node may relate to another
node as both a parent and a child. However, they may not be related by a
combination of directed and undirected edges.

Figure 4–7 Single and Multiple Directed Edges

Although you can change a directed edge to an undirected edge by setting
Directed to FALSE, you cannot change the direction of a directed edge.
FromNode and ToNode (Figure 4–3) are determined by the order in which
nodes are specified when the edge is added, which determines its direction.

If you need to change the direction of an edge, remove the existing edge
using the RemoveEdgeBetween(vargr, source, target) function, and add
another directed edge using the AddDirEdge(vargr, source, target) function
from either the VARGR or VARGREDIT API. Using the parent-child
paradigm, the parent node would be the source node.

Undirected Edges

An undirected edge indicates a neighbor, or nonhierarchical, relationship between
two nodes. You can create an undirected edge, using the
AddUndirEdge(vargr, node1, node2) function from either the VARGR or the

From To

FromTo
C Programmer’s Guide 69

Chapter Graph Datasource: Managing Graph Data4
VARGREDIT API, to connect any two nodes that are not already related
hierarchically.

Each undirected edge, through the FromNode and ToNode references,
respectively, accesses node1 and node2 specified by the AddUndirEdge()
function. For an illustration of this relationship, see “Neighbor Node
Relationship” on page 73.

Figure 4–8 shows the nonhierarchical relationship between neighbor nodes.
You can create multiple undirected edges to relate any two nodes just as you
can with directed edges. However, with undirected edges, there is no real
significance to the FromNode and ToNode references, except that they
determine the order in which the nodes in the datasource are traversed.

Figure 4–8 Single and Multiple Undirected Edges

For example, when traversing neighboring nodes, the GoNext() and
GoPrev() functions from the VARGRNODEACCESSOR API use the
FromNode and ToNode references to move the accessor to the nth
neighboring node.

If you need to change the traversal order, remove the existing edge using the
RemoveEdgeBetween(vargr, node1, node2) function, and add another
undirected edge using the AddUndirEdge(vargr, node1, node2) function
from the VARGR API. If you need to change several edges, use the
functions from the VARGREDIT API to complete the edit operations more
efficiently.

Custom Properties

Custom properties are additional properties that you can define. You can
create a property and set and get its value using the VARGR and
VARGREDIT APIs. For more information, see “Custom Link Properties”
on page 110.

Graph

A graph is a general mathematical abstraction that can represent many data
models. Each graph consists of:
■ Data represented by node objects
■ Edge objects representing the relationships between the nodes

Thus, a graph is a collection of nodes with various relationships between
them

A graph datasource may contain one or more graphs. It may also be
considered a graph, itself. A graph may be either connected or
disconnected. In a connected graph, a node accessor can traverse all nodes in

From To

FromTo

FromTo

From To
70 C Programmer’s Guide

Concepts
the graph through a common edge using the VARGRNODEACCESSOR
API. In a disconnected graph, one or more of the nodes is not related to the
other nodes through an edge.

These concepts are instrumental in describing graphs:
■ Root Node
■ Parent-Child Node Relationship
■ Neighbor Node Relationship

Nodes may have parents, children, and neighbors. These associations are
established using directed and undirected edges. A directed edge indicates
a parent-child relationship. An undirected edge indicates a neighbor
relationship.

In Figure 4–9, nodes A, C, D, and G are root nodes, because they have no
parent nodes. Node A is the parent of node B. Node B has two neighbors,
nodes C and D, which are also neighbors to each other. Node D has two
children, nodes E and F. In addition to being a root node, node G is also
disconnected from the remainder of the graph, because it has no edges.

Figure 4–9 Node Relationships in a Graph

For more information about nodes, see “Node” on page 64. For more
information about edges, see “Edge” on page 67.

Root Node

A root node is a node that has no parent node, but may have child and
neighbor nodes. This characteristic differentiates them from all other nodes.

Figure 4–10 Unique Characteristics of a Root Node

A

B

DC

FE G

ID Value

XOrigin

Width

Custom Properties

InEdge

YOrigin

Height

OutEdge

UndirEdge

{¯}
C Programmer’s Guide 71

Chapter Graph Datasource: Managing Graph Data4
Relative to a root node, you can position a node accessor to add other root
nodes. Root nodes can be related through undirected edges, or they may
simply be disconnected—inaccessible through a common edge—from the
other root nodes.

Note: If you add a directed edge between two root nodes, one of the related
nodes becomes a child of the other and is no longer a root node.

Parent-Child Node Relationship

A parent-child node relationship is hierarchical or antecedent. You establish
such a relationship in a graph datasource through a directed edge.
Figure 4–11 shows how the node references in the node-edge-node
structure establish the parent-child relationship.

Figure 4–11 Parent-Child Node Relationship

You connect the parent and child nodes through an edge with its Directed
property set to TRUE. For directed edges, FromNode identifies the parent
node, and ToNode identifies the child node.

Using the VARGRNODEACCESSOR API, you can instruct a node
accessor to move from a parent node to its first child node with the
GoFirstChild(node) function. You can then use the GoNext(node) and
GoPrev(node) functions to traverse the child nodes of the parent node.

The GoNext(node) function is meaningless unless one of the “GoFirst” or
“GoNth” functions executes first. These functions include:
■ GoFirstRoot() and GoNthRoot()
■ GoFirstNeighbor() and GoNthNeighbor()
■ GoFirstParent() and GoNthParent()
■ GoFirstChild() and GoNthChild()

ID Value

XOrigin

Width

Custom Properties

InEdge

YOrigin

Height

OutEdge

UndirEdge

ID Value

XOrigin

Width

Custom Properties

InEdge

YOrigin

Height

OutEdge

UndirEdge

ID Value
Directed=TRUE

Custom Properties

FromNode

ToNode

Parent

Child

to Neighbor

to Neighbor

to Child
72 C Programmer’s Guide

Concepts
To add a child node after the last child node:

1. Move the accessor to the last valid child node.

2. Execute the GoNext(node) function.

3. Using either the VARGR or VARGREDIT API, execute the
AddNode(node) function.

Because a node can have multiple parents, you can use the GoNext(node)
and GoPrev(node) functions to traverse the parent nodes of a child node.
You can also add new parents.

Neighbor Node Relationship

Two nodes that share an undirected edge are neighbors. Neighbor nodes may
or may not share a common parent. Figure 4–12 shows the node-edge-node
relationship of two neighbors.

Figure 4–12 Neighbor Node Relationship

The two nodes in Figure 4–12 are connected through an edge with its
Directed property set to FALSE. For undirected edges, FromNode and
ToNode define the order in which nodes are traversed, but do not imply a
direction.

Using the VARGRNODEACCESSOR API, you can instruct a node
accessor to move from a node to its first neighbor with the
GoFirstNeighbor(node) function. You can then use the GoNext(node) and
GoPrev(node) functions to traverse the neighbor nodes.

The GoNext(node) function is meaningless unless one of the “GoFirst” or
“GoNth” functions executes first. These functions include:
■ GoFirstRoot() and GoNthRoot()
■ GoFirstNeighbor() and GoNthNeighbor()
■ GoFirstParent() and GoNthParent()
■ GoFirstChild() and GoNthChild()

To add a neighbor node:

1. Position the accessor on a valid node.

2. Execute the GoNext(node) function.

3. Using the VARGR or VARGREDIT API, execute the AddNode(node)
function.

ID Value

XOrigin

Width

Custom Properties

InEdge

YOrigin

Height

OutEdge

UndirEdge

ID Value

XOrigin

Width

Custom Properties

InEdge

YOrigin

Height

OutEdge

UndirEdge

Parent Parent Neighbor

ID Value
Directed=FALSE

Custom Properties

FromNode

ToNode

Child Child
C Programmer’s Guide 73

Chapter Graph Datasource: Managing Graph Data4
Accessor

An accessor is an index mechanism by which you can traverse the nodes and
edges in the graph datasource. You cannot access nodes or edges directly,
therefore you must use accessors to access them. You must also use
accessors to identify any node or edge to be modified by an edit operation.

The graph datasource supplies two basic accessor types:
■ Node Accessor
■ Edge Accessor

There are four types of edge accessors, which give you added flexibility and
provide optimal navigational performance for your application.

The graph datasource also support a node cursor and an edge cursor. For
more information about cursors, see “Cursor” on page 76.

Node Accessor

A node accessor is a node index mechanism that references and traverses the
nodes in the graph datasource. You cannot access the nodes directly,
therefore you must use a node accessor to access them.You must also use
accessors to identify the node in a node-level edit operation.

You need at least one node accessor to traverse—using the
VARGRNODEACCESSOR API—the nodes in a graph datasource. After
moving the node accessor to the appropriate node in the graph, your
application can modify either the datasource structure or the properties of
the nodes it contains.

In many cases, you need two node accessors to identify the endpoints of an
edge relating a pair of nodes. This code fragment shows how to create and
destroy two node accessors:

/* Declare pointer variables. */
VarGrPtr graphDs;

/* Declare node-accessor pointers. */
VarGrNodeAccessorPtr nodeAccessorFrom;
VarGrNodeAccessorPtr nodeAccessorTo;
...

graphDs = VARGR_Create();

/* Create node accessors. */
nodeAccessorFrom = VARGRNODEACCESSOR_Create();
nodeAccessorTo = VARGRNODEACCESSOR_Create();
...
/* Destroy the node accessor. */
VARTRNODEACCESSOR_Dispose(nodeAccessor);
...
/* Destroy the graph datasource. */
RES_Release((ResPtr)graphDs);

The preceding code fragment declares two accessors—nodeAccessorFrom
and nodeAccessorTo—because two nodes are required to define an edge
between them.

Edge Accessor

An edge accessor is an edge index mechanism that references and traverses
the edges in the graph datasource. You cannot access edges directly,
74 C Programmer’s Guide

Concepts

therefore you must use an edge accessor to access them. There are three
types of edges:
■ “In” edges
■ “Out” edges
■ Undirected edges

These three edge-accessor APIs support the preceding respective edge
types:
■ VARGRINEDGEACCESSOR
■ VARGROUTEDGEACCESSOR
■ VARGRUNDIREDGEACCESSOR

Use the API functions supplied with these accessor objects to traverse and
edit the edges in the datasource. APIs for “in,” “out,” and undirected edge
accessors pertain only to edges of the node referenced by the node accessor
that defined the edge accessor.

In addition to the type-specific accessor APIs, your application can traverse
all of the edges in the graph datasource using the functions supplied with
the universal VARGRALLEDGEACCESSOR API. “All” edge accessors do
not require a node accessor when they are created; these pertain to the entire
graph datasource.

This code fragment shows how to create an undirected edge between two
nodes and how to set the edge Value property:

/* Declare pointer variables. */
VarGrPtr graphDs;
VarPtr varValue;

/* Declare a datasource edit pointer. */
VarGrNodeEditPtr editNode;

/* Declare two node accessors for the two nodes at either end of
 the edge to be added. */
VarGrNodeAccessorPtr nodeAccessorFrom;
VarGrNodeAccessorPtr nodeAccessorTo;

/* Declare an undirected edge-accessor pointer. */
VarGrUndirEdgePtr undirEdgeAccessor;
...
graphDs = VARGR_Create();
editNode = VARGR_StartEdit(graphDs);
varValue = VAR_New();

/* Create two node-accessors, and assign them to
 nodeAccessorFrom and nodeAccessorTo. */
nodeAccessorFrom = VARGRNODEACCESSOR_Create();
nodeAccessorTo = VARGRNODEACCESSOR_Create();

/* Create an undirected edge accessor based on the node accessed
 by nodeAccessorFrom; assign it to undirEdgeAccessor. */
undirEdgeAccessor =
 VARGRUNDIREDGEACCESSOR_Create(nodeAccessorFrom);

/* Create several root nodes. */
...
/* Move nodeAccessorFrom to the first root node, and move
 nodeAccessorTo to the second root node. */
VARGRNODEACCESSOR_GoFirstRoot(nodeAccessorFrom);
VARGRNODEACCESSOR_GoFirstRoot(nodeAccessorTo);
VARGRNODEACCESSOR_GoNext(nodeAccessorTo);

/* Add an undirected edge between the nodes accessed by
 nodeAccessorFrom and nodeAccessorTo. */
C Programmer’s Guide 75

Chapter Graph Datasource: Managing Graph Data4
VARGREDIT_AddUndirEdge(editGraphDs,
 nodeAccessorFrom, nodeAccessorTo);

/* Use undirEdgeAccessor to set the Value property of the new
 edge to "Neighbor." */
VAR_SetStr(varValue, "Neighbor");
VARGREDIT_SetEdgeValue(editGraphDs,
 undirEdgeAccessor, varValue);
VAR_Delete(varValue);
DSEDIT_End((DsEditPtr)editGraphDs);

In the preceding example:

1. The creation of several root nodes is implied.

2. Two node accessors are created to access the first two root nodes.

3. An undirected edge accessor is declared, using nodeAccessorFrom as
an argument.

4. An undirected edge is defined using the two node accessors.

5. The variant, “Neighbor,” is assigned to the Value property referenced
by the undirected edge accessor.

Cursor

The graph datasource supports two types of cursor:
■ Node Cursor
■ Edge Cursor

The node cursor and edge cursor are properties of the graph datasource.
Like the Title property, you can set and get the node and edge cursors.

When a DGRAM view is registered with the graph datasource, you can set
an option to cause the view either control the datasource cursor or simply
reflect the current location of the datasource cursor as it traverses the
internal hierarchy.

Node Cursor

The node cursor is a property of the graph datasource. You can:
■ Set the node cursor by associating it with a node accessor using the

VARGR_SetNodeCursor(vargr, nodeaccessor) function.
■ Access the node at the current cursor location using the

VARGR_GetNodeCursor(vargr) function.

This code fragment shows how to set and get a node cursor:

/* Declare a graph-datasource pointer variable. */
VarGrPtr graphDs;

/* Declare a browser pointer variable. */
DGramPtr win->dgramWgt;
WinPtr winDGram;

/* Declare a node-accessor pointer variable. */
VarGrNodeAccessorPtr nodeAccessor;

/* Declare two variant pointer variables. */
VarPtr varID, varValue;
...
/* Create the node and edge accessors. */
win->dgramWgt =
 (DGramPtr)PANEL_GetNamedWgt((PanelPtr)win, "DGram");
76 C Programmer’s Guide

Concepts
/* Assign a graph-datasource object to the graph-datasource
 pointer variable. */
graphDs = VARGR_Create();

/* Register the diagrammer with the graph datasource, and set
 the "cursor" view option. */
DS_RegisterView((DsPtr)graphDs, (ResPtr)win->dgramWgt);
DS_SetViewOptions((DsPtr)graphDs, (ResPtr)win->dgramWgt,
 "cursor", "CONTROLS");

/* Create node and edge accessors. */
nodeAccessor = VARGRNODEACCESSOR_Create();

/* Set a cursor at the location of the node accessor. */
VARGR_SetNodeCursor(graphDs, nodeAccessor);

/* Position the node accessor. */
...
/* Use "convenience" API functions to edit the ID and Value
 properties of the node at the current cursor location. */
VAR_SetStr(varID, "0000");
VAR_SetStr(varValue, "Node");
VARTR_SetNodeID(graphDs, VARTR_GetNodeCursor(graphDs), varID);
VARTR_SetNodeValue(graphDs,
 VARTR_GetNodeCursor(graphDs), varValue);
...
// Destroy the variant objects.
VAR_Delete(varID);
VAR_Delete(varValue);
...
/* Destroy the node accessor. */
VARTRNODEACCESOR_Dispose(nodeAccessor);
...
/* Destroy the graph datasource. */
RES_Release((ResPtr)graphDs);

For information about setting the cursor behavior, see “Options for the
DGRAM View” on page 84.

Edge Cursor

The edge cursor is a property of the graph datasource. You can:
■ Set the node cursor by associating it with a node accessor using the

VARGR_SetEdgeCursor(vargr, edgeaccessor) function.
■ Access the node at the current cursor location using the

VARGR_GetEdgeCursor(vargr) function.

This code fragment shows how to set and get an edge cursor:

/* Declare a graph-datasource pointer variable. */
VarGrPtr graphDs;

/* Declare a browser pointer variable. */
DGramPtr win->dgramWgt;

/* Declare a node-accessor pointer variable. */
VarGrAllEdgeAccessorPtr allEdgeAccessor;

/* Declare two variant pointer variables. */
VarPtr varID, varValue;
...
/* Create the node and edge accessors. */
win->dgramWgt =
 (DGramPtr)PANEL_GetNamedWgt((PanelPtr)win, "DGram");

/* Assign a graph-datasource object to the graph-datasource
 pointer variable. */
graphDs = VARGR_Create();
C Programmer’s Guide 77

Chapter Graph Datasource: Managing Graph Data4
/* Register the diagrammer with the graph datasource, and set
 the "cursor" view option. */
DS_RegisterView((DsPtr)graphDs, (ResPtr)win->dgramWgt);
DS_SetViewOptions((DsPtr)graphDs, (ResPtr)win->dgramWgt,
 "cursor", "CONTROLS");

/* Create node and edge accessors. */
allEdgeAccessor = VARGRALLEDGEACCESSOR_Create();

/* Set a cursor at the location of the edge accessor. */
VARGR_SetEdgeCursor(graphDs, allEdgeAccessor);

/* Position the edge accessor. */
...
/* Use "convenience" API functions to edit the ID and Value
 properties of the edge at the current cursor location. */
VAR_SetStr(varID, "0000");
VAR_SetStr(varValue, "Edge");
VARTR_SetEdgeID(graphDs, VARTR_GetEdgeCursor(graphDs), varID);
VARTR_SetEdgeValue(graphDs, VARTR_GetEdgeCursor(graphDs),
varValue);
...
// Destroy the variant objects.
VAR_Delete(varID);
VAR_Delete(varValue);
...
/* Destroy the node accessor. */
VARGRALLEDGEACCESSOR_Dispose(allEdgeAccessor);
...
/* Destroy the graph datasource. */
RES_Release((ResPtr)graphDs);

For information about setting the cursor behavior, see “Options for the
DGRAM View” on page 84.

Edit Object

To perform edit operations on the graph datasource or the nodes it contains,
your application must use an edit object. The graph datasource uses edit
objects to:
■ Create working copies of the data
■ Protect the datasource from corruption resulting from simultaneous

editing sessions sharing a common datasource

The graph datasource supports these editing levels:
■ Datasource Editing
■ Node Editing
■ Edge Editing

If the data to be modified is locked by another view, no edit object can be
created. This locks your application out of the data. To prevent your
application from hanging when it encounters a data lock, you can create
your edit object within a conditional construct that checks for the
availability of the data and supplies an alternative if the data is locked.

Editing the datasource includes the following four steps:

1. Create an edit object

2. Execute the edit operations

3. Commit the edit operations

4. Destroy the edit object
78 C Programmer’s Guide

Concepts
In addition to the direct approach to managing edit objects, a set of
“convenience” APIs supplies functions that manage the edit objects
automatically for single edit operations. For more information about the
“convenience” APIs, see “Convenience API Functions” on page 80.

Datasource Editing

When you want to modify the structure of the datasource—for example, to
create new nodes and edges—you need a datasource edit object. When you
create a datasource edit object for a particular view, no other view can create
an edit object for that datasource. This includes edit objects for editing node
and edge data, because the node or edge you may want to edit may also be
edited during the datasource-level edit session.

The datasource edit object is created, locking the datasource, when a
VARGR object executes the StartEdit() function. This is a public function
inherited from the DS class. The graph datasource is unlocked when the
DSEDIT_End() function executes, as shown in this example:

/* Declare pointer variables. */
VarGrPtr graphDs;
/* Declare node and edge accessors. */
VarGrNodeAccessorPtr nodeAccessor;
VarGrAllEdgeAccessorPtr allEdgeAccessor;
VarGrEditPtr editGraphDs;

/* Assign addresses to pointers. */
graphDs = VARGR_Create();
/* Assign node and edge accessors. */
nodeAccessor = VARGRNODEACCESSOR_Create();
allEdgeAccessor = VARGRALLEDGEACCESSOR_Create();
/* Create the datasource-level edit object. */
editGraphDs = VARGR_StartEdit(graphDs);
/* Position node accessor and edit the graph. */
...
/* Execute the DSEDIT_End() function. */
DSEDIT_End((DsEditPtr)editGraphDs);

When the DSEDIT_End() function executes, all graph modifications are
committed, and the datasource-level lock is released.

Node Editing

To set the data properties of a node in a graph datasource—for example, to
update its x and y coordinates—you do not need to lock the entire datasource
from access by other views with a datasource edit object. Instead, you only
need to lock the node that you want to modify.

A node edit object is created, locking the node referenced by the node
accessor, when an object of the VARGR class executes the
StartNodeEdit(vargr, accessor) function. This is a public function inherited
from the DS class. The accessed node is unlocked when the DSEDIT_End()
function executes, as shown in this example:

VarGrPtr graphDs;
VarGrNodeAccessorPtr nodeAccessor;
VarGrNodeEditPtr editNode;
...
graphDs = VARGR_Create();
accessor = VARGRNODEACCESSOR_Create();

/* Execute the StartNodeEdit() function. */
editNode = VARGR_StartNodeEdit(graphDs, nodeAccessor);

/* Position the node accessor and edit node data. */
C Programmer’s Guide 79

Chapter Graph Datasource: Managing Graph Data4
...

/* Execute the DSEDIT_End() function. */
DSEDIT_End((DsEditPtr)editNode);

When the DSEDIT_End() function executes, all node modifications are
committed, and the node-level lock is released.

Edge Editing

To set the data properties of an edge in a graph datasource—for example, to
change its label—you do not need to lock the entire datasource from access
by other views with a datasource edit object. Instead, you only need to lock
the edge that you want to modify.

An edge edit object is created, locking the edge referenced by the edge
accessor, when an object of the VARGR class executes the
StartEdgeEdit(vargr, accessor) function. This is a public function inherited
from the DS class. The accessed node is unlocked when the DSEDIT_End()
function executes, as shown in this example:

VarGrPtr graphDs;
VarGrAllEdgeAccessorPtr allEdgeAccessor;
VarGrEdgeEditPtr editEdge;
graphDs = VARGR_Create();
accessor = VARGRALLEDGEACCESSOR_Create();

/* Execute the StartEdgeEdit() function. */
editEdge = VARGR_StartEdgeEdit(graphDs, allEdgeAccessor);

/* Position the node accessor and edit edge data. */
...

/* Execute the DSEDIT_End() function. */
DSEDIT_End((DsEditPtr)editNode);

When the DSEDIT_End() function executes, all edge modifications are
committed, and the edge-level lock is released.

Convenience API Functions

When editing a graph datasource, you can use either the standard APIs or
the convenience APIs to complete the edit operations. When using the
standard APIs, you must:

1. Create an edit object to start the edit operation.

2. Perform any necessary editions to the datasource.

3. Commit the edit operations.

4. Destroy the edit object.

When using the “convenience” APIs, steps 1, 3, and 4 from the preceding list
are completed automatically. You can perform:
■ Datasource Editing with the “Convenience” APIs
■ Node Editing with the “Convenience” APIs
■ Edge Editing with the “Convenience” APIs

In other words, your application can use the “convenience” API to edit the
datasource or its contents without formally creating an edit object. For
example, when the VARGR_AddNode(vargr, accessor) function executes:
■ An edit object is automatically created
■ The new node is added at the location specified by the node accessor
80 C Programmer’s Guide

Concepts
■ The edit operations are committed
■ The edit object is destroyed

The “convenience” API functions are useful for performing single edit
operations. However, these functions can inhibit performance when used to
perform batch edit operations.

Datasource Editing with the “Convenience” APIs

If you want to change the ID and Value properties of a specific node in the
datasource, the “convenience” API functions are most useful. To directly
manage the required edit object would add some unnecessary complexity
to your application logic.

In the next example, a datasource edit object is create by the “convenience”
function, VARGR_AddNode(). This creates a datasource edit object, adds a
node, commits the node addition to the datasource, and destroys the edit
object.

/* Declare pointer variables. */
VarGrPtr graphDs;
VarGrNodeAccessorPtr nodeAccessor;

/* Initialize the pointer variables. */
graphDs = VARGR_Create();
nodeAccessor = VARGRNODEACCESSOR_Create();

/* Move the node accessor to the next empty root-node
 location. */
VARGRNODEACCESSOR_GoFirstRoot(nodeAccessor);
while (VARGR_IsNodeValid(graphDs, nodeAccessor)) {
 VARGRNODEACCESSOR_GoNext(nodeAccessor);
}

/* Add a node using the "convenience" API. A datasource edit
 object is created, edit operations are committed, and the
 edit object is destroyed by the VARGR_AddNode() function. */
VARGR_AddNode(graphDs, nodeAccessor);
...
/* Dispose of other objects. */
VAR_Delete(varID);
VAR_Delete(varValue);
VARGRNODEACCESSOR_Dispose(nodeAccessor);
RES_Release((ResPtr)graphDs);

If the preceding code fragment was intended to build a complete node
network, the “convenience” API functions would not be appropriate. For
such operations, use batched edit operations as described in “Datasource
Editing” on page 79.

Node Editing with the “Convenience” APIs

If you want to change the ID and Value properties of a specific node in the
datasource, the “convenience” API functions are most useful. To directly
manage the required edit object would add some unnecessary complexity
to your application logic.

In the next example, a node edit object is create by each of the convenience
API functions, VARGR_SetNodeID() and VARGR_SetNodeValue(). Each
of these functions creates a node edit object, commits its edit operation, and
destroys the edit object.

/* Declare pointer variables. */
VarGrPtr graphDs;
VarGrNodeAccessorPtr nodeAccessor;
C Programmer’s Guide 81

Chapter Graph Datasource: Managing Graph Data4
VarPtr varID, varValue;

/* Initialize the pointer variables. */
graphDs = VARGR_Create();
nodeAccessor = VARGRNODEACCESSOR_Create();
varID = VAR_New();
varValue = VAR_New();

/* Move the node accessor to the next empty root-node
 location. */
VARGRNODEACCESSOR_GoFirstRoot(nodeAccessor);
while (VARGR_IsNodeValid(graphDs, nodeAccessor)) {
 VARGRNODEACCESSOR_GoNext(nodeAccessor);
}

/* Add a node using the "convenience" API. A datasource edit
 object is created, edit operations are committed, and the
 edit object is destroyed by the VARGR_AddNode() function. */
VARGR_AddNode(graphDs, nodeAccessor);

/* Set the variant objects to some initializing values. */
VAR_SetStr(varID, "0000");
VAR_SetStr(varValue, "New Node");

/* Set the node ID and Value properties using the "convenience"
 APIs. A node edit object is created, edit operations are
 committed, and the edit objects are destroyed by each of the
 following two functions. */
VARGR_SetNodeID(graphDs, editGraphDs, varID);
VARGR_SetNodeValue(graphDs, editGraphDs, varValue);
...
/* Dispose of other objects. */
VAR_Delete(varID);
VAR_Delete(varValue);
VARGRNODEACCESSOR_Dispose(nodeAccessor);
RES_Release((ResPtr)graphDs);

If the preceding code fragment was intended to traverse and initialize each
node in the hierarchy, the “convenience” API functions would not be
appropriate. For such operations, use batched edit operations as described
in “Node Editing” on page 79.

Edge Editing with the “Convenience” APIs

If you want to change the ID and Value properties of a specific edge in the
datasource, the “convenience” API functions are most useful. To directly
manage the required edit object would add some unnecessary complexity
to your application logic.

In the next example, an edge edit object is create by each of the convenience
API functions, VARGR_SetEdgeID() and VARGR_SetEdgeValue(). Each
of these functions creates a edge edit object, commits its edit operation, and
destroys the edit object.

/* Declare pointer variables. */
VarGrPtr graphDs;
VarGrNodeAccessorPtr nodeAccessorFrom;
VarGrNodeAccessorPtr nodeAccessorTo;
VarGrAllEdgeAccessorPtr allEdgeAccessor;
VarPtr varID, varValue;

/* Initialize the pointer variables. */
graphDs = VARGR_Create();
nodeAccessorFrom = VARGRNODEACCESSOR_Create();
nodeAccessorTo = VARGRNODEACCESSOR_Create();
allEdgeAccessor = VARGRALLEDGEACCESSOR_Create();
varID = VAR_New();
varValue = VAR_New();
82 C Programmer’s Guide

Concepts

/* Move the "source" node accessor to the next empty root-node
 location. */
VARGRNODEACCESSOR_GoFirstRoot(nodeAccessorFrom);
while (VARGR_IsNodeValid(graphDs, nodeAccessorFrom)) {
 VARGRNODEACCESSOR_GoNext(nodeAccessorFrom);
}

/* Add a node using the "convenience" API at the "source"
 accessor location. A datasource edit object is created, edit
 operations are committed, and the edit object is destroyed
 by the VARGR_AddNode() function. */
VARGR_AddNode(graphDs, nodeAccessorFrom);

/* Set the variant objects to some initializing values. */
VAR_SetStr(varID, "n0000");
VAR_SetStr(varValue, "New Node");

/* Set the node ID and Value properties using the "convenience"
 APIs. A node edit object is created, edit operations are
 committed, and the edit objects are destroyed by each of the
 following two functions. */
VARGR_SetNodeID(graphDs, nodeAccessorFrom, varID);
VARGR_SetNodeValue(graphDs, nodeAccessorFrom, varValue);

/* Move the node accessor to the next empty root-node
 location. */
VARGRNODEACCESSOR_GoNthRoot(VARGR_GetNumRoots(graphDs),
 nodeAccessorTo);
while (VARGR_IsNodeValid(graphDs, nodeAccessorTo)) {
 VARGRNODEACCESSOR_GoNext(nodeAccessorTo);
}

/* Add a node using the "convenience" API at the "target"
 accessor location. A datasource edit object is created, edit
 operations are committed, and the edit object is destroyed
 by the VARGR_AddNode() function. */
VARGR_AddNode(graphDs, nodeAccessorTo);

/* Set the node ID and Value properties using the "convenience"
 APIs. A node edit object is created, edit operations are
 committed, and the edit objects are destroyed by each of the
 following two functions. */
VARGR_SetNodeID(graphDs, nodeAccessorTo, varID);
VARGR_SetNodeValue(graphDs, nodeAccessorTo, varValue);

/* Add a directed edge between the two root nodes using the
 "convenience" API. A datasource edit object is created, edit
 operations are committed, and the edit object is destroyed
 by the VARGR_AddEdge() function. */
VARGR_AddDirEdge(graphDs,
 nodeAccessorFrom, nodeAccessorTo);

/* Set the variant objects to some initializing values. */
VAR_SetStr(varID, "e0000");
VAR_SetStr(varValue, "New Edge");

/* Set the edge ID and Value properties using the "convenience"
 APIs. An edge edit object is created, edit operations are
 committed, and the edit objects are destroyed by each of the
 following two functions. */
VARGRALLEDGEACCESSOR_GoBetween(allEdgeAccessor,
 nodeAccessorFrom,
 nodeAccessorTo);
VARGR_SetEdgeID(graphDs, allEdgeAccessor, varID);
VARGR_SetEdgeValue(graphDs, allEdgeAccessor, varValue);
...
/* Dispose of other objects. */
VAR_Delete(varID);
VAR_Delete(varValue);
VARGRNODEACCESSOR_Dispose(nodeAccessorFrom);
VARGRNODEACCESSOR_Dispose(nodeAccessorTo);
C Programmer’s Guide 83

Chapter Graph Datasource: Managing Graph Data4

]|
]

VARGRNODEACCESSOR_Dispose(allEdgeAccessor);
RES_Release((ResPtr)graphDs);

If the preceding code fragment was intended to traverse and initialize each
edge in the datasource, the “convenience” API functions would not be
appropriate. For such operations, use batched edit operations as described
in “Edge Editing” on page 80.

Options for the DGRAM View

The graph datasource supports the general-purpose options for DGRAM
views:
■ autosize
■ cursor
■ readonly
■ Diagrammer
■ Custom Node and Link Options

For example, the Diagrammer option accepts a parameter string that
applies to the entire DGRAM view. You can also define node and link
properties to which you can assign values.

To set view options, use the third and fourth arguments of the
DS_SetViewOption() argument list, as shown here:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 {["autosize", "{FALSE|TRUE}"]|
 ["cursor", "{CONTROLS|REFLECTS}"]|
 ["readonly", "{FALSE|TRUE}"]|
 ["Diagrammer", "<parameter_list>"]|
 ["<node_property>:<value>", "<parameter_list>"
 ["<link_property>:<value>", "<parameter_list>"
 }
);

In the preceding syntax, parameter_list is an expression that represents a
series of pertinent parameter settings. A parameter list is enclosed in
quotation marks, can have any number of parameter settings within it, and
follows this format:

"<parameter_1>=<value_1>;
 <parameter_2>=<value_2>;
 ...;
 <parameter_n>=<value_n>"

You can only use parameter lists when setting node and link parameters
with:
■ The Diagrammer option
■ Any options you may define using the node_property:value and

link_property:value formats

Table 4–1 lists the types and possible values for each of these parameters.
84 C Programmer’s Guide

Options for the DGRAM View
Table 4–1 Parameter Values for Diagrammer and Custom Options

This SetViewOption() function illustrates the parameter values listed in
Table 1-1:

DS_SetViewOption(graphDs, (ResPtr)win->dgramWgt,
 "Diagrammer",
 "NodeW = 72; NodeH = 18;
 XGrid = 36; YGrid = 36;
 GridAlignment = TRUE;
 BgColor = Color.Black;

 NodeStandardDData.Shape = ROUNDRECTANGLE;
 NodeStandardDData.BgColor = Color.Navy;
 NodeFocusDData.BgColor = Color.Blue;
 NodeStandardDData.LabelColor = Color.White;
 NodeStandardDData.FramePen = Pen.Solid;
 NodeStandardDData.LabelFont = Font.Arias;

 Orientation = VERTICAL;
 LinkStandardDData.Shape = RIGHTANGLE;
 LinkStandardDData.LinkDirColor = Color.Blue;
 LinkFocusDData.LinkDirColor = Color.Red;
 LinkStandardDData.LinkUndirColor = Color.Navy;
 LinkFocusDData.LinkUndirColor = Color.Maroon;
 LinkStandardDData.LinkPen = Pen.Solid;
 LinkStandardDData.LinkLabel = Font.Arias;
 "
);

autosize

You can set the autosize option to TRUE to create automatically sized
nodes. With autosize enabled, bounding boxes for all nodes in a specified
expansion level are the maximum width for nodes at that level. Here is the
syntax for using the autosize option:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "autosize", "{FALSE|TRUE}");

The autosize default is FALSE. With autosize set to TRUE, the
bounding-box widths are based on the string lengths of the node Value
properties. This code fragment shows how to enable the autosize option:

VarGrPtr graphDs;
DGramPtr dgramWgt;

Type Values Default Value
Boolean 0|FALSE|NO|OTHERS

1|TRUE|YES
See Option or
Parameter

NodeShape 0|DEFAULT|RECT|RECTANGLE
1|ROUNDRECT|ROUNDRECTANGLE
2|ELLIPSE
3|DIAMOND
4|HEXAGON
5|TRIANGLE

RECTANGLE

LinkShape DEFAULT|DIAGONAL
RIGHTANGLE

DIAGONAL

Pen Pen.<pen_name>
<module_name>.<pen_name>

DGRAM-specific

Font Font.<font_name>
<module_name>.<font_name>

DGRAM-specific

Color Color.<color_name>
<module_name>.<color_name>

DGRAM-specific
C Programmer’s Guide 85

Chapter Graph Datasource: Managing Graph Data4
...
graphDs = VARGR_Create();
win->dgramWgt =
 (DGramPtr)PANEL_GetNamedWgt((PanelPtr)win, "DGram");
DS_RegisterView((DsPtr)graphDs, (ResPtr)win->dgramWgt)
DS_SetViewOption((DsPtr)graphDs, (ResPtr)win->dgramWgt,
 "autosize", "TRUE");

cursor

The cursor option determines whether the view cursor controls or reflects
the position of the datasource cursor. The cursor option has two possible
settings:
■ CONTROLS (the default)
■ REFLECTS

Here is the format for the setting the cursor option:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "cursor", "{CONTROLS|REFLECTS}");

With cursor set to CONTROLS, the cursor position or active node in the
view determines the position of the datasource cursor. This ensures that the
datasource cursor and view cursor are synchronized.

With cursor set to REFLECTS, the view cursor reflects the current location
of the datasource cursor. This setting ensures that the view is continually
updated when the datasource cursor is moved programmatically. When
you change the view cursor, the datasource cursor is not updated.

When multiple views are registered with a common datasource and with
cursor set to CONTROLS, each registered view can manipulate the position
of the datasource cursor. For example, if two views control the datasource
cursor, movement of one view cursor changes the position of the datasource
cursor, which is reflected in the other registered view.

This example has two DGRAM views, dgram1 and dgram2, registered to a
common graph datasource, graphDs. The dgram1 cursor reflects the
current location of the datasource cursor. The dgram2 cursor controls the
position of the datasource cursor:

VarGrPtr graphDs;
WinPtr winDGram;
DGramPtr win->dgram1;
DGramPtr win->dgram2;
...
win->dgram1 =
 (DGramPtr)PANEL_GetNamedWgt((PanelPtr)win, "DGram");
win->dgram2 =
 (DGramPtr)PANEL_GetNamedWgt((PanelPtr)win, "DGram");
DS_RegisterView((DsPtr)graphDs, (ResPtr)win->dgram1)
DS_RegisterView((DsPtr)graphDs, (ResPtr)win->dgram2)
...
DS_SetViewOption((DsPtr)graphDs, (ResPtr)win->dgram1,
 "cursor", "REFLECTS");
DS_SetViewOption((DsPtr)graphDs, (ResPtr)win->dgram2,
 "cursor", "CONTROLS");

In the next example, both view cursors control the position of the datasource
cursor. Any change in the cursor position of one view is automatically
reflected in the other view.

VarGrPtr graphDs;
DGramPtr win->dgram1;
DGramPtr win->dgram2;
...
86 C Programmer’s Guide

Options for the DGRAM View
win->dgram1 =
 (DGramPtr)PANEL_GetNamedWgt((PanelPtr)win, "DGram");
win->dgram2 =
 (DGramPtr)PANEL_GetNamedWgt((PanelPtr)win, "DGram");
DS_RegisterView((DsPtr)graphDs, (ResPtr)win->dgram1)
DS_RegisterView((DsPtr)graphDs, (ResPtr)win->dgram2)
...
DS_SetViewOption((DsPtr)graphDs, (ResPtr)win->dgram1,
 "cursor", "CONTROLS");
DS_SetViewOption((DsPtr)graphDs, (ResPtr)win->dgram2,
 "cursor", "CONTROLS");

readonly

When readonly is FALSE (the default), you can right-click on a node or link
to display a popup menu. This lets you access the Node Edition and Link
Edition dialogs. In these, you can change the ID, Value, Width, or Height
of the node or the Value property or Directed property of a link.

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "readonly", "{FALSE|TRUE}");

With readonly set to TRUE, the application user cannot right-click to display
the popup menu and, therefore, cannot access the Node and Link Edition
dialogs.

Diagrammer

You can use the Diagrammer option to set many different parameters:
■ Basic Diagrammer Parameters
■ “Standard” View Settings for Nodes and Links
■ “Focus” View Settings for Nodes and Links

These parameters have varied scopes. As a result, only a general syntax for
the Diagrammer option is shown here:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "[<basic_parameter_list>] |
 [<standard_node_and_link_parameter_list>] |
 [<focus_node_and_link_parameter_list>]"
);

A complete parameter list for each scope is supplied in the sections that
follow.

Basic Diagrammer Parameters

With the basic Diagrammer parameters, you can set these diagram
characteristics:
■ Dimensions of the node bounding box
■ Grid and snap
■ Magnification
■ Overview configuration
■ Link orientation
■ Background

Here is the syntax supporting these characteristics:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "[NodeW = <integer>;] |
 [NodeH = <integer>;] |
C Programmer’s Guide 87

Chapter Graph Datasource: Managing Graph Data4
 [XGrid = <integer>;] |
 [YGrid = <integer>;] |
 [GridAlignment = {FALSE|TRUE};] |
 [ScaleFactor = <real>;] |
 [Overview = {0|DEFAULT|NO|HIDE|NOOVERVIEW]|
 1|TOP|
 2|LEFT
 };] |
 [Orientation =
 {0|DEFAULT|HORZ|HORIZONTAL],
 1|VERT|VERTICAL
 };] |
 [Cycles = {FALSE|TRUE};] |
 [BitmapFile, <filename>;] |
 [BgColor = <color_resource>;]"
);

NodeW

This integer value specifies the width of a node in pixels. If the Autosize
option is enabled, this option and the NodeH parameter are ignored.

This syntax shows how to specify the node width:

DS_SetViewOption(<datasource>, (ResPtr)<winres>-><view>,
 "Diagrammer",
 "...;
 NodeW = <integer>;
 ..."
);

This code fragment sets the node width to 72 pixels—that is, 1 inch on a
72-pixel-per-inch display:

DS_SetViewOption(graphDs, (ResPtr)win->dgramWgt,
 "Diagrammer", "NodeW = 72");

Type: Int32

Default: DGRAM-specific

Synonyms: Width

NodeH

This integer value specifies the width of a node in pixels. If the Autosize
option is enabled, this option and the NodeW parameter are ignored.

This syntax shows how to specify the node height:

DS_SetViewOption(<datasource>, (ResPtr)<winres>-><view>,
 "Diagrammer",
 "...;
 NodeH = <integer>;
 ..."
);

This code fragment sets the node height to 24 pixels—that is, 1/3 inch on a
72-pixel-per-inch display:

DS_SetViewOption(graphDs, (ResPtr)win->dgramWgt,
 "Diagrammer", "NodeH = 24");

Type: Int32

Default: DGRAM-specific

Synonyms: Height
88 C Programmer’s Guide

Options for the DGRAM View
XGrid

This integer value specifies the size of the x-axis grid in pixels. This syntax
shows how to specify the x-axis grid:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 XGrid = <integer>;
 ..."
);

This code fragment sets the x-axis grid to 36 pixels—that is, 1/2 inch on a
72-pixel-per-inch display:

DS_SetViewOption(graphDs, (ResPtr)win->dgramWgt,
 "Diagrammer", "XGrid = 36");

Type: Int32

Default: DGRAM-specific

Synonyms: None

YGrid

This integer value specifies the size of the y-axis grid in pixels. This syntax
shows how to specify the y-axis grid:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 YGrid = <integer>;
 ..."
);

This code fragment sets the y-axis grid to 36 pixels—that is, 1/2 inch on a
72-pixel-per-inch display:

DS_SetViewOption(graphDs, (ResPtr)win->dgramWgt,
 "Diagrammer", "YGrid = 36");

Type: Int32

Default: DGRAM-specific

Synonyms: None

GridAlignment

With GridAlignment set to FALSE (the default), you can move nodes and
links in an unconstrained manner within the DGRAM view. If you set
GridAlignment to TRUE, the diagram contents snap to the grid. This
syntax shows how to set the GridAlignment parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 GridAlignment = {FALSE|TRUE};
 ..."
);

This code fragment sets both the x-axis and y-axis grid to 36 pixels—that is,
a grid of 1/2- inch squares on a 72-pixel-per-inch display—with diagram
components snapping to the grid:

DS_SetViewOption(graphDs, (ResPtr)win->dgramWgt,
 "Diagrammer", "YGrid = 36; YGrid = 36;
 GridAlignment = TRUE");
C Programmer’s Guide 89

Chapter Graph Datasource: Managing Graph Data4
In the preceding example, the grid may or may not be visible.

Type: Boolean

Default: FALSE

Synonyms: Align, Alignment

ScaleFactor

The ScaleFactor parameter controls the zoom level of the diagram. The
default for this parameter is 1.00. This syntax shows how to set the
ScaleFactor parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 ScaleFactor = <double>;
 ..."
);

Note: The ScaleFactor setting is assumed to be 1.00 when you use pixels for
dimensioning NodeW, NodeH, XGrid, and YGrid.

This code fragment sets the ScaleFactor to 2.00, which displays the diagram
at twice its default size:

DS_SetViewOption(graphDs, (ResPtr)win->dgramWgt,
 "Diagrammer", "ScaleFactor = 2.00");

Type: Double

Default: 1.00

Synonyms: Scale

Overview

The DGRAM overview is a high-level view of the entire graph. With the
overview, you can position a virtual view window, rather than using scroll
bars, to display the specific nodes and edges (links. This syntax shows how
to set the Overview parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 Overview = {0|DEFAULT|NO|HIDE|NOOVERVIEW]|
 1|TOP|
 2|LEFT
 };
 ..."
);

This code fragment enables an Overview display to the left of the diagram:

DS_SetViewOption(graphDs, (ResPtr)win->dgramWgt,
 "Diagrammer", "Overview = LEFT");
 /* "Diagrammer", "Overview = 2"); */

Type: Enumerated

Default: NOOVERVIEW

Synonyms: None

Orientation

With Orientation set to HORIZONTAL (the default), a link emanates from
the “center” of the node through the sides of the bounding box. If you set
90 C Programmer’s Guide

Options for the DGRAM View
Orientation to VERTICAL, the links emanate from the bottom and top
sides of the nodes. This syntax shows how to set the Orientation parameter
for a center link:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 Orientation = {0|DEFAULT|HORZ|HORIZONTAL],
 1|VERT|VERTICAL};
 };
 ..."
);

This code fragment sets the Orientation to have the links emanate from the
top and bottom sides of the pertinent nodes:

DS_SetViewOption(graphDs, (ResPtr)win->dgramWgt,
 "Diagrammer", "Orientation = VERTICAL");
 /* "Diagrammer", "Orientation = 1"); */

Type: Enumerated

Default: HORIZONTAL

Synonyms: None

Cycles

With Cycles set to TRUE (the default is FALSE), a warning is returned
when a cyclic node reference is created. Two cyclic references are shown in
Figure 4–13:

Figure 4–13 Cyclic Node Reference

If you are planning an itinerary for a trip on which you plan to return to
your original departure point, a cyclic reference is very appropriate. In this
case, Cycles should be set to FALSE to avoid unnecessary warnings.

However, if your application tracks family history, you can have your
application warn you, by setting Cycles to TRUE, when an inappropriate
parent-child relationship is established by a user.

This syntax shows how to set the Cycles parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 Cycles = {FALSE|TRUE};
 ..."
);

Type: Boolean

Default: FALSE

Synonyms: None

A

CB

OR BA
C Programmer’s Guide 91

Chapter Graph Datasource: Managing Graph Data4
BitmapFile

You can place a bitmap image in the background of a diagram by specifying
a filename for the BitmapFile parameter. Background images help when
using a DGRAM view to display mapping information, such as floor plans
for a computer network. This syntax shows how to set the BitmapFile
parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 BitmapFile = <filename>;
 ..."
);

This code assigns the filename “network.gif” to the BitmapFile parameter:

DS_SetViewOption(graphDs, (ResPtr)win->dgramWgt,
 "Diagrammer", "BitmapFile = network.gif");

All nodes and links in the diagram are superimposed on the bitmap file in
the background.

Type: String

Default: None

Synonyms: None

BgColor

The BgColor parameter defines the color to be used in the background of
the diagram. If a bitmap file is supplied as a background image, the BgColor
setting is ignored. This syntax shows how to set the BgColor parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 BgColor = <color_resource>;
 ..."
);

This code assigns the color resource “res.blue” to the BgColor parameter:

DS_SetViewOption(graphDs, (ResPtr)win->dgramWgt,
 "Diagrammer", "BgColor = res.blue");

Type: Color

Default: DGRAM-specific

Synonyms: Bg

“Standard” View Settings for Nodes and Links

The “standard” view settings set the display characteristics for nodes and
links that are not currently selected in the diagram. In addition to enabling
and disabling the labels for these diagram components, these parameter set
these characteristics:
■ Shapes
■ Colors
■ Pens
■ Fonts
92 C Programmer’s Guide

Options for the DGRAM View

|

Here is the syntax supporting these “standard” characteristics:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "[NodeStandardDData.FrameColor =
 <color_resource>;] |
 [NodeStandardDData.BgColor =
 <color_resource>;] |
 [NodeStandardDData.LabelColor =
 <color_resource>;] |
 [NodeStandardDData.FramePen =
 <pen_resource>;] |
 [NodeStandardDData.LabelFont =
 <font_resource>;] |
 [NodeStandardDData.DrawLabel = {FALSE|TRUE};]
 [NodeStandardDData.Shape =
 {0|DEFAULT|RECT|RECTANGLE|
 1|ROUNDRECT|ROUNDRECTANGLE|
 2|ELLIPSE|
 3|DIAMOND|
 4|HEXAGON|
 5|TRIANGLE
 };] |

 [Link.Color =
 <color_resource>;] |
 [LinkStandardDData.LinkDirColor =
 <color_resource>;] |
 [LinkStandardDData.LinkUndirColor =
 <color_resource>;] |
 [LinkStandardDData.LabelColor =
 <color_resource>;] |
 [LinkStandardDData.LinkPen =
 <pen_resource>;] |
 [LinkStandardDData.LabelFont =
 <font_resource>;] |
 [LinkStandardDData.DrawLabel = {FALSE|TRUE};] |
 [LinkStandardDData.Shape =
 {0|DEFAULT|DIAGONAL|
 1|RIGHTANGLE
 };]"
);

NodeStandardDData.FrameColor

NodeStandardDData.FrameColor sets the color of the frame around the
node. This syntax shows how to set the NodeStandardDData.FrameColor
parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 NodeStandardDData.FrameColor =
 <color_resource>;
 ..."
);

Type: Color

Default: DGRAM-specific

Synonyms: Node.FColor, Node.FrameColor

NodeStandardDData.BgColor

NodeStandardDData.BgColor sets the color of the node. This syntax shows
how to set the NodeStandardDData.BgColor parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
C Programmer’s Guide 93

Chapter Graph Datasource: Managing Graph Data4
 "...;
 NodeStandardDData.BgColor = <color_resource>;
 ..."
);

Type: Color

Default: DGRAM-specific

Synonyms: Node.Bg, Node.Color, Node.BgColor

NodeStandardDData.LabelColor

NodeStandardDData.LabelColor sets the color of the node label. This
syntax shows how to set the NodeStandardDData.LabelColor parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 NodeStandardDData.LabelColor =
 <color_resource>;
 ..."
);

Type: Color

Default: DGRAM-specific

Synonyms: Node.Fg, Node.FgColor, Node.LabelColor

NodeStandardDData.FramePen

NodeStandardDData.FramePen sets the pen to use for the node label. This
syntax shows how to set the NodeStandardDData.FramePen parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 NodeStandardDData.FramePen = <pen_resource>;
 ..."
);

Type: Pen

Default: DGRAM-specific

Synonyms: Node.Pen, Node.FramePen

NodeStandardDData.LabelFont

NodeStandardDData.LabelFont sets the font for the node label. This syntax
shows how to set the NodeStandardDData.LabelFont parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 NodeStandardDData.LabelFont = <font_resource>;
 ..."
);

Type: Font

Default: DGRAM-specific

Synonyms: Node.Font, Node.LabelFont
94 C Programmer’s Guide

Options for the DGRAM View
NodeStandardDData.DrawLabel

NodeStandardDData.DrawLabel specifies whether or not to display node
labels. This syntax shows how to set the NodeStandardDData.DrawLabel
parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 NodeStandardDData.DrawLabel = {TRUE|FALSE};
 ..."
);

Type: Boolean

Default: TRUE

Synonyms: Node.DrawLabel

NodeStandardDData.Shape

NodeStandardDData.Shape specifies the default node shape. This syntax
shows how to set the NodeStandardDData.Shape parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 NodeStandardDData.Shape =
 {0|DEFAULT|RECT|RECTANGLE|
 1|ROUNDRECT|ROUNDRECTANGLE|
 2|ELLIPSE|
 3|DIAMOND|
 4|HEXAGON|
 5|TRIANGLE
 };
 ..."
);

Type: Enumerated

Default: RECTANGLE

Synonyms: Shape, Node.Shape

Link.Color

Link.Color sets the link color if the LinkStandardDData.LinkDirColor or
LinkStandardDData.LinkUndirColor parameter is not set. This syntax
shows how to set the Link.Color parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 Link.Color = <color_resource>;
 ..."
);

Type: Color

Default: DGRAM-specific

Synonyms: None

LinkStandardDData.LinkDirColor

LinkStandardDData.LinkDirColor sets the default color of all directed
links. This syntax shows how to set the LinkStandardDData.LinkDirColor
parameter:
C Programmer’s Guide 95

Chapter Graph Datasource: Managing Graph Data4
DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 LinkStandardDData.LinkDirColor =
 <color_resource>;
 ..."
);

Type: Color

Default: DGRAM-specific

Synonyms: Link.DirColor

LinkStandardDData.LinkUndirColor

LinkStandardDData.LinkUndirColor sets the default color of undirected
links. This syntax shows how to set LinkStandardDData.LinkUndirColor:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 LinkStandardDData.LinkUndirColor =
 <color_resource>;
 ..."
);

Type: Color

Default: DGRAM-specific

Synonyms: Link.UndirColor

LinkStandardDData.LabelColor

LinkStandardDData.LabelColor sets the color of the node label. This
syntax shows how to set the LinkStandardDData.LabelColor parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 LinkStandardDData.LabelColor =
 <color_resource>;
 ..."
);

Type: Color

Default: DGRAM-specific

Synonyms: Link.LabelColor

LinkStandardDData.LinkPen

LinkStandardDData.LinkPen sets the pen for the link label. This syntax
shows how to set the LinkStandardDData.LinkPen parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 LinkStandardDData.LinkPen = <pen_resource>;
 ..."
);

Type: Pen

Default: DGRAM-specific

Synonyms: Link.Pen
96 C Programmer’s Guide

Options for the DGRAM View
LinkStandardDData.LabelFont

LinkStandardDData.LabelFont sets the font for the node label. This syntax
shows how to set the LinkStandardDData.LabelFont parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 LinkStandardDData.LabelFont = <font_resource>;
 ..."
);

Type: Font

Default: DGRAM-specific

Synonyms: Link.Font

LinkStandardDData.DrawLabel

LinkStandardDData.DrawLabel specifies whether or not to display node
labels. This syntax shows how to set the LinkStandardDData.DrawLabel
parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 LinkStandardDData.DrawLabel = {TRUE|FALSE};
 ..."
);

Type: Boolean

Default: FALSE

Synonyms: Link.DrawLabel

LinkStandardDData.Shape

LinkStandardDData.Shape specifies the default shape for links. This
syntax shows how to set the LinkStandardDData.Shape parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 NodeStandardDData.Shape =
 {0|DEFAULT|DIAGONAL|
 1|RIGHTANGLE
 };
 ..."
);

Type: Enumerated

Default: DIAGONAL

Synonyms: Link.Shape

“Focus” View Settings for Nodes and Links

The “focus” view settings set the display characteristics for nodes and links
that are currently selected in the diagram. In addition to enabling and
disabling the labels for diagram components, these parameter set these
characteristics:
■ Shapes
■ Colors
C Programmer’s Guide 97

Chapter Graph Datasource: Managing Graph Data4
■ Pens
■ Fonts

Here is the syntax supporting these “focus” characteristics:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "[NodeFocusDData.FrameColor =
 <color_resource>;] |
 [NodeFocusDData.BgColor =
 <color_resource>;] |
 [NodeFocusDData.LabelColor =
 <color_resource>;] |
 [NodeFocusDData.FramePen = <pen_resource>;] |
 [NodeFocusDData.LabelFont =
 <font_resource>;] |
 [NodeFocusDData.DrawLabel = {FALSE|TRUE};] |
 [NodeFocusDData.Shape =
 {0|DEFAULT|RECT|RECTANGLE|
 1|ROUNDRECT|ROUNDRECTANGLE|
 2|ELLIPSE|
 3|DIAMOND|
 4|HEXAGON|
 5|TRIANGLE};] |

 [LinkFocus.Color =
 {Color.Red|<color_resource>};] |
 [LinkFocusDData.LinkDirColor =
 <color_resource>;] |
 [LinkFocusDData.LinkUndirColor =
 <color_resource>;] |
 [LinkFocusDData.LabelColor =
 <color_resource>;] |
 [LinkFocusDData.LinkPen = <pen_resource>;] |
 [LinkFocusDData.LabelFont =
 <font_resource>;] |
 [LinkFocusDData.DrawLabel = {FALSE|TRUE};] |
 [LinkFocusDData.Shape =
 {0|DEFAULT|DIAGONAL|
 1|RIGHTANGLE};]"
);

NodeFocusDData.FrameColor

NodeFocusDData.FrameColor sets the color of the frame around the node.
This syntax shows how to set the NodeFocusDData.FrameColor
parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 NodeFocusDData.FrameColor = <color_resource>;
 ..."
);

Type: Color

Default: Color.Red

Synonyms: NodeFocus.FColor, NodeFocus.FrameColor

NodeFocusDData.BgColor

NodeFocusDData.BgColor sets the color of the node. This syntax shows
how to set the NodeFocusDData.BgColor parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 NodeFocusDData.BgColor = <color_resource>;
98 C Programmer’s Guide

Options for the DGRAM View
 ..."
);

Type: Color

Default: DGRAM-specific

Synonyms: NodeFocus.Bg, NodeFocus.Color, NodeFocus.BgColor

NodeFocusDData.LabelColor

NodeFocusDData.LabelColor sets the color of the node label. This syntax
shows how to set the NodeFocusDData.LabelColor parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 NodeFocusDData.LabelColor = <color_resource>;
 ..."
);

Type: Color

Default: DGRAM-specific

Synonyms: NodeFocus.Fg, NodeFocus.FgColor, NodeFocus.LabelColor

NodeFocusDData.FramePen

NodeFocusDData.FramePen sets the pen for the node label. This syntax
shows how to set the NodeFocusDData.FramePen parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 NodeFocusDData.FramePen = <pen_resource>;
 ..."
);

Type: Pen

Default: DGRAM-specific

Synonyms: NodeFocus.Pen, NodeFocus.FramePen

NodeFocusDData.LabelFont

NodeFocusDData.LabelFont sets the font for the node label. This syntax
shows how to set the NodeFocusDData.LabelFont parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 NodeFocusDData.LabelFont = <font_resource>;
 ..."
);

Type: Font

Default: DGRAM-specific

Synonyms: NodeFocus.Font, NodeFocus.LabelFont

NodeFocusDData.DrawLabel

NodeFocusDData.DrawLabel specifies whether or not to display node
labels. This syntax shows how to set the NodeFocusDData.DrawLabel
parameter:
C Programmer’s Guide 99

Chapter Graph Datasource: Managing Graph Data4

;

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 NodeFocusDData.DrawLabel = {TRUE|FALSE};
 ..."
);

Type: Boolean

Default: TRUE

Synonyms: NodeFocus.DrawLabel

NodeFocusDData.Shape

NodeFocusDData.Shape specifies the default node shape. This syntax
shows how to set the NodeFocusDData.Shape parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 NodeFocusDData.Shape =
 {0|DEFAULT|RECT|RECTANGLE|
 1|ROUNDRECT|ROUNDRECTANGLE|
 2|ELLIPSE|
 3|DIAMOND|
 4|HEXAGON|
 5|TRIANGLE
 };
 ..."
);

Type: Enumerated

Default: RECTANGLE

Synonyms: NodeFocus.Shape

LinkFocus.Color

LinkFocus.Color sets the link color if the LinkFocusDData.LinkDirColor
or LinkFocusDData.LinkUndirColor parameter is not set. This syntax
shows how to set the LinkFocus.Color parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 LinkFocus.Color = <color_resource>;
 ..."
);

Type: Color

Default: Color.Red

Synonyms: None

LinkFocusDData.LinkDirColor

LinkFocusDData.LinkDirColor sets the default color of all directed links.
This syntax shows how to set the LinkFocusDData.LinkDirColor
parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 LinkFocusDData.LinkDirColor = <color_resource>
 ..."
);
100 C Programmer’s Guide

Options for the DGRAM View
Type: Color

Default: Color.Red

Synonyms: LinkFocus.DirColor, LinkFocus.LinkDirColor

LinkFocusDData.LinkUndirColor

LinkFocusDData.LinkUndirColor sets the default color of undirected
links. This syntax shows how to set LinkFocusDData.LinkUndirColor:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 LinkFocusDData.LinkUndirColor =
 <color_resource>;
 ..."
);

Type: Color

Default: Color.Red

Synonyms: LinkFocus.UndirColor, LinkFocus.LinkUndirColor

LinkFocusDData.LabelColor

LinkFocusDData.LabelColor sets the color of the node label. This syntax
shows how to set the LinkFocusDData.LabelColor parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 LinkFocusDData.LabelColor = <color_resource>;
 ..."
);

Type: Color

Default: DGRAM-specific

Synonyms: LinkFocus.LabelColor

LinkFocusDData.LinkPen

LinkFocusDData.LinkPen sets the pen for the link label. This syntax shows
how to set the LinkFocusDData.LinkPen parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 LinkFocusDData.LinkPen = <pen_resource>;
 ..."
);

Type: Pen

Default: DGRAM-specific

Synonyms: LinkFocus.Pen, LinkFocus.LinkPen

LinkFocusDData.LabelFont

LinkFocusDData.LabelFont sets the font for the node label. This syntax
shows how to set the LinkFocusDData.LabelFont parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
C Programmer’s Guide 101

Chapter Graph Datasource: Managing Graph Data4
 LinkFocusDData.LabelFont = <font_resource>;
 ..."
);

Type: Font

Default: DGRAM-specific

Synonyms: LinkFocus.Font, LinkFocus.LabelFont

LinkFocusDData.DrawLabel

LinkFocusDData.DrawLabel specifies whether or not to display node
labels. This syntax shows how to set the LinkFocusDData.DrawLabel
parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 LinkFocusDData.DrawLabel = {TRUE|FALSE};
 ..."
);

Type: Boolean

Default: FALSE

Synonyms: LinkFocus.DrawLabel

LinkFocusDData.Shape

LinkFocusDData.Shape specifies the default shape for links. This syntax
shows how to set the LinkFocusDData.Shape parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "Diagrammer",
 "...;
 LinkFocusDData.Shape =
 {0|DEFAULT|DIAGONAL|
 1|RIGHTANGLE
 };
 ..."
);

Type: Enumerated

Default: DIAGONAL

Synonyms: LinkFocus.Shape

Custom Node and Link Options

You manage the basic node and link parameter using the Diagrammer
option. You can also define custom node and link properties to which you
can assign values and store them in the graph datasource. These
“options”—property:value—support all of the same general, “standard,” and
“focus” parameters as the Diagrammer option, except that you can define
qualified node and link subsets.

For example, a mapping application might use a City node property with
values of Large, Medium, and Small. In the same example, a Road link
property might have values of Fast, Moderate, and Slow to indicate the
relative speed grades of the roads between the cities.

Warning: The parser for the Elements Environment is case-sensitive. Verify
that any strings you define for the properties and values in the
102 C Programmer’s Guide

Options for the DGRAM View

 |

 |
SetNodeProperty() and SetEdgeProperty() functions are exactly
the same as those used in the SetViewOptions() function.

These two sections discuss the node and link portions of this example:
■ Custom Node Properties
■ Custom Link Properties

Each property:value pair is a customized option of the graph datasource. It
can have any number of associated assignment statements in its variable
list; these can apply to all qualified nodes or links. Y

Warning: You must use value strings consistently, because the graph
datasource does not check for the proper usage of custom
properties and values.

Custom Node Properties

For the currently accessed node, you use the SetNodeProperty() function to
set a custom node property and assign a value to it, as shown here:

VarRec <value_variable>;
VAR_SetStr(<value_variable>, "<value>");
...
DS_SetNodeProperty(<datasource>, <node_accessor>,
 "<node_property>", &<value_variable>);

The SetNodeProperty() function assigns the variant value stored at the
address of the value_variable. The custom node properties specified in the
SetViewOption() function are meaningless unless you assign some custom
node properties to the nodes in the graph datasource. Here is an example:

...
VarRec cityLarge;
VAR_SetStr(cityLarge, "Large");
...
DS_SetNodeProperty(graphDs, nodeAccessor,
 "City", &cityLarge);
...
DS_SetViewOption(graphDs, (ResPtr)win->dgramWgt,
 "City:Large", "Width = 144; Height = 48");

Here is the SetViewOption() syntax for the custom node properties:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<node_property>:<value>",
 "[Width = <integer>;] |
 [Height = <integer>;] |
 [onFocus = {FALSE|TRUE};] |
 [StandardDData.FrameColor = <color_resource>;]
 [StandardDData.BgColor = <color_resource>;] |
 [StandardDData.LabelColor = <color_resource>;]
 [StandardDData.FramePen = <pen_resource>;] |
 [StandardDData.LabelFont = <font_resource>;] |
 [StandardDData.DrawLabel = {FALSE|TRUE};] |
 [StandardDData.Shape =
 {0|DEFAULT|RECT|RECTANGLE|
 1|ROUNDRECT|ROUNDRECTANGLE|
 2|ELLIPSE|
 3|DIAMOND|
 4|HEXAGON|
 5|TRIANGLE};] |
 [FocusDData.FrameColor = <color_resource>;] |
 [FocusDData.BgColor = <color_resource>;] |
 [FocusDData.LabelColor = <color_resource>;] |
 [FocusDData.FramePen = <pen_resource>;] |
 [FocusDData.LabelFont = <font_resource>;] |
 [FocusDData.DrawLabel = {FALSE|TRUE};] |
 [FocusDData.Shape =
C Programmer’s Guide 103

Chapter Graph Datasource: Managing Graph Data4
 {0|DEFAULT|RECT|RECTANGLE|
 1|ROUNDRECT|ROUNDRECTANGLE|
 2|ELLIPSE|
 3|DIAMOND|
 4|HEXAGON|
 5|TRIANGLE};]
 "
);

A geographical mapping application using City as a node property with
values of Large, Medium, and Small might be implemented with this code
fragment:

VarGrPtr graphDs;
VarGrNodeAccessorPtr nodeAccessor;
DGramPtr win->dgramWgt;
Str answer;
StrIVal len;

/* Define value variables for node properties. */
VarPtr citySmall, cityMedium, cityLarge;
enum citySize {
 Small = 1,
 Medium,
 Large
};
citySize theSize;

/* Assign objects to the pointers. */
graphDs = VARGR_Create();
nodeAccessor = VARGRNODEACCESSOR_Create();
citySmall = VAR_New();
cityMedium = VAR_New();
cityLarge = VAR_New();

win->dgramWgt =
 (DGramPtr)PANEL_GetNamedWgt((PanelPtr)win, "DGram");

/* Define value strings for the custom node properties. */
VAR_SetStr(citySmall, "Small");
VAR_SetStr(cityMedium, "Medium");
VAR_SetStr(cityLarge, "Large");

/* Set a node cursor using "nodeAccessor." */
VARGR_SetNodeCursor(graphDs, nodeAccessor);

/* Set the cursor option to "CONTROLS." */
DS_SetViewOption((DsPtr)graphDs, (ResPtr)win->dgramWgt,
 "Cursor", "CONTROLS");

/* Set common node options. */
DS_SetViewOption((DsPtr)graphDs, (ResPtr)win->dgramWgt,
 "Diagrammer",
 "NodeStandardDData.Shape = RECTANGLE");
/* Set the parameters for the custom node options. */
DS_SetViewOption((DsPtr)graphDs, (ResPtr)win->dgramWgt,
 "City:Small", "NodeW = 72; NodeH = 12");
DS_SetViewOption((DsPtr)graphDs, (ResPtr)win->dgramWgt,
 "City:Medium", "NodeW = 108; NodeH = 18");
DS_SetViewOption((DsPtr)graphDs, (ResPtr)win->dgramWgt,
 "City:Large", "NodeW = 144; NodeH = 24");

/* Define properties and values for individual nodes. */
if (ASKW_AskQuestion("1=Small, 2=Medium, 3=Large", answer)) {
 len = STR_GetLen(answer);
 theSize = (enum CitySize)STR_GetDecInt(answer, &len);
 switch (theSize) {
 case Small:
 VARGR_SetNodeProperty(graphDs, nodeAccessor,
 "City", citySmall);
 break;
104 C Programmer’s Guide

Options for the DGRAM View
 case Medium:
 VARGR_SetNodeProperty(graphDs, nodeAccessor,
 "City", cityMedium);
 break;
 case Large:
 VARGR_SetNodeProperty(graphDs, nodeAccessor,
 "City", cityLarge);
 break;
 default:
 ALRTW_Ok("Not a valid number");
 break;
 } /*End switch. */
} /* End if. */

Width

This integer value specifies the width of a node in pixels. If the Autosize
option is enabled, this option and the Height parameter are ignored.

This syntax shows how to specify the node width:

DS_SetViewOption(<datasource>, (ResPtr)<winres>-><view>,
 "<node_property>:<value>",
 "...;
 Width = <integer>;
 ..."
);

For nodes with options, City:Large, this code fragment sets the node width
to 72 pixels—that is, 1 inch on a 72-pixel-per-inch display:

DS_SetViewOption(graphDs, (ResPtr)win->dgramWgt,
 "City:Large", "Width = 72");

Type: Int32

Default: DGRAM-specific

Synonyms: W

Height

This integer value specifies the width of a node in pixels. If the Autosize
option is enabled, this option and the Width parameter are ignored.

This syntax shows how to specify the node height:

DS_SetViewOption(<datasource>, (ResPtr)<winres>-><view>,
 "<node_property>:<value>",
 "...;
 Height = <integer>;
 ..."
);

For nodes with options, City:Large, this code fragment sets the node height
to 24 pixels—that is, 1/3 inch on a 72-pixel-per-inch display:

DS_SetViewOption(graphDs, (ResPtr)win->dgramWgt,
 "City:Large", "Height = 24");

Type: Int32

Default: DGRAM-specific

Synonyms: H

onFocus

With onFocus set to FALSE (the default), all nodes with the specified
node_property:value combination are displayed using the “standard” graphic
C Programmer’s Guide 105

Chapter Graph Datasource: Managing Graph Data4
settings that apply to them. With onFocus set to TRUE, all nodes with the
specified node_property:value combination are displayed using the “focus”
graphic settings that apply to them.

In cases where multiple custom options are applied to a particular node
with conflicting onFocus settings, the last onFocus setting applied to these
nodes is in effect in the display.

This syntax shows how to set the onFocus parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<node_property>:<value>",
 "...;
 onFocus = {TRUE|FALSE};
 ..."
);

Type: Boolean

Default: FALSE

Synonyms: None

StandardDData.FrameColor

StandardDData.FrameColor sets the color of the frame around the node.
This syntax shows how to set the StandardDData.FrameColor parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<node_property>:<value>",
 "...;
 StandardDData.FrameColor =
 <color_resource>;
 ..."
);

Type: Color

Default: DGRAM-specific

Synonyms: FrameColor, FColor

StandardDData.BgColor

StandardDData.BgColor sets the color of the node. This syntax shows how
to set the StandardDData.BgColor parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<node_property>:<value>",
 "...;
 StandardDData.BgColor = <color_resource>;
 ..."
);

Type: Color

Default: DGRAM-specific

Synonyms: BgColor, Color, Bg

StandardDData.LabelColor

StandardDData.LabelColor sets the color of the node label. This syntax
shows how to set the StandardDData.LabelColor parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<node_property>:<value>",
 "...;
 StandardDData.LabelColor =
106 C Programmer’s Guide

Options for the DGRAM View
 <color_resource>;
 ..."
);

Type: Color

Default: DGRAM-specific

Synonyms: LabelColor, FgColor, Fg

StandardDData.FramePen

StandardDData.FramePen sets the pen for the node label. This syntax
shows how to set the StandardDData.FramePen parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<node_property>:<value>",
 "...;
 StandardDData.FramePen = <pen_resource>;
 ..."
);

Type: Pen

Default: DGRAM-specific

Synonyms: FramePen, Pen

StandardDData.LabelFont

StandardDData.LabelFont sets the font for the node label. This syntax
shows how to set the StandardDData.LabelFont parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<node_property>:<value>",
 "...;
 StandardDData.LabelFont = <font_resource>;
 ..."
);

Type: Font

Default: DGRAM-specific

Synonyms: LabelFont, Font

StandardDData.DrawLabel

StandardDData.DrawLabel specifies whether or not to display node labels.
This syntax shows how to set the StandardDData.DrawLabel parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<node_property>:<value>",
 "...;
 StandardDData.DrawLabel = {TRUE|FALSE};
 ..."
);

Type: Boolean

Default: TRUE

Synonyms: DrawLabel

StandardDData.Shape

StandardDData.Shape specifies the default node shape. This syntax shows
how to set the StandardDData.Shape parameter:
C Programmer’s Guide 107

Chapter Graph Datasource: Managing Graph Data4
DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<node_property>:<value>",
 "...;
 NodeStandardDData.Shape =
 {0|DEFAULT|RECT|RECTANGLE|
 1|ROUNDRECT|ROUNDRECTANGLE|
 2|ELLIPSE|
 3|DIAMOND|
 4|HEXAGON|
 5|TRIANGLE
 };
 ..."
);

Type: Enumerated

Default: RECTANGLE

Synonyms: Shape

FocusDData.FrameColor

FocusDData.FrameColor sets the color of the frame around the node. This
syntax shows how to set the FocusDData.FrameColor parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<node_property>:<value>",
 "...;
 FocusDData.FrameColor = <color_resource>;
 ..."
);

Type: Color

Default: Color.Red

Synonyms: Focus.FrameColor, Focus.FColor

FocusDData.BgColor

FocusDData.BgColor sets the color of the node. This syntax shows how to
set the FocusDData.BgColor parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<node_property>:<value>",
 "...;
 FocusDData.BgColor = <color_resource>;
 ..."
);

Type: Color

Default: DGRAM-specific

Synonyms: Focus.BgColor, Focus.Color, Focus.Bg

FocusDData.LabelColor

FocusDData.LabelColor sets the color of the node label. This syntax shows
how to set the FocusDData.LabelColor parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<node_property>:<value>",
 "...;
 FocusDData.LabelColor = <color_resource>;
 ..."
);

Type: Color
108 C Programmer’s Guide

Options for the DGRAM View
Default: DGRAM-specific

Synonyms: Focus.LabelColor, Focus.FgColor, Focus.Fg

FocusDData.FramePen

FocusDData.FramePen sets the pen for the node label. This syntax shows
how to set the FocusDData.FramePen parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<node_property>:<value>",
 "...;
 FocusDData.FramePen = <pen_resource>;
 ..."
);

Type: Pen

Default: DGRAM-specific

Synonyms: Focus.FramePen, Focus.Pen

FocusDData.LabelFont

FocusDData.LabelFont sets the font for the node label. This syntax shows
how to set the FocusDData.LabelFont parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<node_property>:<value>",
 "...;
 FocusDData.LabelFont = <font_resource>;
 ..."
);

Type: Font

Default: DGRAM-specific

Synonyms: Focus.LabelFont, Focus.Font

FocusDData.DrawLabel

FocusDData.DrawLabel specifies whether or not to display node labels.
This syntax shows how to set the FocusDData.DrawLabel parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<node_property>:<value>",
 "...;
 FocusDData.DrawLabel = {TRUE|FALSE};
 ..."
);

Type: Boolean

Default: TRUE

Synonyms: Focus.DrawLabel

FocusDData.Shape

FocusDData.Shape specifies the default node shape. This syntax shows
how to set the FocusDData.Shape parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<node_property>:<value>",
 "...;
 FocusDData.Shape =
 {0|DEFAULT|RECT|RECTANGLE|
 1|ROUNDRECT|ROUNDRECTANGLE|
C Programmer’s Guide 109

Chapter Graph Datasource: Managing Graph Data4

 |
 2|ELLIPSE|
 3|DIAMOND|
 4|HEXAGON|
 5|TRIANGLE
 };
 ..."
);

Type: Enumerated

Default: RECTANGLE

Synonyms: Focus.Shape

Custom Link Properties

You control the standard link parameters with the Diagrammer option. You
can also define custom link properties to which you can assign values. For
example, a link property, Road, might have values of Fast, Moderate, and
Slow.

For the currently accessed edge, use the SetEdgeProperty() function to
define a property and assign a value to it, as shown here:

VarPtr <value_variable>;
<value_variable> = VAR_New();
VAR_SetStr(<value_variable>, "<value>");
...
DS_SetEdgeProperty((DsPtr)<datasource>,
 (VarGrEdgeAccessor)<edge_accessor>,
 "<link_property>", <value_variable>);
...
VAR_Delete(<value_variable>);

The SetEdgeProperty() function assigns the variant value stored at the
address of the value_variable. The custom node properties specified in the
SetViewOption() function are meaningless unless you assign some custom
edge properties to the nodes in the graph datasource. Here is an example:

VarPtr roadFast;
roadFast = VAR_New();
VAR_SetStr(roadFast, "Fast");
...
DS_SetNodeProperty((DsPtr)graphDs,
 (VarGrEdgeAccessorPtr)allEdgeAccessor,
 "Road", roadFast);
...
DS_SetViewOption((DsPtr)graphDs, (ResPtr)win->dgramWgt,
 "Road:Fast", "StandardDData.LinkPen =
Map.Fast");
...
VAR_Delete(roadFast);

Here is the SetViewOption() syntax for the custom node properties:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<link_property>:<value>",
 "[LinkColor = <color_resource>;] |
 [onFocus = {FALSE|TRUE};] |
 [StandardDData.LinkDirColor =
 <color_resource>;] |
 [StandardDData.LinkUndirColor =
 <color_resource>;] |
 [StandardDData.LabelColor = <color_resource>;]
 [StandardDData.LinkPen = <pen_resource>;] |
 [StandardDData.LabelFont = <font_resource>;] |
 [StandardDData.DrawLabel = {FALSE|TRUE};] |
 [StandardDData.Shape =
 {0|DEFAULT|DIAGONAL|
 1|RIGHTANGLE};] |
110 C Programmer’s Guide

Options for the DGRAM View

|

 [FocusColor = <color_resource>;] |
 [FocusDData.LinkDirColor = <color_resource>;]
 [FocusDData.LinkUndirColor = <color_resource>;]
|
 [FocusDData.LabelColor = <color_resource>;] |
 [FocusDData.LinkPen = <pen_resource>;] |
 [FocusDData.LabelFont = <font_resource>;] |
 [FocusDData.DrawLabel = {FALSE|TRUE};] |
 [FocusDData.Shape =
 {0|DEFAULT|DIAGONAL|
 1|RIGHTANGLE};]
 "
);

A mapping application using Road as an edge property with values of Fast,
Moderate, and Slow might be implemented with this code fragment:

VarGrPtr graphDs;
VarGrAllEdgeAccessorPtr edgeAccessor;
DGramPtr win->dgramWgt;
Str answer;
StrIVal len;

/* Define value variables for node properties. */
VarPtr roadSlow, roadModerate, roadFast;
enum roadSpeed {
 Slow = 1,
 Moderate,
 Fast
};

roadSpeed mRoadSpeed;

/* Assign objects to the pointers. */
graphDs = VARGR_Create();
nodeAccessor = VARGRNODEACCESSOR_Create();
roadSlow = VAR_New();
roadModerate = VAR_New();
roadFast = VAR_New();

win->dgramWgt =
 (DGramPtr)PANEL_GetNamedWgt((PanelPtr)win, "DGram");

/* Define value strings for the custom node properties. */
VAR_SetStr(roadSlow, "Slow");
VAR_SetStr(roadModerate, "Moderate");
VAR_SetStr(roadFast, "Fast");

/* Set a edge cursor using "mEdgeAccessor." */
VARGR_SetEdgeCursor(graphDs, mEdgeAccessor);

/* Set the cursor option to "CONTROLS."
DS_SetViewOption((DsPtr)graphDs, (ResPtr)win->dgramWgt,
 "Cursor", "CONTROLS");
/* Set common edge options. */
DS_SetViewOption((DsPtr)graphDs, (ResPtr)win->dgramWgt,
 "Diagrammer",
 "LinkStandardDData.Shape = DIAGONAL");
/* Set the parameters for the custom edge options. */
DS_SetViewOption((DsPtr)graphDs, (ResPtr)win->dgramWgt,
 "Road:Slow",
 "StandardDData.LinkPen = Map.Slow");
DS_SetViewOption((DsPtr)graphDs, (ResPtr)win->dgramWgt,
 "Road:Moderate",
 "StandardDData.LinkPen = Map.Moderate");
DS_SetViewOption((DsPtr)graphDs, (ResPtr)win->dgramWgt,
 "Road:Fast",
 "StandardDData.LinkPen = Map.Fast");

/* This sets the enumerated "mRoadSpeed" variable to the
 corresponding value. Define properties and values for
 individual edges. */
C Programmer’s Guide 111

Chapter Graph Datasource: Managing Graph Data4

or,

or,

or,
if (NDAskW::AskQuestion("1=Slow,
 2=Moderate,
 3=Fast",answer)) {
 len=NDStr::GetLen(answer);
 mRoadSpeed =(enum roadSpeed)NDStr::GetDecInt(answer,&len);
 switch (mRoadSpeed) {
 case Slow:
 VARGR_SetEdgeProperty(graphDs,
 (VarGrEdgeAccessorPtr)mEdgeAccess
 "Road", mRoadSlow);
 break;
 case Moderate:
 VARGR_SetEdgeProperty(graphDs,
 (VarGrEdgeAccessorPtr)mEdgeAccess
 "Road", mRoadModerate);
 break;
 case Fast:
 VARGR_SetEdgeProperty(graphDs,
 (VarGrEdgeAccessorPtr)mEdgeAccess
 "Road", mRoadFast);
 break;
 default:
 break;
 } /*End switch. */
} /* End if. */

LinkColor

LinkColor sets the link color if the StandardDData.LinkDirColor or
StandardDData.LinkUndirColor parameter is not set. This syntax shows
how to set the LinkColor parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<link_property>:<value>",
 "...;
 LinkColor = <color_resource>;
 ..."
);

Type: Color

Default: DGRAM-specific

Synonyms: Color

onFocus

With onFocus set to FALSE (the default), all nodes with the specified
link_property:value combination are displayed using the “standard” graphic
settings that apply to them. With onFocus set to TRUE, all nodes with the
specified link_property:value combination are displayed using the “focus”
graphic settings that apply to them.

In cases where multiple custom options are applied to a particular link with
conflicting onFocus settings, the last onFocus setting applied to these nodes
is in effect in the display.

This syntax shows how to set the onFocus parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<link_property>:<value>",
 "...;
 onFocus = {TRUE|FALSE};
 ..."
);

Type: Boolean

Default: FALSE
112 C Programmer’s Guide

Options for the DGRAM View
Synonyms: None

StandardDData.LinkDirColor

StandardDData.LinkDirColor sets the default color of all directed links.
This syntax shows how to set the StandardDData.LinkDirColor parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<link_property>:<value>",
 "...;
 StandardDData.LinkDirColor =
 <color_resource>;
 ..."
);

Type: Color

Default: DGRAM-specific

Synonyms: DirColor

StandardDData.LinkUndirColor

StandardDData.LinkUndirColor sets the default color of undirected links.
This syntax shows how to set StandardDData.LinkUndirColor:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<link_property>:<value>",
 "...;
 StandardDData.LinkUndirColor =
 <color_resource>;
 ..."
);

Type: Color

Default: DGRAM-specific

Synonyms: UndirColor

StandardDData.LabelColor

StandardDData.LabelColor sets the color of the node label. This syntax
shows how to set the StandardDData.LabelColor parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<link_property>:<value>",
 "...;
 StandardDData.LabelColor =
 <color_resource>;
 ..."
);

Type: Color

Default: DGRAM-specific

Synonyms: LabelColor

StandardDData.LinkPen

StandardDData.LinkPen sets the pen for the link label. This syntax shows
how to set the StandardDData.LinkPen parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<link_property>:<value>",
 "...;
 StandardDData.LinkPen = <pen_resource>;
C Programmer’s Guide 113

Chapter Graph Datasource: Managing Graph Data4
 ..."
);

Type: Pen

Default: DGRAM-specific

Synonyms: Pen

StandardDData.LabelFont

StandardDData.LabelFont sets the font for the node label. This syntax
shows how to set the StandardDData.LabelFont parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<link_property>:<value>",
 "...;
 StandardDData.LabelFont = <font_resource>;
 ..."
);

Type: Font

Default: DGRAM-specific

Synonyms: Font

StandardDData.DrawLabel

StandardDData.DrawLabel specifies whether or not to display node labels.
This syntax shows how to set the StandardDData.DrawLabel parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<link_property>:<value>",
 "...;
 StandardDData.DrawLabel = {TRUE|FALSE};
 ..."
);

Type: Boolean

Default: FALSE

Synonyms: DrawLabel

StandardDData.Shape

StandardDData.Shape specifies the default shape for links. This syntax
shows how to set the StandardDData.Shape parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<link_property>:<value>",
 "...;
 StandardDData.Shape =
 {0|DEFAULT|DIAGONAL|
 1|RIGHTANGLE
 };
 ..."
);

Type: Enumerated

Default: DIAGONAL

Synonyms: Shape
114 C Programmer’s Guide

Options for the DGRAM View
FocusColor

FocusColor sets the link color if the FocusDData.LinkDirColor or
FocusDData.LinkUndirColor parameter is not set. This syntax shows how
to set the FocusColor parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<link_property>:<value>",
 "...;
 Focus.Color = <color_resource>;
 ..."
);

Type: Color

Default: Color.Red

Synonyms: None

FocusDData.LinkDirColor

FocusDData.LinkDirColor sets the default color of all directed links. This
syntax shows how to set the FocusDData.LinkDirColor parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<link_property>:<value>",
 "...;
 FocusDData.LinkDirColor = <color_resource>;
 ..."
);

Type: Color

Default: Color.Red

Synonyms: Focus.LinkDirColor, Focus.DirColor

FocusDData.LinkUndirColor

FocusDData.LinkUndirColor sets the default color of undirected links.
This syntax shows how to set FocusDData.LinkUndirColor:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<link_property>:<value>",
 "...;
 FocusDData.LinkUndirColor =
 <color_resource>;
 ..."
);

Type: Color

Default: Color.Red

Synonyms: Focus.LinkUndirColor, Focus.UndirColor

FocusDData.LabelColor

FocusDData.LabelColor sets the color of the node label. This syntax shows
how to set the FocusDData.LabelColor parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<link_property>:<value>",
 "...;
 FocusDData.LabelColor = <color_resource>;
 ..."
);

Type: Color
C Programmer’s Guide 115

Chapter Graph Datasource: Managing Graph Data4
Default: DGRAM-specific

Synonyms: Focus.LabelColor

FocusDData.LinkPen

FocusDData.LinkPen sets the pen for the link label. This syntax shows how
to set the FocusDData.LinkPen parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<link_property>:<value>",
 "...;
 FocusDData.LinkPen = <pen_resource>;
 ..."
);

Type: Pen

Default: DGRAM-specific

Synonyms: Focus.LinkPen, Focus.Pen

FocusDData.LabelFont

FocusDData.LabelFont sets the font for the node label. This syntax shows
how to set the FocusDData.LabelFont parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<link_property>:<value>",
 "...;
 FocusDData.LabelFont = <font_resource>;
 ..."
);

Type: Font

Default: DGRAM-specific

Synonyms: Focus.LabelFont, Focus.Font

FocusDData.DrawLabel

FocusDData.DrawLabel specifies whether or not to display node labels.
This syntax shows how to set the FocusDData.DrawLabel parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<link_property>:<value>",
 "...;
 FocusDData.DrawLabel = {TRUE|FALSE};
 ..."
);

Type: Boolean

Default: FALSE

Synonyms: Focus.DrawLabel

FocusDData.Shape

FocusDData.Shape specifies the default shape for links. This syntax shows
how to set the FocusDData.Shape parameter:

DS_SetViewOption(<datasource>, (ResPtr)<window>-><view>,
 "<link_property>:<value>",
 "...;
 FocusDData.Shape =
 {0|DEFAULT|DIAGONAL|
 1|RIGHTANGLE
116 C Programmer’s Guide

Building a Graph Datasource
 };
 ..."
);

Type: Enumerated

Default: DIAGONAL

Synonyms: Focus.Shape

Building a Graph Datasource

A graph datasource is a container of freely arranged nodes and edges. These
may be related hierarchically or nonhierarchically—as defined by the edges
relating them—or they may not be related at all (having no edge between
them). Each node has variant ID and Value properties, which you may set
when you create the node or during a separate editing session.

Building a graph datasource involves these tasks:

1. Creating a Graph Datasource

2. Creating and Destroying an Edit Object

3. Creating Accessors

4. Creating Nodes

5. Creating Edges

The preceding list is somewhat simplified, but does explain the basic
process, parts of which you may need to reiterate.DGRAM For more
information about options for the DGRAM view, see “Options for the
DGRAM View” on page 84.

Creating a Graph Datasource

Before you can begin creating node relationships in the graph datasource,
your application must first create a graph datasource. This code fragment
creates graphDs as a VarGrPtr variable and initializes graphDs to the value
returned by VARGR_Create():

VarGrPtr graphDs;
...
graphDs = VARGR_Create();

The preceding code fragment creates a graph datasource with the structure
shown in Figure 4–14. The simple box in Figure 4–14 represents the memory
location of the datasource object, graphDs.

Figure 4–14 Untitled Graph Datasource

The examples in the following sections build on this simple representation
to construct a graph with relationships—neighbor, parent-child, or
none—indicated by the shared edges. For more information about graph
datasources, see “Graph Datasource” on page 63.
C Programmer’s Guide 117

Chapter Graph Datasource: Managing Graph Data4

Creating and Destroying an Edit Object

Building a graph datasource requires modifying the initial structures. To
modify the structure of a graph datasource—that is, to add and remove
nodes and edges—you need a datasource edit object. This code fragment
creates and destroys a datasource edit object, editGraphDs:

VarGrPtr graphDs;

/* Declare a pointer variable for the edit object. */
VarGrEditPtr editGraphDs;
...
graphDs = VARGR_Create();
editGraphDs = VARGR_StartEdit(graphDs);

/* Edit operations defined. */
...

/* Commit edit operations to the datasource and destroy the edit
 object. */
DSEDIT_End((DsEditPtr)editGraphDs);

In this example, editGraphDs is a VarGrEditPtr variable and is assigned a
datasource edit object—the value returned by the VARGR_StartEdit()
function. When the DSEDIT_End() function executes, all edit operations
are committed to the datasource, and the edit object is destroyed. For more
information about graph-datasource edit objects, see “Datasource Editing”
on page 79.

As a first use of the datasource edit object, assign a title to the datasource, as
shown here:

VarGrPtr graphDs;
VarGrEditPtr editGraphDs;
...
graphDs = VARGR_Create();
editGraphDs = VARGR_StartEdit(graphDs);

/* Set the title of the graph datasource. */
VARGREDIT_SetTitle(editGraphDs, "Graph Datasource");

/* Commit edit operations to the datasource and destroy the edit
 object. */
DSEDIT_End((DsEditPtr)editGraphDs);

Note the use of the string literal in quotation marks. Unlike the node ID and
Value properties, the VARGREDIT_SetTitle() function accepts a string as
the datasource title. Building on the example from Figure 4–14, executing
the preceding VARGREDIT_SetTitle() function adds a title to the graph
datasource, as shown in Figure 4–15:

Figure 4–15 Titled Graph Datasource

Creating Accessors

The graph datasource use two basic types of accessors: node and edge
accessors. At a minimum, building a graph datasource requires creating
node accessors by which to access and operate on the nodes within it.
Depending on the approach you take, you may also need an edge accessor
when building a graph datasource.

Graph Datasource
118 C Programmer’s Guide

Building a Graph Datasource
Creating Node Accessors

You need at least one node accessor, and possibly two or more, when
changing the structure of a graph datasource. For example, you might add
or remove nodes, or simply update information about a particular node.
Using a node accessor with the graph-datasource APIs, you can traverse the
nodes in the graph.

The third line of the following code fragment declares a node-accessor
pointer, nodeAccessor. In the last executable line of code, a node-accessor
object is created and assigned to nodeAccessor:

VarGrPtr graphDs;
VarGrEditPtr editGraphDs;

/* Declare a node-accessor pointer and assign a node-accessor
 object to it. */
VarGrNodeAccessorPtr nodeAccessor;
...
graphDs = VARGR_Create();
editGraphDs = VARGR_StartEdit(graphDs);

/* Assign a node-accessor object to the node-accessor
 pointer. */
nodeAccessor = VARGRNODEACCESSOR_Create();
...

This creates nodeAccessor as a VarGrNodeAccessorPtr variable and
initializes nodeAccessor to the value returned by
VARGRNODEACCESSOR_Create(). For more information about node
accessors, see “Node Accessor” on page 74.

Creating Edge Accessors

You need an edge accessor to update information—ID and Value
properties—for a specific edge. Using an edge accessors with the
graph-datasource APIs, you can traverse the edge in the graph. These
edge-accessor types are supported:
■ “All” Edge Accessors
■ “In” and “Out” Edge Accessors
■ “Undirected” Edge Accessors

“All” edge accessors are useful for traversing all of the edges in the graph
datasource, regardless of whether they are directed or undirected. “In,”
“out,” and “undirected” edge accessors are similar in that each of them
accesses edges relative to a specified node.

“All” Edge Accessors

An “all” edge accessor is the only type of edge accessor that does not access
edges relative to a particular node. That is, you do not create such an
accessor using a node accessor as an argument. Because the “all” edge
accessors are not based on a specific node as a navigational reference point,
the API for navigating them is based on edge indexes. These, in turn, are
based on the order in which you create the edges.

This fragment declares an “all” edge-accessor pointer, allEdgeAccessor,
creates an “all” edge-accessor object, and assigns it to allEdgeAccessor:

VarGrPtr graphDs;

/* Declare an "all" edge-accessor pointer. */
C Programmer’s Guide 119

Chapter Graph Datasource: Managing Graph Data4
VarGrAllEdgeAccessorPtr allEdgeAccessor;
VarGrEdgeEditPtr editEdge;
...
graphDs = VARGR_Create();

/* Assign an "all" edge-accessor object to the node-accessor
 pointer. */
allEdgeAccessor = VARGRALLEDGEACCESSOR_Create();

/* Assign an "all" edge-edit object to the edge-edit pointer
 based on the "all" edge accessor, allEdgeAccessor. */
editEdge = VARGR_StartEdgeEdit(allEdgeAccessor);
...

This declares a VarGrAllEdgeAccessorPtr variable, allEdgeAccessor , and
assigns the value returned by VARGRALLEDGEACCESSOR_Create() to
it. For more information about “all” edge accessors, see “Edge Accessor” on
page 74.

“In” and “Out” Edge Accessors

You define “in” and “out” edge accessors relative to a particular node. That
is, you create them using a node accessor as an argument. Because “in” and
“out” edge accessors are based on a specific node, the APIs for navigating
them traverse only those edges with one end at the specified node.

The third and fourth executable lines of the following code fragment declare
inEdgeAccessor and outEdgeAccessor, respectively, as “in” and “out”
edge-accessor pointers. Later in the example, “in” and “out” edge-accessor
objects are created and assigned to their corresponding edge-accessor
pointers.

VarGrPtr graphDs;

/* Declare a node-accessor pointer. */
VarGrNodeAccessorPtr nodeAccessor;

/* Declare "in" and "out" edge-accessor pointers. */
VarGrInEdgeAccessorPtr inEdgeAccessor;
VarGrOutEdgeAccessorPtr outEdgeAccessor;

/* Declare an edge-edit pointer. */
VarGrEdgeEditPtr editEdge;
...
graphDs = VARGR_Create();

/* Based on the node-accessor pointer, nodeAccessor, assign
 "in" and "out" edge-accessor objects, respectively, to the
 "in" and "out" edge-accessor pointers. */
inEdgeAccessor =
 VARGRNODEACCESSOR_CreateInEdgeAccessor(nodeAccessor);
outEdgeAccessor =
 VARGRNODEACCESSOR_CreateOutEdgeAccessor(nodeAccessor);

/* Assign an "in" edge-edit object to the edge-edit pointer
 based on the "in" edge accessor, inEdgeAccessor. */
editEdge = VARGR_StartEdgeEdit(inEdgeAccessor);
...
DSEDIT_End((DsEditPtr)editEdge);
...

/* Assign an "out" edge-edit object to the edge-edit pointer
 based on the "out" edge accessor, outEdgeAccessor. */
editEdge = VARGR_StartEdgeEdit(outEdgeAccessor);
...
DSEDIT_End((DsEditPtr)editEdge);
...
120 C Programmer’s Guide

Building a Graph Datasource
This declares VarGrInEdgeAccessorPtr and VarGrOutEdgeAccessorPtr
variables, inEdgeAccessor and outEdgeAccessor , respectively, and assigns the
values returned by VARGRINEDGEACCESSOR_Create() and
VARGROUTEDGEACCESSOR_Create() to them. For more information
about “in” and “out” edge accessors, see “Edge Accessor” on page 74.

“Undirected” Edge Accessors

You define an “undirected” edge accessor, as with “in” and “out” edge
accessors, relative to a particular node. That is, you create them using a node
accessor as an argument. Because “undirected” edge accessors are based on
a specific node, the APIs for navigating them traverse only those edges with
one end at the specified node.

The third executable line of the following code fragment declares
undirEdgeAccessor as “undirected” edge-accessor pointer. Later in the
example, an “undirected” edge-accessor object is created and assigned to
the “undirected” edge-accessor pointer.

VarGrPtr graphDs;

/* Declare a node-accessor pointer. */
VarGrNodeAccessorPtr nodeAccessor;

/* Declare an "undirected" edge-accessor pointer. */
VarGrUndirEdgeAccessorPtr undirEdgeAccessor;

/* Declare an edge-edit pointer. */
VarGrEdgeEditPtr editEdge;
...
graphDs = VARGR_Create();

/* Based on the node-accessor pointer, nodeAccessor, assign an
 "undirected" edge-accessor object to the "undirected"
 edge-accessor pointer. */
undirEdgeAccessor =
 VARGRNODEACCESSOR_CreateUndirEdgeAccessor(nodeAccessor);

/* Assign an "undirected" edge-edit object to the edge-edit
 pointer based on the "undirected" edge accessor,
 inEdgeAccessor. */
editEdge = VARGR_StartEdgeEdit(undirEdgeAccessor);
...
DSEDIT_End((DsEditPtr)editEdge);
...

/* Assign an "undirected" edge-edit object to the edge-edit
 pointer based on the "undirected" edge accessor,
 undirEdgeAccessor. */
editEdge = VARGR_StartEdgeEdit(undirEdgeAccessor);
...
DSEDIT_End((DsEditPtr)editEdge);
...

This declares a VarGrUndirEdgeAccessorPtr variable, undirEdgeAccessor ,
and assigns the value returned by
VARGRNODEACCESSOR_CreateUndirEdgeAccessor() to it. For more
information about “undirected” edge accessors, see “Edge Accessor” on
page 74.
C Programmer’s Guide 121

Chapter Graph Datasource: Managing Graph Data4
Creating Nodes

The first node you must create in your graph datasource is the first root
node. After doing so, you can use either of these two techniques to add
nodes to the datasource:
■ Creating Linked Nodes
■ Creating Unlinked Nodes

Regardless of your overall scheme, the first node you add to your
datasource is always an unlinked node. This is because there are no other
nodes to which it can be linked. Figure 4–16 shows how to create a node
accessor, add the first root node, and set its ID and Value properties:

Figure 4–16 Creating the First Root Node in a Graph Datasource

This code fragment shows how to add the first node in the graph
datasource:

VarGrPtr graphDs;
VarGrEditPtr editGraphDs;
VarPtr varID = VAR_New();
VarPtr varValue = VAR_New();

/* Declare a node-accessor pointer variable. */
VarGrNodeAccessorPtr nodeAccessor;
...
graphDs = VARGR_Create();

/* Assign a node-accessor object to the node-accessor
 pointer. */
nodeAccessor = VARGRNODEACCESSOR_Create();

/* Assign a datasource edit object to the VarGrEditPtr,
 editGraphDs. */
editGraphDs = VARGR_StartEdit(graphDs);

/* Move nodeAccessor to the first available node location. */
VARGRNODEACCESSOR_GoFirstRoot(nodeAccessor);

/* Add the first root node to begin the graph. */
VARGREDIT_AddNode(editGraphDs, nodeAccessor);

/* Set the node ID and Value properties. */
VAR_SetStr(varID, "0001"):
VAR_SetStr(varValue, "First Root"):
VARGREDIT_SetNodeID(editGraphDs, nodeAccessor, varID);
VARGREDIT_SetNodeValue(editGraphDs, nodeAccessor, varValue);

DSEDIT_End((DsEditPtr)editGraphDs);

You can also create the first root node using a “convenience” API, which
creates and disposes of the edit object for you. This code fragment illustrates
how to use the convenience functions to create the first root node in the
datasource:

Graph Datasource

Graph Datasource

Graph Datasource First Root
122 C Programmer’s Guide

Building a Graph Datasource
VarGrPtr graphDs;
VarGrNodeAccessorPtr nodeAccessor;
VarPtr varID = VAR_New();
VarPtr varValue = VAR_New();
...
graphDs = VARGR_Create();
nodeAccessor = VARGRNODEACCESSOR_Create();

/* Move nodeAccessor to the first available node location. */
VARGRNODEACCESSOR_GoFirstRoot(nodeAccessor);

/* Use the convenience API to create an edit object, add the
 first root node, and dispose of the edit object. */
VARGR_AddNode(graphDs, nodeAccessor);

/* Set the node ID and Value properties using "convenience" API
 functions. */
VAR_SetStr(varID, "0001"):
VAR_SetStr(varValue, "First Root"):
VARGR_SetNodeID(graphDs, nodeAccessor, varID);
VARGR_SetNodeValue(graphDs, nodeAccessor, varValue);
...

The “convenience” API functions:

1. Create an edit object.

2. Perform the specified operation.

3. Dispose of the edit object when the operation is complete.

Tip: Because these “convenience” functions create and dispose of an
edit object for each operation, they are not very efficient when
used to perform batches of edit operations.

Creating Linked Nodes

After creating the first root node, the simplest way to add nodes is to add
them as child, parent, and neighbor nodes. This is because the edges
connecting them are automatically created. This can save some time and
effort initially, but you may want to later revisit the automatically created
edges and label them.

By creating innately linked nodes, you can create these nodes relationships
relative to the position of the node accessor:
■ Child Nodes
■ Parent Nodes
■ Neighbor Nodes

Figure 4–17 shows how child, parent, and neighbor node relationships are
depicted in the related sections that follow.

Figure 4–17 Illustration Scheme for Child, Parent, and Neighbor Nodes

This code fragment shows how to add the first node in the graph datasource
and is assumed in the following sections:

Graph Datasource First Root

Children

Parents

Neighbors
C Programmer’s Guide 123

Chapter Graph Datasource: Managing Graph Data4
/* Create a graph datasource and the first root node. */
VarGrPtr graphDs;
VarGrNodeAccessorPtr nodeAccessor;
VarPtr varID = VAR_New();
VarPtr varValue = VAR_New();

/* Declare an edit pointer variable. */
...
graphDs = VARGR_Create();
nodeAccessor = VARGRNODEACCESSOR_Create();
VARGRNODEACCESSOR_GoFirstRoot(nodeAccessor);
VARGR_AddNode(graphDs, nodeAccessor);

/* Set the node ID and Value properties using "convenience" API
 functions. */
VAR_SetStr(varID, "0001"):
VAR_SetStr(varValue, "First Root"):
VARGR_SetNodeID(graphDs, nodeAccessor, varID);
VARGR_SetNodeValue(graphDs, nodeAccessor, varValue);
...

To add a linked node of a particular type to the end of the node list:

1. Create a graph datasource and the first root node.

2. Move the node accessor to the first node of the relationship type to be
created.

3. Execute the VARGRNODEACCESSOR_GoNext() function
repeatedly until an invalid node location is found.

4. Add a node.

Child Nodes

To add child nodes and the edges that connect them to the parent node:

1. Move the node accessor to the first child-node location.

2. Execute the VARGRNODEACCESSOR_GoNext() function
repeatedly until an invalid node location is found.

3. Add a node.

Figure 4–18 illustrates this process for creating the first child node, which
the code fragment that follows it also demonstrates:

Figure 4–18 Adding the First Child Node

/* Create a graph datasource and the first root node. */
VarGrPtr graphDs;

Graph Datasource First Root

Graph Datasource First Root

Graph Datasource First Root

First Child
124 C Programmer’s Guide

Building a Graph Datasource

r)); */
VarGrNodeAccessorPtr nodeAccessor;
VarPtr varID;
VarPtr varValue;
...
graphDs = VARGR_Create();
nodeAccessor = VARGRNODEACCESSOR_Create();
varID = VAR_New();
varValue = VAR_New();

VARGRNODEACCESSOR_GoFirstRoot(nodeAccessor);
VARGR_AddNode(graphDs, nodeAccessor);

/* Set the node ID and Value properties using "convenience" API
 functions. */
VAR_SetStr(varID, "0001"):
VAR_SetStr(varValue, "First Root"):
VARGR_SetNodeID(graphDs, nodeAccessor, varID);
VARGR_SetNodeValue(graphDs, nodeAccessor, varValue);
...
/* Move the node accessor to the first child-node location. */
VARGRNODEACCESSOR_GoFirstChild(nodeAccessor);

/* Execute the GoNext() function repeatedly until an invalid
 node location is found. */
while (VARGR_IsNodeValid(graphDs, nodeAccessor)) {
 VARGRNODEACCESSOR_GoNext(nodeAccessor);
}

/* The following GoNthChild() function would replace the
 preceding GoFirstChild() function and while loop. */
/* VARGRNODEACCESSOR_GoNthChild(nodeAccessor,
 VARGR_GetNumChildren(graphDs,
 nodeAccesso

/* Add a node. */
VARGR_AddNode(graphDs, nodeAccessor);

/* Set the node ID and Value properties using "convenience" API
 functions. */
VAR_SetStr(varID, "0002"):
VAR_SetStr(varValue, "First Child"):
VARGR_SetNodeID(graphDs, nodeAccessor, varID);
VARGR_SetNodeValue(graphDs, nodeAccessor, varValue);
...

Parent Nodes

To add parent nodes and the edges that connect them to the parent node:

1. Move the node accessor to the first parent node location.

2. Execute the VARGRNODEACCESSOR_GoNext() function
repeatedly until an invalid node location is found.

3. Add a node.

When a parent node is added to the first root node, the node referenced by
the node accessor is no longer a root node. The “First Parent” node in
Figure 4–19 is now actually the first root node in the datasource, and the
“First Parent” node is its child. In fact, the “First Root” node is the first child
of the “First Parent” node.
C Programmer’s Guide 125

Chapter Graph Datasource: Managing Graph Data4
Figure 4–19 illustrates this process for creating the first parent node, which
the code fragment that follows it also demonstrates:

Figure 4–19 Adding the First Parent Node

/* Create a graph datasource and the first root node. */
VarGrPtr graphDs;
VarGrNodeAccessorPtr nodeAccessor;
VarPtr varID = VAR_New();
VarPtr varValue = VAR_New();

/* Declare an edit pointer variable. */
...
graphDs = VARGR_Create();
nodeAccessor = VARGRNODEACCESSOR_Create();
VARGRNODEACCESSOR_GoFirstRoot(nodeAccessor);
VARGR_AddNode(graphDs, nodeAccessor);

/* Set the node ID and Value properties using "convenience" API
 functions. */
VAR_SetStr(varID, "0001"):
VAR_SetStr(varValue, "First Root"):
VARGR_SetNodeID(graphDs, nodeAccessor, varID);
VARGR_SetNodeValue(graphDs, nodeAccessor, varValue);
...
/* Move the node accessor to the first parent-node location. */
VARGRNODEACCESSOR_GoFirstParent(nodeAccessor);

/* Execute the GoNext() function repeatedly until an invalid
 node location is found. */
while (VARGR_IsNodeValid(graphDs, nodeAccessor)) {
 VARGRNODEACCESSOR_GoNext(nodeAccessor);
}

/* The following GoNthParent() function would replace the
 preceding GoFirstParent() function and while loop. */
/* VARGRNODEACCESSOR_GoNthParent(nodeAccessor,
 VARGRNODEACCESSOR_GetNumParents());
*/

/* Add a node. */
VARGR_AddNode(graphDs, nodeAccessor);

/* Set the node ID and Value properties using "convenience" API
 functions. */
VAR_SetStr(varID, "0003"):
VAR_SetStr(varValue, "First Parent"):
VARGR_SetNodeID(graphDs, nodeAccessor, varID);
VARGR_SetNodeValue(graphDs, nodeAccessor, varValue);
...

Graph Datasource First Root

Graph Datasource First Root

First Parent

Graph Datasource First Root

No longer a root node

New root node
126 C Programmer’s Guide

Building a Graph Datasource
Neighbor Nodes

To add neighbor nodes and the edges that connect them to the reference
node:

1. Move the node accessor to the first neighbor-node location.

2. Execute the VARGRNODEACCESSOR_GoNext() function
repeatedly until an invalid node location is found.

3. Add a node.

Figure 4–20 illustrates this process for creating the first neighbor node,
which the code fragment that follows it also demonstrates:

Figure 4–20 Adding the First Neighbor Node

/* Create a graph datasource and the first root node. */
VarGrPtr graphDs;
VarGrNodeAccessorPtr nodeAccessor;
VarPtr varID = VAR_New();
VarPtr varValue = VAR_New();

/* Declare an edit pointer variable
...
graphDs = VARGR_Create();
nodeAccessor = VARGRNODEACCESSOR_Create();
VARGRNODEACCESSOR_GoFirstRoot(nodeAccessor);
VARGR_AddNode(graphDs, nodeAccessor);

/* Set the node ID and Value properties using "convenience" API
 functions. */
VAR_SetStr(varID, "0001"):
VAR_SetStr(varValue, "First Root"):
VARGR_SetNodeID(graphDs, nodeAccessor, varID);
VARGR_SetNodeValue(graphDs, nodeAccessor, varValue);
...
/* Move the node accessor to the first neighbor-node
 location. */
VARGRNODEACCESSOR_GoFirstNeighbor(nodeAccessor);

/* Execute the GoNext() function repeatedly until an invalid
 node location is found. */
while (VARGR_IsNodeValid(graphDs, nodeAccessor)) {
 VARGRNODEACCESSOR_GoNext(nodeAccessor);
}

/* The following GoNthNeighbor() function would replace the
 preceding GoFirstNeighbor() function and while loop. */
/* VARGR_GoNthNeighbor(nodeAccessor, GetNumNeighbors()); */

/* Add a node. */
VARGR_AddNode(graphDs, nodeAccessor);

/* Set the node ID and Value properties using "convenience" API
 functions. */
VAR_SetStr(varID, "0004"):
VAR_SetStr(varValue, "First Neighbor"):

Graph Datasource First Root

Graph Datasource First Root

Graph Datasource First Root First Neighbor
C Programmer’s Guide 127

Chapter Graph Datasource: Managing Graph Data4
VARGR_SetNodeID(graphDs, nodeAccessor, varID);
VARGR_SetNodeValue(graphDs, nodeAccessor, varValue);
...

Creating Unlinked Nodes

To create unlinked nodes in the graph datasource, you simply add root
nodes. You can add root nodes much like you add linked nodes, except that
the node accessor traverses root-node locations.

To add unlinked nodes to the datasource:

1. Move the node accessor to the first root node location.

2. Execute the VARGRNODEACCESSOR_GoNext() function
repeatedly until an invalid node location is found.

3. Add a node.

When you add a root node to the datasource, the new node is referenced by
the datasource object. Figure 4–21 shows the creation of a second root node.
You can add edges to an unlinked node as described in “Creating Unlinked
Nodes” on page 128.

Figure 4–21 Adding an Unlinked Node

/* Create a graph datasource and the first root node. */
VarGrPtr graphDs;
VarGrNodeAccessorPtr nodeAccessor;
VarPtr varID = VAR_New();
VarPtr varValue = VAR_New();

/* Declare an edit pointer variable. */
...
graphDs = VARGR_Create();
nodeAccessor = VARGRNODEACCESSOR_Create();
VARGRNODEACCESSOR_GoFirstRoot(nodeAccessor);
VARGR_AddNode(graphDs, nodeAccessor);

/* Set the node ID and Value properties using "convenience" API
 functions. */
VAR_SetStr(varID, "0001"):
VAR_SetStr(varValue, "First Root"):
VARGR_SetNodeID(graphDs, nodeAccessor, varID);
VARGR_SetNodeValue(graphDs, nodeAccessor, varValue);
...
/* Move the node accessor to the first root-node location. */
VARGRNODEACCESSOR_GoFirstRoot(nodeAccessor);

/* Execute the GoNext() function repeatedly until an invalid

Graph Datasource First Root

Graph Datasource First Root

Graph Datasource First Root

Second Root
128 C Programmer’s Guide

Building a Graph Datasource
 node location is found. */
while (VARGR_IsNodeValid(graphDs, nodeAccessor)) {
 VARGRNODEACCESSOR_GoNext(nodeAccessor);
}

/* The following GoNthRoot() function would replace the
 preceding GoFirstRoot() function and while loop. */
/* VARGR_GoNthRoot(nodeAccessor, GetNumRoots()); */

/* Add a node. */
VARGR_AddNode(graphDs, nodeAccessor);

/* Set the node ID and Value properties using "convenience" API
 functions. */
VAR_SetStr(varID, "0003"):
VAR_SetStr(varValue, "First Parent"):
VARGR_SetNodeID(graphDs, nodeAccessor, varID);
VARGR_SetNodeValue(graphDs, nodeAccessor, varValue);
...

Creating Edges

When adding linked nodes to a graph datasource, you do not have to manually
define the edges that connect two related nodes. However, if you want to link two
unlinked nodes, you must create an edge to define the relationship between them.

These two issues are of primary concern when creating edges:
■ Node-Accessor and Edge-Accessor Requirements
■ Adding Directed and Undirected Edges

Node-Accessor and Edge-Accessor Requirements

When adding linked nodes to the graph datasource, you only need one node
accessor. However, when adding an edge to a pair of unlinked nodes, you
have to have two node accessors. In addition, you must create an
appropriate edge accessor to set the edge ID and Value properties.

This code fragment shows the declarations for the node and edge accessor
that you need when adding edges between nodes:

/* Create a graph datasource and node and edge accessors. */
VarGrPtr graphDs;
VarGrNodeAccessorPtr nodeAccessorFrom;
VarGrNodeAccessorPtr nodeAccessorTo;
VarGrInEdgeAccessorPtr inEdgeAccessor;
VarGrOutEdgeAccessorPtr outEdgeAccessor;
VarGrUndirEdgeAccessorPtr undirEdgeAccessor;
...
graphDs = VARGR_Create();

/* Create node accessors for both the "From" and "To" nodes. */
nodeAccessorFrom = VARGRNODEACCESSOR_Create();
nodeAccessorTo = VARGRNODEACCESSOR_Create();

/* Move the "From" and "To" accessors to two unlinked nodes. */
...

/* Create an "out" edge accessor for the node referenced by
 nodeAccessorFrom, the source node. */
outEdgeAccessor =
 VARGRNODEACCESSOR_CreateOutEdgeAccessor(nodeAccessorFrom);

/* Create an "in" edge accessor for the node referenced by
 nodeAccessorTo, the source node. */
inEdgeAccessor =
 VARGRNODEACCESSOR_CreateInEdgeAccessor(nodeAccessorTo);
C Programmer’s Guide 129

Chapter Graph Datasource: Managing Graph Data4
/* Create an "undirected" edge accessor for the node referenced
 by nodeAccessorFrom, an arbitrarily chosen end node. */
undirEdgeAccessor =
 VARGRNODEACCESSOR_CreateUndirEdgeAccessor(nodeAccessorFrom);
...

Adding Directed and Undirected Edges

There are some slight differences between the ways directed and undirected
edges are handled. Directed edges are defined using a “source” node and a
“target” node. For undirected edges, the terms “source” and “target” are
irrelevant—that is, unless the Directed property of the edge is subject to
change.

These two examples illustrate the differences between these types of edges:
■ Directed Edges
■ Undirected Edges

Directed Edges

The following example uses directed edges. The two node accessors are
nodeAccessorFrom and nodeAccessorTo. The edge accessor used to set the
edge ID and Value properties is arbitrarily chosen to be an “out” edge
accessor based on the node referenced by nodeAccessorFrom. It could just
as easily be an “in” edge accessor based on the node referenced by
nodeAccessorTo.

/* Create a graph datasource and the first root node. */
VarGrPtr graphDs;
VarGrNodeAccessorPtr nodeAccessorFrom;
VarGrNodeAccessorPtr nodeAccessorTo;
VarGrOutEdgeAccessorPtr outEdgeAccessor;
VarPtr varID = VAR_New();
VarPtr varValue = VAR_New();
...
graphDs = VARGR_Create();

/* Create node accessors for both the "From" and "To" nodes. */
nodeAccessorFrom = VARGRNODEACCESSOR_Create();
nodeAccessorTo = VARGRNODEACCESSOR_Create();
...
/* Move the "From" and "To" accessors to two unlinked nodes. */
...

/* Add a directed edge using nodeAccessorFrom to identify the
 source of the edge, while using nodeAccessorTo to identify
 the target node. */
VARGR_AddDirEdge(graphDs, nodeAccessorFrom, nodeAccessorTo);

/* Create an "out" edge accessor for the node referenced by
 nodeAccessorFrom, the source node. */
outEdgeAccessor =
 VARGRNODEACCESSOR_CreateOutEdgeAccessor(nodeAccessorFrom);

/* Set the edge ID and Value properties using "convenience" API
 functions. This automatically creates an edge accessor for
 the edit operation and disposes of it for you. */
VAR_SetStr(varID, "0001"):
VAR_SetStr(varValue, "First Edge"):
VARGR_SetEdgeID(graphDs, outEdgeAccessor, varID);
VARGR_SetEdgeValue(graphDs, outEdgeAccessor, varValue);
...
130 C Programmer’s Guide

Building a Graph Datasource
Undirected Edges

This example uses undirected edges. The two node accessors are
nodeAccessor1 and nodeAccessor2. The edge accessor that is used to set the
edge ID and Value properties is an “undirected” edge accessor based on the
node referenced by nodeAccessor1. It could just as easily be an “undirected”
edge accessor based on the node referenced by nodeAccessor2.

/* Create a graph datasource and the first root node. */
VarGrPtr graphDs;
VarGrNodeAccessorPtr nodeAccessor1;
VarGrNodeAccessorPtr nodeAccessor2;
VarGrUndirEdgeAccessorPtr undirEdgeAccessor;
VarPtr varID = VAR_New();
VarPtr varValue = VAR_New();
...
graphDs = VARGR_Create();

/* Create node accessors for both the "1" and "2" nodes. */
nodeAccessor1 = VARGRNODEACCESSOR_Create();
nodeAccessor2 = VARGRNODEACCESSOR_Create();

/* Move the "1" and "2" accessors to two unlinked nodes. */
...

// Add an undirected edge using nodeAccessor1 and nodeAccessor2
 to identify its end points. */
VARGR_AddUndirEdge(graphDs, nodeAccessor1, nodeAccessor2);

/* Create an "undirected" edge accessor for the node referenced
 by nodeAccessor1. */
undirEdgeAccessor =
 VARGRNODEACCESSOR_CreateUndirEdgeAccessor(nodeAccessor1);

/* Set the edge ID and Value properties using "convenience" API
 functions. This automatically creates an edge accessor for
 the edit operation and disposes of it for you. */
VAR_SetStr(varID, "0001"):
VAR_SetStr(varValue, "First Edge"):
VARGR_SetEdgeID(graphDs, undirEdgeAccessor, varID);
VARGR_SetEdgeValue(graphDs, undirEdgeAccessor, varValue);
...
C Programmer’s Guide 131

Chapter Graph Datasource: Managing Graph Data4
132 C Programmer’s Guide

Chapter
5 Args Class 5

This class is a facility to read arguments from the command-line.

Overview

It is similar to using the standard argc/argv except that:
■ It can be used from any part of the application. The argc/argv needs to

be specified only once at the program initialization.
■ It supports response files. Response files can be used when the

command line is too long for the operating system (command lines are
limited to 128 characters on DOS, to 512 characters on VMS; there is no
limitation on Mac/MPW; on Unix, there is no limitation in shell scripts
but the input is limited to 512 characters when typing in an interactive
shell). If one of the arguments starts with a @, then it is assumed to be
@<file>. The given argument is replaced by the content of <file>.

Example:

If a file myprog.opt contains the following line:

-option1 -option2 -option3 -option4

Then the following command line:

myprog @myprog.opt -option5

will be equivalent to:

myprog -option1 -option2 -option3 -option4 -option5

API Overview

Your main routine should contain, before the initialization of the

Open Interface libraries:

main L2(int, argc, char**, argv)
{

NDArgs::Init(argc, argv)
...

}

Then any class in your program can refer to the command-line arguments
with:

Str arg;
for (arg = NDArgs::GetFirst(); arg; arg = NDArgs::GetNext()) {

...
}

or with:

Int i, nargs = NDArgs::GetNum();
for (i = 1; i < nargs; i++) {

Str arg = NDArgs::GetNth(i);
...

}

C Programmer’s Guide 133

Chapter Args Class5
or with:

ArrayPtr args = NDArgs::GetAll();
Int index, len = args->GetLen();
for (index = 1; index < len; index++) {

Str arg = (Str)args->GetElt(i);
...

}

If some class processes an option, it might also decides that no other class
should process the same option. This can be done with:

NDArgs::RemoveNth(index);

Note: The 0th argument is usually not useful because it contains the name
of the program itself. ARGS_GetFirst() is equivalent to
ARGS_GetNth(1);

Scanning the List of Command Arguments

Init

void ARGS_Init(CRTL_int argc, CRTL_char** argv);

Should be called from the main routine before any other initialization.
Arguments like @<file> are replaced by the content of the given file. If
ARGS_Init is called more than once, only the last attempt is considered.
ARGS_Init MUST be called before any of the following calls can be used. It
must also be called before the Open Interface Core library is initialized. All
the other calls can only be used after the Open Interface Core library is
initialized.

GetAll

ArrayPtr ARGS_GetAll(void);

Returns the list of all the arguments (including the application name itself).
The list of arguments will be an array of strings.

GetNum

ArgIVal ARGS_GetNum(void);

Returns the number of arguments (including the application name itself).

GetNth

CStr ARGS_GetNth(ArgIVal n);

Returns the nth argument. It returns NULL if there are fewer arguments
than n.

GetExecName

CStr ARGS_GetExecName(void);

Returns the application name.
134 C Programmer’s Guide

Scanning the List of Command Arguments
GetFirst

CStr ARGS_GetFirst(void);

Returns the first argument after the application name. It returns NULL if
there is no argument.

GetNext

CStr ARGS_GetNext(void);

Returns the next argument. GetNext can be called only after ARGS_GetFirst
has been called at least once. It returns NULL when all arguments have been
read.

RemoveNth

void ARGS_RemoveNth(ArgIVal n);

Extract the nth argument from the list.

InsertNth

void ARGS_InsertNth(ArgIVal n, CStr arg);

Inserts the new argument arg into the list at given index n.
C Programmer’s Guide 135

Chapter Args Class5
136 C Programmer’s Guide

Chapter
6 ArNum Class 6

The ArNum class implements a generic class corresponding to collections of
numeric values.

Overview

An ArNum instance is a collection of possibly duplicate and possibly
ordered elements expected to be numeric values of the same value.

The ArNum classes handle the dynamic allocation and deallocation of the
internal structures that keep track of the items, with a limit in number of
refernces being set to MAXINT32/sizeof(element) or the maximum
available memory in the system.

Arnums grow as the number of elements stored in the array increases.

The ArNum classes perform deep copies: when an array object is copied
into another, all the numeric values of the original are copied into the
destination.

API Principle

This class implements a generic numeric values collection class.

The API is implemented in terms of macros that get compiled in the
application when a particular reference collection class is defined.

The API is type-safe. If an arnum is an array of integers, all its items will be
integers of the same time otherwize compiler warnings will be generated.

The following compile-time types are defined:

Macros

This API provides a set of macros that can be use to declare and implement
collections of numeric values.

ARNUM_DECLARECLASS(ARNUM_ELT, ARNUM_KEY)

Declares the class ArNumOf<ARNUM_ELT>, the collection class that
keeps track of ARNUM_ELT numeric values. The class needs to be
implemented using the ARNUM_IMPLEMENTCLASS macro.

Type Description
ARNUM Type of the ArNum

ARNUM_ELT Type of the ArNum element

ARNUM_KEY Type of the search key
C Programmer’s Guide 137

Chapter ArNum Class6
ARNUM_IMPLEMENTCLASS(ARNUM_ELT, ARNUM_KEY)

Implements the class ArNumOf<ARNUM_ELT>, which must have been
declared using ARNUM_DECLARECLASS.

ARNUM_DEFCLASS(ARNUM_ELT, ARNUM_KEY)

Declares and provides an exclusively inline implementation for the
ArNumOf<ARNUM_ELT> class, the collection class that keeps track of
ARNUM_ELT numeric values.

ARNUM_DEFSTRUCT(STRUCT_NAME, ARNUM_ELT)

Defines the <STRUCT_NAME> structure implementing the collection of
<ARNUM_ELT> numeric values.

Constructors and Destructor

Constructors

void ARNUM_Construct(ArNumPtr arnum);

Default ARNUM construction.

void ARNUM_ConstructLen(ArNumPtr arnum, ArrayIVal len);

Constructs the ARNUM with ’len’ elements. The contents of the ARNUM is
initialized with NULL. The elements can then be set with ARNUM_SetElt.

void ARNUM_ConstructAlloc(ArNumPtr artpr, ArrayIVal alloc);

Constructs the ARNUM with 0 elements but a buffer allocated for `alloc'
elements.

Then, you may fill the array by calling ARNUM_AppendElt and the array
logic will not need to reallocate the buffer as long as the number of elements
does not exceed `alloc'.

void ARNUM_ConstructArnum(ArNumPtr arnum, ArNumPtr arnum2);

Constructs the ARNUM as a copy of `arnum2'. This is a deep copy.

Destructor

void ARNUM_Destruct(ArNumPtr arnum);

Default ARNUM destruction. All the values stored in the arnum are lost at
this point.

Clone, Copy, Reset

Reset

void ARNUM_Reset(ArNumPtr arnum);

Resets the contents of the ARNUM. After this call, the length of the ARNUM
will be 0.
You are responsible for freeing the elements of the ARNUM.
138 C Programmer’s Guide

Changing the Length of the Array
Changing the Length of the Array

SetLen

void ARNUM_SetLen(ArNumPtr arnum, ArrayIVal len);

Sets the number of elements of the ARNUM to ’len’ and reallocates the
contents of the ARNUM if necessary. If the ARNUM grows, the new
elements are initialized with zeros.

SetAlloc

void ARNUM_SetAlloc(ArNumPtr arnum, ArrayIVal alloc);

Reallocates the contents of the ARNUM for ’alloc’ elements if necessary but
does not change the number of elements in the ARNUM.

Global Queries

GetLen

ArrayIVal ARNUM_GetLen(ArNumCPtr arnum);

Returns the number of elements in the ARNUM.

IsEmpty

BoolEnum ARNUM_IsEmpty(ArNumCPtr arnum);

Returns whether the ARNUM is empty or not.

IsInRange

BoolEnum ARNUM_IsInRange(ArNumCPtr arnum, ArrayIVal i);

Returns whether ’i’ is a valid index for the ARNUM (in the [0, len-1] range,
where len is the length of the ARNUM).

Accessing Elements

GetNthElt

ARNUM_ELT ARNUM_GetNthElt(ArNumCPtr arnum, ArrayIVal i);

Returns the element at index ’I’. Fails if the index is not in the [0, len-1]
range.

UnboundedGetNthElt

ARNUM_ELT ARNUM_UnboundedGetNthElt(ArNumCPtr arnum, ArrayIVal i);

Same as ARNUM_GetNthElt but returns 0 if ’i’ is out of range instead of
failing.
C Programmer’s Guide 139

Chapter ArNum Class6
SetNthElt

void ARNUM_SetNthElt(ArNumPtr arnum, ArrayIVal i, ARNUM_ELT elt);

Sets the element at index ’I’. Fails if the index is not in the [0, len-1] range. If
you are replacing an existing element, you are responsible for freeing the
old element (if needed).

UnboundedSetNthElt

void ARNUM_UnboundedSetNthElt(ArNumPtr arnum, ArrayIVal i, ARNUM_ELT elt);

Same as ARNUM_SetNthElt but extends the array if ’i’ is out of range and
elt is not NULL (’i’ must be positive).

Finding Elements

The comparison procedure used for ordering purposes is specified on a
call-basis. It always takes the element as first argument, and a search key as
second argument. The search key is a pointer to an object (or to void), and
must not necessarily be of the same type as the reference to the stored object.
You can implement and use as many ad-hoc comparison procedures as
needed. The search (ARNUM_SortedLookup and ARNUM_SortedFind)
uses a binary dichotomy, which makes it efficient even on large sorted
arrays (search time grows in O(log(n))).

ContainsElt

BoolEnum ARNUM_ContainsElt(ArNumCPtr arnum, ARNUM_ELT elt);

Returns whether or not the ARNUM contains ’elt’.

LookupElt

ArrayIVal ARNUM_LookupElt(ArNumCPtr arnum, ARNUM_ELTCPtr elt);

Returns the index of the first occurence of ’elt’ in the ARNUM. Returns -1 if
the ARNUM does not contain ’elt’.

FindElt

ArrayIVal ARNUM_FindElt(ArNumCPtr arnum, ARNUM_ELTCPtr elt);

Same as ARNUM_Lookup routines but signal a failure if the ARNUM does
not contain ’elt’.

SortedLookupElt

BoolEnum ARNUM_SortedLookupElt(ArNumCPtr arnum, CmpProc proc,
ARNUM_KEY key, ArrayIValPtr result);

Searches element which matches key in the ARNUM. The ARNUM must be
sorted in increasing order according to ’proc’. ’proc’ will be called as
(*proc)(elt, key) to determine how the elements of the array compare with
’key’.

Returns BOOL_TRUE and sets ’*result’ to the index of the matching entry if
a match is found.

If no match is found, returns BOOL_FALSE and *result is set to the index at
which key should be inserted if we had to insert it in the sorted array.
140 C Programmer’s Guide

Adding Elements
SortedFindElt

ArrayIVal ARNUM_SortedFindElt(ArNumCPtr arnum, CmpProc proc,
ARNUM_KEY key);

Searches element which matches ’key’ in the ARNUM. The ARNUM must
be sorted in increasing order according to ’proc’. ’proc’ will be called as
(*proc)(elt, key) to determine how the entries in the array compare with
’key’.

This routine returns the index of the element where the match occured. If no
match is found, this routine signals a failure.

Adding Elements

AppendElt

void ARNUM_AppendElt(ArNumPtr arnum, ARNUM_ELT elt);

Adds ’elt’ at the end of the ARNUM. Does not modify the indices of the
other elements in the ARNUM. The length of the ARNUM increases by one.

UniqAppendElt

void ARNUM_UniqAppendElt(ArNumPtr arnum, ARNUM_ELT elt);

Appends ’elt’ to the ARNUM if ’elt’ is not already in the ARNUM.

InsertNthElt

void ARNUM_InsertNthElt(ArNumPtr arnum, ArrayIVal i, ARNUM_ELT elt);

Inserts ’elt’ at index ’I’. The elements which were at index ’i’ or greater are
moved one index further in the ARNUM. The relative order of the ARNUM
elements is preserved by this call.

SortedInsertElt

ArrayIVal ARNUM_SortedInsertElt(ArNumPtr arnum, CmpProc proc, ARNUM_ELT elt);

Insert ’elt’, using ’proc’ to compare elements of the ARNUM. Returns the
index at which the element was inserted.

ArrayIVal ARNUM_SortedUniqInsertElt(ArNumPtr arnum, CmpProc proc,
ARNUM_ELT elt);

Same as ARNUM_SortedXXX calls but do not insert if the element is already
in the ARNUM. Return the index at which the element was inserted or
found.

Removing Elements

RemoveNthElt

void ARNUM_RemoveNthElt(ArNumPtr arnum, ArrayIVal i);

Removes the element at index ’I’. In case ’i’ is not the last index, the last
element is moved to index ’i’, so this routine does not preserve the ordering
C Programmer’s Guide 141

Chapter ArNum Class6
of the elements in the ARNUM. ARNUM_ExtractNthElt preserves the
ordering but is less efficient.

RemoveElt

void ARNUM_RemoveElt(ArNumPtr arnum, ARNUM_ELT elt);

Removes the first occurence of ’elt’ in the ARNUM. Element ’elt’ must be in
the ARNUM. This call is less efficient than ARNUM_RemoveNthElt
because it requires finding ’elt’ in the ARNUM first. This call does not
preserve the ordering of the elements in the ARNUM.

ExtractNthElt

void ARNUM_ExtractNthElt(ArNumPtr arnum, ArrayIVal i);

Removes the element at index ’I’. This call preserves the relative ordering
of the ARNUM elements.

ExtractElt

Same as corresponding ARNUM_Remove calls but preserve the relative
ordering of the elements in the ARNUM.

SortedExtractElt

ArrayIVal ARNUM_SortedExtractElt(ArNumPtr arnum, CmpProc cmp, ARNUM_ELT elt);

Extracts ’elt’, using ’proc’ to compare elements of the ARNUM. Returns the
index at which the element was found.

Sorting

Sort

void ARNUM_Sort(ArNumPtr arnum, CmpProc proc);

Sorts the ARNUM. ’proc’ is the procedure which will be used to compare
the elements. (See basepub.h for the definition of CmpProc). This call uses
the QuickSort algorithm which is very efficient on large arrays.

IsSorted

BoolEnum ARNUM_IsSorted(ArNumCPtr arnumc, CmpProc proc);

Returns whether a is sorted or not according to ’proc’.

Removing Duplicates

RemoveDupls

void ARNUM_RemoveDupls(ArNumPtr arnum);

Removes duplicate elements in the ARNUM.
142 C Programmer’s Guide

Removing Duplicates
SortedRemoveDupls

void ARNUM_SortedRemoveDupls(ArNumPtr arnum);

Removes duplicates in the ARNUM, assumes that it is sorted. This routine
is more efficient than ARNUM_RemoveDupls because duplicates are
necessarily contiguous in this case.
C Programmer’s Guide 143

Chapter ArNum Class6
144 C Programmer’s Guide

Chapter
7 ArObj Class 7

 The ArObj class implements the generic collection of objects.

Overview

 The ArObj class differs from ArPtr in that the stored elements are object
values rather than pointers to external objects.

An ArObj is a collection of possibly duplicate and possibly ordered
elements expected to be objects of all the same size.

The ArObj classes handle the dynamic allocation and deallocation of the
internal structures that keep track of the items, with a limit in number of
items being set to MAXINT32/sizeof(element) or the maximum available
memory in the system. ArObjs grow as the number of elements stored in the
array increases.

 API Principle

The API is implemented in terms of macros that get compiled in the
application when a particular object collection class is defined.

The API is type-safe. All objects stored in the array must be of the same type
as the arrays element type or a subclass of the eleOment type, otherwise,
compile-time warnings will be generated.

The following compile-time types are defined:

If key represents an object it must be a pointer not a value. Objects are
cloned using the copy constructor for AROBJ_ELT when they are added to
the array.

Array elements are destroyed using the destructor for AROBJ_ELT when
the array is destroyed or made smaller or an element is set to a new value.
Objects are compared using the == and != operators for AROBJ_ELT during
comparison and lookup operations. Objects stored in the array must have
at least the following public members:

Identifiers Description
AROBJ_ELT Type of the array element

AROBJ_KEY Type of the search

Identifier Description
Default constructor AROBJ_ELT::AROBJ_ELT(void)

Copy constructor AROBJ_ELT::AROBJ_ELT(const AROBJ_ELT&)

Destructor AROBJ_ELT::~AROBJ_ELT(void)
C Programmer’s Guide 145

Chapter ArObj Class7
This class is only available in the C++ version of the Elements product.

Usage

To create arrays of a given object type the array of objects class for that type
must first be declared and implemented using the macros described below.

An AROBJ_DECLARE_xxx macro is used in a header file to declare an array
which holds a specific type of object.

An AROBJ_IMPLEMENT_xxx macro is used in a C++ source file to
implement an array which holds a specific type of object.

AROBJ_DECLARE_xxx and AROBJ_IMPLEMENT_xxx should each appear
once and only once in the files for a project for each element type
(AROBJ_ELT).

AROBJ_ELT and AROBJ_KEY should be the same as the values passedto
corresponding AROBJ_DECLARE_CLASS.

Example

For example, if we want to use arrays of objects of the class MyObj which
will be searched using a key of type MyObj*, we first need to declare the
array in a header file (myarray.h). The class MyObj must have at least the
public methods shown below.

class MyObj {

public:

MyObj(void);

MyObj(const MyObj& myObjToCopy);

~MyObj(void);

int operator==(const MyObj& myObjToCompare) const;

int operator!=(const MyObj& myObjToCompare) const;

. };

Declare the array of MyObj objects class
AROBJ_DECLARE_CLASS(MyObj, MyObj*)

In a C++ source file (e.g. myarray.cpp) we need to implement the array of
MyObj objects class:

operator== int AROBJ_ELT::operator==(const AROBJ_ELT&)
const

operator!= int AROBJ_ELT::operator!=(const AROBJ_ELT&)
const

Identifier Description
AROBJ_DECLARE_CLASS(AROBJ_ELT, AROBJ_KEY) Declares an array of objects class which

holds elements of a class of type
AROBJ_ELT. Search methods which
accept a key will use a key of type
AROBJ_KEY.

AROBJ_IMPLEMENT_CLASS(AROBJ_ELT, AROBJ_KEY) Implements an array of objects class
which holds elements of a class of type
AROBJ_ELT. Search methods which
accept a key will use a key of type
AROBJ_KEY.
146 C Programmer’s Guide

API Principle
#include "myarray.h"

 AROBJ_IMPLEMENT_CLASS(MyObj, MyObj*)

Then we can use an array of objects of type MyObj as shown below:

#include "myarray.h"

void MyFunc(void)

{

NDArObjOfMyObj arrayOfMyObjects;

Construct empty array.

ArrayIVal i;

for (i = 0; i < 20; i++) {

MyObj nextObj; Construct a instance of MyObj

arrayOfMyObjects.AppendElt(nextObj);

Append a copy of nextObj to the array.

}

MyObj* newObj = new MyObj;

Construct a new instance of MyObj on the heap.

arrayOfMyObjects.SetNthElt(10, *newObj);

Set the 11'th element to a copy of newObj.

delete newObj;

Done with newObj.

.

 }

For example:

Declares array of MyObj in scope of class Foo:

class Foo {

public:

AROBJ_DECLARE_CLASS(MyObj, MyObjCPtr)

};

Implements array of MyObj in scope of class Foo:
Foo::NDArObjOfMyObj

AROBJ_IMPLEMENT_NESTED_CLASS(Foo, MyObj, MyObjCPtr)

Identifer Description
AROBJ_DECLARE_EXPORT_CLASS
(AROBJ_ELT, AROBJ_KEY, LIB_DECLEXPORT)

Declares an array of objects class which holds
elements of a class of type AROBJ_ELT. Search
methods which accept a key will use a key of type
AROBJ_KEY. LIB_DECLEXPORT can be used to
specify an export/import directive to the Win16
or Win32 compilers for use when building DLL's.
e.g. __declspec(dllexport)

AROBJ_IMPLEMENT_NESTED_CLASS
(ENCL_SCOPE, AROBJ_ELT, AROBJ_KEY)

Like AROBJ_IMPLEMENT_CLASS except that
the corresponding AROBJ_DECLARE_CLASS is
placed inside a class scopedefined by
ENCL_SCOPE.
C Programmer’s Guide 147

Chapter ArObj Class7
Constructors and Destructor

Constructors

void AROBJ_ConstructObjs(ArrayIVal start, ArrayIVal num);

Default AROBJ construction.

Constructs the array with `len' elements. The elements are initialized using
the default constructor for AROBJ_ELT.

Destructor

void AROBJ_DeleteObjs(ArrayIVal start, ArrayIVal num);

Destroys the array and all its elements..

Clone, Copy, Reset

Reset

void AROBJ_Reset(void);

Resets the contents of the array. After this call, the length of the array will
be 0.

Changing the Length

SetLen

void AROBJ_SetLen(ArrayIVal len);

Sets the number of elements of the array to `len' . If the AROBJ grows, the
new elements are created using the default constructor for AROBJ_ELT. If
the array shrinks elements are destroyed using the destructor for
AROBJ_ELT.

SetAlloc

void AROBJ_SetAlloc(ArrayIVal alloc);

Reallocates the capacity of the array for `alloc' elements if necessary but
does not change the number of elements in the array.

Global Queries

GetLen

ArrayIVal AROBJ_GetLen(void);

Returns the number of elements in the array.
148 C Programmer’s Guide

Accessing Elements
IsEmpty

BoolEnum NDArObjOfAROBJ_ELT::IsEmpty(void);

BoolEnum AROBJ_IsEmpty(void);

Returns whether the array is empty.

IsInRange

BoolEnum AROBJ_IsInRange(ArrayIVal i);

Returns BOOL_TRUE if `i' is a valid index for the array (in the range [0,
len-1] where len is the length of the array).

Accessing Elements

GetNthElt

AROBJ_ELT AROBJ_GetNthElt(ArrayIVal i);

Returns a copy of the element at index `i'. Fails if the index is not in the [0,
len-1] range.

GetNthEltRef

const AROBJ_ELT AROBJ_GetNthEltRef(ArrayIVal i);

Returns a const reference to the element at index `i'. Fails if the index is not
in the [0, len-1] range.

AROBJ_ELT AROBJ_GetNthEltRef(ArrayIVal i);

Returns a reference to the element at index `i'. Fails if the index is not in the
[0, len-1] range.

SetNthElt

void AROBJ_SetNthElt(ArrayIVal i, const AROBJ_ELT elt);

Sets the element at index `i' to copy to object ’elt’. Fails if the index is not in
the [0, len-1] range.

Finding Elements

Note: The comparison procedure used for ordering purposes is specified on
a call-basis.

It always takes the address of the stored object as first argument, and a
search key as second argument. The search key is a pointer toan object (or
to void), and must not necessarily be of the same type as the reference to the
stored object. You can implement and use as many ad-hoc comparison
procedures as needed.

The search (NDArObjOfAROBJ_ELT::SortedLookup and
NDArObjOfAROBJ_ELT::SortedFind) uses a binary dichotomy, which
makes it efficient even on large sorted arrays (search time grows in
O(log(n))).
C Programmer’s Guide 149

Chapter ArObj Class7
ContainsElt

BoolEnum AROBJ_ContainsElt(const AROBJ_ELT elt);

Returns BOOL_TRUE if the array contains an object equal to `elt'.
Comparison is done using the == operator for AROBJ_ELT.

LookupElt

ArrayIVal AROBJ_LookupElt(const AROBJ_ELT elt);

Returns the index of the first occurrence of an object which is equal to `elt'.
Comparison is done using the == operator for AROBJ_ELT. Returns -1 if the
array does not contain `elt'.

FindElt

ArrayIVal AROBJ_FindElt(const AROBJ_ELT elt);

Same as AROBJ_Lookup routine but signal a failure if `elt'.

SortedLookupElt

BoolEnum AROBJ_SortedLookupElt(CmpProc proc, AROBJ_KEY key,
ArrayIValPtr result);

Searches element which matches key in the array. The array must be sorted
in increasing order according to `proc'. `proc' will be called as (*proc)(addr,
key) to determine how the elements of the array compare with `key'. `addr'
is the address of an element in the array. Returns BOOL_TRUE and sets
`*result' to the index of the matching entry if a match is found. If no match
is found, returns BOOL_FALSE and *result is set to the, index at which key
should be inserted if we had to insert it in the sorted array.

SortedFindElt

ArrayIVal AROBJ_SortedFindElt(CmpProc proc, AROBJ_KEY key);

Searches element which matches ̀ key' in the array. The array must be sorted
in increasing order according to `proc'. `Proc' will be called as (*proc)(addr,
key), where `addr' is the address of an element in the array, to determine
how the entries in the array compare with `key'. This routine returns the
index of the element where the mach occurred. If no match is found, this
routine signals a failure.

Adding Elements

AppendElt

void AROBJ_AppendElt(const AROBJ_ELT elt);

Adds `elt' at the end of the array. Does not modify the indices of the other
elements in the array. The length of the array increases by one.

UniqAppendElt

void AROBJ_UniqAppendElt(const AROBJ_ELT elt);

Appends `elt' to the array if `elt' is not already in the array. Comparison is
done using the == operator for AROBJ_ELT.
150 C Programmer’s Guide

Removing Elements
InsertNthElt

void AROBJ_InsertNthElt(ArrayIVal i, const AROBJ_ELT elt);

Inserts a copy of`elt' at index `i'. The elements which were at index `i' or
greater are moved one index further in the array. The relative order of the
array elements is preserved by this call.

SortedInsertElt

ArrayIVal AROBJ_SortedInsertElt(CmpProc proc, const AROBJ_ELT elt);

Insert a copy of `elt', using `proc' to compare addresses the array elements.
The key passed to ̀ proc' is the address of the copy of ̀ elt'. Returns the index
at which the element was inserted. This call only applies to arrays of
structures or scalars.

SortedUniqInsertElt

ArrayIVal AROBJ_SortedUniqInsertElt(CmpProc proc, const AROBJ_ELT elt);

Same as NDArObjOfAROBJ_ELT::SortedInsertElt but does not insert if the
element is already in the array. The key passed to `proc' is the address of
`elt'. Returns the index at which the element was inserted or found.

Removing Elements

RemoveNthElt

void AROBJ_RemoveNthElt(ArrayIVal i);

Removes the element at index `i'. In case `i' is not the last index, the last
element is moved to index `i', so this routine does not preserve the ordering
of the elements in the array. NDArObjOfAROBJ_ELT::ExtractNthElt
preserves the ordering but is less efficient.

RemoveElt

void AROBJ_RemoveElt(const AROBJ_ELT elt);

Removes the first occurence of `elt' in the array. Comparison is done using
the == operator for AROBJ_ELT. Element ̀ elt' must be in the array. This call
does not preserve the ordering of the elements in the array.

ExtractNthElt

void AROBJ_ExtractNthElt(ArrayIVal i);

Removes the element at index `i'. This call preserves the relative ordering
of the array elements.

ExtractElt

void AROBJ_ExtractElt(const AROBJ_ELT elt);

Same as corresponding NDArObjOfAROBJ_ELT::RemoveElt call but
preserves the relative ordering of the elements in the array.
C Programmer’s Guide 151

Chapter ArObj Class7
SortedExtractElt

ArrayIVal AROBJ_SortedExtractElt(CmpProc cmp, const AROBJ_ELT elt);

Extracts `elt', using `proc' to compare elements of the array. Element `elt'
must be in the array.The key passed to `proc' is the address of `elt'.

Sorting

Sort

void AROBJ_Sort(CmpProc proc);

Sorts the array using `proc' to compare the elements. The key passed to
`proc' is the address of an element.

IsSorted

BoolEnum AROBJ_IsSorted(CmpProc proc);

Returns BOOL_TRUE if the array is sorted according to `proc'. The key
passed to `proc' is the address of an element.

Removing Duplicates

RemoveDupls

void AROBJ_RemoveDupls(void);

Removes duplicate elements in the array. The elements are compared using
the == operator of AROBJ_ELT.

SortedRemoveDupls

void AROBJ_SortedRemoveDupls(void);

Removes duplicates in the array, assumes that it is sorted. The elements are
compared using the != operator of AROBJ_ELT. This routine is more
efficient than NDArObjOfAROBJ_ELT::RemoveDupls because duplicates
are necessarily contiguous in this case.
152 C Programmer’s Guide

Chapter
8 ArPtr Class 8

The ArPtr class implements a generic class corresponding to collections of
references to objects.

Technical Overview

An ArPtr instance is a collection of possibly duplicate and possibly ordered
elements expected to be references to objects allocated and deallocated
elsewhere in the application.

The ArPtr classes handle the dynamic allocation and deallocation of the
internal structures that keep track of the items, with a limit in number of
references being set to MAXINT32/sizeof(ClientPtr) or the maximum
available memory in the system. ArPtrs grow as the number of elements
stored in the array increases.

The ArPtr classes perform shallow copies: when an array object is copies
into another, only the references to the objects are copied, and not the objects
themselves.

API Principles

This class implements a generic reference collection class.

The API is implemented in terms of macros that get compiled in the
application when a particular reference collection class is defined. The API
is type-safe. If an arptr is an array of pointers to a given structure, its items
have to be pointers to the given structure, otherwise, compile-time
warnings will be generated.

The following compile-time types are defined:

Macros

 This API provides a set of macros that can be use to declare and implement
collections of pointers.

ARPTR_DECLARECLASS(ARPTR_ELT, ARPTR_KEY)

Declares the class ArPtrOf<ARPTR_ELT>, the collection class that keeps
track of ARPTR_ELT pointers. The class needs to be implemented using the
ARPTR_IMPLEMENTCLASS macro.

ARPTR_IMPLEMENTCLASS(ARPTR_ELT, ARPTR_KEY)

Implements the class ArPtrOf<ARPTR_ELT>, which must have been
declared using ARPTR_DECLARECLASS.

Type Description
ARPTR Type of the ArPtr

ARPTR_ELT Type of the ArPtr element

ARPTR_KEY Type of the search key
C Programmer’s Guide 153

Chapter ArPtr Class8
ARPTR_DEFCLASS(ARPTR_ELT, ARPTR_KEY)

Declares and provides an exclusively inline implementation for the
ArPtrOf<ARPTR_ELT> class, the collection class that keeps track of
ARPTR_ELT pointers.

Constructors and Destructor

Constructors

void ARPTR_Construct(ArPtrPtr arptr);

 Default ARPTR constructor.

void ARPTR_ConstructLen(ArPtrPtr arptr, ArrayIVal len);

Constructs the ARPTR with `len' elements. The contents of the ARPTR is
initialized with NULL. The elements can then be set with ARPTR_SetElt.

void ARPTR_ConstructAlloc (ArPtrPtr artpr, ArrayIVal alloc);

Constructs the ARPTR with 0 elements but a buffer allocated for `alloc'
elements.

Then, you may fill the array by calling ARPTR_AppendElt and the array
logic will not need to reallocate the buffer as long as the number of elements
does not exceed `alloc'.

void ARPTR_ConstructArPtr (ArPtrPtr arptr, ArPtrPtr arptr2);

Constructs the ARPTR as a copy of `arptr2' This is a shallow copy. In case
the elements are pointers to other objects, the ARPTR will contain the same
pointers as `arptr2'.

 Destructor

void ARPTR_Destruct(ArPtrPtr arptr);

Default ARPTR destructor. If the ARPTR contains pointers to objects which
have been allocated on the heap, only the ARPTR will be deallocated and
the application is responsible for the deallocation of the objects referenced
by the ARPTR.

Clone, Copy, Reset

Reset

void ARPTR_Reset(ArPtrPtr arptr);

Resets the contents of the ARPTR. After this call, the length of the ARPTR
will be 0. You are responsible for freeing the elements of the ARPTR.
154 C Programmer’s Guide

Changing the length of the array
Changing the length of the array

SetLen

void ARPTR_SetLen(ArPtrPtr arptr, ArrayIVal len);

Sets the number of elements of the ARPTR to `len' and reallocates the
contents of the ARPTR if necessary. If the ARPTR grows, the new elements
are initialized with zeros.

SetAlloc

void ARPTR_SetAlloc(ArPtrPtr arptr, ArrayIVal alloc);

Reallocates the contents of the ARPTR for `alloc' elements if necessary but
does not change the number of elements in the ARPTR.

Global Queries

GetLen

ArrayIVal ARPTR_GetLen(ArPtrCPtr arptr);

Returns the number of elements in the ARPTR.

IsEmpty

BoolEnum ARPTR_IsEmpty(ArPtrCPtr arptr);

Returns whether the ARPTR is empty or not.

IsInRange

BoolEnum ARPTR_IsInRange(ArPtrCPtr arptr, ArrayIVal i);

Returns whether `i' is a valid index for the ARPTR (in the [0, len-1] range,
where len is the length of the ARPTR).

Accessing Elements

GetNthElt

ARPTR_ELT ARPTR_GetNthElt(ArPtrCPtr arptr, ArrayIVal i);

Returns the element at index `I'. Fails if the index is not in the [0, len-1]
range.

GetNthEltAddr

ARPTR_ELTPtr ARPTR_GetNthEltAddr(ArPtrCPtr arptr, ArrayIVal i);

Returns the address of the element at index `I'. Fails if the index is not in the
[0, len-1] range.
C Programmer’s Guide 155

Chapter ArPtr Class8
UnboundedGetNthElt

ARPTR_ELT ARPTR_UnboundedGetNthElt(ArPtrCPtr arptr, ArrayIVal i);

Same as ARPTR_GetNthElt but returns 0 if `i' is out of range instead of
failing.

SetNthElt

void ARPTR_SetNthElt(ArPtrPtr arptr, ArrayIVal i, ARPTR_ELT elt);

Sets the element at index `I'. Fails if the index is not in the [0, len-1] range.
If you are replacing an existing element, you are responsible for freeing the
old element (if needed).

UnboundedSetNthElt

void ARPTR_UnboundedSetNthElt(ArPtrPtr arptr, ArrayIVal i, ARPTR_ELT elt);

Same as ARPTR_SetNthElt but extends the array if `i' is out of range and elt
is not NULL (`i' must be positive).

Finding Elements

The comparison procedure used for ordering purposes is specified on a
call-basis.

It always takes the element as first argument, and a search key as second
argument. The search key is a pointer to an object (or to void), and must not
necessarily be of the same type as the reference to the stored object. You can
implement and use as many ad-hoc comparison procedures as needed.

The search (ARPTR_SortedLookup and ARPTR_SortedFind) uses a binary
dichotomy, which makes it efficient even on large sorted arrays (search time
grows in O(log(n))).

ContainsElt

BoolEnum ARPTR_ContainsElt(ArPtrCPtr arptr, ARPTR_ELT elt);

Returns whether or not the ARPTR contains `elt'.

LookupEltArrayIVal ARPTR_LookupElt(ArPtrCPtr arptr, ARPTR_ELT elt);

Returns the index of the first occurrence of `elt' in the ARPTR.
Returns -1 if the ARPTR does not contain `elt'.

FindElt

ArrayIVal ARPTR_FindElt(ArPtrCPtr arptr, ARPTR_ELT elt);

Same as ARPTR_Lookup routines but signal a failure if the ARPTR does not
contain `elt'.

SortedLookupElt

BoolEnum ARPTR_SortedLookupElt(ArPtrCPtr arptr, CmpProc proc, ARPTR_KEY key,
ArrayIValPtr result);

Searches element which matches key in the ARPTR. The ARPTR must be
sorted in increasing order according to `proc'.`proc' will be called as
156 C Programmer’s Guide

Adding Elements
(*proc)(elt, key) to determine how the elements of the array compare with
`key'.

Returns BOOL_TRUE and sets `*result' to the index of the matching entry if
a match is found.

If no match is found, returns BOOL_FALSE and *result is set to the index at
which key should be inserted if we had to insert it in the sorted array.

SortedFindElt

ArrayIVal ARPTR_SortedFindElt(ArPtrCPtr arptr, CmpProc proc, ARPTR_KEY key);

Searches element which matches `key' in the ARPTR. The ARPTR must be
sorted in increasing order according to `proc'. `proc' will be called as
(*proc)(elt, key) to determine how the entries in the array compare with
`key'.

This routine returns the index of the element where the mach occured. If no
match is found, this routine signals a failure.

Adding Elements

AppendElt

void ARPTR_AppendElt(ArPtrPtr arptr, ARPTR_ELT elt);

Does not modify the indices of the other elements in the ARPTR. The length
of the ARPTR increases by one.

UniqAppendElt

void ARPTR_UniqAppendElt(ArPtrPtr arptr, ARPTR_ELT elt);

Appends `elt' to the ARPTR if `elt' is not already in the ARPTR.

InsertNthElt

void ARPTR_InsertNthElt(ArPtrPtr arptr, ArrayIVal i, ARPTR_ELT elt);

Inserts `elt' at index `I'. The elements which were at index `i' or greater are
moved one index further in the ARPTR. The relative order of the ARPTR
elements is preserved by this call.

SortedInsertElt

ArrayIVal ARPTR_SortedInsertElt(ArPtrPtr arptr, CmpProc proc, ARPTR_ELT elt);

Insert `elt', using `proc' to compare elements of the ARPTR.
Returns the index at which the element was inserted.

SortedUniqInsertElt

ArrayIVal ARPTR_SortedUniqInsertElt(ArPtrPtr arptr, CmpProc proc, ARPTR_ELT elt);

Same as ARPTR_SortedXxx calls but do not insert if the element is already
in the ARPTR. Return the index at which the element was inserted or found.
C Programmer’s Guide 157

Chapter ArPtr Class8
Removing elements

RemoveNthElt

void ARPTR_RemoveNthElt(ArPtrPtr arptr, ArrayIVal i);

Removes the element at index `I'. In case `i' is not the last index, the last
element is moved to index `i', so this routine does not preserve the ordering
of the elements in the ARPTR. ARPTR_ExtractNthElt preserves the
ordering but is less efficient.

RemoveElt

void ARPTR_RemoveElt(ArPtrPtr arptr, ARPTR_ELT elt);

Removes the first occurrence of `elt' in the ARPTR. Element `elt' must be in
the ARPTR. This call is less efficient than ARPTR_RemoveNthElt because it
requires finding `elt' in the ARPTR first. This call does not preserve the
ordering of the elements in the ARPTR.

ExtractNthElt

void ARPTR_ExtractNthElt(ArPtrPtr arptr, ArrayIVal i);

Removes the element at index ̀ I'. This call preserves the relative ordering of
the ARPTR elements.

ExtractElt

void ARPTR_ExtractElt(ArPtrPtr arptr, ARPTR_ELT elt);

Same as corresponding ARPTR_Remove calls but preserve the relative
ordering of the elements in the ARPTR.

SortedExtractElt

ArrayIVal ARPTR_SortedExtractElt(ArPtrPtr arptr, CmpProc cmp, ARPTR_ELT elt);

Extracts `elt', using `proc' to compare elements of the ARPTR. Returns the
index at which the element was found.

Sorting

Sort

void ARPTR_Sort(ArPtrPtr arptr, CmpProc proc);

Sorts the ARPTR. `proc' is the procedure which will be used to compare the
elements. (See basepub.h for the definition of CmpProc). This call uses the
QuickSort algorithm which is very efficient on large arrays.

IsSorted

BoolEnum ARPTR_IsSorted(ArPtrCPtr arptrc, CmpProc proc);

Returns whether a is sorted or not according to `proc'.
158 C Programmer’s Guide

Removing Duplicates
Removing Duplicates

RemoveDupls

void ARPTR_RemoveDupls(ArPtrPtr arptr);

Removes duplicate elements in the ARPTR.

SortedRemoveDupls

void ARPTR_SortedRemoveDupls(ArPtrPtr arptr);

Removes duplicates in the ARPTR, assumes that it is sorted. This routine is
more efficient than ARPTR_RemoveDupls because duplicates are
necessarily contiguous in this case.
C Programmer’s Guide 159

Chapter ArPtr Class8
160 C Programmer’s Guide

Chapter
9 ARRay Class 9

Overview

This module defines the base implementation for all Open Interface
collection classes.

Collection classes can be:
■ Collection of possibly duplicate items

– (Bags)
■ Indexable collections of possibly duplicate items

– (Collections)
■ Collection of unduplicated items

– (Sets)
■ Sequences of items with insert and remove operations at any index in

the sequence
– (Cover dequeues, queues, stacks)

Collection classes can be:
■ Pointer-based collections:

– Only reference to objects are stored
– Copies are shallow copies
– Objects are allocated, deallocated by the application.

■ Value-based collections:
– The actual value of the object is stored
– Copies are deep copies
– Copies are allocated, deallocated by the application.

The implementation of the collection classes takes care of all internal
allocation issues. When an element is inserted, Open Interface takes care of
adjusting the size of the structures used to keep track of the items in the
collection.

In this version of Open Interface, the following generic collection classes are
offered:
■ ArPtr classes (see arptrpub.h):

– Pointer-based collection, or integer-based collections
– Duplicate or not items
– Ordered or not items
– Indexable
– Insert/remove at any index

■ ArRec classes (see arrecpub.h):
– Uniform-size value-based collections
– Duplicate or not items
– Ordered or not items
– Indexable
– Insert/remove at any index
C Programmer’s Guide 161

Chapter ARRay Class9
■ ArNum classes (see arnumpub.h):
– Uniform-size value-based collections for numeric values
– Duplicate or not items
– Ordered or not items
– Indexable
– Insert/remove at any index

Note: For compatibility reasons, this module also implements a set of
macros that allow to directly manipulate instances of ARRAY.
The programmer should avoid those macros, and use the classes
implemented in arptrpub.h, arrecpub.h and arnumpub.h.
162 C Programmer’s Guide

Chapter
10 ARRec Class 10

The ArRec module implements the generic collection of records.

Overview

 A n ArRec is a collection of possibly duplicate and possibly ordered
elements expected to be records of all the same size.

The ArRec classes handle the dynamic allocation anddeallocation of the
internal structures that keep track of the items, with a limit in number of
items being set to MAXINT32/sizeof(element) or the maximum available
memory in the system.

ArRecs grow as the number of elements stored in the array increases.

API Principle

The API is implemented in terms of macros that get compiled in the
application when a particular record collection class is defined.

The API is type-safe. If an ArRec an array of records, what is stored is
expected to be the same type of records, otherwise, compile-time warnings
will be generated.

The following compile-time types are defined:

Even though the collection classes defined through this module store object
values and not references, the API calls take references to objects as
arguments, and return references to objects.

Macros

This API provides a set of macros that can be use to declare and implement
collections of records.

ARREC_DECLARECLASS(ARREC_ELT, ARREC_KEY)

Declares the class ArRecOf<ARREC_ELT>, the collection class that keeps
track of ARREC_ELT records. The class needs to be implemented using the
ARREC_IMPLEMENTCLASS macro.

ARREC_IMPLEMENTCLASS(ARREC_ELT, ARREC_KEY)

Implements the class ArRecOf<ARREC_ELT>, which must have been
declared using ARREC_DECLARECLASS.

Type Description
ARREC Type of the array

ARREC_ELT Type of the array element

ARREC_KEY Type of the search key (must be a reference to an object).
C Programmer’s Guide 163

Chapter ARRec Class10
ARREC_DEFCLASS(ARREC_ELT, ARREC_KEY)

Declares and provides an exclusively inline implementation for the
ArRecOf<ARREC_ELT> class, the collection class that keeps track of
ARREC_ELT records.

Constructors and Destructor

Constructors

void ARREC_Construct(ArRecPtr arrec);

Default ARREC construction

void ARREC_ConstructLen(ArRecPtr arrec, ArrayIval len);

Constructs the ARREC with len elements. The contents of the ARREC is
initialized with zeros.

 Destructor

void ARREC_Destruct(ArRecPtr arrec);

Default ARREC destruction. All the records stored in the arrec are lost at
this point.

Clone, Copy, Reset

Reset

void ARREC_Reset(ArRecPtr arrec);

Resets the contents of the ARREC. After this call, the length of the ARREC
will be 0. You are responsible for freeing the elements of the ARREC.

Changing the length

SetLen

void ARREC_SetLen(ArRecPtr arrec, ArrayIVal len);

Sets the number of elements of the ARREC to len and reallocates the
contents of the ARREC if necessary. If the ARREC grows, the new elements
are initialized with zeros.

SetAlloc

void ARREC_SetAlloc(ArRecPtr arrec, ArrayIVal alloc);

Reallocates the contents of the ARREC for alloc elements if necessary but
does not change the number of elements in the ARREC.
164 C Programmer’s Guide

Global Queries
Global Queries

GetLen

ArrayIVal ARREC_GetLen(ArRecCPtr arrec);

Returns the number of elements in the ARREC.

IsEmpty

BoolEnum ARREC_IsEmpty(ArRecCPtr arrec);

Returns whether the ARREC is empty or not.

IsInRange

BoolEnum ARREC_IsInRange(ArRecCPtr arrec, ArrayIVal i);

Returns whether i is a valid index for the ARREC (in the [0, len-1] range,
where len is the length of the ARREC).

Accessing Elements

GetNthElt

ARREC_ELTPtr ARREC_GetNthElt(ArRecCPtr arrec, ArrayIVal i);

Returns the address of the element at index I. Fails if the index is not in the
[0, len-1] range.

SetNthElt

void ARREC_SetNthElt(ArRecPtr arrec, ArrayIVal i, ARREC_ELTPtr elt);

Sets the element at index I. Fails if the index is not in the [0, len-1] range.

Finding Elements

Note: The comparison procedure used for ordering purposes is specified on
a call-basis. It always takes the address of the stored object as first
argument, and a search key as second argument. The search key is a
pointer to an object (or to void), and must not necessarily be of the
same type as the reference to the stored object. You can implement
and use as many ad-hoc comparison procedures as needed. The
search (ARREC_SortedLookup and ARREC_SortedFind) uses a
binary dichotomy, which makes it efficient even on large sorted
arrays (search time grows in O(log(n))).

ContainsElt

BoolEnum ARREC_ContainsElt(ArRecCPtr arrec, ARREC_ELTPtr elt);

Returns whether or not the ARREC contains elt.
C Programmer’s Guide 165

Chapter ARRec Class10
LookupElt

ArrayIVal ARREC_LookupElt(ArRecCPtr arrec, ARREC_ELTCPtr elt);

Returns the index of the first occurrence of elt in the ARREC. Returns -1 if
the ARREC does not contain elt.

FindEltArrayIVal ARREC_FindElt(ArRecCPtr arrec, ARREC_ELTCPtr elt);

Same as ARREC_Lookup routine but signal a failure if elt.

SortedLookupElt

BoolEnum ARREC_SortedLookupElt(ArRecCPtr arrec, CmpProc proc, ARREC_KEY key,
ArrayIValPtr result);

Searches element which matches key in the ARREC. the ARREC must be
sorted in increasing order according to proc. Proc will be called as
(proc)(addr, key) to determine how the elements of the ARREC compare
with key. Addr is the address of an element in the ARREC.

Returns BOOL_TRUE and sets result to the index of the matching entry if a
match is found.

If no match is found, returns BOOL_FALSE and result is set to the index at
which key should be inserted if we had to insert it in the sorted ARREC.

SortedFindElt

ArrayIVal ARREC_SortedFindElt(ArRecCPtr arrec, CmpProc proc, ARREC_KEY key);

Searches element which matches key in the ARREC.

The ARREC must be sorted in increasing order according to proc. Proc will
be called as (proc)(addr, key), where addr is the address of an element in the
ARREC, to determine how the entries in the ARREC compare with key.

This routine returns the index of the element where the mach occurred. If no
match is found, this routine signals a failure.

Adding elements

AppendElt

void ARREC_AppendElt(ArRecPtr arrec, ARREC_ELTPtr elt);

Adds elt at the end of the ARREC. Does not modify the indices of the other
elements in the ARREC. The length of the ARREC increases by one.

UniqAppendEltvoid ARREC_UniqAppendElt(ArRecPtr arrec, ARREC_ELTPtr elt);

Appends elt to the ARREC if elt is not already in the ARREC.

InsertNthElt

void ARREC_InsertNthElt(ArRecPtr arrec, ArrayIVal i, ARREC_ELTPtr elt);

Inserts elt at index I. The elements which were at index i or greater are
moved one index further in the ARREC.

The relative order of the ARREC elements is preserved by this call.
166 C Programmer’s Guide

Removing Elements
SortedInsertEltArrayIVal ARREC_SortedInsertElt(ArRecPtr arrec, CmpProc proc,
ARREC_ELTPtr elt);

Insert elt, using proc to compare addresses of the ARREC elements. Returns
the index at which the element was inserted. This call only applies to
ARRECs of structures or scalars.

SortedUniqInsertElt

ArrayIVal ARREC_SortedUniqInsertElt(ArRecPtr arrec, CmpProc proc,
ARREC_ELTPtr elt);

Same as Sorted calls but do not insert if the element is already in the ARREC.
Return the index at which the element was inserted or found.

Removing Elements

RemoveNthElt

void ARREC_RemoveNthElt(ArRecPtr arrec, ArrayIVal i);

Removes the element at index I. In case i is not the last index, the last
element is moved to index i, so this routine does not preserve the ordering
of the elements in the ARREC. ARREC_ExtractNthElt preserves the
ordering but is less efficient.

RemoveElt

void ARREC_RemoveElt(ArRecPtr arrec, ARREC_ELTPtr elt);

Removes the first occurrence of elt in the ARREC. Element elt must be in the
ARREC. This call does not preserve the ordering of the elements in the
ARREC.

ExtractNthEltvoid ARREC_ExtractNthElt(ArRecPtr arrec, ArrayIVal i);

Removes the element at index I. This call preserves the relative ordering of
the ARREC elements.

ExtractEltvoid ARREC_ExtractElt(ArRecPtr arrec, ARREC_ELTPtr elt);

Same as corresponding ARREC_Remove calls but preserve the relative
ordering of the elements in the ARREC.

SortedExtractEltArrayIVal ARREC_SortedExtractElt(ArRecPtr arrec, CmpProc cmp,
ARREC_ELTPtr elt);

Extracts elt, using proc to compare elements of the ARREC. Returns the
index at which the element was found.

Sorting

Sort

void ARREC_Sort(ArRecPtr arrec, CmpProc proc);

Sorts the ARREC by passing the address of the elements instead of the
elements themselves to the comparison routine.
C Programmer’s Guide 167

Chapter ARRec Class10
IsSorted

BoolEnum ARREC_IsSorted(ArRecCPtr arrecc, CmpProc proc);

Returns whether a is sorted or not according to proc.

Removing Duplicates

RemoveDupls

void ARREC_RemoveDupls(ArRecPtr arrec);

Removes duplicate elements in the ARREC.

SortedRemoveDupls

void ARREC_SortedRemoveDupls(ArRecPtr arrec);

Removes duplicates in the ARREC, assumes that it is sorted. This routine is
more efficient than ARREC_RemoveDupls because duplicates are
necessarily contiguous in this case.
168 C Programmer’s Guide

Chapter
11 Avl Class 11

 This module implements the "Balanced Binary Tree" data structure.

Overview

This data structure is particularly adapted to hold a sorted collection of
objects, especially when insertions, extractions and searches will be
frequently performed and when the number of objects in the collection
cannot be known in advance.

Some data structures (i.e. hash tables) may be more efficient for certain
operations (i.e. search) but the balanced binary tree is a good compromise in
which the three major operations (search, insertion and extraction) are
reasonably efficient.

In a AvlTree (as implemented in this module), every node of the tree holds
a key and may have two children nodes. The nodes belonging to the left
branch of node N, if any, hold keys which are smaller than the key of N and
the nodes belonging to its right branch, if any, hold keys which are larger
than the key of N.

In addition, the tree is balanced, which means that the tree is reorganized
when nodes are inserted or deleted so that on every node, the depths of the
left and right branches do not differ by more than one. This rebalancing
slows down insertion and extraction operations but guarantees that
subsequent searches will be quasi optimal (searches will usually be
necessary before insertions, so insertion performance is at stake too).

The API is organized around two data structures:

A AvlNode represents a node of the binary tree. A AvlTree represents the
whole tree. It contains global information about the tree as well as a pointer
to the root node.

The AvlNode structure is public so that you may subclass it and create a
AvlTree of MyNode nodes (derived from AvlNode).

Data Structures

The following structure is mostly used to communicate information
between AVL_TreeLookupKey and AVL_TreeInsertNode.

NDAvlTreePos

Data structure describing a position in a AvlTree. .

Identifiers Descriptions
Nearest closest node found

NearCmp how close the closest node is
C Programmer’s Guide 169

Chapter Avl Class11
AvlTree and AvlNode Classes

The AvlTree class is the base class for AVL trees; the AvlNode class is the
base class for nodes in an AVL tree.

AvlNode Class

Constructors and Destructor

Alloc

AvlNodePtr AVL_Node(void);

Default allocator. It returns a pointer to an allocated AvlNode. The AvlNode
is at this point not yet constructed.

Constructors

void AVL_NodeConstruct(AvlNodePtr avlnode);

Default construction.

void AVL_NodeConstructKey(AvlNodePtr avlnode, ClientPtr key);

Constructs the node, and assigns ’key’ to be its key.

Destructor

void AVL_NodeDestruct(AvlNodePtr avlnode);

Default destructor for AvlNodes.

Dealloc

void AVL_NodeDealloc(AvlNodePtr avlnode);

Deallocates the AvlNode. The AvlNode should have been destructed first.

Convenience Functions

These functions are provided for allocation and construction, destruction
and deallocation.

NodeNewSetKey

AvlNodePtr AVL_NodeNewSetKey(ClientPtr key);

Creates a new AvlNode with `key' as key.

NodeDispose

void AVL_NodeDispose(AvlNodePtr avlnode);

Destroys `avlnode'. The contents of the AvlNodeKey field will not be
disposed by this call and should be disposed (if necessary) just before
issuing this call.
170 C Programmer’s Guide

Accessing the AvlNode Key
Accessing the AvlNode Key

SetKey

void AVL_NodeSetKey(AvlNodePtr avlnode, ClientPtr key);

Changes the key in the AvlNode object. Normally you should set the key at
the construction time, but you may want to use this call if you want to set
the AvlNode as its own key, which may be interesting if you have
subclassed the AvlNode and if the key information is in one (or several) of
the subclasses fields. You are not allowed to use this call once the AvlNode
has been inserted in the AvlTree.

GetKey

ClientPtr AVL_NodeGetKey(AvlNodeCPtr avlnode);

Returns the key stored in the AvlNode object.

Scanning AvlNodes

GetPrev
GetNext

AvlNodePtr AVL_NodeGetPrev(AvlNodePtr avlnode);

AvlNodePtr AVL_NodeGetNext(AvlNodePtr avlnode);

Return previous and next avlnode (sorted according to key comparison
proc).

GetParent
GetLeftChild
GetRightChild

AvlNodePtr AVL_NodeGetParent(AvlNodePtr avlnode);

AvlNodePtr AVL_NodeGetLeftChild(AvlNodePtr avlnode);

AvlNodePtr AVL_NodeGetRightChild(AvlNodePtr avlnode);

Return respectively the parent, left child or right child AvlNode of the
current node.

GetFirstLeaf
GetLastLeaf

AvlNodePtr AVL_NodeGetFirstLeaf(AvlNodePtr avlnode);

AvlNodePtr AVL_NodeGetLastLeaf(AvlNodePtr avlnode);

Return respectively the leftmost and rightmost descendant node of the
AvlNode
C Programmer’s Guide 171

Chapter Avl Class11
AvlTree Class

Constructors and Destructor

Alloc

AvlTreePtr AVL_TreeAlloc(void);

Returns a pointer to an allocated AvlTree. The Avl tree is at this point not
yet constructed.

Constructors

void AVL_TreeConstruct(AvlTreePtr avltree);

Default constructor for Avl trees.

void AVL_TreeConstructCmpProc(AvlTreePtr avltree, CmpProc cmp);

Constructs the Avl tree with ’cmp’ as the key comparison procedure. It will
be called as follows:

cmp = (*proc)(key1, key2)

key1 and key2 will be two keys (either AvlNodeKey field of a AvlNode or
the key argument passed to AVL_TreeCurFindKeyKey or
AVL_TreeLookupKey).

Destructor

void AVL_TreeDestruct(AvlTreePtr avltree);

Default destructor for Avl trees.

Dealloc

void AVL_TreeDealloc(AvlTreePtr avltree);

Default deallocation for an AvlTree.

Queries

GetLen

AvlIVal AVL_TreeGetLen(AvlTreeCPtr avltreec);

Returns the number of nodes in the tree.

GetFirstNode
GetLastNode

AvlNodePtr AVL_TreeGetFirstNode(AvlTreeCPtr avltreec);

AvlNodePtr AVL_TreeGetLastNode(AvlTreeCPtr avltreec);

Return the first/last AvlNodes in the tree (sorted according to the key
comparison proc).
172 C Programmer’s Guide

Propagating an Action
CurFindKeyKey

AvlNodePtr AVL_TreeCurFindKeyKey(AvlTreePtr avltree, ClientCPtr key);

This call returns the AvlNode which matches ’key’ and fails if no node
matches key.

LookupKey

AvlNodePtr AVL_TreeLookupKey(AvlTreePtr avltree, ClientCPtr key,
AvlTreePosPtr pos);

This call returns the AvlNode which matches ’key’ if ’key’ is already in the
Avltree, NULL otherwise. If ’pos’ is not NULL, *pos describes the node next
to where ’key’ should be inserted. This information may be passed to
AVL_TreeInsertNode.

InsertNode

void AVL_TreeInsertNode(AvlTreePtr avltree, AvlNodePtr avlnode, AvlTreePosPtr pos);

This call inserts ’avlnode’ in the Avltree at position ’pos’ which should have
been obtained through a call to AVL_TreeLookupKey. This call rebalances
the tree if necessary.

ExtractNode

void AVL_TreeExtractNode(AvlTreePtr avltree, AvlNodePtr avlnode);

This call extracts ’avlnode’ from ’avltree’. This call rebalances the tree if
necessary.

Propagating an Action

PerfProc

PerfEnum AVL_TreePerfProc(AvlNodeCPtr avlnode, ClientPtr arg);

Callback function used when propagating an action.

PropagateAction

PerfEnum AVL_TreePropagateAction(AvlTreeCPtr avltreec, AvlTreePerfProc proc,
ClientPtr arg);

Calls

ret = (*proc)(avlnode, arg)

for each ’avlnode’ in the tree, as long as ’ret’ is PERF_CONTINUE. The
nodes will be visited in the order defined by the key comparison proc.
Propagating an action with this call is usually more efficient than iterating
through the nodes with AVL_NodeGetNext.

 Current Node API

The original design of the AvlTree API was oriented around the concept of
a "current node," like many other Open Interface APIs (i.e. list box). Our
experience with this API (and others) demonstrated that although this type
of API has advantages (separation between queries and actions), it is
C Programmer’s Guide 173

Chapter Avl Class11
somewhat heavy and unnatural to use. Also, the fact that there is only one
current node complexifies the coding when queries on related nodes need
to be done in the middle of an iteration loop (cursor contention).

So, the new API described above is more classic, but we have kept a
cursor-oriented API for compatibility.

In this API, the current node of a AvlTree may be positioned through calls
to AVL_TreeGoFirstNode routines, or by calling AVL_TreeCurFindKey.
Then, the current node may be queried by calling AVL_TreeCurGetNode.
The AVL_TreeCurInsertNode and AVL_TreeCurExtractNode routines are
cursor-oriented version of AVL_TreeInsertNode and
AVL_TreeExtractNode.

GoFirstNode
GoLastNode

void AVL_TreeGoFirstNode(AvlTreePtr avltree);

void AVL_TreeGoLastNode(AvlTreePtr avltree);

Positions the current node on the first or last node of the tree (sorted
according to the key comparison proc).

GoPrevNode
GoNextNode

void AVL_TreeGoPrevNode(AvlTreePtr avltree);

void AVL_TreeGoNextNode(AvlTreePtr avltree);

Changes the current node to the previous/next node. The current node
becomes NULL when these calls are applied to the first/last nodes of the
tree.

GoNode

void AVL_TreeGoNode(AvlTreePtr avltree, AvlNodePtr avlnode);

Sets the current node to be ’avlnode’ (which must belong to the AvlTree).

CurGetNode

AvlNodePtr AVL_TreeCurGetNode(AvlTreeCPtr avltreec);

Returns the current AvlNode in the tree. The current node must have been
previously positioned by a call to AVL_TreeGoFirstNode, ..., or by a call to
AVL_TreeCurFindKey.

CurGetNearestNode

AvlNodePtr AVL_TreeCurGetNearestNode(AvlTreeCPtr avltree, CmpEnumPtr cmpp);

This call should be issued after a call to AVL_TreeCurFindKey and returns
the node which is nearest to the key passed to AVL_TreeCurFindKey.
*cmpp is set to CMP_EQUAL if the node matches the key exactly, to
CMP_UNDER or CMP_OVER otherwise to indicate how the nearest node
is positioned relative to the key.
174 C Programmer’s Guide

Current Node API
CurFindKey

AvlNodePtr AVL_TreeCurFindKey(AvlTreePtr avltree, ClientCPtr key);

Searches `key' in the AvlTree. This call sets the current node to the node
matching `key', to NULL if `key' is not already in the AvlTree. Information
about the "nearest" node may also be obtained by calling
AVL_TreeCurGetNearestNode after this call.

CurInsertNode

void AVL_TreeCurInsertNode(AvlTreePtr avltree, AvlNodePtr avlnode);

Inserts `avlnode' in the AvlTree. A call to AVL_TreeCurFindKey MUST
have been done just before this call. `avlnode' becomes the current node of
the tree.

CurExtractNode

void AVL_TreeCurExtractNode(AvlTreePtr avltree);

Extracts a node from the AvlTree. A call to AVL_TreeCurFindKey MUST
have been done just before.
C Programmer’s Guide 175

Chapter Avl Class11
176 C Programmer’s Guide

Chapter
12 Base Class 12

The Base class implements a number of basic Open Interface tools, macros,
and data structures.

Technical Summary

The Base is an unusual class in that it is mostly enumerated types and
macros that are used throughout the Open Interface libraries. The class is
composed of tools for booleans, comparisons, debugging, memory
manipulation, general enumerated types, and miscellaneous macros and
constants.

Of those groupings, only the debugging and memory manipulation macros
are unusual. In the debugging tools, there are macros that will aid in setting
up a debugging environment. This includes debugging flags, generating
code only when debugging flags are on, indicating the file name and line
number that source is on, not implemented yet tools, and assertion
checking.

The memory manipulation tools are designed to work on a contiguous
block of memory. This includes API’s to clear, copy, move or set a block of
memory.

The Base class is divided into the following categories.
■ Standard constant definitions
■ Debugging
■ Memory manipulation
■ Maximum integer values
■ Miscellaneous Enumerated Types
■ Miscellaneous Macros.

See also:

Mch, Str classes.

Basic Data Types

Double
Long

Defines portable data types for long integers and double floats.
C Programmer’s Guide 177

Chapter Base Class12
Portable data types for long integers and double floating point numbers.
These data types are described below:

Use these data types to insure cross platform portability.

Int
Int8
Int16
Int32
Int64

Data types for integers. These data types are described below:

See also

UInt/UInt8/UInt16/UInt32

UInt
UInt8
UInt16
UInt32
UInt64

Data types for unsigned integers.

These data types are described below:

Identifier Description
Long 4-byte integer.

Double Double floating point number (usually 8 bytes, but this is machine
dependent).

Identifier Description
Int Same as int (you cannot assume that an int can hold more than 16

bits if you want your code to be portable).

Note: On the Macintosh, it is defined as “short” for the THINK C
environment. This lets you use the 4-byte integers option in your
project and still call Open Interface libraries built with the 2-byte
option.

Int8 8 bit integer (may be 16 bits if compiler does not support signed
keywords

Int16 16 bit integer

Int32 32 bit integer

Int64 64 bit integer (not supported by all operating systems).

Identifier Description
UInt Unsigned integer (may be 16 or 32 bits).

UInt8 8 bit unsigned integer

UInt16 16 bit unsigned integer

UInt32 32 bit unsigned integer

UInt64 64 bit unsigned integer (not supported by all operating systems)
178 C Programmer’s Guide

Basic Data Types
See also

Int/Int8/Int16/Int32

MAXINT8
MAXINT16
MAXINT32
MAXINT64
MAXUINT8
MAXUINT16
MAXUINT32
MAXUINT64

Maximum integer and unsigned integer constants.

These constants represent the maximum values for each of the signed and
unsigned integer types.

If you want the minimum value of each of these types, use the negative of
these constants for the signed types and zero for the unsigned types.

ClientPtr

Pointer that can contain 32 bits or less of client information.

typedef void C_FAR * ClientPtr;

ClientPtr is a data type for storing 32 bits or less of client information. On
64 bit machines with the appropriate operating system, ClientPtr can be a 64
bit item.

It is perfectly legal to use ClientPtr to hold any pointer or any integer type.

If you store less than 32-bit integer values in a ClientPtr, you must use the
following typecasting to avoid warnings on PC compilers:

ClientPtr x;
Int16 y;
x = (ClientPtr)y;// no problem with Int16
y = (Int16)(Int32)x;// cast with (Int32) to avoid warning.

See also

 Res Ptr

Identifier Description
MAXINT8 Maximum 8 bit signed integer (127).

MAXINT16 Maximum 16 bit signed integer (32,767).

MAXINT32 Maximum 32 bit signed integer (2,147,483,647).

MAXINT64 Maximum 64 bit signed integer (2,147,483,647). Not supported by
all operating systems, specifically DOS.

MAXUINT8 Maximum 8 bit unsigned integer (255).

MAXUINT16 Maximum 16 bit unsigned integer (65535).

MAXUINT32 Maximum 32 bit unsigned integer (4,294,967,295).

MAXUINT64 Maximum 64 bit unsigned integer (4,294,967,295). Not supported
by all operating systems, specifically DOS.
C Programmer’s Guide 179

Chapter Base Class12
HugePtr

Data type for a huge pointer.

typedef void C_HUGE *HugePtr;

This type of pointer is only required if you are porting to the PC (MS
Windows or PM) and require structures larger than 64K.

On the PC, most buffers are less than 64K and therefore fit into a single
segment. Most of the library functions (from Open Interface or from your
compiler) make the assumption that all pointers arguments are contained in
one segment.

Huge buffers can cross over segment boundaries and therefore require
special functions to handle operations on them; if you are doing pointer
arithmetic on those buffers (like p++), it is also necessary to declare the
pointers as huge.

The memory manager has a 16 bytes overhead.

See also

HugeStr, HUGELIMIT

Byte
BytePtr

Pointer and data type for a byte.

BytePtr is a pointer to Byte, which is an unsigned 8-bit quantity.

When working with binary data, you should use the void*, Byte or BytePtr
types. To work with strings, use the Char or Str types.

See also

Char, Str

HugeStr

Pointer to a huge string

HugeStr is a pointer to a huge string. This type of pointer is only required
if you are porting to the PC (MS Windows or PM) and require structures
larger than 64K.

On the PC, most buffers are less than 64K and therefore fit into a single
segment. Most of the library functions (from Open Interface or from your
compiler) make the assumption that all pointers arguments are contained in
one segment.

Huge buffers can cross over segment boundaries and therefore require
special functions to handle operations on them; if you are doing pointer
arithmetic on those buffers (like p++), it is also necessary to declare the
pointers as huge.

The memory manager has a 16 bytes overhead.

See also

 HugePtr, HUGELIMIT
180 C Programmer’s Guide

BoolEnum
HUGELIMIT

Defines an upper limit for a non-huge pointer.

HUGELIMIT is a constant defining an upper limit for a non-huge pointer.

See also

HugePtr, HugeStr

BoolEnum

BoolEnum

Defines boolean values.

BoolEnum is the constant indicating a boolean (true or false) value. Many
Open Interface routines return a code of this type.

You can take advantage of the specific values of BOOL_FALSE and
BOOL_TRUE through the use of the BOOL_OF macro.

BOOL_OF

Converts an integer to a boolean.

BoolEnum BOOL_OF (Int number);

BOOL_OF converts the number passed to a boolean and returns a
BoolEnum. It considers all integers not equal to zero to be BOOL_TRUE and
all integers equal to zero to be BOOL_FALSE.

BOOL_OF is defined as:

#define BOOL_OF(b) ((b) ? BOOL_TRUE : BOOL_FALSE)

CpyEnum

CpyEnum

Defines codes for the result of a copy process.

CpyEnum is the enumerated type indicating the result of a copy process.
Copy processes may be either successful or have to truncate part of the
result. This enumerated type is indicating which took place.

Identifier Description
BOOL_FALSE False.

BOOL_TRUE True.

Identifier Description
CPY_OK Copy was successful.

CPY_TRUNC Truncation occurred during copy.
C Programmer’s Guide 181

Chapter Base Class12
CmpEnum

CmpEnum

Defines codes for the result of a comparison.

CmpEnum is an enumerated type indicating the result of a comparison.
Comparisons yield one of three results: a > b, a < b and a = b. This
enumerated type is used to indicate which took place.

INT_Compare

Compares two integers and returns a CmpEnum to indicate the result.

CmpEnum INT_Compare (Int number1, Int number2);

IINT_Compare compares number1 to number2 and returns a CmpEnum to
indicate the result. If number1 is less than number2 then CMP_UNDER is
returned. If number1 is greater than number2 then CMP_OVER is returned.
If number1 is equal to number2 then CMP_EQUAL is returned.

INT_Compare will work for any numeric type.

INT_Compare is defined as:

#define INT_Compare(a, b) (((a) < (b)) ? CMP_UNDER : (((b) <
(a)) ?

CMP_OVER : CMP_EQUAL))

INT_ToCmp

Converts the integer passed into a CmpEnum.

CmpEnum INT_ToCmp (Int number);

INT_ToCmp converts the number passed into a CmpEnum. All integers
that are greater than 0 are CMP_OVER. Those equal to zero are
CMP_EQUAL. And those less than zero are CMP_UNDER.

INT_ToCmp will also work for non-integer numerics as well.

INT_ToCmp is defined as:

#define INT_ToCmp(i) ((i) > 0) ? CMP_OVER : (((i) == 0) ?
CMP_EQUAL :

CMP_UNDER)

PerfEnum

PerfEnum

Defines codes for how a routine should propagate an action.

Identifier Description
CMP_UNDER First entity was shorter/smaller/less than second entity.

CMP_EQUAL Entities were equal.

CMP_OVER First entity was longer/larger/greater than second entity.
182 C Programmer’s Guide

VertEnum and HorzEnum
PerfEnum is the enumerated type indicating whether an action should be
propagated or not.

See also

WinPerfProc

CmpProc

Type definition for comparison functions.

CmpProc is the type definition for a comparison function that you will
write. Your function must be formally declared the same as this type
definition. Your function will return a CmpEnum as the result of the
comparison performed on the two ClientPtr’s passed.

See also

CmpEnum

VertEnum and HorzEnum

HorzEnum

Defines codes for the horizontal direction.

HorzEnum is the enumerated type indicating horizontal direction. Possible
directions are left and right.

VertEnum

Defines codes for vertical direction.

VertEnum is the enumerated type indicating vertical direction. Possible
directions are up and down.

Version Enum

VersEnum

Defines codes for version numbers.

Identifier Description
PERF_STOP Stop propagation.

PERF_CONTINUE Continue propagation.

Identifier Description
HORZ_LEFT Horizontal direction to the left.

HORZ_RIGHT Horizontal direction to the right.

Identifier Description
VERT_UP Vertical upward direction.

VERT_DOWN Vertical downward direction.
C Programmer’s Guide 183

Chapter Base Class12
VersEnum is the enumerated type indicating the version numbers.

Debugging Macros

DBG_CHECK

Signals a failure if an expression is false.

void DBG_CHECK (xpr);

DBG_CHECK is a debugging macro used to determine whether an
expression is valid. If the expression is true, nothing will happen. If the
expression is false, DBG_CHECK will signal a failure. This macro is only
active if DBG_ON is defined.

DBG_CHECK is defined as:

#ifdef DBG_ON
#define DBG_CHECK(t) ERR_CHECK(t)

See also

 DBG_CHECKSTR, DBG_ERROR, DBG_FILE, DBG_LINE, DBG_NIY,
DBG_ON, DBG_SOURCE

DBG_CHECKSTR

Signals a specific failure and generates a message if an expression is false.

#ifdef DBG_ON
define DBG_CHECKSTRERR_CHECKSTR (xpr, str)
#else
define DBG_CHECKSTR (xpr, str)
#endif

DBG_CHECKSTR is a debugging macro used to determine whether an
expression is valid. If the expression is true, nothing will happen. If the
expression is false, DBG_CHECKSTR will signal a failure and generate the
error message:

assertion <str> failed file ... line ...

This macro is only active if DBG_ON is defined.

DBG_CHECKSTR is identical to DBG_CHECK but should be used in the
special case when xpr is too long to fit on one line or it contains a quote (")
symbol.

See also

DBG_CHECK, DBG_ERROR, DBG_FILE, DBG_LINE, DBG_NIY,
DBG_ON, DBG_SOURCE

DBG_ERROR

Invokes ERR_FailAssert with the current file name and line number.

Identifier Description
VERS_MAJOR Major version number.

VERS_MINOR Minor version number.
184 C Programmer’s Guide

Debugging Macros
#ifdef DBG_ON
define DBG_ERRORERR_FailError ((str) DBG_FILE,
DBG_LINE)
#else
define DBG_ERROR
#endif

DBG_ERROR is used to invoke an error. It makes a call to ERR_FailAssert
with the current file name and line number (DBG_FILE and DBG_LINE).

One of the more effective places to use DBG_ERROR is in the default case of
a switch statement. If you know that the default should never be reached,
place a DBG_ERROR to signal a failure.

See also

DBG_CHECK, DBG_FILE, DBG_LINE, DBG_NIY, DBG_ON,
DBG_SOURCE

DBG_FILE
DBG_LINE

Determines the current file name and line number.

DBG_FILE and DBG_LINE are define as the compiler directives __FILE__
and __LINE__, respectively. Use them to determine the current file name
and line number for the line they are called from.

See also

 DBG_CHECK, DBG_ERROR, DBG_NIY, DBG_ON, DBG_SOURCE

DBG_NIY

Signals a warning to the error handler.

#ifdef DBG_ON
define DBG_NIYERR_WarnNiy ((str)DBG_FILE, DBG_LINE)
#else
define DBG_NIY
#endif

DBG_NIY signals a warning to the error handler. If the default error
handler is installed, a dialog will appear on the screen indicating that that
routine is not implemented yet. This macro does not signal a failure, only a
warning.

See also

DBG_CHECK, DBG_ERROR, DBG_FILE, DBG_LINE, DBG_ON,
DBG_SOURCE

DBG_ON

Defines whether the debugging/assertion macros are active.

Statement Description
DBG_FILE Current file name.

DBG_LINE Current line number.
C Programmer’s Guide 185

Chapter Base Class12
DBG_ON;

DBG_ON needs to be defined in the command line or in the makefile for
your compiler. This flag needs to be set if you want the
debugging/assertion monitoring macros to be active. You set DBG_ON by
passing it to the compiler.

For the THINK_C compiler on the Macintosh, you must define DBG_ON in
the mchpub.h header file since there is no command line interface.

See also

DBG_CHECK, DBG_ERROR, DBG_FILE, DBG_LINE, DBG_NIY,
DBG_SOURCE

DBG_REQUIRE

Checks that assertion t is true.

#ifdef DBG_ON
define DBG_REQUIRE (t, msg)if (! (t)) ERR_Fail
(S_ModuleName, msg)
DBG_LINE)
#else
define DBG_REQUIRE (t, msg)
#endif

If assertion fails, it generates a failure with message #num loaded from
current module S_ModuleName (see errpub.h).

DBG_SCCS

Holds the SCCS (Source Code Control System) name and version number of
a file.

DBG_SCCS (str)

Macro to hold the SCCS (Source Code Control System) name and version
number of a file.

See also

DBG_FILE, DBG_LINE, DBG_CHECK(expr), DBG_ERROR, DBG_NIY,
DBG_SOURCE

DBG_SOURCE

Activates source code if DBG_ON is defined.

DBG_SOURCE (source code source);

When DBG_ON is defined, the DBG_SOURCE macro is evaluated into the
source indicated. When DBG_ON is not defined, DBG_SOURCE evaluates
to nothing.

DBG_SOURCE is defined as:

#ifdef DBG_ON
#define DBG_SOURCE(code) code
#else
#define DBG_SOURCE(code)
#endif
186 C Programmer’s Guide

Exit Status
See also

DBG_CHECK, DBG_ERROR, DBG_FILE, DBG_LINE, DBG_NIY, DBG_ON

Exit Status

EXIT_FAIL
EXIT_OK

Returned by the “main” function to indicate whether it has completed
successfully.

Flags that should be returned by the “main” function to indicate whether it
has completed successfully.

Although ANSI defines 2 similar constants (EXIT_SUCCESS and
EXIT_FAILURE), these constants are used differently on VMS, so use
EXIT_OK and EXIT_FAIL instead for maximum portability.

BASE_NOMINMAX

Allows overriding of the MIN, MAX, EVEN, ODD, and ABS macros.

ifndef BASE_NOMINMAX

#ifdef MIN
#undef MIN
#endif

#ifdef MAX
#undef MAX
#endif

#ifdef EVEN
#undef EVEN
#endif

#ifdef ODD
#undef ODD
#endif

#ifdef ABS
#undef ABS
#endif

#define MIN (x, y) ((x) < (y) ? (x) : (y))
#define MAX (x, y) ((x) > (y) ? (x) : (y))

#define EVEN (x) (((x) % 2) == 0)
#define ODD (x) (((x) % 2) != 0)

#define ABS (x) ((x) >= 0 ? x : - (x))

#endif /* BASE_NOMINMAX */

BASE_NOMINMAX is a flag that allows you to override the MIN, MAX,
EVEN, ODD, and ABS macros. You might want to set this flag if you have
a conflict with other definitions by the same name that are included after the
basepub.h file. If set, the definitions for MIN, MAX, EVEN, ODD, and ABS
override any previous definitions for these identifiers.

See also

MIN, MAX, EVEN, ODD, ABS
C Programmer’s Guide 187

Chapter Base Class12
Miscellaneous Basic Macros

ABS

Computes the absolute value of an integer.

Int ABS (integer number);

ABS takes a number and returns the same number if the number is positive
and returns the negative of the number if it is negative.

ABS will work on any integer type and many other numerics.

ABS is defined as:

#define ABS(x) ((x) >= 0 ? x : -(x))

C_INITOFFSET
C_OFFSET

Provides the offset in a C structure.

C_OFFSET is a macro for the offset in a C structure. Use it instead of offsetof
to avoid problems with unsigned integer arithmetic.

C_INITOFFSET is the same macro, but without the (int) cast. Use it for static
initializations only. This was mainly introduced due to a MPW 3.2 bug.

EVEN

Determines whether an integer is even.

BoolEnum EVEN (Int number);

EVEN determines whether the number passed is even. It returns
BOOL_TRUE if it is even and BOOL_FALSE if it is odd.

EVEN is defined as:

#define EVEN (x) ((((x) % 2) == 0) ? BOOL_TRUE : BOOL_FALSE)

MAX

Returns the greater of the two numbers passed.

Int MAX (numeric number1, numeric number2);

MAX returns the greater of two numbers passed.

MAX is defined as:

#define MAX(x, y) ((x) > (y) ? (x) : (y))

MIN

Returns the lesser of the two numbers received.

Int MIN (numeric number1, numeric number2);

MIN returns the lesser of number1 and number2. This macro will work for
any numeric data type.

MIN is defined as:

#define MIN(x, y) ((x) < (y) ? (x) : (y))
188 C Programmer’s Guide

Miscellaneous Basic Macros
NULL

Null value for pointers.

#ifdef NULL
undef NULL
#endif

#ifdef (C_ISANSI) && !defined (_WATCOMC_)
define NULL ((void*)0)
#else
define NULL0
#endif

NULL is the null or empty value for pointers.

ODD

Determines whether an integer is odd.

BoolEnum ODD (integer number);

ODD determines whether the number passed is odd. It returns
BOOL_TRUE if it is odd and BOOL_FALSE if it is even.

ODD is defined as:

#define ODD (x) ((((x) % 2) != 0) ? BOOL_TRUE : BOOL_FALSE)
C Programmer’s Guide 189

Chapter Base Class12
190 C Programmer’s Guide

Chapter
13 BBuf Class 13

Overview

This class provides a portable and very efficient way to read/write binary
data from/to a memory buffer or a file.

It is extremely portable since it can accomodate any byte order (i.e. order of
bytes inside an integer) in both the source (a file or a memory buffer) and
the destination (machine-specific representation).

Examples:
■ In a GIF file, numeric values are always stored in LSB format (Least

Significant Byte first)
■ In a TIFF file, numeric values are stored in either MSB or LSB format.

The actual format is stored as a special flag at the beginning of the file.

In all these cases, you also have to consider what the natural order is on your
machine (LSB format on Intel-based machines, MSB format on Sun, Mac,
HP, IBM RS/6000, ..).

The main design issue in this class is to provide the kind of flexibility
described above while preserving a reasonable performance.

[A] Paging Mechanism and Data Source

Rather than invoking the native File I/O routines for every read/write
operation, it is usually faster to work on a local buffer and to read/write the
buffer from/to the file only when necessary. This is known as a paging
mechanism.

Using a paging mechanism has another advantage since it allows the same
API to be used for data loaded from a file, or from a memory buffer, or from
any other source (like an inter-process communcation or a database query).
All the source-specific functions are defined as call-back methods. You can
adapt this code by choosing between several pre-defined sets of methods or
by implementing your own custom methods.

Examples:
■ If all the data is already loaded in a memory buffer (which should be a

BytePtr), you can just make BBuf point to this buffer. Your code will
look like this:

#define BBUF_ENDIAN BBUF_ENDIANNATIVE
#define BBUF_OPTNOPAGING
#include <bbufpub.h>
 static void S_ParseBuf L2(BytePtr, buf, Int, buflen)
{

NdBBuf bbuf(buf, buflen);
Int8 int8;
Int16 int16;
Uint32 uint32;
bbuf->ReadInt8(&int8);
bbuf->ReadInt16(&int16);
C Programmer’s Guide 191

Chapter BBuf Class13
bbuf->ReadUInt32(&int32);
S_DoSomething(int8, int16, uint32); ..

}

■ If the input source is a file but you do not want to load the whole file
into memory, you should open the file and make the BBuf point to the
file:

#define BBUF_ENDIAN BBUF_ENDIANBIG
#include <filepub.h>
#include <bbufpub.h>
 static void S_ParseFile L1(Str, name)
{

FilePtr file = new NdFile(name);
Uint32\ uint32;
file->Open(FILE_IOREAD, FILE_FMTBINARY);
NdBBuf bbuf(file, 1, 512);
bbfuf->ReadInt32(&uint32);
S_DoSomething(uint32); ..
file->Close();
delete file;

}

■ If the data does not come from a file but from some other input source
(from inter-process communication for instance), you can install your
own methods. Your code will look like this:

#define BBUF_ENDIAN BBUF_ENDIANNATIVE
#include <bbufpub.h>

static BBufMethodsRec S_ChannelMethods = {
S_ChannelSeek,
S_ChannelRead,
S_ChannelWrite,
S_ChannelFlush,
S_ChannelEnd

};

 static void S_ReadChannel L1(MyChannelPtr, channel)
{

NdBBu bbuf((ClientPtr)channel);
Uint32 uint32;
bbuf->SetMethods(&S_ChannelMethods);
..
bbuf->ReadUInt32(&uint32);
S_DoSomething(uint32); ..

}

[B] Data Format

In the general case, it is not always possible to read numeric values from a
file with a simple C assignment between integers. There are 2 things which
can prevent it:

4. File endianity:

When reading multi-bytes integers (Int16, Int32, UInt16 or UInt32), the
order of the bytes in a file is not necessary the same as what the machine
architecture expects. For instance, Windows bitmap files are always in
Little-Endian format (also known as MSB: the Least Significant Byte is
stored first). If the local machine architecture is also Little-Endian, then
no conversion will be necessary. However if the current machine
architecture is Big-Endian (or MSB: Most Significant Byte first), then
numeric values need to be converted (bytes are swapped).

5. Data alignment:

Some machine architectures request that 2-bytes integers be always
stored in memory at an even address and that 4-bytes integers be
192 C Programmer’s Guide

BBuf Class
always stored at an address which is a multiple of 4. This alignment
constraint allows the Arithmetic & Logic Unit to perform some
optimization on arithmetic operations. Unfortunately, this means that
you can not read an integer value with a single C assignment if the
value is not aligned on a normal boundary. This happens frequently
when reading values from a memory buffer loaded from a file. In this
occurs, the integer value must be read byte by byte.

BBuf Class

The BBuf class is the base class for I/O buffered operations.

Specialization Flags

The following flags are used to specialize the API defined in this file. These
flags need to be defined before including bbufpub.h. Flags which are not
defined explicitly will take a default value.

Data Structures

NDBBufMethods

Structure containing the paging methods (which will be called only if an
operation can not be performed on the current page)

Type Description

BBUF_ENDIAN Should always be defined. It can be used to improve I/O
performance in case the order of bytes in numeric values
read from the BBuf is known at compile-time.

Must be one of:

BBUF_ENDIANBIG Most significant byte is stored first (example: MacPaint).

BBUF_ENDIANLITTLE Least significant byte is stored first (example: Gif).

BBUF_ENDIANNATIVE Bytes are stored in the same order as on the local machine
(order given by MCH_ENDIAN).

BBUF_ENDIANREVERSE Bytes are stored in the reverse order (relative to the native
order given by MCH_ENDIAN).

BBUF_ENDIANVARIABL
E

Bytes order is not known at compile-time. The real order
(probably specified somewhere in the file) must be set at
run-time with an explicit call to BBUF_SetEndianity
(example: Tiff).

Type Description

SeekProc SeekProc(bbuf, pos) should move the current position to pos and
load the page containing the byte at current position. The
PageBeginPos, PageBeginPtr, PageEndPtr and CurPtr should be
updated.

ReadProc should just skip n bytes. The method should fail if an attemp to read
past the end of data is made. The PageBeginPos, PageBeginPtr,
PageEndPtr and CurPtr should be updated.
C Programmer’s Guide 193

Chapter BBuf Class13
For all of these methods, if the PageModified is set to BOOL_TRUE, the
current page should be saved before being paged out.

Constructors and Destructor

Constructors

Alloc

BBufPtr BBUF_Alloc(void);

Returns a pointer to an allocated BBuf. The BBuf is not yet constructed and
needs to be constructed before being used.

NDBinBuf

void BBUF_Construct(BBufPtr bbuf);

Default construction.

void BBUF_ConstructBuf(BBufPtr bbuf, BBufBytePtr data, BBufOffsetVal len);

Constructs the bbuf to point to data. The size of data must be len. For best
performance, you can declare BBUF_HASSMALLBUF if you only used
buffer smaller than HUGELIMIT, and you can also declare
BBUF_OPTNOPAGING if you only use this type of BBuf.

NDBinBuf

void BBUF_ConstructFile(BBufPtr bbuf, FilePtr file, BBufPageVal maxbufs,
BBufOffsetVal bufsize);

Constructs the bbuf to point to file (which must have been opened before).
To improve performance, the paging methods will use several buffers of
bufsize bytes. maxbufs is the maximum number of buffers. maxbufs and
bufsize must be > 0. The appropriate paging methods are installed. The file
should be opened in Binary mode. The file is not closed by BBUF_Destruct.

WriteProc WriteProc(bbuf, buf, len) should write len bytes of buf to the bbuf,
starting at position BBUF_CurPos. If buf is NULL, WriteProc should
just skip n bytes in bbuf and leave the skipped bytes unchanged. If
an attemp to write past the end of data is made, the BBuf should be
expanded and TotalSize updated. If buf is NULL, extra bytes are set
to 0. WriteProc should then update TotalSize, PageBeginPos,
PageBeginPtr, CurPtr and PageEndPtr.

FlushProc FlushProc(bbuf)should write any unsaved data and flush the
changes. FlushProc is called by an explicit call to BBUF_Flush.
FlushProc should then update PageModified.

EndProc EndProc(bbuf) should write unsaved data, flush changes and
close/terminate/deallocate anything which has been opened /
initialized/allocated during or after the Init.. method. EndProc is
called by an explicit call to BBUF_Destruct.
194 C Programmer’s Guide

Read and Write Operations
NDBinBuf

void BBUF_ConstructData(BBufPtr bbuf, ClientPtr data);

Constructs a BBuf and attaches to it some custom data (which can be
eventually NULL). This data can be accessed/changed afterward with the
Get/SetMethodData calls BBUF_SetMethodData.

After this call, you should probably install your custom paging methods
(with BBUF_SetMethods) and set explicitly the total size (with
BBUF_SetTotalSize).

Destructor

void BBUF_Destruct(BBufPtr bbuf);

Destructs the bbuf. In particular, it calls the End method.
For instance, if Init method had allocated some buffers, the End method will
free them.

Dealloc

void BBUF_Dealloc(BBufPtr bbuf);

Deallocates the bbuf. The bbuf must have been allocated using BBUF_Alloc.

Read and Write Operations

ReadNBytes

void BBUF_ReadNBytes(BBufPtr bbuf, HugeBytePtr ptr, BBufOffsetVal len);

Reads `len' bytes from the bbuf and puts result into `ptr'. ptr should be
allocated for at least `len' bytes.

ReadIntx
ReadUIntx

void BBUF_ReadInt8(BBufPtr bbuf, Int8Ptr valptr);

void BBUF_ReadUInt8(BBufPtr bbuf, UInt8Ptr valptr);

void BBUF_ReadInt16(BBufPtr bbuf, Int16Ptr valptr);

void BBUF_ReadUInt16(BBufPtr bbuf, UInt16Ptr valptr);

void BBUF_ReadInt32(BBufPtr bbuf, Int32Ptr valptr);

void BBUF_ReadUInt32(BBufPtr bbuf, UInt32Ptr valptr);

Reads an Int8, Int16, Int32, UInt8, UInt16 or a UInt32 respectively and writes
it into valptr.

WriteNBytes

void BBUF_WriteNBytes(BBufPtr bbuf, HugeByteCPtr ptr, BBufOffsetVal len);

Writes len bytes of ptr to the bbuf. If the current position is past the end of
data and if BBuf was initialized with BBUF_ConstructFile, the Write method
will be called and TotalSize will be updated.
C Programmer’s Guide 195

Chapter BBuf Class13
WriteIntx
WriteUIntx

void BBUF_WriteInt8(BBufPtr bbuf, Int8 val);

void BBUF_WriteInt16(BBufPtr bbuf, Int16 val);

void BBUF_WriteInt32(BBufPtr bbuf, Int32 val);

void BBUF_WriteUInt8(BBufPtr bbuf, UInt8 val);

void BBUF_WriteUInt16(BBufPtr bbuf, UInt16 val);

void BBUF_WriteUInt32(BBufPtr bbuf, UInt32 val);

Writes an Int8, Int16, Int32, UInt8, UInt16, UInt32 respectively into the bbuf.

Flush

void BBUF_Flush(BBufPtr bbuf);

Calls the FlushProc method. For instance, if BBuf was initialized with a file
(file must be writable), the Flush method will save any local buffer which
has been modified and flush the changes to the file.

Seek Operations

CurPos

BBufOffsetVal BBUF_CurPos(BBufCPtr bbuf);

Returns current position.

SeekTo

void BBUF_SeekTo(BBufPtr bbuf, BBufOffsetVal pos);

Sets position to absolute offset. The new position must be between 0 and
TotalSize-1.

SeekBy

void BBUF_SeekBy(BBufPtr bbuf, BBufOffsetVal pos);

Sets position to offset relative to current position. The new position must be
between 0 and TotalSize-1.

SkipRead

void BBUF_SkipRead(BBufPtr bbuf, BBufOffsetVal pos);

Skips <n> bytes from current position. The new position must stay between
0 and TotalSize-1. Same as BBUF_SeekBy except that offset must be > 0.

SkipWrite

void BBUF_SkipWrite(BBufPtr bbuf, BBufOffsetVal pos);

Skips <n> bytes from current position. If new position is beyond the end of
data, the Write method is called to write zeros at the end and update the
TotalSize field.
196 C Programmer’s Guide

Accessing Private Fields
LoadCurPage

void BBUF_LoadCurPage(BBufPtr bbuf);

Loads the current page (if needed). Although we do not encourage direct
memory access, you may read directly as many as (PageEndPtr-CurPtr)
bytes starting from the current position (address returned by
BBUF_GetCurPtr(bb)).

After a Read, a Write or a Seek operation, CurPtr is always between
PageBeginPtr and PageEndPtr, inclusive. If CurPtr is left at PageEndPtr,
BBUF_LoadCurPage loads the next page and CurPtr is set to PageBeginPtr.
If CurPtr is between PageBeginPtr and PageEndPtr-1, BBUF_LoadCurPage
does nothing.

Accessing Private Fields

GetClientData

ClientPtr BBUF_GetClientData(BBufCPtr bbuf);

void BBUF_SetClientData(BBufPtr bbuf, ClientPtr data);

Respectively, returns user-defined data set by BBUF_SetClientData and sets
the ClientData. The ClientData should be used only by the client, and not by
the paging methods.

GetEndianity

EndianEnum BBUF_GetEndianity(BBufCPtr bbuf);

void BBUF_SetEndianity(BBufPtr bbuf, EndianEnum endian);

Respectively , returns the real order of bytes in integers and sets the real
order of bytes in integers for the bbuf.

These calls can be used only if BBUF_ENDIAN is set to
BBUF_ENDIANVARIABLE. The real order of bytes should be set at
run-time by BBUF_SetEndianity to either ENDIAN_BIG or
ENDIAN_LITTLE.

GetTotalSize
SetTotalSize

BBufOffsetVal BBUF_GetTotalSize(BBufCPtr bbuf);

void BBUF_SetTotalSize(BBufPtr bbuf, BBufOffsetVal len);

Respectively, returns the total size of data and sets the total size of data for
the bbuf. If the BBuf is constructed with a buffer, Size is initialized to the
specified buffer size. If the BBuf is initialized with BBUFConstructFile, Size
is initialized to the size of the file.

If the BBuf is initialized with BBUF_ConstructData, Size should be set
explicitly with BBUF_SetTotalSize.

TotalSize is updated if an attemp to write past the end of the data is made.
TotalSize can not decrease.
C Programmer’s Guide 197

Chapter BBuf Class13
The following fields should not be accessed or modified by the client code,
but only by the paging methods:

GetPagingData
SetPagingData

ClientPtr BBUF_GetPagingData(BBufCPtr bbuf);

void BBUF_SetPagingData(BBufPtr bbuf, ClientPtr data);

Respectively, returns PagingData and modifies PagingData. If BBuf is
initialized with BBUF_ConstructBuf, PagingData is set to NULL.

If BBuf is initialized with BBUF_ConstructFile, PagingData is set to the
specified file. If BBuf is initialized with BBUF_ConstructData, PagingData
is set to the specified ClientPtr.

IsPageModified
SetPageModified

BoolEnum BBUF_IsPageModified(BBufCPtr bbuf);

void BBUF_SetPageModified(BBufPtr bbuf, BoolEnum mod);

Respectively, returns BOOL_TRUE if current page has been
modified,BOOL_FALSE otherwise, and sets/unsets the PageModified flag.

GetPageBeginPos
SetPageBeginPos

BBufOffsetVal BBUF_GetPageBeginPos(BBufCPtr bbuf);

void BBUF_SetPageBeginPos(BBufPtr bbuf, BBufOffsetVal pos);

Respectively, returns the offset to the first byte in current page, and sets the
offset to the first byte in current page.

GetPageBeginPtr
SetPageBeginPtr

BBufBytePtr BBUF_GetPageBeginPtr(BBufCPtr bbuf);

void BBUF_SetPageBeginPtr(BBufPtr bbuf, BBufBytePtr pageBeg);

Respectively, returns a pointer to the first byte of current page, and sets the
pointer to the first byte of current page.

GetPageEndPtr
SetPageEndPtr

BBufBytePtr BBUF_GetPageEndPtr(BBufCPtr bbuf);

void BBUF_SetPageEndPtr(BBufPtr bbuf, BBufBytePtr pageEnd);

Respectively, returns a pointer to the first byte after current page, and sets
the pointer to the first byte after current page. The page size can be
computed with:

PageSize = PageEndPtr - PageBeginPtr.
198 C Programmer’s Guide

Installing Custom Paging Methods
GetCurPtr
SetCurPtr

BBufBytePtr BBUF_GetCurPtr(BBufCPtr bbuf);

void BBUF_SetCurPtr(BBufPtr bbuf, BBufBytePtr cur);

Respectively, returns a pointer to the byte at current position, and modifies
the pointer to the byte at current position. The CurPtr should always be
between PageBeginPtr and PageEndPtr-1.

The current position offset can be computed with:

CurPos = CurPtr - PageBeginPtr + PageBeginPos.

Installing Custom Paging Methods

QueryMethods

void BBUF_QueryMethods(BBufCPtr bbuf, BBufMethodsPtr methods);

Fills methods with the methods installed in the bbuf.

SetMethods

void BBUF_SetMethods(BBufPtr bbuf, BBufMethodsPtr methods);

Installs the methods in methods in the bbuf.
C Programmer’s Guide 199

Chapter BBuf Class13
200 C Programmer’s Guide

Chapter
14 Cell Class 14

The Cell class implements the Open Interface cell and range data structures
and tools.

Technical Summary

More specifically, this class implements the CellPtr, CellRec, RangePtr, and
RangeRec data structures as well as a utility to determine whether a cell is
within a specified range.

The cell and range structures are similar to the Point16 and Rect16 structure,
the difference being that the names of the cell structure fields (Col, Row) are
better suited to represent cells in a table than the (x,y) fields of the Point16
data structure.

See also

 Rect, LBox classes

Data Structures

CellPtr
CellRec

Pointer and data structure for cells.

CellPtr is a pointer to CellRec, a data structure that stores the row and
column indices of a cell.

This structure is the same as Point16Rec but for use with cells.

See also

RANGE_ContainsCell.

RangePtr
RangeRec

Pointer and data structure for ranges.

RangePtr is a pointer to RangeRec, the data structure that stores the origin
and extent of a range. The fields of this structure are described below.

Field Description
Ori Coordinates of the top left cell of the table.

Ext Ext.Col determines the width of the table and Ext.Row
determines its height.
C Programmer’s Guide 201

Chapter Cell Class14
See also

 RANGE_ContainsCell

Cell Range Operations

ContainsCell

Determines whether a cell is within a range.

BoolEnum RANGE_ContainsCell (RangeRec range, CellPtr cell);

RANGE_ContainsCell determines whether a cell is within a range. Returns
BOOL_TRUE if the cell is within the limits established by the range,
otherwise it returns BOOL_FALSE.
202 C Programmer’s Guide

Chapter
15 Char Class 15

The Char class implements the Open Interface character data structures and
utilities.

Technical Summary

The functions in this class offers support for English, European, and Asian
languages by providing functions which handle single-byte and multibyte
characters.

Languages

The culturally dependent rules to control collation, case conversions, word
delimitation, and so on are encapsulated in a language environment object.
The LgEnv class gives more detailed information about language
environments and the resources which parameterize them.

The APIs which do not take any LgEnvPtr argument perform operations
without taking into account cultural specificities (i.e. case conversions
limited to the ASCII range).

The APIs which take into account cultural specificities take a LgEnvPtr
argument. If you pass NULL in this argument, the default language
environment (as defined by the ND_CHARLANG environment variable)
will be assumed.

Character Types

Open Interface APIs allow your application to support a single native
language or a more general environment with more than one language or
character set. Writing your application using the Open Interface APIs
enables you to switch language environments by resetting an environment
variable.

Open Interface offers two basic data types, Native and UNICODE.

The Native Character Type

If you intend your application to operate in one language at a time, you can
use native types for your data. Many systems dedicated to a specific locale
already have a native code type specified.

When you use the Native calls, write your application with if statements
and include separate pieces of code for each language. For example, if the
native code type is SJIS, the application will perform different operations
than if the native language is English and it will require a different set of
APIs.

While this process can result in duplicated code, switching languages is as
easy as setting an environment variable (ND_CHARNATIVE, see below) to
change the native language.
C Programmer’s Guide 203

Chapter Char Class15
The UNICODE Character Type

This type supports UNICODE characters. UNICODE strings contain
UNICODE characters.

Conversion

Open Interface provides APIs which enable you to convert strings and
characters from one type to another.

Character Encoding

The ChCode and NatCode types encode multibyte characters in an
unsigned 32 bit integer. ChCode and NatCode types contain four bytes:
Byte1, Byte2, Byte3 and Byte4, with Byte1 being the least significant byte
and Byte4 being the most significant.

Multibyte character encoding is shown in the following table:

Char and ChCode values are always identical for pure ASCII characters, but
differ for multibyte characters.

Environment Variables and Flags

The ND_CHARNATIVE environment variable defines the native language
for the application. When you want to change from one native language to
another, you must reset this environment variable. This cannot be done
dynamically.

Open Interface Character API's

The APIs in Open Interface Char class enable you to manipulate characters
and obtain information about them. The APIs let you get a character code,
obtain an ASCII character's classification, convert ASCII characters, convert
characters between data types, convert between ASCII and EBCDIC, get a
character length, and get a specified byte of a character.

The basic character classification APIs enable you to obtain information
such as whether the character is alphanumeric, hexadecimal, a control
character, or a space. The CHAR_AsciiIs APIs assume that the character is
in the C RTL classification specified.

Char Class Operations
■ Testing whether a character is ASCII.
■ Converting between ASCII and EBCDIC.
■ Getting character information (such as length).

Char and NatChar Data Types

The Char and NatChar data types are defined in the base class.

Byte Number Contents
Byte1 First byte of the multibyte character.

Byte2 Second byte of the multibyte character, or NULL.

Byte3 Third byte of the multibyte character, or NULL.

Byte4 NULL.
204 C Programmer’s Guide

Environment Variables
Environment Variables

ND_CHARNATIVE

Defines the native code type in which NatStr and NatChar objects are
encoded.

On an ASCII-based machine, you cannot choose an EBCDIC-based native
code type. Similarly, on an EBCDIC-based machine, you cannot choose an
ASCII-based native code type. Character constants (e.g., 'a') have been set to
their ASCII or EBCDIC values at compile time. As a result, code which has
been compiled on an EBCDIC host assumes that the Char type is EBCDIC
based.

ND_CHARLANG

Defines the default language environment which defines the precise set of
rules for string collation, case conversion, word delimitation, and so on.

Data Structures

CharPtr

Data type for a global character pointer.

See also

 Char

ChCodePtr

Data type for a character code pointer.

See also

 ChCode

NatCharPtr

Data type for a native character pointer.

See also

NatChar

NatCodePtr

Data type for a native character code pointer.

See also

NatCode

UniCodePtr

Data type for a UNICODE character pointer.
C Programmer’s Guide 205

Chapter Char Class15
See also

 UniCode

UniStrPtr

Data type for a UNICODE string pointers.

See also

UniStr

ChCode

Data type for a multibyte character code. ChCode is an unsigned 32-bit
integer.

See also

ChCodePtr

NatCode

Data type for a native character code. NatCode is an unsigned 32-bit integer.

See also

NatCodePtr

UniCode

Data type for a UNICODE character. A UniCode character is an unsigned
16-bit integer.

See also

UniCodePtr

UniStr

Data type for a UNICODE string.

See also

 UniStrPtr

CharInfoVal

A 32-bit integer used for character classification information.

StrIVal

A 32-bit integer used for indexing strings and characters.
206 C Programmer’s Guide

Character Length
Character Length

GetLen

Returns the length of the character whose first byte contains the specified
8-bit character.

StrIVal CHAR_GetLen (Char ch);

CHAR_GetLen returns the length in bytes of the character whose first byte
contains the specified 8-bit character.

The length result depends on the values of the ND_CHARNATIVE
environment variable.

See also

 CHAR_CodeGetLen, CHAR_NatGetLen

CodeGetLen

Returns the length of the character whose first byte contains the specified
8-bit character code.

StrIVal CHAR_CodeGetLen (ChCode chCode);

Returns the length in bytes of the character whose first byte contains the
specified 8-bit character code. The length result depends on the values of the
ND_CHARNATIVE environment variable.

See also

CHAR_GetLen, CHAR_NatGetLen

NatGetLen

Returns the length of the native character whose first byte contains the
specified 8-bit character code.

StrIVal CHAR_NatGetLen (NatChar natCh);

CHAR_NatGetLen returns the length in bytes of the character whose first
byte contains the specified 8-bit character code. The length result depends
on the values of the ND_CHARNATIVE environment variable.

See also

CHAR_GetLen, CHAR_CodeGetLen

Character Code

The `ChCode' and `NatCode' types encode multibyte characters in a
unsigned 32 bit integer.

If b1, b2, b3 and b4 are the bytes of a `ChCode' or `NatCode', b1 begin

the least significant byte and b4 the most significant, the multi-byte
C Programmer’s Guide 207

Chapter Char Class15
character is encoded as follows:

b1: first byte of the multi byte character.

b2: second byte of the multi byte character, or 0.

b3: third byte of the multi byte character, or 0.

b4: 0 (for now).

With this encoding, the Char and ChCode values are always identical for

pure ASCII characters, but will differ on multi-byte characters.

You can extract information from a multi-byte character with the following
API:

GetByte...

Returns the contents the specified byte of a multibyte character.

Char CHAR_GetByte (ChCode chcode, Int bytenum);

Char CHAR_GetByte1 (ChCode chcode);

Char CHAR_GetByte2 (ChCode chcode);

Char CHAR_GetByte3 (ChCode chcode);

Returns the contents of the specified byte of a multibyte character.

The CHAR_GetByte function takes a byte number as an argument. You can
specify a byte number between zero (the first byte) and 2 (the third byte).

CHAR_GetByte1 obtains the first byte, CHAR_GetByte2 obtains the second
byte, and CHAR_GetByte3 obtains the third byte of a multibyte character.

See also

 CHAR_NatGetByte

NatGetByte...

Returns the contents the specified byte of a multibyte character.

NatChar CHAR_NatGetByte (NatCode natcode, Int byteEnum);

NatChar CHAR_NatGetByte1 (NatCode natcode);

NatChar CHAR_NatGetByte2 (NatCode natcode);

NatChar CHAR_NatGetByte3 (NatCode natcode);

Returns the contents of the specified byte of a native multibyte character.

The CHAR_GetByte function takes a byte number as an argument. You can
specify a byte number between zero (the first byte) and 2 (the third byte).
CHAR_GetByte1 obtains the first byte, CHAR_GetByte2 obtains the second
byte, and CHAR_GetByte3 obtains the third byte of a native multibyte
character.

See also

 CHAR_GetByte
208 C Programmer’s Guide

Basic Character Classification
Basic Character Classification

IsAscii...

Determines whether the character is ASCII.

BoolEnum CHAR_IsAscii (ChCode chcode);

BoolEnum CHAR_IsAsciiAlpha (ChCode chcode);

BoolEnum CHAR_IsAsciiUpper (ChCode chcode);

BoolEnum CHAR_IsAsciiLower (ChCode chcode);

BoolEnum CHAR_IsAsciiAlNum (ChCode chcode);

BoolEnum CHAR_IsAsciiDigit (ChCode chcode);

BoolEnum CHAR_IsAsciiHexDigit (ChCode chcode);

BoolEnum CHAR_IsAsciiOctDigit (ChCode chcode);

BoolEnum CHAR_IsAsciiSpace (ChCode chcode);

BoolEnum CHAR_IsAsciiPunct (ChCode chcode);

BoolEnum CHAR_IsAsciiControl (ChCode chcode);

BoolEnum CHAR_IsAsciiPrint (ChCode chcode);

BoolEnum CHAR_IsAsciiGraph (ChCode chcode);

The CHAR_IsAscii... macros classify characters according to the C RTL
standard rules. Use these macros if you need to classify ASCII characters
only. The return value is FALSE if the given character is not an ASCII
character.

On an EBCDIC system, the CHAR_IsAscii... macros automatically assume
that the chcode argument is an EBCDIC character code, not an ASCII code.

The various versions of the CHAR_IsAscii... macros are described in the
following table:

Macro Inquiry

CHAR_IsAscii(chcode) Does the character belong to the ASCII
set?

CHAR_IsAsciiAlpha(chcode) Is the character an ASCII letter?

CHAR_IsAsciiUpper(chcode) Is the character an ASCII upper case
letter?

CHAR_IsAsciiLower(chcode) Is the character an ASCII lower case
letter?

CHAR_IsAsciiAlNum(chcode) Is the character an ASCII letter or a
digit?

CHAR_IsAsciiDigit(chcode) Is the character an ASCII digit?

CHAR_IsAsciiHexDigit(chcode) Is the character an ASCII hexadecimal
digit?

CHAR_IsAsciiOctDigit(chcode) Is the character an ASCII octal digit?

CHAR_IsAsciiSpace(chcode) Is the character an ASCII space
character?

CHAR_IsAsciiPunct(chcode) Is the character an ASCII punctuation?
C Programmer’s Guide 209

Chapter Char Class15
The ChCode value corresponds to the Char value on the ASCII range, so
you can pass either ChCode or Char values to the these calls.

See also

CHAR_AsciiIs...

AsciiIs...

Same as CHAR_IsAscii... macros except that an error is generated if the
character is not ASCII.

BoolEnum CHAR_AsciiIsAlpha (Char ch);

BoolEnum CHAR_AsciiIsUpper (Char ch);

BoolEnum CHAR_AsciiIsLower (Char ch);

BoolEnum CHAR_AsciiIsAlNum (Char ch);

BoolEnum CHAR_AsciiIsDigit (Char ch);

BoolEnum CHAR_AsciiIsHexDigit (Char ch);

BoolEnum CHAR_AsciiIsOctDigit (Char ch);

BoolEnum CHAR_AsciiIsSpace (Char ch);

BoolEnum CHAR_AsciiIsPunct (Char ch);

BoolEnum CHAR_AsciiIsControl (Char ch);

BoolEnum CHAR_AsciiIsPrint (Char ch);

BoolEnum CHAR_AsciiIsGraph (Char ch);

The CHAR_AsciiIs... functions are similar to the corresponding
CHAR_IsAscii... macros except that they assume that the character is ASCII
and they signal an error if the character is not ASCII (for debugging libraries
only).

See also

 CHAR_IsAscii

Basic Character Conversion

AsciiDigitGetInt
AsciiHexDigitGetInt
AsciiOctDigitGetInt

Returns the integer value of an ASCII digit.

CHAR_IsAsciiControl(chcode) Is the character an ASCII control
character?

CHAR_IsAsciiPrint(chcode) Is the character an ASCII printable
character?

CHAR_IsAsciiGraph(chcode) Is the character an ASCII "graph"
character?
210 C Programmer’s Guide

Basic Character Conversion
Int CHAR_AsciiDigitGetInt (Char ch);

Int CHAR_AsciiHexDigitGetInt (Char ch);

Int CHAR_AsciiOctDigitGetInt (Char ch);

Returns the integer value of an ASCII digit. The digit argument must be a
decimal, hexadecimal, or octal digit or else the result is unreliable.

In the debugging library, this function signals an error if the input is not an
ASCII digit.

See also

CHAR_AsciiDigitGetBase

AsciiAlphaGetBase

Returns the base value of an ASCII letter.

Int CHAR_AsciiAlphaGetBase (Char ch);

CHAR_AsciiAlphaGetBase returns the base value of an ASCII letter. The
base value is an integer between 0 and 25. The char argument must be an
ASCII letter or else the result is unreliable.

In the debugging library, this function signals an error if the input is not an
ASCII character.

See also

CHAR_AsciiDigitGetInt

AsciiGetLower

Converts an ASCII character to lower case.

Char CHAR_AsciiGetLower (Char ch);

CHAR_AsciiGetLower converts an ASCII character to lower case. The char
argument must be an ASCII character or else the result is unreliable.

In the debugging library, this function signals an error if the input is not an
ASCII character.

See also

 CHAR_AsciiGetUpper

AsciiGetUpper

Converts an ASCII character to upper case.

Char CHAR_AsciiGetUpper (Char ch);

CHAR_AsciiGetUpper converts an ASCII character to upper case. The char
argument must be an ASCII character or else the result is unreliable.

In the debugging library, this function signals an error if the input is not an
ASCII character.

See also

CHAR_AsciiGetLower
C Programmer’s Guide 211

Chapter Char Class15
AsciiGetControl

Converts a character to a control character.

Char CHAR_AsciiGetControl (Char ch);

CHAR_AsciiGetControl converts a character to a control character. An
ASCII character is converted to control characters in the [00-1f] + 7f range.
EBCDIC characters are converted to EBCDIC control codes.

Converts A and a to ^A.

Converts [and { to ^[.

Converts ? to DEL.

With the debugging library, this function signals an error if the input is not
an ASCII or EBCDIC character.

See also

CHAR_AsciiGetGraph

AsciiGetGraph

Converts a control character into a character.

Char CHAR_AsciiGetGraph (Char ch);

CHAR_AsciiGetGraph converts control characters into characters. For
ASCII, converts a control character into the corresponding ASCII character
in the [0x3f-0x5f] range. Converts EBCDIC control characters to EBCDIC
codes. Converts DEL to ?.

In the debugging library, this function signals an error if the input is not an
ASCII or EBCDIC control character.

See also

CHAR_AsciiGetControl

AsciiGetEbcdic

Converts an ASCII character to an EBCDIC character.

Byte CHAR_AsciiGetEbcdic (Byte b);

CHAR_AsciiGetEbcdi converts an ASCII character to the first byte of an
EBCDIC character.

See also

 CHAR_EbcdicGetAscii

Conversions between ASCII and EBCDIc

EbcdicGetAscii

Converts an EBCDIC character to an ASCII character.
212 C Programmer’s Guide

Conversions between ASCII and EBCDIc
Byte CHAR_EbcdicGetAscii (Byte b);

CHAR_EbcdicGetAscii converts an EBCDIC character to an ASCII
character. If the EBCDIC character does not belong to the ASCII set, the
value returned is in the [80-ff] range.

You rarely need to convert EBCDIC codes to ASCII, but in some cases you
may need to. For example, you might want to compare strings according to
the ASCII order, or use lex and yacc tables which were generated on an
ASCII host.

See also

CHAR_AsciiGetEbcdic

ToAscii

Converts a native character to ASCII.

Byte CHAR_ToAscii (Char ch);

Converts a native character to ASCII. On an ASCII host, this function does
nothing.

See also

 CHAR_FromAscii

FromAscii

Converts an ASCII code to a native character.

Char CHAR_FromAscii (Byte b);

CHAR_FromAscii converts an ASCII code to a native character. On an
ASCII host, this function does nothing.

See also

CHAR_ToAscii
C Programmer’s Guide 213

Chapter Char Class15
214 C Programmer’s Guide

Chapter
16 Cs Class 16

The Cs module defines a generic "code set" data structure. See the definition
of code types, code sets, and code mappings in charpub.h.

Overview

A "code set" must define 3 methods:
■ GetCharInfo()

which should return character information of the code set;
■ CvtChar()

which should convert a character of the code set; and
■ TransChar()

which should translate a character from the specified code set.

These member functions vary depending on the code set that is specified at
creation time. This module is used mainly from the Ct module.

Code Sets

Unfortunately, there are a fairly large number of standard code sets, and
many manufacturers have "extended" the standard code sets in proprietary
ways. To minimize the amount of overlap between reference code sets, we
will consider that the overall coding scheme combines code sets in such
cases.

For example, the Microsoft Windows ANSI 1252 code set combines the ISO
8859-1 code set (a0-ff range) and MS/Windows extensions in the 80-9f range
(special quotes, bullet). So, a code set is actually defined by a combination
of several code sets and a code mapping.

Some coding schemes assign glyphs to control characters in the 00-1f range
(i.e. Macintosh lozenge). This will be handled by defining a coding scheme
with a special code set which partially covers the 00-1f range.

Also, some coding schemes assign non-standard glyphs to some ASCII
characters. (For example, Japanese fonts have a Yen sign instead of a
backslash, and an overbar instead of tilde). We will still consider these
characters to be the ASCII character, because most existing software treats
them according to their ASCII semantics, not according to their actual
glyphs.

CsIdEnum

Data type for code set id.
C Programmer’s Guide 215

Chapter Cs Class16
ISO Code Set

These are the strict ISO code sets, which only cover the a0-ff range.

Various extensions for the 80-9f range (i.e. ANSI 1252) are considered as
separate code sets.

ADOBE Code Sets

Macintosh Code Sets

The Macintosh Roman character set is completely different from
ISO_LATIN1 and covers the 80-ff range.

The Macintosh defines extensions to the ISO_ARABIC and 8 for Arabic and
Hebrew. These extensions cover at least the 80-9f range (R2L variants of
corresponding ASCII punctuations), but also fill empty slots of the a0-ff
range.

We still have to investigate whether there are significant differences or not
between the Macintosh Greek code set and the ISO_GREEK (the UNICODE
document says that they are identical) and between the Macintosh symbol

Type Description
CS_ASCII

CS_ISO_LATIN1

CS_ISO_LATIN2

CS_ISO_LATIN3

CS_ISO_LATIN4

CS_ISO_CYRILLIC

CS_ISO_ARABIC

CS_ISO_GREEK

CS_ISO_HEBREW

CS_ISO_LATIN9

CS_EMPTY_809f covers the 80-9f range by not associating any character
to such codes

Type Description
CS_ADOBE_STD covers the a0-ff range

CS_ADOBE_LATI
N1

extends ISO_LATIN1 in the 80-9f range

CS_ADOBE_SYMB
OL

covers the 20-7f and a0-ff ranges

CS_ADOBE_ZAPF
DB

covers the 00-ff range (to be verified)
216 C Programmer’s Guide

Code Sets
font and the ADOBE symbol font (the UNICODE document gives Mac
addition in the 00-1f range).

MS/Windows Code Sets

The MS/Windows code sets are not simply related to the ISO code sets,
except the 1252 code which extends the ISO_LATIN1 code set and is limited
to the 80-9f range.

PC Code Pages

The PC code pages cover the 80-ff range, and also assign glyphs to the 00-1f
range. They coincide on many characters ,but we consider them as separate
code sets for the whole 0-ff range.

Note: The 1004 code set described in the UNICODE document seems
identical to ISO_LATIN1, so it is not listed here.

Type
CS_MAC_ROMAN

CS_MAC_ARABIC

CS_MAC_HEBREW

Type
CS_MSW_EASTEUR
O

CS_MSW_CYRILLI
C

CS_MSW_ANSI

CS_MSW_GREEK

CS_MSW_TURK

CS_MSW_HEBREW

CS_MSW_ARABIC

Type
CS_PC_850

CS_PC_857

CS_PC_863

CS_PC_437

CS_PC_860

CS_PC_861

CS_PC_865

CS_PC_852

CS_PC_869

CS_PC_855

CS_PC_864

CS_PC_M4
C Programmer’s Guide 217

Chapter Cs Class16
CJK Code Sets

JIS_0201, JIS_0208 and JIS_0212 are two-code sets for Japanese characters.

UNICODE

Some portions of UNICODE map more or less directly to existing code sets,
so we could unify specific portions of UNICODE with standard code sets.

The problem with this approach is that UNICODE pages have holes because
some characters are unified and so do not quite map to standard code sets.

Unifying between UNICODE and old style code sets would introduce quite
some complexities, so we will avoid it except in the ASCII and ISO_LATIN1
cases.

Also, UNICODE is special in many respects (diacritical marks,
directionality), so it is better to consider it as a separate code set overall than
to try to unify parts of it with other standards.

The ASCII and ISO_LATIN1 portions of the UNICODE code set will be
unified with ASCII, ISO_LATIN1 and EMPTY_809f (first page of
UNICODE). The rest of UNICODE will be treated as a separate code set.

EBCDIC

The EBCDIC code sets only contain EBCDIC characters which do not map
to pure ASCII characters. In the CsChar representation, EBCDIC characters
which map to ASCII are unified with ASCII and coded as CS_ASCII.

For now, we have a generic EBCDIC brand, but we may distinguish several
later, when we get more precise documentation (UNICODE documentation
describes 037, 500V1, 1026 and 875 variants of the EBCDIC standard).

Type Description
CS_JIS_0201 covers only the half-width katakana

CS_JIS_0208 the primary Japanese code set; contains full width katakana,
hiragana, kanji, CJK, punctuation, full-width Latin, Greek,
Cyrillic letters, symbols

CS_JIS_0212 not very widespread. We will not distinguish the different
variants of these JIS standards (i.e. 1978, 1990)

CS_KSC_5601 the standard encoding for Hangul (Korean)

CS_GB_2312 the standard encoding for Mainland China

CS_BIG5 the standard encoding for Taiwan

Type
CS_UNICODE

Type
CS_EBCDIC
218 C Programmer’s Guide

Creating and Destroying
HP

CNS

Creating and Destroying

Alloc

CsPtr CS_Alloc(void);

Returns a pointer to an allocated but not yet constructed code set object. The
object should be constructed before being used.

Constructors

void CS_Construct(CsPtr cs);

Default code set object constructor.

void CS_ConstructId(CsPtr cs, CsIdEnum csid);

Constructs the code set object from the `csid' information.

 Destructor

void CS_Destruct(CsPtr cs);

Default code set object destructor.

Dealloc

void CS_Dealloc(CsPtr cs);

Deallocates the notifier.

Convenience Functions

New

CsPtr CS_New(CsIdEnum csid);

Creates new code set object and constructs it with csid.

Dispose

void CS_Dispose(CsPtr cs);

Destructs and deallocates the code set object.

Type
CS_HP_ROMAN8

Type
CS_CNS11643_1

CS_CNS11643_2

CS_CNS11643_3
C Programmer’s Guide 219

Chapter Cs Class16
Dispose0

void CS_Dispose0(CsPtr cs);

Disposes a code set object if it is not NULL.

Convenience Macros

The following code set functions can be called for any code set. All the
following operations are implemented as macros which use member
functions defined for this class.

GetCsId

CsIdEnum CS_GetCsId(CsCPtr cs);

Get the code set’s id.

GetCharLen

StrIVal CS_GetCharLen(CsCPtr cs);

Get the character length for the code set.

GetCharInfo

CharInfoVal CS_GetCharInfo(CsCPtr cs, CsCode code);

Get the 'charinfo' value of the character `code'.

CvtChar

Converts a character within the code set.

BoolEnum CS_CvtChar(CsCPtr cs, CsCode in, CharCvtSet flags, LgEnvCPtr lgenv,
CsCodePtr out);

Convert the character in `in' described in `flags' and set the result to `out'.
`lgenv' specifies a language environment. 'flags' specifies the ways of
translation. If bool is true, it indicates the conversion is reversible;
otherwise, not reversible.

The 'flags' could be:

If the 'flags' is NULL, it translates as much as possible. UNICODE
conversion can be done by specifying UNICODE to 'cs' code set.

Type Description
CHAR_CVT_DOWNCASE

CHAR_CVT_UPCASE

CHAR_CVT_STRIPDIACR

CHAR_CVT_SPLITDIGRAPHS

CHAR_CVT_HIRAGANA (CS_JIS_0208 only)

CHAR_CVT_KATAKANA (CS_JIS_0208 only)

CHAR_CVT_PRECOMPOSE (CS_UNICODE only)

CHAR_CVT_DECOMPOSE (CS_UNICODE only)

CHAR_CVT_NOCOMPAT (CS_UNICODE only)
220 C Programmer’s Guide

Predefined Code Sets
TransChar

Converts a character between two code sets.

BoolEnum CS_TransChar(CsCPtr cs, CsCode code, CharCvtSet flags, CsCPtr incs,
CsCodePtr chcodeptr);

Translates the character of specified code set to the character within this
code set. 'flags' specifies the ways of translation. If bool is true, it indicates
the conversion is reversible; otherwise, not reversible.

The 'flags' could be:

If the 'flags' is NULL, it translates as much as possible. UNICODE
conversion can be done by specifying UNICODE to 'cs' code set.

If the character cannot be translated, 'out' is set to NULL.

ToUni

BoolEnum CS_ToUni(CsCPtr cs, CsCode cscode, UniCodePtr uni);

Converts cscode to unicode. If it cannot be converted, returns false;
otherwise, set the unicode to uni and return true.

FromUni

BoolEnum CS_FromUni(CsCPtr cs, CsCode cscode, CsCodePtr uni);

Converts unicode to cscode. If it cannot be converted, returns false
otherwise set the cscode value to cscode and return true.

Predefined Code Sets

GetCsNative

CsPtr CS_GetCsNative(void);

Returns a pointer to the native code set.

GetCsUnicode

CsPtr CS_GetCsUnicode(void);

Returns a pointer to the Unicode code set.

Type Description
CHAR_CVT_STRIPDIACR ('in' code set = CS_ISO_LATIN1, CS_ADOBE_STD...

etc.)

CHAR_CVT_SPLITDIGRAPHS ('out' code set = ASCII)

CHAR_CVT_FULLWIDTH (in code set = CS_ASCII, CS_ISO_GREEK,
CS_ISO_CYRILLIC ...)

(out code set = CS_JIS_0208, maybe CS_KSC_5601 ...
)

CHAR_CVT_HALFWIDTH (in code set = CS_JIS_0208, maybe CS_KSC_5601 ...)

(out code set = CS_ASCII, CS_ISO_GREEK,
CS_ISO_CYRILLIC ...)
C Programmer’s Guide 221

Chapter Cs Class16
GetCsGlobal

CsPtr CS_GetCsGlobal(void);

Returns a pointer to the global code set.

Local Macros

ISO LATIN1 Character Information Definition

ASCII Character Information Definition

JIS0208 Character Information Definition

Type Definition
CHARINFO_UNKNOWN CHAR_DOM_UNKNOWN | CHAR_LEVEL_BASIC |

CHAR_LEX_UNKNOWN | CHAR_CASE_NONE

CHARINFO_UNKNOWN_FULLWIDTH CHARINFO_UNKNOWN | CHAR_WIDTH_FULL

CHARINFO_UNKNOWN_HALFWIDTH CHARINFO_UNKNOWN | CHAR_WIDTH_FULL

Type Definition
IS1_COM CHAR_DOM_LATIN | CHAR_LEVEL_BASIC | CHAR_WIDTH_HALF

Type Definition
ASCII_COM CHAR_DOM_GENERIC | CHAR_LEVEL_BASIC | CHAR_WIDTH_HALF |

CHAR_LOOSE_ASCII_MASK

Type Definition
JIS0208_COM CHAR_WIDTH_FULL

JIS0208_1KU_COM JIS0208_COM | CHAR_DOM_MISC | CHAR_LEVEL_EXTENDED |
CHAR_CASE_NONE

JIS0208_2KU_COM JIS0208_COM | CHAR_DOM_MISC | CHAR_LEVEL_EXTENDED |
CHAR_CASE_NONE

JIS0208_3KU_COM JIS0208_COM | CHAR_DOM_GENERIC | CHAR_LEVEL_BASIC |
CHAR_LOOSE_ASCII_MASK

JIS0208_4KU_COM JIS0208_COM | CHAR_DOM_HIRAGANA | CHAR_LEVEL_BASIC |
CHAR_CASE_NONE | CHAR_LEX_BASE_LETTER

JIS0208_5KU_COM JIS0208_COM | CHAR_DOM_KATAKANA | CHAR_LEVEL_BASIC
| CHAR_CASE_NONE | CHAR_LEX_BASE_LETTER

JIS0208_6KU_COM JIS0208_COM | CHAR_DOM_GREEK | CHAR_LEVEL_BASIC |
CHAR_LEX_BASE_LETTER

JIS0208_7KU_COM JIS0208_COM | CHAR_DOM_CYRILLIC | CHAR_LEVEL_BASIC |
CHAR_LEX_BASE_LETTER

JIS0208_8KU_COM JIS0208_COM | CHAR_DOM_MISC | CHAR_LEVEL_EXTENDED |
CHAR_CASE_NONE | CHAR_LEX_SPECIAL

JIS0208_16TO84KU_COM JIS0208_COM | CHAR_DOM_KANJI | CHAR_LEVEL_BASIC |
CHAR_CASE_NONE | CHAR_LEX_BASE_LETTER
222 C Programmer’s Guide

JIS0201 Character Information Definition
JIS0201 Character Information Definition

Type Definition
JIS0201_COM CHAR_WIDTH_FULL | CHAR_DOM_KATAKANA |

CHAR_LEVEL_BASIC | CHAR_CASE_NONE |
CHAR_WIDTH_HALF

JIS0201_CODE_MASK

JIS0201_DIACR_DOUBLEDOTS_MASK

JIS0201_DIACR_CIRCLE_MASK

JIS0201_LOSTINFO_MASK
C Programmer’s Guide 223

Chapter Cs Class16
224 C Programmer’s Guide

Chapter
17 Ct Class 17

his Ct class implements the Open Interface code type structures and
utilities.

Technical Summary

The functions in this class offers support for English, European, and Asian
languages by providing support for many different character code types.

Multibyte characters require the use of code sets, code mappings, and code
types. These represent the characters in an alphabet as numeric codes and
determine how these codes are placed within a multibyte character
structure.

Code Sets

A code set (or character set) represents each character in an alphabet by a
numeric code. The numeric codes in each code set vary in their hexadecimal
range.

Most code sets are extensions to the ASCII character set. EBCDIC is an
exception. Code sets are combined with mappings to form a code type.

The current version of Open Interface supports the ASCII, ISO_LATIN1,
JIS_0201, and JIS_0208 code sets.

Code Mapping

A code mapping determines the representation of the encoded character
within a multibyte character, which is an unsigned 32-bit integer. A
mapping includes the placement of bytes within the character and any
manipulation that might be needed for each byte.

Sometimes mapping is more complex than simple byte placement. The JIS
code set defines codes where the first and second bytes are in the 0x21 - 0x7e
range. JIS bytes cannot be inserted into a string regardless of the byte order
because the JIS code would be indistinguishable from the ASCII codes.
Several mappings address this problem:
■ The JEUC mapping transposes a JIS code in the 0xa1-0xfe range by

adding 0x80 to each byte.
■ The SJIS mapping is more complex and includes a transposition of JIS

code in the (0x80-0x9f, 0x40-0xfe) or (0xe0-0xff, 0x40-0xfe) ranges.

Code Types

A code type (or "coding scheme") combines one or more code sets with a
code mapping.

For single-byte ASCII or extended ASCII characters, the byte value maps
directly to the code value. For these alphabets, the code set and the code
type are identical.
C Programmer’s Guide 225

Chapter Ct Class17
For multibyte characters, different code types can be based on the same code
set but on different code mappings. For example, the Japanese EUC code
type offered by Sun and the SJIS code type offered by Sony are two different
mappings of the JIS code set. The UNICODE code type consists of mappings
of existing standard code sets.

Open Interface provides two levels of support for code sets, tested and
untested. The CT_ASCII, CT_SJIS, and CT_JEUC code types are fully
supported and tested. Also, a wide range of other standard code types are
implemented but not tested.

Code types supported and tested under the current version of Open
Interface include the following:
■ ASCII Code Type. The CT_ASCII code type contains the CS_ASCII

code set.
■ CJK Code Types. In the CJK code type group, Open Interface offers the

CT_SJIS and CT_JEUC. The CT_SJIS code type is a combination of
CS_ASCII and the CS_JIS_0201 and CS_JIS_0208 code sets. CT_JEUC
combines CS_ASCII with CS_JIS_0201, CS_JIS_0208, and CS_JIS_0212.
The remainder of the CJK code types are supported but are not fully
tested in the current version.

See also

 Char class.

Data Types

ChCode

Data type for a code value within a code type.

Ct

Defines the code type data record.

Private data elements in the record are the code type id, the code set pointer,
the maximum character length for the code type, and the pointer to a code
set.

See also

CT_GetCharLen, CT_GetFwrd, CT_GetBwrd, CT_GetInfo, CT_CvtChar,
CT_CvtCtToCs, CT_CvtCsToCt

Enumerated Types

CtIdEnum

Data type for a code type id.

CT_ID

Code type ids identify a complete character coding system.
226 C Programmer’s Guide

Enumerated Types
Code type ids identify a complete character coding system. They are built
from an association of code sets and a code mapping. Code type categories
include: ASCII, ISO 8859-X, Adobe, Macintosh, Microsoft Windows, PC,
CJK, UNICODE, EBCDIC, Global, and HP code types.

ASCII Code Type

ISO 8859-X Code Types.

ADOBE Code Types

Macintosh Code Types

Microsoft Windows Code Types

Code Type Id Description
CT_ASCII CT_ASCII characterizes pure ASCII: single byte strings and

fonts which only provide glyphs for the ASCII range.

Code Type Id Description
CT_ISO_LATIN1
CT_ISO_LATIN2
CT_ISO_LATIN3
CT_ISO_LATIN4
CT_ISO_CYRILLIc
CT_ISO_ARABIc
CT_ISO_GREEK
CT_ISO_HEBREW
CT_ISO_LATIN9

The ISO-8859 code types characterize single byte strings
and fonts which combine the ASCII, the EMPTY_809f and
the ISO_8859_X code sets.

Code Type Id Description
CT_ADOBE_STD
CT_ADOBE_LATIN1
CT_ADOBE_SYMBOL
CT_ADOBE_ZAPFDB

STD is ASCII + EMPTY_809f + ADOBE_STD
LATIN1 is ASCII + ADOBE_LATIN1 + ISO_LATIN1
SYMBOL is ASCII (00-1f only) + EMPTY_809f +
ADOBE_SYMBOL.
ZAPFDB is ADOBE_ZAPFDB only.

Code Type Id Description
CT_MAC_ROMAN
CT_MAC_ARABIc
CT_MAC_HEBREW

ROMAN is ASCII + MAC_ROMAN
ARABIC is ASCII + ISO_ARABIC + MAC_ARABIc
HEBREW is ASCII + ISO_HEBREW + MAC_HEBREW

Code Type Id Description
CT_MSW_EASTEURO
CT_MSW_CYRILLIc
CT_MSW_ANSI
CT_MSW_GREEK
CT_MSW_TURK
CT_MSW_HEBREW
CT_MSW_ARABIc

1252 is ASCII + MSW_ANSI + ISO_LATIN1
125X is ASCII + MSW_125X
C Programmer’s Guide 227

Chapter Ct Class17
PC Code Types

CJK Code Types

UNICODE Code Type

EBCDIC Code Type

HP Code Type

UTF8 Code Type

Also called FSS-UTF or UTF2. Characters can be 1, 2, or 3 byte. 1 byte
characters are the same as ASCII.

Code Type Id Description
CT_PC_850
CT_PC_857
CT_PC_863
CT_PC_437
CT_PC_860
CT_PC_861
CT_PC_865
CT_PC_852
CT_PC_869
CT_PC_855
CT_PC_864
CT_PC_M4

PC_XXX ASCII + PC_XXX

Code Type Id Description
CT_SJIS
CT_JEUc
CT_KSc
CT_GB
CT_BIG5

SJIS is ASCII + JIS_0201 (a0-df range) + JIS_0208 (80-9f + e0-ff / 40-ff)
EUC is ASCII + JIS_0201 (8e / a1-fe) + JIS_0208 (a1-fe / a1-fe) +
JIS_0212 (8f / a1-fe / a1-fe) (not implemented)
KSC is ASCII + KSC_5601 (a1-fe / a1-fe)
GB is ASCII + GB_2312 (a1-fe / a1-fe)
BIG5 is ASCII + BIG5 (a1-fe / 40-7e, a1-fe)

Code Type Id Description
CT_UNICODE UNICODE is ASCII + EMPTY_809f + ISO_LATIN1 + UNICODE

Code Type Id Description
CT_EBCDIc EBCDIC replaces ASCII and ASCII extensions completely.

Code Type Id Description
CT_HP_ROMAN8 The Hewlett-Packard Roman code type.

Code Type Id Description
CT_UTF8 UNICODE transformation format.
228 C Programmer’s Guide

Creating and Disposing
CNS Code Type

This is EUC based encoding which can mix up to 16 code sets. In this version
we only support CNS11643-1, CNS11643-2, and CNS11643-3.

ASCII(CNS11643-0) +
CNS11643-1 (a1-fe / a1-fe) +
CNS11643-2 (8e / a1 / a1-fe / a1-fe)
CNS11643-3 (8e / a2 / a1-fe / a1-fe)

In general,

CNS11643-X (8e / a0 + X / a1-fe / a1-fe)
where: 1 =< X =< 16

As of October 15, 1995, only 1 <= X <= 7 are defined.

Creating and Disposing

Alloc

CtPtr CT_Alloc (void);

Returns a pointer to an allocated but not yet constructed Ct. The Ct should
be constructed before being used.

Construct

void CT_Construct (CtPtr ct);

Default Ct construction.

ConstructId

void CT_ConstructId (CtPtr ct, CtIdEnum ctid);

Constructs the Ct with the specified code type `ctid' type data and member
functions. It fills the Ct with specified code type data/member functions, by
calling a initialization routine. In each initialization proc., it may overwrite
default values in the Ct and set its own data and member functions. Each
code type should have its initialization proc, which this function will call.

Destruct

void CT_Destruct (CtPtr ct);

Default Ct destruction.

Dealloc

void CT_Dealloc (CtPtr ct);

Deallocates the notifier.

New

CtPtr CT_New (CtIdEnum ctid);

Creates new code type object and constructs it with `ctid'.

Code Type Id Description
CT_UTF8 Yet another code type for Traditional Chinese.
C Programmer’s Guide 229

Chapter Ct Class17
Dispose

void CT_Dispose (CtPtr ct);

Destructs and deallocates the code type object.

Dispose0

void CT_Dispose0 (CtPtr ct); */

Destructs and deallocates the code type object if it is not NULL.

Member Functions

GetCtId

Gets the code type id.

CtIdEnum CT_GetCtId (CtCPtr ct);

CT_GetCtId returns the code type id from the code type data record
structure.

See also

Ct.

GetFwrd

Returns the value of the character found at the beginning of a string.

ChCode CT_GetFwrd (CtCPtr ct, CStr str, StrIValPtr lenp);

Returns the value of the character found at the beginning of global string.
The lenptr is set to the length of the character.

See also

 CT_GetBwrd, Ct.

GetBwrd

Returns the character code for the character found in front of a given index
in a string.

ChCode CT_GetBwrd (CtCPtr ct, CStr str, StrIVal pos, StrIValPtr lenp);

Returns the character code for the character found in front of a given index
in a global string. The lenptr is set to the length of the character.

The CT_GetBwrd macro can be called for any code type. For more
information, see Ct.

See also

CT_GetFwrd, Ct

GetInfo

Returns the CharInfoVal for a character.
230 C Programmer’s Guide

Member Functions
CharInfoVal CT_GetInfo (CtCPtr ct, ChCode ch);

Returns the CharInfoVal for a character. For more information on
CharInfoVal, see the Char class.

See also

 CharInfoVal, Ct

CvtChar

Converts a character and sets the result.

BoolEnum CT_CvtChar (CtCPtr ct, ChCode in, CharCvtSet flags, LgEnvCPtr lgenv,
ChCodePtr out);

Converts a character to a character code in a given language environment.
Converts the character given by the character code in the language
environment specified, applies the flag, and sets the chcodeptr with the
result. If the Boolean return value is true, then the conversion is reversible,
otherwise it is irreversible. The flag options are:

If the flag is NULL, the macro converts the character as completely as
possible. UNICODE conversion can be done by specifying UNICODE as the
codeset. If the character cannot be converted, chcodeptr is set to NULL. For
more information on flags and language environments, see the Char class.

If the Boolean return value is true, it indicates the conversion is reversible,
otherwise the conversion is irreversible.

See also

 Ct, CT_CvtCtToCs, CT_CvtCsToCt

CvtCtToCs

Converts a character code from its code type form to its code set form.

CsCode CT_CvtCtToCs (CtCPtr ct, ChCode ch, CsPtr* cs);

Converts a code type character code to the code set character code and gets
a pointer to the code set structure of the character.

See also

CT_CvtCsToCt, Ct

CHAR_CVT_DOWNCASE

CHAR_CVT_UPCASE

CHAR_CVT_STRIPDIACR

CHAR_CVT_SPLITDIGRAPHS

CHAR_CVT_HIRAGANA (CS_JIS_0208 only)

CHAR_CVT_KATAKANA (CS_JIS_0208 only)

CHAR_CVT_PRECOMPOSE (CS_UNICODE only)

CHAR_CVT_DECOMPOSE (CS_UNICODE only)

CHAR_CVT_NOCOMPAT (CS_UNICODE only)
C Programmer’s Guide 231

Chapter Ct Class17
CvtCsToCt

Converts a character code from its code set form to its code type form.

ChCode CT_CvtCsToCt (CtCPtr ct, CsCode code, CsCPtr cs);

Converts a code set character code to the code type character code and sets
a pointer to the code set structure of the character.

See also

 CT_CvtCtToCs, Ct

ToUni

Converts chcode to unicode.

BoolEnum CT_ToUni (CtCPtr ct, ChCode ch, UniCodePtr uni);

If the chcode cannot be converted to UNICODE it returns FALSE; otherwise,
TRUE.

FromUni

Converts unicode to chcode.

BoolEnum CT_FromUni (CtCPtr ct, UniCode uni, ChCodePtr ch);

If the UNICODE cannot be converted to chcode it returns FALSE; otherwise,
TRUE.

GetMaxCharLen

Returns the maximum character length supported by a code type.

StrIVal CT_GetMaxCharLen (CtCPtr ct);

CT_GetMaxCharLen returns the maximum character length supported by a
code type.

IsSingleOnly

Determines whether a code type defines single-byte characters only.

BoolEnum CT_IsSingleOnly (CtCPtr ct);

CT_IsSingle determines whether a code type supports single-byte
characters only. If the BoolEnum return value is TRUE, the code type
supports single-byte characters only. If the code type is not single-byte only,
the macro returns FALSE.

GetUpper

Returns the upper case form of a character.

ChCode CT_GetUpper (CtCPtr ct, ChCode chcode);

CT_Get Upper returns the upper case form of a character.

See also

 CT_GetLower
232 C Programmer’s Guide

Member Functions
GetLower

Returns the lower case form of a character.

ChCode CT_GetLower (CtCPtr ct, ChCode chcode);

CT_GetLower returns the lower case form of a character.

See also

 CT_GetUpper
C Programmer’s Guide 233

Chapter Ct Class17
234 C Programmer’s Guide

Chapter
18 Ds Module 18

This module specifies the virtual Data Source.

Design Overview

A data source is an object that can be used as an intermediary between the
data itself and the different views on this data. The classes defined in this
module are pure virtual. A number of subclasses are described in other
modules.

Classes

The DataSource data structure is private. It is a subclass of Res.

Class

RClasPtr DS_Class(void);

Returns a pointer to the DataSource class.

View Interface

RegisterView

void DS_RegisterView(DsPtr ds, ResPtr view);

Register the resource view with the data source.

SetViewOption

void DS_SetViewOption(DsPtr ds, ResPtr view, CStr option, CStr info);

Set info as the option for the view registered in the data source.

GetViewOption

CStr DS_GetViewOption(DsCPtr ds, ResCPtr view, CStr option);

Returns the string corresponding to option for the view registered with the
data source.

UnregisterView

void DS_UnregisterView(DsPtr ds, ResPtr view);

Unregisters view from the data source.
C Programmer’s Guide 235

Chapter Ds Module18
ViewGetDs

DsPtr DS_ViewGetDs(ResPtr view);

Returns the data source, if any, associated to the view.

Edition Interface

DsEditCompletionEnum

Enumerated type describing the success of the edition.

StartEdit

DsEditPtr DS_StartEdit(DsPtr ds);

Opens an edition on the whole data source. The operations are done
through the edition object returned by this call.

End

DsEditCompletionEnum DSEDIT_End(DsEditPtr dsEdit);

Commit the edition on the whole of the data source. The edition object is
destroyed and deleted.

Abort

void DSEDIT_Abort(DsEditPtr dsEdit);

Abort the edition on the data source. The edition object is destroyed and
delete.

AddOperation

DsEditOpPtr DSEDIT_AddOperation(DsEditPtr dsEdit);

Add an operation to the edition

SetOwner

void DSEDIT_SetOwner(DsEditPtr dsEdit, ResPtr owner);

Set owner of the edition. Results normally not re-propagated by to the
owner (useful for asynchronous updates to avoid confusion between
current view and current value).

GetOwner

ResPtr DSEDIT_GetOwner(DsEditPtr dsEdit);

Retrieve owner (if any) of the edition.

Default constructors and destructors for the base DsEdit and DsEditOp
classes.

Methods Description
DSEDIT_COMPLETIONOK The edition was successfully completed

DSEDIT_COMPLETIONFAILED The edition failed for some reason

DSEDIT_COMPLETIONPREEMPTED The edition was preempted
236 C Programmer’s Guide

Update Interface
Update Interface

StartUpdateEdit

DsUpdateEditPtr DS_StartUpdateEdit(DsPtr ds);

Opens an update on the whole data source. The operations are done
through the edit object returned.

End

void DSUPDATEEDIT_End(DsUpdateEditPtr dsEdit);

Commit the update on the whole of the data source. The edit object is
destroyed and deleted.

Abort

void DSUPDATEEDIT_Abort(DsUpdateEditPtr dsEdit);

Abort the update on the data source. The edit object is destroyed and delete.

Contained/Container Data Source Interface

Data source can be contained in another. For example, a table data source
may decide to instantiate a value data source to allow manipulation of the
data in a particular cell of the table.

AddContDs

void DS_AddContDs(DsPtr ds, DsPtr contDs);

Adds contDs as a contained data source to the data source.

RemoveContDs

void DS_RemoveContDs(DsPtr ds, DsPtr contDs);

Removes contDs from the data source.

Creating and Disposing

Create

DsPtr DS_Create (RClasPtr rclas);

Creates a datasource object.
C Programmer’s Guide 237

Chapter Ds Module18
Class

Edition Operation

DsEditOpEnum

DsEditTypeEnum

DsEditStateEnum

Modifications Implementation

DsModsSetEnum

Data Source

extern "C" RClasPtr DsGetClass(void);

extern "C" void DsConstruct(ResPtr res, RClasCPtr rclas,
RClasCreateCPtr rCreate);

extern "C" void DsDestruct(ResPtr res);

Methods Description
DSEDIT_OPENUMINHERIT (DSEDITOP)

Methods Description
DSEDIT_TYPEENUMINHERIT (DSEDITTYPE)

Methods Description
DSEDIT_STATECLOSED

DSEDIT_STATEOPEN

DSEDIT_STATEPREEMPTED

Methods Description
DS_MODSBITSETINHERIT (DSMODS)
238 C Programmer’s Guide

Chapter
19 Err Class 19

This class provides support for error handling and error reporting.

Overview

Open Interface uses an exception based error handling mechanism,
following the "disciplined exceptions" model descibed by B Meyer in Object
Oriented Software Construction (OOSC, pg 144).

Actually, error handling is only a part of a global programming philosophy.
The "disciplined exceptions" model can only be fully understood in the
context of the "contracting metaphor" described in detail in OOSC. The
reader is encouraged to read this difficult but enlightning book. The
fundamental idea of the "contracting metaphor" is that a contract is
associated with every routine that you write or that you use.

The contract states what the client of the routine (the caller) should
guarantee at the time he calls the routine (preconditions). It also states what
the implementer of the routine guarantees the routine will do
postconditions) in case it was called in acceptable conditions (with the
preconditions satisfied).

For example, the contract behind the strlen(char* str) function is:

If you pass an invalid address (i.e. 0) to strlen, you violate the preconditions.
The key idea is that it is crucial to define precisely who is responsible for
what in a program, so that if anything goes wrong one can know who must
be blamed and fix the problem. Then, there are no half-successes,
half-failures which are so confusing, only successes (the contract has been
fulfilled) or failures (the contract could not be fulfilled).

Disciplined Exceptions

In this context, a failure (I prefer using "failure" than "error") is defined by
the fact that a routine cannot fullfill its contract, either because the caller did
not meet the preconditions or because the routine cannot meet the
postconditions (i.e. because it does an I/O operations which fails or because
there is a bug).

Failures are not reported through special return values (as is usual in C) but
by an out of band mechanism (exceptions). If a failure occurs in a routine,
the routine simply does not return, the execution continues elsewhere (in a
recovery clause of one of the calling routines, see later). As a result,
procedures should be declared with the void return type.

Item Description
Preconditions Str must be a valid zero terminated C string.

Postconditions Strlen will return the length of str in bytes.
C Programmer’s Guide 239

Chapter Err Class19
In the "disciplined exceptions" scheme, a routine may handle failures in one
of two ways:
■ Return to its caller without fullfulling its contract. If necessary, the

routine should clean up its state (restore the class invariant in OOSC
terms) before returning. The failure is propagated to the caller.

■ Try to fullfill its contract by another mean. The error state will be
cleared and another path will be tried. If the retry is successful, the
caller won't notice that the routine had failed in the first place.

Error Handling And Reporting

The error handling class provides mechanisms to:
■ Set up a recovery environment where the execution will resume in case

of failure.
■ Clear the error state and attempt a retry in a routine.
■ Generate (signal) a failure.
■ Report warning and failure messages to the user.

The error handling mechanisms (recovery, retry, signalling) are based on
the "disciplined exception" model, as described above. The error reporting
scheme is not described in OOSC. Reporting errors is is a complex issue
because failures are usually detected in low level routines which do not
know where to report the error (is it a windows based, terminal based, batch
application). Also, reporting only the low-level failure is usually
insufficient. The user also wants the know the high level context in which
the error occurred (it is not very interesting to know that an assertion of the
memory manager failed if we do not know in which context the memory
manager was being used).

This implies several things:
■ We need a mechanism to keep context information in intermediate

procedures.
■ Error reporting must be initiated by the low level.
■ The "user-interface aware" high level needs a way to set-up the

procedure which will display the error.
■ Reporting procedures may be nested. The most specific reporting

procedure (closest to the current procedure in the stack frame) will be
the one which reports the error or warning.

The idea is that the reporting procedure will be called from the low level. At
this time, all the context information is available. Our scheme also provides
"warnings" in addition to "failures". When a failure occurs, the failure is
reported to the user and then the execution continues in the recovery clauses
of the routines which are on the stack until one routine attempts a retry.

On the other hand, warnings are reported to the user but then the execution
continues normally in the routine. With those mechanisms, we should also
be able to design "smart" warning procedures which gives several options
to the user:
■ Abort operation (an exception will be generated), continue or continue

and discard subsequent warnings (in case the same warning keeps
being repeated).
240 C Programmer’s Guide

Overview
Entry/Exit Macros

Every procedure or function which uses error handling mechanisms should
start with an ERR_XIN macro (immediately after the declaration of the
automatic variables) and end with an ERR_XOUT (procedures) or
ERR_XRET (functions) macro.

void MODUL_Proc (Type1 arg1)
Type2 autovar1;
ERR_XIN;
...
ERR_XOUT;

Where X is one of the following : TRACE, MSG(id), RECOV, RETRY.

Note: All the paths exiting from the routine must end with an ERR_XOUT
or ERR_XRET statement. You are not allowed to use a "return" in
such a routine, you should use ERR_XOUT or ERR_XRET instead.
Forgetting an ERR_XOUT or ERR_XRET clause on one of the paths
will confuse the error handling mechanism and generate a fatal error
if the DBG_ON compilation flag is set.

If you use these macros in a file, you must define a static char* variable
called S_ModuleName and initialize it to the name of the module to which
the source file belongs. This module name is used by the error reporting
procedure to generate traceback information or to load error messages.

You can use the ERR_INMODULE macro to define this variable. After the
#include directives at the top of the file, you should add the following
statement:

ERR_INMODULE("Modul")

where "Modul" is the name of the module. Which translates into:

static const char S_ModuleName[] = "Modul";

Error Recovery

Every routine may have an error recovery label where execution will
resume in case there is a failure (in the routine or in a subroutine it called).
If you do not provide an error recovery label, the execution will resume in
the error recovery clause of one of the callers of your routine. All the
information which was on the stack of your routine at the time of the failure
will be lost.

Usually, you should use the recovery clause to put your program back in a
stable state. For example, you will release resources which had been
allocated by the routine or reset a global variable which had been
temporarily modified by your routine.

Retry

In some cases, your routine can retry to fullfill its contract by another way.
In such cases, you should use the ERR_RETRYIN/OUT/RET macros:

void MODUL_Proc (void)
Int attempts= 0;
ERR_RETRYIN;
MODUL_ReadFromConnection();// might fail
ERR_RETRYOUT;// success, execution will continue normally in

//caller.
err_catch:
C Programmer’s Guide 241

Chapter Err Class19
if (++attempts <= 5) ERR_RETRY;// will branch to ERR_RETRYIN
ERR_RETRYOUT;// failure will be propagated to caller.

Another use of the RETRY mechanism is to convert a routine which signals
its errors through the exception mechanism into a routine which returns a
status code (if you do not like our exception based error handling, you can
write a little wrapper around every API call in the following way):

BoolEnum MODUL_ProcWithRetStatus (void)
BoolEnum success = BOOL_TRUE;
ERR_RETRYIN;
if (success) MODUL_ProcWithExceptions();
ERR_RETRYRET(success);
err_catch:
success = BOOL_FALSE;
ERR_RETRY;

Note: This routine never fails!
Important: You should be careful and not put a function call in the
argument of ERR_CATCHRET and ERR_RETRYRET. The function
would be called after the error recovery environment has been
unlinked (see implementation of ERR_RET below). The following
code is incorrect because the error recovery will not resume at the
err_catch label of the current routine but in one of its callers.

ERR_CATCHIN;
ERR_CATCHRET(MyFunc(myarg));

The following code is correct:

MyType result;
ERR_CATCHIN;
result = MyFunc(myarg);
ERR_CATCHRET(result);

Signalling A Failure

Above, we have described how to recover from failures. Now, how do we
signal a failure, for example if we notice some abnormal condition or if some
system call fails?

Three calls are provided to signal failures:
■ ERR_Fail
■ ERR_FailStr and
■ ERR_FailSilent

Item Description
ERR_Fail Signals a failure. The error message will be loaded

from the "list of strings" resource called
Modul.Errors" where "Modul" is the first
argument passed to ERR_Fail (usually you pass
S_ModuleName, the name of the current module).
The second argument is the index of the message
in the list of strings" resource (from 0 to n-1 where
n is the number of messages in the resource. The
message may contain some printf formatting
directives (%d, %lx, ...) in which case you pass
additional arguments.

ERR_FailStr Signals a failure. Instead of loading the error
message from a resource, the error message is
hard-coded and passed as first argument. For now,
printf like formatting is not supported by that
routine.
242 C Programmer’s Guide

Overview
A typical use of ERR_Fail will be the following:

#define MODUL_FAILFILEOPEN2
FILE* MODUL_FileOpen(char* name)
FILE* file;
file = fopen(name, "r");
if (file == NULL) ERR_Fail("Modul", MODUL_FAILFILEOPEN, name);
return file;

The modul.rc resource file will contain the following resource definition:

StrL.Compile

WARNINGS

If you want to generate a warning, you can use one of the following calls:

The major difference between warnings and failures is that execution will
continue normally after a warning instead of resuming in recovery code as
is the case with failures.

Fatal Errors

A fatal error is an error which will cause the program to terminate without
attempting any recovery. Usually, you should not use fatal errors but signal
failures instead to give a chance to continue. Fatal errors will be generated
internally by the error handler in case we are completely lost (error recovery
data corrupted, failure while recovering from a failure, ...).

But if you really want to terminate the program, you can use ERR_Fatal
which will terminate the program with a message and dump a core file on

ERR_FailSilent Signals a failure silently (by disabling the error
reporting mechanism).

Name Modul.Errors
Text: "error #0".

Text: "error #1".

Text: "cannot open file %s".

Text: "error #3".

Item Description
ERR_Warn Generates a warning. The warning message will be

loaded from the "list of strings" resource called
Modul.Warnings" where "Modul" is the first
argument passed to ERR_Warn (usually you pass
S_ModuleName, the name of the current module).
The second argument is the index of the message
in the list of strings" resource (from 0 to n-1 where
n is the number of messages in the resource. The
message may contain some printf formatting
directives (%d, %lx, ...) in which case you pass
additional arguments.

ERR_WarnStr Generates a warning. Instead of loading the
message from a resource, the message is
hard-coded and passed as first argument. For now,
printf like formatting is not supported by that
routine.
C Programmer’s Guide 243

Chapter Err Class19
UNIX or call ERR_Exit which will display a message and terminate the
program. The message is hardcoded in this case because we do not want to
risk failing while loading the error message.

Error Contexts

As mentioned previously, we want our error reporting to include high level
context information as well as a low level message describing the failure
detected at the low level.

The way to achieve this is to set up some "error context messages" in high
level procedures. If a failure is detected in a lower level routine, the
procedure which reports the failure can display the error message and can
also scan the "error contexts" which are active at that time and display the
"error context messages".

Usually, the error context messages begin with a present participe (an ing
form), for example: "loading ...", "opening ...", "compiling ..." whereas the
error message usually starts with "unexpected ..." or "cannot ...". Error
contexts should indicate the state the program is in, not a particular error or
abnormal condition. Then the whole error message (with contexts) will be
something like:

The first message (unexpected end of file) is specified in the ERR_Fail call
which signalled the failure (probably in a low level call like FILE_Read).

The other messages have been set up at a higher level, for example in calls
like RLibReadHeader, RLIB_LoadFile, MYAPP_Init.

To set up an error context, you use the ERR_MSGIN/OUT/RET macros:

define RLIB_MSGREADHEADER1
define RLIB_MSGLOADFILE3
void RLibReadHeader(RLibPtr rlib)
ERR_MSGIN(RLIB_MSGREADHEADER);
RLibReadHeader code
FILE_Read(...);

more RLibReadHeader code.

ERR_MSGOUT;
void RLIB_LoadFile(char* filename)
RLibPtr rlib;
ERR_MSGIN(RLIB_MSGLOADFILE);
ERR_SETOPTSTR(filename);
RLIB_LoadFile code
RLibReadHeader(rlib);
more RLIB_LoadFile code
ERR_MSGOUT;

The message numbers (RLIB_MSGXXX codes) are indices in a resource
called "RLib.Messages". The rlib.rc resource file will contain the following
resource:

Item Description
ERROR Unexpected end of file.

While Reading file header loading file "myapp.dat"
initializing application.
244 C Programmer’s Guide

Overview
(StrL.Compile

In the first case (RLibReadHeader), the message does not contain any
formatting directive. In the second case, the ERR_SETOPTSTR macro sets
up `filename' as the parameter of the formatting directive contained in the
message.

Three macros are currently provided for formatting context messages:

It is possible to implement other formatting directives by using the
FormatProc field of the error frame. This will be documented later in the
"advanced error reporting" section.

Note: Context messages are formatted at the time failures are reported, not
at the time the routine is entered, so there is very little overhead in
setting up context messages.

Error Tracing

In debugging versions of your program, it may be interesting to get a
complete traceback of the execution stack in addition to the context
messages. Context messages are for the end user of your application, the
complete traceback will give the name of the source files and the line
numbers and is for the developper of the application.

If you use the ERR_TRACEIN/OUT/RET macros in all your routines, you
will get a complete traceback in case of failure. These macros are controlled
by the ERR_TRACEALL compilation flag. If ERR_TRACEALL is set, the
macros will turn into effective code and the traceback mechanism will be
fully operational. If this flag is not set, ERR_TRACEIN is a NOP and
ERR_TRACEOUT/RET become simple return statements. Then you get
optimal performance but you lose the traceback information.

We recommend that you turn on the ERR_TRACEALL compilation flag
when producing debugging and prerelease versions of your software. Once
you are confident in the stability of your software, you can turn that flag off
to get optimal performance.

Global Variables And Initialization

As a general rule, Open Interface does not define any global variables. The
error handling is the exception because we need a global variable for
performance reasons. This raises problems when software has to be

Name RLib.Messages
Text: "message #0".

Text: "reading file header".

Text: "message #2".

Text: "loading file \"%s\"".

Item Description
ERR_SETOPTSTR Sets up a string parameter.

ERR_SETOPTVSTR Sets up a variable string (see vstrpub.h) parameter.

ERR_SETOPTINT Sets up an integer parameter.
C Programmer’s Guide 245

Chapter Err Class19
packaged in DLLs on MS/Windows and OS/2 PM) because global variables
cannot be exported by DLLs.

So, instead of having one global variable for the whole application, we use
one global variable per linking unit. A linking unit is either a library DLL,
shareable image, shared library, object library) or the set of object files which
are linked with the ̀ main' routine but are not part of any library (on systems
which support DLLs or shared libraries, a linking unit is a set of files which
get linked together).

The error handling uses the ERR_LIB global variable. As each linking unit
must define its own global variable and we do not want to have multiply
defined symbols, ERR_LIB must be redefined in every C file so that all the
C files belonging to the same linking unit define ERR_LIB the same way
(and not the same way as C files belonging to other linking units).

This ERR_LIB redefinition must be done before including any Open
Interface header file.

So every C file using Open Interface headers should start as follows:
■ Files in linking unit MYLIB.

define ERR_LIB MYLIB
include <wgtpub.h>

// for example

■ Files in linking unit MYAPP (`main' linking unit).

define ERR_LIB MYAPP
include <errpub.h>

// for example

Note: If you forget to redefine ERR_LIB, errpub.h won't compile properly.

This error handling global variable must be declared and initialized once in
every linking unit. Usually, every library should have one initialization
entry point where you will initialize ERR_LIB. You will also need to
initialize ERR_LIB in your `main' routine.

The following macros are provided to declare and initialize ERR_LIB:

and also:

ERR_LIBINIT is a macro that checks whether ERR_LIB for a library has been
allocated, and, if it has not, creates and initializes it by using
ERR_LIBCREATEINIT) and if it has, returns (using a return' statement. It is
always very dangerous to hide a return statement in a macro which does not

Item Description
ERR_DECLARE Declares ERR_LIB.

ERR_LIBCREATEINIT Allocates, and initializes ERR_LIB for a library.

ERR_ISLIBCREATED Is BOOL_FALSE if ERR_LIB has not been allocated
for a library.

ERR_MAININIT Initializes ERR_LIB for the `main' routine.

Item Description
ERR_EXTERN Special macro used by the Macintosh version to

allow precompiled headers.
246 C Programmer’s Guide

Overview
make it obvious. A better way would be to actually use the
ERR_ISLIBCREATED and ERR_LIBCREATEINIT macros.

A library initialization routine will look like:

ERR_DECLARE
void MYLIB_Init()
if (!ERR_ISLIBCREATED) {
ERR_LIBCREATEINIT;

Your `main' routine will look like:

ERR_DECLARE
int main(int argc, char**argv)
ERR_MAININIT;

Note: If you are not using any error handling macro in your linking unit,
you do not need to use ERR_DECLARE and
ERR_LIBCREATEINIT/ERR_MAININIT

Advanced Error Reporting

This section will cover two topics:
■ Formatting context messages (beyond what the ERR_SETOPTXXX

macros provide).
■ Installing a custom error reporting procedure.

These topics will be documented later.

The only documented routines for now are:
■ ERR_TraceBack() Outputs error traceback starting from the top error

frame for the current exception.
■ ERR_FrameTraceBack(ErrFramePtr frame) Outputs error traceback

starting from the error frame specified by frame'.

Summary Of Error Handling And Reporting

To set up an error recovery label in a routine, use
ERR_CATCHIN/OUT/RET. If the routine attempts a retry, you should use
ERR_RETRYIN/OUT/RET instead.

The ERR_RETRY macro will clear the error state and branch at the
beginning of the routine.
■ To signal a failure, use ERR_Fail, ERR_FailStr or ERR_FailSilent.
■ To generate a warning, use ERR_Warn, ERR_WarnStr.
■ To set up context messages, use ERR_MSGIN/OUT/RET. You can

parameterize context messages with the ERR_SETOPTSTR/VSTR/INT
macros.

■ To set up traceback information, use ERR_TRACEIN/OUT/RET.

The error reporting messages are loaded from "list of string" resources see
the StrL module). Every module may define three "list of string" resources:

Where "Modul" is the name of the module.

Item Description
Modul.Errors Messages associated with failures.

Modul.Warnings Messages associated with warnings.

Modul.Messages Context messages.
C Programmer’s Guide 247

Chapter Err Class19
Note: If you have an error recovery label in a function (not a procedure), the
value returned by ERR_CATCHRET(val) after the err_catch label will
be meaningless because the execution will not continue normally in
the caller) at that point. You should nevertheless use
ERR_CATCHRET rather than ERR_CATCHOUT to keep lint (and
some smart C compilers) happy.
The error recovery mechanism uses the setjmp/longjmp calls, so you
should be careful about using ̀ register' variables. Any variable which
may be modified in the body of the routine (before the err_catch
label) should be declared with the C_VOLATILE keyword so that the
compiler does not assign it to a register.
The (non documented) ERR_Signal procedure is called by ERR_Fail,
ERR_FailStr, ERR_Warn and ERR_WarnStr. When you are running
your application from a debugger, you are encouraged to set a
breakpoint on this procedure (ERR_Signal), so that you can examine
the contents of the stack and of your variables when a failure occurs.
You should also set a breakpoint on ERR_Fatal to trap fatal errors.

Reporting Errors for Calls to Third Party APIs

Certain of the modules in Open Interface provide a portable interface to
third party APIs, such as calls to the underlying operating system (eg. the
FILE and FMGR modules.) The contracting metaphor used by Open
Interface's error mechanism is not always appropriate for these interfaces,
because the underlying operating system call or third party product may
not have been designed with the contracting metaphor in mind. There are
two issues which are important here:

1. The contracting metaphor is inherently boolean in that the called
routine either fulfils its contract or it does not and fails. Certain third
party API calls fit this boolean model (eg. memory allocation), whereas
others do not (eg. file access) because they may return an error status for
a number of different reasons which may be of interest to the upper
levels of the software (for the forming of dialog boxes, determining a
retry mechanism, etc.)

2. Assertions should be used to indicate controllable programming errors
that reflect the underlying contract, eg. a pointer must be not be NULL,
a positive extent must be supplied for a buffer, etc. However if one of
the input parameters to a routine is derived from input typed by a user,
for instance from the contents of a text edit in a dialog box, then that
input is not under the control of the program. In such instances it might
be more appropriate to return that information to the caller instead of
asserting beacuse the system call failed.

For this reason for those API calls which interface to the operating system
or other third party product, and for which the contracting metaphor may
not be appropriate there are usually two versions of the call provided, one
of which aserts and another which does not but returns a boolean value
indicating whether or not the call succeeded. The calls usually take the same
arguments, with the asserting version being declared as void and the
non-asserting version being declared as BoolEnum, and the non-asserting
version takes the name of the asserting version and appends "Try" to the
beginning (eg. FILE_Open and FILE_TryOpen in the FILE module.) An
248 C Programmer’s Guide

Data Structures
error reporting structure is maintained by the ERR module which can be
used to store information about the call which failed. It is the responsibility
of the module which made the call to the routine which failed to write to this
structure, and the it is the responsibility of the caller of the module to check
this structure if an error has occurred.

The error reporting structure contains the following three fields:

An API call is provided, ERR_GetErrFuncCallPtr, to obtain a pointer to this
structure.

Data Structures

NDErrFuncCall

GetErrFuncCallPtr

ErrFuncCallPtr ERR_GetErrFuncCallPtr (void)

Returns a pointer to the error reporting structure.

ErrFrame API for Error Reporting and Discrimination

FrameGetTop

ErrFramePtr ERR_FrameGetTop (void)

Returns topmost error frame.
This call is only valid inside catch blocks. The frame returned by this call
may be used to discriminate among exception types, or to report the
exception in a custom fashion.

FrameQueryMessage

void ERR_FrameQueryMessage (ErrFrameCPtr frame, Str buf, StrIVal size)

Formats the frame's end user message into ̀ buf', not writing more than size'
characters.

Item Description
Code A enumeration of the error code, which is defined

by the module which writes to the structure ie.
there is one set of constants for module A, antother
set for module B, etc.).

SysCode The system specific error code.

FuncName The name of the API call which returned an error
status.

Item Description
ErrCodeVal Code;

ErrSysVal SysCode;

CStr FuncName;
C Programmer’s Guide 249

Chapter Err Class19
FrameQueryTraceback

void ERR_FrameQueryTraceback (ErrFrameCPtr frame, Str buf, StrIVal size)

Formats the frame's traceback message into `buf', not writing more than
size' characters.

FrameQueryFullTraceback

void ERR_FrameQueryFullTraceback (ErrFrameCPtr frame, VStrPtr vstr)

Formats the full traceback message into `vstr'.

FrameSetReported

void ERR_FrameSetReported (void)

Marks the error frames to indicate that the error has been reported to the
user.

FrameIsReported

BoolEnum ERR_FrameIsReported (void)

Returns whether or not the error has already been reported to the user.

FrameReport

void ERR_FrameReport (ErrFrameCPtr frame)

Invokes the global error reporting routine.

FrameDefReport

void ERR_FrameDefReport (ErrFrameCPtr frame)

Invokes the default error reporting routine.

GetReportProc

ErrReportProc ERR_GetReportProc (void)

Returns the global error reporting procedure.

SetReportProc

void ERR_SetReportProc (ErrReportProc proc)

Overrides the global error reporting procedure.

ErrFrame Class

ErrFrame

Private stuff.

Item Description
ErrFramePtr Next

ErrJmpPtr Env

BoolEnum Failed; for propagate

Traceback CStr File

ErrLineVal Line
250 C Programmer’s Guide

Macros
Handlers and Client Data.

Macros

Recovery and retry.

Context Messages and Tracing

The context messages and tracing mechanisms can be turned off or on by
using the ERR_TRACEALL compilation flag. If ERR_TRACEALL is
defined, then the following macros will generate messages and tracing
information. If not, they won't do anything.

Context CStr Module

ErrIdVal Id

ErrTypeVal Type

Item Description
ErrFormatProc FormatProc;

ErrReportProc ReportProc;

ClientCPtr ClientData;

ErrGblPtr ErrLib;

Item Description
ERR_CATCHIN Entry of routine with error cleanup code.

ERR_CATCHOUT Exit of procedure with error cleanup code.

ERR_CATCHRET(val) exit of function with error cleanup code.

ERR_RETRYIN Entry of routine with error retry code.

ERR_RETRYOUT Exit of procedure with error retry code.

ERR_RETRYRET(val) Exit of function with error retry code.

ERR_RECOVER Recover directive. (will be documented later).

ERR_RETRY Retry directive.

ERR_RECOVER_SILENT Recover with no error reporting.

ERR_RETRY_SILENT Retry with no error reporting.

Item Description
ERR_IN(e00);
e00.Id = id

Entry of routine with error context message

ERR_OUT(e00) Exit of procedure with error context message

ERR_RET(e00, val) Exit of function with error co
C Programmer’s Guide 251

Chapter Err Class19
Misc Macros For Error Reporting

SetReportPrint
SetReportSilent
Print

void ERR_SetReportPrint (ErrFramePtr errframe)

void ERR_SetReportSilent (ErrFramePtr errframe)

void ERR_Print (ErrFrameCPtr errframe)

Default REPORT procedures.
Do not install `Print' with ERR_SETREPORT, but use "SetReportPrint".
Print' must not be directly installed but can be called from a normal report
procedure.

Format

void ERR_Format (ErrFrameCPtr errframe, Str str, StrIVal len)

Default FORMAT procedure (used by ERR_Print).

Format' loads a message with ERR_MsgLoad and then calls the
user-defined format procedure (if any).

LoadMsg

void ERR_LoadMsg (ErrFrameCPtr errframe, Str str, StrIVal len)

Loading the error message from resource file.

ERR_LIB, ERR_EXTERN

ERR_LIB

Global variable for error handling. All the files which belong to the same
linking unit should define ERR_LIB the same way. ERR_LIB must be
defined BEFORE including any Open Interface header file.

MAC_HEADERS

Special macro to declare ERR_LIB, used in the case MAC_HEADERS is
defined, i.e. on Mac when using precompiled headers. ERR_EXTERN must
be in all your C files except the main module which has ERR_DECLARE
(See your Macintosh manual for more information on precompiled headers
with THINK C or MPW)

Item Description
ERR_SETOPTINT(val) Sets up an optional integer argument for error

reporting.

ERR_SETOPTSTR(str) Sets up an optional string argument for error
reporting.

ERR_SETOPTVSTR(vstr) Sets up an optional variable string argument for
error reporting.
252 C Programmer’s Guide

Initialization Macros
Initialization Macros

The following macro is preserved for compatibility purposes only.

Note: Is this still needed or can we just forget about the DS issues.

Fatal Errors

Fatal

void ERR_Fatal (CStr msg)

Exits with a message and produces a `core dump' (on UNIX).

Exit

void ERR_Exit (CStr msg)

Exits with a message.

Signaling Failures

Fail

void ERR_Fail (CStr modname, ErrIdVal msgId, ...)

Generates a failure and displays the error message which is in
"`modname'.Errors" at index `msgId'. If the message contains conversion
specifications like "%d" or "%.2s"), the conversion will apply on the
additional arguments (it works like printf).

FailStr

void ERR_FailStr (CStr str, ...)

Generates a failure and displays `str' instead of loading a message from the
resource file).

FailSilent

void ERR_FailSilent (void)

Generates a 'silent' failure (without message).

FailAssert

void ERR_FailAssert (CStr cstr, CStr fileName, ErrLineVal line)

Use DBG_CHECK or ERR_CHECK instead.

Item Description
ERR_LIBDECLARE Declares global variable for error handling.

ERR_ISLIBCREATED Has the library been created.

ERR_LIBCREATEINIT Create and initialize the library.

ERR_MAININIT Initialization of error handling in `main'.
C Programmer’s Guide 253

Chapter Err Class19
FailError

void ERR_FailError (CStr fileName, ErrLineVal line)

Use DBG_ERROR instead.

Generating Warnings

Warn

void ERR_Warn (CStr modname, ErrIdVal msgId, ...)

Generates a warning and displays a warning message loaded from resource.
Conversion specifications, if any, will apply.

WarnStr

void ERR_WarnStr (CStr str, ...)

Generates a warning and displays `str' instead of loading a message from
the resource file).

Querying the Error State

InError

BoolEnum ERR_InError (void)

Returns whether we are currently executing error. Recovery code
(BOOL_TRUE) or whether we are executing normally (no failure signalled,
or last failure was cleared by a RETRY).

Assertions

Item Description
ERR_CHECK(t) Checks that <t> is true. If <t> is false, generates the

error message: assertion <t> failed file ... line ... "
This assertion is not controlled by the DBG_ON
compilation flag. Usually, you will use
DBG_CHECK rather than ERR_CHECK because
you want assertions to disappear in production
code. (See basepub.h for DBG_XXX macros).

ERR_CHECKSTR(t, str) Same as ERR_CHECK except that it generates the
message: assertion <str> failed file ... line This is to
be used in the special cases when <t> is too long to
fit on one line or if it contains a ("). You should use
DBG_CHECKSTR instead.

ERR_ASSERT(t) Is a synonym for ERR_CHECK ifdef
DBG_NOCHECKSTR.
254 C Programmer’s Guide

Error Reporting
Error Reporting

TraceBack

void ERR_TraceBack (void)

Outputs error traceback starting from the top error frame for the current
exception.

FrameTraceBack

void ERR_FrameTraceBack (ErrFramePtr frame)

Outputs error traceback starting from the error frame specified by frame'.

Error Conditions Signaled by Error Module

The error module signals the following error conditions:

Exiting from the Application

ModExit

void ERR_ModExit (void)

Broadcasts an “exit” message to all modules. This is called implicitly when
the application is exited and need not be called.

UNIX Exception Handling

On UNIX, Open Interface installs signal handlers to catch system exceptions
such as bus error, floating point exceptions, ... The handlers are installed
during the initialization of the Open Interface libraries (usually GW_LibInit)
from a static table describing which handler should be installed for which
signal. By default, Open Interface catches the following signals: INT, ILL,
FPE, SEGV, TERM, HUP, QUIT, TRAP, EMT, BUS, SYS, PIPE and ALRM. If
your program relies on signals, you may want to prevent Open Interface
from installing some signal handlers (typically SIGPIPE or SIGALRM). To
do so, you can query and modify the table of system handlers with the
following calls.

Item Description
WARNNIY Not implemented yet warning (see DBG_NIY macro).

FAILINTR Failure generated when the program receives an interrupt
from the keyboard.

FAILQUIT Failure generated when the program receives a `quit' signal.

FAILASSERT Failure generated when an assertion was not satisfied see
DBG_CHECK and ERR_CHECK macros).

FAILERROR Failure generated by DBG_ERROR.

FAILEXCEPTION Failure raised by an exception.
C Programmer’s Guide 255

Chapter Err Class19
SysExceptProc

void ERR_SysExceptProc (ErrSigVal);

Data type for UNIX exception handler.

SetSysExceptHandler

void ERR_SetSysExceptHandler (ErrSigVal sig, ErrSysExceptProc proc)

Records `proc' as the signal handler for signal `sig' in Open Interface's
exception handler table. You can pass 0 as `proc' to prevent Open Interface
from trapping signal `sig'. This call may be called before initializing the
Open Interface libraries.

GetSysExceptHandler

ErrSysExceptProc ERR_GetSysExceptHandler (ErrSigVal sig)

Returns the signal handler for signal `sig' currently installed in Open
Interface's exception handler table. This call may be called before initializing
the Open Interface libraries.

SysException

void ERR_SysException (ErrSigVal sig)

Default exception handler installed by Open Interface. You may call this
procedure from your own signal handler. This procedure reinstalls the
exception handler through a call to the ̀ signal' system call and then triggers
the Open Interface exception mechanism (ERR_CATCHXXX,
ERR_RETRYXXX directives, see above).

Note: This call does not return to its caller. The exception handler which is
reinstalled by this call is the handler in OI's exception handler table,
so you need to modify OI's table through `SetSysExceptHandler' if
you want your custom handler to be reinstalled correctly.

W16 Exceptions Handling

Under W16 API, only one interrupt handler per application can be
registered by calling InterruptRegister(). By default, Open Interface always
registers a native interrupt handler to trap the error signals such as GP Fault,
divided by zero, and etc.. Open interface will un-register installed handler
when program terminated.

For any reason, user can use the following function to disable or enable this
interrupt registration mechanism.

Item Description
ERR_MswRegisterInterrupt(bool) Enable/Disable the native

interrupt registration
mechanism and set default
action for ERR_LIBINIT,
ERR_MAININIT.

ERR_MswRegisterInterruptOnInit(bool) Set default action for
ERR_LIBINIT, ERR_MAININIT.
256 C Programmer’s Guide

Mac Exceptions Handling
MswRegisterInterrupt

void ERR_MswRegisterInterrupt (BoolEnum bool)

Enable/Disable the ND native interrupt mechanism according to bool'. Also
calls ERR_MswRegisterInterruptOnInit(bool) to set the default action of
ERR_LIBINIT, ERR_MAININIT.

It can be called at any time to enable/disable the ND native interrupt
mechanism.

If it is called before the Error module initialization, i.e. before ERR_LIBINIT
or ERR_MAININIT it will determine whether the initialization installs the
ND native interrupt handler.

MswIsInterruptRegistered

BoolEnum ERR_MswIsInterruptRegistered (void)

Return BOOL_TRUE if a ND native interrupt handler is registered.

MswRegisterInterruptOnInit

void ERR_MswRegisterInterruptOnInit (BoolEnum bool)

If `bool' is set to BOOL_FALSE the ND native interrupt handler will be not
be enabled by ERR_LIBINIT or ERR_MAININIT. The default setting is
BOOL_TRUE. It must be called before the Error module initialization, i.e.
before ERR_LIBINIT or ERR_MAININIT.

Mac Exceptions Handling

Open Interface installs low level error handlers to recover from 680X0
exceptions such as bus error, address error or illegal instruction. If, for some
reason, you want to prevent this in your application you need to call
`NoMacSignals'() at the very beginning of your main() routine. The current
exception handlers are restored when the application quits or is switched to
the background).

NoMacSignals

void ERR_NoMacSignals (void)

Disables the low level signal mechanism. It must be called before the Error
module initialization, i.e. before ERR_LIBINIT or ERR_MAININIT.
C Programmer’s Guide 257

Chapter Err Class19
258 C Programmer’s Guide

Chapter
20 File Class 20

This class provides a portable File I/O API.

Technical Summary

File management and file I/O is a rather complex issue. The main
differences between operating systems are the following:

The File API provides the following services:
■ Checking the existence and attributes (owner, access mode) of files.
■ Opening (or creating) and closing files.
■ Reading/writing data from/to a file (binary and text files).
■ Seek and tell operations.
■ Filename conversions.
■ Reading directories.

This class provides a portable API to open a text file or a binary file and
perform I/O operations (i.e. Read and Write) on files.

This class is built on top of the FName and FMgr classes. File names are
automatically converted to native syntax if necessary. Use FName if you
need more advanced file name conversions. Use FMgr for advanced queries
and modifications on the file manager.

Quick Overview of Various File I/O Packages

The various systems have several differences, especially with text files and
with record-oriented files, making generic file I/O a complex issue. The
following table summarizes some of the differences between systems:

File names: Different syntaxes.

Text files: Special record-oriented format on some systems (mainframes).
Different ‘newline’ delimiters.

File
attributes:

Creator and type signatures on the Macintosh.

File System Comments
Unix On Unix, everything is simple: all files are unstructured. If

the file contains text, the lines are separated by a \n character
in the byte stream.

Macintosh On the Macintosh, files have some additional attributes
(Type, Creator, VolId). Files are unstructured but lines are
separated by a \r character in the text files.

DOS, OS/2, NT On the PC, files are also unstructured. In text files, lines are
separated by a \r\n on the disk but the C runtime library
allows you optionally to open the file in TEXT mode, in which
case the C RTL maps \r\n into \n on reads and \n into \r\n
on writes.
C Programmer’s Guide 259

Chapter File Class20
Overview of Open Interface File I/O

Open Interface File I/O is very similar to that provided by the Standard
(ANSI) I/O library. It actually extends its functionality to address some of
the portability issues. Here is a summary of the features of Open Interface
File I/O:

Record-oriented file I/O: This is particularly important because it is the
native representation of text files on VMS and CMS and it is not supported
by the ANSI library. A typical CMS application will have to use afopen,
afread, afreadh, etc. instead of fopen, fread, etc.

Text files with incomplete last line: This occurs very frequently on Unix
because, with some text editors (gnu-emacs for instance), it is possible to
save a text file which does not end with a final \n. The problem is that other
applications (compilers, other text editors, SCCS, ftp, etc.) will complain or
will fail when reading such a file. A well-behaved application should not
complain but should always save the file with a line terminator at the end of
the file. This is handled automatically if a file is opened in Open Interface’s
FILE_FMTLINE format.

Better specifications: In the ANSI specifications, the opening flags for fopen
are confusing and incomplete. The POSIX standard committee actually had
to introduce a new ‘fdopen’ call which tries to provide modes not covered
by fopen.

Performance: The VMS implementation of the Standard ANSI library can
be inefficient. A typical VMS or CMS application might use instead
system-specific calls, and maybe use some tricks like preloading files in the
global section.

Macintosh signatures: This class supports Macintosh Creator and Type
signatures. It also supports file names which contain Volumes (i.e. logical

VMS On VMS, RMS supports many file organizations and record
attributes, but everything behaves as on UNIX if the file is
converted to Stream_LF, which is the recommended format
for binary files. The normal native format for text files is
record-oriented, but Stream_LF is also accepted by most
native text editors as long as the lines are not too long (less
than 512 characters). In record-oriented files, records can be
fixed size or variable size.

IBM Mainframe On the mainframe, a large number of formats are supported,
including a flat format for binary files. The native
representation for text files is record-oriented (i.e.
line-oriented). The SAS/C RTL includes four libraries: First,
a Unix-like I/O library (open, read, write, lseek, etc.). This
library is compliant to Unix specifications, but is very
inefficient (each file is entirely copied to a large memory
buffer where all the I/O operations are then performed).
Second, a Standard I/O library (fopen, fread, fwrite, etc.).
This library is efficient but does not fully comply to the ANSI
standard. Third, an ‘Augmented Standard I/O’ library
(afopen, afread, afwrite, etc.) which is a supplement to the
Standard I/O library to support features which are not
supported by ANSI standard (like record-oriented I/O). And
finally, a very complete and very efficient native I/O library.
This library is non-portable.

Tandem
Mainframes

Text files are also special record-oriented files.
260 C Programmer’s Guide

Technical Summary
disk). This is not supported by the ANSI library. A typical Mac application
will have to use FSOpen, FSRead, etc. instead of fopen, fread, etc.

PC limitations: This class removes an important limitation on PC where
fread and fwrite are limited to a buffer of 32k bytes. In this class,
FILE_ReadNBytes and FILE_WriteNBtyes are limited to MAXINT32.

Search paths: A search path is a list of directories the application should
look through when trying to open a file which is not in the current directory.
This feature is available on DOS but requires using DOSFileOpen instead of
fopen. This feature is not usually available on any other system.

File name conversion: File names are automatically converted to the
appropriate syntax if they are specified in a foreign syntax (for instance,
DOS file names are converted to Unix names when running on Unix).

If some native features are still not covered by this API (for instance,
opening a file in Shared access on the Macintosh), it is still possible to
retrieve the native file descriptor and call the native API directly. Beware
that such calls might not be portable and should be clearly identified, and if
possible isolated in one central place in your code.

General Principles for the File API

FilePtr: Most API calls in this File class take a FilePtr as their first argument.
A FilePtr is a pointer to a private FileRec structure which is similar to a FILE
structure (usually defined in stdio.h) and which serves as an handle to the
actual system file. Several FilePtrs could point to the same system file,
although this is not recommended.

Checking existence and access rights: Once a FilePtr has been created (with
FILE_New), you can either check that the corresponding system file actually
exists (with FILE_Find) and that it has the appropriate access rights (with
FILE_GetAccess), before actually trying to open the file, or you can try to
open the file directly (with FILE_Open or FILE_TryOpen).

Opening modes: FILE_Open takes two extra parameters: a FileIOEnum
and a FileFmtEnum. The FileIOEnum modes control the Read-Write access.
They are the same as the mode argument of fopen (READ, WRITE,
APPEND, etc.). The FileFmtEnum mode specifies the expected format of
the file. This can be one of the following three formats: The first is BINARY
format, in which files are read and written exactly as they appear in the
physical storage device, without any conversion. The next is TEXT format,
in which line separators (\n on Unix, \r on Mac, \r\n on PC, separate
records on IBM Mainframes, Tandem and VMS) are automatically
translated into a unique and a portable representation which is '\n'. The last
is LINE format. The TEXT format can be very inefficient on some systems,
so Open Interface introduces this line-oriented file I/O.

Read/Write: The API for Read and Write operations is completely different
depending on the file format: In Binary and Text format, the API is very
similar to the standard ANSI routines (although the implementation might
use machine-specific calls). In Line format, FILE_ReadLine and
FILE_WriteLine are slightly different from the standard gets and puts.

Seek/Tell: Here also the API is completely different depending on the file
format: In Binary format, the current position is a numeric offset and can be
set arbitrarily. In Text format, it is only possible to set the position to a place
C Programmer’s Guide 261

Chapter File Class20
which has already been visited. The current position is not kept as a
numeric offset (because of the line terminators). In Line format, the current
position is always at the beginning of a line. The file system may also
support special files (like FIFO, pipes, terminal on Unix) in which it is not
possible at all to change the current position.

Examples of Using this API

Open a binary file “data” and read 200 bytes starting at offset 300:

{
FilePtr file = FILE_New("data");
Byte buf[200];

FILE_Open(file, FILE_IOREAD, FILE_FMTBINARY);
FILE_SeekBinaryTo(file, 300);
FILE_ReadNBtyes(file, buf, 200);
FILE_Close(file);
FILE_Dispose(file);

}

Open a text file “myapp.rc”, or “defaults.rc” if myapp.rc does not exist, then
print all the lines which start with “Definition”:

{
FilePtr file = FILE_New("data");
Byte buf[200];

FILE_Open(file, FILE_IOREAD, FILE_FMTBINARY);
FILE_SeekBinaryTo(file, 300);
FILE_ReadNBtyes(file, buf, 200);
FILE_Close(file);
FILE_Dispose(file);

}

Open a text file in READWRITE mode if possible, or in READ mode if it is
read-only, or create the file if it does not exist.

{
if (FILE_Find(file)) {

if (FILE_IsWritable(file)) {
FILE_Backup(file);
FILE_Open(file, FILE_IOREADWRITE,

FILE_FMTTEXT);
} else {

FILE_Open(file, FILE_IOREAD,
FILE_FMTTEXT);

}
} else {

FMgrCreateFileRec info;
info.Access = FMGR_ACCESSDEFAULTS;
info.MacIds.Creator = FMGR_MACCREATOROIT;
info.MacIds.Type = FMGR_MACTYPETEXT;
FILE_CreateOpen(file, &info, FILE_FMTTEXT);

}
...

}

Summary

The File class does the actual opening, reading, writing, and closing of files
— the manipulation of data within a file. It uses the FMgr class for
performing operations on files as a whole — copying them, moving them,
setting file attributes, etc., and it uses the FName class to do string
manipulation when converting file names between the syntax of the various
systems.
262 C Programmer’s Guide

Data Structures
See also

FName class and FMgr class.

Data Structures

FilePtr

Pointer to the private structure that stores information for performing file
I/O.

FilePtr is a pointer to a file object. The file data structure is kept private, but
some fields can be accessed indirectly through the API.

See also

FILE_New, FILE_Dispose

FileLinePosPtr
FileLinePosRec

Position type for files opened in line format mode.

FileLinePosRec is the position type for files opened in line format mode.
The NatPos is a machine-specific opaque type. LineNumber is the current
line number. The first line of the file is line 0. This type is only used for files
opened in FILE_FMTLINE mode.

See also

FILE_CurLineNumber, FILE_QueryLinePos, FILE_SetLinePos

FileNatRefPtr
FileNatRefRec

The structure for storing native representation of a file handle and/or file
pointer.

FileNatRefRec is the structure for storing the native representation of a file
handle and/or file pointer. On ANSI systems, the FileID == fileno
(StdioFile).

See also

 FILE_QueryNatRef, FILE_SetNatRef

FileOffsetVal

Data type for storing file size and offset values.

FileOffsetVal is the data type for storing file size and offset values.

See also

FMgrSizeVal (FMgr class), FILE_CurSize, FILE_CurBinaryOffset,
FILE_CurTextOffset
C Programmer’s Guide 263

Chapter File Class20
FileTextPosPtr
FileTextPosRec

The structure for storing generic and machine specific text file positions.

FileTextPosRec is the structure for storing generic and machine specific file
positions for files opened in text format. The NatPos is a machine-specific
opaque type. The TextOffset is the number of characters before the current
position, where each line terminator counts for one character. This type is
only used for files opened in FILE_FMTTEXT mode.

See also

FILE_QueryTextPos, FILE_SetTextPos

Enumerated Types

FileErrEnum

Enumerated type for specifying the errors reported by this class.

FileErrEnum is the enumerated type for specifying the errors reported by
this class. These error codes are also stored in the ErrCodeEnum field of the
ErrFuncCallRec defined in the err class.

The various errors are described below.

See also

FILE_GetError, FILE_Open, ERR_GetErrFuncCallRec

FileFmtEnum

Enumerated type for specifying the format in which a file can be opened.

FileFmtEnum is an enumerated type for specifying the format in which a file
can be opened.

Identifier Description
FILE_ERRNONE No error.

FILE_ERRCVTNAME File name could not be converted to the target
syntax.

FILE_ERRNOTFOUND File could note found.

FILE_ERRBADTYPE File of this type cannot be opened.

FILE_ERRBADACCESS File access privileges set in operating system denies
opening the file in specified I/O mode.

FILE_ERRBADNAME File could not be created because file name syntax is
not allowed.

FILE_ERRNOSPACE File could not be created or extended because no
space is available.

FILE_ERRNOTDIRECTORY File name is not the name of a directory.

FILE_ERROSSPECIFIC This error is operating system specific. The actual
error code returned by the system call is stored in the
ErrCode field of the ErrFuncCallRec structure.
264 C Programmer’s Guide

Enumerated Types
The various file formats are described below.

File I/O on Record-Oriented Binary files is not supported in this version of
the library.

See also

FILE_Open, FILE_TryOpen, FILE_CreateOpen, FILE_GetOpenFormat,
FILE_IsOpen…

FileIOEnum

Enumerated type for specifying Input/Output file open modes.

FileIOEnum is an enumerated type for specifying Input/Output file open
modes.

Identifier Description
FILE_FMTBINARY This format should be used for binary files. Its ANSI

equivalent is using fopen with the "b" flag. In this format,
physical bytes are read and written as they actually
appeared in the file, without any kind of conversion.

This format should not be used with text files because the
physical representation of line separators is not portable:
"\n" on Unix, "\r" on Mac, "\r\n" on PC, no physical
delimiter on VMS or Mainframes. If you open a
Record-Oriented file in this format (VMS, Mainframe), the
record structure is not accessible.

This format is the most flexible for querying and changing
the current position (position is a numeric offset on which
you can perform arithmetic operations).

FILE_FMTTEXT This format should be used for a text file when character per
character access is required. It is typically used when
parsing a text file where performance is not especially
important. Its ANSI equivalent is using fopen with no "b"
flag.

In this format, you can use the same Read/Write calls as in
the FILE_FMTBINARY format, the difference is that native
line delimitors ("\r" on Mac, "\r\n" on PC, record breaks on
VMS and Mainframes) are automatically converted to "\n".

You can not use a numeric offset to query and set the
current position. You must use FILE_QueryTextPos and
FILE_SetTextPos instead.

FILE_FMTLINE This format is similar to FILE_FMTTEXT and should only
be used with Text files. The difference is that Read/Write
operations are done line by line instead of character by
character. By doing this, performance can be significantly
improved on systems like VMS and CMS. The ANSI
equivalent uses only fgets and fputs. On VMS and CMS, it
is mapped to record-oriented file I/O.

For this mode, the Read/Write API is completely different
and consists of two calls: FILE_ReadLine and
FILE_WriteLine. The current position can only be at the
beginning of a line. You can query and set the current
position with FILE_QueryLinePos and FILE_SetLinePos.
The current line number is managed automatically and can
be queried or set by FILE_CurLineNumber and
FILE_SetLinePos. Also, in this format the current line
number is automatically maintained.
C Programmer’s Guide 265

Chapter File Class20
The various file I/O modes are described below.

The correspondence between these modes and the standard ANSI modes is
described below:

In all cases except FILE_IOREAD, a backup file is created if the AutoBackup
flag is set.

In all cases except FILE_IOREAD and FILE_IOREADWRITE, a new file is
created if none is found, except if FailIfNotFound is set (in which case
FILE_Open fails and FILE_TryOpen returns BOOL_FALSE).

See also

FILE_Open, FILE_TryOpen, FILE_GetOpenMode

Accessing File Attributes

GetSpecName

Get the file name used by FILE_Open.

CStr FILE_GetSpecName (FilePtr fileobj);

FILE_GetSpecName returns the “specified name” of the fileobj. The “spec
name” is the name used by FILE_Open to open the file. The spec name is
initialized to the value passed to FILE_New. The spec name can be relative
or absolute. It may be expressed in a foreign syntax, in which case

Identifier Description
FILE_IOREAD File is opened in read-only mode.

FILE_IOWRITE File is opened in write-only mode. The content of the
file is reset.

FILE_IOAPPEND File is opened in append mode. The content is
preserved and the current position is set at the end of
the file.

FILE_IOREADWRITE File is opened in read-write mode. The content of the
file is preserved and the position is set at the
beginning of the file.

FILE_IOCLEARREADWRITE File is opened in read-write mode. The content of the
file is reset. The current position is set at the
beginning of the file.

FILE_IOREADAPPEND File is opened in read-append mode. The content of
the file is preserved and the current position is set at
the end of the file.

FileIOEnum read write write
at end

create clear
content

ANSI
equivalent

READ y n n n n fopen (f, "r")

WRITE n y n y y fopen (f, "w")

APPEND n y y y n fopen (f, "a")

READWRITE y y n n n fopen (f, "r+")

CLEARREADWRITE y y n y y fopen (f, "w+")

READAPPEND y y y y n fopen (f, "a+")
266 C Programmer’s Guide

Accessing File Attributes
FILE_Open will convert it to the native syntax when it creates the “real
name” for a file.

See also

FilePtr, FILE_SetSpecName, FILE_GetRealName, FILE_New

SetSpecName

Set the file name used by FILE_Open.

void FILE_SetSpecName (FilePtr fileobj, CStr specname);

FILE_SetSpecName changes the specname of the fileobj. The spec name is
the name used by FILE_Open to open the file. The spec name is initialized
to the value passed to FILE_New. The spec name can be relative or absolute.
It may be expressed in a foreign syntax, in which case FILE_Open will
convert it to the native syntax when it creates the “real name” for a file.

See also

FilePtr, FILE_SetSpecName, FILE_GetRealName, FILE_New

GetRealName

Get the real file name as set by FILE_Open.

CStr FILE_GetRealName (FileCPtr fileobj);

FILE_GetRealName returns the “real name” of the fileobj. The real name is
set by FILE_Find or FILE_Open to the full, absolute path name of the native
file which matches the spec name description. If the spec name is a relative
file name and several files are found in the search path, the first matching
file will be considered as the real name. The real name might differ from the
spec name if the spec name was a relative path name or if it was in a foreign
syntax.

Since the real name of the file is something which is returned by the
operating system, there is no API call provided to change the value of this
field.

See also

FilePtr, FILE_GetSpecName, FILE_SetSpecName, FILE_New

GetSearchPath

Get the search path used by FILE_Open.

CStr FILE_GetSearchPath (FileCPtr fileobj);

FILE_GetSearchPath returns the search path used by FILE_Open. The
search path is a list of directory names where FILE_Open (or FILE_Find)
should look for the file in case a relative file name is specified. The
directories should be separated by a '|' character. The search path does not
need to contain the current directory — the current directory is always
searched first. Each file has its own search path. If the search path is set to
NULL, which is the default, FILE_Open will use the global DefSearchPath
defined by FILE_SetDefSearchPath instead.
C Programmer’s Guide 267

Chapter File Class20
See also

FILE_SetSearchPath, FILE_GetDefSearchPath, FILE_SetDefSearchPath

SetSearchPath

Set the search path used by FILE_Open.

void FILE_SetSearchPath (FilePtr fileobj, CStr path);

FILE_SetSearchPath sets the search path used by FILE_Open. The search
path is a list of directory names where FILE_Open (or FILE_Find) should
look for the file in case a relative file name is specified. The directories
should be separated by a '|' character. The search path does not need to
contain the current directory — the current directory is always searched
first. Each file has its own search path. If the search path is set to NULL,
which is the default, FILE_Open will use the global DefSearchPath instead.
Use FILE_SetSearchPath (file, "") if FILE_Open should look only in the
current directory.

See also

 FILE_GetSearchPath, FILE_GetDefSearchPath, FILE_SetDefSearchPath

GetAutoBackup

Get the value of a file object’s auto backup flag.

BoolEnum FILE_GetAutoBackup (FileCPtr fileobj);

FILE_GetAutoBackup gets the value of a file object’s auto backup flag. The
auto backup flag is used by FILE_Open if the file is opened in a non
read-only mode. If the flag is set to BOOL_TRUE, a backup copy of the file
will automatically be created. By default, the auto backup flag is set to
BOOL_FALSE.

See also

 FILE_SetAutoBackup

SetAutoBackup

Set the value of a file object’s auto backup flag.

void FILE_SetAutoBackup (FilePtr fileob,BoolEnum autobackup);

FILE_SetAutoBackup sets the value of a file object’s auto backup flag. The
auto backup flag is used by FILE_Open if the file is opened in a non
read-only mode. If the flag is set to BOOL_TRUE, a backup copy of the file
will automatically be created. By default, the auto backup flag is set to
BOOL_FALSE.

See also

FILE_GetAutoBackup

GetFailIfNotFound

Get the value of a file structure’s FailIfNotFound flag.
268 C Programmer’s Guide

Accessing File Attributes
BoolEnum FILE_GetFailIfNotFound (FileCPtr fileobj);

FILE_GetFailIfNotFound gets the value of a file object’s FailIfNotFound
flag. This flag is used by the FILE_Open and FILE_TryOpen routines. If the
specified file cannot be found after looking up in the search path, and if this
flag is set, FILE_TryOpen returns BOOL_FALSE and FILE_Open fails. If the
file can not be found but the flag is not set, the file will automatically be
created.

By default, the FailIfNotFound flag is set to BOOL_FALSE.

See also

FILE_SetFailIfNotFound

SetFailIfNotFound

Set the value of a file structure’s FailIfNotFound flag.

void File_SetFailIfNotFound (FilePtr fileobj, BoolEnum fail);

FILE_SetFailIfNotFound sets the value of a file object’s FailIfNotFound flag.
This flag is used by the FILE_Open and FILE_TryOpen routines. If the
specified file cannot be found after looking up in the search path, and if this
flag is set, FILE_TryOpen returns BOOL_FALSE and FILE_Open fails. If the
file can not be found but the flag is not set, the file will automatically be
created.

By default, the FailIfNotFound flag is set to BOOL_FALSE.

See also

FILE_GetFailIfNotFound

SetFailOnEof

Set the value of a file structure’s FailOnEOF flag.

void FILE_SetFailOnEof (FilePtr fileobj, BoolEnum fail)

FILE_SetFailOnEof sets the value of a file object’s FailOnEOF flag. This flag
is used by FILE_Read and any other read command. If set,the read
command will fail if it tries to read past the end of the file.

By default, the FailOnEOF flag is set to BOOL_FALSE.

See also

FILE_GetFailOnEof

GetFailOnEof

Get the value of a file structure’s FailOnEOF flag.

BoolEnum FILE_GetFailOnEof (FileCPtr file);

FILE_GetFailOnEof gets the value of a file object’s FailOnEOF flag. This flag
is used by FILE_ReadNBytes and any other read command. If set,the read
command will fail if it tries to read past the end of the file.

By default, the FailOnEOF flag is set to BOOL_FALSE.
C Programmer’s Guide 269

Chapter File Class20
See also

FILE_SetFailOnEof

GetClientData

Gets the client data attached to a file object.

ClientPtr FILE_GetClientData (FileCPtr fileobj);

FILE_GetClientData gets the client data attached to a file object.

SetClientData

Sets the client data attached to a file object.

void FILE_SetClientData (FilePtr file, ClientPtr clientdata);

FILE_SetClientData sets the client data attached to a file object.

Checking Existence and Access Rights of a File

Find

Searches for a file specified by its spec name.

BoolEnum FILE_Find (FilePtr file);

FILE_Find searches for a file specified by its “spec name.” The spec name
can be absolute or relative. If the spec name is relative, FILE_Find uses the
search path to locate the file. The spec name can be specified in a foreign file
name syntax (for instance, you can use a DOS file name when running on
Unix). The name is converted automatically.

If the file is found, its “real name” is set to the full path name of the file and
FILE_Find returns BOOL_TRUE. FILE_Find returns BOOL_FALSE if the
file name can not be converted to the current target syntax, or if the file can
not be found. Use FILE_GetError to determine the exact cause of the error.

Even if the file exists, you may not be able to open it. For instance, this file
may not be readable (use FILE_IsReadable to check this) or may not be a
normal file (it could be a directory for instance. Use FILE_GetNodeType to
check this).

IsReadable

Determines whether the given file has read access.

BoolEnum FILE_IsReadable (FileCPtr file);

FILE_IsReadable determines whether the current user has read access to the
file specified by the fileobj.

IsWritable

Determines whether the given file has write access.

BoolEnum FILE_IsWritable (FileCPtr file);

FILE_IsWritable determines whether the current user has write access to the
file specified by the fileobj.
270 C Programmer’s Guide

Opening and Closing a File
GetNodeType

Determines the type of a node.

FMgrNodeEnum FILE_GetNodeType (FileCPtr fileobj);

FILE_GetNodeType determines the type (file, directory, link, etc.) of the
node specified by the fileobj.

Opening and Closing a File

Open

Open a file with the specified I/O mode and format.

void FILE_Open (FilePtr file, FileIOEnum io, FileFmtEnum format);

FILE_Open opens the file in the specified I/O mode and format.
FILE_Open uses the Search Path to locate the file. Once the file has been
found, the RealName is set to the absolute name of the file.

Before calling FILE_Open, you can check that the file exists with FILE_Find
and then check the file access rights with FILE_IsReadable and
FILE_IsWritable. You can also check the file type (normal file or directory)
with FILE_GetNodeType.

If the file does not exist, a new empty file is created (unless the I/O mode is
IOREAD, or unless it is IOREADWRITE and the FailIfNotFound flag is not
set). A better mechanism to create a new file is to call FILE_CreateOpen,
which lets you to specify creation parameters.

See also

FileIOEnum, FileFmtEnum, FILE_TryOpen, FILE_CreateOpen, FILE_Close,
FILE_IsOpen…, FILE_Find, FILE_IsReadable, FILE_IsWritable,
FILE_SetFailIfNotFound

CreateOpen

Creates a new file and opens it in the given format.

void FILE_CreateOpen (FilePtr fileobj, FMgrCreateFileCPtr create, FileFmtEnum format);

FILE_CreateOpen creates a new file and opens it in the given format. The
file name is specified by the fileobj’s “spec name”. The “search path” is not
used, and the file should not already exist. Once the file has been created, it
is opened in FILE_IOREADWRITE mode, and according to the given
format. The createptr argument points to a structure which contains
additional parameters necessary to create the file. See fmgrpub.h for the
description of the FMgrCreateFileRec structure.

On OpenVMS systems if the createptr argument is set to NULL, then the file
will be created with the process default protection flags.

See also

FMgrCreateFileRec (FMgr class), FileFmtEnum, FILE_TryCreateOpen,
FILE_Open, FILE_TryOpen, FILE_Close
C Programmer’s Guide 271

Chapter File Class20
Close

Close a file.

void FILE_Close (FilePtr fileobj);

FILE_Close closes the file referenced by the fileobj. This function does not
release the memory used by the fileobj. Call FILE_Dispose to release that
memory.

See also

 FILE_TryClose, FILE_Open, FILE_Dispose

TryClose
TryCreateOpen
TryOpen

Non-asserting versions of the file close, create, and open functions.

BoolEnum FILE_TryClose (FilePtr fileobj);

BoolEnum FILE_TryCreateOpen (FilePtr file, FMgrCreateFileCPtr createptr,
FileFmtEnum format);

BoolEnum FILE_TryOpen (FilePtr fileobj, FileIOEnum iomode, FileFmtEnum format);

The FILE_TryXXX set of functions perform the same actions as their
corresponding FILE_Close, FILE_CreateOpen, and FILE_Open
counterparts, except that the FILE_TryXXX functions all return a BoolEnum
value to indicate whether the function succeeded or failed. Refer to the
FILE_XXX functions listed in the See Also section below for details about a
corresponding FILE_TryXXX function.

The rationale for providing two sets of calls (FILE_TryXXX and FILE_XXX)
that perform the same actions, lies in the way Open Interface handles errors.
Because third party APIs may not be designed based upon the contracting
metaphor used by Open Interface’s error mechanism, it would not be valid
for calls in Open Interface that interact with third party APIs (by making
calls to the underlying operating system for example) to apply this
metaphor.

For this reason, the FILE_TryXXX set of functions are designed to fail
without making an assertion. However, the error reporting structure
ErrFuncCallRec can be used to store information about the FILE_TryXXX
function that failed. It is the responsibility of the class which made the call
to the routine which failed to write to this structure, and it is the
responsibility of the caller of the class to check the structure when an error
occurs.

See also

 ErrFuncCallRec, ERR_GetErrFuncCallPtr, FILE_Close, FILE_CreateOpen,
FILE_Open, FILE_SetFailIfNotFound

IsOpen…

Determine if a file is open, and in which modes it is open.
272 C Programmer’s Guide

Querying and Changing Position in a File
BoolEnum FILE_IsOpen (FileCCPtr fileobj);

BoolEnum FILE_IsOpenRead (FilecPtr fileobj);

BoolEnum FILE_IsOpenWrite (FileCPtr fileobj);

#define FILE_IsOpenBinary (file) (FILE_GetOpenFormat (file) == FILE_FMTBINARY)

#define FILE_IsOpenText (file) (FILE_GetOpenFormat (file) == FILE_FMTTEXT)

#define FILE_IsOpenLine (file) (FILE_GetOpenFormat (file) == FILE_FMTLINE)

The various FILE_IsOpen… functions and macros determine if a file is open,
and in which modes it is open.

FILE_IsOpen returns BOOL_TRUE if the fileobj is open.

FILE_IsOpenRead returns BOOL_TRUE if the fileobj is open with read
access (mode is READ, READWRITE, CLEARREADWRITE, or
READAPPEND)

FILE_IsOpenWrite returns BOOL_TRUE if the fileobj is open with write
access (mode is CLEARWRITE, OVERWRITE, APPEND, READWRITE,
CLEARREADWRITE or READAPPEND)

FILE_IsOpenBinary returns BOOL_TRUE if the fileobj is open in binary
mode.

FILE_IsOpenText returns BOOL_TRUE if the fileobj is open in text mode.

FILE_IsOpenLine returns BOOL_TRUE if the fileobj is open in line mode.

See also

FileIOEnum, FileFmtEnum, FILE_GetOpenMode, FILE_GetOpenFormat

GetOpenFormat
GetOpenMode

Determine the file format and I/O mode in which a file is open.

FileFmtEnum FILE_GetOpenFormat (FileCPtr fileobj);

FileIOEnum FILE_GetOpenMode (FileCPtr fileobj);

FILE_GetOpenFormat determines the file format in which a file has been
opened.

FILE_GetOpenMode determines the I/O mode in which a file has been
opened.

See also

 FILE_IsOpen…, FileIOEnum, FileFmtEnum

Querying and Changing Position in a File

CurSize

Return the current size of a file.
C Programmer’s Guide 273

Chapter File Class20
FileOffsetVal FILE_CurSize (FileCPtr fileobj);

FILE_CurSize returns the current size of the file referenced by fileobj. This
function is valid for all FileFmtEnum formats.

GotoBeg

Seek to the beginning of a file.

void FILE_GotoBeg (FilePtr fileobj);

FILE_GotoBeg seeks to the beginning of the file referenced by fileobj. This
function is valid for all FileFmtEnum formats.

GotoEnd

Seek to the end of a file.

void FILE_GotoEnd (FilePtr fileobj);

FILE_GotoEnd seeks to the end of the file referenced by fileobj. This
function is valid for all FileFmtEnum formats.

IsAtEnd

Return whether the current position is the end of the file.

BoolEnum FILE_IsAtEnd (FileCPtr fileobj);

FILE_IsAtEnd returns BOOL_TRUE if file fileobj’s current position is the
end of the file. This function is valid for all FileFmtEnum formats.

CurBinaryOffset

Return the current position offset in a binary file.

FileOffsetVal FILE_CurBinaryOffset (FileCPtr fileobj);

FILE_CurBinaryOffset returns the current position offset in the file
referenced by fileobj. This function is similar to the ANSI ftell function. The
first byte of the file is at offset zero. This function is only valid for files
opened in FILE_FMTBINARY mode.

SeekBinaryTo

Set the current absolute position in a binary file.

void FILE_SeekBinaryTo (FilePtr fileobj, FileOffsetVal position);

FILE_SeekBinaryTo sets the current position in fileobj to the specified
position. This function is similar to fseek (…, SEEK_SET) in ANSI. If the
specified value is bigger than the current size of the file, the file will be
extended to (at least) the new position. If position is -1, the function goes to
the end of the file. This function is only valid for files opened in
FILE_FMTBINARY mode.

SeekBinaryBy

Set the file position relative to the current position for a binary file.
274 C Programmer’s Guide

Querying and Changing Position in a File
void FILE_SeekBinaryBy (FilePtr fileobj, FileOffsetVal position);

FILE_SeekBinaryBy sets fileobj’s position relative to the current position.
This function is similar to fseek (…, SEEK_CUR) in ANSI. This function is
only valid for files opened in FILE_FMTBINARY format.

CurTextOffset

Return the current position offset in a text file.

FileOffsetVal FILE_CurTextOffset (FileCPtr fileobj);

FILE_CurTextOffset returns the current text offset in the file referenced by
fileobj. The first byte of the file is at offset zero, and line separators count as
one character. This function is only valid for files opened in
FILE_FMTTEXT mode.

QueryTextPos

Query the current position structure for a text file.

void FILE_QueryTextPos (FileCPtr fileobj, FileTextPosPtr posptr);

 FILE_QueryTextPos queries the current position structure for the text file
referenced by fileobj. This posptr structure can later be passed to
FILE_SetTextPos to restore the position to a saved position. This function is
only valid for files opened in FILE_FMTTEXT mode.

SetTextPos

Set the current position in a text file.

void FILE_SetTextPos (FilePtr fileobj, FileTextPosCPtr posptr);

FILE_SetTextPos sets the current position in fileobj to the posptr position
saved by a previous call to FILE_QueryTextPos. This function is only valid
for files opened in FILE_FMTBINARY mode.

CurLineNumber

Return the current line number in a file.

FileLineNbVal FILE_CurLineNumber (FileCPtr fileobj)

FILE_CurLineNumber returns the current line number in a file opened in
FILE_FMTLINE format. First line is line 0. This function is only valid for
files opened in FILE_FMTLINE mode.

QueryLinePos

Query the current position for a file opened in line format.

void FILE_QueryLinePos (FileCPtr fileobj, FileLinePosPtr posptr);

FILE_QueryLinePos queries the current position structure for the file
referenced by fileobj. This posptr structure can later be passed to
FILE_SetLinePos to restore the position to a saved position. This function is
only valid for files opened in FILE_FMTLINE mode.

SetLinePos

Set the current position in a file opened in line format.
C Programmer’s Guide 275

Chapter File Class20
void FILE_SetLinePos (FilePtr fileobj, FileLinePosCPtr posptr);

FILE_SetLinePos sets the current position in fileobj to the posptr position
saved by a previous call to FILE_QueryLinePos. This function is only valid
for files opened in FILE_FMTLINE mode.

See also

FILE_CurLineNumber, FileLinePosRec, FILE_QueryLinePos

Reading and Writing

The routines to read from and write to a file are rather straightforward. Two
sets of routines are provided: one for Binary and Text formats and one for
Line format.

 Notes:
■ Writing works in `overstrike' mode, not in `insert' mode, which means

that if the position in the file is not at the end, the n bytes following the
current position will be overwritten. There is no practical and efficient
way to insert data in the middle of an existing file.

■ The file will be automatically expanded when writing past the end.

ReadByte

Return the next byte in a binary file.

Int FILE_ReadByte (FilePtr file);

FILE_ReadByte returns the next byte in the binary file referenced by the
fileobj. It returns EOF at end of file. This function is similar to fgetc. This
function is used for files opened in FILE_FMTBINARY mode.

See also

FILE_ReadChar, FILE_WriteByte, FILE_ReadNBytes, FILE_WriteNBytes

WriteByte

Writes a byte to a binary file.

void FILE_WriteByte (FilePtr file, Int byte);

FILE_WriteByte writes a byte to a binary file. This function is similar to
fputc. This function is used for files opened in FILE_FMTBINARY mode.

Writing works in ‘overstrike’ mode, not in ‘insert’ mode, which means that
if the position in the file is not at the end, then bytes following the current
position will be overwritten. There is no practical and efficient way to insert
data in the middle of an existing file.

The file will be automatically expanded when writing past the end.

See also

FILE_WriteChar, FILE_ReadByte, FILE_ReadNBytes, FILE_WriteNBytes
276 C Programmer’s Guide

Reading and Writing
ReadNBytes

Read a number of bytes from a binary file.

FileOffsetVal FILE_ReadNBytes (FilePtr file, VoidPtr buffer, FileOffsetVal n);

FILE_ReadNBytes reads n bytes from the fileobj into buffer. The buffer
must be allocated for at least n bytes. FILE_ReadNBytes returns the number
of bytes actually read. This number should be the same as n unless the end
of the file has been reached. Then, when trying to read past the end of file,
a value r (which is less than n) will be returned. The n-r bytes at the end of
the buffer will be cleared (set to '\0'). After the read, the position is on the
next byte to be read. This function is used for files opened in
FILE_FMTBINARY mode.

This class removes an important limitation on the PC where fread and
fwrite are limited to a buffer of 32k bytes. In this class, FILE_ReadNBytes
and FILE_WriteNBtyes are limited to MAXINT32.

See also

FILE_ReadNChars, FILE_WriteByte, FILE_ReadByte, FILE_WriteNBytes

WriteNBytes

Writes a number of bytes to a binary file.

void FILE_WriteNBytes (FilePtr file, VoidCPtr buffer, FileOffsetValn);

FILE_WriteNBytes writes n bytes from buffer into fileobj. After the write,
the file position is just after the last byte written. This function is used for
files opened in FILE_FMTBINARY mode.

Writing works in ‘overstrike’ mode, not in ‘insert’ mode, which means that
if the position in the file is not at the end, then bytes following the current
position will be overwritten. There is no practical and efficient way to insert
data in the middle of an existing file.

The file will be automatically expanded when writing past the end.

This class removes an important limitation on the PC where fread and
fwrite are limited to a buffer of 32k bytes. In this class, FILE_ReadNBytes
and FILE_WriteNBtyes are limited to MAXINT32.

See also

FILE_WriteNChars, FILE_WriteByte, FILE_ReadByte, FILE_ReadNBytes

ReadChar

Return the next character in a text file.

Int FILE_ReadChar (FilePtr fileobj);

FILE_ReadChar returns the next character in the text file referenced by the
fileobj. It returns EOF at end of file. This function is similar to fgetc. This
function is used for files opened in FILE_FMTTEXT mode.

See also

FILE_ReadByte, FILE_WriteChar, FILE_ReadNChars, FILE_ReadStr,
FILE_ReadTextLine, FILE_Printf
C Programmer’s Guide 277

Chapter File Class20
WriteChar

Writes a character to a text file.

void FILE_WriteChar (FilePtr fileobj, Int char);

FILE_WriteChar writes a char to a text file, and increments the fileobj’s text
offset by one. This function is similar to fputc. This function is used for files
opened in FILE_FMTTEXT mode.

Writing works in ‘overstrike’ mode, not in ‘insert’ mode, which means that
if the position in the file is not at the end, then bytes following the current
position will be overwritten. There is no practical and efficient way to insert
data in the middle of an existing file.

The file will be automatically expanded when writing past the end.

See also

FILE_WriteByte, FILE_ReadChar, FILE_WriteNChars, FILE_WriteStr,
FILE_WriteTextLine, FILE_Printf

ReadNChars

Read a number of characters from a text file.

FileOffsetVal FILE_ReadNChars (FilePtr file, Str buffer, FileOffsetVal n);

FILE_ReadNChars reads n characters from the fileobj into buffer. The
buffer must be allocated for at least n characters. The result is not
necessarily terminated by ‘\0’. This function is identical to
FILE_ReadNBytes except that the file must be opened in FILE_FMTTEXT
format, and all the line separators are converted to ‘\n’ upon reading. The
fileobj’s text offset is increment by n.

See also

FILE_ReadNBytes, FILE_WriteNChars, FILE_ReadChar, FILE_ReadStr

WriteNChars

Writes a number of characters to a text file.

void FILE_WriteNChars (FilePtr file, CStr buffer, FileOffsetVal n);

FILE_WriteNChars writes n characters from buffer into fileobj. This
function is identical to FILE_WriteNBytes except that the file must be
opened in FILE_FMTTEXT format and that all occurrences of '\n' are
converted to a physical line separator. The fileobj’s text offset is
incremented by n.

Writing works in ‘overstrike’ mode, not in ‘insert’ mode, which means that
if the position in the file is not at the end, then bytes following the current
position will be overwritten. There is no practical and efficient way to insert
data in the middle of an existing file.

The file will be automatically expanded when writing past the end.

See also

FILE_WriteNBytes, FILE_WriteChar, FILE_ReadNChars
278 C Programmer’s Guide

Reading and Writing
ReadStr

Read and return a string of characters from a text file.

CStr FILE_ReadStr (FilePtr fileobj, FileOffsetVal n);

FILE_ReadStr reads a string of n characters from the fileobj text file, and
returns it. It returns NULL if it was already at the end of the file. The string
returned by FILE_ReadStr is terminated by '\0'. This function is identical to
FILE_ReadNChars except that it does not need any buffer and that the
resulting string is terminated by '\0'. Also, FILE_ReadStr does not return
how many characters have been read (use NDStr::Len on the string instead).

See also

FILE_ReadNChars, FILE_WriteNChars, FILE_ReadChar,
FILE_ReadTextLine

WriteStr

Write a null terminated string to a text file.

void FILE_WriteStr (FilePtr fileobj, CStr string);

FILE_WriteStr writes a NULL-terminated string into the fileobj
FILE_FMTTEXT mode. This function is identical to FILE_WriteNChars
except that the string must be NULL terminated, and you do not need to
specify the number of characters to write.

Writing works in ‘overstrike’ mode, not in ‘insert’ mode, which means that
if the position in the file is not at the end, then bytes following the current
position will be overwritten. There is no practical and efficient way to insert
data in the middle of an existing file.

The file will be automatically expanded when writing past the end.

ReadTextLine

Read and return a line of characters from a text file.

CStr FILE_ReadTextLine (FilePtr file);

FILE_ReadTextLine reads the next line from a file opened in
FILE_FMTTEXT format and returns it as a string. The '\n' is not included.
It returns NULL if the position was already at the end of the file. If the file
is not properly terminated (i.e. the last line is missing a line terminator), the
end of file might occur before the Read is completed. In this case,
FILE_ReadTextLine will return the characters read up to this point as a
normal line. At the next attempt, FILE_ReadTextLine will return NULL. If
you want to check for this particular situation, you can call FILE_IsAtEnd to
detect the end of file.

After the read, the position is at the beginning of the next line to be read or
at the end of file. The fileobj’s text offset is updated. The fileobj’s line
number is NOT updated.

WriteTextLine

Write a string and line terminator to a text file.
C Programmer’s Guide 279

Chapter File Class20
void FILE_WriteTextLine (FilePtr fileobj, CStr string);

FILE_WriteTextLine writes a string to a text mode file and goes to the next
line. This function is identical to FILE_WriteStr except that it always adds a
line terminator. After the write, the position is at the beginning of the next
line (in FILE_IOREADWRITE mode, some lines might have been totally or
partially overwritten by the operation) or at the end of the file. The fileobj’s
text offset is updated. The fileobj’s line number is NOT updated.

Writing works in ‘overstrike’ mode, not in ‘insert’ mode, which means that
if the position in the file is not at the end, then bytes following the current
position will be overwritten. There is no practical and efficient way to insert
data in the middle of an existing file.

The file will be automatically expanded when writing past the end.

ReadLine

Read one line of text from a line format file.

CStr FILE_ReadLine (FilePtr fileobj);

FILE_ReadLine reads the next line from a file in FILE_FMTLINE format and
returns it as a string. The '\n' is not included. FILE_ReadLine returns
NULL if it was already at the end of the file. The fileobj’s line number is
incremented by 1. This function is identical to FILE_ReadTextLine except
that the file must be in FILE_FMTLINE format and that it updates the
fileobj’s line number. On some systems (CMS, VMS), this mode can be
faster than using FILE_FMTTEXT.

WriteLine

Write a string and line terminator to a text file.

void FILE_WriteLine (FilePtr fileobj, CStr string);

FILE_WriteLine writes a string to a file and goes to the next line. The
LineNumber is incremented by 1. This function is identical to
FILE_WriteTextLine except that the file must be in FILE_FMTLINE format
and that it updates the fileobj’s line number.

Writing works in ‘overstrike’ mode, not in ‘insert’ mode, which means that
if the position in the file is not at the end, then bytes following the current
position will be overwritten. There is no practical and efficient way to insert
data in the middle of an existing file.

The file will be automatically expanded when writing past the end.

Miscellaneous Functions

Backup

Create a backup of a file.

void FILE_Backup (FilePtr fileobj);

FILE_Backup creates a backup of the fileobj. The file must not be open at the
time of the call.
280 C Programmer’s Guide

Default Search Path
See also

NDFName::MakeBackupName (FName class)

Flush

Flushes file output buffer.

void FILE_Flush (FilePtr fileobj);

FILE_Flush causes any buffered but unwritten data to be written to the
fileobj. The file must be open at the time of the call.

See also

FILE_Close, FILE_Write…

Truncate

Truncate a file at the current position.

void FILE_Truncate (FilePtr fileobj);

FILE_Truncate truncates the fileobj at the current position. The file must be
open at the time of the call.

See also

FILE_Close, FILE_Write…

Default Search Path

SetDefSearchPath

Set the default search path used by FILE_Open.

void FILE_SetDefSearchPath (CStr path);

FILE_SetDefSearchPath sets the default search path used by FILE_Open.
The default search path is the default value for the search path used by
FILE_Find and FILE_Open to locate files specified as relative path names.
The search path can be overridden globally with FILE_SetDefSearchPath or
only for a specific file with FILE_SetSearchPath.

As for any search path, the default search path should be a list of directory
names separated by '|' or by the native search path separator (':' on Unix, ';'
on PC). The default search path is set initially to the value of the
SearchPathName environment variable, except on the Macintosh, where the
default search path is set to the content of the resource string STR# 10000.

See also

FILE_GetSearchPath, FILE_SetSearchPath, FILE_GetDefSearchPath,
FILE_GetDefSearchPathName, FILE_SetDefSearchPathName

GetDefSearchPath

Get the default search path used by FILE_Open.
C Programmer’s Guide 281

Chapter File Class20
CStr FILE_GetDefSearchPath (void);

FILE_GetDefSearchPath gets the default search path used by FILE_Open.
The default search path is the default value for the search path used by
FILE_Find and FILE_Open to locate files specified as relative path names.
The search path can be overridden globally with FILE_SetDefSearchPath or
only for a specific file with FILE_SetSearchPath.

As for any search path, the default search path should be a list of directory
names separated by '|' or by the native search path separator (':' on Unix, ';'
on PC). The default search path is set initially to the value of the
SearchPathName environment variable, except on the Macintosh, where the
default search path is set to the content of the resource string STR# 10000.

See also

FILE_GetSearchPath, FILE_SetSearchPath, FILE_SetDefSearchPath,
FILE_GetDefSearchPathName, FILE_SetDefSearchPathName

GetDefSearchPathName

Get the name of the environment variable containing the default search
path.

CStr FILE_GetDefSearchPathName (void);

FILE_GetDefSearchPathName gets the name of the environment variable
containing the default search path.

See also

FILE_GetSearchPath, FILE_SetSearchPath, FILE_GetDefSearchPath,
FILE_SetDefSearchPath, FILE_SetDefSearchPathName

SetDefSearchPathName

Set the name of the environment variable containing the default search path.

void FILE_SetDefSearchPathName (CStr name);

FILE_SetDefSearchPathName sets the name of the environment variable
containing the default search path.

See also

 FILE_GetSearchPath, FILE_SetSearchPath, FILE_GetDefSearchPath,
FILE_SetDefSearchPath, FILE_GetDefSearchPathName

Direct access to native File I/O

These calls are not implemented on OpenVMS systems because the
OpenVMS file system does not represent access to a file via a single 32-bit
handle.

QueryNatRef

void FILE_QueryNatRef (FileCPtr file, FileNatRefPtr nat);

Returns in `nat' the native file handlers for the file.
282 C Programmer’s Guide

Errors
SetNatRef

void FILE_SetNatRef (FilePtr file, FileNatRefCPtr nat);

Attaches a different native file to an existing file. It does not close the old
native file.

Errors

GetError

Return the last error generated.

FileErrEnum FILE_GetError (FileCPtr file);

FILE_GetError returns the last error generated by a call to FILE_Find or
FILE_TryOpen.

See also

 FileErrEnum, FILE_Find, FILE_TryOpen

SetError

Sets an error for a file.

void FILE_SetError (FilePtr file, FileErrEnum fileerr);
C Programmer’s Guide 283

Chapter File Class20
284 C Programmer’s Guide

Chapter
21 FMgr Class 21

Portable API to access native file managers.

Technical Summary

This class provides a portable API to get information from the native file
system and change it. It provides queries about existence and access
permissions for individual files. It also allows creation, deletion or
renaming of files or directories, as well as searching in a directory.

The class assumes that its file name arguments are compatible with the
native syntax. Use the FName class to convert non-compatible file names to
the native syntax. Use the File class to open a file and perform File I/O
operations (i.e. Read or Write).

The class uses the term node to refer to any file system entity (a file, a
directory, a link, a device, etc.).

See also:

 FName class and File class.

Data Types

FMgrNodePtr
FMgrNodeRec

The structure for containing all the file manager information for a node.

FMgrNodeRec is the structure for containing all the file manager
information for a node. This structure is filled in by the
FMGR_QueryNodeInfo function.

The various fields of this structure are summarized below:

See also

FMgrNodeEnum, FMgrRefsVal, FMgrOwnerRec, FMgrTimesRec,
FMgrAccessSet, FMgrMacIdsRec, FMgrSizeVal, FMGR_QueryNodeInfo

Identifier Description
NodeType The type (file, directory, link, etc.) of the node.

RefsNb The number of references (or hard links) to this node.

Owner The user ID and group ID of the node’s owner.

Times The node’s various creation and modification times.

Access The node’s allowed access rights.

MacIds The node’s Macintosh Type and Creator signatures.

TotalSize The total size of the node.
C Programmer’s Guide 285

Chapter FMgr Class21
FMgrAccessSet

Data type for specifying access rights.

FMgrAccessSet is the data type used for specifying access rights for a node.
It consists of access bits ored (or added) together. The access bit constants
are defined by the #define FMGR_ACCESS… statements. The
FMgrAccessSet type is used by the FMgrNodeRec structure, the
FMgrCreateFileRec structure, and the FMgrCreateDirRec structure.

See also

FMGR_ACCESS…, FMgrNodeRec, FMgrCreateFileRec, FMgrCreateDirRec

FMgrCreateDirPtr
FMgrCreateDirRec

The structure for storing information necessary for creating a new directory.

FMgrCreateDirRec is the structure for containing information necessary for
creating a new directory. It contains a subset of the information in a full
FMgrNodeRec — only the access information. This structure is used by the
FMGR_CreateDir function.

See also

FMgrNodeRec, FMgrAccessSet, FMGR_CreateDir, FMgrCreateFileRec

FMgrCreateFilePtr
FMgrCreateFileRec

The structure for storing information necessary for creating a new file.

FMgrCreateFileRec is the structure for containing information necessary for
creating a new file. It contains a subset of the information in a full
FMgrNodeRec — only the access information and the Macintosh signature
information. This structure is used by the FMGR_CreateFile function and
the NDFile::CreateOpen function (in the File class).

See also

FMgrNodeRec, FMgrAccessSet, FMgrMacIdsRec, FMGR_CreateFile,
FILE_CreateOpen (File class), FMgrCreateDirRec

FMgrMacIdsPtr
FMgrMacIdsRec

Structure for storing Macintosh type and creator signatures.

FMgrMacIdsRec is the structure for storing a Macintosh file’s Creator and
Type signatures . The FMgrMacIdsRec is used by the FMgrNodeRec
structure and the FMgrCreateFileRec structure. Several common type and
creator values are defined by the FMGR_MAC… constants.

See also

FMgrNodeRec, FMgrMacIdVal, FMgrCreateFileRec,
FMGR_GetMacCreator, FMGR_GetMacType, FMGR_MAC…
286 C Programmer’s Guide

Data Types
FMgrMacIdVal

Data type for storing a Macintosh signature.

FMgrMacIdVal is the data type for storing a Macintosh signature. One Id is
used to store the Mac file Creator, and one Id is used to store the Mac file
Type. The FMgrMacIdVal type is used by the FMgrMacIdsRec structure.
Several common type and creator values are defined by the FMGR_MAC…
constants.

See also

FMgrMacIdsRec, FMGR_MAC…, FMGR_GetMacCreator,
FMGR_GetMacType

FMgrOwnerPtr
FMgrOwnerRec

Structure for storing the owner information for a node.

FMgrOwnerRec is the structure for specifying the user Id and group Id of
the owner of a node. The FMgrOwnerRec structure is used by the
FMgrNodeRec structure.

See also

FMgrNodeRec

FMgrRefsVal

Data type for representing the number of references (or hard links) to a
node.

FMgrRefsVal is the data type for representing the number of references (or
hard links) to a node. The FMgrRefsVal type is used by the FMgrNodeRec
structure.

See also

 FMgrNodeRec

FMgrSizeVal

Data type for representing node size.

FMgrSizeVal is the data type for representing the size of a node. The
FMgrSizeVal type is used by the FMgrNodeRec structure.

See also

FMgrNodeRec

FMgrTimesPtr
FMgrTimesRec

Structure for storing the various modification and creation times for a node.

FMgrTimesRec is the structure for storing the various modification and
creation times for a node. The FMgrTimesRec structure is used by the
FMgrNodeRec structure.
C Programmer’s Guide 287

Chapter FMgr Class21
The various fields are described below:

On OpenVMS systems, the Creation and LastModifData fields both
represent the creation time of the file, and the LastAccess and
LastModifData fields both represent the revision time of the file.

See also

FMgrNodeRec, FMgrTimeVal

FMgrTimeVal

Data type for specifying modification and creation times.

FMgrTimeVal is the data type for specifying the various modification and
creation times for a node. The FMgrTimeVal type is used by the
FMgrTimesRec structure.

See also

FMgrTimesRec

Enumerated Types

FmgrErrEnum

Enumerated type for specifying the errors reported by this class.

FmgrErrEnum is the enumerated type for specifying the errors reported by
this class. These error codes are also stored in the ErrCodeEnum field of the
ErrFuncCallRec defined in the err class.

The various errors are described below.

Identifier Description
Creation The time that the file was originally created.

LastAccess The last time that the file was opened.

LastModifData The last time that the file’s contents were modified.

LastModifInfo The last time that the file’s description was modified.

Identifier Description
FILE_ERRNONE No error.

FILE_ERRNOTFOUND File could note found.

FILE_ERRBADACCESS File access privileges set in operating system denies
opening the file in specified I/O mode.

FILE_ERRBADNAME File could not be created because file name syntax is
not allowed.

FILE_ERRNOSPACE File could not be created or extended because no
space is available.

FILE_ERRNOTDIRECTORY File name is not the name of a directory.

FILE_ERROSSPECIFIC This error is operating system specific. The actual
error code returned by the system call is stored in the
ErrCode field of the ErrFuncCallRec structure.
288 C Programmer’s Guide

Enumerated Types
See also

ERR_GetErrFuncCallRec

FMgrFileTypeEnum

Identifier Description
FMGR_FILETYPEUNKNOWN type unknown

FMGR_FILETYPESTATICLIB static libraries (Unix:.a , DOS: .lib ..)

FMGR_FILETYPEDYNAMICLIB dynamic libraries (.sl .so, .dll ..)

FMGR_FILETYPEAPPLICATION executables (.exe on DOS and VMS)

FMGR_FILETYPEOBJECT object file (.o, .obj)

FMGR_FILETYPEASSEMBLY assembly source file (.asm, .s)

FMGR_FILETYPELINKOPTIONS special options (.lnk, .opt)

FMGR_FILETYPESCRIPT shell scripts (.sh .csh .bat .com)

FMGR_FILETYPECPLUSPLUS C++ source file (.cc .cxx .cpp .C)

FMGR_FILETYPECFILE C source file (.c)

FMGR_FILETYPEHFILE C/C++ header file (.h)

FMGR_FILETYPELINT Lint file (.ln)

FMGR_FILETYPEYACC Yacc source file (.y)

FMGR_FILETYPELEX Lex source file (.l)

FMGR_FILETYPESED Sed source file (.sed)

FMGR_FILETYPEAWK Awk source file (.awk)

FMGR_FILETYPEEMACSLISP Emacs-Lisp source file (.el)

FMGR_FILETYPEEMACSLISPOBJ Emacs-Lisp object file (.elc)

FMGR_FILETYPEARCHIVE Archive file (.tar)

FMGR_FILETYPECOMPRESSED Compressed file (.Z, .zip)

FMGR_FILETYPEHELP Help document (.doc, .man, .doc)

FMGR_FILETYPERC Rescomp source file (.rc)

FMGR_FILETYPERCO Rescomp object file (.rco)

FMGR_FILETYPEDAT Rescomp library file (.dat)

FMGR_FILETYPETEXT Text file (.txt)

FMGR_FILETYPENXPTKB Nexpert Text Knowledge-Base (.tkb)

FMGR_FILETYPENXPCKB Nexpert Compiled Knowledge-Base (.ckb)

FMGR_FILETYPENXPEKB Nexpert Text Knowledge-Base (.ekb)

FMGR_FILETYPENXPDB Nexpert Text Database (.nxp)

FMGR_FILETYPESYLK Sylk database file (.slk)

FMGR_FILETYPEDBASE DBase database file (.dbf)

FMGR_FILETYPELOTUS Lotus database file (.wks)

FMGR_FILETYPEORACLE Oracle database file (.ora)

FMGR_FILETYPESYBASE Sybase database file (.syb)

FMGR_FILETYPEINFORMIX Informix database file (.inf)

FMGR_FILETYPEINGRES Ingres database file (.ing)

FMGR_FILETYPEPICT MacDraw file

FMGR_FILETYPEMOVIE QuickTime Movie file

FMGR_FILETYPEMACPAINT MacPaint file (.mcp)

FMGR_FILETYPEMSPAINT Microsoft Paint file (.msp)
C Programmer’s Guide 289

Chapter FMgr Class21
FMgrNodeEnum

Enumerated type for specifying the type of a node.

FMgrNodeEnum is an enumerated type for specifying the type of a node
(file, directory, volume, etc.). This is used as one of the fields of the
FMgrNodeRec structure, and is the return value for the
FMGR_GetNodeType () function.

The various value types are described below.

See also

FMgrNodeRec, FMGR_GetNodeType

ACCESS…

Defines the various access rights for a node.

The FMGR_ACCESS… constants define the bits that can be ored (or added)
together to define a set of access rights for a node. The set of bits for a node
is stored in variable of type FMgrAccessSet.

The access bit constants use the following naming convention:

FMGR_ACCESS… FMGR_ACCESS<XXX><YYY>

FMGR_FILETYPEGIF GIF image file (.gif)

FMGR_FILETYPETIFF TIFF image file (.tif .tiff .TIF .TIFF)

FMGR_FILETYPEXWD X-Windows Dump image file (.xwd)

FMGR_FILETYPEWINDOWSBMP MS-Windows DIB image file (.bmp)

FMGR_FILETYPEXBITMAP X-Windows Bitmap file (.bm)

FMGR_FILETYPEXPIXMAP HP-Vue Pixmap file (.pm)

FMGR_FILETYPENDIMAGE Neuron Data image file (.ndi)

FMGR_FILETYPESUNRASTER Sun Raster image file (.im8 .ras .rs)

FMGR_FILETYPENXPIMAGE Nexpert image file (.nbm)

Identifier' Description
FMGR_NODEBAD Node not found by file manager.

FMGR_NODEFILE Node is a normal file.

FMGR_NODEDIR Node is a directory.

FMGR_NODEVOLUME Node is a volume (or storage device).

FMGR_NODECHR Node is a character special file (unix terminal device).

FMGR_NODEBLOCK Node is a block special file (unix storage device).

FMGR_NODEFIFO Node is a pipe or a FIFO structure.
290 C Programmer’s Guide

Enumerated Types
where <XXX> is one of:

USER: access rights for the owner of the file

GROUP: access rights for users in the same group

OTHERS: access rights for other users.

and <YYY> is one of:

READ: Read access

WRITE: Write access

EXEC: Exec access (executable for a file or
accessible for a directory)

The first six constants in the #define statements above are only used to
generate the actual access constants. The actual access constants are
described below:

See also

 FMgrAccessSet

MAC…

Defines various common Macintosh creator and type signatures.

The Macintosh file system provides a mechanism to give a type to files by
the means of signatures. Signatures are four-character (UInt32) values. For
each file, you can define two signatures: one to identify the application
which created the file (creator), and one to identify the type of the file itself

Identifier Description
FMGR_ACCESSREAD The owner of the file has read access

FMGR_ACCESSWRITE The owner of the file has write access

FMGR_ACCESSEXEC The owner has execute access (if the node is a file)
or access to the directory (if the node is a
directory).

FMGR_ACCESSGROUPREAD Members of the owner’s group have read access

FMGR_ACCESSGROUPWRITE Members of the owner’s group have write access

FMGR_ACCESSGROUPEXEC Members of the owner’s group have execute
access (if the node is a file) or access to the
directory (if the node is a directory).

FMGR_ACCESSOTHERSREAD Other users have read access

FMGR_ACCESSOTHERSWRITE Other users have write access

FMGR_ACCESSOTHERSEXEC Other users have execute access (if the node is a
file) or access to the directory (if the node is a
directory).

FMGR_ACCESSDEFAULTS The is the default sets of access rights for a node.
This is an example of a set of ored (added) access
bits.

FMGR_ACCESSSHIFTUSER

FMGR_ACCESSSHIFTUSER

FMGR_ACCESSSHIFTOTHERS
C Programmer’s Guide 291

Chapter FMgr Class21
(type). The FMGR_MAC… constants define several commonly used
Macintosh creator and type signatures.

Mac signatures are normally written using a special C syntax when using
Macintosh C compilers. This syntax allows defines such as the following:

#define FMGR_MACCREATORXCEL'XCEL'

Unfortunately, this single-quote syntax is not portable to many other
compilers, so the fmgrpub.h file defines these constants using standard C
notation hex constants instead, with the Macintosh notation format inside
comments. Also, since ANSI compilers interpret consecutive question
marks as the beginning of a trigraph sequence, and some compilers even
complain about having this sequence in a comment, '????' is written
'<?><?><?><?>' in the comments in the header file.

The creator constants are described below:

The file type constants are described below:

Identifier Signature Description
FMGR_MACCREATORNONE ???? Unknown creator.

FMGR_MACCREATORSYSTEM MACS Macintosh system.

FMGR_MACCREATORXCEL XCEL Microsoft Excel.

FMGR_MACCREATORJMND JMND Nexpert or SE

FMGR_MACCREATORLDND LDND Nextpert or SE

FMGR_MACCREATOROIT NDOI Open Editor.

FMGR_MACCREATOROIAP NDOI Default signature for an NDOI
based applications

FMGR_MACCREATORMPW MPS MPW Shell (Apple’s Macintosh
Programming Workshop).

FMGR_MACCREATORTHINK KAHL Symantec Think C.

Identifier Signature Description
FMGR_MACTYPENONE N/A Invalid type.

FGMR_MACTYPEUNKNOWN Unknown type

FMGR_MACTYPEAPPL APPL Application program (executable).

FMGR_MACTYPEFLDR Fldr Folder (directory).

FMGR_MACTYPEFLDRALIAS fdrp Alias of a folder.

FMGR_MACTYPETEXT TEXT Text file.

FMGR_MACTYPETKB TEXT Text knowledge-base for Neuron Data
NEXPERT OBJECT (source format).

FMGR_MACTYPECKB KBND Compiled knowledge-base for Neuron
Data NEXPERT OBJECT.

FMGR_MACTYPEEKB NXPE Nextpert text file (usually a
knowledgeable base)

FMGR_MACTYPEDAT .DAT .dat file (resource file for Open
Interface Elements -based
applications).

FMGR_MACTYPEPAINT PNTG MacPaint format graphics file.

FMGR_MACTYPEPICT PICT PICT format graphics file.

FMGR_MACTYPESYLK SYLK Text based spreadsheet interchange
format.
292 C Programmer’s Guide

Querying and Changing File/Directory Attributes
See also

FMgrMacIdVal, FMgrMacIdsRec, FMgrNodeRec, FMGR_GetMacCreator,
FMGR_GetMacType

Querying and Changing File/Directory Attributes

Exists

Determines whether the specified node exists.

BoolEnum FMGR_Exists (CStr name)

FMGR_Exists returns TRUE if the given node name (file, directory or
volume) exists. It returns FALSE otherwise.

See also

 FMGR_GetNodeType, FMGR_Is…

Is...

Functions for checking the access permissions of a node.

BoolEnum FMGR_IsExecutable (CStr name);

BoolEnum FMGR_IsReadable (CStr name);

BoolEnum FMGR_IsWritable (CStr name);

These functions test whether a given node can be read from, written to, or
executed. For directories, FMGR_IsExecutable means that the directory can
be searched.

Note, on the Macintosh a file will be considered as non-writable in 3 cases:
■ The file is locked.
■ The file is in use by another user or another application.
■ The file is in a shared folder to which you do not have write access.

See also

FMgrAccessSet, FMGR_ACCESS…

IsDevConcealed

Checks whether a concealed device is present for the file or directory
passed.

BoolEnum FMGR_IsDevConcealed (CStr name);

The OpenVMS file system has the concept of a concealed device.
FMGR_IsDevConcealed determines whether the file specification passed
contains a concealed device. This function checks whether the top level
directory contains the directory file 000000.DIR;1 which will be present in
the case of a physical device, but absent in the case of a concealed device.

FMGR_MACTYPEPNTG PNTG MacPaint format graphics file.

FMGR_MACTYPEMOVIE MooV QuickTime Movie file.

FMGR_MACTYPETIFF TIFF TIFF format graphics file.
C Programmer’s Guide 293

Chapter FMgr Class21
On all other platforms FMGR_IsDevConcealed returns BOOL_FALSE.

See also

 FMGR_CheckDir, FMGR_CheckFile

QueryNodeInfo

Queries all the information for a node.

BoolEnum FMGR_QueryNodeInfo (CStr name, FMgrNodePtr fmgrnode);

FMGR_QueryNodeInfo collects all the information about the given node,
and fills in the info structure. It returns TRUE if the given node (file,
directory or volume) exists. It returns FALSE otherwise.

See also

 FMGR_GetNodeType, FMgrNodePtr

GetNodeType

Determines the type of the specified node.

FMgrNodeEnum FMGR_GetNodeType (CStr name);

FMGR_GetNodeType returns the type of the specified node. It returns type
FMGR_NODEBAD if the specified string does not refer to a valid node.

See also

 FMGR_Is…, FMgrNodeEnum

GetMac...

Returns the Macintosh signatures of a file.

FMgrMacIdVal FMGR_GetMacCreator (CStr name);

FMgrMacIdVal FMGR_GetMacType (CStr name);

FMGR_GetMacCreator returns the Macintosh creator signature of the
specified file. It returns type FMGR_MACCREATORNONE on
non-Macintosh platforms. FMGR_GetMacType returns the Macintosh type
signature of the specified file. It returns type FMGR_MACTYPENONE on
non-Macintosh platforms.

See also

 FMGR_MAC…, FMgrMacIdVal, FMgrMacIdsRec

Is...

Macros for checking the type of a node.

BoolEnum FMGR_IsDir (CStr name);

BoolEnum FMGR_IsFile (CStr name);

BoolEnum FMGR_IsVolume (CStr name);

These macros test whether a given node is of a particular type. Their return
values are compatible with type BoolEnum.
294 C Programmer’s Guide

Finding File Type by Mac Type or by File Extension
On VMS systems, you should use FMGR_CheckFile or FMGR_CheckDir.
These calls will not perform I/O operations, resulting in a significant
performance increase over calls to FMGR_IsFile or FMGR_IsDir.

See also

 FMGR_GetNodeType, FMgrNodeEnum, FMGR_CheckDir,
FMGR_CheckFile

Check...

Checks the type of a node without performing I/O operations on VMS.

BoolEnum FMGR_CheckDir (CStr name);

BoolEnum FMGR_CheckFile (CStr name);

VMS file and directory names have a particular syntax (they must not end
in .DIR;1) and so in situations in which you are sure that the file or directory
already exists (such as calling FMGR_PerfDirFiles to trigger a callback
procedure for a particular file or directory), you can call FMGR_CheckXXX
to determine whether or not the file or directory is valid.

On VMS systems these functions will not perform I/O operations, resulting
in a significant performance increase over their FMGR_IsXXX counterparts.

These functions are intended for use on VMS systems. On all platforms
except VMS these functions are equivalent to FMGR_IsXXX.

See also

FMGR_IsDevConcealed, FMGR_PerfDirFiles, FMGR_IsDir, FMGR_IsFile,
Finding File Type by MacType or FileExtRec

Finding File Type by Mac Type or by File Extension

FMgrFileTypeEnum

Enumerated type identifying one of the file types pre-defined in Open
Interface.

Identifier Description
FMGR_FILETYPEUNKNOWN type unknown

FMGR_FILETYPESTATICLIB static libraries (Unix:.a , DOS: .lib ..)

FMGR_FILETYPEDYNAMICLIB dynamic libraries (.sl .so, .dll ..)

FMGR_FILETYPEAPPLICATION executables (.exe on DOS and VMS)

FMGR_FILETYPEOBJECT object file (.o, .obj)

FMGR_FILETYPEASSEMBLY assembly source file (.asm, .s)

FMGR_FILETYPELINKOPTIONS special options (.lnk, .opt)

FMGR_FILETYPESCRIPT shell scripts (.sh .csh .bat .com)

FMGR_FILETYPECPLUSPLUS C++ source file (.cc .cxx .cpp .C)

FMGR_FILETYPECFILE C source file (.c)

FMGR_FILETYPEHFILE C/C++ header file (.h)

FMGR_FILETYPELINT Lint file (.ln)
C Programmer’s Guide 295

Chapter FMgr Class21
NDFMgrFileExt

Describes a file extension

FMGR_FILETYPEYACC Yacc source file (.y)

FMGR_FILETYPELEX Lex source file (.l)

FMGR_FILETYPESED Sed source file (.sed)

FMGR_FILETYPEAWK Awk source file (.awk)

FMGR_FILETYPEEMACSLISP Emacs-Lisp source file (.el)

FMGR_FILETYPEEMACSLISPOBJ Emacs-Lisp object file (.elc)

FMGR_FILETYPEARCHIVE Archive file (.tar)

FMGR_FILETYPECOMPRESSED Compressed file (.Z, .zip)

FMGR_FILETYPEHELP Help document (.doc, .man, .doc)

FMGR_FILETYPERC Rescomp source file (.rc)

FMGR_FILETYPERCO Rescomp object file (.rco)

FMGR_FILETYPEDAT Rescomp library file (.dat)

FMGR_FILETYPETEXT Text file (.txt)

FMGR_FILETYPENXPTKB Nexpert Text Knowledge-Base (.tkb)

FMGR_FILETYPENXPCKB Nexpert Compiled Knowledge-Base (.ckb)

FMGR_FILETYPENXPEKB Nexpert Text Knowledge-Base (.ekb)

FMGR_FILETYPENXPDB Nexpert Text Database (.nxp)

FMGR_FILETYPESYLK Sylk database file (.slk)

FMGR_FILETYPEDBASE DBase database file (.dbf)

FMGR_FILETYPELOTUS Lotus database file (.wks)

FMGR_FILETYPEORACLE Oracle database file (.ora)

FMGR_FILETYPESYBASE Sybase database file (.syb)

FMGR_FILETYPEINFORMIX Informix database file (.inf)

FMGR_FILETYPEINGRES Ingres database file (.ing)

FMGR_FILETYPEPICT MacDraw file

FMGR_FILETYPEMOVIE QuickTime Movie file

FMGR_FILETYPEMACPAINT MacPaint file (.mcp)

FMGR_FILETYPEMSPAINT Microsoft Paint file (.msp)

FMGR_FILETYPEGIF GIF image file (.gif)

FMGR_FILETYPETIFF TIFF image file (.tif .tiff .TIF .TIFF)

FMGR_FILETYPEXWD X-Windows Dump image file (.xwd)

FMGR_FILETYPEWINDOWSBMP MS-Windows DIB image file (.bmp)

FMGR_FILETYPEXBITMAP X-Windows Bitmap file (.bm)

FMGR_FILETYPEXPIXMAP HP-Vue Pixmap file (.pm)

FMGR_FILETYPENDIMAGE Neuron Data image file (.ndi)

FMGR_FILETYPESUNRASTER Sun Raster image file (.im8 .ras .rs)

FMGR_FILETYPENXPIMAGE Nexpert image file (.nbm)

Identifier Description
ExtText text representation of the file extension (without the ‘.’).

Syntaxes Set of file name syntaxes in which this extension is valid
(see fnamepub.h). Use FNAME_STXALL if valid on all
machines.
296 C Programmer’s Guide

Finding File Type by Mac Type or by File Extension
NDFMgrFileType

Describes a file type

AddFileType

Adds a file type.

void FMGR_AddFileType (FMgrFileTypeCPtr fmgrfiletype)

RemoveFileType

 Removes a file type.

void FMGR_RemoveFileType (FMgrFileTypeCPtr fmgrfiletype);

GetNumFileTypes

Returns the number of registered file types.

ArrayIVal FMGR_GetNumFileTypes (void);

GetNthFileType

Returns the nth register file type description.

FMgrFileTypeCPtr FMGR_GetNthFileType (ArrayIVal n);

FindFileTypeId

Returns the FileTypeId for the given file.

FMgrFileTypeEnum FMGR_FindFileTypeId (CStr name);

 This call fails if specified name does not exist. Returns
FMGR_FILETYPEUNKNOWN if file exists but its type can not be
determined.

FindFileTypeInfo

Returns the full file description for the given file.

FMgrFileTypeCPtr FMGR_FindFileTypeInfo (CStr name);

Same as but returns the full type description instead of just the FileTypeId.
Returns NULL if type can not be determined.

Identifier Description
FileTypeId Enumerated constant identifying the file type (see

FMgrFileTypeEnum).

MacType Identifies a Mac type signature.Should be 0 or
FMGR_MACTYPENONE if this type does not define any
Mac signature. If several file types share the same
signature, FMGR_FindFileType only considers the first
one (so do not use FMGR_MACTYPETEXT even if it is a
Text file, because being a text file is not a good
discriminant; use FMGR_MACTYPENONE instead).

Extensions
[FMGR_FILEEXTMAX]

Array of up to 5 FMgrFileExtRec. This allows you to
define several possible extensions for the same type, or to
use different extensions on different platforms.
C Programmer’s Guide 297

Chapter FMgr Class21
Creating

CreateDir

Create a directory with the specified permission rights.

void FMGR_CreateDir (CStr name, FMgrCreateDirCPtr createInfo);

FMGR_CreateDir creates a directory called name with the specified
permission rights. The parent of the directory must already exist but the
name directory itself should not exist. The new directory is created with the
access rights specified in the FMgrCreateDir structure passed, or set to
FMGR_ACCESSDEFAULTS if the parameter is NULL.

On OpenVMS systems the name of the directory can either be specified as a
file name (for example, [A]B.DIR or just [A]B, since .DIR is the default
extension), or as a directory specification (for example, [A.B]). If there is no
parent or top level directory in the specification, then the directory will be
created in the current working directory.

See also

 FMgrCreateDirRec, FMGR_ACCESS…, FMGR_TryCreateDir,
FMGR_CreateFile

CreateFile

Create a file with the specified permission rights.

void FMGR_CreateFile (CStr name, FMgrCreateFileCPtr createInfo);

FMGR_CreateFile creates a file called name with the specified permission
rights and Macintosh signatures. The target directory must already exist
but the file itself should not exist.

The new file is created with the access rights and signatures specified in the
FMgrCreateDir structure passed. If access is NULL, then the new file’s
access rights are set to FMGR_ACCESSDEFAULTS, its Macintosh Creator
signature is set to FMGR_MACCREATORNONE, and its Macintosh Type
signature is set to FMGR_MACTYPENONE.

On OpenVMS systems if the file already exists, then a new version of the file
is created.

See als

 FMgrCreateFileRec, FMGR_ACCESS…, FMGR_TryCreateFile,
FMGR_CreateDir

Copying

CopyFile

Copy a file.
298 C Programmer’s Guide

Moving
void FMGR_CopyFile (CStr orname, CStr destname);

FMGR_CopyFile makes a copy of a file. original is the name of the original
file. copy is the name of the copy. If copy is NULL, the copy will be created
in the same directory and the name will be generated by
NDFName::MakeBackupName. FMGR_CopyFile can also be used for
links.

Under Windows, Windows NT, and OS/2 the default is to copy the file
without checking whether a copy of the same name exists first.

See also

FNAME_MakeBackupName (FName class), FMGR_TryCopyFile,
FMGR_CopyDir, FMGR_CopyNode, FMGR_MoveFile

CopyDir

Copy a directory and all of its content.

void FMGR_CopyDir (CStr orname, CStr destname);

FMGR_CopyDir makes a copy of a directory and all of its content.

Under Windows, Windows NT, and OS/2 the default is to copy the
directory without checking whether a copy of the same name exists first.

See also

FMGR_TryCopyDir, FMGR_CopyFile, FMGR_CopyNode,
FMGR_MoveDir

CopyNode

Copy a node.

void FMGR_CopyNode (CStr orname, CStr destname);

FMGR_CopyNode makes a copy of a node (file, link or directory).
FMGR_CopyNode is more general than FMGR_CopyFile and
FMGR_CopyDir, but may be slower.

See also

FMGR_TryCopyNode, FMGR_CopyFile, FMGR_CopyDir,
FMGR_MoveNode

Moving

MoveFile

Rename and/or move a file.

void FMGR_MoveFile (CStr orname, CStr orname);

FMGR_MoveFile renames a file and/or moves it to another directory. The
move argument can be an existing directory, in which case the original is
moved to this directory, or it can be the new path name for the original file.
FMGR_MoveFile can also be used for links.
C Programmer’s Guide 299

Chapter FMgr Class21
FMGR_MoveFile will fail if a file of the same name already exists in the
location passed.

See also

FMGR_TryMoveNode, FMGR_MoveDir, FMGR_MoveNode,
FMGR_CopyFile

MoveDir

Rename and/or move a directory.

void FMGR_MoveDir (CStr orname, CStr destname);

FMGR_MoveDir renames a directory and/or moves it to another directory.
The move argument can be an existing directory, in which case the original
is moved to this directory, or it can be the new path name for the original
directory.

FMGR_MoveDir will fail if a directory of the same name already exists in
the location passed. Note, that it is not possible to move an entire directory
between physical drives; this is a limitation imposed by the operating
system. Alternatively, you can use FMGR_CopyDir to copy the directory to
the new location and then FMGR_DeleteDir to delete the original directory.

Although DOS and Windows do not support moving directories,
FMGR_MoveDir is implemented using the alternative method just
described.

See also

FMGR_TryMoveDir, FMGR_MoveFile, FMGR_MoveNode,
FMGR_CopyDir

MoveNode

Rename and/or move a node.

void FMGR_MoveNode (CStr orname, CStr destname);

FMGR_MoveNode renames a node and/or moves it to another directory.
The move argument can be an existing directory, in which case the original
is moved to this directory, or it can be the new path name for the original
node. FMGR_MoveNode can be used for either files or directories. It is
more general than FMGR_MoveDir and FMGR_MoveFile, but may be
slower.

See also

FMGR_TryMoveNode, FMGR_MoveDir, FMGR_MoveFile,
FMGR_CopyNode
300 C Programmer’s Guide

Deleting
Deleting

DeleteFile

void FMGR_DeleteFile (CStr name);

Delete a file.

FMGR_DeleteFile deletes the specified file. The file must exist.

See also

FMGR_TryDeleteFile, FMGR_DeleteDir, FMGR_DeleteNode,
FMGR_DeleteDirContent

DeleteDir

Delete a directory and all its content.

void FMGR_DeleteDir (CStr name);

FMGR_DeleteDir deletes the specified directory and all its content.

See also

FMGR_TryDeleteDir, FMGR_DeleteFile, FMGR_DeleteNode,
FMGR_DeleteDirContent, FMGR_PurgeDir

DeleteNode

Delete a node.

void FMGR_DeleteNode (CStr name);

FMGR_DeleteNode deletes the specified node. The node can be a file or a
directory. This call is more general than FMGR_DeleteFile and
FMGR_DeleteDir, but it is slower because it needs to test the type of the
node first.

See also

FMGR_TryDeleteNode, FMGR_DeleteFile, FMGR_DeleteDir

DeleteDirContent

Delete the contents of a directory.

void FMGR_DeleteDirContent (CStr name);

FMGR_DeleteDirContent deletes the content of the specified name
directory (including sub-directories), but leaves the name directory itself
intact.

See also

FMGR_TryDeleteDirContent, FMGR_DeleteDir, FMGR_PurgeDir

Try…

Non-asserting versions of the copy, create, delete, and move functions.
C Programmer’s Guide 301

Chapter FMgr Class21
BoolEnum FMGR_TryCopyDir (CStr orname, CStr destname);

BoolEnum FMGR_TryCopyFile (CStr orname, CStr destname);

BoolEnum FMGR_TryCopyNode (CStr orname, CStr destname);

BoolEnum FMGR_TryCreateDir (CStr name, FMgrCreateDirPtr createInfo);

BoolEnum FMGR_TryCreateFile (CStr name, FMgrCreateFilePtr createInfo);

BoolEnum FMGR_TryDeleteDir (CStr name);

BoolEnum FMGR_TryDeleteFile (CStr name);

BoolEnum FMGR_TryDeleteNode (CStr name);

BoolEnum FMGR_TryDeleteDirContent (CStr name);

BoolEnum FMGR_TryMoveDir (CStr orname, CStr destname);

BoolEnum FMGR_TryMoveDir (CStr orname, CStr destname);

BoolEnum FMGR_TryMoveFile (CStr orname, CStr destname);

BoolEnum FMGR_TryMoveNode (CStr orname, CStr destname);

The FMGR_TryXXX set of functions perform the same actions as their
corresponding FMGR_XXX counterparts, except that the FMGR_TryXXX
functions all return a BoolEnum value to indicate whether the function
succeeded or failed. Refer to the FMGR_XXX functions listed in the See Also
section below for details about a corresponding FMGR_XXX function.

The rationale for providing two sets of calls (FMGR_TryXXX and
FMGR_XXX) that perform the same actions, lies in the way Open Interface
handles errors. Because third party APIs may not be designed based upon
the contracting metaphor used by Open Interface’s error mechanism, it
would not be valid for calls in Open Interface that interact with third party
APIs (by making calls to the underlying operating system for example) to
apply this metaphor.

For this reason, the FMGR_TryXXX set of functions are designed to fail
without making an assertion. However, the error reporting structure
ErrFuncCallRec can be used to store information about the FMGR_TryXXX
function that failed. It is the responsibility of the class which made the call
to the routine which failed to write to this structure, and it is the
responsibility of the caller of the class to check the structure when an error
occurs.

See also

ErrFuncCallRec, ERR_GetErrFuncCallPtr, FMGR_CopyDir,
FMGR_CopyFile, FMGR_CopyNode, FMGR_CreateDir, FMGR_CreateFile,
FMGR_DeleteDir, FMGR_DeleteFile, FMGR_DeleteNode,
FMGR_DeleteDirContent, FMGR_MoveDir, FMGR_MoveFile,
FMGR_MoveNode

PurgeDir

Purge specified files from a directory.

void FMGR_PurgeDir (CStr dir, CStr pattern);

FMGR_PurgeDir purges from the specified directory dir, all the files that
match the specified pattern. If pattern is NULL, a “default” purge will be
performed as follows:
302 C Programmer’s Guide

Performing an Action
■ On Unix, delete “core”, “*~” and “#*” files;
■ On PC, delete “*.?$?”;
■ On VMS, delete lower numbered versions.

Wildcard specifications used in the pattern argument are interpreted
literally, unlike DOS where the pattern *.* yields all files and directories, in
this case, FMGR_PurgeDir therefore purges only those files with a "." in the
name. Use the functions FMGR_DirWildCard or FMGR_AllFilesWildCard
to return the pattern that obtains either the directories or directories plus
files respectively.

On OpenVMS systems, the pattern should be a standard wildcard file
specification (for example, *.RCO would cause the .RCO files within a
directory to be purged). Also a directory specification of the form [A.B...]
will cause a purge of files within the directory tree starting at directory [A.B]
to be initiated.

See also

FMGR_DeleteDir, FMGR_DeleteDirContent

Performing an Action

PerfDirFiles

Call a user function for each matching file in a directory.

PerfEnum FMGR_PerfDirFiles (Str dir, Str pattern, FMgrPerfFileProc func, ClientPtr data);

typedef PerfEnum (*FMgrPerfFileProc) (Str, Str, ClientPtr);

FMGR_PerfDirFiles performs an action on all the entries of a directory
which match a given pattern. The first argument (dir) is the pathname of the
directory to scan. The second argument (pattern) is a wildcard expression
which will be used to filter the entries. No filtering will be done (all entries
will be processed) if pattern is NULL.

Note on OpenVMS systems, the second argument (pattern) should be a
standard wildcard file specification (for example, *.RCO would cause the
.RCO files within a directory to be processed). Also a directory specification
of the form [A.B...] will cause all the files within the directory tree starting at
directory [A.B] to be processed.

Wildcard specifications used in the pattern argument are interpreted
literally, unlike DOS where the pattern *.* yields all files and directories, in
this case, FMGR_PerfDirFiles therefore limits its serarch to those files with
a "." in the name. Use the functions FMGR_DirWildCard or
FMGR_AllFilesWildCard to return the pattern that obtains either the
directories or directories plus files respectively.

Wildcard specifications used in the pattern argument are interpreted
literally, unlike DOS where the pattern *.* yields all files and directories,
FMgr functions will limit its search to files and directories with a "." in the
name.
C Programmer’s Guide 303

Chapter FMgr Class21
The third argument (func) is a user function, of type FMgrPerfFileProc,
which will be called for each matching entry. The fourth argument (data) is
a pointer to client data which will be passed to func at each iteration.

FMgrPerfFileProc is the type to use for the function which will be called for
matching entries in a directory. The first argument to the user function is
the pathname of the directory being scanned. The second argument is the
name of the entry (file or subdirectory) being processed. The third
argument is the client data which was passed to FMGR_PerfDirFiles. The
user function should return PERF_CONTINUE if the scanning should
continue, or PERF_STOP otherwise.

ClientPtr, PerfEnum and the PERF_… constants are described in the Base
class.

See also

FMGR_DirWildCard, FMGR_AllFilesWildCard, FMGR_PerfVolumes, Base
class

DirWildCard

Return wildcard pattern that matches only directories.

CStr FMGR_DirWildCard (void);

FMGR_DirWildCard returns a wildcard expression which matches only
directories. It returns “*.DIR;1” on VMS systems, and “*” on other systems
(in which directories cannot be distinguished from regular files by just the
syntax of their names). The returned wildcard string can be used for
filtering files to process with the FMgrPerfFileProc procedure.

See also

FMgrPerfFileProc, FMGR_AllFilesWildCard

AllFilesWildCard

Return wildcard pattern that matches all the files in a directory.

CStr FMGR_AllFilesWildCard (void);

FMGR_AllFilesWildCard returns a wildcard expression which matches all
the files in a directory. It returns “*.*;*” on VMS systems, and “*” on other
systems (in which files cannot be distinguished from directories by just the
syntax of their names). The returned wildcard string can be used for
filtering files to process with the FMgrPerfFileProc procedure.

See also

 FMgrPerfFileProc, FMGR_DirWildCard

PerfVolumes

Call a user function for each volume in the system.

typedef PerfEnum (*FMgrPerfVolProc) (CStr, ClientPtr);

void FMGR_PerfVolumes (FMgrPerfVolProc func, ClientPtr data);

FMGR_PerfVolumes performs an action on all the volumes of the system.
The first argument (func) is a user function, of type FMgrPerfVolProc,
304 C Programmer’s Guide

Performing an Action
which will be called for each volume. The second argument (data) is a
pointer to client data which will be passed to func at each iteration.

FMgrPerfVolProc is the type to use for the function which will be called for
each volume in the system. The first argument to the user function is the
name of the volume being processed. The second argument is the client
data which was passed to FMGR_PerfVolumes. The user function should
return PERF_CONTINUE if the scanning should continue, or PERF_STOP
otherwise.

ClientPtr, PerfEnum and the PERF_… constants are described in the Base
class.

Under Windows, Windows NT, or OS/2 the volume name to pass to the
callback function is the upper case drive letter followed by a semi-colon (C:
or E: for example). Removeable diskette drives (usually A: and B:) cannot
be passed explicitly nor scanned. Logical drives for CD-ROM, hard drives,
RAM drives, and network drives can be passed explicitly by their drive
letter or scanned.

See also

 FMGR_PerfDirFiles, Base class
C Programmer’s Guide 305

Chapter FMgr Class21
306 C Programmer’s Guide

Chapter
22 FName Class 22

This class provides file name conversion between DOS, Mac, Unix and
VMS.

Technical Summary

This class provides utility routines for manipulating file names and for
converting file names between the syntaxes of various machines.

Most of these routines are pure string manipulations. Use the File class to
open one file and perform File I/O operations (i.e. Read or Write). Use the
FMgr class to query the file system about the existence and access rights for
a given file, or to delete, rename, find, move or copy a file or a directory.

Design Overview

This class is useful because unfortunately, the different operating systems
have different syntaxes for filenames. The most general syntax would
include all of the following components:

host volume directories basename extension version

Terminology:

host identifies a machine on a network (also called node on VMS). volume
identifies a physical disk or a logical partition of a disk (also called a device
on VMS. the term device was not used so as to prevent confusion with PC
or Unix devices.). extension is usually ‘.’ followed by one or more
characters. version is supported only in VMS. It consists of ‘;’ and a
number. The path of a file is defined as the host + volume + directories. The
full path name is defined as the path + base + ext + version.

Syntax Rules:

Some systems only support certain components (for example, the UNIX
syntax does not have any volume component). Some components are
built-in on some systems but are just a matter of convention on others. For
example, extensions are built-in on DOS and VMS, but are just a convention
on UNIX and Macintosh. The version component is built-in on VMS. The
same syntax can be used on Unix or Macintosh, but usually file names do
not have any version component on these systems.

Also, some systems impose restrictions on the length on some components
(i.e. 8 characters max for basename and 3 max for extension on DOS). Some
systems impose that some components must be present (basename cannot
be empty on DOS; extension must at least contain ‘.’ on VMS). Another
complicating factor is that file names can be specified either as absolute or
relative names (with variants such as the ‘~’ on UNIX).
C Programmer’s Guide 307

Chapter FName Class22
The following table summarizes the different syntaxes for absolute file
names:

Here are a few examples of relative file names (some with alternate relative
forms inside parentheses) for the different systems:

UNIX shell scripts have the following additional features:

VMS syntax also has a few additional features:

The characters allowed in a directory or file name vary from system to
system, as shown in the following table:

Note that on UNIX, you can create a file named “*” or “?” or even “ “, but
then manipulating this file in the shell will not be easy. Also on Unix,
“host:” is sometimes used as a prefix to specify a host name but this notation
is used only by rcp and mount.

System Host Volume Directories Base Ext Vers
UNIX /dir1/dir2/ file .ext

DOS, OS/2, NT A: \dir1\dir2\ file .ext

Macintosh volume: dir1:dir2: file .ext

VMS host:: volume: [dir1.dir2] file .ext ;vers

System In Current Dir In Subdirectory In Grandparent Dir
UNIX file (./file) dir1/file

(./dir1/file)
../../dir1/file

DOS, OS/2, NT file (.\file) dir1\file
(.\dir1\file)

..\..\dir1\file

MAC file :dir1:file :::dir1:file

VMS file []file [.dir1]file [--.dir1]file

~ Designates the home directory of the current user.

~user Designates the home directory of the specified user.

$VAR Designates the value of the environment variable VAR.

[000000] Is used for the top directory of a volume, so [000000.dir1] is
equivalent to [dir1].

[dir1.dir2] Is used when refering to the directory as a path.

[dir1]dir2.
dir

Is used when refering to the directory as a file.

lognam VMS also defines logical names (similar but not quite identical to
UNIX environment variables) with lots of semantic subtleties (i.e.
concealed volumes).

System Character Set
UNIX Any character except ‘/’.

DOS, OS/2, NT Any character except the following:
space " * + , . / : ; < = > ? [\] | \t \n

MAC Any character except ‘:’.

VMS Only a-z, A-Z, 0-9, ‘-’, ‘_’ and ‘$’.
308 C Programmer’s Guide

Technical Summary
Finally, UNIX file names are case sensitive (Makefile and makefile can
coexist in the same directory). The other systems are not.

Portability Information:

If you want your filenames to be as portable as possible, you should use the
following guidelines:
■ Do not use absolute filenames. Use relative filenames or names with an

environment variable to define a root directory (i.e. $ND_HOME/xxx).
■ Use the most restrictive character set you will be porting to (VMS is the

most restrictive).
■ Use the most restrictive component lengths you will be porting to (DOS

is the most restrictive).

Determining the Syntax of a Name:

It is not always possible to tell the syntax of a file name because there are
many cases when names are ambiguous. For example, “c:main.c” is most
likely a DOS file name, but it could also be a valid VMS name, or a Mac
name, or even a Unix name. Unix is the most extreme case since any
sequence of characters makes a valid Unix name (provided the name is
embedded inside single quotes when used from command shells).

Therefore, we cannot provide a function which returns the syntax of a name,
but we do provide a function which returns the MOST LIKELY syntax
according to an ad-hoc algorithm (see below for FNAME_FindSyntax).

Syntax Conversions:

Converting file names is not completely straightforward. The main problem
is that certain syntactic elements are only supported by some systems:

The other problems come from the fact that there might be non portable
ways to fully specify the top directory of a path.

Also, there is very little chance that two systems have the same volume
names, so we need a flexible scheme for volume name translation. We also
provide flexible translations for host names.

Also, it would be nice to support embedded variables in paths, like $
(ND_HOME)/bin/resed. VMS has a built-in support with logical names,
other systems don’t but some programs perform translation of environment
variables embedded in file names (like make on UNIX). Environment
variables are not supported by the MAC (except in MPW, otherwise
resources replace them avantageously). We can use the MPW syntax to
emulate environment variables and have a portable scheme even with
environment variables.

Element Supported Systems
host VMS

volume DOS, MAC and VMS

default directory on
volume

DOS and VMS

home directories UNIX (VMS with SYS$LOGIN)

version numbers VMS
C Programmer’s Guide 309

Chapter FName Class22
In case the initial syntax contained some elements which can not be
translated naturally in the target syntax, the ill-defined conversion is solved
according to the following algorithm:

We first check whether the faulty component can be replaced by the value
of an environment variable according to the following convention:

Examples:

UNIX ~/dir1/dir2/file
VMS FNAME_UHOME:[dir1.dir2]file
DOS $ (FNAME_UHOME)\dir1\dir2\file
MAC $ (FNAME_UHOME):dir1:dir2:file

DOS a:\dir1\dir2\file
UNIX $ (FNAME_DVOLa)/dir1/dir2/file
VMS FNAME_DVOLA:[dir1.dir2]file
MAC $ (FNAME_DVOLa):dir1:dir2:file

DOS a:dir1\dir2\file
UNIX $ (FNAME_DVOLaDEF)/dir1/dir2/file
VMS FNAME_DVOLADEF:[dir1.dir2]file
MAC $ (FNAME_DVOLaDEF):dir1:dir2:file

DOS \dir1\dir2\file
UNIX /dir1/dir2/file
VMS [dir1.dir2]file
MAC $ (FNAME_ROOT):dir1:dir2:file

DOS dir1\dir2\file
UNIX dir1/dir2/file
VMS [.dir1.dir2]file
MAC :dir1:dir2:file

If there is no such environment variable, we apply one of the following
methods (according to parameters set by FNAME_StxQueryForeignCvt):
■ We can leave the faulty component unchanged, eventually resulting in

an invalid file name.
■ Or we can skip the faulty component.
■ Or we can transform it into something which is valid in the target

syntax. For instance, a VMS host name can be translated to Unix as a
directory name. The root directory can be translated to Macintosh as
the name of the current volume.

■ Or the conversion can abort and fail.

FNameBuf structure

One of the problems with this API is that we have to process strings and
thus we should ideally use a variable string (VStr or GStr) data type to get
rid of any limitation in string lengths. On the other hand, we have to
explicitly create and destroy variable strings in C (C++ would help here)
and also we have to be careful about error recovery if we use variable
strings. Fortunately, file names never get too long in realistic cases so fixed

FNAME_WHOSTXVOLYDEF W is a letter identifying the originating machine (U:
UNIX, D: DOS, M:MAC, V:VMS). X is the host name, Y
the volume name. The _HOSTX might be absent as
well as the _VOLY. The optional DEF indicates that the
default directory of the volume was specified.

or FNAMEWHOMEX Where X is a user name or empty if the home directory
of the current user was specified.

or FNAME_ROOT when translating the root directory to the Macintosh,
which does not have any syntax for it.
310 C Programmer’s Guide

Data Types
strings (Str) were chosen instead of variable strings for this API. The
FNAME_MAXLEN constant defines the maximum length that can be
considered reasonable for a file name. The idea is that you should use
buffers of size FNAME_MAXLEN allocated on the stack when using this
API. Then, once you have obtained the result that you want, you can store
it in a variable string.

Current, Parent and Top directories

On DOS, the operating system maintains a separate current directory for
every volume. On MAC, there is only one current path and when you
switch from one volume to another, you end up on the root directory of the
new volume. On UNIX, there is only one volume and only one global
current directory. On VMS, there is only one current path and when you
switch from one volume (or drive) to another, you may end up in a
non-existent directory.

Summary

The FName class is only used for string manipulation of file names.
Management of files (deleting, copying, moving, changing permissions,
etc.) is done by the FMgr class, actual file I/O is done by the File class, and
file selection windows are done by the FileW class.

See also

 FMgr class, File class, FileW class.

Data Types

FNameBuf

File name storage type.

FNameBuf is the data type used for storing path names for processing by
the FName class.

One of the problems with this API is that we have to process strings and
thus we should ideally use a variable string (VStr or GStr) data type to get
rid of any limitation in string lengths. On the other hand, we have to
explicitly create and destroy variable strings in C (C++ would help here)
and also we have to be careful about error recovery if we use variable
strings. Fortunately, file names never get too long in realistic cases, so fixed
strings (Str) were chosen instead of variable strings for this API. The
FNAME_MAXLEN constant defines the maximum length that can be
considered reasonable for a file name. The idea is that you should use
buffers of size FNAME_MAXLEN allocated on the stack when using this
API. Then, once you have obtained the result that you want, you can store
it in a variable string.

See also

 FNAME_MAXLEN, FNAME_STATUSCHARTRUNCATED
C Programmer’s Guide 311

Chapter FName Class22
FNameCompSet

Data type for specifying file name components.

typedef UInt16 FNameCompSet;

FNameCompSet is the type used for specifying a set of file name
component, such as the volume name or file extension.

See also

 FNAME_COMP…

FNameParamsPtr
FNameParamsRec

Data type for storing conversion parameters.

FNameParamsRec is the structure used for storing various parameters for
the file syntax conversion process.

The fields of this structure are described below:

See also

FNameStxMaskVal, FNAME_FindSyntax, FNAME_Convert,
FNAME_IsPortable

FNameStxMaskVal

Constants that identify particular system’s file name syntaxes.

Some of the functions in the FName class refer to individual system
syntaxes, and some refer to sets of syntaxes. The FNameStxMaskVal type is
used to store a set of one or more syntax flags. FNameStxMaskVal is set by
oring (or adding) one or more of the FNAME_STXMASK… values.

The FNAME_STXMASK… constants are used for setting the values of
variables of type FNameStxMaskVal. These constants can be ored (or
added) together to create a set of system syntaxes. This set is used for
identifying the possible syntaxes of a file name.

Type Description
CurSyntax The default naming syntax. By default, it is set to the system

syntax.

SourceSyntaxes The set of input syntaxes which are looked for by
FNAME_FindSyntax or FNAME_Convert. It should always
contain at least FNAME_STXMASKOF (CurSyntax). By
default, it is set to FNAME_STXMASKALL.

TargetSyntaxes The set of target syntaxes which are checked by
FNAME_IsPortable. It should always contain at least
FNAME_STXMASKOF (CurSyntax). By default, it is set to
FNAME_STXMASKALL.

CvtEvaluate If TRUE, FNAME_Convert automatically evaluates variable
expressions (like “$ (VAR)”) and replaces them by their values
or by some reasonable defaults. By default, it is set to
BOOL_TRUE.

CvtMakeValid If TRUE, FNAME_Convert eventually truncates and/or
modifies some parts of the result name to make it valid in the
target syntax. By default, it is set to BOOL_TRUE.
312 C Programmer’s Guide

Enumerated Types
The syntaxes are described below:

See also

FNameStxEnum, FNAME_StxGetName

Enumerated Types

FNameStatusEnum

Enumerated type that indicates the status of the previous conversion

FNameStatusEnum is the enumerated type for indicating the status of the
previous conversion. The various status types are described below:

See also

FNAME_GetStatus, FNAME_SetStatus, FNAME_StatusGetMsg

FNameStxEnum

Enumerated type that identifies a particular system’s file name syntax.

The functions in the FName class refer to individual system syntaxes. For
example, a function may be given an individual syntax, and try to convert a
file name into that syntax. The FNameStxEnum enumerated values are
used for specifying individual syntaxes

Constant Description
FNAME_STXMASKDOS The name could be a DOS, OS/2 or NT path name.

FNAME_STXMASKMAC The name could be a Macintosh path name.

FNAME_STXMASKUNIX The name could be a Unix path name.

FNAME_STXMASKVMS The name could be a VMS path name.

FNAME_STXMASKW32 Name could be a Windows 95 or Windows NT path name

FNAME_STXMASKALL The name could be in any syntax.

Type Description
FNAME_STATUSOK Conversion has worked normally without

any loss of information.

FNAME_STATUSCHARTRUNCATED Result string has been truncated because it
was over FNAME_MAXLEN.

FNAME_STATUSCOMPTRUNCATED Some components have been dropped
because there were more than 32
components.

FNAME_STATUSCHARSKIPPED Some characters have been skipped because
otherwise a component would be too long.

FNAME_STATUSCOMPSKIPPED Some components have been skipped
because they could not be translated.

FNAME_STATUSCHARALTERED Some characters have been replaced by ‘_’.
These characters would not have been valid.

FNAME_STATUSCOMPALTERED Some components have been changed into
components of different types. These
components were not supported in the
target syntax.
C Programmer’s Guide 313

Chapter FName Class22
The syntaxes are described below:

See also

 FNAME_StxGetName, FNameStxMaskVal

FAIL…

Errors signaled by this class.

The FNAME_FAIL… constants represent the errors signaled by this class.

The error codes are described below:

See also

FNameStatusEnum, FNAME_GetStatus, FNAME_SetStatus,
FNAME_StatusGetMsg

MAXLEN

File name buffer size.

FNAME_MAXLEN is the string length of the FNameBuf string.

One of the problems with this API is that we have to process strings and
thus we should ideally use a variable string (VStr or GStr) data type to get
rid of any limitation in string lengths. On the other hand, we have to
explicitly create and destroy variable strings in C (C++ would help here)
and also we have to be careful about error recovery if we use variable
strings. Fortunately, file names never get too long in realistic cases so fixed

Type Description
FNAME_STXBAD Illegal or ambiguous syntax.

FNAME_STXDOS The syntax in DOS, OS/2 and NT.

FNAME_STXMAC The syntax in Macintosh.

FNAME_STXUNIX The syntax in Unix.

FNAME_STXVMS The syntax in VMS.

FNAME_STXW32 Syntax in Windows 95 or NT

Constant Description
FNAME_FAILUNIX Invalid UNIX filename syntax.

FNAME_FAILDOS Invalid DOS filename syntax.

FNAME_FAILMAC Invalid Mac filename syntax.

FNAME_FAILVMS Invalid VMS filename syntax.

FNAME_FAILVAR Invalid variable substitution syntax.

FNAME_FAILAMBIGUOUS Ambigous syntax.

FNAME_FAILDOSLEN File name exceeds DOS length.

FNAME_FAILTOODEEP Too many levels of directories.

FNAME_FAILVMSCLOSEBKT Missing ‘]’ character in VMS filename.

FNAME_FAILNOTPATH Directory name not in its path syntax.

FNAME_FAILSPLITPATH Failed to split a path name.

FNAME_FAILFILETOPATH Failed to convert a directory name into its path
syntax.
314 C Programmer’s Guide

Enumerated Types
strings (Str) were chosen instead of variable strings for this API. The
FNAME_MAXLEN constant defines the maximum length that can be
considered reasonable for a file name. The idea is that you should use
buffers of size FNAME_MAXLEN allocated on the stack when using this
API. Then, once you have obtained the result that you want, you can store
it in a variable string.

FNameCompSetEnum

Defines the various components of a file name.

The FNAME_COMP… constants define the bits that can be ored (or added)
together to define a set of file name components. A set of component bits is
stored in variable of type FNameCompSet.

Usually, the two components which are extracted from a file name are the
pathname (host + volume + directory) and the filename (base + ext + vers),
which is why we introduce the FNAME_COMPPATH and
FNAME_COMPFILE combinations.

File name components are defined so that the full file name can be
reobtained by concatenating all its components. Thus, the extension part
includes the “.” which is normally between the base and extension.

The component bit constants are described below:

See also

NDFNameCompSet, FNAME_GetCompSet, FNAME_ReduceComps,
FNAME_QueryComps

Identifier Description
FNAME_COMPHOST A single component bit representing the host.

FNAME_COMPVOL A single component bit representing the volume.

FNAME_COMPDIR A single component bit representing the directory (or
directories).

FNAME_COMPBASE A single component bit representing the base file
name.

FNAME_COMPEXT A single component bit representing the extension.

FNAME_COMPVERS A single component bit representing the version.

FNAME_COMPVERSBIT

FNAME_COMPPATH A component bit set representing the path. The path
consists of the host, the volume and the directory.

FNAME_COMPFILE A component bit set representing the file name. The
file name consists of the base name, the extension and
the version.

FNAME_COMPFILENOVERS A component bit set representing the file name
without the version component. It consists of the
base name and the extension.

FNAME_COMPALL A component bit set representing the entire pathed
file name. It consists of the full path and the file
name.
C Programmer’s Guide 315

Chapter FName Class22
File Name Syntax

StxGetName

Returns the name of the specified syntax.

CStr FNAME_StxGetName (FNameStxEnum syntax);

FNAME_StxGetName returns the name of the specified syntax.

GetSysSyntax

Determine the syntax of the native system.

FNameStxEnum FNAME_GetSysSyntax (void);

FNAME_GetSysSyntax returns the syntax of the system on which the
program is currently running. This is referred to as the native file system.

GetCurSyntax

Determine the current syntax.

FNameStxEnum FNAME_GetCurSyntax (void);

FNAME_GetCurSyntax returns the current syntax. The current syntax is
used by functions such as FNAME_Convert.

SetCurSyntax

Set a particular syntax as the current syntax.

void FNAME_SetCurSyntax (FNameStxEnum syntax);

FNAME_SetCurSyntax sets the given syntax to be the current syntax. The
current syntax is used by functions such as FNAME_Convert.

QueryCurParams

Query the current syntax conversion parameters.

void FNAME_QueryCurParams (FNameParamsPtr params);

FNAME_QueryCurParams queries the currently set syntax conversion
parameters and stores the results in params.

SetCurParams

Set the current syntax conversion parameters.

void FNAME_SetCurParams (FNameParamsCPtr params);

FNAME_SetCurParams sets the current syntax conversion parameters to
the ones in the given params structure. These parameters are used by the
syntax conversion functions.

ResetCurParams

Reset the current syntax conversion parameters to the default parameters.
316 C Programmer’s Guide

Find Path Name Syntax
void FNAME_ResetCurParams (void);

FNAME_ResetCurParams resets the current syntax conversion parameters
to the default parameters. These parameters are used by the syntax
conversion functions.

Find Path Name Syntax

FindSyntax

Returns the most likely syntax for the given name.

FNameStxEnum FNAME_FindSyntax (CStr name);

FNAME_FindNameSyntax returns the most likely syntax for the given file
name.

Since the syntax of file names is sometimes ambiguous, this function uses
the following algorithm:
■ First, it considers only the syntaxes specified in SourceSyntaxes.
■ If SourceSyntaxes contains only one syntax, the choice is easy.
■ If the name contains spaces, it is most likely a Mac name.
■ Else if the name starts with a ‘:’, it is most likely a Mac name.
■ Else if the name starts with a ‘~’, it is most likely a Unix name.
■ Else if the name contains ‘/’, it is most likely a Unix name.
■ Else if the name contains ‘\’, it is most likely a DOS name.
■ Else if the name contains ‘::’, it is most likely a VMS name.
■ Else if the name contains ‘;’, it is most likely a VMS name.
■ Else if the name contains ‘[‘ or ‘]’, it is most likely a VMS name.
■ Else if the name contains several ‘:’, it is most likely a Mac name.
■ Else if the name contains one or several ‘$’, then ‘:’ and then no other ‘:’,

it is most likely a VMS name.
■ Else if the first character is a letter and the second one is ‘:’ and then no

other ‘:’, it is most likely a DOS name.
■ Else if the name contains one ‘:’, it is most likely a Mac name.
■ Else if the name ends with a ‘.’, it is most likely a VMS name.
■ Else if the first character is ‘.’ and the second letter is a letter, then it is

most likely a Unix name.
■ Otherwise, if there is still ambiguity between two or more syntaxes,

FNAME_FindSyntax returns the first one (looking first for Unix, then
Dos, then Mac, then VMS).

See also

NDFNameParamsRec, FNameStxEnum

Checking Path Name Validity

IsValidIn

Determine whether a file name is valid in a given file system syntax.
C Programmer’s Guide 317

Chapter FName Class22
BoolEnum FNAME_IsValidIn (CStr name, FNameStxEnum syntax);

FNAME_IsValidIn returns BOOL_TRUE if the given file name is valid in the
specified syntax. If the name still contains variable expressions (like “$
(VAR)”), these expressions are not evaluated.

IsValid

Determine whether a file name is valid in the current syntax.

BoolEnum FNAME_IsValid (CStr name);

FNAME_IsValid returns BOOL_TRUE if the given file name is valid in the
current syntax. If the name still contains variable expressions (like “$
(VAR)”), these expressions are not evaluated.

MakeValidIn

Modify a name to make it valid in a specified syntax

void FNAME_MakeValidIn (FNameBuf name, FNameStxEnum syntax);

FNAME_MakeValidIn modifies the given name to make it valid in the
specified syntax

MakeValid

Modify a name to make it valid in the current syntax

void FNAME_MakeValid (FNameBuf name);

FNAME_MakeValid modifies the given name to make it valid in the current
syntax

Evaluating Variable Expressions

EvaluateIn

Replace each variable expression by its value, using the specified syntax.

void FNAME_EvaluateIn (FNameBuf name, FNameStxEnum syntax);

FNAME_EvaluateIn replaces each variable expression (such as $ (VAR)) in
the given name by its value. The format of these expressions depends on the
specified syntax:
■ On DOS: $ (VAR) or ${VAR}
■ On Mac: $ (VAR), ${VAR} or {VAR}
■ On Unix: $ (VAR), ${VAR} or $VAR. ~ is also evaluated.
■ On VMS: $ (VAR) or ${VAR}

See also

 NDFNameStxEnum, FNAME_Evaluate

Evaluate

Replace each variable expression by its value, using the current syntax.
318 C Programmer’s Guide

Conversion between Syntaxes
void FNAME_Evaluate (FNameBuf name);

FNAME_Evaluate replaces each variable expression (such as $ (VAR)) in
the given name by its value. The format of these expressions depends on the
current syntax:
■ On DOS: $ (VAR) or ${VAR}
■ On Mac: $ (VAR), ${VAR} or {VAR}
■ On Unix: $ (VAR), ${VAR} or $VAR. ~ is also evaluated.
■ On VMS: $ (VAR) or ${VAR}

Conversion between Syntaxes

Convert

Determine the syntax of a name and convert it to the current syntax.

void FNAME_Convert (CStr source, FNameBuf dest);

FNAME_Convert determines the source name syntax and converts it to the
current syntax. The result is stored in dest.

This procedure calls FNAME_Evaluate and FNAME_MakeValid if the flags
CvtEvaluate and CvtMakeValid are TRUE.

If CvtMakeValid is set to TRUE, some characters or components might be
altered or truncated so that the final result would be valid in the target
syntax. This condition can be checked with FNAME_GetStatus.

See also

FNameBuf, FNAME_Evaluate, FNAME_MakeValid, FNAME_GetStatus,
FNAME_SetCurSyntax, FNAME_ConvertFromTo,
FNAME_ConvertInPlace

ConvertFromTo

Convert a name from one given syntax to another.

void FNAME_ConvertFromTo (CStr source, FNameBuf dest, FNameStxEnum syntax1,
FNameStxEnum syntax2);

FNAME_ConvertFromTo converts the given source name from syntax1 to
syntax2. The result is stored in dest.

This procedure calls FNAME_Evaluate and FNAME_MakeValid if the flags
CvtEvaluate and CvtMakeValid are TRUE.

If CvtMakeValid is set to TRUE, some characters or components might be
altered or truncated so that the final result would be valid in the target
syntax. This condition can be checked with FNAME_GetStatus.

See also

NDFNameStxEnum, FNameBuf, FNAME_Evaluate, FNAME_MakeValid,
FNAME_GetStatus, FNAME_SetCurSyntax, FNAME_Convert,
FNAME_ConvertInPlace
C Programmer’s Guide 319

Chapter FName Class22
ConvertInPlace

Determine the syntax of a name and convert it to the current syntax.

void FNAME_ConvertInPlace (FNameBuf name);

FNAME_ConvertInPlace determines the file name syntax and converts it to
the current syntax. The input name string is replaced by the result of the
conversion.

This procedure calls FNAME_Evaluate and FNAME_MakeValid if the flags
CvtEvaluate and CvtMakeValid are TRUE.

If CvtMakeValid is set to TRUE, some characters or components might be
altered or truncated so that the final result would be valid in the target
syntax. This condition can be checked with FNAME_GetStatus.

See also

NDFNameBuf, FNAME_Evaluate, FNAME_MakeValid,
FNAME_GetStatus, FNAME_SetCurSyntax, FNAME_ConvertFromTo,
FNAME_Convert

IsConvertible

Determine if a name can be completely converted.

BoolEnum FNAME_IsConvertible (CStr name);

FNAME_IsConvertible returns BOOL_TRUE if name can be converted
without any loss of information (no truncation nor alteration).

See also

FNAME_IsPortable, FNAME_Convert

IsPortable

Determine if a name can be completely converted to all target syntaxes.

BoolEnum FNAME_IsPortable (CStr name);

FNAME_IsPortable returns BOOL_TRUE if name can be converted to all
syntaxes in TargetSyntaxes with no loss of information (no truncation nor
alteration).

See also

NDFNameParamsRec, FNAME_SetCurParams, FNAME_IsConvertible,
FNAME_Convert

Conversion Status

GetStatus

Get the status of the most recent conversion.

FNameStatusEnum FNAME_GetStatus (void);

FNAME_GetStatus returns the status of the most recent file name
conversion.
320 C Programmer’s Guide

Extracting File Components
See also

FNameStatusEnum, FNAME_SetStatus, FNAME_StatusGetMsg

SetStatus

Set the status flag to the given value.

void FNAME_SetStatus (FNameStatusEnum status);

FNAME_SetStatus sets the status flag to the given status value.

See also

NDFNameStatusEnum, FNAME_GetStatus, FNAME_StatusGetMsg

StatusGetMsg

Get the text description of the given status value.

CStr FNAME_StatusGetMsg (FNameStatusEnum status);

FNAME_StatusGetMsg returns the text description of the given status
value.

See also

NDFNameStatusEnum, FNAME_GetStatus, FNAME_SetStatus

Extracting File Components

Usually, the two components which are extracted from a file name are the
pathname (host + volume + directory) and the filename (base + ext + vers),
which is why we introduce the FNAME_COMPPATH and
FNAME_COMPFILE combinations.

Note: File name components are defined so that the full file name can be
reobtained by concatenating all its components. Thus, the extension
part includes the “.” which is normally between the base and
extension. The name is assumed to be in the current syntax.

GetCompSet

Return the set of components which are present in a file name.

FNameCompSet FNAME_GetCompSet (CStr name);

FNAME_GetCompSet returns the set of components which are present in
the file name string name. The name is assumed to be in the current syntax.

See also

NDFNameCompSet, FNAME_COMP…, FNAME_ReduceComps,
FNAME_QueryComps

QueryComps

Extract specified file name components and copy to a string.
C Programmer’s Guide 321

Chapter FName Class22
void FNAME_QueryComps (CStr name, FNameCompSet components, Str output);

FNAME_QueryComps extracts the specified set of components from the
given file name and puts the result into the output string. The name is
assumed to be in the current syntax.

See also

NDFNameCompSet, FNAME_COMP…, FNAME_GetCompSet,
FNAME_ReduceComps

ReduceComps

Reduce a file name to a specified set of components.

void FNAME_ReduceComps (Str name, FNameCompSet components);

FNAME_ReduceComps reduces the file name string to the specified set of
components. The name is assumed to be in the current syntax.

See also

NDFNameCompSet, FNAME_COMP…, FNAME_GetCompSet,
FNAME_QueryComps

Directories Specified as Paths or as Files

IsDirAsFile

Determine if a directory is specified as a directory name or as a file name.

BoolEnum FNAME_IsDirAsFile (CStr directory);

A Directory can be specified in one of two ways: Either as a path (to which
a file name can be appended), or as a final file name. For example, in UNIX,
/dir1/dir2 represents a complete file name, and /dir1/dir2/ represents a
directory component to which a file name can be appended. In VMS,
[dir1]dir2.dir represents a complete file name, and [dir1.dir2] represents the
directory component of a complete name. FNAME_IsDirAsFile returns
BOOL_TRUE if the given directory name is represented as a file name, and
it returns BOOL_FALSE if the given directory name is specified as a
directory component. The directory is assumed to already be in the current
syntax.

CvtDirPathToFile

Convert a directory string from path syntax to file syntax.

void FNAME_CvtDirPathToFile (CStr path, FNameBuf file);

A directory can be specified in one of two ways: Either as a path (to which
a file name can be appended), or as a final file name. For example, in UNIX,
/dir1/dir2 represents a complete file name, and /dir1/dir2/ represents a
directory component to which a file name can be appended. In VMS,
[dir1]dir2.dir represents a complete file name, and [dir1.dir2] represents the
directory component of a complete name. FNAME_CvtDirPathToFile
converts a directory string from path syntax to file syntax. It generates an
error if the initial syntax in not a path syntax. The path is assumed to
already be in the current syntax.
322 C Programmer’s Guide

Directories Specified as Paths or as Files
CvtDirFileToPath

Convert a directory string from file syntax to path syntax.

void FNAME_CvtDirFileToPath (CStr file, FNameBuf path);

A Directory can be specified in one of two ways: Either as a path (to which
a file name can be appended), or as a final file name. For example, in UNIX,
/dir1/dir2 represents a complete file name, and /dir1/dir2/ represents a
directory component to which a file name can be appended. In VMS,
[dir1]dir2.dir represents a complete file name, and [dir1.dir2] represents the
directory component of a complete name. FNAME_CvtDirFileToPath
converts a directory string from file syntax to path syntax. It generates an
error if the initial syntax in not a file syntax. The file is assumed to already
be in the current syntax.

SplitFile

Split a file name into path and file components.

void FNAME_SplitFile (CStr name, FNameBuf path, FNameBuf file);

FNAME_SplitFile splits the file name string into path and file component
set strings. The path string consists of the host, the volume and the
directory. The file string consists of the base name, the extension and the
version. NULL may be passed in to either the path or file argument if the
particular string result is not desired. The name is assumed to already be in
the current syntax.

 On UNIX, /dir/foo would be split as “/dir/” and “foo”. On VMS, [dir]foo
would be split as “[dir]” and “foo”.

SplitPath

Split a path into parent path and child subdirectory components.

BoolEnum FNAME_SplitPath (CStr name, FNameBuf path, FNameBuf subdirectory);

FNAME_SplitPath splits the path name string into parent path and child
subdirectory component strings. NULL may be passed in to either the path
or subdirectory argument if the particular string result is not desired. The
name is assumed to already be in the current syntax. This function returns
BOOL_FALSE if the path cannot be split (because it is already at the top
level).

On UNIX, /a/b/ would be split as “/a/” and “b”. On VMS, [a.b] would be
split as “[a]” and “b”.

MergeFile

Merge a path component and a file component into a full file name.

void FNAME_MergeFile (CStr path, CStr file, FNameBuf name);

FNAME_MergeFile merges a path component string and a file component
string into a concatenated file name string. The path string consists of the
host, the volume and the directory. The file string consists of the base name,
the extension and the version.

Although current directory ‘.’ or parent directory ‘..’ designations can be
used in the path component, FNAME_MergeFile removes these
designations from the resultant file name in order to simplify the full file
C Programmer’s Guide 323

Chapter FName Class22
name. For example, on Unix, a directory path component “a/b/” and a file
name component “./foo” return the resultant file name “a/b/foo”.
Whereas, “a/b/” and “../foo” return the resultant file name “a/foo”.

MergePath

Merge a path and a subdirectory into a full path for the subdirectory.

void FNAME_MergePath (CStr path, CStr subdirectory, FNameBuf name);

FNAME_MergePath merges a parent directory path component string and
a subdirectory string into a concatenated path name string for the
subdirectory.

Although current directory ‘.’ or parent directory ‘..’ designations can be
used in the path and subdirectory components, FNAME_MergePath
removes these designations from the resultant path name in order to
simplify the full path name. For example, on Unix, a directory path
component “a/b/” and a subdirectory component “./sub” return the
resultant path name “a/b/sub/”. Whereas, “a/b/” and “../sub” return the
resultant path name “a/sub/”.

Top Directory

TopDirStr, QueryTopDir, IsTopDir

Returns the string representation of the top directory of the current volume.

CStr FNAME_TopDirStr (void);

FNAME_TopDirStr returns the string representation of the top directory of
the current volume.

The strings returned for the various systems are shown below:

QueryTopDir

Queries the current top directory.

void FNAME_QueryTopDir (FNameBuf fnamebuf);

IsTopDir

Returns whether a directory path name is at the top level.

BoolEnum FNAME_IsTopDir (CStr name);

Current Volume / Current Directory

On DOS, the operating system maintains a separate current directory for
every volume. On MAC, there is only one current path and when you

System String
PC “\\”

Macintosh “”

Unix “/”

VMS “[000000]”
324 C Programmer’s Guide

Current Volume / Current Directory
switch from one volume to another, you end up on the root directory of the
new volume. On UNIX, there is only one volume and only one global
current directory. On VMS, there is only one current path and when you
switch from one volume (or drive) to another, you may end up in a
non-existent directory.

QueryCurDir

Query the full current directory string.

void FNAME_QueryCurDir (FNameBuf directory);

FNAME_QueryCurDir queries the full current directory, and passes the
string back in the directory argument. This string consists of the current
volume and the current directory for this volume.

See also

FNAME_QueryCurVolume, FNAME_VolumeQueryCurDir,
FNAME_VolumeSetCurDir, FNAME_SetCurDir, FNAME_QueryHomeDir

SetCurDir

Set the current directory.

void FNAME_SetCurDir (CStr directory);

FNAME_SetCurDir sets the current directory to the given directory name.
If a volume is specified in the directory string, the current volume is
changed if necessary, and the current directory for this volume is changed.
If no volume is specified, the current volume is assumed.

See also

FNAME_QueryCurVolume, FNAME_VolumeQueryCurDir,
FNAME_VolumeSetCurDir, FNAME_QueryCurDir,
FNAME_QueryHomeDir

QueryCurVolume

Query the current volume string.

void FNAME_QueryCurVolume (FNameBuf volume);

FNAME_QueryCurVolume queries the current volume string. It copies the
string into the volume buffer argument.

VolumeQueryCurDir

Query the current directory of a given volume.

void FNAME_VolumeQueryCurDir (CStr volume, FNameBuf directory);

FNAME_VolumeQueryCurDir queries the current directory of the given
volume. The volume name is passed as the first argument, and the directory
string is returned in the second argument.

VolumeSetCurDir

Set the current directory of a given volume.
C Programmer’s Guide 325

Chapter FName Class22
void FNAME_VolumeSetCurDir (CStr volume, CStr directory);

FNAME_VolumeSetCurDir sets the current directory of the given volume
to the given directory name. The volume name is passed as the first
argument, and the directory string is passes as the second argument.

CurDirStr

Returns the string representation of the current directory.

CStr FNAME_CurDirStr (void);

FNAME_CurDirStr returns the string representation of the current
directory. The returned string is “:” on Macintosh, “[]” on VMS, and “.” on
all other systems.

Parent Directory

QueryParentDir

Query the parent directory string of the current directory.

void FNAME_QueryParentDir (FNameBuf directory);

FNAME_QueryParentDir queries the parent directory, and passes the
string back in the directory argument. This string consists of the parent
directory of the current directory.

See also

FNAME_QueryCurVolume, FNAME_VolumeQueryCurDir,
FNAME_VolumeSetCurDir, FNAME_SetCurDir, FNAME_QueryHomeDir

ParentDirStr

Returns the string representation of the parent directory.

CStr FNAME_ParentDirStr (void);

FNAME_ParentDirStr returns the string representation of the parent of the
current directory. The returned string is “..” on Unix and PC, [-] on VMS,
and “::” on Macintosh.

DirQueryParent

Returns the parent directory of the specified directory.

void FNAME_DirQueryParent (CStr dir, FNameBuf parent);

FNAME_DirQueryParent queries the parent directory, and passes the
string back in the parent argument. This string consists of the parent
directory of the specified directory.

Home Directory

HomeDirStr

Returns the string representation of the top directory of the system.
326 C Programmer’s Guide

Absolute / Relative Parts
CStr FNAME_HomeDirStr (void);

FNAME_HomeDirStr returns the string representation of the home
directory of the system. The returned string is “~” on UNIX, “SYS$LOGIN:”
on VMS, and “” on all other systems.

QueryHomeDir

Query the home directory of the current user.

void FNAME_QueryHomeDir (FNameBuf home);

FNAME_QueryHomeDir queries the home directory of the current user,
and passes it back in the home string. This string consists of a volume and
a directory.

See also

FNAME_QueryCurVolume, FNAME_VolumeQueryCurDir,
FNAME_VolumeSetCurDir, FNAME_QueryCurDir, FNAME_SetCurDir,
FNAME_QueryTopDir, FNAME_QueryParentDir

QueryTopDir

Query the top directory of the current volume.

void FNAME_QueryTopDir (FNameBuf top);

FNAME_QueryTopDir queries the top directory of the current volume, and
passes it back in the top string. This string consists of a volume and a
directory.

See also

FNAME_QueryCurVolume, FNAME_VolumeQueryCurDir,
FNAME_VolumeSetCurDir, FNAME_QueryCurDir, FNAME_SetCurDir,
FNAME_QueryHomeDir, FNAME_QueryParentDir

QueryParentDir

Query the parent directory of the current directory.

void FNAME_QueryParentDir (FNameBuf parent);

FNAME_QueryParentDir queries the parent directory of the current
directory, and passes it back in the parent string. This string consists of a
volume and a directory.

See also

FNAME_QueryCurVolume, FNAME_VolumeQueryCurDir,
FNAME_VolumeSetCurDir, FNAME_QueryCurDir, FNAME_SetCurDir,
FNAME_QueryHomeDir, FNAME_QueryTopDir

Absolute / Relative Parts

IsTopDir

Determine whether a directory path name is at the top level.
C Programmer’s Guide 327

Chapter FName Class22
BoolEnum FNAME_IsTopDir (CStr name);

FNAME_IsTopDir returns BOOL_TRUE if the given directory path name is
at the top level, and it returns BOOL_FALSE otherwise name.

IsAbsolute

Determine if a file name is specified as absolute or as relative.

BoolEnum FNAME_IsAbsolute (CStr name);

FNAME_IsAbsolute returns BOOL_TRUE if the given file name is an
absolute file name, and it returns BOOL_FALSE if the given file name is a
relative file name.

CvtToAbsolute

Convert a file name to an absolute file name.

void FNAME_CvtToAbsolute (CStr name, FNameBuf absolute);

FNAME_CvtToAbsolute converts the given file name to an absolute file
name.

Comparing File Names

Cmp

Compare two file names.

CmpEnum FNAME_Cmp (CStr name1, CStr name2);

FNAME_Cmp compares the two file names name1 and name2. The
comparison is case sensitive if the current syntax is UNIX.

Equal

Compare two file names.

BoolEnum FNAME_Equal (CStr name1, CStr name2);

FNAME_Equal compares the two file names name1 and name2 and returns
BOOL_TRUE if file names identify the same file.

 Generating Temporary and Backup File Names

GetTmpPath

Return the path where temporary file names are created.

CStr FNAME_GetTmpPath (void);

FNAME_GetTmpPath returns the path where temporary file names are
created.

SetTmpPath

Change the path where temporary file names will be created.
328 C Programmer’s Guide

Generating Temporary and Backup File Names
void FNAME_SetTmpPath (CStr directory);

FNAME_SetTmpPath changes the path where temporary file names will be
created to the given directory. This call fails if directory does not exist.

SysTmpPath

Return the native system’s default path for temporary files.

CStr FNAME_SysTmpPath (void);

FNAME_SysTmpPath returns the pnative system’s default path for
temporary files. The returned path is "/tmp/" on AIX; "/var/tmp/" on
Sony and Univel; "/usr/tmp/" on HPUX, SunOS, Mips, Sco, SG, and Ultrix;
and "SYS$SCRATCH:" on VMS.

MakeTmpFileName

Generate a temporary file name.

void FNAME_MakeTmpFileName (CStr prefix, FNameBuf buffer);

FNAME_MakeTmpFileName generates a temporary file name. The prefix
argument is the user’s desired prefix for the generated file name. The prefix
is truncated to its first five characters. The buffer argument receives the
result. The result is based on FNAME_GetTmpPath, on the prefix, and on a
number generated by the system library.

MakeBackupName

Generate a name for a backup file.

void FNAME_MakeBackupName (CStr filename, FNameBuf backupname);

FNAME_MakeBackupName generates a backupname backup file name for
the given input filename.
C Programmer’s Guide 329

Chapter FName Class22
330 C Programmer’s Guide

Chapter
23 Hash Class 23

The Hash class implements a general purpose hash table manager.

Overview

Hash is totally portable and has built-in optimizations for a certain number
of standard key types.

A hash table is an object which keeps track of associations between keys and
data through a hash function which converts the key into an index in an
array of bins. When a pair (key, value) is inserted in the hash table, the hash
function is applied to the key and an entry containing (key, value) is
inserted in the corresponding bin. The best performance will be obtained by
the use of a hash function which is fast enough and spreads the indexes
across the whole set of bins. When two keys give the same index, the entries
are double-linked together, thus allowing for easier deletion. See Knuth Vol
3, p 514.

Open Interface uses a default hash function that gives reasonable results for
strings, Int32s and (far) pointers. In the future, specialized hashing functions
will also be implemented.

Of course when the hash table is created, programmers can install their own
hash function as well as their own comparison function. This could be
necessary in the case where a set of keys is in use for which specialized and
very fast hash and comparison functions can be defined.

The hash tables that can be created in this class can grow automatically
when the average number of entries in the bins of the table becomes greater
than a certain user-defined threshhold. This rehashing mechanism allows
the creation of hash tables that automatically adapt themselves to the
number of entries (i.e. of keys) so that linear searches through the entries in
one bin are kept under a certain limit.

Data Structures

NDHashInfo

Structure defining the members of a hash table.

Identifier Description
CompareProc Comparison procedure

HashProc Hashing procedure

CloneDataProc Entry data cloning procedure. If set to NULL, no cloning is
carried out

DisposeDataProc Data disposing procedure. If set to NULL, no disposing is
carried out. Used in conjunction with HashCloneDataProc
C Programmer’s Guide 331

Chapter Hash Class23
Constructors and Destructor

Alloc

HashPtr HASH_Alloc(void);

Returns a pointer to an allocated but not yet constructed hash table. The
hash table should be constructed before being used.

Constructors

void HASH_Construct(HashPtr hash);

Default hash table construction

void HASH_ConstructInfo(HashPtr hash, HashInfoCPtr info);

Constructs the hash table with the information obtained from ’info’.

Destructor

void HASH_Destruct(HashPtr hash);

Default hash table destruction.

Dealloc

void HASH_Dealloc(HashPtr hash);

Deallocates the hash table.

Convenience Functions

New

HashPtr HASH_New(HashInfoCPtr hashInfo);

Creates and returns a pointer to a hash table parametrized by `hashInfo'.

NewForInt

HashPtr HASH_NewForInt(void);

Creates and returns a pointer to a hash table parametrized for integers.

CloneKeyProc Entry key cloning procedure. If set to NULL, no cloning is
carried out

DisposeKeyProc Key disposing procedure. If set to NULL, no disposing is
carried out. Used in conjunction with HashCloneKeyProc

NumBins Initial number of bins. The number of bins can perfectly
grow while the hash table is being used.

MaxEntriesPerBin Maximum average number of entries per bin allowed before
requesting an increase in the number of bins.

GrowPercBins Percentage of NumBins that are allocated when
MaxEntriesPerBin is reached.
332 C Programmer’s Guide

Creating and Disposing Hash Tables
NewForPt

HashPtr HASH_NewForPtr(void);

Creates and returns a pointer to a hash table parametrized for pointers.

NewForStr
NewForIStr

HashPtr HASH_NewForStr(void);

HashPtr HASH_NewForIStr(void);

Creates and returns a pointer to a hash table parametrized for strings.

Dispose

void HASH_Dispose(HashPtr hash);

Disposes the hash table. It cannot be used again.

Resetting a Hash Table

Reset

void HASH_Reset(HashPtr hash);

Resets the contents of the hash table to the defaults as when created.

Creating and Disposing Hash Tables

Defining a Hash Table

The following parameters should be specified when creating an instance of
a hash table:

CompareProc

BoolEnum HASH_CompareProc(HashKeyVal key1, HashKeyVal key2);

Procedure that compares two entries. The programmer can install one of
the comparison procedures provided by Open Interface.

CmpEnum result = (*HashCompareProc)(key1, key2);

HashProc

HashLenVal HASH_HashProc(HashKeyVal key, HashLenVal arg2);

Procedure that returns the result of the hashing operation on its argument.
The programmer can install one of the hash procedures provided by Open
Interface. Of course, the hash procedure should in general be related to the
comparison proc.

HashLenVal val = (*HashProc)(key, numBins);

DataCloneProc

HashDataVal HASH_DataCloneProc(HashDataVal);

Procedure returning a clone of the data of entry. The purpose is to allow to
use the hash table to store information and not only refer to information
stored elsewhere.
C Programmer’s Guide 333

Chapter Hash Class23
DataDisposeProc

void HASH_DataDisposeProc(HashDataVal data);

Procedure used to dispose data stored in the hash table for an entry (created
through cloning).

KeyCloneProc

HashKeyVal HASH_KeyCloneProc(HashKeyVal key);

Procedure returning a clone of the data of entry. The purpose is to allow to
use the hash table to store information and not only refer to information
stored elsewhere.

KeyDisposeProc

void HASH_KeyDisposeProc(HashKeyVal key);

Procedure used to dispose data stored in the hash table for an entry (created
through cloning).

Querying the Hash Table Information

QueryDefInfo

void HASH_QueryDefInfo(HashInfoPtr hashInfo);

Fills ’hashInfo’ with the default settings for a hash table.

GetDefIntInfo

HashInfoCPtr HASH_GetDefIntInfo(void);

Returns the default settings for a hash table with integer keys.

GetDefPtrInfo

HashInfoCPtr HASH_GetDefPtrInfo(void);

Returns the default settings for a hash table with pointer keys.

GetDefStrInfo

HashInfoCPtr HASH_GetDefStrInfo(void);

HashInfoCPtr HASH_GetDefIStrInfo(void);

Returns the default settings for a hash table with string keys.

GetDefStrKeyClonedInfo

HashInfoCPtr HASH_GetDefStrKeyClonedInfo(void);

Returns the default settings for a hash table with cloned string keys.

QueryInfo

void HASH_QueryInfo(HashCPtr hashc, HashInfoPtr hashInfo);

Fills ’hashInfo’ with the values that were used to define the hash table.
334 C Programmer’s Guide

Using Hash Tables
Using Hash Tables

Using a created hash table is extremely simple. The program will start by
inserting entries into the hash table, then getting the value associated to
given keys in the hash table, eventually extracting them.

The following API provides support for these three operations.

Insert

void HASH_Insert(HashPtr hash, HashKeyVal key, HashDataVal value);

Looks for an entry corresponding to ’key’. If there is one, it updates its
contents so that it holds ’value’, otherwise it adds one.

Extract

BoolEnum HASH_Extract(HashPtr hash, HashKeyVal key, HashDataValPtr valPtr);

Looks for an entry corresponding to ’key’. If it finds it, it extracts the entry
and updates valPtr with the value that was extracted.
If not, it sets *valPtr to NULL.
It returns BOOL_TRUE if an entry was extracted, BOOL_FALSE otherwise.

Note: If valPtr is NULL, it won’t attempt to use it.

Lookup

BoolEnum HASH_Lookup(HashCPtr hash, HashKeyVal key, HashDataValPtr valPtr);

Looks for an entry corresponding to ’key’. If it finds it, it updates valPtr with
the corresponding value. Otherwize, it sets *valPtr to NULL. It returns
BOOL_TRUE if an entry was found, BOOL_FALSE otherwise.

Note: If valPtr is NULL, it wonõt attempt to use it.

Perform An Action On All The Entries

Type of the procedure that will be iterated on all entries in the hash table. It
should return PERF_CONTINUE if the iteration should go on or
PERF_STOP if it should stop.

PerfEnum HashPerfProc (HashCPtr hash, HashKeyVal key, HashDataVal keyValue,
ClientPtr clientData);

Perf

PerfEnum HASH_Perf(HashCPtr hash, HashPerfProc perfProc, ClientPtr data);

Triggers the iteration of ’perfProc’ for all the entries in the table. ’data’ is a
ClientPtr passed as last argument for each invocation of ’perfProc’.
C Programmer’s Guide 335

Chapter Hash Class23
Default Methods

Default Hashing

HashLenVal HASH_DefHashInt(HashKeyVal key, HashLenVal mod);

HashLenVal HASH_DefHashPtr(HashKeyVal key, HashLenVal mod);

HashLenVal HASH_DefHashStr(HashKeyVal key, HashLenVal mod);

HashLenVal HASH_DefHashIStr(HashKeyVal key, HashLenVal mod);

Returns the bin index computed by the default hashing procedure provided
by Open Interface.

Default Comparison

BoolEnum HASH_DefCompareInt(HashKeyVal key1, HashKeyVal key2);

BoolEnum HASH_DefComparePtr(HashKeyVal key1, HashKeyVal key2);

BoolEnum HASH_DefCompareStr(HashKeyVal key1, HashKeyVal key2);

BoolEnum HASH_DefCompareIStr(HashKeyVal key1, HashKeyVal key2);

Returns the result of the default Open Interface comparison of key1 and
key2.

Default String Cloning

HashKeyVal HASH_DefStrKeyClone(HashKeyVal key);

void HASH_DefStrKeyDispose(HashKeyVal key);

Hash Table Entries

The following API is provided to users who want to improve performances
is some special cases.

AddGetEntry

HashEntryPtr HASH_AddGetEntry(HashPtr hash, HashKeyVal key, HashDataVal value);

Adds an entry corresponding to ’key’ without checking its previous
existence. Useful just after creating a hash table and filling it up, or when
using multiple level keys. It returns a pointer to the entry that was created.

InsertGetEntry

HashEntryPtr HASH_InsertGetEntry(HashPtr hash, HashKeyVal key, HashDataVal value);

Same as above but tests whether there was an entry there before or not.

GetEntry

HashEntryPtr HASH_GetEntry(HashPtr hash, HashKeyVal key);

Returns the pointer to the actual entry corresponding to ’key’. It will return
NULL if not found. The entry can be used with the following calls:
336 C Programmer’s Guide

Hash Table Entries
EntryGetKey

HashEntryVal HASH_GetEntry(HashEntryCPtr entry);

Returns the key stored in the entry.

EntryGetValue

HashDataVal HASH_EntryGetValue(HashEntryCPtr entry);

Returns the value stored in the entry.

EntrySetValue

void HASH_EntrySetValue(HashEntryPtr entry, HashDataVal value);

Changes the value stored in the entry. (Of course, it is not possible to change
the key directly in an entry.) It can be removed with the following call:

RemoveEntry

void HASH_RemoveEntry(HashPtr hash, HashEntryPtr entry);

Removes the entry from the hash table. This mechanism is faster than
extracting because there is no need to look for the entry corresponding to a
key.

Statistics

QueryStats

void HASH_QueryStats(HashCPtr hash, HashStatsInfoPtr stats);

Fills ’stats’ with the statistical information corresponding to hash. The
EntriesPerBin array has to be allocated by the caller, but it is filled by the
call.

NDHashStatsInfo

Array of HashLenVal which contains the number of entries in each one of
the bins. If the array is NULL, HASH_QueryStats won’t attempt to use it.

Identifiers Description
NumBins; Number of currently allocated bins

NumEntries; Number of entries globally

EntriesPerBin; of Ints: entries per bin
C Programmer’s Guide 337

Chapter Hash Class23
338 C Programmer’s Guide

Chapter
24 Heap Class 24

This class implements a very simple heap structure in Open Interface,
oriented towards its use as priority queue.

Overview

A heap is used to keep track of objects ordered according to a priority
scheme. Operations are limited to inserting objects in the heap, removing
objects from the heap, and retrieving the highest priority object from the
heap. Inserting objects into the heap, as well as retrieving the object with the
highest priority from the heap are O(ln n) operations, where n is the number
of objects in the heap.

Heap Class

Heap is the base class for heaps of objects ordered to a given priority.

Constructor and Destructor

Alloc

HeapPtr HEAP_Alloc(void);

Returns a pointer to an allocated but not yet constructed heap. The heap
should be constructed before being used.

Constructor

void HEAP_Construct(HeapPtr heap);

Default heap construction.

Destructor

void HEAP_Destruct(HeapPtr heap);

Default heap destruction.

Dealloc

void HEAP_Dealloc(HeapPtr heap);

Deallocates the heap.
C Programmer’s Guide 339

Chapter Heap Class24
Convenience Functions

New

HeapPtr HEAP_New(void);

Creates and constructs a heap.

Dispose

void HEAP_Dispose(HeapPtr heap);

Disposes a heap.

Heap Size

GetSize

HeapIndexVal HEAP_GetSize(HeapPtr heap);

Returns the number of entries in the heap.

Heap Manipulation

Add

void HEAP_Add(HeapPtr heap, HeapKeyVal key, ClientPtr client);

Insertion with no reorder: the heap structure is temporarily incorrect, a call
to HEAP_Correct will be necessary before the heap can actually be used.

Correct

void HEAP_Correct(HeapPtr heap);

Heap correction: the structure of the key is corrected. This call will be made
in general after a series of calls to HEAP_Add.

Insert

void HEAP_Insert(HeapPtr heap, HeapKeyVal key, ClientPtr client);

Insertion with reorder: the entry will be inserted in the heap structure
according to its key (the highest key will always remain first).

QueryFirst

BoolEnum HEAP_QueryFirst(HeapPtr heap, BoolEnum extract, HeapKeyValPtr keyPtr,
ClientPtrPtr dataPtr);

Extraction of the top-most entry: if it can find one, it returns BOOL_TRUE
and sets `keyPtr' and `dataPtr'; if not it returns BOOL_FALSE. If extract is
BOOL_TRUE, the top-most entry is extracted from the structure.
340 C Programmer’s Guide

Heap Manipulation
typedef PerfEnum (C_FAR * HeapPerfProc) (HeapPtr, HeapEltPtr, ClientPtr);

Perf

PerfEnum HEAP_Perf(HeapPtr heap, HeapPerfProc proc, ClientPtr clientData);

Performs ̀ proc' on each entry of the heap. ̀ proc' gets called with ̀ clientData'
as last argument.
C Programmer’s Guide 341

Chapter Heap Class24
342 C Programmer’s Guide

Chapter
25 ISet Class 25

This class implements a data structure to represent sets of numeric intervals.

Overview

This class implements a data structure to represent sets of numeric intervals.
This class provides the same functionality as the Set class but the
implementation is specialized for "interval sets", i.e. numeric sets which
mostly contain clusters of contiguous values, and so which are much better
represented as sets of disjoint intervals instead of sets of atomic values.

For such interval sets, it is technically possible to use the Set class to
represent them but this would be very inefficient.

The reverse is also true: it is technically possible to use the ISet class to
represent normal sets (each object could be stored as an interval which
contains one element) but the storage and the set operations would be
inefficient.

 Each interval is specified with two values: Begin and End. Intervals are
"closed-open" (i.e. Begin values are included, End values are not). So the
interval [Begin, End[contains all values between (Begin) and (End-1).

Two special values do not follow the same rule and are reserved to
represent the infinum (lower bound) and the supremum (upper bound) of
the value space. These values are used to specify unbounded or
halfbounded intervals.

Data Structures

NDISetInterval

Type of an interval. Intervals must be closed-open (i.e. they contain all
points between Begin and End-1). Thus we must have: End > Begin.

Constructors and Destructor Interval Sets

Alloc

IsetPtr ISET_Alloc(void);

Returns a pointer to an allocated but not yet constructed iset. The iset should
be constructed before being used.

Identifier Description
ISetEltVal Begin

ISetEltVal End
C Programmer’s Guide 343

Chapter ISet Class25
Constructor

void ISET_Construct(ISetPtr iset);

Default iset construction.

Destructor

void ISET_Destruct(ISetPtr iset);

Default iset destruction.

Dealloc

void ISET_Dealloc(ISetPtr iset);

Deallocates the iset.

Special Intervals

UniversalSet

ISetPtr ISET_UniversalSet(void);

Returns a pointer to a shared "universal" set (i.e. a set which contains all
possible values).

Adding and Removing Intervals

AddIntervals

void ISET_AddIntervals(ISetPtr iset, ISetLenVal n, ISetIntervalPtr intervals);

Adds n internals to an ISet. It builds the union.

RemoveIntervals

void ISET_RemoveIntervals(ISetPtr iset, ISetLenVal numIntervals,
ISetIntervalPtr intervals);

Removes ’n’intervals from an ISet. It builds the difference.

QueryIntervals

void ISET_QueryIntervals(ISetPtr iset, ISetLenVal numIntervals, ISetIntervalPtr intervals);

Fills intervals with the intervals in the iset.

SetIntervals

void ISET_SetIntervals(ISetPtr iset, ISetLenVal numIntervals, ISetIntervalPtr intervals);

Defines the intervals in the iset to be those specified by intervals.

GetNumIntervals

ISetLenVal ISET_GetNumIntervals(ISetPtr iset);

Returns the number of intervals in the set.
344 C Programmer’s Guide

Comparing and Combining Two Sets
IsAll

BoolEnum ISET_IsAll(ISetPtr iset);

Returns BOOL_TRUE if the set contains all possible elements, i.e. is the
interval [ISET_ELTVALINF, ISET_ELTVALSUP].

GetMinElt

ISetEltVal ISET_GetMinElt(ISetPtr iset);

Returns the smallest element in the set.

GetMaxElt

ISetEltVal ISET_GetMaxElt(ISetPtr iset);

Returns the biggest element in the set.

ContainsElt

BoolEnum ISET_ContainsElt(ISetPtr iset, ISetEltVal elt);

Returns BOOL_TRUE if the set contains ’elt’.

ContainsIntervals

BoolEnum ISET_ContainsIntervals(ISetPtr iset, ISetLenVal numIntervals,
ISetIntervalPtr intervals);

Returns BOOL_TRUE if the set includes ’interval’.

QueryComplement

void ISET_QueryComplement(ISetPtr iset, ISetPtr compl);

Computes the complement of ’iset’ and puts the result into ’compl’.

Comparing and Combining Two Sets

The functions below are the same as in the Set class (see Setpub.h) except
that they expect ISet objects.

MixGetPartSet
MixQueryParts

ISetMixPartSet ISET_MixGetPartSet(ISetPtr A, ISetPtr B);

void ISET_MixQueryParts(ISetPtr A, ISetPtr B, ISetMixPartSet part, ISetPtr C);

Same as the equivalent calls in the Set package, but for ISet objects.
C Programmer’s Guide 345

Chapter ISet Class25
346 C Programmer’s Guide

Chapter
26 MCH Class 26

The MCH class implements the Open Interface machine specific definitions
and macros.

Technical Summary

Some of the platforms that Open Interface supports require special attention
in the areas of compiler specific keywords, operating system and
windowing system specifics. The constants, flags, and macros necessary to
accommodate these needs are defined in this class.

The MCH class API is divided into the following categories.
■ Compiler Information.
■ Microsoft Windows Utilities.
■ Operating System Information.
■ Special compiler keywords.
■ Windowing System Information.

See also:

 App, Base, Dsply, ErrW classes.

C_CONST

Defines a portable version of the the C “const” keyword.

#if defined(C_ISANSI) || defined(VMS)
define C_CONST const
#else
define C_CONST
#endif

#ifndef C_CONST
#define C_CONST
#endif

C_CONST is a macro that defines a portable version of the the C “const”
keyword.

See also

C_FAR, C_NEAR, C_HUGE, C_NOSHARE, C_READONLY

C_EXPORT

Declares function prototypes for export.

void C_EXPORT (library lib, version vers, return type ret, routine name proc,
arguments args);

C_EXPORT is a macro used to declare function prototypes for exported
functions of a library. Your code does not need to use this macro, you are
free to use standard exporting conventions.
C Programmer’s Guide 347

Chapter MCH Class26
C_EXPORT is defined as:

#define C_EXPORT(lib, vers, ret, proc, args) ret proc L(args)

See also

C_CONST, C_FAR, C_NEAR, C_NOSHARE, C_READONLY,
C_VOLATILE

C_FAR

Defines Microsoft Windows “far” keyword for all compilers.

C_FAR

C_FAR defines the Microsoft Windows “far” keyword so that it is accepted
by all compilers. The “far” keyword only applies to segmented
architectures such as Microsoft Windows and OS/2.

C_FAR is defined as:

#ifdef DOSMSWIN
#define C_FAR far
#endif
#ifdef OS2PM
#define C_FAR far
#endif
#ifndef C_FAR
#define C_FAR
#endif

See also

C_CONST, C_EXPORT, C_NEAR, C_NOSHARE, C_READONLY,
C_VOLATILE

C_NEAR

Defines Microsoft Windows “near” keyword for all compilers.

C_NEAR

C_NEAR defines the Microsoft Windows “near” keyword so that it is
accepted by all compilers. The “near” keyword only applies to segmented
architectures such as Microsoft Windows and OS/2.

C_NEAR is defined as:

#ifdef DOSMSWIN
#define C_NEAR near
#endif
#ifdef OS2PM
#define C_NEAR near
#endif
#ifndef C_NEAR
#define C_NEAR
#endif

See also

C_CONST, C_EXPORT, C_FAR, C_NOSHARE, C_READONLY,
C_VOLATILE

C_NOSHARE

Defines VMS specific “noshare” keyword for all compilers.
348 C Programmer’s Guide

Technical Summary
C_NOSHARE defines the VMS specific “noshare” keyword so that it is
accepted by all compilers. The “noshare” keyword only applies to the VMS
operating system.

C_NOSHARE is defined as:

#if MCH_OS == MCH_OSVMS
#define C_NOSHARE noshare
#endif
#ifndef C_NOSHARE
#define C_NOSHARE
#endif

See also

C_CONST, C_EXPORT, C_FAR, C_NEAR, C_READONLY, C_VOLATILE

C_READONLY

Defines VMS specific “readonly” keyword for all compilers.

C_READONLY defines the VMS specific “readonly” keyword so that it is
accepted by all compilers. The “readonly” keyword only applies to the
VMS operating system.

C_READONLY is defined as:

#if MCH_OS == MCH_OSVMS
#define C_READONLY readonly
#endif
#ifndef C_READONLY
#define C_READONLY
#endif

See also

 C_CONST, C_EXPORT, C_FAR, C_NEAR, C_NOSHARE, C_VOLATILE

C_REG…

Register variables.

These are described below.

It is up to you to prioritize and use registers in your routines.

You may need to undefine some registers starting from the end if the
microprocessor on your machine does not support all eight of these
registers.

Field Description

C_REG1 Defined as ‘register’ if machine has >= 1 registers

C_REG2 Defined as ‘register’ if machine has >= 2 registers

C_REG3 Defined as ‘register’ if machine has >= 3 registers

C_REG4 Defined as ‘register’ if machine has >= 4 registers

C_REG5 Defined as ‘register’ if machine has >= 5 registers

C_REG6 Defined as ‘register’ if machine has >= 6 registers

C_REG7 Defined as ‘register’ if machine has >= 7 registers

C_REG8 Defined as ‘register’ if machine has >= 8 registers
C Programmer’s Guide 349

Chapter MCH Class26
C_SIGNED

Data type for signed integers on ANSI-C compilers.

C_SIGNED

C_SIGNED is signed on compilers which support the C signed keyword
for signed integers (all ANSI-C compilers fit this criterion). C_SIGNED is ""
(nothing) on other compilers (most others define char as a signed char).

Before porting to a machine which does not have an ANSI-C compiler, you
should check the sign of chars, for example you can execute the following:

printf(((int)(char)-1) == -1 ? "char is signed" : "char is
unsigned");

to check the sign of chars.

See also C_CONST, C_EXPORT, C_FAR, C_HUGE, C_NEAR,
C_NOSHARE, C_READONLY, C_REG…, C_VOLATILE

C_VOLATILE

Defines compiler specific “volatile” keyword for all compilers.

C_VOLATILE

C_VOLATILE defines the compiler specific “volatile” keyword so that it is
accepted by all compilers. The “volatile” keyword is only supported by
some compilers.

C_VOLATILE is defined as:

#if MCH_OS == MCH_OSVMS
#define C_VOLATILE volatile
#endif
#ifndef C_VOLATILE
#define C_VOLATILE
#endif

See also C_CONST, C_EXPORT, C_FAR, C_NEAR, C_NOSHARE,
C_READONLY

MCH_CHAR…
MCH_WCHAR…

Defines the primary character set.

It can take the values described below.

MCH_WCHAR defines the method used for encoding multi-byte
characters. It can take the values described below.

Identifier Description

MCH_CHARASCII Primary character set is ASCII

MCH_CHAREBCDIc Primary character set is EBCDIC (IBM).

Identifier Description

MCH_WCHARSINGLE Strings use a single byte only.

MCH_WCHARMIXED Strings can contain mixture of single and multi-byte
characters.

MCH_WCHARDOUBLE Strings use a uniform 2-byte coding scheme.
350 C Programmer’s Guide

Technical Summary
In addition, you should define the MCH_CHARLIB… flag to specify which
support library is used for 2-byte characters. See mchpub.h.

See also

Char, WChar, UChar, CStr

MCH_CHIP…

Specifies the chip architecture of a machine.

#define MCH_CHIPMC68K;1/* Motorola 68000 family: 68000, 68010, 68020 */
#define MCH_CHIPI386;2/* Intel 80386 family */
#define MCH_CHIPSPARC;3/* SUN SPARC architecture */
#define MCH_CHIPVAX;4/* DEC VAX architecture */
#define MCH_CHIPMIPS;5/* MIPS RISC architecture */
#define MCH_CHIPHPPA;6/* HP precision architecture */
#define MCH_CHIPIBMRT;7/* IBM RT architecture */
#define MCH_CHIPRS6000;8/* IBM RS/6000 architecture */
#define MCH_CHIPMC88K9/* Motorola 88000 family */
#define MCH_CHIPALPHA10/* DEC Alpha AXP architecture */
#define MCH_CHIPIBM37011/* IBM 370 architecture */

MCH_CHIP defines the microprocessor chip architecture of a machine. It
can take any of the MCH_CHIP… values listed above.

For each environment supported by Open Interface, there should be one
entry describing its chip architecture, operating system, and windowing
system. For example:

#ifdef MYENVIR
#define MCH_CHIPMCH_CHIPXXXX
#define MCH_OSMCH_OSBXXXX
#define MCH_WINMCH_WINXXXX
#define ... // optional flags
#endif

where MYENVIR represents a given environment and XXXX represents a
flag suffix appropriate to a given environment.

See also

MCH_OS…, MCH_WIN…

MCH_MSWDLLCODE

Implements Microsoft Windows specific

MCH_MSWDLLCODE (source code code);

MCH_MSWDLLCODE is a macro to be used to implement Microsoft
Windows specific code. It checks to see if Microsoft Windows is the current
platform and includes the code if it is.

MCH_MSWDLLCODE is defined as:

define MCH_MSWDLLCODE(c) c
#else
define MCH_MSWDLLCODE(c)
#endif

MCH_OS…

Defines the running operating system.
C Programmer’s Guide 351

Chapter MCH Class26
These constants are the possible values for MCH_OS. MCH_OS is defined
to be one of the below values to indicate the operating system running.

Note that on the MS Windows platform, the operating system cannot be
determined at compile time. The specific OS (whether Windows NT,
WIndows95, Windows 3.1, or DOS) must be queried at runtime using
MSWOS_GetOsInfo.

See also MCH_WINMAC, MCH_WINMSWIN, MCH_WINPM,
MCH_WINUIS, MCH_WINX11

MCH_WCHAR…

Defines the method used for encoding multi-byte characters.

See MCH_CHAR.

MCH_WIN…

Defines windowing system running.

These constants are the possible values for MCH_WIN. MCH_WIN is
defined to be one of the above values to indicate the windowing system
running.

See also

MCH_OSCMS, MCH_OSWIN16, MCH_OSWIN32, MCH_OSMAC,
MCH_OSOS2, MCH_OSUNIX, MCH_OSVMS

Compiler Information

MCH_Cc

This symbol defines the compiler that is being used. It can take any of the
MCH_CC_XXX values below. MCH_CC identifies a particuliar compiler

Identifier Description

MCH_OSUNIX Unix

MCH_OSVMS VMS

MCH_OSOS2 OS/2

MCH_OSMAc Macintosh

MCH_OSCMS VM/CMS

MCH_OSWIN16 Targets Microsoft Win16-based code. See note below.

MCH_OSWIN32 Targets Microsoft Win32-based code. See note below.

Identifier Description

MCH_WINX11 X Windows, version 11.

MCH_WINPM Presentation Manager.

MCH_WINMS Microsoft Windows.

MCH_WINMAc Macintosh.

MCH_WINCHR Character based.
352 C Programmer’s Guide

Compiler Information
"product line". So, for example, there is only one value for GNU’s GCC on
all platforms.

On UNIX, it is not always possible to identify a particuliar compiler product
based on predefined compiler flags. So, we introduced the MCH_CC_UNIX
value to represent the "generic" UNIX compilers.

This header is set up so that you get a compilation error when your compiler
is not offically supported. This scheme is not entirely reliable, especially on
UNIX where we do not have enough information to identify the compilers
precisely. If your compilation fails because the compiler has not been
identified as one of the officially supported compiler, you can try to compile
by defining MCH_CC as 0 (MCH_CC_UNSUPPORTED) on the command
line, at your own risk.

MCH_CC_UNSUPPORTED Not officially supported, try at your own risks

MCH_CC_MICROSOFT Microsoft Visual C++ compiler

MCH_CC_BORLAND Borland C/C++ compiler

MCH_CC_WATCOM Watcom’s wcc compiler

MCH_CC_MPW Apple’s MPW compiler

MCH_CC_THINKc Think-C compiler

MCH_CC_MWERKS Metrowerks’ CodeWarrior compiler

MCH_CC_IBMC2 IBM’s C compiler for OS/2

MCH_CC_VAXc Digital’s VAX C compiler

MCH_CC_DECc Digital’s ANSI C compiler

MCH_CC_DECCXX Digital’s C++ compiler

MCH_CC_GNU GNU’s gcc compiler

MCH_CC_UNIX Generic UNIX compiler

MCH_CC_HP HP’s C compiler for HPUX.
C Programmer’s Guide 353

Chapter MCH Class26
354 C Programmer’s Guide

Chapter
27 Nfier Class 27

This class implements a generic `notifier'.

Overview

Notifications involve two entities:
■ The `notifier': this is the class which notifies other classes when certain

events occur.
■ The `clients': these are the classes which are interested in receiving

notifications from the `notifier'.

To implement a `notifier', you must do the following things:
■ Make that notifier accessible to client classes by defining an exported

function in you class API (i.e. MYNFY_GetNotifier).
■ Define the argument which will be passed to your clients when you

notify them. The notifier will call the procedures that the clients have
registered, passing them as second argument a `notification
information' (defined generically as a ClientPtr) which is specific to the
notifier. In simple cases, you will pass a notification code. In more
complex cases, you might want to pass a pointer to a structure
containing the notification information.

■ Call NFIER_Broadcast in places where you need to notify your clients.

To implement a `client' (to use the services of a `notifier'), you must do the
following things:
■ Get the `notifier' by calling the appropriate routine in the API of the

`notifier' class (i.e. MYNFY_GetNotifier).
■ Register a notification procedure to that notifier, for example by calling

NFIER_ClientNewRegister.

This call will return a `notifier client' pointer which will be passed as first
argument to your callback procedure. You can cancel your registration to
the notifier, for example by calling NFIER_UnregisterDisposeClient.
■ You may want to associate some client data with the `notifier client'

pointer by calling NFIER_ClientSetClientData. Then, your notification
procedure can retrieve that client data information by calling
NFIER_ClientGetClientData.

■ Your notification procedure will be called with two arguments: the first
one is the `notifier client' pointer, the second one is the notification
information set up by the notifier at the time he called `Broadcast'. In
case you had associated some client data with the `notifier client'
pointer, you can retrieve it by calling NFIER_ClientGetClientData on
the first argument received by your notification procedure.
C Programmer’s Guide 355

Chapter Nfier Class27
Creating and Disposing

Constructors

void NFIER_Construct(NfierPtr nfier);

Default notifier construction.

void NFIER_ClientConstruct(NfierClientPtr nfier);

Default notifier client construction.

void NFIER_ClientConstructProc(NfierClientPtr infer, NfierClientProc proc);

Constructs the notifier client with `proc' as call-back.

Alloc

NfierPtr NFIER_Alloc(void);

Returns a pointer to an allocated but not yet constructed notifier. The
notifier should be constructed before being used.

Destructors

void NFIER_Destruct(NfierPtr nfier);

Default notifier destruction.

void NFIER_ClientDestruct(NfierClientPtr nfier);

Default notifier client destruction.

ClientDealloc

void NFIER_ClientDealloc(NfierClientPtr nfier);

Deallocates the notifier client.

Broadcasting a Notification

Broadcast

void NFIER_Broadcast(NfierCPtr nfier, ClientPtr clientData);

Broadcasts a notification (`clientData' contains the notification information)
to all the clients which have registered.

Notifier Client Creation and Destruction

ClientAlloc

NfierClientPtr NFIER_ClientAlloc(void);

Returns a pointer to an allocated but not yet constructed client notifier. The
client notitifier should be constructed before being used.
356 C Programmer’s Guide

Associating Client Data with the Notifier Client Pointer
ClientConstruct

 void NFIER_ClientConstruct(NfierClientPtr nfier);

Default notifier client construction

ClientConstructProc

void NFIER_ClientConstructProc(NfierClientPtr nfier, NfierClientProc proc);

Constructs the notifier client with `proc' as call-back.

ClientDestruct

void NFIER_ClientDestruct(NfierClientPtr nfier);

Default notifier client destruction.

ClientDealloc

void NFIER_ClientDealloc(NfierClientPtr nfier);

Deallocates the notifier client.

Associating Client Data with the Notifier Client Pointer

ClientSetClientData

void NFIER_ClientSetClientData(NfierClientPtr nfierClient, ClientPtr clientData);

Associates `clientData' with `nfierClient'.

ClientGetClientData

ClientPtr NFIER_ClientGetClientData(NfierClientCPtr nfierClient);

Retrieves the client data previously associated with `nfierClient'.

Notifier Client Registration and Unregistration

RegisterNfierClient

void NFIER_RegisterNfierClient(NfierPtr nfier, NfierClientPtr client);

Adds a notifier client to the list of clients of a given notifier. The notifier
client will be called through its notification call-back whenever
NFIER_Broadcast on the notifier is done.

Convienience: Unregistration, destruction and deallocation

UnregisterNfierClient

void NFIER_UnregisterNfierClient(NfierPtr nfier, NfierClientPtr client);

Removes a notifier client from the list of clients of a notifier.
C Programmer’s Guide 357

Chapter Nfier Class27
Convienience: Allocation, construction and registration

ClientNewRegister

NfierClientPtr NFIER_ClientNewRegister(NfierPtr nfier, NfierClientProc proc);

Allocates, constructs with `proc', registers with the notifier a notifier client
that is returned.

Convienience: Unregistration, destruction and deallocation

ClientUnregisterDispose

void NFIER_ClientUnregisterDispose(NfierPtr nfier, NfierClientPtr client);

Unregisters, destructs and deallocates a notifier client from a notifier.
358 C Programmer’s Guide

Chapter
28 Pack Class 28

This class implements several popular compression algorithms.

Overview

Short Description of the Compression Algorithms:

All the following algorithms are fully reversible (i.e. no information is lost
during compression). These algorithms are:
■ RLE (Run Length Byte Encoding). Sequences of more than 3 identical

bytes are encoded as 3 bytes: [128, nb_bytes, byte]. 128 is encode as:
[128, 0]. This algorithm is very popular because it is very simple and
works well on simple images. It should not be used to pack text or
random data. Used in: Windows BMP file format, MacPaint file
format.

■ PackBits. Similar to RLE but sequences of N identical bytes are encoded
as 2 bytes: [- N + 1, byte], while sequences of N different bytes are
encoded as N+1 bytes: [N - 1, byte1, .., byteN]. In both cases, N <= 128.
A little more difficult to compress than RLE. Decompression is easy.
This implementation is byte-oriented like the one on the Mac or in
TIFF). Used in: TIFF file format, Mac memory Pixmap.

■ CCITT Group3 and Group4. This is a modified version of the Huffman
method. Sequences of 1s and 0s are coded by their respective length,
each length is then encoded into codes according to a fixed table. It
has a terrible worst-case performance (with gray patterns). It has been
purposedly designed and optimized to compress fax transmission or
any other kind of simple monochrome bitmaps where most pixels are
white. It should not be used for an ASCII text file or to compress color
images (use LZW instead). Used in: TIFF file format.

■ LZW (Lempel-Zif & Welch). When a string of bytes is repeated at
different locations, it is stored in a string table and each occurrence of
the string is encoded by its index in the string table. This string table
is different for every strip, and, remarkably, does not need to be kept
around for the decompressor. The trick is to make the decompressor
build the same table as it built when compressing the data. LZW has
a very good compression ratio (5 for image files, 3 for English text),
even for random binary data (factor of 2). Decompression is slower
than RLE or PackBits but faster than CCITT. It is a little bit tricky to
implement efficiently and requires to allocate dynamically a big array
(~40k) for the string table. Used in: compress utility on Unix, StuffIt
on Mac, ARC on PC, GIF files, TIFF file format, ...

Choice of a Compression Algorithm:

It is important to understand that the choice of a compression algorithm
should depend of what you want to compress. Some algorithms perform
C Programmer’s Guide 359

Chapter Pack Class28
well on a certain type of data while they don't perform as well on other type
of data. Here is a short comparison:

So the most appropriate choice should be:
■ If data is very small, do not compress it at all.
■ Else if data is text, use LZW.
■ Else if data is fax, use CCITT.
■ Else if data is simple image, use RLE or PackBits.
■ Else use LZW.

That's the approach used in TIFF file format.

If speed is not critical, the choice can be simple: use LZW. That's the
approach used in GIF file format. Another method is to try several
algorithms and choose the one with the best compression ratio. Or, a little
bit smarter, you can first take some samples of the data at different locations
and try to infer which kind of data it is and which algorithm would yield the
best result. That's the approach used by most file compression utilities.

Constructors and Destructor

Constructors

PackPtr PACK_Alloc(void);

Returns a pointer to an allocated but not yet constructed pack object. The
object should be constructed before being used.

void PACK_Construct(PackPtr pack);

Default pack object construction.

Destructor

void PACK_Destruct(PackPtr pack);

Default pack object destruction.

void PACK_Dealloc(PackPtr pack);

Deallocates the pack object.

RLE PackBits CCITT LZW
Source stream unit byte byte bit byte

Compression code unit byte byte bit bit

Compression speed fast fast slow slow

Decompression speed very fast very fast very slow slow

C. ratio for text bad bad negative very good

C. ratio for fax good good very good very good

C. ratio for simple image good good negative very good

C. ratio for complex image poor poor negative good
360 C Programmer’s Guide

API Usage
API Usage

Compression

Compression can be achieved by calling one of the `..Encode' routines.

Before calling an encoding routine, you must fill a PackRec structure.
< Bytes> should point to a buffer which contains the data that you want to
compress. <BytesSize> should be the size of this buffer.

You must also allocate the <Codes> buffer. Since you probably do not know
yet what the size of the compressed data will be, you should allocate this
buffer to accomodate the worst possible case. For instance, if you want to
compress N bytes with the PKB method, you should allocate <Codes> for
PACK_WORSTCASEPKB(N) bytes. Set CodesSize to the allocation size of
<Codes>.

Once the PackRec structure is filled, PACK_XXXEncode will compress
exactly BytesSize> bytes from <Bytes>. The resulting codes are stored into
<Codes>.

At the end, <CodesSize> is modified and set to the number of bytes actually
written into <Codes>. So the actual compression ratio can be computed
with:

compression_ratio = <CodesSize> / <BytesSize>.

If you write the resulting codes into a file, you should also save the value of
<BytesSize>. You will probably need it later for the decoding (unless you
can recompute it from other parameters, for instance from the width and
height of a bitmap).

Decompression

Decompression can be achieved by calling one of the PACK_XXXDecode
routines.

Before calling a decoding routine, you must fill a PackRec structure. Codes>
should point to a buffer which contains the data that you want to
decompress. <CodesSize> should be the size of this buffer.

You must also allocate the <Bytes> buffer. The size of this buffer is usually
stored with the compression data or can be computed from other
parameters (like the width and height of a bitmap). Set BytesSize to that size,
and allocate <Bytes> for at least that size.

Once the PackRec structure is filled, PACK_..Decode will decompress the
compressed data from <Codes> and put the result into <Bytes>. The
decompression process stops as soon as <BytesSize> bytes have been
obtained in the <Bytes> buffer (note that <CodesSize is not used to stop the
decompression process). At the end, <CodesSize> is modified and set to the
number of bytes actually read from <Codes>.
C Programmer’s Guide 361

Chapter Pack Class28
Worst Case Performances

RLE (Run Length Encoding)

RleEncode

void PACK_RleEncode(PackPtr pack);

Encodes with RLE algorithm.

RleDecode

void PACK_RleDecode(PackPtr pack);

Decodes with RLE algorithm.

PackBits

PkbEncode

void PACK_PkbEncode(PackPtr pack);

Encodes with PackBits.

PkbDecode

void PACK_PkbDecode(PackPtr pack);

Decodes with PackBits.

The decoding should use the same depth and endianity parameters as those
used during encoding. The recommended values are:
■ Normal compression should use 8 for byteDepth and 0 for lzwFlags.
■ GIF format sets lzwFlags to PACK_LZWLITTLEENDIAN.
■ TIFF format sets lzwFlags to PACK_LZWTIFFGLITCH, except for files

generated by a few PC softwares which sets it to
PACK_LZWLITTLEENDIAN.

In addition, many commercial softwares (Hijaak for instance) follow an old
version of TIFF specifications and do not start each image strip with a
ClearCode, as they should do according to TIFF 5.1 or TIFF 6.0. This module
supports this particular case as well.

Item Description
PACK_WORSTCASERLE(n)(
n + n / 2)

Happens with an alternance of 128 (encoded as
[128, 0]) and of a different byte.

PACK_WORSTCASEPKB(n)(
n + 1 + (n - 1) / 128)

Happens when there is no repetition of characters.
Each strip is encoded as [N-1, byte1, .., byteN],
with N <= 128.

PACK_WORSTCASECCITT(n)(
n * 9 / 2)

Happens when 0s and 1s alternate ('01' encoded as
'000111010').

PACK_WORSTCASELZW(n)(
n * 3 / 2 + 4)

Happens with true random data.

PACK_WORSTCASE
PACK_WORSTCASECCITT

Worst case of all worst cases: worst case for the
CCITT encoding.
362 C Programmer’s Guide

CCITT Fax Compression
LzwEncode

void PACK_LzwEncode(PackPtr pack, PackDepthVal depth, PackLzwFlags flags);

Encodes with LZW.

LzwDecode

void PACK_LzwDecode(PackPtr pack, PackDepthVal depth, PackLzwFlags flags);

Decodes with LZW.

CCITT Fax Compression

Overview

This section implements Group3 (also known as T4 encoding) and Group4
(also known as T6 encoding) compressions. These compressions have been
designed solely for the compression of fax documents. Special flags and
parameters are fully described in CCITT reference documents, in TIFF 6.0
specification, and in a separate TIFF Class F standard document. The TIFF
documents can be retrieved by anonymous ftp from CompuServe or
sgi.com in the graphics/tiff directory.

CcittEncode
CcittDecode

void PACK_CcittEncode(PackPtr pack, PackSizeVal width, PackCcittFlags ccittFlags);

void PACK_CcittDecode(PackPtr pack, PackSizeVal width, PackCcittFlags ccittFlags);

Respectively, encodes and decodes using the CCITT compression
mechanisms.

Width': number of pixels per row. Row data is assumed to be byte-aligned,
so the number of bytes per row is actually width+7)/8. BytesSize must be
an exact multiple of the number of bytes per row. If there is only one row,
width can be set to 0 or to 8*BytesSize. ccittFlags': see above for
PackCcittFlags. The codes are considered to be in big-endian format (as
recommended by TIFF standard). For TIFF Class-F files which use
little-endian format (or reverse bit order), you can simply swap all the bytes
before calling `CcittDecode' or after calling `CcittEncode'.

Examples:

Standard values for ccittFlags are:
■ TIFF compression scheme 2 (also known as CCITT Group3 1D or

CCITT RLE): CCITTALIGN flag is always set.
■ TIFF compression scheme 32771 (a.k.a. CCITT RLE with word

alignment): Same as scheme 2 but CCITTALIGNWORD is also defined.
■ TIFF compression scheme 3 (a.k.a. CCITT Group3 or CCITT T4

encoding): CCITTEOL and CCITTRTC are always set, CCITTALIGN
depends on bit 2 of t4Options, CCITT2D depends on bit 0 of t4Options,
CCITTK4 depends on the resolution of the image (as specified by
CCITT).
C Programmer’s Guide 363

Chapter Pack Class28
■ TIFF compression scheme 3 in Class F documents: Same as standard
scheme 3 except that CCITTRTC is never set, while CCITTALIGN is
always set.

■ TIFF compression scheme 4 (a.k.a. CCITT Group 4 or CCITT T6
encoding): CCITTGROUP4 is always set.

Note: The `Uncompressed Mode' defined in TIFF is not supported yet.

General Case

Encode

void PACK_Encode(PackPtr pack, PackMethodEnum method);

Encodes with the method specified by `method'.

Decode

void PACK_Decode(PackPtr pack, PackMethodEnum method);

Decodes with the method specified by `method'.

PackMethodEnum

Index one of the above methods.

Item Description
K_METHODLZW Additional parameters are set to 8 for byteDepth

and 0 for lzwFlags.

PACK_METHODCCITT Additional parameters are set to G3-1D encoding
with one single row.
364 C Programmer’s Guide

Chapter
29 Plfd Class 29

The PFld module contains the API to describe and manage the persistent
fields of a resource.

Overview

Scope of Documented API

For now, only a small part of that API is documented and officially
supported.

Permanent Field Data Types

PFldTypeEnum

Enumerated type describing the possible types for persistent fields

Identifier Description
PFLD_TYPEBAD, invalid type.

PFLD_TYPEINT16, 16 bit signed integer.

PFLD_TYPEUINT16, 16 bit unsigned integer.

PFLD_TYPEINT32, 32 bit signed integer.

PFLD_TYPEUINT32, 32 bit unsigned integer.

PFLD_TYPESTR, string stored as a Str.

PFLD_TYPESTRARRAY, array of strings (not implemented yet).

PFLD_TYPEVSTR, string stored as a VStrPtr.

PFLD_TYPEVSTRARRAY, array of VStrPtrs.

PFLD_TYPERES, pointer to resource. NULL is illegal.

PFLD_TYPERES0, pointer to resource, NULL is legal.

PFLD_TYPERESARRAY, array of ResPtr.

PFLD_TYPEDATA32, arbitrary length binary data (undoc.).

PFLD_TYPEDATA8, internal: do not us.

PFLD_TYPEDATA16, internal: do not use.
C Programmer’s Guide 365

Chapter Plfd Class29
Field Categories

PFldCatEnum

Enumerated type for field categories. The main use of field categories is to
support the filtering of resource attributes when we expand resources to the
right in the resource browser.

Note: Fields with CATOBSOLETE are considered only when compiling the
rc format if their Offset is NULL, they are ignored, otherwise they are
taken into account. This allows us to smoothly change names of
fields, just leave the old entry in the fields array but mark it as
obsolete.

Data Structures

NDPFld

Description of a persistent field to the resource manager.

WARNING:

The same PFldRec structure is shared by a class and all its subclasses. Thus,
the offset should be the same for all subclasses. (see comment in
RES_RegisterClass and RES_RegisterSubClass).

Identifier Description
PFLD_CATOBSOLETE obsolete field.

 PFLD_CATNONE invalid category.

 PFLD_CATTEXT field contains text.

 PFLD_CATOTHER field is none of the others.

 PFLD_CATSIZE field contains size, position information.

 PFLD_CATCOLOR field contains a color resource.

 PFLD_CATFONT field contains a font resource.

 PFLD_CATPEN field contains a pen resource.

 PFLD_CATPATTERN field contains a pattern resource.

 PFLD_CATCURSOR field contains a cursor resource.

 PFLD_CATICON field contains an icon resource.

 PFLD_CATKEYS field contains a KyElt or KyLst resource.

 PFLD_CATWGT field contains a widget resource.

Persistent Feild Description
Name Name of the field (which will prefix the value of the field in

the.rc file)

Offset Offset of the field in the resource data structure. See the
RCLAS_OFFSET macro in rclaspub.h.

EnumType Data type of the field. One of the PFLD_TYPEXXX constants
defined above.

EnumCat Category for the field. One of the PFLD_CAT constants above.

ClientData 32 bits of client data information
366 C Programmer’s Guide

Chapter
30 Point Class 30

This class implements the point object.

Overview

A `point' object is specified by two coordinates called `x' and `y' (which can
be 16-bit or 32-bit values).

It is normally used to localize a point on a 2-D plane (in which case the
coordinates are relative to some origin) or to measure the extent of a 2-D
object (in which case both coordinates should be positive).

Genericity Issue

In C, the API is implemented as macros and so is common to both 16-bit and
32-bit implementations. In the macros declarations, `CoordGenVal' and
PointGenPtr' are generic types which map to Int16/Point16Ptr or to
Int32/Point32Ptr.

In C++, the API is implemented as two separate classes: NdPoint16 and
NdPoint32.

Constructors / Destructor

Construct

void POINT16_Construct(Point16Ptr p);

void POINT32_Construct(Point32Ptr p);

Default construction.

ConstructWithValues

void POINT16_ConstructWithValues(Point16Ptr p, Int16 xVal, Int16 yVal);

void POINT32_ConstructWithValues(Point32Ptr p, Int32 xVal, Int32 yVal);

Construction with values.

Destruct

void POINT16_Destruct(Point16Ptr p);

void POINT32_Destruct(Point32Ptr p);

Default destruction.
C Programmer’s Guide 367

Chapter Point Class30
Sets and Queries

GetX
SetX

Int16 POINT16_GetX(Point16CPtr p);

void POINT16_SetX(Point16Ptr p, Int16 val);

Int32 POINT32_GetX(Point32CPtr p);

void POINT32_SetX(Point32Ptr p, Int32 val);

Gets/sets the X coordinates of point `p'.

GetY
SetY

Int16 POINT16_GetY(Point16CPtr p);

void POINT16_SetY(Point16Ptr p, Int16 val);

Int32 POINT32_GetY(Point32CPtr p);

void POINT32_SetY(Point32Ptr p, Int32 val);

Gets/sets the Y coordinates of point `p'.

SetXY

void POINT16_SetXY(Point16Ptr p, Int16 xVal, Int16 yVal);

void POINT32_SetXY(Point32Ptr p, Int32 xVal, Int32 yVal);

Sets the X and Y coordinates of point `p' to `xVal' and `yVal' respectively.

IncXY

void POINT16_IncXY(Point16Ptr p, Int16 dx, Int16 dy);

void POINT32_IncXY(Point32Ptr p, Int32 dx, Int32 dy);

Increments the X and Y coordinates by `dx' and `dy' respectively.

SetSameXY

void POINT16_SetSameXY(Point16Ptr p, Int16 val);

void POINT32_SetSameXY(Point32Ptr p, Int32 val);

Sets both X and Y coordinates to `val'.

Reset

void POINT16_Reset(Point16Ptr p);

void POINT32_Reset(Point32Ptr p);

Resets both X and Y coordinates to 0.

IsNull

BoolEnum POINT16_IsNull(Point16Ptr p);

BoolEnum POINT32_IsNull(Point32Ptr p);

Returns BOOL_TRUE if both coordinates are 0.
368 C Programmer’s Guide

Sets and Queries
Equals

BoolEnum POINT16_Equals(Point16Ptr p1, Point16Ptr p2);

BoolEnum POINT32_Equals(Point32Ptr p1, Point32Ptr p2);

Returns BOOL_TRUE if `p1' and `p2' have same coordinates.

AbsDist

Int16 POINT16_AbsDist(Point16Ptr p1, Point16Ptr p2);

Int32 POINT32_AbsDist(Point32Ptr p1, Point32Ptr p2);

Returns the distance between p1 and p2 (using the "L1" distance, which is
defined as the max between the distance in X and the distance in Y).

IsInRectExt

BoolEnum POINT16_IsInRectExt(Point16Ptr p, Point16Ptr ext);

BoolEnum POINT32_IsInRectExt(Point32Ptr p, Point32Ptr ext);

Returns BOOL_TRUE if `p' is in the rectangle with origin (0, 0) and
extension `ext'.
C Programmer’s Guide 369

Chapter Point Class30
370 C Programmer’s Guide

Chapter
31 Pool Class 31

In some cases, memory management can be significantly sped up by the use
of memory pools which are tuned up to better handle allocation &
deallocation of structures of a given size.

Overview

Pool oriented memory management

The following code allows the application to:
■ Create a pool of memory for a pre-allocated number of cells of a given

size.
■ Allocate a cell in the pool, eventually increasing its capacity by a

user-defined number of cells if necessary.
■ Deallocate cells in the pool.

It is oriented towards cases in which the application has a pretty good idea
on its needs.

By playing around with NumPreAllocCells and NumGrowCells,
applications should be able to get to a situation in which allocation is very
fast and not much is lost when going over the NumPreAllocCells.

As with the Ptr module which handles the general heap, the memory pool
manager has built-in mechanisms to detect memory overwrite and incorrect
free operations.

When creating memory pools, the programmer has whole control on the
way the memory pool is initialized and will behave as allocations and
dealloactions will take place.

Example:

C_DEFSTRUCT(S_MyStruct) {
Str Field1;
WinPtr Field2;
../..

};

The application usually allocates between 50 and 100 such structures,
occasionally going over. It may temporarily need up to 5 such structures for
intermediate computations that need to be fast. The application can handle
them through a pool in which 75 are pre-allocated and that grows by 10 cells
when more is needed. It will also need to ask the memory pool manager to
preserve at least 5 empty cells before trying to deallocate uneeded
fragments.

< INIT >
PoolInfoRec info;
info.CellSize = sizeof(S_MyStructRec);
info.NumPreAllocCells = 75;
info.NumGrowCells = 10;
info.FreeFragThreshNumCells = 5;
PoolPtr new NdPool(&info);
C Programmer’s Guide 371

Chapter Pool Class31
../..

myStruct = (S_MyStructPtr)pool->NewPtr();

../..
pool->DisposePtr(myStruct);

../..
delete pool;
< END >

In terms of internal implementation, memory pools work with fragments
which are guaranteed to contain at least the number of cells specified by the
programmer.

Even if memory pools are oriented towards fast allocation, they do not keep
everything allocated all the time. When a pool is created, the programmer
can specify a threshhold number of free cells over which unecessary blocks
or fragments will automatically be deallocated. By setting this number to a
reasonable value, he/she can make sure that future allocations will result in
fragment allocations only if the allocations exceed that number.

Note: By its very nature, the use of memory pools is limited to the cases in
which what is allocated in the pool is never resized.
Memory pools work exactly the same way on all platforms, including
MS-Windows 16 bits.

Pool Definition

Constructors and Destructor

Constructors

Alloc

PoolPtr POOL_Alloc(void);

Returns a pointer to an allocated but not yet constructed memory pool. The
memory pool should be constructed before being used.

Identifier Description
CellSize; Size in bytes of the objects allocated in the pool. Open Interface

handles all the problems related to alignment on the different
platforms.

NumPreAllocCells; Number of such cells created in the first main fragment. This
fragment is created when the pool is initialized.

NumGrowCells; Number of cells created in each subsequent fragment. These
fragments are created when there is no more free cell in any of the
other fragments of the pool.

FreeFragThreshNumCells; When a fragment becomes empty, Open Interface first makes sure
that the rest of the pool contains at least this number of free cells
before getting rid of this fragment. If it is set to -1, then Open
Interface will never deallocate any fragment (it makes it faster but
more greedy).
372 C Programmer’s Guide

Setting/Querying the Information on a Memory Pool
void POOL_Construct(PoolPtr pool);

Default memory pool construction.

void POOL_ConstructInfo(PoolPtr pool, PoolInfoCPtr info);

Memory pool construction. The memory pool gets constructed according to
the information contained in info. In particular, all the cells that need to be
preallocated are.

Destructor

void POOL_Destruct(PoolPtr pool);

Default memory pool destruction.

Dealloc

void POOL_Dealloc(PoolPtr pool);

Deallocates the memory pool.

Setting/Querying the Information on a Memory Pool

SetInfo

void POOL_SetInfo(PoolPtr pool, PoolInfoCPtr poolInfo);

Updates the memory pool with the information from poolInfo.

QueryInfo

void POOL_QueryInfo(PoolCPtr pool, PoolInfoPtr poolInfo);

Fills poolInfo with the information with which the memory pool was
created.

Allocating and Deallocating

NewPtr

HugePtr POOL_NewPtr(PoolPtr pool);

Returns a pointer to a cell allocated in the pool. The allocation mechanism is
geared toward performance and an allocation operation is in general
limited to an arithmetic operation on pointers.

DisposePtr

void POOL_DisposePtr(PoolPtr pool, HugePtr ptr);

Deallocates ptr. ptr must have been allocated in the pool. The deallocation
mechanism is also geared toward performance. A deallocation is in general
limited to an arithmetic operation on pointers and a linking of pointers.
C Programmer’s Guide 373

Chapter Pool Class31
Statistics

NDPoolFragStatsInfo

NDPoolStatsInfo

QueryStats

void POOL_QueryStats(PoolCPtr pool, PoolStatsInfoPtr stats);

Fills stats with the statistics information on the pool. The Frags array in stats
should be created by the caller, but it will get filled by the call.

ResetStats

void POOL_ResetStats(PoolStatsInfoPtr stats);

Resets stats.

NumCells Number of cells in fragment .

NumAllocCells Number of allocated cells .

NumCells Total number of cells .

NumAllocCells Number of allocated cells .

Frags Array of FragStatsInfoPtr .
374 C Programmer’s Guide

Chapter
32 Ptr Class 32

The Ptr class implements the Open Interface memory manager.

Technical Overview

NDPtr offers several advantages over the standard malloc and free:
■ Ptr works on MS/Windows exactly the same way it works on the other

platforms. In particular, Ptr avoids using handles for heap allocation of
small blocks of memory,

■ Ptr offers better error handling.
■ Any memory allocated is zero-blanked.
■ Ptr writes marks at the beginning and the end of buffers and check that

the marks are still there when you reallocate or free the buffer,
■ When the DBG_ON flag is set, Ptr writes a special pattern in the buffer

when the buffer is freed, so that you are sure to find corrupted data in
a buffer after having freed it,

■ Ptr maintains statistics on the number of pointers and the number of
bytes allocated.

See also:

Base, Res, Err classes

Data Types

PtrStats

Data structure to describe memory management statistics.

PtrStatsPtr is a pointer to PtrStatsRec, a data structure that holds memory
management statistics. The Size field is the total size in bytes currently
allocated. The Num field holds the number of pointers allocated. The
PeakSize field holds the highest size allocated during the current execution.
The PeakNum field stores the highest number of pointers allocated during
the current execution.
C Programmer’s Guide 375

Chapter Ptr Class32
The fields of this structure are described below:

See also

QueryStats, PTR_StatsOutput.

Enumerated Types

PtrFailEnum

Failure from the Ptr class signalling a problem with memory allocation or
deallocation.

These constants represent the different errors signalled by the PTR class.
The failures are signalled through a callback procedure that your program
can override, using PTR_SetFailProc.

See also

PTR_SetFailProc, PTR_DefFailProc, PTR_GetFailProc

Identifier Description
Size Number of bytes currently allocated

Size represents the total number of bytes requested by all PTR_New or
PTR_HugeNew calls, this is not exactly the number of bytes actually allocated by
the system on your machine. First of all Open Interface keeps a few extra bytes as
"debug marks" with each pointers (Debug Libraries only) and also stores the
pointer's size, and secondly the memory allocation system call (malloc, ...) may
allocate memory in bigger blocks. The correct way to get the total memory
allocated by your application is to use another system call, like FreeMem on Mac.
On the other hand, if you find that Size doesn't return to the same value after an
operation that should not use memory it is a sure indication that your application
has a memory leak due to missing PTR_Dispose calls. In that case the difference
in Size can help you figure out what structures are not released.

Num Number of pointers currently allocated.

PeakSize Peak value for Size since application was launched.

PeakNum Peak value for Num since application was launched.

Identifier Description
PTR_FAILNOMEM Cannot allocate memory because either the size requested is too big,

memory ran out, or the memory manager data is corrupted.

PTR_FAILSIZE Size passed to PTR_NEW or PTR_SetSize is invalid (i.e., negative
size). You must use the PTR_Huge… routines to allocate buffers
larger than HUGELIMIT (65520), otherwise your code won’t be
portable to MS Windows.

PTR_FAILNULL PTR_Dispose or PTR_SetSize was passed a NULL pointer.

PTR_FAILMARKBEGIN Beginning debugging marker is corrupted. You may be writing in
areas of memory that you did not allocate.

PTR_FAILMARKEND Ending debugging marker is corrupted.

PTR_FAILMARKFREE You are trying to free a pointer that is already been freed by
PTR_Dispose.
376 C Programmer’s Guide

Alignment
Alignment

Most RISC machines can store certain data types only on addresses which
have certain alignment constraints.

Some functions are provided to help with data alignment (for now, they
assume that you want your data aligned for the worst case, more specific
alignment support may be provided later).

GetAlignedSize

Returns the smallest aligned size for the size passed.

PtrSizeVal PTR_GetAlignedSize (PtrSizeVal size);

PTR_GetAlignedSize returns the smallest size that is both aligned and that
can hold the requested size.

AlignCheck

Checks whether the pointer is aligned for the worst case scenario.

void PTR_AlignCheck (HugeCPtr ptr);

Different data types require different amounts of space and alignment
constraints. This macro checks to see if the ptr passed is aligned to the worst
case needs of the current platform.

MCH_ALIGN is defined as:

#if MCH_ALIGN == 1
#define PTR_ALIGNCHECK(a) a
#else
#define PTR_ALIGNCHECK(a) DBG_CHECK((((long)(a)) % MCH_ALIGN)
== 0)
#endif

Alloc, Free, and Realloc

The following routines allow you to allocate, reallocate, and free pointers.

The distinction between ‘normal’ and ‘huge’ pointers is introduced so that
we can write code which will be portable to the large (but not huge) memory
models on DOS/MS-Windows and OS/2-PM. When you compile in large
model, normal pointers can not access memory blocks larger than 64k bytes
because of the segmented architecture. Huge memory blocks can be
referenced only by ’Huge’ pointers.

On MS-Windows and OS/2-PM, you can not use PTR_New or PTR_SetSize
for a size which is greater than HUGELIMIT. If ever this happens, PTR_New
or PTR_SetSize will fail (PTR_FAILSIZE).

On platforms which don’t have a segmented architecture (UNIX, VMS,
MAC, and MS/Windows when compiling in 32-bit mode with WatcomC
compiler), this limit is not enforced by default but can be enforced if you set
the environment variable OIT_ENFORCE64KLIMIT to TRUE. Enforcing the
same limit allows to detect on those machines problems which would
otherwise appear only at the time you port your code to the PC.
C Programmer’s Guide 377

Chapter Ptr Class32
Recommendations

If you are developping on PC, you absolutely need to use the correct
memory attribute (i.e. C_NEAR/C_FAR/C_HUGE) when declaring all
your pointers. We recommend that you use huge pointers only when you
really need them because the dereferenciation of a huge pointer is
significantly slower than the dereferenciation of a normal pointer. So you
should use ‘New’ most of the time, and ‘HugeNew’ only in the cases where
you really need memory blocks larger than 64K.

If your code will never be ported to PC, you can unset this variable and use
indifferently PTR_New or PTR_HugeNew. However, experience shows
that most users decide to port their application to PC sooner or later, even if
they did not consider it initially. So, even if you are not developing for the
PC, we recommend that you write code which remains "PC-clean".

Note: You are not allowed to assign a ‘huge’ pointer to a ‘normal’ pointer
variable, or to pass a ‘huge’ pointer to a routine expecting a ‘normal’
pointer. Unfortunately, only the PC compilers will give you warnings
in such cases.

GetSize

Returns the size of which the buffer ‘ptr’ is allocated.

PtrSizeVal PTR_GetSize (VoidPtr ptr);

SetSize

Reallocates the ‘ptr’ buffer for a different size ‘size’. If the new size is larger
than the old size, the difference is initialized with zeros. The pointer
returned might be different from the original pointer, even if it is reallocated
for a smaller size.

The new size must be less than HUGELIMIT, otherwise you should allocate
a huge pointer and free the non huge pointer. If ‘ptr’ is NULL, PTR_SetSize
calls PTR_New(size) and returns the result.

VoidPtr PTR_SetSize (VoidPtr ptr, PtrSizeVal size);

New

Allocates a new pointer of the size specified or for named structure.

VoidPtr PTR_New (PtrSizeVal size);

PTR_New allocates a new pointer of size specified and returns that pointer.

The buffer that the new pointer points to is initialized with zeros before the
new pointer is returned.

Dispose

Frees memory allocated for a given pointer.

void PTR_Dispose (VoidPtr ptr);

When DBG_ON is not defined, PTR_Dispose is the same as using standard
C free routine — it frees the memory allocated for the ptr passed. When
DBG_ON is defined, PTR_Dispose overwrites the buffer with a special
pattern so that contents of that buffer are completely destroyed. This will
aid in your pointer debugging.
378 C Programmer’s Guide

Functions for Memory Copy, Move, Set
HugeNew
HugeDispose
HugeGetSize
HugeSetSize

The following functions are analogous to the above, but they operate on
huge pointers:

HugePtr PTR_HugeNew (PtrHugeSizeVal size);

void PTR_HugeDispose (HugePtr hugeptr);

PtrHugeSizeVal PTR_HugeGetSize (HugePtr ptr);

HugePtr PTR_HugeSetSize (HugePtr ptr, PtrHugeSizeVal size);

Same as before except that the sizes can be larger than HUGELIMIT. You
must use the PTR_Huge… routines to allocate buffers larger than
HUGELIMIT (65520), otherwise you code won’t be portable to
MS/Windows.

Macintosh Note: MPW has a limit of 8MB for allocating memory. If you try
to allocate more than this, 0 bytes are allocated.

Functions for Memory Copy, Move, Set

Clear

Sets the set of bytes specified in a buffer to zero.

void PTR_Clear (VoidPtr ptr, PtrSizeVal number);

PTR_Clear sets the number of bytes starting at ptr to zero.

See also

PTR_Copy, PTR_Move, PTR_Set

Set

Sets the specified number of bytes of a buffer to a value specified.

void PTR_Set (VoidPtr dest, Byte byte, PtrSizeVal number);

PTR_Set sets each of the first number of bytes beginning at dest to c. For
example, if c is “a” and number is 4, the first four bytes starting at dest will
all be “aaaa”.

SetSize

Changes the size of the pointer specified.

VoidPtr PTR_SetSize (VoidPtr ptr, PtrSizeVal size);

PTR_SetSize changes the buffer size that ptr points to. Essentially, it
reallocates the pointer with the new size and copies the data from the old
buffer to the new buffer, in case the pointer changed. If the new buffer
increased in size, then the end of the buffer (between old end and new end)
is initialized with zeros.
C Programmer’s Guide 379

Chapter Ptr Class32
Copy

Copies the number of bytes specified to a disjoint location in a buffer.

void PTR_Copy (VoidPtr dest, VoidCPtr src, PtrSizeVal number);

PTR_Copy copies number bytes starting at src to destination. This routine
assumes disjoint source and destination areas.

Move

Copies `size' bytes from `src' to `dst'. `src' and `dst' may overlap.

void PTR_Move (VoidCPtr p1, VoidCPtr p2, PtrHugeSizeVal size);

Swap

Copies ̀ size' first bytes of ̀ p1' to ̀ p2' and vice versa.`p1' and ̀ p2' must NOT
overlap.

void PTR_Swap (VoidCPtr p1, VoidCPtr p2, PtrHugeSizeVal size);

Cmp

Compares the `size' first bytes of `p1' and `p2'. The bytes are compared as
their unsigned values bytes.

CmpEnum PTR_Cmp (VoidCPtr p1, VoidCPtr p2, PtrHugeSizeVal size);

Matches

Returns whether `p1' and `p2' match exactly on their first `size'.

BoolEnum PTR_Matches (VoidCPtr p1, VoidCPtr p2, PtrHugeSizeVal size);

Move

Copies the number of bytes specified to an overlapping location.

void PTR_Move (VoidPtr dest, VoidCPtr src, PtrSizeVal size);

PTR_Move copies number bytes starting at src to destination. This routine
can handle both disjoint and overlapping source and destination areas.

HugeClear
HugeSet
HugeSetSize
HugeCopy
HugeMove
HugeSwap
HugeCmp
HugeMatches
HugeMove

The following functions are analogous to the above, but they operate on
huge pointers:
380 C Programmer’s Guide

Statistics
void PTR_HugeClear (HugePtr hugeptr, PtrHugeSizeVal size);

void PTR_HugeSet (HugePtr dest, Byte i, PtrHugeSizeVal size);

HugePtr PTR_HugeSetSize (HugePtr hugeptr, PtrHugeSizeVal size);

void PTR_HugeCopy (HugePtr dest, HugeCPtr src, PtrHugeSizeVal size);

void PTR_HugeMove (HugeCPtr p1, HugeCPtr p2, PtrHugeSizeVal size);

void PTR_HugeSwap (HugeCPtr p1, HugeCPtr p2, PtrHugeSizeVal size);

CmpEnum PTR_HugeCmp (HugeCPtr p1, HugeCPtr p2, PtrHugeSizeVal size);

BoolEnum PTR_HugeMatches (HugeCPtr p1, HugeCPtr p2, PtrHugeSizeVal size);

void PTR_HugeMove (HugePtr dest, HugeCPtr src, PtrHugeSizeVal size);

 You must use the PTR_Huge… routines to allocate buffers larger than
HUGELIMIT (65520), otherwise you code won’t be portable to
MS/Windows.

PTR_HugeSet is similar to PTR_Set, but fills with an integer i instead of a
character.

PTR_HugeSetSize reallocates ptr to the size specified. Similar to
PTR_SetSize, but PTR_HugeSetSize you can set a pointer for sizes much
larger than the defined HUGELIMIT (65520).

Statistics

QueryStats

Determines the current memory manager statistics.

void PTR_QueryStats (PtrStatsPtr ptr);

PTR_QueryStats retrieves the current statistics on the memory manager and
places the results in the record that ptr points to.

StatsOutput

Outputs memory manager statistics to standard output.

void PTR_StatsOutput (void);

PTR_StatsOutput outputs the current memory manager statistics to
standard output.

Low-level Byte Copies

Operations performed on values stored at address ptr+offset.

GetByte

Reads value stored at address ptr+’offset’.

Byte PTR_GetByte (VoidCPtr ptr, PtrSizeVal offset);

SetByte

Sets new value at address ptr+’offset’ to ‘byte’.
C Programmer’s Guide 381

Chapter Ptr Class32
void PTR_SetByte(VoidPtr ptr, PtrSizeVal offset, Byte byte);

CopyByte

Copies value stored at ‘src’+’srcOffset’ to dst+’dstOffset’.

void PTR_CopyByte(VoidPtr dst, PtrSizeVal dstOffset, VoidCPtr src, PtrSizeVal srcOffset);

SwapByte

Exchanges values at ptr1+’offset1’ and ‘ptr2’+’offset2’.

void PTR_SwapByte (VoidPtr p1, PtrSizeVal offset1, VoidPtr p2, PtrSizeVal offset2);

See also PTR_WriteInt8, PTR_WriteInt16, PTR_WriteInt32

HugeCopyByte
HugeGetByte
HugeSetByte
HugeSwapByte

The following functions are analogous to the above, but they operate on
huge pointers:

Byte PTR_HugeGetByte(HugeCPtr ptr, PtrHugeSizeVal offset);

void PTR_HugeSetByte(HugePtr ptr, PtrHugeSizeVal offset, Byte byte);

void PTR_HugeCopyByte(HugePtr dst, PtrHugeSizeVal dstOffset, HugeCPtr src,
PtrHugeSizeVal srcOffset);

void PTR_HugeSwapByte(HugePtr p1, PtrHugeSizeVal offset1, HugePtr p2,
PtrHugeSizeVal offset2);

Machine-Independent Memory Representations for Integers

Integers are not stored in memory the same way on all machines. Memory
representations may differ by the order of bytes within the integer. On
Big-Endian machines, most sigificant byte is stored in lowest address. On
Little-Endian machines, most sigificant byte is in highest address. We define
as "machine-dependent format" the format available on the local machine.
We define as "standard format" the Big-Endian representation.

Note: The same functions can be applied for signed or unsigned integers.

Int8ToStd
Int16ToStd
Int32ToStd

Converts in place an integer from the machine-dependent format to the
standard format. These functions have no requirement concerning
alignment.

void PTR_Int8ToStd(Int8Ptr valp);

void PTR_Int16ToStd(Int16Ptr valp);

void PTR_Int32ToStd(Int32Ptr valp);
382 C Programmer’s Guide

Memory Representations for Strings
Int8ToMch
Int16ToMch
Int32ToMch

Converts in place an integer from standard format into the
machine-dependent format. These functions have no requirement
concerning alignment.

void PTR_Int8ToMch(Int8Ptr valp);

void PTR_Int16ToMch(Int16Ptr valp);

void PTR_Int32ToMch(Int32Ptr valp);

ReadInt8
ReadInt16
ReadInt32

Reads a machine-dependent integer from a memory buffer ‘ptr’ where
integers are in standard format. The destination pointer must be aligned as
a pointer to an Int8/16/32.

void PTR_ReadInt8(VoidCPtr ptr, Int8Ptr valp);

void PTR_ReadInt16(VoidCPtr ptr, Int16Ptr valp);

void PTR_ReadInt32(VoidCPtr ptr, Int32Ptr valp);

WriteInt8
WriteInt16
WriteInt32

Writes a machine-dependent integer into a memory buffer ‘ptr’ where
integers are in standard format. The source must be aligned as a pointer to
an Int8/16/32.

void PTR_WriteInt8(VoidPtr ptr, Int8CPtr valp);

void PTR_WriteInt16(VoidPtr ptr, Int16CPtr valp);

void PTR_WriteInt32(VoidPtr ptr, Int32CPtr valp);

See also

PTR_SwapByte.

Memory Representations for Strings

Strings are not stored in memory the same way on all platforms. We define
as “standard format” the case where ‘\n’ is mapped to 0x0A and ‘\r’ to
0x0D. The only exception is MPW-C where these characters are inverted.

Note: These macros do not perform any special translation for Kanji
characters. Therefore these macros are portable only within one
standard:

UJS (or EUC): Sun, NEc
SJIS (shift-JIS): HP, Sony, PC, Mac
C Programmer’s Guide 383

Chapter Ptr Class32
StrToStd

Converts strings to and from standard format.

void PTR_StrToStd (Str str, StrIVal len);

StrToMch

Converts in place a string from machine-dependent format to standard
format.

void PTR_StrToMch (Str str, StrIVal len);

Converts in place a string from standard format to machine-dependent
format.

See also PTR_ReadStr, PTR_WriteStr.

ReadStr

Read and write machine-dependent strings to and from standard format.

void PTR_ReadStr (HugeCPtr ptr, Str str, StrIVal len);

WriteStr

Reads a machine-dependent string from a memory buffer where strings are
stored in standard format.

void PTR_WriteStr (HugePtr ptr, CStr cstr, StrIVal len);

Writes a machine-dependent string into a memory buffer where strings are
stored in standard format.

Strings are not stored in memory the same way on all platforms. We define
as “standard format” the case where ‘\n’ is mapped to 0x0A and ‘\r’ to
0x0D. The only exception is MPW-C where these characters are inverted.

See also PTR_StrToStd, PTR_StrToMch.

Errors Signalled by Ptr Class

These failure are signalled through a call-back that the program can
override. The default call-back calls ERR_Fail and displays an error window
with the corresponding error message.

If the program does not want that behaviour, it can install its own call-back
there and do whatever it pleases. The value returned by the call-back is in
turn returned by the PTR call if needed.

For instance, if the program wants to avoid triggering an error when trying
to allocate memory, and get NULL as a return value instead, it could do the
following:

if (failCode == PTR_FAILNOMEM) {
return NULL;
} else {
return NdPtr::DefFailProc(failCode, size);
}

}
< somewhere before >
PTR_SetFailProc(S_MyFailProc);
< in the caller code>
ptr = PTR_New(1000000);
384 C Programmer’s Guide

Errors Signalled by Ptr Class
if (ptr == NULL) {
../..

}

Of course, the change is system-wide. This means that the calls made by
Open Interface will have the same behaviour.

Trapping failures is a good programming principle, except in situations
when memory allocation is made tentatively and the caller has alternative
solutions that are less time-consuming . Thus, we recommend that the
programmer use the failing principle, except in those precise places where
memory allocation is done tentatively.

GetFailProc

Returns the custom failure callback procedure installed.

PtrFailProc PTR_GetFailProc (void);

PTR_GetFailProc retrieves the previously installed custom failure
procedure.

See also PTR_SetFailProc, PTR_DefFailProc, PtrFailEnum…

SetFailProc

Sets a custom failure callback procedure.

void PTR_SetFailProc (PtrFailProc failProc);

PTR_SetFailProc overrides the default failure procedure (to call
ERR_Fail)and installs failProc as the failure routine for memory allocation.
The client application typically performs this task immediately after loading
and initializing the resource.

See also PTR_GetFailProc, PTR_DefFailProc, PtrFailEnum…

DefFailProc

Default method to trap memory management failures.

HugePtr PTR_DefFailProc(PtrFailEnum fail, PtrHugeSizeVal size);
C Programmer’s Guide 385

Chapter Ptr Class32
386 C Programmer’s Guide

Chapter
33 RClas Class 33

The RClas class defines what “resource classes” are and provides the API to
access them.

Note; The normal procedure to create a new class is to select Add SubClass
or Add Class in the Resource Browser. Refer to the User’s Guide for details.
The new class that you create in the Resource Browser will automatically be
generated with the code necesary to register the class and create new
instances. Refer to the Programmer’s Guide for details about the code
generated.

Persistent Data

The RClas class is the base class for resource class meta-information holders.
The fields of the RClasRec class are described below:

See also

 Res, RLib, Wgt, EdRes classes.

RClasFlagsSetEnum

These flags are described below.

Field Description
SizeOfRes Size of resource instance in bytes.

Name Name of the class.

Fields Pointer to an array describing persistent fields.

Flags Class flags. See RCLAS_FLAG…

DefNotify Default notification handler. Will be installed by default in all
instances of the class.

New Creates an instance (for C++ classes).

Delete Deletes an instance (for C++ classes).

Contruct Constructs an instance (for C++ classes).

Destruct Destructs an instance (for C++ classes).

ParentClas
s

Pointer to the parent class. By tracing the ParentClass pointers of
any class, the Res class is eventually reached (see NDRes::Class())
and its parent class is NULL.

ClientData Field for storing 32 bits of data to be associated with the class.

Version Version number for the class.

ClassId Class id for the class.

Identifier Description
RCLAS_FLAGESO Resource is esoteric (for advanced

programmers only).

RCLAS_FLAGWGT Resource is a widget, including Panel and
Win.
C Programmer’s Guide 387

Chapter RClas Class33
See also

RClasRec.

Class Registration

Register

void RCLAS_Register (RClasPtr rclas);

Registers the class and its default notification procedure with the resource
manager.

CPlusRegister

Registers a new resource class with the resource manager.

RClasPtr RCLAS_CPlusRegister (CStr name, RClasNewProc nProc,
RClasDeleteProc dProc, ResNfyProc nfy, RClasPtr pClass, PFldPtr oiFields);

Informs the Resource Manager that a new resource class rclas is available.
You only need to use this routine if you are creating a new class. If so, you
should include this procedure in your C template file and declare it in your
class’ public header (Classpub.h) file.

 If the flag RCLAS_FLAGSUBOFFSET is set, the attribute ‘SubOffset’ in the
RClasRec structure will be set to the size of the parent class resource
structure, and the offsets in the list of fields will be shifted by the same
SubOffset value.

See also

RClasRec, RCLASS_Add.

Add

Registers the class and its default notification procedure with the resource
manager.

void RCLAS_Add (RClasPtr rclas, ResNfyProc nfyProc);

See also RCLAS_Register,RCLAS_SetDefNfy.

RCLAS_FLAGPANEL Resource is a container, including panel.

RCLAS_FLAGMENU Resource is a menu, a menu bar, a menu item
or a menu separator.

RCLAS_FLAGEXPORTED Resource will exported by default.

RCLAS_FLAGCOMPOSITE Resource has widgets in its children field.

RCLAS_FLAGUNKNOWN Resource loaded from a .dat file and belongs
to an class that is not registered (unknown).

RCLAS_FLAGNOTINSTANTIABLE No instance of this resource class can be
created in OpenEdit.

RCLAS_FLAGDONTDISPLAY Resource class should not be displayed in
resource browser.

RCLAS_FLAGNOTINPALETTE Class icon should not appear in the Window
Editor widget palette.

RCLAS_FLAGNOTSUBCLASSABLE Cannot be subclassed
388 C Programmer’s Guide

Allocation/Deallocation
Allocation/Deallocation

Default allocation method for all Open Interface classes. The default ’new’
method for Open Interface classes calls this method in the C++ version. This
member is only used through the RCLAS_CPP... macros.

OperatorNew

VoidPtr RCLAS_OperatorNew (RClasPtr rclas, PtrSizeVal size);

Default deallocation method for all Open Interface classes. The default
’delete’ method for Open Interface classes calls this method in the C++
version. This member is only used through the RCLAS_CPP... macros.

OperatorDelete

void RCLAS_OperatorDelete (RClasPtr rclas, VoidPtr obj);

Member Functions

Accessing the Class Callbacks

These functions return the corresponding installed class method.
(Recommended for advanced programmers.)

GetNew
GetDelete
GetConstruct
GetDestruct

RClasNewCBack RCLAS_GetNew (RClasPtr rclas);
RClasDeleteCBack RCLAS_GetDelete (RClasPtr rclas);
RClasConstructCBack RCLAS_GetConstruct (RClasPtr rclas);
RClasDestructCBack RCLAS_GetDestruct (RClasPtr rclas);

Get…

Functions that get the various fields of an RClas structure.

PtrSizeVal RCLAS_GetSizeOfRes (RClasCPtr rclas);

CStr RCLAS_GetName (RClasCPtr rclas);

PFldPtr RCLAS_GetFields (RClasPCtr rclas);

RClasFlagsSet RCLAS_GetFlags (RClasCPtr rclas);

RClasPtr RCLAS_GetParentClass (RClasCPtr rclas);

ResPtr RCLAS_GetTemplate (RClasPtr rclas);

CStr RCLAS_GetModName (RClasCPtr rclas);

RClasVersionVal RCLAS_GetVersion (RClasCPtr rclas);

The RCLASS_Get… functions return the various fields of the given rclas
structure. See class overview for a list of all fields of the structure.

See also

RCLASS_Set…
C Programmer’s Guide 389

Chapter RClas Class33
GetDefNfy

Get the default notification handler of an RClas.

ResNfyProc RCLAS_GetDefNfy (RClasCPtr rclas);

The RCLASS_GetDefNfy procedure returns the defualt notification handler
(the DefNotify field) of the given rclas structure.

See also

RCLASS_SetDefNfy, RCLASS_Get…

Querying Database of Resource Classes

FindByName

Returns a class by name.

RClasPtr RCLAS_FindByName (CStr name);

RCLASS_FindByName returns the class whose name is classname, NULL if
there is no such class. The set of resource classes already loaded in the
program can be queried through the following calls:

GetFirst

Returns the first alphabetical resource class.

static RClasPtr RCLAS_GetFirst (void);

The RCLASS_GetFirst function returns the first alphabetical resource class.

See also

RCLASS_GetNext, RCLASS_FindByName

GetNext

Returns the class that is alphabetically after the class specified.

RClasPtr RCLAS_GetNext (RClasPtr class);

RCLASS_GetNext returns the class that is alphabetically after class.

See also

RCLASS_GetFirst, RCLASS_FindByName.

Testing Inheritance

IsSubClassOf

Determines whether one class is a subclass of another.

BoolEnum RCLAS_IsSubClassOf (RClasCPtr childclass, RClasCPtr parentclass);

RCLASS_IsSubClassOf returns BOOL_TRUE if childclass inherits (directly
or indirectly) from parentclass.
390 C Programmer’s Guide

Setting the Class Callbacks
See also

RClasRec

Setting the Class Callbacks

These functions set the corresponding installed class method.
(Recommended for advanced programmers.) These calls will typically be
used only after the class is created and before any instance is created.

SetNewProc
SetDeleteProc
SetConstructProc
SetDestructProc

void RCLAS_SetNewProc(RClasPtr rclas, RClasNewProc newProc);

void RCLAS_SetDeleteProc(RClasPtr rclas, RClasDeleteProc delProc);

void RCLAS_SetConstructProc(RClasPtr rclas, RClasConstructProc constProc);

void RCLAS_SetDestructProc(RClasPtr rclas, RClasDestructProc destProc);

Set…

Functions that set the various fields of an RClas structure.

void RCLAS_SetSizeOfRes (RClasPtr rclas, PtrSizeVal size);

void RCLAS_SetName (RClasPtr rclas, Str name);

void RCLAS_SetFields (RClasPtr rclas, PFldPtr fields);

void RCLAS_SetFlags (RClasPtr rclas, RClasFlagsSet flags);

void RCLAS_SetParentClass (RClasPtr rclas, RClasPtr parent);

void RCLAS_SetVersion (RClasPtr rclas, RClasVersionVal version);

void RCLAS_SetModName (RClasPtr rclas, CStr modname);

The RCLASS_Set… functions set the various fields of the given rclas
structure. See RClasRec for a list of all the fields of the structure.

See also

RCLASS_Get…

SetDefNfy

Set the default notification handler for an RClas.

void RCLAS_SetDefNfy (RClasPtr rclas, ResNfyProc defnfy);

The RCLASS_SetDefNfy procedure sets the DefNotify field of the given
rclas structure to the given defnfy handler.

See also

RCLASS_GetDefNfy, RCLASS_Set…

ProcessDefNfy

Trigger the default notification procedure on an instance.
C Programmer’s Guide 391

Chapter RClas Class33
void RCLAS_ProcessDefNfy (RClasCPtr rclas, ResPtr res, ResNfyEnum code);

RCLASS_ProcessDefNfy calls the default notification procedure installed in
rclas, with res and code as arguments. res must be an instance of rclas or of
a subclass of rclas.

See also RCLASS_ProcessParentDefNfy

ProcessParentDefNfy

Trigger the parent default notification procedure on an instance.

void RCLAS_ProcessParentDefNfy (RClasCPtr rclas, ResPtr res, ResNfyEnum code);

RCLASS_ProcessParentDefNfy first determines the parent class of rclas,
and then calls the default notification procedure installed in the parent class,
with res and code as arguments. res must be an instance of the parent class,
of rclas, or of a subclass of rclas.
392 C Programmer’s Guide

Chapter
34 Rect Class 34

The Rect class implements basic definitions for points and rectangles used
in various drawing operations.

Technical Summary

Point and rectangle structures are available that use 16 or 32 bit storage.

Rectangles defined by Origin and Extent

A ‘rectangle’ object is normally specified as an origin point ‘Ori’ and an
extent ‘Ext’, and identifies a rectangular area on a 2D plane. A rectangle is
valid only if Ext.x and Ext.y are positive or null.

The rectangle contains all the points (x, y) so that:

Ori.x <= x < Ori.x + Ext.x

Ori.y <= y < Ori.y + Ext.y

The rectangle contains exactly (Ext.x * Ext.y) points.

The line (x == Ori.x + Ext.x) is outside of the rectangle (off right).

The line (y == Ori.y + Ext.y) is outside of the rectangle (off bottom).

Rectangles defined by ‘Beg’ and ‘End’ coordinates

Instead of defining a rectangle by Origin (Ori.x, Ori.y) and Extent (Ext.x,
Ext.y), we can also define a rectangle by its left, right, top, and bottom
coordinates. The ‘left’ coordinate is easy to use (same as Ori.x), but the
‘right’ coordinate is naturally ambiguous: is it the right-most possible value
(Ori.x + Ext.x - 1) or the first value outside of the rectangle (Ori.x + Ext.x) ?
Same problem for the ‘bottom’ coordinate.

So, instead of left/right and top/bottom coordinates, we will use
BegX/EndX and BegY/EndY defined as:

BegX = Ori.x EndX = Ori.x + Ext.x

BegY = Ori.x EndY = Ori.y + Ext.y

There is an API to query and set each of these coordinates. The ‘Set’ calls are
written so that each coordinate is independent from the other ones. For
instance, RECT_SetBegX will modify both ‘Ori.x’ and ‘Ext.x’ so that BegX
becomes some given value while EndX remains unchanged.

Invalid rectangles

During some computations, a rectangle can become temporarily invalid, i.e.
Ext.x or Ext.y becomes temporarily negative. There is an API to detect when
a rectangle is invalid and an API to correct the Origin and Extent to make
the rectangle valid again.
C Programmer’s Guide 393

Chapter Rect Class34
Native rectangle representation

This module also provides some API to convert between an OI rectangle
and a native rectangle. You should also include the platform-specific header
file (xpub.h, mswpub.h, or pmpub.h) to get the appropriate type
declaration. In this module, the native rectangle type is represented by
‘RectNat’.

See also: Draw and Rgn class.

Point Functions

AbsDist

Returns the absolute distance between two points.

Int16 POINT16_AbsDist(Point16Ptr p1, Point16Ptr p2);

Int32 POINT32_AbsDist(Point32Ptr p1, Point32Ptr p2);

POINT_ABSDIST returns the absolute distance between the points p1 and
p2 (using the "L1" distance, which is defined as the max between the
distance in X and the distance in Y).

ContainsPoint
ContainsPoint32

Determines whether a rectangle contains the point specified.

BoolEnum RECT16_ContainsPoint(Rect16CPtr r, Point16CPtr p);

BoolEnum RECT32_ContainsPoint(Rect32CPtr r, Point32CPtr p);

RECT_ContainsPoint returns BOOL_TRUE if rectangle r contains point p.
(There are 16-bit and 32-bit versions of this function.)

See also RECT_16IsEmpty, RECT_32IsEmpty.

SetOriExtXY

Sets all Origin/Extent coordinates.

void RECT16_SetOriExtXY(Rect16Ptr r, Int16 orix, Int16 oriy, Int16 extx, Int16 exty);

void RECT32_SetOriExtXY(Rect32Ptr r, Int32 orix, Int32 oriy, Int32 extx, Int32 exty);

RECT_SetOriExtXY sets the x, y coordinates and extent.

IncOriExtXY

Increments all Origin/Extent coordinates.

void RECT16_IncOriExtXY(Rect16Ptr r, Int16 orix, Int16 oriy, Int16 extx, Int16 exty);

void RECT32_IncOriExtXY(Rect32Ptr r, Int32 orix, Int32 oriy, Int32 extx, Int32 exty);

IsEmpty

Determines whether a point is empty.

BoolEnum EXT_IsEmpty (Point16Ptr point);

EXT_IsEmpty returns BOOL_TRUE if point is empty; otherwise,
BOOL_FALSE.
394 C Programmer’s Guide

Rect Functions
SetXY

Sets point coordinates.

void POINT16_SetXY(Point16Ptr p, Int16 xVal, Int16 yVal);

void POINT32_SetXY(Point32Ptr p, Int32 xVal, Int32 yVal);

Sets the X and Y coordinates of point `p' to `xVal' and `yVal' respectively.

IncXY

Specifies a new point location.

void POINT16_IncXY(Point16Ptr p, Int16 dx, Int16 dy);

void POINT32_IncXY(Point32Ptr p, Int32 dx, Int32 dy);

Increments the X and Y coordinates by `dx' and `dy' respectively.

SetByPoints

Sets the coordinates of a rectangle to the points specified.

void RECT16_SetByPoints(Rect16Ptr r, Point16CPtr beg, Point16CPtr end);

void RECT32_SetByPoints(Rect32Ptr r, Point32CPtr beg, Point32CPtr end);

RECT_SetByPoints sets the coordinates of rect with `beg' and `end' as
opposite corners.

IsEmpty

Determines whether a rectangle is empty.

BoolEnum RECT16_IsEmpty(Rect16CPtr r);

BoolEnum RECT32_IsEmpty(Rect32CPtr r);

Returns BOOL_TRUE if rectangle r is empty (i.e., its extent is (0,0);
otherwise, BOOL_FALSE.

Reset

Resets the coordinates of a rectangle to 0.

void RECT16_Reset(Rect16Ptr r);
void RECT32_Reset(Rect32Ptr r); */

Makes `r' empty by changing its extent to (0,0).

Rect Functions

Equals

Returns BOOL_TRUE if ‘r1’ and ‘r2’ are identical.

BoolEnum RECT16_Equals (Rect16CPtr r1, Rect16CPtr r2);

BoolEnum RECT32_Equals (Rect32CPtr r1, Rect32CPtr r2);

IncludesNonEmptyRect

Returns BOOL_TRUE if ‘r1’ is included in ‘r2’ (assuming ‘r1’ is not empty).
C Programmer’s Guide 395

Chapter Rect Class34
BoolEnum RECT16_IncludesNonEmptyRect (Rect16CPtr r2, Rect16CPtr r1);

BoolEnum RECT32_IncludesNonEmptyRect (Rect32CPtr r2, Rect32CPtr r1);

Copy

Copies a rectangle.

void RECT16_Copy (Rect16Ptr dst, Rect16CPtr src);

void RECT32_Copy (Rect32Ptr dst, Rect32CPtr src);

RECT_Copy copies the src rectangle to the dest rectangle.

CopyResetOri

Copies ‘src’ into ‘dst’, but then sets dst->Ori to (0,0).

void RECT16_CopyResetOri(Rect16Ptr dst, Rect16CPtr src);

void RECT32_CopyResetOri(Rect32Ptr dst, Rect32CPtr src);

Intersects

Determines whether two rectangles intersect.

BoolEnum RECT16_Intersects (Rect16CPtr r1, Rect16CPtr r2);

BoolEnum RECT32_Intersects (Rect32CPtr r1, Rect32CPtr r2);

Returns BOOL_TRUE if `r1' and `r2' intersect; otherwise, BOOL_FALSE.

See also

RECT_IsEmpty, RECT_IsEmpty32, RECT_IncludesRect.

IncludesRect

Determines whether a rectangle contains the rectangle specified.

BoolEnum RECT16_IncludesRect (Rect16CPtr r2, Rect16CPtr r1);

BoolEnum RECT32_IncludesRect (Rect32CPtr r2, Rect32CPtr r1);

Returns BOOL_TRUE if `r1' is included in `r2' (`r1' can be empty).

Union

Determines the union of two rectangles.

void RECT16_Union (Rect16Ptr dst, Rect16CPtr src);

void RECT32_Union (Rect32Ptr dst, Rect32CPtr src); */

Sets `dst' to the union of `dst' and `src'.

Intersection

void RECT16_Intersection (Rect16Ptr dst, Rect16CPtr src);

void RECT32_Intersection (Rect32Ptr dst, Rect32CPtr src);

Sets ‘dst’ to the intersection of ‘dst’ and ‘src’.

MakeFit

Repositions a rectangle so that it is contained within the rectangle specified.
396 C Programmer’s Guide

Rectangles Defined by Origin and Extent
void RECT16_MakeFit (Rect16Ptr in, Rect16CPtr out);

void RECT32_MakeFit (Rect32Ptr in, Rect32CPtr out);

MakeFit repositions in so that it is contained within out.

MoveInside

Moves one rectangle inside another.

void RECT16_MoveInside (Rect16Ptr in, Rect16CPtr out);

void RECT32_MoveInside (Rect32Ptr in, Rect32CPtr out);

MoveInside moves rect so that it is inside outrect.

See also

 RECT_ContainsPoint, RECT_IncludesRect, RECT_MakeFit.

IsValid

Determines whether a rectangle has valid coordinates.

BoolEnum RECT16_IsValid(Rect16Ptr r);

BoolEnum RECT32_IsValid(Rect32Ptr r);

IsValid determines whether a rectangle r has valid coordinates.

MakeValid

Changes the coordinates of the rectangle specified to make them valid.

void RECT16_MakeValid(Rect16Ptr r);

void RECT32_MakeValid(Rect32Ptr r);

This function makes the rect passed a valid rectangle. This means that if
either ext coordinate is zero, it changed to 1 and if either ext coordinate is
negative it is subtracted from the origin and then readjusted.

See also

 RECT_IsValid

Rectangles Defined by Origin and Extent

Get...

Int16 RECT16_GetOriX(Rect16CPtr r);

Int16 RECT16_GetOriY(Rect16CPtr r);

Int16 RECT16_GetExtX(Rect16CPtr r);

Int16 RECT16_GetExtY(Rect16CPtr r);

Int32 RECT32_GetOriX(Rect32CPtr r);

Int32 RECT32_GetOriY(Rect32CPtr r);

Int32 RECT32_GetExtX(Rect32CPtr r);

Int32 RECT32_GetExtY(Rect32CPtr r);

Gets one Origin/Extent coordinate.
C Programmer’s Guide 397

Chapter Rect Class34
Set...

void RECT16_SetOriX(Rect16Ptr r, Int16 val);

void RECT16_SetOriY(Rect16Ptr r, Int16 val);

void RECT16_SetExtX(Rect16Ptr r, Int16 val);

void RECT16_SetExtY(Rect16Ptr r, Int16 val);

void RECT32_SetOriX(Rect32Ptr r, Int32 val);

void RECT32_SetOriY(Rect32Ptr r, Int32 val);

void RECT32_SetExtX(Rect32Ptr r, Int32 val);

void RECT32_SetExtY(Rect32Ptr r, Int32 val);

Sets one Origin/Extent coordinate.

Rectangles Defined by Beginning and End

Get...

Int16 RECT16_GetBegX(Rect16CPtr r);

Int16 RECT16_GetBegY(Rect16CPtr r);

Int16 RECT16_GetEndX(Rect16CPtr r);

Int16 RECT16_GetEndY(Rect16CPtr r);

Int32 RECT32_GetBegX(Rect32CPtr r);

Int32 RECT32_GetBegY(Rect32CPtr r);

Int32 RECT32_GetEndX(Rect32CPtr r);

Int32 RECT32_GetEndY(Rect32CPtr r);

Gets one Begin/End coordinate.

Set...

void RECT16_SetBegX(Rect16Ptr r, Int16 val);

void RECT16_SetBegY(Rect16Ptr r, Int16 val);

void RECT16_SetEndX(Rect16Ptr r, Int16 val);

void RECT16_SetEndY(Rect16Ptr r, Int16 val);

void RECT32_SetBegX(Rect32Ptr r, Int32 val);

void RECT32_SetBegY(Rect32Ptr r, Int32 val);

void RECT32_SetEndX(Rect32Ptr r, Int32 val);

void RECT32_SetEndY(Rect32Ptr r, Int32 val);

Sets one Begin/End coordinate.
398 C Programmer’s Guide

Chapter
35 Res Class 35

The Res class implements the Open Interface resource manager. It defines
the core resource class from which all resource classes will be derived.

Technical Summary

Persistent objects

A resource is a potentially ‘persistent object’, which means an object which
can be loaded from and saved to an external file and thus ‘persist’ after an
application has terminated, in contrast with ‘volatile objects’ which exist
only (usually in RAM) during the execution of an application.

Some object oriented environments (Objective-C, Eiffel) provide an
‘automatic filer’ which can load and save whole graphs of objects. Our
resource manager is different from such filers for several reasons:
■ only resources can be saved and loaded, non-resource objects cannot be

saved because the resource manager does not have the
meta-information (description of fields) needed to save these objects.-
resources are named (except resources which are created through calls
to RES_Create instead of being loaded from a resource database).

■ only certain fields (persistent fields) of resources are saved and loaded.
The other fields (volatile fields) only exist at run-time.

■ the resource manager can only handle Direct Acyclic Graphs (DAG) of
objects. This is a limitation (we cannot save objects which refer to each
other) but it allows us to implement reference counting on resources so
that we can automatically free resources once they are not in used by
anyone.

Resources can be represented in three forms:
■ in RAM, at run time. Then we have a ‘resource object’.
■ on disk, in a text format. This is the ‘rc’ format.
■ on disk, in a binary format. This is the ‘dat’ format.

The ‘rc’ format is provided so that you can edit your resource definitions
directly with a text editor, keep them under a source control system and
port them to a different system (the rc files are portable, the dat files are not).
A resource can be ‘compiled’ from rc format (RC --> RAM). A resource can
be ‘output’ to an rc file (RAM --> RC).

The ‘dat’ format is the format which will be used to load and save resources
at run time. It is efficiently indexed so that resources can be loaded faster
than they would be from an rc file. A resource can be ‘loaded’ from a dat file
(DAT --> RAM). A resource can be ‘saved’ to a dat file (RAM --> DAT).

Responder objects

A resource is also an object to which notifications (or messages) can be sent
and which provides ways for programs to customize the response to these
C Programmer’s Guide 399

Chapter Res Class35
notifications. Whenever a program needs that kind of mechanism, it will
need to create instances of the Res class to have somebody to notify to.

Hierarchical Organization

Resources are organized hierarchically:

libraries --> modules --> resources --> subresources --> subsubresources ..

The organization of software in modules and libraries of modules is rather
conventional. Our resource organization parrallels this software
organization. The idea is that a code module may need some resources. It is
thus natural to group the resources by module. Every module will have its
own rc file (which plays the same role as the C source file for the module,
except that a module sometimes has several C source files associated with it
whereas we are limited to one rc file per module). The compilation of the rc
files of all the modules belonging to the same library produces a single dat
file (which plays the same role as the object library or shared library
produced after compilation of the C source files).

To summarize:
■ rc file: one per module.
■ dat file: one per library.

A given module can contain several resources. Some resources are ‘flat
objects’ and do not have subresources (String, Font, Cursor, ...), others have
subresources, i.e. windows have their widgets as subresources, and with
panels, we can get subsub...resources of any depth.

Resource naming

The naming of resources is based on the hierarchical organization. Every
module must be assigned a unique name. If you want to follow strictly our
naming conventions, the name should be less than 5 characters so that we
can build derived filenames (with pub.h suffix) of less than 8+3 characters
(the DOS limit).

Then, the name of top level resources (direct children of a module) has the
following format:

"Module.ResName"

where "Module" is the module name and "ResName" is the name of the
resource.

The naming of subresources is very straightforward:

"Module.ResName.SubResName.SubSubResName"

A priori, names can consist of any characters excluding ’.’. We nevertheless
recommend that you use only letters, numbers and underscores and that
you start your names by a letter because resource names are sometimes
used to generate procedure names and thus must conform with the
syntactic constraints on procedure names.

Object Oriented Organization

Resources are also organized in classes (see any good book on Object
Oriented Programming, Smalltalk Vol1 being probably the best
400 C Programmer’s Guide

Technical Summary
introduction to the subject). The classes themselves are organized
hierarchically, subclasses inheriting from their parent class. Our object
oriented scheme makes it simple to implement single inheritance but would
also allow multiple inheritance (actually used internally in one place). This
scheme will be fully documented later.

At the top level of this class hierarchy is the "Res" class from which all
resource classes will inherit. Quite a few classes (StrL, StrR, Font, Color,
Curs, ..., Wgt) inherit directly from Res. Most toolkit classes (TBut, TArea,
Sb, Panel, ...) inherit from Wgt. Complex widgets which scroll a document
(TEd, LBox, Brows, ...) inherit from the SArea class which itself inherits from
Panel.

It is very important to distinguish the hierarchy of resources (module -->
window --> panel --> widget) from the hierarchy of resource classes (res -->
wgt --> panel --> sarea --> lbox).

Attached Versus Detached Resources

Open Interface distinguishes two types of resources: - resources which
should be shared by all the objects referencing them.

For example, it is very interesting to have font or color resources which are
shared by all the widgets using them. Everytime we load a font to initialize
the Font field of a widget, we should load a shared font resource.
■ Resources which should not be shared. For example, windows should

not be shared. An application which allows to bring several instances of
the same window (i.e. a text processor in which you can edit several
files, each file in its own window) needs to load several instances of the
same window resource instead of sharing a single window.

If you load a resource as ‘attached’, the resource manager will keep track of
that resource and subsequent ‘load’ calls on the same resource name will
return the same resource pointer and increment the reference count on the
resource. The resource will be shared.

If you load a resource as ‘detached’, the resource manager will ‘detach’ the
resource and a new resource will be allocated on the next ‘load’ call. The
next ‘load’ call on the same resource name will return a different resource
pointer. The resource will not be shared.

Reference Counting

The reference count of a resource keeps track of how many times the
resource is shared (how many time it has been ‘loaded’). It is always 1 for
detached resources (except if they were attached before being detached with
is a rather dangerous operation) but will be >= 1 for shared attached
resources.

Most of the RES calls which return resource pointers might load resources.
All these calls set the reference count of the resource to 1 if the resource was
not loaded previously, otherwise they increment the reference count by one.
Once you do not need the resource pointer any more, you should call
RES_Release which will decrease the reference count and free the resource
once the reference count reaches 0.
C Programmer’s Guide 401

Chapter Res Class35
This is very similar to what you have to do with the memory manager.
Every time you allocate a new pointer, you should free it when you do not
need it any more.

With the resource manager, every resource pointer that you get through a
call to the Res API should be released with a call to RES_Release when it is
not needed any more. If every client of the resource manager follows that
policy, shared resources will be freed automatically when they are not used
by any client (because the resource manager maintains reference counts).

Constructing and Destructing a Resource

In C++, we want to provide our users with the following constructors:

myres = new MyRes;copy of the class template

myres = new MyRes(fullname)loading by name from the resource

myres = new MyRes(mod, res)file.

myres = new MyRes(fullname, rrtca)same as above with

myres = new MyRes(mod, res, rrtca)runtime info for the sub
widgets.

We also need to set things up so that the resource manager can properly
create and delete objects in the Res subclasses. To achieve this, we record a
"New" and a "Delete" proc in the RClas structure. In the body of these procs,
we create and delete the objects with the C++ new and delete operators, so
that they are always properly constructed. But we need an additional
constructor because we need to pass some information that was prepared
by the resource manager through the New proc (the default constructor
would clone the template which is not what we want). The default
constructor needs to be implemented in a special way. It must pass the
current RClas info to the Res level so that we know what template to use to
initialize the persistent fields.

We have two different cases:

When we pass the name(s) explicitely, the Res level does the lookup and
finds the persistent description. When we do not pass the name(s)
explicitely, we have to pass some information from which we can find the
persistent description.

Also, we already have "Construct" and "Destruct" methods defined for C
and attached to the RClas object.

The new strategy is the following:

Each class defines two constructors:

MyRes::MyRes(CStr mod, CStr res = NULL,
ResRunTimeClassArrayPtr rrtca = NULL)

MyRes::MyRes(RClasPtr, RClasCreateCPtr = NULL)

In C, we only allow heap allocation of resources and the resources will be
allocated by calls such as RES_Create, RES_Load, etc which are
implemented at the Res level.

In C++, we allow all types of allocation (heap, stack, member).
Programmers should use the C++ "new" operator to allocate on the heap but
they may also use routines such as RES_Create or NDRes::Load (use is
discouraged, though).
402 C Programmer’s Guide

Technical Summary
The OI resource classes are registered through NDRClas::Register. They
MUST provide a New and a Delete method (CHANGE). The Construct and
Destruct RClas methods will not be used any more for OI classes.

Customers may still register C classes with Construct and Destruct methods
but in this case their classes will be "C" only and their C constructors and
destructors will be called by the default New a Delete RClas methods.

When we compile the OI classes in C++, the constructors are set up so that
everything is constructed through the standard C++ constructor cascade.

When we compile the OI classes in C, the C version of the New procedure
takes care of the construction. It first calls the parent class’ New method and
then performs its class specific construction.

We also need a special hack to handle stack and member allocation. The
resource manager automatically deletes resources when they are not
referenced any more (windows being terminated and their widgets). This
did not raise any special problem as long as the resources were always
allocated on the heap. But now that we allow stack and member allocation
in C++, we have to let the resource manager know that certain resources
should be destructed but not deleted.

To achieve this, we override the C++ new and delete operators so that we
can easily find out whether an object has been allocated on the stack or on
the heap. The overridden delete operator does not free the pointer if the
object was not allocated on the heap.

We should not assume that resources are filled with zeros after allocation.
We cannot either zero them out with NDPtr::Clear because we would erase
virtual function pointers. So, we must explicitely initialize all the fields in
every class’ constructor.

Scope of the documented API

For now, the supported and documented API has been limited to routines
which load resources and query the resource manager. We have voluntarily
excluded routines which modify the organization of resources (renaming
resources, deleting resources, listing resources...). We are very interested to
know what your needs are (if any) before disclosing other aspects of this
API. Also, you will be able to absorb rather quickly this relatively simple
API instead of being lost in a much larger API, most of which would not be
relevant to most applications.

Since Res is the parent of all resources, all resources possess the following
fields.

Field Description

ResClass Pointer to the RClasRec structure, which describes the class
to which the resource belongs.

ResInitialized Indicates whether volatile fields have been initialized.

ClientData 32 bit storage for any data or pointer you wish to associate
with the resource.

NfyData 32 bit storage for information used by some notifications.

Notify Pointer to the class-specific notification procedure.
C Programmer’s Guide 403

Chapter Res Class35
See Also:

 RLib, Wgt classes.

Creating and Disposing

Create

Creates a resource of class `rclas'.

ResPtr RES_Create(RClasPtr rclas);

Persistent fields are initialized with the values defined by the template for
the class. The resource does not have a name and is thus detached. The
reference count is set to 1.

Clone

ResPtr RES_Clone(ResCPtr sourceRes, BoolEnum deep);

Creates a resource with all the persistent fields copied from ‘sourceRes’. The
new resource is created detached. To load multiple instances of the same
resource from the resource file, you should use RES_LoadDetach instead of
RES_Clone on an existing resource.

The second argument is a boolean which indicates whether we want a deep
copy (cloning all descendant resources too) or not.

Release

Deallocates persistent resource fields.

void RES_Release(ResPtr res);

RES_Release deallocates the persistent fields of resource, being careful
about shared fields. It also decrements the reference count of the resource.
If the reference count reaches 0, the volatile fields are freed (by sending a
RES_NFYEND notification) if the ResInitialized flag was set. Then the
persistent fields and the resource structure itself are freed. RES_Release will
also be called on all children of the resource and on all resources referenced
by persistent fields of the resource.

This call frees the resource in RAM. It does not affect the .dat file.

See also

RES_Create, RES_Clone

Class

Returns a pointer to the Res class.

RClasPtr RES_Class (void);

RES_Class() returns the pointer to the Res class, the root of the hierarchy of
resource classes. This call is useful to initialize the ParentClass field of a new
resource class.
404 C Programmer’s Guide

Saving To a Resource Database
See also

RClasRec

Use

Increments the reference count of a resource.

void RES_Use(ResPtr res);

If you are storing pointers to shared resources in objects which have a
relatively long life-span, you should increase the reference count of the
shared resources to ensure that these resources will not be released before
the objects which reference them. Then, you should call RES_Release on
these resources when you release the objects which reference them.

Note: The calls which "load" resources increment the reference count, so,
usually, you will not need to call RES_Use after such calls.

Saving To a Resource Database

SaveDat

Saves attached resources to library database (.DAT) file.

void RES_SaveDat (ResPtr resource);

 RES_SaveDat saves resource to a library database (.DAT) file.

Output to a Text Resource File

FilenameOutputRc

Output to text resource file.

void RES_FilenameOutputRc (ResPtr res, CStr filename);

 RES_FilenameOutputRc outputs resource to the text file specified by
filename.

Resource Library Initialization

You can use Open Interface to build non window based applications
(terminal oriented or batch mode).

You will get the resource manager (to load text messages), the error
handling mechanism and all the ‘Core’ level utilities (i.e. Str, VStr, Array).

If your application does not use any windows you can initialize it with
RES_LibInit instead of the usual RES_LibInit from the GW module. This
will give you a fasterstartup time and will also greatly reduce the size of the
executable if you are statically linked with the Open Interface libraries (you
only need to link with ndres and ndcore).

Note: You should not use the APP_Xxx calls in case you initialize at the Res
level instead of the Gw level. Also, applications which only use the Res level
C Programmer’s Guide 405

Chapter Res Class35
are not portable to environments such as Macintosh and MS/Windows
where applications must be window based.

LibInstall

Installs the Res library, making all Open Interface libraries available, except
Genwin.

void RES_LibInstall (void);

RES_LibInstall installs the Res library.

See also

RES_LibInit, RES_LibLoadInit, GW_LibInstall, TKIT_LibInstall

LibLoadInit

Loads and initializes the Res library, making all Open Interface libraries
available, except Genwin.

void RES_LibLoadInit (void);

RES_LibLoadInit loads and initializes the Res library.

See also

RES_LibInstall, RES_LibInit, GW_LibLoadInit, TKIT_LibLoadInit

LibExit

Exits the Res library, making all Open Interface libraries unavailable.

void RES_LibExit (void);

RES_LibExit exits the RES library.

See also RES_LibInit, RES_LibInstall, RES_LibLoadInit, GW_LibExit,
TKIT_LibExit

LibInit

Installs, loads, and initializes the Res library, making all Open Interface
libraries available, except Genwin.

void RES_LibInit (void);

RES_LibInit initializes the Res library.

If your application does not use any windows, you can initialize it with
RES_LibInit instead of the usual GW_LibInit. This will give you a faster
startup time and will also greatly reduce the size of the executable if you are
statically linked with the Open Interface libraries (you only need to link
with ndres and ndcore).

You should not use the APP_xxx calls in case you initialize at the Res level
instead of the GW level. Also, applications which only use the Res level are
not portable to environments such as Macintosh and MS/Windows where
applications must be window based.

See also

RES_LibInstall, RES_LibLoadInit, RES_LibExit, GW_LibInit, TKIT_LibInit
406 C Programmer’s Guide

Loading and Finding Resources
Loading and Finding Resources

Resources may be stored persistently. Standard applications will use
resources stored in resource databases, by loading them, and then
customizing their behavior through the responding mechanism.

Normally, you will load all resources except windows and menus through
RES_LoadInit. This way, resources such as fonts, colors, cursors, ... will be
shared by all the clients which use them.

Windows should be loaded through the WIN_LoadInit and menus through
MENU_LoadInit.

Usually, you do not load the widgets of a window yourself, they are loaded
automatically when you load the window through the corresponding
WIN_LoadInit or WIN_Load call.

All these routines signal a failure in case the resource cannot be loaded or
does not exist. They NEVER return NULL. These routines increment the
reference count of the resource being loaded.

LoadByFullName

Loads a resource using a single parameter.

ResPtr RES_LoadByFullName (CStr modres);

RES_LoadByFullName loads and returns the resource identified by modres,
which is a string name in the format:

ClassName.ResName

where ResName is the name of a resource and ClassName is the name of
the class that contains ResName.

RES_LoadByFullName loads the resource without initializing it. Therefore,
you should ordinarily use RES_LoadInit or RES_LoadInitDetach rather
than RES_LoadByFullName to load your applications.

RES_LoadByFullName never returns NULL; instead, it signals a failure if
resource does not exist or cannot be loaded

See also RES_Load, RES_LoadInit, RES_LoadInitDetach,
RES_FindByFullName

Load

Loads a resource using two parameters.

ResPtr RES_Load (CStr module, CStr resource);

RES_Load loads and returns resource, which is resource contained in class.

RES_Load loads an attached resource given its module name `modName'
and its resource name `resName' (relative to the module name).

Calling RES_Load twice will return the SAME resource pointer.

RES_LoadByFullName and RES_Load do not initialize the volatile fields of
the resource. These calls can be used instead of the LoadInit calls in the
following situations:
■ If you want the RES_NfyInit notification to be processed by a

notification procedure other than the default class notification
C Programmer’s Guide 407

Chapter Res Class35
procedure. The problem with RES_LoadInit is that it does not give you
a chance to install your own notification procedure in the resource or
one of its children before sending the RES_NfyInit notification. If you
really want to process RES_NfyInit in a special way (i.e. for a custom
widget), you should first load the resource, then install the notification
procedure(s) and then initialize it with RES_SendNfyInit. Actually, if
you want to perform this type of initialization on a window, you should
use the corresponding NDWin::Load and NDWin::Init (see winpub.h).

■ If your application does not need to initialize the volatile fields (this is
the case of rescomp but won’t be the case of many other applications).

See also

RES_Load, RES_LoadInit, RES_LoadInitDetach

LoadDetach

Loads a detached resource.

ResPtr RES_LoadDetach (CStr module, CStr resource);

The RES_LoadDetach function loads and returns a detached resource. If the
resource has already been loaded attached, the new resource being loaded
in Detach mode is cloned from the attached resource in memory rather and
is not reloaded from the .dat file.

This function never returns NULL; it signals a failure or a non-existent
resource or a resource that cannot be loaded.

See also

RES_LoadInitDetach, RES_Load, RES_LoadInit, RES_Load,
RES_FindByFullName, WIN_LoadInit, MENU_LoadInit

LoadInit

Loads and initializes an attached resource.

ResPtr RES_LoadInit (CStr module, CStr resource);

The RES_LoadInit function loads and initializes the attached resource
specified by class and resource. It returns the resource pointer. If the
resource does not exist, a failure will be signalled without terminating the
application.

Calling RES_LoadInit twice returns the same resource pointer, so use this
function for resources that will need to accessed several times and shared
among client applications, for example: fonts, colors, cursors.
(WIN_LoadInit, by contrast, returns a separately allocated pointer to
resource, so is less suitable for shared resources.)

This routine does not return NULL. It signals a failure if the resource does
not exist or cannot be loaded.

See also

RES_LoadInitDetach, RES_FindByFullName, RES_Load, RES_LoadDetach,
WIN_LoadInit, MENU_LoadInit.
408 C Programmer’s Guide

Loading and Finding Resources
LoadInitDetach

Loads and initializes a detached resource.

ResPtr RES_LoadInitDetach (CStr module, CStr resource);

The RES_LoadInitDetach function loads, initializes, and returns a detached
resource.

Each time you call RES_LoadInitDetach, a new resource pointer is allocated.
Therefore, the function is appropriate for resources that are not shared, for
example: windows and popups. Windows and popups are usually loaded
through WIN_LoadInit and NDMnu::LoadInit, which both call
RES_LoadInitDetach

This function never returns NULL; it signals a failure for a non-existent
resource or a resource that cannot be loaded.

See also

RES_LoadDetach, RES_Load, RES_LoadInit, RES_Load,
RES_FindByFullName, WIN_LoadInit, MENU_LoadInit

LoadChildren

Loads all of the children resources for a resource.

void RES_LoadChildren (ResPtr resource);

The RES_LoadChildren loads all of the children resources of the specified
resource.

See also

RES_GetNumChildren, RES_GetNthChild

FindByFullName

Loads the attached resource specified, returning NULL if the resource does
not exist.

ResPtr RES_FindByFullName (CStr Mod.Res);

RES_FindByFullName loads and returns the resource identified by
Mod.Res, which is a string name in the format:

ClassName.ResName

where ResName is the name of a resource and ClassName is the name of
the class that contains ResName.

Like RES_Load, this function loads a resource without initializing it. Unlike
RES_Load, it returns NULL if the resource does not exist.

Use this function to check whether a resource exists, not as a standard
means of loading resources.

See also

RES_Load
C Programmer’s Guide 409

Chapter Res Class35
Find

Loads a resource by class name and resource name, returning NULL if the
resource does not exist.

ResPtr RES_Find (CStr modname, CStr resname);

RES_Find loads the resource specified by modname and resname, returning
NULL if the resource specified does not exist.

See also

RES_Load

Accessing the Name of a Resource

IsNamed

Determines whether a resource has a name or not.

BoolEnum RES_IsNamed (ResCPtr res);

RES_IsNamed returns BOOL_TRUE if the resource has a name; otherwise,
it returns BOOL_FALSE. If a resource was created dynamically with
RES_Create, it will not have a name.

See also

RES_GetName, RES_QueryFullName

GetName

Returns the name of a resource as a NULL-terminated string.

CStr RES_GetName (ResCPtr res);

RES_GetName returns the name of res as a NULL-terminated string. If the
resource is unnamed, "" is returned.

The name of resource is the name you assigned to it in Open Editor or, if you
use RES_Create to create the widget, a default name.

See also

RES_QueryFullName, RES_Create

QueryFullName

Determines the full name of a resource.

void RES_QueryFullName (ResCPtr res, Str name, StrIVal length);

RES_QueryFullName queries for the full name of res, and the result is
received in name, which is a buffer whose size is specified by length.

The full name of resource is a Str that follows the format:

"ClassName.ParentRes.Res"

where ClassName is the name of the class in which the resource is used,
ParentRes is the name of the resource containing the widget (for example, a
410 C Programmer’s Guide

Accessing Client Data of a Resource
window resource), and Res is the name you have given to the resource. For
example: Writer.Win.TbutOk.

The fullname appears to the right of Name: in the resource’s entry in a RC
file.

Accessing Client Data of a Resource

A user defined ClientData can be attached to each resource. This can be used
to store application related information with each resource. Open Interface
does not use the ClientData for internal purposes.

SetClientData

Sets the specified client data of a resource.

void RES_SetClientData (ResPtr res, ClientPtr data);

RES_SetClientData sets the data passed into the resource.

GetClientData

Returns the client data of a resource.

ClientPtr RES_GetClientData (ResCPtr res);

RES_GetClientData retrieves the client data for the resource specified.

Accessing Children of a Resource

GetNumChildren

Returns the total number of child resources belonging to a resource.

ArrayIVal RES_GetNumChildren (ResCPtr res);

The RES_GetNumChildren function returns the total number of children
belonging to res as an integer.

See also

RES_GetNthChild, RES_LoadChildren

GetNthChild

Returns the child resource specified for a resource.

ResPtr RES_GetNthChild (ResPtr resource, ArrayIVal child);

The RES_GetNthChild returns a pointer to the child resource specified by its
number.

Note that the children of the resource must already be loaded.
RES_GetNthChild does not increment the reference count of the child
resource returned.

See also

RES_GetNumChildren, RES_LoadChildren
C Programmer’s Guide 411

Chapter Res Class35
Accessing the Class of A Resource

GetClass

Returns the class of the resource specified.

RClasCPtr RES_GetClass (ResCPtr class);

RES_GetClass returns the class of the resource specified. The same pointer
is returned if called on different instances of the same class.

See also

 RCLAS_GetFirst, RCLAS_GetNext, RCLAS_FindByName

InheritsFrom

Determines whether one class inherits from another class.

BoolEnum RES_InheritsFrom (ResCPtr childclass, RClasCPtr parentclass);

RES_InheritsFrom returns BOOL_TRUE if childclass inherits (directly or
indirectly) from parentclass.

See also

RES_CheckClass, RCLAS_IsSubClassOf

Resource States

IsInitialized

Determines whether a resource has been initialized already.

BoolEnum RES_IsInitialized (ResCPtr res);

RES_IsInitialized returns BOOL_TRUE if the resource has been initialized;
otherwise, it returns BOOL_FALSE.

Resource Notifications

Nfy…

Defines class notification codes.

Notification codes for classes. Similar enumerated types exist for all classes
in the form SubResNfyEnum, where SubRes is the short name of a
particular class: for example, TButNfyEnum for the TBut class.

These notifications are described below:

Identifier When Sent Action
RES_NFYINIT Persistent fields have

been initialized.
Initialize volatile fields of resource.
412 C Programmer’s Guide

Resource Notifications
Whenever a resource is initialized, reset, or freed, the resource manager
calls the notification procedure associated with the resource, passing the
resource as the first argument and the appropriate ResNfyEnum code as the
second argument. Usually, the notification procedure responds by calling
the default notification procedure of the class to which the resource belongs
(ClassName::DefNfy) with the same two arguments.

The default notification procedure initializes and allocates the volatile fields
of the resource when called with RES_NFYINIT and frees the allocated
fields on receipt of a RES_NFYEND. RES_NFYRESET is usually sent when
the persistent fields have been modified, in which case the volatile fields
need to be deallocated and reallocated according to the current state of the
persistent fields.

RES_NFYEND deallocates the volatile fields of a resource that you allocated
with RES_NFYINIT, and if the value is not overwritten by an new
RES_NFYINIT, you should RESET the volatile fields to NULL.

The notification codes of a subclass are always a superset of the codes
defined by its parent class, as part of the class’s inheritance mechanism.
Thus, PanelNfyEnum inherits codes from WgtNfyEnum, which in turn
inherits codes from ResNfyEnum. Since Res is the parent of all resource
classes, all resource classes inherit the ResNfyEnum notification codes.

See also RES_NFYINHERIT, RES_SendNfyInit, PANEL_SetSubNfyProc

ResNfyProc

Pointer to a resource notification procedure.

typedef void (*ResNfyProc) L((ResPtr, ResNfyEnum));

Pointer to a resource notification procedure. The notification procedure
receives a subclass of ResPtr and a subclass of ResNfyEnum as arguments

See also RES_SetNfyProc, RES_GetNfyProc, RClasRec

DefNfy

Default notification handler for a resource class.

RES_NFYEND Resource is no longer
needed.

Deallocate volatile fields of resource that
you allocated with NFYINIT, and, if the
value is not overwritten by an new
NFYINIT, you should RESET the volatile
fields to NULL.

RES_NFYRESET Persistent fields have
been modified.

Reinitialize volatile fields, that is, deallocate
and reallocate them according to current
state of the persistent fields.

RES_NFYRESMGR Not documented yet.

RES_NFYCTRLDATA Not documented yet.

RES_NFYSETDATA Not documented yet.

RES_NFYGETDATA Not documented yet.

RES_NFYDESTRUCTED Sent just before the resource is destructed by
Open Interface

RES_NFYDEALLOCATE Sent when the resource is about to get
deallocated. You should remove any
existing reference to the resource. By
default, the resource is deallocated.
C Programmer’s Guide 413

Chapter Res Class35
void RES_DefNfy (ResPtr res, ResNfyEnum notif);

The RES_DefNfy procedure is the default notification handler for all
resource classes. All resource classes, as subclasses of Res, use the
RES_DefNfy default handler as part of their default response to their
notification codes. Class-specific default notification handlers are in the
form SubRES_DefNfy, where SubRes is the short name of the resource: for
example, NDLBox::DefNfy.

All resource notification routines should include a call to RES_DefNfy to
initialize notification codes the handler does not process itself.

See also RES_SendNfyInit

SetNfyProc

Sets a client notification routine for a resource.

void RES_SetNfyProc (ResPtr res, ResNfyProc nfyproc);

The RES_SetNfyProc macro overrides the default notification procedure
and installs nfyproc as the client notification routine for resource. The client
application typically performs this task immediately after loading and
initializing the resource.

See also RES_GetNfyProc, ResNfyProc

GetNfyProc

Returns the currently installed notification routine for a resource.

ResNfyProc RES_GetNfyProc (ResPtr res);

RES_GetNfyProc retrieves the previously installed default notification
procedure.

SetNfyHandler

Installs "proc" to process the "nfy" notification messages sent to "res". "proc"
will be called with the resource, the notification code "nfy" and the nfyData
corresponding to the notification ‘nfy’ as arguments.

"proc" will usually process the notification message. It can at any point
invoke the default behaviour for the class.

void RES_SetNfyHandler(ResPtr res, ResNfyEnum nfy, ResNfyHandlerProc proc);

 GetNfyHandlerProc

Returns the handler procedure installed for ‘res’ to process the ‘nfy’
message.

If no handler has previously been installed using
RES_SetNfyHandlerProc(), NULL is returned.

ResNfyHandlerProc RES_GetNfyHandlerProc(ResPtr res, ResNfyEnum nfy);

RemoveNfyHandler

Remove the handler installed to process the ‘nfy’ message to ‘res’.

Removing a handler at the instance level has for effect of letting the class
handler process the message.
414 C Programmer’s Guide

Sending Notifications
void RES_RemoveNfyHandler (ResPtr res, ResNfyEnum nfy);

SetNfyHandlerClientData

Associates ‘data’ with the call-back defined for the resource and the
notification ‘code’. ‘data’ can later be retrieved using
RES_GetNfyHandlerClientData if needed.

void RES_SetNfyHandlerClientData (ResPtr res, ResNfyEnum nfy, ClientPtr data);

GetNfyHandlerClientData

Returns the ClientData installed for ‘res’ to process the ‘nfy’ message.

ClientPtr RES_GetNfyHandlerClientData (ResPtr res, ResNfyEnum nfy);

See also RES_SetNfyProc, ResNfyProc

Sending Notifications

Sending versus Posting

Object Oriented system generally define two different ways of
communicating messages to objects. They either:
■ send the message synchronously, meaning that the responder code of

the object is activated and terminates the handling of the message
before the senders code actually returns from the ’send’ call (Send),

■ post the message asynchronously, meaning that the message is only put
at the receivers’ disposal before the senders code returns from the
’send’ call, with no guarantee that the receiver actually processed the
message.

The first method is far simpler to code and more efficient since it directly
translates into the activation of methods in the receivers object (function
calls).

At the Res level, Open Interface only provides synchronous sends. The Wgt
class (see wgtpub.h) offers a more sophisticated Post mechanism (Recal
notifications) which may be combined with other event mechanisms as
described in eventpub.h giving the program a lot of flexibility.

Synchronous notifications work the following way:
■ the sender makes a call to send a notification with or without data
■ the call will activate the notification procedure installed for the receiver

resource
■ the corresponding virtual member function gets activated (for instance,

sending RES_NFYINIT to a Res instance will activate the
corresponding NfyInit virtual method)

■ the function is reponsible for handling the notification, it may for
instance choose to activate the virtual member function installed at the
parent class’s level.

Sending A Notification With Data

In many cases, a single notification code cannot convey enough information
from the sender to the receiver. Open Interface provides another higher
C Programmer’s Guide 415

Chapter Res Class35
level call to send a notification to a resource with a program defined
ClientPtr that the receiver can query, and modify.

Typically, the sender will use a fragment of code like:

receiver->SendNfyData(nfy, data);
and the receiver, in its notification procedure will use:
 .../...
case nfy: {

ClientPtr data;
data = res->GetNfyData();

 < do something with it >
}
break;

 .../...

SendNfy

Ends a notification to the notification procedure of a resource.

void RES_SendNfy (ResPtr resource, ResNfyEnum notif);

RES_SendNfy notifies the clients of resource. This macro is usually called
indirectly through the individual NDClass::SendNfy routines, where Class
is the name of a resource class, for example,NDWin::SendNfy.

Ordinarily you will not use RES_SendNfy directly, unless you are creating
a custom widget. If so, you may call this routine to trap notifications.

LockedSendNfyData

Notifies resource clients and sends data specified.

void RES_LockedSendNfyData (ResPtr resource, ResNfyEnum notif, ClientPtr data);

RES_LockedSendNfyData notifies the clients of resource. This macro is
usually called indirectly through the individual CLASS_SendNfyData
routines, where CLASS is the name of a resource class, for example,
WIN_SendNfy.

Ordinarily you will not use RES_LockedSendNfyData directly, unless you
are creating a custom widget. If so, you may call this routine to trap
notifications.

See also

RES_SendNfyData, RES_GetNfyData, RES_SetNfyData

SendNfyData

Notifies resource clients and sends data specified.

void RES_SendNfyData (ResPtr resource, ResNfyEnum notif, ClientPtr data);

RES_SendNfyData notifies the clients of resource. This macro is usually
called indirectly through the individual CLASS::SendNfyData routines,
where CLASS is the name of a resource class, for example, WIN_SendNfy.

Ordinarily you will not use RES_SendNfyData directly, unless you are
creating a custom widget. If so, you may call this routine to trap
notifications.

See also

RES_LockedSendNfyData, RES_SetNfyData, RES_GetNfyData
416 C Programmer’s Guide

Sending Notifications
GetNfyData

Returns the notify data of a resource.

ClientPtr RES_GetNfyData (ResPtr res);

RES_GetNfyData retrieves the notify data for the resource specified.

SendNfyInit

Sends a RES_NFYINIT to the resource specified.

void RES_SendNfyInit (ResPtr res);

RES_SendNfyInit sends a RES_NFYINIT notification to the resource if it has
not already been initialized (the ResInitialized flag was not already set).
This macro is usually called indirectly through the individual
CLASS_SendNfyInit routines, where Class is the name of a resource class,
for example, WIN_SendNfyInit.

Ordinarily you will not use RES_SendNfyInit directly, unless you are
creating a custom widget. If so, you may call this macro to trap the
RES_NFYINIT notification to initialize the volatile fields after the persistent
fields have been initialized.

See also RES_SendNfyEnd, RES_SendNfyReset, RES_SendNfy

SendNfyEnd

Sends a RES_NFYEND to the resource specified.

void RES_SendNfyEnd (ResPtr res);

RES_SendNfyEnd sends a RES_NFYEND notification to the resource if it
has already been initialized (the ResInitialized flag was previously set).
This macro is usually called indirectly through the individual
CLASS::SendNfyEnd routines, where CLASS is the name of a resource class,
for example, NDWin::SendNfyEnd.

Ordinarily you will not use RES_SendNfyEnd directly, unless you are
creating a custom widget. If so, you may call this macro to trap the
RES_NFYEND notification to deallocate the volatile fields before destroying
or resetting the widget.

See also RES_SendNfyInit, RES_SendNfyReset, RES_SendNfy

SendNfyReset

Sends a RES_NFYRESET to the resource specified.

void RES_SendNfyReset (ResPtr res);

RES_SendNfyReset sends a RES_NFYRESET notification to the resource. In
case the resource has already been initialized (the ResInitialized flag was
already set), it sends a RES_NFYEND notification followed by a
RES_NFYINIT notification. This macro is usually called indirectly through
the individual CLASS_SendNfyReset routines, where Class is the name of a
resource class, for example, WIN_SendNfyReset.

Ordinarily you will not use RES_SendNfyReset directly, unless you are
creating a custom widget. If so, you may call this macro to trap the
RES_NFYRESET notification to update the volatile fields after the widget
received changes to its persistent fields.
C Programmer’s Guide 417

Chapter Res Class35
See also

RES_SendNfyEnd, RES_SendNfyInit, RES_SendNfy

Responding to a Notification

ClassDefNfy

Trigger the default notification procedure on an instance.

void RCLAS_ClassDefNfy (ResPtr res, ResNfyEnum code);

RES_ClassDefNfy activates the resource's class default response for `code'.
In general, an instance of a given class is going, in its notification procedure,
to directly customize the behaviour on some of the notifications but will in
general delegate the rest of the processing to the default notification
procedure defined for its class.

See also

RES_ParentClassDefNfy

ParentClassDefNfy

Trigger the parent default notification procedure on an instance.

void RCLAS_ProcessParentDefNfy (ResPtr res, ResNfyEnum code);

RES_ParentClassDefNfy first determines the parent class of res, and then
calls the default notification procedure installed in the parent class, with res
and code as arguments.

See also

 RES_ClassDefNfy

Control Data

SendCtrlNfyData

void RES_SendCtrlNfyData (ResPtr res, ResNfyEnum code, ResCtrlNfyPtr resctrlNfy);

Send a CtrlNfyData notification.

#define RES_CTRLNFYINHERIT(type)\
ResCtrlDataPtr CtrlData;\
C_SYMCAT2(type,Ptr)CtrlCaller;\
C_SYMCAT2(type,NfyEnum)CtrlMsg;
RES_CTRLNFYINHERIT(Res) };

Command Management

This section describes the default routing mechanism for commands. We
refer the reader to cmdpub.h for details on commands. The default
command routing mechanism used in Open Interface propagates command
objects through the GUI, and also to non-GUI objects (any kind of resource)
418 C Programmer’s Guide

Command Management
by means of notifications. The mechanisms described here concern (1) the
default command routing, and (2) the updating of command sources.

Command Routing

Issuing a command is done as follows: (1) the command source sends self
an "command issue" notification with a CmdPtr as NfyData. The answer to
this notification consists in choosing a suitable starting point "start" for the
command routing, and send a "command route" notification.

When receiving a "route" notification, most objects will submit first the
notification to their active component if any in the form of another "route"
notification; if the command is still not handled, they try to handle it by
sending self a "command" notification, then return.

GetNfyCmd

CmdPtr RES_GetNfyCmd(ResCPtr res);

Returns the CmdPtr associated to a command notification. This call can only
be invoked while processing one of the command related notifications.

General Purpose

IsCmdSource

BoolEnum RES_IsCmdSource(ResCPtr res);

Returns whether the resource has the RES_FLAGISCOMMANDSOURCE
flag set.

Command Sources

CmdSend

The following calls apply to resources that have the
RES_FLAGISCOMMANDSOURCE flag set.

startvoid RES_CmdSend(ResPtr res, ResPtr start, CmdCtlEnum ctl);

Start routing of the resource’s command at given ’start’ point. (start is sent
a the RES_NFYCOMMANDROUTE notification with ‘ctl’ as argument).

CmdIssue

void RES_CmdIssue(ResPtr res);

Issue the resource’s command for execution.

CmdUpdate

void RES_CmdUpdate(ResPtr res);

Issue the resource’s command as command query for self updating. This
call is the default answer to the RES_NFYUPDATEVIEW notification when
the resource has the RES_FLAGISCOMMANDSOURCE flag set.
C Programmer’s Guide 419

Chapter Res Class35
Handling Command Notifications

CmdTableHandle

void RES_CmdTableHandle(ResPtr res, CmdTablePtr table);

To be used upon RES_NfyCommand notifications fetches the command
object and searches the given command table, using the default
RES_TableHandle method.

Resource Scripting

In the current Open Interface implementation, installing a script in a
resource has as a side effect the fact that the installed notification procedure
is not activated.

ExecuteScript

BoolEnum RES_ExecuteScript(ResPtr res, ResNfyEnum code);

This function causes the script for the event ‘code’ to be executed, if such a
script is attached to the resource. It returns a boolean value indicating
whether or not such a script was executed. The purpose of this call is to
allow finer degree of control when mixing C and scripts for a resource than
is available by calling SCRPT_DefNfy(documented in the file scrptpub.h)
This is because this SCRPT_DefNfy will automatically call the resource’s
class notification procedure if there is no script to execute for the resource.

Error Handling Utilities

CheckClass

Provides a way for recovering from the specification of an invalid class.

void RES_CheckClass (ResPtr res, RClasCPtr class);

RES_CheckClass is a macro that verifies whether res belongs to class or
subclass. If not, a failure is signalled.

VERIFY

Provides a handler for recovering from the specification of an invalid class.

void RES_VERIFY (ResCPtr res, RClasCPtr class);

RES_VERIFY is a macro that verifies whether resource belongs to class or
subclass. If not, a failure is signalled.

This macro is the same as RES_CheckClass if DBG_ON is defined. This
macro is disabled if DBG_ON is not defined.
420 C Programmer’s Guide

Chapter
36 Rgn Class 36

The Rgn class implements Open Interface regions.

Technical Summary

A ‘region’ can represent any arbitrary bounded set of points on a 2-D plane.
This module is optimized for regions which can be represented as a small
number of disjoint rectangles.

This class implements regions and mathematical manipulations of regions.
A region can represent any arbitrary bounded set of points in a plane. This
module is optimized for regions which can be represented as a small
number of disjoint rectangles.

Inheritance Path

NDRegion is a subclass of the NDRes (resource) class; the region class
inherits the same characteristics defined for resources.

Res->Rgn

Related Classes

Related important include files are isetpub.h, rectpub.h, errpub.h.

See Also: Rect and Draw classes.

Enumerated Types

RgnPosEnum

Defines codes for the relative position of two regions after a comparison
operation.

RGN_POSINSIDE

RGN_POSCROSS

RgnPosEnum indicates the position of two regions that an operation is
performed on. If the second region is completely inside the first region,
RGN_POSINSIDE is indicated. If the intersection of the two regions is
completely empty, RGN_POSOUTSIDE is indicated. Finally, if neither
region is completely inside the other, RGN_POSCROSS is indicated.

See also

RGN_RectPos
C Programmer’s Guide 421

Chapter Rgn Class36
Empty Region

IsEmpty

Determines whether a region is empty.

BoolEnum RGN_IsEmpty (RegionCPtr region);

RGN_IsEmpty returns BOOL_TRUE if the region is empty; otherwise, it
returns BOOL_FALSE.

See also

RGN_IsEqual, RGN_IsPointInside

Reset

Resets a region to empty.

void RGN_Reset (RegionPtr region);

RGN_Reset resets region to an empty region.

See also

RGN_Clone, RGN_Translate, RGN_QueryBounds

Region Rectangular Bounds

QueryBounds

Determines the boundaries of a region.

void RGN_QueryBounds (RegionCPtr region, Rect16Ptr rectangle);

RGN_QueryBounds determines the geometry of the smallest rectangle that
encloses region. It then places the result in rectangle.

See also

RGN_Clone, RGN_Reset, RGN_Translate

Region Translation

Translate

Translates a region by the offset specified.

void RGN_Translate (RegionPtr region, Point16CPtr point);

RGN_Translate performs a mathematical translation of a region by adding
an offset. The translation adds the offset specified by point to the origin of
each rectangle in region.

See also RGN_Clone, RGN_Reset, RGN_QueryBounds
422 C Programmer’s Guide

Comparisons with other Regions
Comparisons with other Regions

IsEqual

Determines whether two regions are equal.

BoolEnum RGN_IsEqual (RegionCPtr region1, RegionCPtr region2);

RGN_IsEqual returns BOOL_TRUE if region1 and region2 are equal;
otherwise, it returns BOOL_FALSE.

See also

 RGN_IsEmpty, RGN_IsPointInside

RectPos

Returns a code indicating the position of a rectangle relative to a region.

RgnPosEnum RGN_RectPos (RegionCPtr region, Rect16CPtr rectangle);

RGN_RectPos returns the position of the region.

See also

RgnPosEnum

IsPointInside

Determines whether a point is inside a region.

BoolEnum RGN_IsPointInside (RegionCPtr region, Point16CPtr point);

RGN_IsPointInside returns BOOL_TRUE if the point is inside the region;
otherwise, it returns BOOL_FALSE.

See also

RGN_IsEqual, RGN_IsEmpty

Operations between Two Regions

RgnSet

Sets the coordinates of one region as specified by another.

void RGN_RgnSet (RegionPtr dest, RegionCPtr src);

RGN_RgnSet sets the coordinates of dest as specified by src. In other words,
it copies the coordinates of src to dest.

See also RGN_RgnIntersect, RGN_RgnUnion, RGN_RgnSubtract,
RGN_RgnXOr

RgnIntersect

Creates an intersection of two regions.
C Programmer’s Guide 423

Chapter Rgn Class36
void RGN_RgnIntersect (RegionPtr region1, RegionCPtr region2);

RGN_RgnIntersect creates the region representing the intersection of
region1 and region2 and places the result in region1.

See also

RGN_RgnSet, RGN_RgnUnion, RGN_RgnSubtract, RGN_RgnXOr

RgnUnion

Creates a union of two regions.

void RGN_RgnUnion (RegionPtr region1, RegionCPtr region2);

RGN_RgnUnion creates a union between region1 and region2 and places
the result in region1.

See also

RGN_RgnIntersect, RGN_RgnSet, RGN_RgnSubtract, RGN_RgnXOr

RgnSubtract

;Subtracts one region from another.

void RGN_RgnSubtract (RegionPtr region1, RegionCPtr region2);

RGN_RgnSubtract subtracts region2 from region1 and places the result in
region1.

See also

 RGN_RgnIntersect, RGN_RgnUnion, RGN_RgnSet, RGN_RgnXOr

RgnXOr

Performs an exclusive Or on two regions.

void RGN_RgnXOr (RegionPtr region1, RegionCPtr region2);

RGN_RgnXOr performs an exclusive Or on region1 and region2 and places
the result in region1.

See also

RGN_RgnIntersect, RGN_RgnUnion, RGN_RgnSubtract, RGN_RgnSet

Operations between a Region and a Rectangle

RectSet

Associates a region with a rectangle.

void RGN_RectSet (RegionPtr region, Rect16CPtr rectangle);

RGN_RectSet sets region to the coordinates in rectangle.

See also

RGN_RectIntersect, RGN_RectUnion, RGN_RectSubtract, RGN_RectXOr
424 C Programmer’s Guide

Regions Specified by a Polygon
RectIntersect

Creates an intersection of a region and a rectangle.

void RGN_RectIntersect (RegionPtr region, Rect16CPtr rectangle);

RGN_RectIntersect creates a new region that is the intersection of region
and rectangle. It places the result in region.

See also

RGN_RectSet, RGN_RectUnion, RGN_RectSubtract, RGN_RectXOr

RectUnion

Creates a union of a rectangle and a region.

void RGN_RectUnion (RegionPtr region, Rect16CPtr rectangle);

RGN_RectUnion creates a union between region and rectangle and places
the result in region.

See also

RGN_RectIntersect, RGN_RectSet, RGN_RectSubtract, RGN_RectXOr

RectSubtract

Subtracts a rectangle from a region.

void RGN_RectSubtract (RegionPtr region, Rect16CPtr rectangle);

RGN_RectSubtract subtracts rectangle from region and places the result in
region.

See also

RGN_RectIntersect, RGN_RectUnion, RGN_RectSet, RGN_RectXOr

RectXOr

Performs an exclusive Or between a region and a rectangle.

void RGN_RectXOr (RegionPtr region, Rect16CPtr rectangle);

RGN_RectXOr performs an exclusive Or on region and rectangle and places
the result in region.

See also

RGN_RectIntersect, RGN_RectUnion, RGN_RectSubtract, RGN_RectSet

Regions Specified by a Polygon

void RGN_Construct(RegionPtr region);

Constructs the region as a polygonal region.

’Points’ is an array of points describing the vertices of the polygon(relative
to a common origin, not to each other).

num’ is the number of vertices in the array (it must be > 0).
C Programmer’s Guide 425

Chapter Rgn Class36
’Winding’ is a boolean indicating whether we should use the windingrule
(BOOL_TRUE) or the odd-even rule (BOOL_FALSE) to determinewhether
a given point is inside or outside the polygon.

The resulting region contains exactly:
■ all the points in the edges, including the vertices themselves.
■ all the points in the subregions delimited by the edges if the subregion

is ‘inside’ the polygon according to the filling rule.

Performing an Action on Each Rectangle Component of a Region

A region can be decomposed into an union of disjoint rectangles. The
following API invokes a callback method for each of the rectangle
components of a region.

typedef PerfEnum (C_FAR * RgnPerfProc) (Rect16Ptr rect, ClientPtr data);

Method called for each rectangle component. ‘Rect’ is the current rectangle
coordinates. ‘Data’ is some client data passed to RGN_PropagateAction.

PropagateAction

PerfEnum RGN_PropagateAction(RegionPtr rgn, RgnPerfProc proc, ClientPtr clientdata);

Calls ‘proc’ for each rectangle component of the region ‘rgn’. ‘data’is some
client data which will be passed to ‘proc’ as an additional parameter. The
region is scanned top to bottom, left to right.
426 C Programmer’s Guide

Chapter
37 RLib Class 37

The RLib class implements Open Interface resource library object.

Technical Summary

A resource library object keeps track of the library name, the dat file name
and other attributes edited through the library editor in open editor.

It also keeps track of the file pointer and other I/O information needed to
access the dat file.

Scope of the documented API

For now, the supported and documented API has been limited to the
routines which open a dat file.

The RLib object currently maintains some information related to makefile
generation. The makefile generations scheme will be replaced in the future
by a more flexible and powerful scheme. At that time, we will document
more of the RLib API.

We are also interested in knowing what your needs are on that API.

Inheritance Path

NDRLib is a subclass of the NDRes (resource) class; the resource library
class inherits the same characteristics defined for resources.

NDRes->NDRLib

See Also:

Res, Wgt classes.

Accessing Libraries

Find

Returns a pointer to a library.

RLibPtr RLIB_Find(CStr lib);

Returns a pointer to the resource library with that name if it’s already
loaded, or NULL if it can’t find it. RLIB_GetLibName is the opposite API

GetLibName

Returns the name of a library.

CStr RLIB_GetLibName(RLibCPtr lib);

Returns the name of the library lib. This is the opposite of RLIB_Find.
C Programmer’s Guide 427

Chapter RLib Class37
GetFirst

Returns the first library in the list.

RLibPtr RLIB_GetFirst (void);

Returns the first library in the list of resource libraries already loaded.

GetNext

Returns the next library in the list.

RLibPtr RLIB_GetNext (RLibPtr lib);

Returns the next library after lib in the list of resource libraries already
loaded. Returns NULL if ‘lib’ was the last one.

Loading, Unloading, and Closing

These first 3 routines use the ND_PATH search path to locate the file in case
the file cannot be found in the current directory. They return a RLibPtr
pointer to the private RLib data structure that you can keep for later use
with other APIs. They return immediately if the library is already loaded.

RLIB_LoadLibFile is safer than RLIB_LoadFile because it will check that
libname matches the name stored in the dat file and you will get a failure if
the dat file is not the one you expected.

LoadEdit

Loads a library database file by full name in read-write mode and returns a
pointer to the library.

RLibPtr RLIB_LoadEdit (CStr libname, CStr filename);

RLIB_LoadEdit loads a libname in read-write mode and returns its pointer.
You should open your library with RLIB_LoadEdit (instead of
RLIB_LoadLibFile) if you intend to use RES_SaveDat.

See also

RES_SaveDat

LoadFile

Loads a library database file by full name and returns it.

RLibPtr RLIB_LoadFile (CStr fullname);

RLIB_LoadFile loads the library database file identified by fullname, then
returns a pointer to it.

See also

 RLIB_LoadLibFile

LoadLibFile

Loads a library.
428 C Programmer’s Guide

Loading, Unloading, and Closing
RLibPtr RLIB_LoadLibFile (CStr libname, CStr filename);

RLIB_LoadLibFile loads the library database file identified by fullname,
then returns a pointer to it.

Unload

Unloads library ‘lib’ from memory and closes the file.

void RLIB_Unload(RLibPtr lib);

This call is the "safe" version of RLIB_Dispose because all resources from lib
are first detached before the lib structure is deleted from memory. (You
must explicitely release each resource with RES_Release to free the memory
that it occupies)

Dispose

Unloads library ‘lib’ and all the resources it contains and closes the file.

void RLIB_Dispose(RLibPtr lib);

WARNING: THIS IS THE UNSAFE VERSION OF RLIB_Unload. You must
be sure that no resources from lib are being referenced by other resources in
memory (for instance if your library only contains windows and widgets,
and no icons or color resources used else where). RLIB_Dispose doesn’t
perform any checking before deleting the content of lib!

Open

Opens a file.

void RLIB_Open(RLibPtr lib);

Opens the file associated with ‘lib’.

Close

Closes a file.

void RLIB_Close(RLibPtr lib);

Closes the file associated with ‘lib’.
C Programmer’s Guide 429

Chapter RLib Class37
430 C Programmer’s Guide

Chapter
38 SBuf Class 38

The SBuf class is the base class for large string buffers.

Technical Summary

The SBuf class implements a string buffer which supports insertions and
deletions inside large strings with a reasonable performance level. The SBuf
class is implemented as a gap buffer which keeps track of a gap inside the
string. This allows insertions to be handled efficiently, especially at the
beginning of the string.

It is possible to handle multi-byte strings using SBuf::GetFwrd,
SBuf::GetBwrd, similar to their strpub.h equivalents.

Simple Queries

GetLen

Returns the length of the string buffer.

StrIVal SBUF_GetLen(SBufCPtr sbuf);

Returns the length in bytes of the string contained in sbuf (not including the
final zero).

See also

 SBUF_GetStr, SBUF_GetSubStr

GetStr

Returns the contents of the string buffer.

CStr SBUF_GetStr(SBufPtr sbuf);

Returns the string contained in the sbuf.

See also

SBUF_GetLen, SBUF_GetSubStr

GetSubStr

Return the string specified by index range.

CStr SBUF_GetSubStr(SBufPtr sbuf, StrIVal i1, StrIVal i2);

Returns the substring between index1 and index2 (index1 included, index2
not included), properly terminated by a zero.

See also

SBUF_GetStr, SBUF_GetLen
C Programmer’s Guide 431

Chapter SBuf Class38
Iteration

GetBwrd
GetFwrd

Return character code before of after index specified.

ChCode SBUF_GetFwrd(SBufCPtr sbuf, StrIVal i, StrIValPtr wp);

ChCode SBUF_GetBwrd(SBufCPtr sbuf, StrIVal i, StrIValPtr wp);

Returns the code of the character after or before index. If wp is not null, it
will be set to the width of the character which has been returned. When the
end of string is reached, 0 is returned and *wp is set to 0.

See also

SBUF_GetByte

GetByte

Byte SBUF_GetByte (SBufCPtr sbuf, StrIVal i);

Returns the byte at index specified. This is a low level call and it is
preferable to iterate with SBUF_GetFwrd and SBUF_GetBwrd rather than
with SBUF_GetByte.

See also

SBUF_GetFwrd, SBUF_GetBwrd

Miscellaneous Queries

CountToIndex

Convert character count to index.

StrIVal SBUF_CountToIndex (SBufCPtr sbuf, StrIVal n);

Converts between a character count and the corresponding offset in bytes in
the sbuf.

See also

SBUF_IndexToCount

IndextoCount

Convert byte offset to character count.

StrIVal SBUF_IndexToCount(SBufCPtr sbuf, StrIVal i);

Converts between a character count and the corresponding offset in bytes
index in the sbuf.

See also

SBUF_CountToIndex
432 C Programmer’s Guide

Changing Contents
Changing Contents

Set…

Replace the contents of the string buffer.

void SBUF_SetStrSub(SBufPtr sbuf, CStr str, StrIVal slen);

void SBUF_SetVStr(SBufPtr sbuf, VStrCPtr vstr);

void SBUF_SetSBuf(SBufPtr sbuf, SBufCPtr sbuf2);

Changes the contents of the sbuf with a copy of str, vstr or sbuf2.

See also

SBUF_Clear, SBUF_Insert

Clear

Clear context of string buffer specified.

void SBUF_Clear(SBufPtr sbuf);

Resets the contents of the sbuf.

See also

 SBUF_Set, SBUF_Insert

Insert…

Insert character, string, variable string or string buffer at index specified.

StrIVal SBUF_InsertChar(SBufPtr sbuf, StrIVal i1, ChCode chcode);

StrIVal SBUF_InsertStr(SBufPtr sbuf, StrIVal i1, CStr str);

StrIVal SBUF_InsertStrSub(SBufPtr sbuf, StrIVal i1, CStr str, StrIVal slen);

StrIVal SBUF_InsertVStr(SBufPtr sbuf, StrIVal i1, VStrCPtr vstr);

StrIVa SBUF_InsertSBuf(SBufPtr sbuf, StrIVal i1, SBufCPtr sbuf2);

Inserts ch, str, vstr or sbuf into the sbuf at index1. returns the index at the
end of the inserted string.

See also

SBUF_Clear, SBUF_Set, SBUF_Append

Append…

Append string, variable string or string buffer.

void SBUF_AppendChar(SBufPtr sbuf, ChCode chcode);

void SBUF_AppendStr(SBufPtr sbuf, CStr str);

void SBUF_AppendStrSub(SBufPtr sbuf, CStr str, StrIVal slen);

void SBUF_AppendVStr(SBufPtr sbuf, VStrCPtr vstr);

void SBUF_AppendSBuf(SBufPtr sbuf, SBufCPtr sbuf2);

Appends str, vstr or sbuf2 to the end of the sbuf.
C Programmer’s Guide 433

Chapter SBuf Class38
RemoveRange

Remove range of characters specified.

void SBUF_RemoveRange(SBufPtr sbuf, StrIVal i1, StrIVal i2);

Removes the range of characters between i1 and i2 (i1 included, i2 not
included). i1 and i2 should verify: i1 < i2.

See also

SBUF_RemoveChar

ReplaceChar

Replace string character.

StrIVal SBUF_ReplaceChar (SBufPtr sbuf, StrIVal index1, ChCode ch);

Replaces character at index1 by ch. Returns the index after the inserted
character.

See also

SBUF_RemoveChar, SBUF_RemoveRange

Truncate

Truncate string at index specified.

void SBUF_Truncate(SBufPtr sbuf, StrIVal index);

Truncates sbuf at index.

See also

 SBUF_Clear, SBUF_Set, SBUF_Append

RemoveChar

Remove character at index specified.

void SBUF_RemoveChar (SBufPtr sbuf, StrIVal i1);

Removes the character at index i.

See also

SBUF_RemoveRange

Case Conversion

UpCase…

Convert string to upper case.

void SBUF_UpCase (SBufPtr sbuf);

void SBUF_UpCaseSub (SBufPtr sbuf, StrIVal i1, StrIVal i2);

These routines perform upper case conversion on the specified range of
characters.
434 C Programmer’s Guide

Matching
See also

SBUF_DownCase...

DownCase…

Convert string to lower case.

void SBUF_DownCase (SBufPtr sbuf);

void SBUF_DownCaseSub (SBufPtr sbuf, StrIVal i1, StrIVal i2);

These routines perform lower case conversion on the specified range of
characters.

See also

 SBUF_UpCase...

Matching

MatchesI…

Returns whether a string match is found with case specified.

BoolEnum SBUF_MatchesIChar (SBufPtr sbuf, StrIVal i, ChCode ch, BoolEnum icase,
StrIValPtr endp);

BoolEnum SBUF_MatchesIStr (SBufPtr sbuf, StrIVal i, CStr str, BoolEnum icase,
StrIValPtr endp);

BoolEnum SBUF_MatchesIStrSub(SBufPtr sbuf, StrIVal i, CStr str, StrIVal slen,
BoolEnum icase, StrIValPtr endp);

BoolEnum SBUF_MatchesISBuf (SBufPtr sbuf, StrIVal i, SBufPtr sbuf2, BoolEnum icase,
StrIValPtr endp);

Returns a boolean indicating whether the substring starting at index
matches the ch, str, or sbuf2 argument. If icase is BOOL_TRUE, the
matching is case independent. If endp is not NULL, it will be set to the index
of the end of the match (even if the match is incomplete).

See also

SBUF_Matches..., SBUF_IMatches...

Matches…

Returns whether a case sensitive string match is found.

BoolEnum SBUF_MatchesChar(SBufPtr sbuf, StrIVal i, ChCode ch, StrIValPtr endp);

BoolEnum SBUF_MatchesStr(SBufPtr sbuf, StrIVal i, CStr str, StrIValPtr endp);

BoolEnum SBUF_MatchesStrSub(SBufPtr sbuf, StrIVal i, CStr str, StrIVal slen,
StrIValPtr endp);

BoolEnum SBUF_MatchesSBuf(SBufPtr sbuf, StrIVal i, SBufPtr sbuf2, StrIValPtr endp);

Returns a boolean indicating whether the substring starting at index
matches the ch, str, or sbuf2 argument. The string comparison is case
sensitive. If endp is not NULL, it will be set to the index of the end of the
match (even if the match is incomplete).
C Programmer’s Guide 435

Chapter SBuf Class38
These functions are the same as SBUF_IMatches, with icase set to
BOOL_FALSE.

See also

SBUF_MatchesI..., SBUF_IMatches...

IMatches…

Returns whether a case insensitive string match is found.

BoolEnum SBUF_IMatchesChar(SBufPtr sbuf, StrIVal i, ChCode ch, StrIValPtr endp);

BoolEnum SBUF_IMatchesStr(SBufPtr sbuf, StrIVal i, CStr str, StrIValPtr endp);

BoolEnum SBUF_IMatchesStrSub(SBufPtr sbuf, StrIVal i, CStr str, StrIVal slen,
StrIValPtr endp);

BoolEnum SBUF_IMatchesSBuf(SBufPtr sbuf, StrIVal i, SBufPtr sbuf2, StrIValPtr endp);

Returns a boolean indicating whether the substring starting at index
matches the ch, str, or sbuf2 argument. The string comparison is case
sensitive. If endp is not NULL, it will be set to the index of the end of the
match (even if the match is incomplete).

These functions are the same as SBUF_IMatches, with icase set to
BOOL_TRUE.

See also

SBUF_MatchesI..., SBUF_Matches...
436 C Programmer’s Guide

Chapter
39 Scrpt Class 39

This class implements the Open Interface script language.

Technical Summary

This class implements the Open Interface script language. There are two
types of script which can be developed with Elements Environment 2.0.

The first type of script can be attached to any Open Interface resource.
These scripts are usually attached to widget resources in an Open Interface
graphical user interface, and hence are commonly referred to as widget
scripts, but there is nothing in the architecture which restricts them to only
being usable with widget resources. The execution and management of
widget scripts is handled entirely by the Open Interface libraries - once a
script has been associated with a widget or resource no user interaction is
required to cause it to be compiled or to be executed. This type of script is
documented in more detail in the following sections.

 The second type of script is intended for advanced use, and it allows
scripting functionality to be embedded in an existing C or C++ application.
These scripts are not attached to resources, and hance are referred to as bare
scripts, in that they exist by themselves. An API is provided so that the
application developer has full control over the compilation, execution and
disposal of these scripts. The API to control bare scripts is defined at the end
of this header file.

Widget Scripts

Scripts can be attached to any Open Interface resource and have been
implemented as a new permanent field in the resource structure. As such
they are saved along with the rest of a resources permanent fields into the
ascii and binary resource files, and are compiled into an executable form on
the fly during resource initialization.

A script is divided up into a series of handlers, where each handler is
responsible for handling a particular event sent to the widget/resource. The
format of a handler is given below:

on event INITIALIZE
statement 1
statement 2
...

end event

In essence a handler is delimited by a pair of "on event XXX" and "end event"
statements, where XXX is the name of the event which will cause this
handler to be executed when the the event in question is sent to the
widget/resource. The statements within the handler follow a grammar
which is a subset of the C programming language, with a few minor
extensions. Hence statements can be entered in free form (they do not have
to fit on a single line) and must be terminated with a semicolon. A brief
C Programmer’s Guide 437

Chapter Scrpt Class39
overview of the features of the language are given below; further details are
provided in the script language reference manual.

Variables

Three levels of scoping are provided for variables - local, script and global.
Variable declarations are similar to those in C in that a declaration is
composed of a data type keyword (described below) followed by a list of
variable names. The scope of the variable name is determined in part by
where the variable declaration occurs. Local variable declarations are made
within a handler, before any of the executable statements, and their scope is
limited to the handler in which they are declared. Script variables are
declared outside a handler, and their scope extends from the point at which
they are declared to the end of that particular script. Global variables are
declared in a similar way to script variables, the difference being that their
definitions are preceded by the "global" keyword. The value of a global
variable can be accessed from any script which contains a declaration of that
variable, and in any particular script the scope of the global variable
declaration extends from the point at which the declaration occurs to the
end of the script.

Script Data Types

Statements

There are four basic kinds of statements in the script language:

1. Variable assignment statements - a variable can be assigned the value
of an arbitrarily complex expression. Full details on the operators
available within expressions and their precedence can be found in the
script language reference manual.

2. Conditional statements - this is the if construct found in C, and behaves
in exactly the same way.

3. Loop statements - this is the while loop construct found in C, and
behaves in exactly the same way.

Item Description
integer A signed integer number, whose size is the natural size for the machine

on which the script is running. Currently this is 32 bits everywhere
except for OSF/1 executing on an Alpha AXP machine, where the size
is 64 bits.

float A single precision floating point number.

double A double precision floating point number.

pointer This is a special read only data type. The only way to modify the value
of a pointer variable is to assign to it the return value of a verb registered
as returning a pointer value (see below for the definition of a verb), or
to assign to it the value zero. Any other attempt to modify the value of
a pointer variable will result in a script compilation error when the
widget/resource is initialized. The main use of pointer variables in the
script language is to cache widget and resource pointers, and to pass
those pointers in as arguments to other verbs. There is currently no
pointer dereferencing in the script language.

string This is a nul-termina ted array of ascii characters.
438 C Programmer’s Guide

Using the Scripting Environment
4. Calls to verbs - a verb is a routine which is external to the script and is
written in a traditional programming language (usually C), and has
been registered with the script compiler so that scripts can call out to
such external routines. Several of the Open Interface API calls are
registered as verbs with the scripting environment when the ScVrb
library is initialized.

SELF

The special variable SELF designates the target of the notification inside an
event handler. So in a script attached to a widget you can use the SELF
variable to access the widget itself.

Note: Variable names are case sensitive (as in C), so SELF must be written
in upper case.

Using the Scripting Environment

If you just wish to develop an application using the verbs which are
packaged with Open Interface (ie. you will not be providing any custom
verbs of your own) then you only have to add two statements to the main
routine of your program, after all the other Open Interface libraries have
been initialized:

SCRPT_LibInit();

SCVRB_LibInit();

The first statement initializes the scripting environment, the second
statement performs some further initialization for using scripts in a
graphical environment and registers all of the verbs which are packaged
with Open Interface. Since SCVRB_LibInstall and SCVRB_LibLoadInit
make calls to their counterparts in the Scrpt library, there is no need to make
an explicit call to SCRPT_LibInit if the ScVrb library is also being initialized
in an application.

LibInstall

void SCRPT_LibInstall (void);

Installing the script library.

LibLoadInit

void SCRPT_LibLoadInit (void);

Initialization and loading the script library.

LibInit

void SCRPT_LibInit (void);

 Installing and initializing the script library.

LibExit

void SCRPT_LibExit (void);

Unloading and uninstalling the script library.
C Programmer’s Guide 439

Chapter Scrpt Class39
Extending the Script Language

The Open Interface script language can be extended in three ways:

1. By registering new symbolic constants for use within the scripts.

2. By registering new events for which scripts can be executed.

3. By registering new verbs which can be called from scripts.

Registering Constants

In the script language constants are named integer values. A certain number
of these are defined when the ScVrb library is initialized, but additional
constants can also be registered. To register a set of constants an array of
RegisterConstRec structures is constructed, where each element of the array
is used to define a single constant.

Since the script language does not copy the strings which are passed in this
array, but instead just copies the pointers to those strings, then it is
important to make sure that the storage for those strings will not be
deallocated during the course of the applications execution. The last
element in the array of RegisterConstRec structures must have all of its
fields set to zero so that the routine which registers the constants knows
when to stop processing the array.

The array so constructed is then passed by reference to
SCRPT_RegisterConstants, which also takes a second boolean parameter
which indicates if a warning should be issued if a constant is encountered in
the array whose name has already been registered. If this parameter is
BOOL_FALSE then no warning is issued, otherwise a warning is issued.

RegisterConstants

void SCRPT_RegisterConstants (ScrptRegisterConstPtr constants, BoolEnum checkDup);

Registers the constant identified by constants. If checkDup is BOOL_TRUE,
a warning will be issued if a constant with the same name has already been
registered.

NDScrptRegisterConst

Registering Events

Events are registered in a similar fashion to constants, but this time the array
passed to the registering function is an array of RegisterEventRec structures.

As before, the array should be terminated by a structure in which all of the
above fields are set to zero, and the strings referenced inside the structure
should not be placed in storage which is deallocated during the course of the
programs execution.

The array so constructed is then passed by reference to
SCRPT_RegisterEvents, which also takes a second boolean parameter which

Item Description
Name Name of the constant, referred to .

Constant Value.
440 C Programmer’s Guide

Extending the Script Language
indicates if a warning should be issued if an event is encountered in the
array whose name has already been registered. If this parameter is
BOOL_FALSE then no warning is issued, otherwise a warning is issued.

RegisterEvents

void SCRPT_RegisterEvents (ScrptRegisterEventPtr event, BoolEnum checkDup);

Registers the event identified by event. If checkDup is BOOL_TRUE, a
warning will be issued if an event with the same name has already been
registered.

NDScrptRegisterEvent

Registering Verbs

Verbs are registered in a similar fashion to constants and events, except that
a little more information is required. The array passed to the registering
function is an array of RegisterVerbRec structures. As before, the array
should be terminated by a structure in which all of the above fields are set
to zero, and the strings referenced inside the structure should not be placed
in storage which is deallocated during the course of the programs execution.

The array so constructed is then passed by reference to
SCRPT_RegisterVerbs, which also takes a second boolean parameter which
indicates if a warning should be issued if a verb is encountered in the array
whose name has already been registered. If this parameter is BOOL_FALSE
then no warning is issued, otherwise a warning is issued.

The mapping between the return type of a verb in the script language and
the corresponding return type of the C routine which implements that verb
is as follows:

The mapping between the type of an argument to a verb and the
corresponding type of the argument in the C implementation of that verb is
as follows:

Item Description
Name Name of the event, referred to .

Code Notification code (ex: TBUT_NFYHIT) .

Class Resource class for which the event is registered. If NULL, then
the event is registered for all responder classes.

Script C
void void

integer Long

float float

double double

pointer ClientPtr

string Str

Script C
integer Long

float float*
C Programmer’s Guide 441

Chapter Scrpt Class39
In essence all of the parameters passed into the C routine can be typecast
into a ClientPtr.

Constants describing the return data type of a verb or script

Compatibility with Open Interface 3.0

Constants describing the data type of an argument

Maximum number of arguments that can be supplied to a verb

double double*

pointer ClientPtr

string VStrPtr

Item
SCRPT_VALUEINTEGER

SCRPT_VALUEFLOAT

SCRPT_VALUEDOUBLE

SCRPT_VALUEPOINTER

SCRPT_VALUESTRING

Item Description
SCRPT_VERBVOID SCRPT_VALUEVOID

SCRPT_VERBINTEGER SCRPT_VALUEINTEGER

SCRPT_VERBFLOAT SCRPT_VALUEFLOAT

SCRPT_VERBDOUBLE SCRPT_VALUEDOUBLE

SCRPT_VERBPOINTER SCRPT_VALUEPOINTER

SCRPT_VERBSTRING SCRPT_VALUESTRING

Item
SCRPT_ARGFLOAT

SCRPT_ARGDOUBLE

SCRPT_ARGPOINTER

SCRPT_ARGSTRING

Item
SCRPT_MAXVERBARGS
442 C Programmer’s Guide

Extending the Script Language
NDScrptRegisterVerb

RegisterVerbs

void SCRPT_RegisterVerbs(ScrptRegisterVerbPtr verb, BoolEnum checkDup);

Registers the verb identified by `verb'. If `checkDup' is BOOL_TRUE, a
warning will be issued if an event with the same name has already been
registered.

SetStringReturnValue

void SCRPT_SetStringReturnValue(Str val);

As the above table shows, verbs which are registered to return a string value
are expected to return a Str value to the script engine. When the verb has
finished executing the script engine will make a copy of the string which has
been returned to it, which means that the string must remain in scope after
the verb has finished executing. Because of this it is not possible to return a
string which is contained within a local array declared within the body of
the verb's code, and so if the string which is returned to the script engine is
held in a buffer local to the verb then that verb must be declared as static,
eg.:

This is wrong:

Str MyStringVerb L0()
{

char buffer[256];
 Code which fills the buffer
return buffer; buffer is not in scope
 after verb exits

}

Item Description
Name A pointer to a nul terminated string which

contains the name of the verb.

Proc The address of the entry point of the routine which
implements the verb.

NumArgs Count of the number of arguments which the verb
takes. A verb can be passed up to 16 arguments,
and the script compiler will use this information to
ensure that a verb is being called with the correct
number of arguments.

Type Return type of the verb. This is an integer which
specifies the return type, and valid values for this
field are given by the SCRPT_VERBXXX constants
defined below.

ArgTypes[SCRPT_MAXVERBA
RGS]

A 16 character array, each element of which
specifies the type of the corresponding argument
in the verbs argument list. Valid values for these
constants are given by the SCRPT_ARGXXX
constants defined below. The script compiler uses
this information to check that the correct type of
value is being passed as an argument to a verb. If a
particular element of this array is zero, then the
compilers type checking mechanism is disabled
for the corresponding argument.

CName Ignored for now, but reserved for future
expansion.
C Programmer’s Guide 443

Chapter Scrpt Class39
This is correct:

Str MyStringVerb L0()
{

static char buffer[256];
 Code which fills the buffer
return buffer; buffer is in scope after
 verb exits

}

One problem with this is that it is difficult to return strings which have been
allocated dynamically by the verb, because at the point at which the verb
stops executing the string has to be valid, and hence the verb cannot
deallocate the string before returning control back to the script engine,
resulting in a memory leak. To get around this problem the verb should
make a call to the function SCRPT_SetStringReturnValue immediately
before deallocating the string and returning control to the script engine, eg.:

This is correct:

Str MyDynamicStringVerb L0()
{

Str buf;

buf = PTR_New(someSize);
code which fills the dynamically allocated
buffer

SCRPT_SetStringReturnValue(buf);
PTR_Dispose(buf);
return NULL; return value is ignored if
 SCRPT_SetStringReturnValue has
 been called

}

Running a Script in Standalone Applications

Run
ExecuteApp

void SCRPT_RunApp (CStr fileName);

void SCRPT_ExecuteApp (void);

Loads the script from the file identified by fileName, compiles it and
executes it.

This routine is used in the standalone application for running applications
built entirely using the script language. The routine takes one parameter,
which is the name of an ascii text file containing an application startup
script. The script is loaded from the file and compiled, and then executed by
being sent the APPSTARTUP event, and so the script should include a
handler for this event. A typical example of such a script would be:

on event APPSTARTUP
RLIB_LoadFild("myfile.dat");
WIN_OpenByName("mymod.win");

end event
444 C Programmer’s Guide

Bare Scripts
Bare Scripts

As mentioned at the beginning of this header file, bare scripts are intended
to allow scripting functionality to be embedded within an existing or new
C/C++ application. The application developer is given full control over
when the scripts are compiled, when and how often they are executed, and
when a script's compiled form is disposed. Since these scripts are not
attached to resources, there is no requirement that the application have a
graphical interface.

The syntax of a bare script is very similar to that of a widget script, with the
exception that a bare script does not contain event handlers. Instead it
contains a set of variable definitions followed by a series of executable script
statements - these statements are executed in order when the compiled form
of the script is executed. Further details on the syntax of the script language
can be found in the reference manuals.

Compile

ScrptPtr SCRPT_Compile(Str sourceCode);

This function compiles the bare script passed to it as a string, and returns a
pointer to the compiled form of that script. If a NULL value is returned this
signifies that compilation was unsuccessful due to compilation errors.

CompileFile

ScrptPtr SCRPT_CompileFile(Str fileName);

This is a convenience function. It compiles the bare script contained in the
file specified by ̀ fileName' and returns a pointer to the compiled form of the
script. If a NULL value is returned this signifies that compilation was
unsuccessful due to compilation errors.

CompileResource

ScrptPtr SCRPT_CompileResource(Str resName);

This is a convenience function. It compiles the bare script contained in the
string resource `resName' and returns a pointer to the compiled form of the
script. If a NULL value is returned this signifies that compilation was
unsuccessful due to compilation errors.

Execute

BoolEnum SCRPT_Execute(ScrptPtr scrpt);

This function executes the compiled script `scrpt'. The function returns
control to the caller when the script has finished executing. This can happen
for one of three resons, summarised below:

GetReturnType

Int32 SCRPT_GetReturnType(ScrptPtr scrpt);

Obtains the type of the value which was returned by execution of the script
`scrpt'. The value returned is one of the predefined SCRPT_VALUEXXX
constants.
C Programmer’s Guide 445

Chapter Scrpt Class39
QueryReturnValue

void SCRPT_QueryReturnValue(ScrptPtr scrpt, ClientPtr value);

Copies the value which was returned by execution of the script `scrpt' into
the buffer pointed to by `value'. For all return types except strings `value'
should point to a buffer large enough to hold the corresponding type. For
strings, `value' should point to a location in in memory into which will be
written the address of the beginning of the string value.

Dispose

void SCRPT_Dispose(ScrptPtr scrpt);

This function disposes the compiled bare script `scrpt', freeing all of the
memory used by the compiled form.

Return type Reason
SCRPT_VALVOID The script executed a `return;' statement, or the last line

of thescript was reached and that line was not a return
statement.

Anything else Anything elseThe script executed a return statement
which passes a value back to the caller e.g. `return 1;'.

N/A The script was terminated prematurely due to a runtime
error.
446 C Programmer’s Guide

Chapter
40 Set Class 40

This class implements a data structure to represent sets of objects.

Overview

This class implements a data structure to represent sets of objects. It is a
generic data structure in the sense that each element of the array is big
enough to contain either a basic type (short or long int) or a pointer to an
object that you have allocated separately.

When you add elements to the set, the buffer holding the elements of the
array will be reallocated automatically and the pointer to the set object
(SetPtr) will NOT change. A set differs from an array in that you can not
access an element by index. Instead, you can add or remove an element and
perform usual set operations (like union and intersection).

Constructors and Destructor

NDSet

void SET_Construct(SetPtr set);

Default set construction.

Alloc

SetPtr SET_Alloc(void);

Returns a pointer to an allocated but not yet constructed set. The set should
be constructed before being used.

NDSet

void SET_Destruct(SetPtr set);

Default set destruction.

Dealloc

void SET_Dealloc(SetPtr set);

Deallocates the set.

Special Shared Sets

EmptySet

SetPtr SET_EmptySet(void);

Returns a pointer to a shared empty set.
This set should not be modified.
C Programmer’s Guide 447

Chapter Set Class40
Adding, Removing, Accessing Elements

AddElt

void SET_AddElt(SetPtr set, SetEltVal elt);

Adds ’elt’ to the set (unless it is already in).

RemoveElt

void SET_RemoveElt(SetPtr set, SetEltVal elt);

Removes ’elt’ from the set (unless it is not in).

AddElts

void SET_AddElts(SetPtr set, SetLenVal n, SetEltValPtr elts);

Adds elts[0], elts[1], ..,elts[n-1] to the set (unless they are already in).

RemoveElts

void SET_RemoveElts(SetPtr set, SetLenVal n, SetEltValPtr elts);

Removes elts[0], elts[1], ..,elts[n-1] from the set (unless they are not in the
set).

GetNumElts

SetLenVal SET_GetNumElts(SetCPtr set);

Returns the number of elements in set.

Reset

void SET_Reset(SetPtr set);

Empties the set.

Copy

void SET_Copy(SetPtr dst, SetCPtr src);

Empties ’dst’, then copies the contents of ’src’ into ’dst’.

QueryElts

void SET_QueryElts(SetCPtr set, SetLenVal n, SetEltValPtr elts);

Queries the first ’n’ elements of the set and put them into ’elts’. Use
SET_GetNumElts to get the number of elements in the set.

SetElts

void SET_SetElts(SetPtr set, SetLenVal n, SetEltValPtr elts);

Sets the first ’n’ elements of the set to the values taken from ’elts’. Use
SET_GetNumElts to get the number of elements in the set.

ContainsElt

BoolEnum SET_ContainsElt(SetCPtr set, SetEltVal elt);

Returns BOOL_TRUE if ’elt’ is in the set.
448 C Programmer’s Guide

Comparing and Combining Two Sets
Comparing and Combining Two Sets

When comparing or combining two sets: A and B. Their elements can be
divided into three regions or parts:

1. Elements which are only in A.

2. Elements which are only in B.

3. Elements which are in both A and B.

Useful combinations of these parts are:

Symmetric difference of A and B ([1]+[2]), i.e. the difference between the
union of A and B and the intersection of A and B. (logically equivalent to the
XOR operator).

SetMixPartSetEnum

Bit set representing the different parts involved in set operations.

MixGetPartSet

SetMixPartSet SET_MixGetPartSet(SetCPtr A, SetCPtr B);

Compares two sets A and B and returns the set of parts which are not empty.

AreEqual

BoolEnum SET_AreEqual(SetCPtr A, SetCPtr B);

Returns BOOL_TRUE if sets A and B are equal.

MixQueryParts

void SET_MixQueryParts(SetCPtr A, SetCPtr B, SetMixPartSet parts, SetPtr C);

Combines A and B and extracts the specified parts. The result is stored in C
(which must be a distinct Set object, C must not point to the same object as
A or B).

Set Description
Union of A and B (parts 1+2+3) (logically equivalent to the OR

operator)

Intersection of A and B (part 3) (logically equivalent to the AND
operator)

Difference of A and B (part1) (logically equivalent to: A AND NOT
B)

SET_MIXPART1 = (1 << (1)), SET_MIXPART1BIT = 1, Refers to part [1] above

SET_MIXPART2 = (1 << (2)), SET_MIXPART2BIT = 2, Refers to part [2] above

SET_MIXPART3 = (1 << (3)), SET_MIXPART3BIT = 3 Refers to part [3] above
C Programmer’s Guide 449

Chapter Set Class40
450 C Programmer’s Guide

Chapter
41 Str Class 41

The Str class implements the Open Interface string data structures and
utilities. The functions in this class support English and languages other
than English by operating on both single-byte and multibyte characters.

Technical Summary

The Str class is functionally very similar to the C RTL string package (e.g.,
strlen, strcat) but offers the following advantages:
■ consistent naming
■ better error handling.
■ support for multibyte character sets

Use the STR class instead of the standard C RTL routines if you need a
portable set of library routines that support the multibyte character sets
required by applications intended for Asian for European markets. Rather
than relying on RTL, whose standard varies among vendors, the STR class
takes advantage of the major industry standards for character encoding.

Basic string types

The Open Interface Str class defines Native and UNICODE string types.

A NatStr string is a pointer to an array of NatChar and/or NatCode
characters. There are also pointers to a native string pointer. Types
accommodate cases where the native string is constant, where the pointer to
the string is constant, or where both are constant.

A Str string is an array of Char and/or ChCode characters. There are also
types to accommodate the cases where the string is constant, where the
pointer to the string is constant, or where both are constant.

A UniStr string contains UNICODE characters only. There are also pointers
to UniStr pointers. The UniStr can be constant, the pointer to the UniStr can
be constant, or they can both be constant.

For more information about Native and UNICODE character types, see the
Char class.

Strings Vs Binary Data

The Str module deals with strings (text intended for humans), not with
arbitrary binary data. So you should not use the Char or Str type when
dealing with binary data, you should use the VoidPtr, Byte or BytePtr types.

Indexing Strings

The various string types are defined as “huge” pointers. This type qualifier
is only relevant in segmented architectures such as DOS or OS/2. By
considering all strings as “huge” we avoid many complications with strings
which are larger than 32 KBytes.
C Programmer’s Guide 451

Chapter Str Class41
■ StrIVal integer type to index strings. A 32 bit integer is necessary to
support “huge” strings. This type is defined in charpub.h.

Characters

The character types are described in detail in charpub.h Here is a summary
of the main character types:

NatChar "native” string byte.

NatCode “native” character code (encodes multi-byte characters)

Char "internal” string byte.

ChCode "internal” character code (encodes multi-byte characters)

UniCode UNICODE character code.

CharInfoVal domain + level + lexical cat + case info + ascii-ness + ...

Code Types And Code Sets

The charpub.h header files gives detailed information about these topics.

Basic Strings and Substrings

A basic string is a null-terminated array of bytes. In the simple case of an
ASCII or ISO LATIN1 string, each byte encodes a character. In UNICODE
or one of the Japanese encodings, a string might contain a mixture of single
byte and double byte characters.

The calls contained in this class are provided in two versions:

A Str version in which strings are passed as simple pointers

A SubStr version a pointer to the beginning of a substring and its length are
passed as separate.

In the substrings calls, the a substring is specified by a pointer to the
beginning of the substring and a length. The substring is not necessarily
terminated by a null at the specified length. Also, in all the substring calls, a
length of -1 is interpreted as an unknown length, in which case the
terminating null is used as an end-of-string indicator. The substring calls
stop if a NULL is encountered before the specified length.

Operations which write into string buffers receive a pointer to the buffer
and the size of the buffer. These operations never overflow the destination
buffer and always terminate their output with a NULL byte, except when
specified otherwise.

Higher-Level String Objects and APIs

Open Interface contains the following high level string objects to support
the buffer reallocation and complex string manipulations that Str objects are
not intended to support.

String Object Description
VStr General purpose, compact string object which handles

buffer reallocation automatically.

SBuf String object larger than VStr. Keeps track of the gap inside
the string, so that successive insertions can be performed
efficiently, even at the beginning of a string. This object is
designed to support complex string manipulations
(insertions, deletions, formatting) in an efficient way.
452 C Programmer’s Guide

Data Types
Use the VStr object for storing strings and the SBuf object for manipulating
strings. Only a limited set of operations such as append and format are
provided on the VStr object. The SBuf API is much more complete and also
provides a simple API to temporarily attach an SBuf object to a VStr object
or to a stack buffer and to detach the SBuf object afterwards.

See the VStr class for more information.

Str Class Operations

The Str class functions enable you to perform the following operations:
■ Create strings.
■ Dispose of strings.
■ Set strings.
■ Append to strings.
■ Find string length.
■ Iterate through strings.
■ Write into string buffers.
■ Compare strings.
■ Match strings.
■ Search through strings.
■ Scan for numeric values.
■ Format numeric values
■ Convert between cases.
■ Load strings from resources.

The following functions are also supported:
■ String formatted print (printf).
■ String formatting (sprintf).
■ String scan (sscanf).

Note: Users should understand that the C runtime library routines such as
strcpy, strcat or sprintf are unsafe because the caller cannot specify
the size for which the buffer has been allocated and thus, in general,
there is a risk of overflow. See the Writing into String Buffers section
for details. The Open Interface ctrlpub.h header file defines the C
runtime library routines for use with Open Interface but is not
documented in the API Reference Manuals.

Data Types

NatStr

Defines a native string type.

A native string is a zero-terminated string in the native encoding defined by
the ND_CHARNATIVE environment variable. A native string can include
any combination of single-byte and multibyte characters.

Use NatStr types for human-readable text, not binary data. Use void*, Byte,
or BytePtr for manipulating binary data.
C Programmer’s Guide 453

Chapter Str Class41
See also

Str, UniStr, ND_CHARNATIVE

NatStrPtr

Defines a pointer to a native string type.

Data type defining a pointer to a native string.

A native string is a zero-terminated string in the native encoding defined by
the ND_CHARNATIVE environment variable. A native string can include
any combination of single-byte and multibyte characters.

Use NatStr types for human-readable text, not binary data. Use void*, Byte,
or BytePtr for manipulating binary data.

See also

NatStr

Str

Defines a string type.

Str is a data type defining a string type. A string is a zero-terminated string,
represented in the encoding as defined by the ND_CHARNATIVE
environment variable. A string can include any combination of single-byte
and multibyte characters.

Use Str types for human-readable text, not binary data. Use void*, Byte, or
BytePtr for manipulating binary data.

See also

 NatStr, UniStr, ND_CHARNATIVE

StrIVal

A 32-bit integer used for indexing strings and characters.

StrIValPtr

Data type for a pointer to a StrIVal value.

StrPtr

Data type for a string pointer.

typedef NatStr C_FAR* NatStrPtr; typedef C_INVAR NatStr C_FAR* NatStrCPtr;

typedef NatCStr C_FAR* NatCStrPtr;

typedef C_INVAR NatCStr C_FAR* NatCStrCPtr;

Data type for a string pointer.

See also

 Str
454 C Programmer’s Guide

Cloning and Disposing
UniStr

Defines a UNICODE string type.

typedef UniCode C_HUGE* UniStr;

typedef C_INVAR UniCode C_HUGE* UniCStr;

Data type defining a UNICODE string type. A UniStr string is an array of
UNICODE characters.

See also

 UniCode

UniStrPtr

Defines a pointer to a UNICODE string.

Data type defining a pointer to a UNICODE string which is an array of
UNICODE characters.

Use UniStr types for human-readable text, not binary data. Use void*, Byte,
or BytePtr for manipulating binary data.

See also

UniStr, UniCode

Cloning and Disposing

We recommend that you use VStr objects rather than simple Str pointers for
dynamically allocated strings. The VStr object encapsulates the length of the
string and thus avoids useless length recomputations.

NewSet

Returns a new copy of a string.

Str STR_NewSet(CStr str1);

Returns a new copy of a string.

For dynamically allocated strings, use VStr objects rather than simple Str
pointers. The VStr object encapsulates the length of the string, so it avoids
length recomputations.

See also

 STR_Clone

Clone

Returns a new copy of a string.

Str STR_Clone(CStr str1);

Definition

STR_Clone returns a new copy of a string. This function is an alias for
STR_NewSet.
C Programmer’s Guide 455

Chapter Str Class41
For dynamically allocated strings, use VStr objects rather than simple Str
pointers. The VStr object encapsulates the length of the string, so it avoids
length recomputations.

See also

STR_NewSet

NewSetSub

Returns a new substring.

Str STR_NewSetSub(CStr str1, StrIVal len);

STR_NewSetSub returns a new string containing a substring of the given
length.

For dynamically allocated strings, use VStr objects rather than simple Str
pointers. The VStr object encapsulates the length of the string, so it avoids
length recomputations.

See also

STR_SetNew

Dispose

Disposes of a string buffer.

void STR_Dispose(Str str);

STR_Dispose disposes of a string buffer.

For dynamically allocated strings, use VStr objects rather than simple Str
pointers. The VStr object encapsulates the length of the string, so it avoids
length recomputations.

See also

STR_Dispose0

Dispose0

Disposes of a string buffer if the buffer is not NULL.

void STR_Dispose0(Str str);

Disposes of a string buffer if the buffer is not NULL.

For dynamically allocated strings, use VStr objects rather than simple Str
pointers. The VStr object encapsulates the length of the string, so it avoids
length recomputations.

See also

STR_Dispose
456 C Programmer’s Guide

Set and Append
Set and Append

The following routines allow you to change the contents of a string or to
append a string to an existing string. They take the address of a string as first
argument so that they can reallocate the string if necessary.

You are encouraged to use the VStr or SBuf modules when performing
complex string manipulations. These calls should be reserved for simple
cases only.

Set

Setting a new string to contain the contents of an existing string.

void STR_Set(StrPtr str, CStr cstr);

Setting a new string to contain the contents of an existing string. The
stringptr parameter is a pointer to an address of an existing string so that
memory for the string can be reallocated if necessary.

Use this call for simple cases only. Use VStr or SBuf objects when
performing complex string manipulations.

See also

 STR_SetSub

SetSub

Assigns a substring as the contents of an existing string.

void STR_SetSub(StrPtr str, CStr cstr, StrIVal strival);

STR_SetSub assigns a substring as the contents of an existing string. The
stringptr parameter is a pointer to an address of an existing string so that
memory for the string can be reallocated if necessary.

Use this call for simple cases only. Use VStr or SBuf objects when
performing complex string manipulations.

See also

STR_Set

Append

Appends a string.

void STR_Append(StrPtr str, CStr cstr);

STR_Append appends a string to an existing string. The stringptr parameter
is a pointer to an address of an existing string so that memory for the string
can be reallocated if necessary.

Use this call for simple cases only. Use VStr or SBuf objects when
performing complex string manipulations.

See also

STR_AppendSub
C Programmer’s Guide 457

Chapter Str Class41
AppendSub

Appends a substring.

void STR_AppendSub(StrPtr str, CStr cstr, StrIVal strival);

STR_AppendSub appends a substring to an existing string. The stringptr
parameter is a pointer to an address of an existing string so that memory for
the string can be reallocated if necessary.

Use this call for simple cases only. Use VStr or SBuf objects when
performing complex string manipulations.

See also

STR_Append

String Length

GetLen

Returns the length of a string.

StrIVal STR_GetLen(CStr str);

STR_GetLen returns the length of string in bytes. The length does not
include any null terminators. Replaces STR_Len.

See also

STR_GetTruncLen

GetTruncLen

Returns the number of bytes in a string that can be copied into a buffer of a
given size.

StrIVal STR_GetTruncLen(CStr cstr, StrIVal size);

STR_GetTruncLen returns the number of bytes in string which can be
copied into buffer of a given size. A multibyte character might be truncated
if the length of the string is larger than the buffer, the length of the string in
the buffer is not necessarily equal to size - 1.

See also

STR_GetLen

Iterating through Strings

Iterating through strings requires some special care because strings may
contain multi-byte characters. One way is to access the string byte by byte
(Char by Char) and to get the length of characters by calling STR_GetLen.

Another (safer) way is to use the following API calls which return character
codes and advance the index in the string.

To iterate forwards in a string, you should use STR_GetFwrd instead of
reading byte by byte, except when you are only interested in ASCII
458 C Programmer’s Guide

Iterating through Strings
characters and performance is critical (you can test the ASCII-ness first and
call STR_GetLen only on non ASCII characters).

To iterate backwards, you have no other choice than using STR_GetBwrd
because iterating backwards is not a straightforward operation in general.
For example, the SJIS code type allows ASCII letters as second byte of
multi-byte characters, so the length of a character cannot be derived simply
from the value of its last byte.

GetCode

Returns the character code located at the beginning of a string.

ChCode STR_GetCode(CStr str);

STR_GetCode returns the character code located at the beginning of string.
The length of the character is not set.

See also

STR_NatGetCode

GetFwrd

Returns the character code at the beginning of a string and sets its length.

ChCode STR_GetFwrd(CStr str, StrIValPtr lenp);

STR_GetFwrd returns the character code at the beginning of string and sets
lengthptr to the length of the character. STR_GetFwrd always sets lengthptr.
STR_GetFwrd does not test whether lengthptr is NULL. When
STR_GetFwrd encounters a NULL character, it sets the length pointer to
one. STR_GetFwrd returns zero when the end of the string is reached.

See also

STR_NatGetFwrd, STR_GetBwrd

GetBwrd

Returns the code found in front of the specified location.

ChCode STR_GetBwrd(CStr str, StrIVal i, StrIValPtr lenp);

STR_GetBwrd returns the character code found in front of the location in
string given by index and sets lengthptr to the length of the character.
STR_GetBwrd does not test whether lengthptr is zero and always sets the
length pointer at the end of the operation.

See also

STR_GetFwrd

CtGetCode

Returns the character code found at the beginning of a string.

NatCode STR_CtGetCode(NatCStr nStr, CtCPtr ct);

STR_CtGetCode returns the native character code located at the beginning
of a native string. The length of the character is not set. See STR_CtGetFwrd.
C Programmer’s Guide 459

Chapter Str Class41
See also

STR_GetCode, STR_NatGetCode, STR_CtGetFwrd

CtGetFwrd

Returns the character code found at the beginning of a string and sets the
length.

NatCode STR_CtGetFwrd(NatCStr nStr, CtCPtr ct, StrIValPtr lenp);

STR_CtGetFwrd returns the character code found at the beginning of the
string and sets lengthptr to the length of the character. STR_CtGetFwrd
does not test whether lengthptr is zero and always sets lengthptr at the end
of the operation.

See also

STR_GetFwrd, STR_NatGetFwrd

CtGetBwrd

Returns the code found in front of a location in a string.

NatCode STR_CtGetBwrd(NatCStr nStr, CtCPtr ct, StrIVal i, StrIValPtr lenp);

STR_CtGetBwrd returns the native character code found in front of the
location given by index in an encoded string. Sets lengthptr to the length of
the character. STR_CtGetBwrd does not test whether lengthptr is zero and
always sets lengthptr at the end of the operation. If the index is zero,
STR_CtGetBwrd returns zero and sets lengthptr to zero.

See also

STR_GetBwrd

Writing into String Buffers

The main problem when we are writing into string buffers is that what we
write may be too big for the buffer and may cause an overflow. The C RTL
routines such as strcpy, strcat or sprintf are unsafe because the caller cannot
specify the size for which the buffer has been allocated and thus, in general,
there is a risk of overflow.

Most of the Str API implements operations which access strings in read-only
mode but we also provide routines which write into string buffers, even if
the preferred API for string manipulations is the SBuf API.

The main routines are safe and return all the information necessary to find
out if the operations resulted in a truncation or not. We also provide some
routines which are unsafe or which do not indicate whether a truncation
occured or not. These routines are provided mostly for compatibility
purposes.

The “safe” routines all use the same general API principle for the first two
arguments and their return value. The principle can be illustrated taking the
example of the STR_Put call.

len = NdStr::Put(buf, size, str, endp)
460 C Programmer’s Guide

Writing into String Buffers
The convention used for the returned value may sound somewhat awkward
but is actually very practical when we have to concatenate various values in
a string. For example, we can write:

Char buf[MAXSIZE];
S s = buf;
StrIVal size= MAXSIZE;
StrIVal len;
len = NdSTR::PutDecInt(s, size, i);s += len; size -= len;
len = NdStr::Put(s, size, “, “, NULL);s += len; size -= len;
len = NdStr::PutDecInt(s, size, j);s += len; size -= len;

If an overflow occurs, the string will be properly truncated, size will become
0 and subsequent STR_Put calls will return immediately.

If you want to check the overflow condition, you can compare len and size
after every STR_Put call (or compare size with 0 after the
increment/decrement operations). Then, you may reallocate the buffer and
retry the STR_Put operation.

The `endp’ argument is useful if you want to reallocate the buffer in case of
overflow and continue the Put operation with the remaining string. If
truncation is harmless, you do not need to worry about reallocation and you
can simply pass NULL as `endp’. In some calls, the `endp’ argument is a
little more complex (for example in formatting routines, it describes a
synchronization point between the format and what has been written). In
other calls, such as calls which format numeric values, there is no need for
an `endp’ argument.

Put

Writes a string into a buffer.

StrIVal STR_Put(Str buf, StrIVal size, CStr str, StrIValPtr endp);

STR_Put writes a string into a buffer and truncates the string if it is too large.
STR_Put always terminates the buffer with a null byte and never writes
more than size bytes into the buffer (including the terminating null).

If the operation can be done without truncation, the value returned will be
the number of characters written to the buffer not including the terminating
null. In this case, the value returned is strictly less than size. If the operation
resulted in a truncation, size is returned. If the endpoint is not NULL, it is
set to the number of characters which have been copied . The endpoint is the
same as the returned value if no truncation occurs. If an overflow occurs, the
endpoint is set to size-x, where x is the width of the character which caused
the overflow.

See also

 STR_PutAscii, STR_PutCode, STR_PutSub

PutSub

Writes a substring into a string buffer.

StrIVal STR_PutSub(Str buf, StrIVal size, CStr s, StrIVal slen, StrIValPtr endp);

Writes a substring into a string buffer. After the writing the character code,
STR_PutSub terminates the buffer with NULL.
C Programmer’s Guide 461

Chapter Str Class41
See also

 STR_Put

PutAscii

Writes an ASCII character into a string.

StrIVal STR_PutAscii(Str buf, StrIVal size, Char ch);

STR_PutAscii writes the ASCII character into the string buffer. After the
writing the character, STR_PutAscii terminates the string buffer with
NULL. In debugging mode, STR_PutAscii signals a failure if the character
is not an ASCII character.

Use STR_PutAscii to append a single character to a string. To write many
characters sequentially, use STR_WriteAscii instead.

See also

STR_WriteAscii, STR_NatPutAscii

PutCode

Writes a character code into a string.

StrIVal STR_PutCode(Str buf, StrIVal size, ChCode chcode);

STR_PutCode writes a character code into the string buffer. After the
writing the character code, STR_PutCode terminates the buffer with NULL.

Use STR_PutCode to append a single character code to a string. To write
many character codes sequentially, use STR_WriteCode.

See also

 STR_Put, STR_WriteCode, STR_NatPutCode

WriteAscii

Writes an ASCII character into a string without terminating the string with
NULL.

StrIVal STR_WriteAscii(Str str, StrIVal size, Char ch);

STR_WriteAscii writes an ASCII character into a string without terminating
the string with NULL. If writing the character would overflow the buffer,
STR_WriteAscii writes a NULL and returns size.

STR_WriteAscii is used for writing a sequence of character codes into a
string. To write a single character, use STR_PutAscii.

See also

STR_PutAscii, STR_NatWriteAscii

WriteCode

Writes a character code into a string without terminating the string with
NULL.
462 C Programmer’s Guide

Writing into String Buffers
StrIVal STR_WriteCode(Str str, StrIVal size, ChCode chcode);

Writes a character code into a string buffer without terminating the string
with NULL. If writing the character code would overflow the buffer,
STR_WriteCode writes a NULL and returns size.

STR_WriteCode is used for writing a sequence of character codes into a
string. To write a single character, use STR_PutCode.

See also

STR_PutCode , STR_NatWriteAscii

NatPutAscii

Writes an ASCII character into a native string.

StrIVal STR_NatPutAscii(NatStr nStr, StrIVal size, NatChar nch);

Writes an ASCII character into a native string. After the writing the
character, STR_NatPutAscii terminates the native string with NULL. In
debugging mode, STR_NatPutAscii signals a failure if the character is not an
ASCII character.

STR_NatPutAscii is useful for appending a single character to a native
string. To write many characters sequentially, use STR_NatWriteAscii.

See also

STR_PutAscii, STR_NatWriteAscii

NatWriteAscii

Writes an ASCII character into a native string without terminating the string
with NULL.

SStrIVal STR_NatWriteAscii(NatStr nStr, StrIVal size, NatChar nch);

Writes an ASCII character into a native string without terminating the string
with NULL. If writing the character would overflow the native buffer,
STR_NatWriteAscii writes a NULL and returns size.

STR_NatWriteAscii is used for writing a sequence of characters into a native
string. For writing single characters, use STR_NatPutAscii.

See also

STR_WriteAscii, STR_NatPutAscii

NatPutCode

Writes a native character code into a native string.

StrIVal STR_NatPutCode(NatStr nStr, StrIVal size, NatCode ncode);

Writes a native character code into a native string. After the writing the
character code, STR_NatPutCode terminate s the string buffer with NULL.
STR_NatPutCode is useful for appending a single native character code to a
native string. To write many native character codes sequentially, use
STR_NatWriteCode.
C Programmer’s Guide 463

Chapter Str Class41
See also

 STR_PutCode, STR_NatWriteCode

NatWriteCode

Writes a native character code into a native string without terminating the
string with NULL.

StrIVal STR_NatWriteCode(NatStr nStr, StrIVal size, NatCode ncode);

STR_NatWriteCode writes a native character code into a native string
without terminating the string with NULL. If writing the native character
code would overflow the buffer, STR_NatWriteCode writes a NULL and
returns size.

STR_NatWriteCode is used for writing a sequence of character codes into a
string. For writing single characters, use STR_NatPutCode.

See also

 STR_WriteCode, STR_PutCode

Basic String Comparisons

Cmp
ICmp

Compares two strings.

CmpEnum STR_ICmp(CStr s1, CStr s2);

CmpEnum STR_Cmp(CStr s1, CStr s2);

STR_Cmp compares two strings and returns a CmpEnum as a result. Bytes
are compared one by one. Lower case words are sorted after all upper case
words. In the ASCII range, characters are sorted in ASCII order, even on an
EBCDIC platform.

If string1 is alphabetically lesser than string2, STR_Cmp returns
CMP_UNDER; if they are equal, it returns CMP_EQUAL; and if string1 is
greater than string2, STR_Cmp returns CMP_OVER.

STR_ICmp is exactly the same, but it ignores case differences in the ASCII
range.

See also

STR_CmpSub

CmpSub
ICmpSub

Compares two substrings.

CmpEnum STR_CmpSub(CStr s1, StrIVal l1, CStr s2, StrIVal l2);

CmpEnum STR_ICmpSub(CStr s1, StrIVal l1, CStr c2, StrIVal l2l);

STR_CmpSub compares two substrings and returns a CmpEnum as a result.
See STR_Cmp.
464 C Programmer’s Guide

Testing Matches
STR_ICmpSub is exactly the same, but it ignores case differences in the
ASCII range.

See also

STR_Cmp

Equals
IEquals

Compares two strings for equality.

BoolEnum STR_Equals(CStr s1, CStr s2);

BoolEnum STR_IEquals(CStr s1, CStr s2);

STR_Equals returns a boolean indicating whether or not the two strings are
equal.

STR_IEquals performs the same function but ignores case differences in the
ASCII range.

See also

 STR_Cmp, STR_EqualsSub

EqualsSub
IEqualsSub

Compares two strings for equality.

BoolEnum STR_EqualsSub(CStr s1, StrIVal l1, CStr c2, StrIVal l2);

BoolEnum STR_IEqualsSub(CStr s1, StrIVal l1, CStr c2, StrIVal l2);

STR_EqualsSub returns a Boolean value indicating whether the two
substrings are equal.

STR_IEqualsSub performs the same function but ignores case differences in
the ASCII range.

See also

 STR_Cmp, STR_Equals

Testing Matches

MatchesChar

Tests whether a string matches a character.

BoolEnum STR_MatchesChar(CStr s1, ChCode chcode, StrIValPtr lenp);

STR_MatchesChar tests whether string matches chcode. The Boolean return
value indicates whether the match was successful. If lengthptr is not NULL,
it is set to the end of the match.

Matches
IMatches

Tests whether one string matches another string.
C Programmer’s Guide 465

Chapter Str Class41
BoolEnum STR_Matches(CStr s1, ChCode chcode, StrIValPtr lenp);

BoolEnum STR_IMatches(CStr s1, CStr s2, StrIValPtr lenp);

STR_Matches tests whether string1 matches string2. The Boolean return
value indicates whether the match was successful. If lengthptr is not NULL,
it is set to the end of the match.

STR_IMatches is the same as STR_Matches but ignores case differences in
the ASCII range only.

MatchesPat
IMatchesPat

Tests whether one string matches another string containing a pattern.

BoolEnum STR_MatchesPat(CStr s1, CStr s2, StrIValPtr lenp);

BoolEnum STR_IMatchesPat(CStr s1, CStr s2, StrIValPtr lenp);

STR_MatchesPat tests whether pattern (which is a string containing a
pattern) matches string. The Boolean return value indicates whether the
match was successful. If lengthptr is not NULL, it is be set to the end of the
match.

pattern contains a very simple pattern which can accept an question mark
(?) to indicate an optional character and an asterisk (*) to indicate any
substring. Regular expressions are not supported.

STR_IMatchesPat is the same as STR_MatchesPat but it ignores case
differences in the ASCII range only.

See also

STR_MatchesPatSub

MatchesPatSub
IMatchesPatSub

Tests whether one substring matches another substring which contains a
pattern.

BoolEnum STR_MatchesPatSub(CStr s1, StrIVal l1, CStr s2, StrIVal l2, StrIValPtr lenp);

BoolEnum STR_IMatchesPatSub(CStr s1, StrIVal l1, CStr s2, StrIVal l2, StrIValPtr lenp);

STR_MatchesPatSub tests whether a substring given by subpattern matches
another substring given by subptr1. The Boolean return value indicates
whether the match was successful. If lengthptr is not NULL, it is be set to the
end of the match.

The second substring contains a very simple pattern which can accept a
question mark (?) to indicate an optional character and an asterisk (*) to
indicate any substring. Regular expressions are not supported.

STR_IMatchesPatSub is the same as STR_MatchesPatSub but it ignores case
differences in the ASCII range only.

See also

STR_MatchesPat

MatchesSub
466 C Programmer’s Guide

Searching
IMatchesSub

Tests whether two substrings match.

BBoolEnum STR_MatchesSub(CStr s1, StrIVal l1, CStr s2, StrIVal l2, StrIValPtr lenp);

BoolEnum STR_IMatchesSub(CStr s1, StrIVal l1, CStr s2, StrIVal l2, StrIValPtr lenp);

STR_MatchesSub tests whether two substrings match. The Boolean return
value indicates whether the match was successful. If lengthptr is not NULL,
it is be set to the end of the match.

STR_IMatchesSub ignores case differences in the ASCII range only.

See also

STR_Matches

Searching

FindFirst
IFindFirst

Finds the first occurrence of a string.

StrIVal STR_FindFirst(CStr s1, CStr s2);

StrIVal STR_IFindFirst(CStr s1, CStr s2);

STR_FindFirst finds the first occurrence of string2 within string1 and
returns its index. Returns -1 if the search fails.

STR_IFindFirst performs the same function but ignores case differences in
the ASCII range only.

See also

STR_FindLast

FindFirstChar

Finds the first occurrence of a character.

StrIVal STR_FindFirstChar(CStr s1, ChCode chcode);

STR_FindFirstChar finds the first occurrence of chcode within string and
returns the index. Returns -1 if the search fails.

See also

STR_FindLastChar

FindFirstCharSub

Find the first occurrence of a character in a substring.

StrIVal STR_FindFirstCharSub(CStr s1, StrIVal l1, ChCode chcode);

STR_FindFirstCharSub finds the first occurrence of chcode in a substring
and returns its index. Returns -1 if the search fails.
C Programmer’s Guide 467

Chapter Str Class41
See also

STR_FindFirstChar, STR_FindLastCharSub

FindFirstSub
IFindFirstSub

Switchable case-independent search for the first occurrence of a substring.

StrIVal STR_FindFirstSub(CStr s1, StrIVal l1, CStr s2, StrIVal l2);

StrIVal STR_IFindFirstSub(CStr s1, StrIVal l1, CStr s2, StrIVal l2);

:STR_FindFirstSub finds the first occurrence of a substring within a
substring and returns the index. Returns -1 if the search fails.

STR_IFindFirstSub performs the same function but ignores case differences
in the ASCII range only.

See also

STR_FindFirst, STR_FindLastSub

FindIFirst

Switchable case-independent search for the first occurrence of a string.

StrIVal STR_FindIFirst(CStr s1, CStr s2, BoolEnum caseI);

STR_FindFirst finds the first occurrence of string2 within string1, with or
without taking the case into account. The Boolean argument set to true
indicates that the search should ignore case in the ASCII range.

See also

STR_FindILast

FindIFirstSub

Switchable case-independent search for the first occurrence of a substring.

StrIVal STR_FindIFirstSub(CStr s1, StrIVal l1, CStr s2, StrIVal l2, BoolEnum caseI);

STR_FindIFirstSub finds the first occurrence of a substring given by subptr2
within a substring, given by subptr1, with or without taking the case into
account. When set to true, the casei argument indicates that the search
should ignore case in the ASCII range.

See also

 STR_FindIFirst, STR_FindILastSub

FindILast

Switchable case-independent search for the last occurrence of a string.

StrIVal STR_FindILast(CStr s1, CStr s2, BoolEnum caseI);

STR_FindILast finds the last occurrence of a string within another string,
with or without taking the case into account. The Boolean argument set to
true indicates that the search should ignore case in the ASCII range.
468 C Programmer’s Guide

Searching
See also

STR_FindIFirst

FindLast
IFindLast

Finds the last occurrence of a string.

StrIVal STR_FindLast(CStr s1, CStr s2);

StrIVal STR_IFindLast(CStr s1, CStr s2);

STR_FindLast finds the last occurrence of string2 within string1 and returns
the index. Returns -1 if the search fails.

STR_IFindLast performs the same function but ignores case differences in
the ASCII range only.

See also

STR_FindFirst

FindLastChar

Finds the last occurrence of a character within a string

StrIVal STR_FindLastChar(CStr s1, ChCode chcode);

STR_FindLastChar finds the last occurrence of a character in string and
returns its index. Returns -1 if the search fails.

See also

STR_FindFirstChart

FindLastCharSub

Finds the last occurrence of a character in a substring.

StrIVal STR_FindLastCharSub(CStr s1, StrIVal l1, ChCode chcode);

STR_FindLastCharSub finds the last occurrence of chcode in a substring
and returns its index. Returns -1 if the search fails.

See also

STR_FindLastChar, STR_FindFirstCharSub

FindLastSub
FindILastSub

Switchable case-independent search for the last occurrence of a substring.

StrIVal STR_FindLastSub(CStr s1, StrIVal l1, CStr s2, StrIVal l2);

StrIVal STR_FindILastSub(CStr s1, StrIVal l1, CStr s2, StrIVal l2, BoolEnum casei);

STR_FindILastSub finds the last occurrence of a substring given by subptr2
within a substring given by subptr1, with or without taking the case into
account. The Boolean argument casei set to true indicates that the search
should ignore case in the ASCII range.
C Programmer’s Guide 469

Chapter Str Class41
STR_FindLastSub finds the last occurrence of a substring given by subptr2
within a substring, given by subptr1.

STR_IFindLastSub ignores case differences in the ASCII range only.

See also

STR_FindLast, STR_FindFirstSub

Scanning of Numeric Values

GetDec...

Returns the integer value found at the beginning of a decimal integer string.

Int STR_GetDecInt(CStr s, StrIValPtr lenp);

Int16 STR_GetDecInt16(CStr s, StrIValPtr lenp);

Int32 STR_GetDecInt32(CStr s, StrIValPtr lenp);

UInt STR_GetDecUInt(CStr s, StrIValPtr lenp);

UInt16 STR_GetDecUInt16(CStr s, StrIValPtr lenp);

UInt32 STR_GetDecUInt32(CStr s, StrIValPtr lenp);

These functions return the integer value found at the beginning of a decimal
integer string if endptr is not NULL. endptr is set to the end of the numeric
substring. The integer can be signed or unsigned and is assumed to be
expressed in decimal notation. If string does not contain a numeric value,
these calls return zero and set endptr to zero .

Calls are provided for Int, Int32, Int16, UInt, UInt32 and UInt16. These
versions cast the result of the corresponding Int32 or UInt32 calls and do not
signal over/underflows.

See also

 STR_SubGetDec..., STR_GetHex...,STR_GetRadix..., STR_GetDouble

GetHex...

Returns the integer value found at the beginning of a hexadecimal integer
string.

Int STR_GetHexInt (CStr s, StrIValPtr lenp);

Int16 STR_GetHexInt16 (CStr s, StrIValPtr lenp);

Int32 STR_GetHexInt32 (CStr s, StrIValPtr lenp);

UInt16 STR_GetHexUInt16 (CStr s, StrIValPtr lenp);

UInt32 STR_GetHexUInt32 (CStr s, StrIValPtr lenp);

UInt STR_GetHexUInt(CStr s, StrIValPtr lenp);

These functions return the integer value found at the beginning of a
hexadecimal integer string if endptr is not NULL. endptr is set to the end of
the numeric substring. The integer can be signed or unsigned and is
assumed to be expressed in hexadecimal notation. If the string does not
contain a numeric value, these calls return zero and set endptr to zero .
470 C Programmer’s Guide

Scanning of Numeric Values
Calls are provided for Int, Int32, Int16, UInt, UInt32 and UInt16. These
versions cast the result of the corresponding Int32 or UInt32 calls and do not
signal over/underflows.

See also

STR_SubGetHex..., STR_GetDec..., STR_GetRadix..., STR_GetDouble

GetRadix...

Returns the integer value found at the beginning of an integer string.

Int STR_GetRadixInt(CStr s, Int i, StrIValPtr lenp);

Int16 STR_GetRadixInt16(CStr s, Int radix, StrIValPtr lenp);

Int32 STR_GetRadixInt32(CStr s, Int radix, StrIValPtr lenp);

Int STR_GetRadixInt(CStr s, Int i, StrIValPtr lenp);

UInt STR_GetRadixUInt(CStr s, Int radix, StrIValPtr lenp);

UInt16 STR_GetRadixUInt16(CStr s, Int radix, StrIValPtr lenp);

UInt32 STR_GetRadixUInt32(CStr s, Int radix, StrIValPtr lenp);/

These calls return the integer value found at the beginning of an integer
string if endptr is not NULL. The radix of the integer can be a number
between 2 and 36. The integer can be signed or unsigned. endptr is set to the
end of the numeric substring. If the string does not contain a numeric value,
these calls return zero and set endptr to zero .

Calls are provided for Int, Int32, Int16, UInt, UInt32 and UInt16. These
versions cast the result of the corresponding Int32 or UInt32 calls and do not
signal over/underflows.

See also

STR_GetDec..., STR_GetHex..., STR_GetDouble

GetDouble

Returns the double real numeric value found at the beginning of a double
real string.

Double STR_GetDouble(CStr string, StrIValPtr endptr);

These functions return the double real value found at the beginning of a
double real integer string string if endptr is not NULL. If string does not
contain a numeric value, this call returns zero and sets endptr to zero.

See also

 STR_SubGetDouble..., STR_GetDec..., STR_GetHex..., STR_GetRadix....

SubGetDec...

Returns the integer value found at the beginning of a decimal integer
substring.
C Programmer’s Guide 471

Chapter Str Class41
Int STR_SubGetDecInt(CStr s, StrIVal l, StrIValPtr lenp);

Int16 STR_SubGetDecInt16(CStr s, StrIVal l, StrIValPtr lenp);

Int32 STR_SubGetDecInt32(CStr s, StrIVal l, StrIValPtr lenp);

UInt STR_SubGetDecUInt(CStr s, StrIVal l, StrIValPtr lenp);

UInt16 STR_SubGetDecUInt16(CStr s, StrIVal l, StrIValPtr lenp);

UInt32 STR_SubGetHexUInt32(CStr s, StrIVal l, StrIValPtr lenp);

These functions return the integer value found at the beginning of a decimal
integer substring of length if the endpoint pointer is not NULL. The
endpoint is set to the end of the numeric substring. The integer can be
signed or unsigned and is assumed to be expressed in decimal notation. If
the substring does not contain a numeric value, these calls return zero and
set the endpoint to zero .

Calls are provided for Int, Int32, Int16, UInt, UInt32 and UInt16. These
versions cast the result of the corresponding Int32 or UInt32 calls and do not
signal over/underflows.

See also

 STR_GetDec..., STR_SubGetHex..., STR_SubGetRadix...,
STR_SubGetDouble

SubGetHex...

Returns the integer value found at the beginning of a hexadecimal integer
substring.

Int STR_SubGetHexInt(CStr s, StrIVal l, StrIValPtr lenp);

Int16 STR_SubGetHexInt16(CStr s, StrIVal l, StrIValPtr lenp);

Int32 STR_SubGetHexInt32(CStr s, StrIVal l, StrIValPtr lenp);

UInt STR_SubGetHexUInt(CStr s, StrIVal l, StrIValPtr lenp);

UInt16 STR_SubGetHexUInt16(CStr s, StrIVal l, StrIValPtr lenp);

UInt32 STR_SubGetHexUInt32(CStr s, StrIVal l, StrIValPtr lenp);

These functions return the integer value found at the beginning of a
hexadecimal integer substring of length length if the endpoint pointer is not
NULL. The endpoint is set to the end of the numeric substring. The integer
can be signed or unsigned and is assumed to be expressed in hexadecimal
notation. If the substring does not contain a numeric value, these calls return
zero and set the endpoint to zero .

Calls are provided for Int, Int32, Int16, UInt, UInt32 and UInt16. These
versions cast the result of the corresponding Int32 or UInt32 calls and do not
signal over/underflows.

See also

 STR_GetHex..., STR_SubGetDec..., STR_SubGetRadix...,
STR_SubGetDouble

SubGetRadix...

Returns the integer value found at the beginning of an integer substring.
472 C Programmer’s Guide

Formating the Numeric Values
Int STR_SubGetRadixInt(CStr s, StrIVal l, Int radix, StrIValPtr lenp);

Int16 STR_SubGetRadixInt16(CStr s, StrIVal l, Int radix, StrIValPtr lenp);

Int32 STR_SubGetRadixInt32(CStr s, StrIVal l, Int radix, StrIValPtr lenp);

UInt STR_SubGetRadixUInt(CStr s, StrIVal l, Int radix, StrIValPtr lenp);

UInt16 STR_SubGetRadixUInt16(CStr s, StrIVal l, Int radix, StrIValPtr lenp);

Int32 STR_SubGetRadixInt32(CStr s, StrIVal l, Int radix, StrIValPtr lenp);

These calls return the integer value found at the beginning of an integer
substring if the endpoint is not NULL. The radix of the integer can be a
number between 2 and 36. The integer can be signed or unsigned. The
endpoint is set to the end of the numeric substring. If the substring does not
contain a numeric value, these calls return zero and set the endpoint to zero .

Calls are provided for Int, Int32, Int16, UInt, UInt32 and UInt16. These
versions cast the result of the corresponding Int32 or UInt32 calls and do not
signal over/underflows.

See also

STR_GetRadix..., STR_SubGetDec..., STR_SubGetHex...,
STR_SubGetDouble

SubGetDouble

Returns the double real numeric value found at the beginning of a double
real substring.

Double STR_SubGetDouble(CStr s, StrIVal l, StrIValPtr lenp);

Returns the double real numeric value found at the beginning of a double
real substring of length if the endpoint is not NULL. The endptr is set to the
end of the numeric substring. If the substring does not contain a numeric
value, this call return zero and sets the endpoint to zero.

See also

STR_GetDouble, STR_SubGetHex.., STR_SubGetRadix..., STR_SubGetDec

Formating the Numeric Values

PutDec...

Converts a decimal integer into its textual representation in a string buffer.

SStrIVal STR_PutDecInt(Str buf, StrIVal size, Int i);

StrIVal STR_PutDecInt16(Str buf, StrIVal size, Int16 i);

StrIVal STR_PutDecInt32(Str buf, StrIVal size, Int32 i);

StrIVal STR_PutDecUInt(Str buf, StrIVal size, UInt i);

StrIVal STR_PutDecUInt16(Str buf, StrIVal size, UInt16 i);

StrIVal STR_PutDecUInt32(Str buf, StrIVal size, UInt32 i);

The STR_PutDec... functions convert a decimal integer into its textual
representation in a string buffer. These functions convert 8-bit, 16-bit, and
C Programmer’s Guide 473

Chapter Str Class41
32-bit decimal integers. The STR_PutDecU... functions convert unsigned
decimal integers.

See also

 STR_Put, STR_PutHex..., STR_PutRadix..., STR_PutDouble

PutHex....

Converts a hexadecimal integer into its textual representation in a string
buffer.

StrIVal STR_PutHexInt(Str buf, StrIVal size, Int i);

StrIVal STR_PutHexInt16(Str buf, StrIVal size, Int16 i);

StrIVal STR_PutHexUInt32(Str buf, StrIVal size, UInt32 i);

StrIVal STR_PutHexUInt(Str buf, StrIVal size, UInt i);

StrIVal STR_PutHexUInt16(Str buf, StrIVal size, UInt16 i);

StrIVal STR_PutHexUInt32(Str buf, StrIVal size, UInt32 i);

Converts a hexadecimal integer into its textual representation in a string
buffer. The STR_PutHexU... functions convert unsigned hexadecimal
integers. These functions convert 8-bit, 16-bit, and 32-bit hexadecimal
integers.

See also

 STR_Put, STR_PutDec..., STR_PutRadix..., STR_PutDouble

PutRadix...

Using the radix, converts an integer into its textual representation in the
string buffer.

StrIVal STR_PutRadixInt(Str buf, StrIVal size, Int radix, Int i);

StrIVal STR_PutRadixInt16(Str buf, StrIVal size, Int radix, Int16 i);

StrIVal STR_PutRadixInt32(Str buf, StrIVal size, Int radix, Int32 i);

StrIVal STR_PutRadixUInt(Str buf, StrIVal size, Int radix, UInt i);

StrIVal STR_PutRadixUInt16(Str buf, StrIVal size, Int radix, UInt16 i);

StrIVal STR_PutRadixUInt32(Str buf, StrIVal size, Int radix, UInt32 i);

Using the radix, converts an integer into its textual representation in the
string buffer. For example, STR_PutRadixInt converts 100 to "64" if the radix
is 16.

The STR_PutRadixU... functions convert unsigned hexadecimal integers.
These functions convert 8-bit, 16-bit, and 32-bit integers.

See also

 STR_Put, STR_PutDec..., STR_PutHex..., STR_PutDouble

PutDouble

Converts a double precision value into its textual representation in the
string buffer.
474 C Programmer’s Guide

Basic Conversions
StrIVal STR_PutDouble(Str buf, StrIVal size, Double d);

STR_PutDouble converts a double precision value into its textual
representation in the string buffer.

See also

STR_Put, STR_PutDec..., STR_PutHex...

Basic Conversions

AsciiUpCase

Converts a string to upper case.

void STR_AsciiUpCase(Str s);

STR_AsciiUpCase converts the ASCII characters in the string to upper case.
Non-ASCII characters are ignored. string is converted in place.

See also

 STR_AsciiUpCaseSub, STR_AsciiDownCase, STR_AsciiDownCaseSub

AsciiUpCaseSub

Converts a substring to upper case.

void STR_AsciiUpCaseSub(Str s, StrIVal l);

STR_AsciiUpCaseSub converts the ASCII characters in the substring to
upper case. Non-Ascii characters are ignored. The substring is converted in
place.

See also

STR_AsciiUpCase, STR_AsciiDownCase, STR_AsciiDownCaseSub

AsciiDownCase

Converts a string to lower case.

void STR_AsciiDownCase(Str s);

STR_AsciiDownCase converts the ASCII characters in the string to lower
case. Non-ASCII characters are ignored. string is converted in place.

See also

STR_AsciiUpCase, STR_AsciiDownCaseSub

AsciiDownCaseSub

Converts a substring to lower case.

void STR_AsciiDownCaseSub(Str s, StrIVal l);

STR_AsciiDownCaseSub converts the ASCII characters in the substring to
lower case. Non-ASCII characters are ignored. The substring is converted in
place.
C Programmer’s Guide 475

Chapter Str Class41
See also

STR_AsciiUpCase, STR_AsciiDownCase, STR_AsciiDownCaseSub

PutAsciiUpper

Same as STR_Put, but also converts the ASCII characters in the string to
upper case.

StrIVal STR_PutAsciiUpper(Str buf, StrIVal len, CStr str, StrIValPtr lenp);

Same as STR_Put, but also converts the ASCII characters in the string to
upper case. The string is converted in place. STR_PutAsciiUpper permits
ASCII conversion.

See also

 STR_PutAsciiLower, STR_PutAsciiUpperSub

PutAsciiLower

Same as STR_Put, but also converts the ASCII characters in the string to
lower case.

StrIVal STR_PutAsciiLower(Str buf, StrIVal len, CStr str, StrIValPtr lenp);

Same as STR_Put, but also converts the ASCII characters in the string to
lower case. The string is converted in place. STR_PutAsciiLower permits
ASCII conversion or simple code conversion only.

See also

STR_Put, STR_PutAsciiUpper, STR_PutAsciiLowerSub

PutAsciiUpperSub

Same as STR_PutSub, but also converts the ASCII characters in the substring
to upper case.

StrIVal STR_PutAsciiUpperSub(Str buf, StrIVal len, CStr str, StrIVal slen, StrIValPtr lenp);

Same as STR_PutSub, but also converts the ASCII characters in the substring
to upper case. The substring is converted in place. STR_PutAsciiUpperSub
permits ASCII conversion.

See also

STR_PutSub, STR_PutAsciiUpperSub

PutAsciiLowerSub

Same as STR_PutSub, but also converts a substring to lower case.

StrIVal STR_PutAsciiLowerSub(Str buf, StrIVal len, CStr str, StrIVal slen, StrIValPtr lenp);

Same as STR_PutSub, but also converts the ASCII characters in the substring
to lower case. The substring is converted in place. STR_PutAsciiLowerSub
permits ASCII conversion

See also

STR_PutSub, STR_PutAsciiUpperSub
476 C Programmer’s Guide

Loading from Resources
Loading from Resources

ResLoad
ResLoadNth

Returns a string from a StrR or StrL resource.

CStr STR_ResLoad(CStr mod, CStr res, StrIValPtr lenp);

CStr STR_ResLoadNth(CStr mod, CStr res, ArrayIVal n, StrIValPtr lenp);

Returns a string from a StrR or StrL resource. If the length pointer is not
NULL, it is set to the length of the string. If the resource does not exist, the
function signals an error.

STR_ResLoadNth returns the nth string in the resource.

See also

STR_ResFind

ResFind
ResFindNth

Finds and returns a string from a StrR or StrL resource.

CStr STR_ResFind(CStr mod, CStr res, StrIValPtr lenp);

CStr STR_ResFindNth(CStr mod, CStr res, ArrayIVal n, StrIValPtr lenp);

Finds and returns a string from a StrR or StrL resource. If the length pointer
is not NULL, it is set to the length of the string. If the resource does not exist,
the function returns NULL.

STR_ResLoadNth finds and returns the nth string in the resource.

See also

STR_ResLoad.

Conversions Between Code Types

FromCt

StrIVal STR_FromCt(Str buf, StrIVal size, NatCStr ctstr, CtCPtr ct, StrCvtCtxPtr ctx);

StrIVal STR_FromCtSub(Str buf, StrIVal size, NatCStr ctbuf, StrIVal ctslen, CtCPtr ct,
StrCvtCtxPtr ctx);

ToCt

StrIVal STR_ToCt (NatStr ctbuf, StrIVal size, CStr str, CtCPtr ct, StrCvtCtxPtr ctx);

StrIVal STR_ToCtSub(NatStr ctbuf, StrIVal size, CStr str, StrIVal slen, CtCPtr ct,
StrCvtCtxPtr ctx);

Converts `ctstr’, a `ct’ encoded string to `buf’, a Str, or `str’, a Str to `ctbuf’, a
`ct’ encoded buffer. The conventions for `buf/ctbuf’, `size’ and `len’ are the
standard ̀ Put’ conventions (see above). If ̀ ct’ is NULL, the native code type
is assumed. ̀ ctx’ may be NULL or a pointer to an StrCvtCtx structure which
C Programmer’s Guide 477

Chapter Str Class41
will be filled with the `buf’ and `str’ positions where the conversion can be
resumed after the destination buffer has been reallocated.

STR_ToCt may stop converting if `str’ contains characters which do not
belong to the `ct’ code set. In this case `ctx->FmtPos’ will be less than the
length of `str’. This will only happen if your application mixes strings
encoded in various code sets. When this happens, you should inquire the
code set of the offending character and resume conversion with a code type
which covers this code set. An alternative is to ignore offending characters
and eventually replace them with a “missing” character (i.e. ?).

FromUni

StrIVal STR_FromUni (Str buf, StrIVal size, UniCStr unistr, CharCvtSet flags,
StrCvtCtxPtr ctx);

StrIVal STR_FromUniSub(Str buf, StrIVal size, UniCStr unistr, StrIVal unilen,
CharCvtSet flags, StrCvtCtxPtr ctx);

ToUni

StrIVal STR_ToUni (UniStr unistr, StrIVal unisize, CStr str, CharCvtSet flags,
StrCvtCtxPtr ctx);

StrIVal STR_ToUniSub(UniStr unistr, StrIVal unisize, CStr str, StrIVal slen,
CharCvtSet flags, StrCvtCtxPtr ctx);

Routines to convert between internal string (Str) and UNICODE (UniStr).
The `unisize’ and `unilen’ are sizes and length in number of 16 bit integers,
not in number of bytes. The `flags’ allow to specify conversion flags to
control UNICODE specific conversion options such as precomposed vs
decomposed form, compatibility area mapping, ...

Only the UNICODE specific conversion flags are supported here. Other
types of conversions (i.e. case conversions) are only supported on the Str
type.
478 C Programmer’s Guide

Chapter
42 StrL Class 42

The StrL class implements the Open Interface string data structures and
utilities.

Technical Summary

Open Interface supports a two types of strings: standard C strings (Str) and
variable length (VStr) strings. The Str class provides the tools for standard
C strings that may or may not allow for two byte characters for use in
languages other than English.

The API is divided into tools for conversions, comparisons, concatenations,
formatting, and string queries. Many of the tools are similar to standard C
libraries, but are implemented to support C strings.

The Str class API is divided into the following categories:
■ String formatting (sprintf).
■ String length.
■ String scan (sscanf).

The string list class inherits its fields along the following path:

As a subclass of the Res (resource) class, the string list resource class inherits
the same fields defined for the resource class. The string list resource class
has no class-specific fields.

See also:

StrR and Str classes.

Class

Class

Returns a pointer to the string list class.

RClasPtr STRL_Class (void);

STRL_Class returns a pointer to a string list class data structure.

Accessing the Strings

GetLen

Returns the number of strings stored in a string list resource.

ArrayIVal STRL_GetLen(StrLCPtr stringList);

STRL_GetLen returns the number of strings stored in the string list resource
specified by strlist.
C Programmer’s Guide 479

Chapter StrL Class42
GetNthStr

Returns a string specified by index from a string list resource.

CStr STRL_GetNthStr (StrLCPtr stringList, ArrayIVal stringIndex);

STRL_GetNthStr returns a string specified by index from the string list
resource specified by strlist. The first string should be retrieved with the
index zero. If the string list resource contains N strings, the last one is
therefore specified at index N-1. It returns NULL if the resource does not
exist or the index is out of range.

See also

STRL_SetNthStr

SetNthStr

Replaces an existing string in a string list resource with a new string.

void STRL_SetNthStr(StrLPtr stringList, ArrayIVal stringIndex, CStr string);

STRL_SetNthStr substitutes a string in the string list resource specified by
strlist and index with a new string. The first string should be set with the
index zero. If the string list resource contains N strings, the last one is
therefore specified at index N-1. It returns NULL if the resource does not
exist or the string index is out of range.

See also

STRL_GetNthStr, STRL_AddStr, STRL_AddStrAtIndex

AddStr

Adds a new string to a string list resource.

void STRL_AddStr(StrLPtr stringList, CStr string);

STRL_AddStr adds string to the string list resource specified by strlist. The
new string appears last in the list of strings.

See also

STRL_AddStrAtIndex, STRL_RemoveIndex, STRL_SetNthStr

AddStrAtIndex

Inserts a new string in a string list resource at the position specified.

void STRL_AddStrAtIndex(StrLPtr stringList, ArrayIVal stringIndex, CStr string);

STRL_AddStrAtIndex adds string to the string list resource specified by
strlist. The new string’s insertion point is determined by index which
specifies the number of the string to insert the new string before.

See also

 STRL_AddStr, STRL_RemoveIndex, STRL_SetNthStr

RemoveIndex

Removes a string from a string list resource at the position specified.
480 C Programmer’s Guide

Accessing the Strings
void STRL_RemoveIndex(StrLPtr stringList, ArrayIVal stringIndex);

STRL_RemoveIndex removes a string from the string list resource specified
by strlist. Index specifies which string to remove from the list.

See also

 STRL_AddStr, STRL_AddStrAtIndex, STRL_SetNthStr

LoadNthStr

Returns a string from a string list resource by resource name and index.

CStr STRL_LoadNthStr(CStr mod, CStr res, ArrayIVal stringIndex);

STRL_LoadNthStr returns the string resource specified by the modname
and stringresname. Index specifies which string to load from the list. It fails
if the resource does not exist. It returns NULL If the index is out of the string
list range.

See also

STRL_LOADNTHSTR, STRL_FindNthStr

FindNthStr

Returns the string of a string list resource.

CStr STRL_FindNthStr(CStr mod, CStr res, ArrayIVal stringIndex);

STRL_FindNthStr returns the string resource specified by the modname
and stringresname. Index specifies which string to return from the list. It
returns NULL if the index is out of the string list range or the resource does
not exist.

See also

 STRL_FindNthStr, STRL_LoadNthStr
C Programmer’s Guide 481

Chapter StrL Class42
482 C Programmer’s Guide

Chapter
43 StrR Class 43

The StrR class implements the Open Interface string data structures and
utilities.

Technical Summary

Open Interface supports a two types of strings: standard C strings (Str) and
variable length (VStr) strings. The Str class provides the tools for standard
C strings that may or may not allow for two byte characters for use in
languages other than English.

The API is divided into tools for conversions, comparisons, concatenations,
formatting, and string queries. Many of the tools are similar to standard C
libraries, but are implemented to support C strings.

The Str class API is divided into the following categories:
■ String formatting (sprintf).
■ String length.
■ String scan (sscanf).

The string resource class inherits its fields along the following path:

Res -> StrR

As a subclass of the Res (resource) class, the string resource class inherits the
same fields defined for the resource class. The string resource class has no
class-specific fields.

See also:

StrR and Str classes.

Class

Class

Returns a pointer to the string resource class.

RClasPtr STRR_Class(void);

STRR_Class returns a pointer to a string resource class data structure.

Loading a String Resource

LoadStr

Loads the string resource by resource name.
C Programmer’s Guide 483

Chapter StrR Class43
CStr STRR_LoadStr (CStr modname, CStr resname);

STRR_LoadStr loads the string resource specified by the modname and
stringresname. It fails if the resource does not exist.

FindStr

Returns the string contained in a string resource.

CStr STRR_FindStr (CStr modname, CStr resname);

STRR_FindStr returns the string resource specified by the modname and
stringresname. It returns NULL if the resource does not exist.

Accessing Text

GetStr

Returns the string contained in a string resource.

CStr STRR_GetStr (StrRCPtr stringRes);

STRR_GetStr returns the string from the string resource specified by strres.

SetStr

Replaces the string in a string resource with a new string.

void STRR_SetStr (StrRPtr stringRes, CStr string);

STRR_SetStr substitutes the string in the string resource specified by strres
with a new string.

Accessing the Id

GetId

Returns the id of a string resource.

StrRIdVal STRR_GetId (StrRCPtr stringRes);

STRR_GetStr returns the Id contained in the string resource.

SetId

Changes the id value of a string resource.

void STRR_SetId (StrRPtr stringRes, StrRIdVal id);

STRR_SetId changes the Id contained in the string resource.
484 C Programmer’s Guide

Chapter
44 Var Class 44

This file defines the variant data type.

Type System

VarTypeEnum

Basic Types

Basic types have a direct C mapping, so their type descriptors contain all the
type information that is needed to interact with them.

Methods Description
VAR_TYPE_NONE No type. Used for initializing type tags. Equivalent to

void.

VAR_TYPE_UNSUPPORT
ED

Unsupported type. Used when there is no OA type which
matches a particular native type.

VAR_TYPE_VOID_PTR Type for a pointer to void

Methods
VAR_TYPE_BASE_INT

VAR_TYPE_BASE_UINT

VAR_TYPE_BASE_LONG

VAR_TYPE_BASE_ULONG

VAR_TYPE_BASE_FLOAT

VAR_TYPE_BASE_DOUBLE

VAR_TYPE_BASE_CHAR

VAR_TYPE_BASE_WCHAR

VAR_TYPE_BASE_BOOLEAN

VAR_TYPE_BASE_BYTE
C Programmer’s Guide 485

Chapter Var Class44
C, C++ and Corba Basic Types

ND-Specific Basic Types (Implementation Types)

ND-Specific Character-Related Types

The difference between a character code and a wide char is that in general,
a string will not be an array of character codes, whereas a wide string _is_
an array of wide chars. Moreover, depending on the encoding system, a
character code may exceed 2^16, while a wchar_t value is a 16 bits value.

Native Constructed Types

“Power” Types

Methods
VAR_TYPE_BASE_INT8

VAR_TYPE_BASE_INT16

VAR_TYPE_BASE_INT32

VAR_TYPE_BASE_INT64

VAR_TYPE_BASE_UINT8

VAR_TYPE_BASE_UINT16

VAR_TYPE_BASE_UINT32

VAR_TYPE_BASE_UINT64

Methods
VAR_TYPE_BASE_DATE

VAR_TYPE_BASE_TIME

VAR_TYPE_BASE_CURRENCY

Methods
VAR_TYPE_BASE_CHARCODE

Methods Description
VAR_TYPE_NAT_STR An array of char (regardless of code set & of the

encoding system)

VAR_TYPE_NAT_WSTR An array of wchar_t (to be defined)

Methods Description
VAR_TYPE_VAR Type for an “any”, i.e. a type that can hold a value

of any other type. Called VARIANT in a system
such as OLE2. Does not have an immediate form.

VAR_TYPE_OAOBJ Reference to an Object Access object

VAR_TYPE_NULL The variant contains a NULL value

VAR_TYPE_NULLOBJ Reference to a NULL object
486 C Programmer’s Guide

“Variant” Management
“Variant” Management

“Value” Substructure

Substructure of the “any” structure described below Forward declarations
of types needed by VAR. The following types are not defined in core yet.
They should be defined at one point.

typedef Char VARWChar;

Class

The nested classes are a hack to allow overloading based on our derived
type definitions (this hack is documented in Taligent's book, page. 105)

Conversion Methods

The caller does not care about the actual type contained within the variant,
and simply asks for a conversion (in place or not) into a given type. For each
conversion, two possibilities are given: make a call that will fail if the
conversion is not possible (standard call) or make a call that will return a
success code.

Convert
TryConvert

void VAR_Convert(VarRef var, VarTypeEnum destType);

BoolEnum VAR_TryConvert(VarRef var, VarTypeEnum destType);

Converts the type of this any to the type specified by `destType'.

ConvertToValue
TryConvertToValue

void VAR_ConvertToValue(VarRef var);

BoolEnum VAR_TryConvertToValue(VarRef var);

If this any contains a reference the method converts this any to a value
obtained by dereferencing the reference.

CopyToType
TryCopyToType

VarPtr VAR_CopyToType(VarCRef var, VarTypeEnum destType);

BoolEnum VAR_TryCopyToType(VarCRef var, VarTypeEnum destType,
VarPtrPtr valuePtr);

Returns an NDVar which contains this any converted to the type specified
by `destType'.
C Programmer’s Guide 487

Chapter Var Class44
CopyToValue
TryCopyToValue

VarPtr VAR_CopyToValue(VarCRef var);

BoolEnum VAR_TryCopyToValue(VarCRef var, VarPtr valuePtr);

If this contains a reference, the method returns an NDVar containing a
value obtained by dereferencing the reference. Otherwise returns a NDVar
which contains a copy of the value in this any.

CopyToInt
TryCopyToInt

Int VAR_CopyToInt(VarCRef var);

BoolEnum VAR_TryCopyToInt(VarCRef var, IntPtr valuePtr);

Int8 VAR_CopyToInt8(VarCRef var);

BoolEnum VAR_TryCopyToInt8(VarCRef var, Int8Ptr valuePtr);

Int16 VAR_CopyToInt16(VarCRef var);

BoolEnum VAR_TryCopyToInt16(VarCRef var, Int16Ptr valuePtr);

Int32 VAR_CopyToInt32(VarCRef var);

BoolEnum VAR_TryCopyToInt32(VarCRef var, Int32Ptr valuePtr);

Int64 VAR_CopyToInt64(VarCRef var);

BoolEnum VAR_TryCopyToInt64(VarCRef var, Int64Ptr valuePtr);

If this object contains a reference this method writes the value of `ori' into
the reference. If this object does not contain a reference an exception is
generated.

CopyToUInt
TryCopyToUInt

UInt VAR_CopyToUInt(VarCRef var);

BoolEnum VAR_TryCopyToUInt(VarCRef var, UIntPtr valuePtr);

UInt8 VAR_CopyToUInt8(VarCRef var);

BoolEnum VAR_TryCopyToUInt8(VarCRef var, UInt8Ptr valuePtr);

UInt16 VAR_CopyToUInt16(VarCRef var);

BoolEnum VAR_TryCopyToUInt16(VarCRef var, UInt16Ptr valuePtr);

UInt32 VAR_CopyToUInt32(VarCRef var);

BoolEnum VAR_TryCopyToUInt32(VarCRef var, UInt32Ptr valuePtr);

UInt64 VAR_CopyToUInt64(VarCRef var);

BoolEnum VAR_TryCopyToUInt64(VarCRef var, UInt64Ptr valuePtr);

If this object contains a reference this method writes the value of `ori' into
the reference. If this object does not contain a reference an exception is
generated.
488 C Programmer’s Guide

Conversion Methods
CopyToLong
TryCopyToLong

Long VAR_CopyToLong(VarCRef var);

BoolEnum VAR_TryCopyToLong(VarCRef var, LongPtr valuePtr);

ULong VAR_CopyToULong(VarCRef var);

BoolEnum VAR_TryCopyToULong(VarCRef var, ULongPtr valuePtr);

CopyToFloat
TryCopyToFloat

Float VAR_CopyToFloat(VarCRef var);

BoolEnum VAR_TryCopyToFloat(VarCRef var, FloatPtr valuePtr);

CopyToDouble
TryCopyToDouble

Double VAR_CopyToDouble(VarCRef var);

BoolEnum VAR_TryCopyToDouble(VarCRef var, DoublePtr valuePtr);

CopyToChar
TryCopyToChar

Char VAR_CopyToChar(VarCRef var);

BoolEnum VAR_TryCopyToChar(VarCRef var, CharPtr valuePtr);

CopyToVARWChar
TryCopyToVARWChar

VARWChar VAR_CopyToVARWChar(VarCRef var);

BoolEnum VAR_TryCopyToVARWChar(VarCRef var, VARWCharPtr valuePtr);

CopyToBoolean
TryCopyToBoolean

BoolEnum VAR_CopyToBoolean(VarCRef var);

BoolEnum VAR_TryCopyToBoolean(VarCRef var, BoolEnumPtr valuePtr);

CopyToByte
TryCopyToByte

Byte VAR_CopyToByte(VarCRef var);

BoolEnum VAR_TryCopyToByte(VarCRef var, BytePtr valuePtr);

CopyToChCode
TryCopyToChCode

ChCode VAR_CopyToChCode(VarCRef var);

BoolEnum VAR_TryCopyToChCode(VarCRef var, ChCodePtr valuePtr);
C Programmer’s Guide 489

Chapter Var Class44
CopyToStr
TryCopyToStr

Str VAR_CopyToStr(VarCRef var);

BoolEnum VAR_TryCopyToStr(VarCRef var, StrPtr valuePtr);

Caller must delete the returned Str.

CopyToVARWStr
TryCopyToVARWStr

VARWStr VAR_CopyToVARWStr(VarCRef var);

BoolEnum VAR_TryCopyToVARWStr(VarCRef var, VARWStrPtr valuePtr);

Caller must delete the returned VARWStr.

CopyToClientPtr
TryCopyToClientPtr

ClientPtr VAR_CopyToClientPtr(VarCRef var);

BoolEnum VAR_TryCopyToClientPtr(VarCRef var, ClientPtrPtr valuePtr);

Caller must NOT delete the returned ClientPtr..

Update
TryUpdate

void VAR_Update(VarRef var, VarCRef ori);

BoolEnum VAR_TryUpdate(VarRef var, VarCRef ori);

Information Methods

Clear

void VAR_Clear(VarRef var);

Empties this variant. After this call the variant will be of type
VAR_TYPE_NONE.

GetType

VarTypeEnum VAR_GetType(VarCRef var);

Returns the type contained in this variant.

ContainsRef

BoolEnum VAR_ContainsRef(VarCRef var);

Returns BOOL_TRUE if this variant contains a reference. Returns
BOOL_FALSE if this variant contains a value.

IsEmpty

BoolEnum VAR_IsEmpty(VarCRef var);

Returns BOOL_TRUE if the type of this variant is VAR_TYPE_NONE.
Returns BOOL_FALSE otherwise.
490 C Programmer’s Guide

Information Methods
IsNULL

BoolEnum VAR_IsNULL(VarCRef var);

Returns BOOL_TRUE if the type of this variant is VAR_TYPE_NULL.
Returns BOOL_FALSE otherwise.

IsNULLObj

BoolEnum VAR_IsNULLObj(VarCRef var);

Returns BOOL_TRUE if the type of this variant is VAR_TYPE_NULLOBJ.
Returns BOOL_FALSE otherwise.
C Programmer’s Guide 491

Chapter Var Class44
492 C Programmer’s Guide

Chapter
45 VarDs Class 45

This module specifies the variant data source.

Variant Data Source Value

This module implements the variant data source. A variant data source is a
data source that keeps track of a single value stored in a variant. The variant
data source can contain a value of any of the types supported by the Variant
class (see varpub.h).

The variant data source is a subclass of the pure virtual data source, and
implements specific methods to get and set the associated value.

Class

RClasPtr VARDS_Class(void);

Returns a pointer to the variant list data source resource class.

QueryValue

void VARDS_QueryValue(VarDsPtr varDs, VarPtr var);

Returns the value associated to the variant data source in `var'.

GetValue

 VarPtr VARDS_GetValue(VarDsPtr varDs);

Returns the value associated to the variant data source. The value returned
should be destructed and disposed, VARDS_QueryValue is a preferable
call.

SetValue

BoolEnum VARDS_SetValue(VarDsPtr varDs, VarPtr var);

Sets the value of the data source by internally creating an edition object and
committing the changes created through it.

void VARDSEDIT_SetValue(VarDsEditPtr edit, VarPtr var);

Sets the value of the data source edition object. Once the edition object is
committed, the value will copied into the associate variant data source.
C Programmer’s Guide 493

Chapter VarDs Class45
Notifications

DefNfy

void VARDS_DefNfy(VarDsPtr varDs, VarDsNfyEnum code);

Default notification procedure for the VarDs class

Variant Data Source

RClasPtr VarDsGetClass(void);

void VarDsConstruct(ResPtr res, RClasCPtr rclas, RClasCreateCPtr create);

void VarDsDestruct(ResPtr res);
494 C Programmer’s Guide

Chapter
46 VarGr 46

Design Overview

This module implements the graph of variant datasources. A graph of variant
datasources is a datasource that keeps track of a collection of nodes and edges
that have properties stored in variants. Each one of these variants can hold
a value of any of the types supported by the Variant class (see VARPUB.H).

The graph of variant datasources contains a collection of nodes and edges.
The nodes and edges are never accessed directly as objects. Instead, node
and edge accessors are created as pointers to nodes and edges contained by
the graph datasource. The accessors are then used in conjunction with the
graph object to operate on nodes and edges, and to set and get properties on
the nodes and edges.

The DataSource data structure is private. It is a subclass of Res.

Class

RClasPtr VARGR_Class(void);

Returns a pointer to the resource class for VarGr.

Graph Properties

Methods of the graph object associated with the graph title and number of
nodes in the graph.

Graph Title

The graph of variant datasources can have a title that views can use to
identify it.

GetTitle

CStr VARGR_GetTitle(VarGrPtr varGr);

SetTitle

BoolEnum VARGR_SetTitle(VarGrPtr varGr, CStr str);

Gets and sets the title for the graph, if any. The Set routine sets the title of
the table to “title” by internally creating and committing an edit, and returns
BOOL_TRUE if the internal edit succeeded, BOOL_FALSE if it did not.

SetTitle

void VARGREDIT_SetTitle(VarGrEditPtr edit, CStr str);

Sets the title of the graph edit object to “title.” When the edit object is
committed, the title will be copied into the graph.
C Programmer’s Guide 495

Chapter VarGr46
GetNumNodes

VarGrIndexVal VARGR_GetNumNodes(VarGrPtr varGr);

Returns the number of nodes in the graph.

GetNumRootNodes

VarGrIndexVal VARGR_GetNumRootNodes(VarGrPtr varGr);

Returns the number of root nodes in the graph. A root node is any node with
no parent.

GetNumEdges

VarGrIndexVal VARGR_GetNumEdges(VarGrPtr varGr);

Returns the number of edges in the graph.

Node and Edge Accessors

Use accessors to traverse the graph datasource for nodes and edges.

Node Accessor

The node accessor is created and manipulated completely independently of
the graph. It is a pointer to a node.

Create

VarGrNodeAccessorPtr VARGRNODEACCESSOR_Create(void);

Allocates and constructs a node accessor for navigation through nodes in a
graph datasource.

Alloc

VarGrNodeAccessorPtr VARGRNODEACCESSOR_Alloc(void);

Returns a pointer to an allocated, but not yet constructed, node accessor.
The node accessor should be constructed before being used.

Construct

void VARGRNODEACCESSOR_Construct(
VarGrNodeAccessorPtr node);

Default node-accessor construction.

ConstructCopy

void VARGRNODEACCESSOR_ConstructCopy(
VarGrNodeAccessorPtr node, VarGrNodeAccessorCPtr cnode);

Constructs the node accessor with the information obtained from “cnode.”

Destruct

void VARGRNODEACCESSOR_Destruct(VarGrNodeAccessorPtr node);

Default node-accessor destruction.
496 C Programmer’s Guide

Node and Edge Accessors
Dealloc

void VARGRNODEACCESSOR_Dealloc(VarGrNodeAccessorPtr node);

Deallocates the node accessor.

Dispose

void VARGRNODEACCESSOR_Dispose(VarGrNodeAccessorPtr node);

Disposes (destroys and deallocates) the node accessor.

Clone a node accessor

It is sometimes necessary to clone a node accessor so that its navigation state
can be transferred to a new accessor.

Clone

VarGrNodeAccessorPtr VARGRNODEACCESSOR_Clone(
VarGrNodeAccessorCPtr node);

Creates a node accessor for navigation through nodes in a graph datasource
using “node” as a template.

Edge Accessors

There is an all edge accessor that can navigate through all edges in the
graph, and there is an individual class of edge accessor for each of the three
types of edges that a node may have. From the perspective of a node, an in
edge comes from a parent, an out edge leads to a child, and an undirected
edge leads to a neighbor.

“All” Edge Accessor

Alloc

VarGrAllEdgeAccessorPtr VARGRALLEDGEACCESSOR_Alloc(void);

Returns a pointer to an allocated, but not yet constructed, edge accessor. The
edge accessor should be constructed before being used.

Alloc

void VARGRALLEDGEACCESSOR_Construct(
VarGrAllEdgeAccessorPtr edge);

Default edge-accessor construction.

ConstructCopy

void VARGRALLEDGEACCESSOR_ConstructCopy(
VarGrAllEdgeAccessorPtr edge, VarGrAllEdgeAccessorCPtr cedge);

Constructs the edge accessor with the information obtained from “cedge.”

Destruct

void VARGRALLEDGEACCESSOR_Destruct(
VarGrAllEdgeAccessorPtr edge);

Default edge-accessor destruction.
C Programmer’s Guide 497

Chapter VarGr46
Dealloc

void VARGRALLEDGEACCESSOR_Dealloc(
VarGrAllEdgeAccessorPtr edge);

Deallocates the edge accessor.

Dispose

void VARGRALLEDGEACCESSOR_Dispose(
VarGrAllEdgeAccessorPtr edge);

Disposes (destroys and deallocates) the edge accessor.

Create

VarGrAllEdgeAccessorPtr VARGRALLEDGEACCESSOR_Create(void);

Creates an edge accessor for navigation through the edges of a
graph-datasource node.

Clone an Edge Accessor

It is sometimes necessary to clone an edge accessor so that its navigation
state can be transferred to a new accessor.

Clone

VarGrAllEdgeAccessorPtr VARGRALLEDGEACCESSOR_Clone(
VarGrAllEdgeAccessorCPtr edge);

Creates an edge accessor for navigation through edges in a graph
datasource using “edge” as a template.

“In” edge accessor

CreateInEdgeAccessor

VarGrInEdgeAccessorPtr(
VARGRNODEACCESSOR_CreateInEdgeAccessor(
VarGrNodeAccessorPtr node);

Creates an edge accessor for navigation through the inwardly directed
edges of a graph-datasource node.

Alloc

VarGrInEdgeAccessorPtr VARGRINEDGEACCESSOR_Alloc(void);

Returns a pointer to an allocated, but not yet constructed, “in” edge
accessor. The “in” edge accessor should be constructed before being used.

Construct

void VARGRINEDGEACCESSOR_Construct(
VarGrInEdgeAccessorPtr edge, VarGrNodeAccessorPtr node);

Default “in” edge-accessor construction.
498 C Programmer’s Guide

Node and Edge Accessors
ConstructCopy

void VARGRINEDGEACCESSOR_ConstructCopy(
VarGrInEdgeAccessorPtr edge,
VarGrInEdgeAccessorCPtr cedge);

Constructs the “in” edge accessor with the information obtained from
“cedge.”

Destruct

void VARGRINEDGEACCESSOR_Destruct(
 VarGrInEdgeAccessorPtr edge);

Default “in” edge-accessor destruction.

Dealloc

void VARGRINEDGEACCESSOR_Dealloc(
VarGrInEdgeAccessorPtr edge);

Deallocates the “in” edge accessor.

Dispose

void VARGRINEDGEACCESSOR_Dispose(
VarGrInEdgeAccessorPtr edge);

Disposes (destroys and deallocates) the “in” edge accessor.

Create

VarGrInEdgeAccessorPtr VARGRINEDGEACCESSOR_Create(
VarGrNodeAccessorPtr node);

Creates an edge accessor for navigation through the inwardly directed
edges of a graph-datasource node.

Clone an “in” edge accessor

It is sometimes necessary to clone an “in” edge accessor so that its
navigation state can be transferred to a new accessor.

Clone

VarGrInEdgeAccessorPtr VARGRINEDGEACCESSOR_Clone(
VarGrInEdgeAccessorCPtr edge);

Creates an “in” edge accessor for navigation through edges in a graph
datasource using “edge” as a template.

“Out” Edge Accessor

CreateOutEdgeAccessor

VarGrOutEdgeAccessorPtr VARGRNODEACCESSOR_CreateOutEdgeAccessor(
VarGrNodeAccessorPtr node);

Creates an edge accessor for navigation through the outwardly directed
edges of a graph-datasource node.
C Programmer’s Guide 499

Chapter VarGr46
Alloc

VarGrOutEdgeAccessorPtr VARGROUTEDGEACCESSOR_Alloc(void);

Returns a pointer to an allocated, but not yet constructed, “out” edge
accessor. The “out” edge accessor should be constructed before being used.

Construct

void VARGROUTEDGEACCESSOR_Construct(VarGrOutEdgeAccessorPtr edge,
VarGrNodeAccessorPtr node);

Default “out” edge-accessor construction.

ConstructCopy

void VARGROUTEDGEACCESSOR_ConstructCopy(
VarGrOutEdgeAccessorPtr edge, VarGrOutEdgeAccessorCPtr cedge);

Constructs the “out” edge accessor with the information obtained from
“cedge.”

Destruct

void VARGROUTEDGEACCESSOR_Destruct(
VarGrOutEdgeAccessorPtr edge);

Default “out” edge-accessor destruction.

Dealloc

void VARGROUTEDGEACCESSOR_Dealloc(
VarGrOutEdgeAccessorPtr edge);

Deallocates the “out” edge accessor.

Dispose

void VARGROUTEDGEACCESSOR_Dispose(
VarGrOutEdgeAccessorPtr edge);

Disposes (destroys and deallocates) the “out” edge accessor.

Create

VarGrOutEdgeAccessorPtr VARGROUTEDGEACCESSOR_Create(
VarGrNodeAccessorPtr node);

Creates an edge accessor for navigation through the outwardly directed
edges of a graph-datasource node.

Clone an “Out” Edge Accessor

 It is sometimes necessary to clone an “out” edge accessor so that its
navigation state can be transferred to a new accessor.

Clone

VarGrOutEdgeAccessorPtr VARGROUTEDGEACCESSOR_Clone(
VarGrOutEdgeAccessorCPtr edge);

Creates an “out” edge accessor for navigation through edges in a graph
datasource using “edge” as a template.
500 C Programmer’s Guide

Node and Edge Accessors
Undirected Edge Accessor

CreateUndirEdgeAccessor

VarGrUndirEdgeAccessorPtr
VARGRNODEACCESSOR_CreateUndirEdgeAccessor(
VarGrNodeAccessorPtr node);

Creates an edge accessor for navigation through the undirected edges of a
graph-datasource node.

Alloc

VarGrUndirEdgeAccessorPtr
VARGRUNDIREDGEACCESSOR_Alloc(void);

Returns a pointer to an allocated, but not yet constructed, undirected edge
accessor. The undirected edge accessor should be constructed before being
used.

Construct

void VARGRUNDIREDGEACCESSOR_Construct(
VarGrUndirEdgeAccessorPtr edge,
VarGrNodeAccessorPtr node);

Default undirected-edge-accessor construction.

ConstructCopy

void VARGRUNDIREDGEACCESSOR_ConstructCopy(
VarGrUndirEdgeAccessorPtr edge,
VarGrUndirEdgeAccessorCPtr cedge);

Constructs the undirected edge accessor with the information obtained
from “cedge.”

Destruct

void VARGRUNDIREDGEACCESSOR_Destruct(
VarGrUndirEdgeAccessorPtr edge);

Default undirected-edge-accessor destruction.

Dealloc

void VARGRUNDIREDGEACCESSOR_Dealloc(
VarGrUndirEdgeAccessorPtr edge);

Deallocates the undirected edge accessor.

Dispose

void VARGRUNDIREDGEACCESSOR_Dispose(
VarGrUndirEdgeAccessorPtr edge);

Disposes (destroys and deallocates) the undirected edge accessor.

Create

VarGrUndirEdgeAccessorPtr VARGRUNDIREDGEACCESSOR_Create(
VarGrNodeAccessorPtr node);

Creates an edge accessor for navigation through the undirected edges of a
graph-datasource node.
C Programmer’s Guide 501

Chapter VarGr46
Clone an Undirected Edge Accessor

It is sometimes necessary to clone an undirected edge accessor so that its
navigation state can be transferred to a new accessor.

Clone

VarGrUndirEdgeAccessorPtr VARGRUNDIREDGEACCESSOR_Clone(
VarGrUndirEdgeAccessorCPtr edge);

Creates an undirected edge accessor for navigation through edges in a
graph datasource using “edge” as a template.

Node Accessors Navigation

This information describes how to navigate in a graph datasource with a
node accessor. The node accessor can be absolutely positioned using these
methods:
■ GoFirstRoot
■ GoNthRoot
■ GoIndexed
■ GoID

The following methods are relative to the current node the accessor is
already positioned on:
■ GoFirstParent
■ GoNthParent
■ GoFirstChild
■ GoNthChild
■ GoFirstNeighbor
■ GoNthNeighbor
■ GoNext
■ GoPrev

GoFirstRoot

void VARGRNODEACCESSOR_GoFirstRoot(
VarGrNodeAccessorPtr node);

Positions the node accessor on the first root node in the graph.

GoNthRoot

void VARGRNODEACCESSOR_GoNthRoot(
VarGrNodeAccessorPtr node, VarGrIndexVal index);

Positions the node accessor on the Nth root node identified by index
“index” in the graph.

GoIndexed

void VARGRNODEACCESSOR_GoIndexed(
VarGrNodeAccessorPtr node, VarGrIndexVal index);

Positions the node accessor on the node identified by index “index.”
502 C Programmer’s Guide

Node Accessors Navigation
GoID

void VARGRNODEACCESSOR_GoID(
VarGrNodeAccessorPtr node, VarPtr id);

Positions the node accessor on the node identified by ID “id.”

GoFirstParent

void VARGRNODEACCESSOR_GoFirstParent(
VarGrNodeAccessorPtr node);

Positions the node accessor on the first parent node of the node where it is
currently positioned.

GoNthParent

void VARGRNODEACCESSOR_GoNthParent(
VarGrNodeAccessorPtr node, VarGrIndexVal index);

Positions the node accessor on the Nth parent node identified by index
“index” of the node where it is currently positioned.

GoFirstChild

void VARGRNODEACCESSOR_GoFirstChild(
VarGrNodeAccessorPtr node);

Positions the node accessor on the first child node of the node where it is
currently positioned.

GoNthChild

void VARGRNODEACCESSOR_GoNthChild(
VarGrNodeAccessorPtr node, VarGrIndexVal index);

Positions the node accessor on the first Nth node identified by index
“index” of the node where it is currently positioned.

GoFirstNeighbor

void VARGRNODEACCESSOR_GoFirstNeighbor(
VarGrNodeAccessorPtr node);

Positions the node accessor on the first neighbor node of the node where it
is currently positioned.

GoNthNeighbor

void VARGRNODEACCESSOR_GoNthNeighbor(
VarGrNodeAccessorPtr node, VarGrIndexVal index);

Positions the node accessor on the Nth neighbor node identified by index
“index” of the node where it is currently positioned.

GoNext

void VARGRNODEACCESSOR_GoNext(VarGrNodeAccessorPtr node);

Positions the node accessor on the next node. Should be used after a
GoFirstRoot, GoFirstParent, GoFirstNeighbor, or GoFirstChild, or after a
GoNthRoot, GoNthParent, GoNthNeighbor, or GoNthChild.
C Programmer’s Guide 503

Chapter VarGr46
GoPrev

void VARGRNODEACCESSOR_GoPrev(
VarGrNodeAccessorPtr node);

Positions the node accessor on the previous node. Should be used after a
GoFirstRoot, GoFirstParent, GoFirstNeighbor, or GoFirstChild, or after a
GoNthRoot, GoNthParent, GoNthNeighbor, or GoNthChild.

Edge-Accessor Navigation

This information describes how to traverse the edges in a graph datasource
using there four varieties of edge accessors:
■ “All” Edge Accessors
■ “In” Edge Accessors
■ “Out” Edge Accessors
■ Undirected Edge Accessors

“All” Edge Accessors

The edge accessor is created from a specific node accessor and can only
navigate through the edges for the node that the accessor was positioned on
when it was created.

These methods perform navigation of the edge accessor through all the
edges in a graph datasource.

GoFirst

void VARGRALLEDGEACCESSOR_GoFirst(
VarGrAllEdgeAccessorPtr edge);

Positions the edge accessor on the first edge in the graph datasource.

GoNext

void VARGRALLEDGEACCESSOR_GoNext(
VarGrAllEdgeAccessorPtr edge);

Positions the edge accessor on the next edge in the graph datasource.

GoPrev

void VARGRALLEDGEACCESSOR_GoPrev(
VarGrAllEdgeAccessorPtr edge);

Positions the edge accessor on the previous edge in the graph datasource.

GoIndexed

void VARGRALLEDGEACCESSOR_GoIndexed(
VarGrAllEdgeAccessorPtr edge, VarGrIndexVal index);

Positions the edge accessor on the edge identified by the index “index” in
the graph datasource.
504 C Programmer’s Guide

Edge-Accessor Navigation
GoID

void VARGRALLEDGEACCESSOR_GoID(
VarGrAllEdgeAccessorPtr edge, VarPtr id);

Positions the edge accessor on the edge identified by the ID “id” in the
graph datasource.

GoBetween

void VARGRALLEDGEACCESSOR_GoBetween(
VarGrAllEdgeAccessorPtr edge,
VarGrNodeAccessorPtr source, VarGrNodeAccessorPtr target);

Positions the edge accessor on the edge between the nodes identified by the
accessors “source” and “target.”

“In” Edge Accessors

These methods perform navigation on the “in” edges of a node (the edges
coming from parent nodes).

GoFirst

void VARGRINEDGEACCESSOR_GoFirst(
VarGrInEdgeAccessorPtr edge);

Positions the edge accessor on the first edge of the node it was created for.

GoNext

void VARGRINEDGEACCESSOR_GoNext(
VarGrInEdgeAccessorPtr edge);

Positions the edge accessor on the next edge of the node it was created for.

GoPrev

void VARGRINEDGEACCESSOR_GoPrev(
VarGrInEdgeAccessorPtr edge);

Positions the edge accessor on the previous edge of the node it was created
for.

GoIndexed

void VARGRINEDGEACCESSOR_GoIndexed(
VarGrInEdgeAccessorPtr edge, VarGrIndexVal index);

Positions the edge accessor on the edge identified by the index “index” in
the node the edge accessor was created for.

GoID

void VARGRINEDGEACCESSOR_GoID(
VarGrInEdgeAccessorPtr edge, VarPtr id);

Positions the edge accessor on the edge identified by the ID “id” in the node
the edge accessor was created for.

“Out” Edge Accessors

These methods perform navigation on the “out” edges of a node (the edges
leading to child nodes).
C Programmer’s Guide 505

Chapter VarGr46
GoFirst

void VARGROUTEDGEACCESSOR_GoFirst(
VarGrOutEdgeAccessorPtr edge);

Positions the edge accessor on the first edge of the node it was created for.

GoNext

void VARGROUTEDGEACCESSOR_GoNext(
VarGrOutEdgeAccessorPtr edge);

Positions the edge accessor on the next edge of the node it was created for.

GoPrev

void VARGROUTEDGEACCESSOR_GoPrev(
VarGrOutEdgeAccessorPtr edge);

Positions the edge accessor on the previous edge of the node it was created
for.

GoIndexed

void VARGROUTEDGEACCESSOR_GoIndexed(
VarGrOutEdgeAccessorPtr edge, VarGrIndexVal index);

Positions the edge accessor on the edge identified by the index “index” in
the node the edge accessor was created for.

GoID

void VARGROUTEDGEACCESSOR_GoID(
VarGrOutEdgeAccessorPtr edge, VarPtr id);

Positions the edge accessor on the edge identified by the ID “id” in the node
the edge accessor was created for.

Undirected Edge Accessors

These methods perform navigation on the undirected edges of a node (the
edges leading to neighbor nodes).

GoFirst

void VARGRUNDIREDGEACCESSOR_GoFirst(
VarGrUndirEdgeAccessorPtr edge);

Positions the edge accessor on the first edge of the node it was created for.

GoNext

void VARGRUNDIREDGEACCESSOR_GoNext(
VarGrUndirEdgeAccessorPtr edge);

Positions the edge accessor on the next edge of the node it was created for.

GoPrev

void VARGRUNDIREDGEACCESSOR_GoPrev(
VarGrUndirEdgeAccessorPtr edge);

Positions the edge accessor on the previous edge of the node it was created
for.
506 C Programmer’s Guide

Adding and Removing Nodes
GoIndexed

void VARGRUNDIREDGEACCESSOR_GoIndexed(
VarGrUndirEdgeAccessorPtr edge, VarGrIndexVal index);

Positions the edge accessor on the edge identified by the index “index” in
the node the edge accessor was created for.

GoID

void VARGRUNDIREDGEACCESSOR_GoID(
VarGrUndirEdgeAccessorPtr edge, VarPtr id);

Positions the edge accessor on the edge identified by the ID “id” in the node
the edge accessor was created for.

Adding and Removing Nodes

Adding and removing nodes in a graph datasource using a node accessor.

AddNode

BoolEnum VARGR_AddNode(
VarGrPtr varGr, VarGrNodeAccessorPtr node);

Adds a node at the position identified by the node accessor “node.” If there
is a node already at this position, the new node will be inserted before the
existing node. An edit object is internally used for the operation.

AddNode

void VARGREDIT_AddNode(
VarGrEditPtr edit, VarGrNodeAccessorPtr node);

Adds a node at the position identified by the node accessor “node” to the
edit object. If there is a node already at this position, the new node will be
inserted before the existing node.

RemoveNode

BoolEnum VARGR_RemoveNode(
VarGrPtr varGr, VarGrNodeAccessorPtr node);

Removes a node at the position identified by the node accessor “node.” An
edit object is internally used for the operation. Returns BOOL_TRUE if the
edit was successful.

RemoveNode

void VARGREDIT_RemoveNode(
VarGrEditPtr edit, VarGrNodeAccessorPtr node);

Removes a node at the position identified by the node accessor “node” in
the edit object. When the edit object is committed, the node will be removed
from the graph.
C Programmer’s Guide 507

Chapter VarGr46
Adding and Removing Edges

Adding and removing edges in a graph datasource using two node
accessors.

AddDirEdge

BoolEnum VARGR_AddDirEdge(VarGrPtr varGr,
VarGrNodeAccessorPtr source, VarGrNodeAccessorPtr target);

Adds a directed edge from the node identified by accessor “source” to the
node identified by accessor “target.” An edit object is internally used for the
operation. Returns BOOL_TRUE if the edit was successful.

AddDirEdge

void VARGREDIT_AddDirEdge(VarGrEditPtr edit,
VarGrNodeAccessorPtr source, VarGrNodeAccessorPtr target);

Adds a directed edge from the node identified by accessor “source” to the
node identified by accessor “target” in the edit object. When the edit object
is committed, the edge will be added to the graph.

AddUndirEdge

BoolEnum VARGR_AddUndirEdge(VarGrPtr varGr,
VarGrNodeAccessorPtr node1, VarGrNodeAccessorPtr node2);

Adds an undirected edge between the node identified by accessor “node1”
and the node identified by accessor “node2.” An edit object is internally
used for the operation. Returns BOOL_TRUE if the edit was successful.

AddUndirEdge

void VARGREDIT_AddUndirEdge(VarGrEditPtr edit,
VarGrNodeAccessorPtr node1, VarGrNodeAccessorPtr node2);

Adds an undirected edge between the node identified by accessor “node1”
and the node identified by accessor “node2” in the edit object. When the edit
object is committed, the edge will be added to the graph.

RemoveEdge

BoolEnum VARGR_RemoveEdge(
VarGrPtr varGr, VarGrEdgeAccessorPtr edge);

Removes the edge identified by accessor “edge.” An edit object is internally
used for the operation. Returns BOOL_TRUE if the edit was successful.

RemoveEdge

void VARGREDIT_RemoveEdge(
VarGrEditPtr edit, VarGrEdgeAccessorPtr edge);

Removes the edge identified by accessor “edge” in the edit object. When the
edit object is committed, the edge will be removed from the graph.

RemoveEdgeBetween

BoolEnum VARGR_RemoveEdgeBetween(VarGrPtr varGr,
508 C Programmer’s Guide

Graph-Node Properties
VarGrNodeAccessorPtr source, VarGrNodeAccessorPtr target);

Removes the edge between the node identified by accessor “source” and the
node identified by accessor “target.” An edit object is internally used for the
operation. Returns BOOL_TRUE if the edit was successful.

RemoveEdgeBetween

void VARGREDIT_RemoveEdgeBetween(VarGrEditPtr edit,
VarGrNodeAccessorPtr source, VarGrNodeAccessorPtr target);

Removes the edge between the node identified by accessor “source” and the
node identified by accessor “target” in the edit object. When the edit object
is committed, the edge will be removed from the graph.

Graph-Node Properties

Using the graph and node accessors to get and set properties for nodes in
the graph datasource.

Accessor Validity

Since the node accessor can be positioned on nodes that do not exist, use the
following method to determine if the accessor is currently positioned on an
existing node (valid) or not.

IsNodeValid

BoolEnum VARGR_IsNodeValid(
VarGrPtr varGr, VarGrNodeAccessorPtr node);

Returns BOOL_TRUE if the node accessor is currently positioned on an
existing node.

AreNodesEqual

BoolEnum VARGR_AreNodesEqual(VarGrPtr varGr,
VarGrNodeAccessorPtr node1, VarGrNodeAccessorPtr node2);

Returns BOOL_TRUE if both accessors refer to the same node in the graph.

Node Counts

 Counts of parent, child, and neighbor nodes.

GetNodeNumParents

VarGrIndexVal VARGR_GetNodeNumParents(
VarGrPtr varGr, VarGrNodeAccessorPtr node);

Returns the number of parent nodes for the node identified by accessor
“node.”

GetNodeNumChildren

VarGrIndexVal VARGR_GetNodeNumChildren(
VarGrPtr varGr, VarGrNodeAccessorPtr node);

Returns the number of child nodes for the node identified by accessor
“node.”
C Programmer’s Guide 509

Chapter VarGr46
GetNodeNumNeighbors

VarGrIndexVal VARGR_GetNodeNumNeighbors(
VarGrPtr varGr, VarGrNodeAccessorPtr node);

Returns the number of neighbor nodes for the node identified by accessor
“node.”

Node ID

Each node in the graph has an ID that can be used to quickly access any
given node in the graph. IDs are not required to be set for nodes in the
graph.

QueryNodeID

void VARGR_QueryNodeID(VarGrPtr varGr,
VarGrNodeAccessorPtr node, VarPtr value);

Returns the ID of the node referenced by node accessor “node” into the
variant “value.”

GetNodeID

VarPtr VARGR_GetNodeID(
VarGrPtr varGr, VarGrNodeAccessorPtr node);

SetNodeID

BoolEnum VARGR_SetNodeID(VarGrPtr varGr,
VarGrNodeAccessorPtr node, VarPtr value);

Gets and sets the ID for the node in the variant graph datasource. The caller
is responsible for disposing of the variant returned from the get method.
The set method sets the ID of the node to “value” by internally creating and
committing an edit, and returns BOOL_TRUE if it succeeded.

SetNodeID

void VARGREDIT_SetNodeID(VarGrEditPtr edit,
VarGrNodeAccessorPtr node, VarPtr value);

Sets the ID of the node referenced by node accessor “node” to “value” in the
graph edit object. When the edit object is committed, the ID will be copied
into the graph.

Node Value

Each node in the graph has a value.

QueryNodeValue

void VARGR_QueryNodeValue(VarGrPtr varGr,
VarGrNodeAccessorPtr node, VarPtr value);

Returns the value of the node referenced by node accessor “node” into the
variant “value.”
510 C Programmer’s Guide

Graph-Node Properties
GetNodeValue

VarPtr VARGR_GetNodeValue(
VarGrPtr varGr, VarGrNodeAccessorPtr node);

SetNodeValue

BoolEnum VARGR_SetNodeValue(VarGrPtr varGr,
VarGrNodeAccessorPtr node, VarPtr value);

Gets and sets the value for the node in the variant graph datasource. The
caller is responsible for disposing of the variant returned from the get
method. The set method sets the value of the node to “value” by internally
creating and committing an edit, and returns BOOL_TRUE if it succeeded.

SetNodeValue

void VARGREDIT_SetNodeValue(VarGrEditPtr edit,
VarGrNodeAccessorPtr node, VarPtr value);

Sets the value of the node referenced by node accessor “node” to “value” in
the graph edit object. When the edit object is committed, the value will be
copied into the graph.

Node XOrigin

Each node in the graph has an x origin.

QueryNodeXOrigin

void VARGR_QueryNodeXOrigin(VarGrPtr varGr,
VarGrNodeAccessorPtr node, VarPtr value);

Returns the x origin of the node referenced by node accessor “node” into the
variant “value.”

GetNodeXOrigin

VarPtr VARGR_GetNodeXOrigin(
VarGrPtr varGr, VarGrNodeAccessorPtr node);

SetNodeXOrigin

BoolEnum VARGR_SetNodeXOrigin(VarGrPtr varGr,
VarGrNodeAccessorPtr node, VarPtr xorigin);

Gets and sets the x origin for the node in the variant graph datasource. The
caller is responsible for disposing of the variant returned from the get
method. The set method sets the x origin of the node to “xorigin” by
internally creating and committing an edit, and returns BOOL_TRUE if it
succeeded.

SetNodeXOrigin

void VARGREDIT_SetNodeXOrigin(VarGrEditPtr edit,
VarGrNodeAccessorPtr node, VarPtr xorigin);

Sets the x origin of the node referenced by node accessor “node” to
“xorigin” in the graph edit object. When the edit object is committed, the x
origin will be copied into the graph.
C Programmer’s Guide 511

Chapter VarGr46
Node YOrigin

Each node in the graph has a y origin.

QueryNodeYOrigin

void VARGR_QueryNodeYOrigin(VarGrPtr varGr,
VarGrNodeAccessorPtr node, VarPtr value);

Returns the y origin of the node referenced by node accessor “node” into the
variant “value.”

GetNodeYOrigin

VarPtr VARGR_GetNodeYOrigin(
VarGrPtr varGr, VarGrNodeAccessorPtr node);

SetNodeYOrigin

BoolEnum VARGR_SetNodeYOrigin(VarGrPtr varGr,
VarGrNodeAccessorPtr node, VarPtr yorigin);

Gets and sets the y origin for the node in the variant graph datasource. The
caller is responsible for disposing of the variant returned from the get
method. The set method sets the y origin of the node to “yorigin” by
internally creating and committing an edit, and returns BOOL_TRUE if it
succeeded.

SetNodeYOrigin

void VARGREDIT_SetNodeYOrigin(VarGrEditPtr edit,
VarGrNodeAccessorPtr node, VarPtr yorigin);

Sets the y origin of the node referenced by node accessor “node” to
“yorigin” in the graph edit object. When the edit object is committed, the y
origin will be copied into the graph.

Node Height

Each node in the graph has a height.

QueryNodeHeight

void VARGR_QueryNodeHeight(VarGrPtr varGr,
VarGrNodeAccessorPtr node, VarPtr value);

Returns the height of the node referenced by node accessor “node” into the
variant “value.”

GetNodeHeight

VarPtr VARGR_GetNodeHeight(
VarGrPtr varGr, VarGrNodeAccessorPtr node);

SetNodeHeight

BoolEnum VARGR_SetNodeHeight(VarGrPtr varGr,
VarGrNodeAccessorPtr node, VarPtr height);

Gets and sets the height for the node in the variant graph datasource. The
caller is responsible for disposing of the variant returned from the get
method. The set method sets the height of the node to “height” by internally
creating and committing an edit, and returns BOOL_TRUE if it succeeded.
512 C Programmer’s Guide

Graph-Node Properties
SetNodeHeight

void VARGREDIT_SetNodeHeight(VarGrEditPtr edit,
VarGrNodeAccessorPtr node, VarPtr height);

Sets the height of the node referenced by node accessor “node” to “height”
in the graph edit object. When the edit object is committed, the height will
be copied into the graph.

Node Width

Each node in the graph has a width.

QueryNodeWidth

void VARGR_QueryNodeWidth(VarGrPtr varGr,
VarGrNodeAccessorPtr node, VarPtr value);

Returns the width of the node referenced by node accessor “node” into the
variant “value.”

GetNodeWidth

VarPtr VARGR_GetNodeWidth(
VarGrPtr varGr, VarGrNodeAccessorPtr node);

SetNodeWidth

BoolEnum VARGR_SetNodeWidth(VarGrPtr varGr,
VarGrNodeAccessorPtr node, VarPtr width);

Gets and sets the width for the node in the variant graph datasource. The
caller is responsible for disposing of the variant returned from the get
method. The set method sets the width of the node to “width” by internally
creating and committing an edit, and returns BOOL_TRUE if it succeeded.

SetNodeWidth

void VARGREDIT_SetNodeWidth(VarGrEditPtr edit,
VarGrNodeAccessorPtr node, VarPtr width);

Sets the width of the node referenced by node accessor “node” to “width”
in the graph edit object. When the edit object is committed, the width will
be copied into the graph.

Additional Node Properties

Each node in the graph can have an arbitrary number of additional
properties accessed by a key string.

QueryNodeProperty

void VARGR_QueryNodeProperty(VarGrPtr varGr,
VarGrNodeAccessorPtr node, CStr key, VarPtr value);

Returns the property of the node referenced by node accessor “node” with
the string “key” into the variant “value.”
C Programmer’s Guide 513

Chapter VarGr46
GetNodeProperty

VarPtr VARGR_GetNodeProperty(VarGrPtr varGr,
VarGrNodeAccessorPtr node, CStr key);

SetNodeProperty

BoolEnum VARGR_SetNodeProperty(VarGrPtr varGr,
VarGrNodeAccessorPtr node, CStr key, VarPtr value);

Gets and sets the properties accessed by “key” for the node in the variant
graph datasource. The caller is responsible for disposing of the variant
returned from the get method. The set method sets the property for “key”
of the node to “value” by internally creating and committing an edit, and
returns BOOL_TRUE if it succeeded.

SetNodeProperty

void VARGREDIT_SetNodeProperty(VarGrEditPtr edit,
VarGrNodeAccessorPtr node, CStr key, VarPtr value);

Sets the property accessed by “key” of the node referenced by node accessor
“node” to “value” in the graph edit object. When the edit object is
committed, the property value will be copied into the graph.

RemoveNodeProperty

BoolEnum VARGR_RemoveNodeProperty(VarGrPtr varGr,
VarGrNodeAccessorPtr node, CStr key);

Removes the property accessed by “key” of the node referenced by the node
accessor “node” in the variant graph datasource. The remove method
internally creates and commits an edit, and returns BOOL_TRUE if it
succeeded.

RemoveNodeProperty

void VARGREDIT_RemoveNodeProperty(VarGrEditPtr edit,
VarGrNodeAccessorPtr node, CStr key);

Removes the property accessed by “key” of the node referenced by node
accessor “node” in the graph edit object. When the edit object is committed,
the property will be removed from the graph.

Graph-Edge Properties

Using the graph and edge accessors to get and set properties for edges in the
graph datasource.

Accessor Validity

Since the edge accessor can be positioned on nodes that do not exist, use the
following method to determine if the accessor is currently positioned on an
existing (valid) edge or not.
514 C Programmer’s Guide

Graph-Edge Properties
IsEdgeValid

BoolEnum VARGR_IsEdgeValid(VarGrPtr varGr,
VarGrEdgeAccessorPtr edge);

Returns BOOL_TRUE if the edge accessor is currently positioned on an
existing edge.

AreEdgesEqual

BoolEnum VARGR_AreNodesEqual(VarGrPtr varGr,
VarGrEdgeAccessorPtr edge1, VarGrEdgeAccessorPtr edge2);

Returns BOOL_TRUE if both accessors refer to the same edge in the graph.

Edge Count

The count of edges for the type of the edge accessor.

GetEdgeNumEdges

VarGrIndexVal VARGR_GetEdgeNumEdges(
VarGrPtr varGr, VarGrEdgeAccessorPtr edge);

Returns the number of edges for the edge accessor “edge.”

Edge ID

Each edge in the graph has a ID that can be used to quickly access any given
edge in the graph. IDs are not required to be set for edges in the graph.

QueryEdgeID

void VARGR_QueryEdgeID(VarGrPtr varGr,
VarGrEdgeAccessorPtr edge, VarPtr value);

Returns the ID of the edge referenced by edge accessor “edge” into the
variant “value.”

GetEdgeID

VarPtr VARGR_GetEdgeID(
VarGrPtr varGr, VarGrEdgeAccessorPtr edge);

SetEdgeID

BoolEnum VARGR_SetEdgeID(VarGrPtr varGr,
VarGrEdgeAccessorPtr edge, VarPtr value);

Gets and sets the ID for the edge in the variant graph datasource. The caller
is responsible for disposing of the variant returned from the get method.
The set method sets the ID of the edge to “value” by internally creating and
committing an edit, and returns BOOL_TRUE if it succeeded.

SetEdgeID

void VARGREDIT_SetEdgeID(VarGrEditPtr edit,
VarGrEdgeAccessorPtr edge, VarPtr value);

Sets the ID of the edge referenced by edge accessor “edge” to “value” in the
graph edit object. When the edit object is committed, the ID will be copied
into the graph.
C Programmer’s Guide 515

Chapter VarGr46
Edge Value

Each edge in the graph has a value.

QueryEdgeValue

void VARGR_QueryEdgeValue(VarGrPtr varGr,
VarGrEdgeAccessorPtr edge, VarPtr value);

Returns the value of the edge referenced by edge accessor “edge” into the
variant “value.”

GetEdgeValue

VarPtr VARGR_GetEdgeValue(
VarGrPtr varGr, VarGrEdgeAccessorPtr edge);

SetEdgeValue

BoolEnum VARGR_SetEdgeValue(VarGrPtr varGr,
VarGrEdgeAccessorPtr edge, VarPtr value);

Gets and sets the value for the edge in the variant graph datasource. The
caller is responsible for disposing of the variant returned from the get
method. The set method sets the value of the edge to “value” by internally
creating and committing an edit, and returns BOOL_TRUE if it succeeded.

SetEdgeValue

void VARGREDIT_SetEdgeValue(VarGrEditPtr edit,
VarGrEdgeAccessorPtr edge, VarPtr value);

Sets the value of the edge referenced by edge accessor “edge” to “value” in
the graph edit object. When the edit object is committed, the value will be
copied into the graph.

Directed Edge

Each edge in the graph can be directed or not.

GetEdgeIsDirected

BoolEnum VARGR_GetEdgeIsDirected(
VarGrPtr varGr, VarGrEdgeAccessorPtr edge);

SetEdgeIsDirected

BoolEnum VARGR_SetEdgeIsDirected(VarGrPtr varGr,
VarGrEdgeAccessorPtr edge, BoolEnum directed);

Sets the “directedness” of the edge referenced by edge accessor “edge” to
“directed” in the graph edit object. When the edit object is committed, the
directed value will be copied into the graph.

SetEdgeIsDirected

void VARGREDIT_SetEdgeIsDirected(VarGrEditPtr edit,
VarGrEdgeAccessorPtr edge, BoolEnum directed);

Sets the “directedness” of the edge referenced by edge accessor “edge” to
“directed” in the graph edit object. When the edit object is committed, the
directed value will be copied into the graph.
516 C Programmer’s Guide

Graph-Edge Properties
Additional Edge Properties

Each edge in the graph can have an arbitrary number of additional
properties accessed by a key string.

QueryEdgeProperty

void VARGR_QueryEdgeProperty(VarGrPtr varGr,
VarGrEdgeAccessorPtr edge, CStr key, VarPtr value);

Returns the property of the edge referenced by edge accessor “edge” with
the string “key” into the variant “value.”

GetEdgeProperty

VarPtr VARGR_GetEdgeProperty(VarGrPtr varGr,
VarGrEdgeAccessorPtr edge, CStr key);

SetEdgeProperty

BoolEnum VARGR_SetEdgeProperty(VarGrPtr varGr,
VarGrEdgeAccessorPtr edge, CStr key, VarPtr value);

Gets and sets the properties accessed by “key” for the edge in the variant
graph datasource. The caller is responsible for disposing of the variant
returned from the get method. The set method sets the property for “key”
of the edge to “value” by internally creating and committing an edit, and
returns BOOL_TRUE if it succeeded.

SetEdgeProperty

void VARGREDIT_SetEdgeProperty(VarGrEditPtr edit,
VarGrEdgeAccessorPtr edge, CStr key, VarPtr value);

Sets the property accessed by “key” of the edge referenced by edge accessor
“edge” to “value” in the graph edit object. When the edit object is
committed, the property value will be copied into the graph.

RemoveEdgeProperty

BoolEnum VARGR_RemoveEdgeProperty(VarGrPtr varGr,
VarGrEdgeAccessorPtr edge, CStr key);

Removes the property accessed by “key” of the edge referenced by the edge
accessor “edge” in the variant graph datasource. The remove method
internally creates and commits an edit, and returns BOOL_TRUE if it
succeeded.

RemoveEdgeProperty

void VARGREDIT_RemoveEdgeProperty(VarGrEditPtr edit,
VarGrEdgeAccessorPtr edge, CStr key);

Removes the property accessed by “key” of the edge referenced by edge
accessor “edge” in the graph edit object. When the edit object is committed,
the property will be removed from the graph.
C Programmer’s Guide 517

Chapter VarGr46
Node-Relationship Discovery

Using two node accessors to determine if the nodes they reference have a
parent/child or neighbor relationship.

IsChildNode

BoolEnum VARGR_IsChildNode(VarGrPtr varGr,
VarGrNodeAccessorPtr source, VarGrNodeAccessorPtr target);

Returns BOOL_TRUE if “target” is a child of “source.”

IsParentNode

BoolEnum VARGR_IsParentNode(VarGrPtr varGr,
VarGrNodeAccessorPtr node, VarGrNodeAccessorPtr target);

Returns BOOL_TRUE if “target” is a parent of “source.”

IsNeighborNode

BoolEnum VARGR_IsNeighborNode(VarGrPtr varGr,
VarGrNodeAccessorPtr node, VarGrNodeAccessorPtr target);

Returns BOOL_TRUE if “target” is a neighbor of “source.”

Getting and Setting the Cursors

Methods of the graph object to get and set the node and edge cursors.

A graph of variant datasources keeps track of two cursors that can be on any
node and edge. No special action is attached to the action of moving the
cursor around in the datasource itself.

GetNodeCursor

VarGrNodeAccessorPtr VARGR_GetNodeCursor(VarGrPtr varGr);

SetNodeCursor

BoolEnum VARGR_SetNodeCursor(
VarGrPtr varGr, VarGrNodeAccessorPtr node);

These routines get and set the current position of the node cursor. The caller
is responsible for disposing of the accessor returned from the get method.
The Set routine sets the graph node cursor to “node” by internally creating
and committing an edit object. It returns BOOL_TRUE if the internal edit
could take place, BOOL_FALSE if not.

SetNodeCursor

void VARGREDIT_SetNodeCursor(
VarGrEditPtr edit, VarGrNodeAccessorPtr node);

Sets the graph node cursor in the edit object to “node.” When the edit object
is committed, the node cursor of the graph will reflect the same value.
518 C Programmer’s Guide

Convenience Methods
GetEdgeCursor

VarGrEdgeAccessorPtr VARGR_GetEdgeCursor(VarGrPtr varGr);

SetEdgeCursor

BoolEnum VARGR_SetEdgeCursor(
VarGrPtr varGr, VarGrEdgeAccessorPtr edge);

These routines get and set the current object of the edge cursor. The caller is
responsible for disposing of the accessor returned from the get method. The
Set routine sets the graph edge cursor to “edge” by internally creating and
committing an edit object. It returns BOOL_TRUE if the internal edit could
take place, BOOL_FALSE if not.

SetEdgeCursor

void VARGREDIT_SetEdgeCursor(
VarGrEditPtr edit, VarGrEdgeAccessorPtr edge);

Sets the graph edge cursor in the edit object to “edge.” When the edit object
is committed, the edge cursor of the graph will reflect the same value.

Convenience Methods

Methods of the graph and graph edit objects to start an edit on the graph,
start an edit on nodes or edges in the graph, and query the cyclic result of
adding a edge.

StartNodeEdit

VarGrEditPtr VARGR_StartNodeEdit(
VarGrPtr varGr, VarGrNodeAccessorPtr node);

Opens an edit on the node identified by accessor “node,” and all operations
are done through the edit object returned by this call.

StartEdgeEdit

VarGrEditPtr VARGR_StartEdgeEdit(
VarGrPtr varGr, VarGrEdgeAccessorPtr edge);

Opens an edit on the edge identified by accessor “edge,” and all operations
are done through the edit object returned by this call.

QueryCyclicResult

BoolEnum VARGR_QueryCyclicResult(VarGrPtr varGr,
VarGrNodeAccessorPtr source, VarGrNodeAccessorPtr target);

Returns BOOL_TRUE if a directed edge added from node “source” to node
“target” would result in a cyclic graph. A cyclic graph contains at least one
path that starts and ends at the same node.

Advanced Objects and Methods

Methods and objects that are not necessary for most operations on the graph
object. Useful when subclassing the graph datasource.
C Programmer’s Guide 519

Chapter VarGr46
Node and Edge Objects

Given an accessor for a node or edge, you can retrieve a node or edge object
from the graph.

GetNode

VarGrNodePtr VARGR_GetNode(
VarGrPtr varGr, VarGrNodeAccessorPtr node);

Get a node from the graph. Nodes are retrieved from the graph by using a
node accessor.

GetEdge

VarGrEdgePtr VARGR_GetEdge(
VarGrPtr varGr, VarGrEdgeAccessorPtr edge);

Get an edge from the graph. Edges are retrieved from the graph by using an
edge accessor.

Node-Object Properties

GetNumChildren

VarGrIndexVal VARGRNODE_GetNumChildren(VarGrNodePtr node);

Returns the number of child nodes for the node.

GetChildNode

VarGrNodePtr VARGRNODE_GetChildNode(
VarGrNodePtr node, VarGrIndexVal index);

Returns the child node object corresponding to the index “index.” The
returned object should be destructed and disposed of by the caller.

GetNumParents

VarGrIndexVal VARGRNODE_GetNumParents(VarGrNodePtr node);

Returns the number of parent nodes for the node.

GetParentNode

VarGrNodePtr VARGRNODE_GetParentNode(
VarGrNodePtr node, VarGrIndexVal index);

Returns the parent-node object corresponding to the index “index.” The
returned object should be destructed and disposed of by the caller.

GetNumNeighbors

VarGrIndexVal VARGRNODE_GetNumNeighbors(VarGrNodePtr node);

Returns the number of neighbor nodes for the node.

GetNeighborNode

VarGrNodePtr VARGRNODE_GetNeighborNode(
VarGrNodePtr node, VarGrIndexVal index);

Returns the neighbor-node object corresponding to the index “index.” The
returned object should be destructed and disposed of by the caller.
520 C Programmer’s Guide

Advanced Objects and Methods
GetOutEdge

VarGrEdgePtr VARGRNODE_GetOutEdge(
VarGrNodePtr node, VarGrIndexVal index);

Returns the outgoing edge object corresponding to the index “index.” The
returned object should be destructed and disposed of by the caller.

GetInEdge

VarGrEdgePtr VARGRNODE_GetInEdge(
VarGrNodePtr node, VarGrIndexVal index);

Returns the incoming edge object corresponding to the index “index.” The
returned object should be destructed and disposed of by the caller.

GetUndirEdge

VarGrEdgePtr VARGRNODE_GetUndirEdge(
VarGrNodePtr node, VarGrIndexVal index);

Returns the undirected edge object corresponding to the index “index.” The
returned object should be destructed and disposed of by the caller.

Node ID

Each node in the graph has an ID that can be used to quickly access any
given node in the graph. IDs are not required to be set for nodes in the
graph.

GetID

VarPtr VARGRNODE_GetID(VarGrNodePtr node);

SetID

BoolEnum VARGRNODE_SetID(VarGrNodePtr node, VarPtr value);

Gets and sets the ID for the node. The caller is responsible for disposing of
the variant returned from the get method. The set method sets the ID of the
node to “value” by internally creating and committing an edit, and returns
BOOL_TRUE if it succeeded.

SetID

void VARGRNODEEDIT_SetID(VarGrNodeEditPtr edit, VarPtr value);

Sets the ID of the node to “value” in the graph-node edit object. When the
edit object is committed, the ID will be copied into the node.

Node Value

Each node in the graph has a value.

QueryValue

void VARGRNODE_QueryValue(VarGrNodePtr node, VarPtr value);

Returns the value of the node into the variant “value.”
C Programmer’s Guide 521

Chapter VarGr46
GetValue

VarPtr VARGRNODE_GetValue(VarGrNodePtr node);

SetValue

BoolEnum VARGRNODE_SetValue(VarGrNodePtr node, VarPtr value);

Gets and sets the value for the node. The caller is responsible for disposing
of the variant returned from the get method. The set method sets the value
of the node to “value” by internally creating and committing an edit, and
returns BOOL_TRUE if it succeeded.

SetValue

void VARGRNODEEDIT_SetValue(
VarGrNodeEditPtr edit, VarPtr value);

Sets the value of the node to “value” in the graph-node edit object. When the
edit object is committed, the value will be copied into the node object.

Node XOrigin

Each node in the graph has an x origin.

GetXOrigin

VarPtr VARGRNODE_GetXOrigin(VarGrNodePtr node);

SetXOrigin

BoolEnum VARGRNODE_SetXOrigin(
VarGrNodePtr node, VarPtr xorigin);

Gets and sets the x origin for the node. The caller is responsible for disposing
of the variant returned from the get method. The set method sets the x origin
of the node to “xorigin” by internally creating and committing an edit, and
returns BOOL_TRUE if it succeeded.

SetXOrigin

void VARGRNODEEDIT_SetXOrigin(
VarGrNodeEditPtr edit, VarPtr xorigin);

Sets the x origin of the node in the graph-node edit object. When the edit
object is committed, the x origin will be copied into the node.

Node YOrigin

Each node in the graph has a y origin.

GetYOrigin

VarPtr VARGRNODE_GetYOrigin(VarGrNodePtr node);

SetYOrigin

BoolEnum VARGRNODE_SetYOrigin(
VarGrNodePtr node, VarPtr yorigin);

Gets and sets the y origin for the node. The caller is responsible for disposing
of the variant returned from the get method. The set method sets the y origin
522 C Programmer’s Guide

Advanced Objects and Methods
of the node to “yorigin” by internally creating and committing an edit, and
returns BOOL_TRUE if it succeeded.

SetYOrigin

void VARGRNODEEDIT_SetYOrigin(
VarGrNodeEditPtr edit, VarPtr yorigin);

Sets the y origin of the node in the graph-node edit object. When the edit
object is committed, the y origin will be copied into the node.

Node Height

Each node in the graph has a height.

GetHeight

VarPtr VARGRNODE_GetHeight(VarGrNodePtr node);

SetHeight

BoolEnum VARGRNODE_SetHeight(
VarGrNodePtr node, VarPtr height);

Gets and sets the height for the node. The caller is responsible for disposing
of the variant returned from the get method. The set method sets the height
of the node to “height” by internally creating and committing an edit, and
returns BOOL_TRUE if it succeeded.

SetHeight

void VARGRNODEEDIT_SetHeight(
VarGrNodeEditPtr edit, VarPtr height);

Sets the height of the node to “height” in the node edit object. When the edit
object is committed, the height will be copied into the node.

Node Width

Each node in the graph has a width.

GetWidth

VarPtr VARGRNODE_GetWidth(VarGrNodePtr node);

SetWidth

BoolEnum VARGRNODE_SetWidth(VarGrNodePtr node, VarPtr width);

Gets and sets the width for the node. The caller is responsible for disposing
of the variant returned from the get method. The set method sets the width
of the node to “width” by internally creating and committing an edit, and
returns BOOL_TRUE if it succeeded.

SetWidth

void VARGRNODEEDIT_SetWidth(
VarGrNodeEditPtr edit, VarPtr width);

Sets the width of the node to “width” in the node edit object. When the edit
object is committed, the width will be copied into the node.
C Programmer’s Guide 523

Chapter VarGr46
Additional Node Properties

Each node in the graph can have an arbitrary number of additional
properties accessed by a key string.

GetProperty

VarPtr VARGRNODE_GetProperty(VarGrNodePtr node, CStr key);

SetProperty

BoolEnum VARGRNODE_SetProperty(
VarGrNodePtr node, CStr key, VarPtr value);

Gets and sets the properties accessed by “key” for the node. The caller is
responsible for disposing of the variant returned from the get method. The
set method sets the property for “key” of the node to “value” by internally
creating and committing an edit, and returns BOOL_TRUE if it succeeded.

SetProperty

void VARGRNODEEDIT_SetProperty(
VarGrNodeEditPtr edit, CStr key, VarPtr value);

Sets the property accessed by “key” of the node to “value” in the node edit
object. When the edit object is committed, the property value will be copied
into the node.

RemoveProperty

BoolEnum VARGRNODE_RemoveProperty(
VarGrNodePtr node, CStr key);

Removes the property accessed by “key” of the node. The remove method
internally creates and commits an edit, and returns BOOL_TRUE if it
succeeded.

RemoveProperty

void VARGRNODEEDIT_RemoveProperty(
VarGrNodeEditPtr edit, CStr key);

Removes the property accessed by “key” of the node in the edit object.
When the edit object is committed, the property will be removed from the
node object.

Edge-Object Properties

GetFromNode

VarGrNodePtr VARGREDGE_GetFromNode(VarGrEdgePtr edge);

Returns the “from” node where the edge originates. If the edge is
undirected, this is the node that was given first when the edge was added.

GetToNode

VarGrNodePtr VARGREDGE_GetToNode(VarGrEdgePtr edge);

Returns the “to” node where the edge terminates. If the edge is undirected,
this is the node that was given last when the edge was added.
524 C Programmer’s Guide

Advanced Objects and Methods
Edge ID

Each edge in the graph has an ID that can be used to quickly access any
given edge in the graph. IDs are not required to be set for edges in the graph.

GetID

VarPtr VARGREDGE_GetID(VarGrEdgePtr edge);

SetID

BoolEnum VARGREDGE_SetID(VarGrEdgePtr edge, VarPtr value);

Gets and sets the ID for the edge in the variant graph datasource. The caller
is responsible for disposing of the variant returned from the get method.
The set method sets the ID of the edge to “value” by internally creating and
committing an edit, and returns BOOL_TRUE if it succeeded.

SetID

void VARGREDGEEDIT_SetID(VarGrEdgeEditPtr edit, VarPtr value);

Sets the ID of the edge to “value” in the edge edit object. When the edit
object is committed, the ID will be copied into the edge.

Edge Value

Each edge in the graph has a value.

QueryValue

void VARGREDGE_QueryValue(VarGrEdgePtr edge, VarPtr value);

Returns the value of the edge into the variant “value.”

GetValue

VarPtr VARGREDGE_GetValue(VarGrEdgePtr varGr);

SetValue

BoolEnum VARGREDGE_SetValue(VarGrEdgePtr edge, VarPtr value);

Gets and sets the value for the edge. The caller is responsible for disposing
of the variant returned from the get method. The set method sets the value
of the edge to “value” by internally creating and committing an edit, and
returns BOOL_TRUE if it succeeded.

SetValue

void VARGREDGEEDIT_SetValue(VarGrEdgeEditPtr edit, VarPtr value);

Sets the value of the edge to “value” in the edge edit object. When the edit
object is committed, the value will be copied into the edge.

Directed Edge

Each edge in the graph can be directed or not.
C Programmer’s Guide 525

Chapter VarGr46
GetIsDirected

BoolEnum VARGREDGE_GetIsDirected(VarGrEdgePtr edge);

SetIsDirected

BoolEnum VARGREDGE_SetIsDirected(
VarGrEdgePtr edge, BoolEnum directed);

Sets the “directedness” of the edge to “directed” in the edge edit object.
When the edit object is committed, the directed value will be copied into the
edge object.

SetIsDirected

void VARGREDGEEDIT_SetIsDirected(
VarGrEdgeEditPtr edit, BoolEnum directed);

Sets the “directedness” of the edge to “directed” in the edge edit object.
When the edit object is committed, the directed value will be copied into the
edge object.

Additional Edge Properties

Each edge in the graph can have an arbitrary number of additional
properties accessed by a key string.

GetProperty

VarPtr VARGREDGE_GetProperty(VarGrEdgePtr edge, CStr key);

SetProperty

BoolEnum VARGREDGE_SetProperty(
VarGrEdgePtr edge, CStr key, VarPtr value);

Gets and sets the properties accessed by “key” for the edge. The caller is
responsible for disposing of the variant returned from the get method. The
set method sets the property for “key” of the edge to “value” by internally
creating and committing an edit, and returns BOOL_TRUE if it succeeded.

SetProperty

void VARGREDGEEDIT_SetProperty(
VarGrEdgeEditPtr edit, CStr key, VarPtr value);

Sets the property accessed by “key” to “value” in the edge edit object. When
the edit object is committed, the property value will be copied into the edge
object.

RemoveProperty

BoolEnum VARGREDGE_RemoveProperty(
VarGrEdgePtr edge, CStr key);

Removes the property accessed by “key” of the edge. The remove method
internally creates and commits an edit, and returns BOOL_TRUE if it
succeeded.
526 C Programmer’s Guide

Advanced Objects and Methods
RemoveProperty

void VARGREDGEEDIT_RemoveProperty(
VarGrEdgeEditPtr edit, CStr key);

Removes the property accessed by “key” of the edge in the edit object. When
the edit object is committed, the property will be removed from the edge
object.

Edit Objects

The low-level code for updating a variant graph datasource needs to start
an edit on the graph. Edits can be started either globally on the graph (when
adding and removing nodes, for example), or locally on a given node or
edge.

StartEdit

VarGrNodeEditPtr VARGRNODE_StartEdit(VarGrNodePtr node);

Open an edit for modifying the node. NULL will be returned if no edit could
be opened; otherwise, a constructed edit object is returned.

StartEdit

VarGrEdgeEditPtr VARGREDGE_StartEdit(VarGrEdgePtr edge);

Open an edit for modifying the edge. NULL will be returned if no edit could
be opened; otherwise, a constructed edit object is returned.

Modification Descriptions

GetMods

VarGrModsCPtr VARGR_GetMods(VarGrPtr varGr);

Get a description of the last modifications committed on the graph
datasource.

Class Operations

Create

VarGrPtr VARGR_Create(void);

Creates and constructs a variant graph datasource.
C Programmer’s Guide 527

Chapter VarGr46
528 C Programmer’s Guide

Chapter
47 VarLs Class 47

This class specifies the list of variants data source.

Design Overview

A list of variant data sources is a data source that keeps track of a list of
values that could be considered to be stored in variants. Each one of these
variants can hold a value of any of the types supported by the Variant class
(see varpub.h).

A list of variant data sources can be manipulated at several levels. At the
highest level, the list of variant data sources lets a user read values
corresponding to list entries, open editions on them, modify them either
directly or through editions.

The variant data source is a subclass of the pure virtual data source, and
implements specific methods to get and set the associated value.

Class

Class

RClasPtr VARLS_Class(void);

Returns a pointer to the variant list data source resource class.

Reading and Writing in the List

List Title

The list of variant data sources can have a title that views can use to identify
it.

CStr VARLS_GetTitle(VarLsPtr varLs);

Returns the title for the list, if any.

SetTitle

BoolEnum VARLS_SetTitle(VarLsPtr varLs, CStr title);

Sets the title of the list to `title' by internally creating and committing an
edition. Returns BOOL_TRUE if the internal edit succeeded, BOOL_FALSE
if not.
C Programmer’s Guide 529

Chapter VarLs Class47
Row Titles

Each row in the list can have a title that can be used to identify them.

GetRowTitle

CStr VARLS_GetRowTitle(VarLsPtr varLs, VarLsIndexVal index);

Returns the title for the row `index' in the list, if any.

SetRowTitle

BoolEnum VARLS_SetRowTitle(VarLsPtr varLs, VarLsIndexVal index, CStr title);

Sets the title of the row identified by `index' to `title' by internally creating
and committing an edition. Returns BOOL_TRUE if the edit succeeded,
BOOL_FALSE if not.

GetMaxRowTitleStrLen

StrIVal VARLS_GetMaxRowTitleStrLen(VarLsPtr varLs);

Returns the length of the longest string for a row title in the list, if the source
can provide it. If it cannot provide it, returns 0.

Row Values

Each row “holds” a value. The value can be read and updated.

QueryRowValue

void VARLS_QueryRowValue(VarLsPtr varLs, VarLsIndexVal index, VarPtr value);

Returns the value of the row `index' in the list.

GetMaxStrLen

StrIVal VARLS_GetMaxStrLen(VarLsPtr varLs);

Returns the length of the longest string for any row in the list, if the source
can provide it. If it cannot provide it, it will return 0.

GetRowValue

VarPtr VARLS_GetRowValue(VarLsPtr varLs, VarLsIndexVal index);

Returns the value of the row `index' in the list. The caller is responsible for
freeing the returned variant. VARLS_QueryRowValue is a preferable call.

SetRowValue

BoolEnum VARLS_SetRowValue(VarLsPtr varLs, VarLsIndexVal index, VarPtr value);

Sets the row value by internally creating and committing an edition. It
returns BOOL_TRUE if the internal edit succeeded. Returns BOOL_FALSE
otherwise.
530 C Programmer’s Guide

Modifying the List
Modifying the List

GetNumRows

VarLsIndexVal VARLS_GetNumRows(VarLsPtr varLs);

Returns the number of rows in the list data source.

SetNumRows

BoolEnum VARLS_SetNumRows(VarLsPtr varLs, VarLsIndexVal numRows);

Sets the number of rows in the list internally creating and committing a
edition object. If `numRows' is greater than the current number of rows,
rows are added without changing the contents of the existing rows. If it is
smaller, then rows are removed. Returns BOOL_TRUE if the internal edit
succeeded, BOOL_FALSE in any other case.

AddRow

BoolEnum VARLS_AddRow(VarLsPtr varLs, VarLsIndexVal index);

Add a row at index `index' in the list by internally creating and committing
an edition object. Returns BOOL_TRUE if the internal edit succeeded,
BOOL_FALSE in any other case.

RemoveRow

BoolEnum VARLS_RemoveRow(VarLsPtr varLs, VarLsIndexVal index);

Removes a row from the list by internally creating and committing an
edition. Returns BOOL_TRUE if the internal edit succeeded, BOOL_FALSE
in any other case.

Reading and Setting the Cursor Row

A list of variant data sources keeps track of a cursor row. The cursor row can
be read or set at any point. Internally, the cursor row does not correspond
to any specific row, and no special action is attached to the action of moving
the cursor.

GetCursorRow

VarLsIndexVal VARLS_GetCursorRow(VarLsPtr ls);

Returns the current position of the cursor of the list.

SetCursorRow

BoolEnum VARLS_SetCursorRow(VarLsPtr varLs, VarLsIndexVal row);

Sets the current list cursor to ̀ row' by internally creating and committing an
edition object. Returns BOOL_TRUE if the internal edit succeeded,
BOOL_FALSE in any other case.
C Programmer’s Guide 531

Chapter VarLs Class47
Edition Objects

The low level code for updating a variant list data source needs to start an
edition on the list. Editions can be started either globally on the list (when
adding and removing rows for example), or locally on a given row.

StartRowEdit

VarLsEditPtr VARLS_StartRowEdit(VarLsPtr varLs, VarLsIndexVal index);

Open a edit (for modifying the `index' row). NULL will be returned if no
edit could be opened. Otherwise a constructed edition is returned.

VarLsEdit AddRow

void VARLSEDIT_AddRow(VarLsEditPtr edit, VarLsIndexVal index);

Adds a row at index `index' in the edition object. When the edition object is
committed, the corresponding list will reflect the change.

VarLsEdit RemoveRow

void VARLSEDIT_RemoveRow(VarLsEditPtr edit, VarLsIndexVal index);

Removes the row at index `index' in the edition object. When the edition
object is committed, the corresponding list will reflect the change.

VarLsEdit SetCursorRow

void VARLSEDIT_SetCursorRow(VarLsEditPtr edit, VarLsIndexVal index);

Sets the current edition object cursor to’row’. When the edition object is
committed, the change will be reflected in the associated list.

VarLsEdit SetNumRows

void VARLSEDIT_SetNumRows(VarLsEditPtr lsEdit, VarLsIndexVal numRows);

Sets the number of rows in an edition object. If numRows' is greater than the
current number of rows, rows are added without changing the contents of
the existing rows. If it is smaller, then rows are removed. When the edition
object is committed, the changes will be propagated to the list.

VarLsEdit SetRowValue

void VARLSEDIT_SetRowValue(VarLsEditPtr edit, VarLsIndexVal index, VarPtr value);

Sets the value corresponding to the row `index' of the edition object to
`value'. When the edition object is committed, the value will be copied onto
the row `index' of the list data source.

SetRowTitle

void VARLSEDIT_SetRowTitle(VarLsEditPtr edit, VarLsIndexVal index, CStr title);

Sets the title of the row’index’ of the edition object is committed, the title will
be copied onto the row’index’ in the list data source.
532 C Programmer’s Guide

Modification Descriptions
VarLSEdit SetTitle

void VARLSEDIT_SetTitle(VarLsEditPtr edit, CStr str);

Sets the title of the list edition object to `title'. When the edition object is
committed, the title will be copied into the list.

Modification Descriptions

GetMods

VarLsModsCPtr VARLS_GetMods(VarLsPtr varLs);

Get a description of the last modifications made on the list through an
edition object.

Notifications

DefNfy

void VARLS_DefNfy(VarLsPtr varLs, VarLsNfyEnum code);

 Default notification procedure for the VarLs class.
C Programmer’s Guide 533

Chapter VarLs Class47
534 C Programmer’s Guide

Chapter
48 VarTb Class 48

This class specifies the table of variants data source.

Technical Overview

This class implements the table of variant data sources. A table of variant
data sources is a data source that keeps track of a 2 dimensional table of
values that could be considered to be stored in variants. Each one of these
variants can hold a value of any of the types supported by the Variant class
(see varpub.h).

A table of variant data sources can be manipulated at several levels. At the
highest level, the table of variant data sources lets a user read values
corresponding to table entries, open editions on them, modify them either
directly or through editions.

The variant data source is a subclass of the pure virtual data source, and
implements specific methods to get and set the associated value.

Class

The DataSource data structure is private. It is a subclass of Res.

Class

RClasPtr VARTB_Class(void);

Returns a pointer to the resource class for VarTb.

Table Interaction

Read Support

 The table of variant data sources can have a title that views can use to
identify it.

GetNumRows

VarTbIndexVal VARTB_GetNumRows(VarTbPtr varTb);

Returns the number of rows in the table.

GetNumColumns

VarTbIndexVal VARTB_GetNumColumns(VarTbPtr varTb);

Returns the number of columns in the table.
C Programmer’s Guide 535

Chapter VarTb Class48
QueryCellValue

void VARTB_QueryCellValue(VarTbPtr varTb, VarTbIndexVal row,
VarTbIndexVal col, VarPtr value);

Returns the value of the cell at row `row’ and column `col' the list.

GetCellValueVarPtr VARTB_GetCellValue(VarTbPtr varTb,
VarTbIndexVal row, VarTbIndexVal col);

Returns the value of the cell at row `row’ and column `col' in the list. The
caller is responsible for disposing the returned variant.

GetMaxColStrLen

StrIVal VARTB_GetMaxColStrLen(VarTbPtr varTb, VarTbIndexVal col);

Returns the length of the longest string for a column in the table (including
the title), if the source can provide it. If it cannot provide it, should return 0.

Row Title

Each row in the table can have a title that can be used to identify them.

GetRow Title

CStr VARTB_GetRowTitle(VarTbPtr varTb, VarTbIndexVal index);

Returns the title for the row “index” in the table, if any. Each row in the table
can have a title that can be used to identify them.

SetRowTitle

BoolEnum VARTB_SetRowTitle(VarTbPtr varTb,
VarTbIndexVal row, CStr title);

Sets the title of the row identified by “row” in the table to “title” by
internally creating and committing a edition. Returns BOOL_TRUE if the
edition succeeded, BOOL_FALSE if not.

GetColumnTitle

CStr VARTB_GetColumnTitle(VarTbPtr varTb, VarTbIndexVal index);

Returns the title for the column “index” in the table, if any.

TableTitle

The table of variant data sources can have a title that views can use to
identify it.

GetTitle

CStr VARTB_GetTitle(VarTbPtr varTb);

Returns the title for the table, if any.
536 C Programmer’s Guide

Reading and Setting the Cursor Row and Column
Reading and Setting the Cursor Row and Column

A table of variant data sources keeps track of a cursor row and a cursor
column. Both can be read or set at any point. Internally, the cursor row and
the cursor column do not correspond to any specific cell, and no special
action is attached to the action of moving the cursor around.

GetCursorRow

VarTbIndexVal VARTB_GetCursorRow(VarTbPtr varTb);

Returns the current position of the row cursor

GetCursorColumn

VarTbIndexVal VARTB_GetCursorColumn(VarTbPtr varTb);

Returns the current position of the column cursor

Edition Support

StartRowEdit

VarTbEditPtr VARTB_StartRowEdit(VarTbPtr varTb, VarTbIndexVal index);

Open a edition (for modifying the “index” row). NULL will be returned if
no edition could be opened. Otherwise a constructed edition is returned.

StartCellEdit

VarTbEditPtr VARTB_StartCellEdit(VarTbPtr varTb,
VarTbIndexVal row, VarTbIndexVal col);

Open a edition (for modifying the cell at (“row, col”)). NULL will be
returned if no edition could be opened. Otherwise a constructed edition is
returned.

SetNumRowColumns

BoolEnum VARTB_SetNumRowColumns(VarTbPtr varTb, VarTbIndexVal numRows,
VarTbIndexVal numCols);

Set up the number of rows and columns of the table by internally creating
and committing a edition. This call may wipe out contents. It returns
BOOL_TRUE if the transaction succeeded, BOOL_FALSE if not.

AddRow

BoolEnum VARTB_AddRow(VarTbPtr varTb, VarTbIndexVal index);

Adds a row at index “index” to the table, by internally creating and
committing a edition. Returns BOOL_TRUE if the internal edition could
take place.

RemoveRow

BoolEnum VARTB_RemoveRow(VarTbPtr varTb, VarTbIndexVal index);

Remove a row by internally creating and committing a edition. Returns
BOOL_TRUE if the internal edition could take place.
C Programmer’s Guide 537

Chapter VarTb Class48
AddColumn

BoolEnum VARTB_AddColumn(VarTbPtr varTb, VarTbIndexVal index);

Add a column by internally creating and committing a edition. Returns
BOOL_TRUE if the internal edition could take place.

RemoveColumn

BoolEnum VARTB_RemoveColumn(VarTbPtr varTb, VarTbIndexVal index);

Removes the column at index “index” in the edition object. When edition
object is committed, the column will be removed from the corresponding
variant table.

SetColValue

BoolEnum VARTB_SetColValue(VarTbPtr varTb,
VarTbIndexVal row, VarTbIndexVal col, VarPtr value);

Sets the value of the cell identified by “row, col” to “value” by internally
creating and committing a edition. Returns BOOL_TRUE if the edition
succeeded.

SetRowTitle

BoolEnum VARTB_SetRowTitle(VarTbPtr varTb,
VarTbIndexVal row, CStr title);

Sets the title of the row identified by “row” to “title” by internally creating
and committing a edition. Returns BOOL_TRUE if the edition succeeded.

SetColumnTitle

BoolEnum VARTB_SetColumnTitle(VarTbPtr varTb,
VarTbIndexVal col, CStr title);

Sets the title of the column identified by “col” to “title” by internally
creating and committing a edition. Returns BOOL_TRUE if the edition
succeeded, BOOL_FALSE if not.

SetTitle

BoolEnum VARTB_SetTitle(VarTbPtr varTb, CStr str);

Sets the title of the table by internally creating and committing a edition.
Returns BOOL_TRUE if the internal edition could take place.

SetCursorRow

BoolEnum VARTB_SetCursorRow(VarTbPtr varTb, VarTbIndexVal index);

Sets the current table row cursor by internally creating and committing a
edition. Returns BOOL_TRUE if the internal edition could take place.

SetCursorColumn

BoolEnum VARTB_SetCursorColumn(
VarTbPtr varTb, VarTbIndexVal index);

Sets the current table column cursor by internally creating and committing
a edition. Returns BOOL_TRUE if the internal edition could take place.
538 C Programmer’s Guide

Edition Objects
Edition Objects

The low level code for updating a variant table data source needs to start an
edition on the table. Editions can be started either globally on the list (when
adding and removing rows for example), locally on a given row, a given
column or a given cell.

StartEdit

VarTbEditPtr VARTB_StartEdit(VarTbPtr varTb);

Opens an edition on the whole table data source. The operations are done
through the edition object returned by this call.

SetNumRowColumns

void VARTBEDIT_SetNumRowColumns(VarTbEditPtr edit,
VarTbIndexVal numRows, VarTbIndexVal numCols);

Sets up the number of rows and columns of an edition object. When the
edition object is committed, the changes will be applied to the
corresponding table. This call may wipe out contents.

AddRow

BoolEnum VARTBEDIT_AddRow(
VarTbPtr varTb, VarTbIndexVal index);

Adds a row at index “index” to the edition object. When the edition is
committed, the row will be added at the corresponding index in the variant
table.

RemoveRow

void VARTBEDIT_RemoveRow(
VarTbEditPtr edit, VarTbIndexVal index);

Removes the row at index “index” in the table. When the edition object is
committed, the corresponding row will be removed in the corresponding
variant table.

AddColumn

void VARTBEDIT_AddColumn(
VarTbEditPtr edit, VarTbIndexVal index);

Add a column at index “index” to the edition object. When the edition object
is committed, the column will be added to the corresponding variant table.

RemoveColumn

void VARTBEDIT_RemoveColumn(
VarTbEditPtr edit, VarTbIndexVal index);

Remove a column through a edition.

SetCellValue

void VARTBEDIT_SetCellValue(VarTbEditPtr edit,
C Programmer’s Guide 539

Chapter VarTb Class48
VarTbIndexVal row, VarTbIndexVal col, VarPtr value);

Sets the value corresponding to the cell identified by “row” and “col” of the
edition object to “value.” When the edition object is committed, the value
will be copied onto the corresponding cell in the table through an edition.

SetRowTitle

void VARTBEDIT_SetRowTitle(
VarTbEditPtr edit, VarTbIndexVal index, CStr title);

Sets the title corresponding to the row identified by “index” through an
edition.

SetColumnTitle

void VARTBEDIT_SetColumnTitle(
VarTbEditPtr edit, VarTbIndexVal index, CStr title);

Sets the title corresponding to the column identified by “index” through a
edition. When the edition object is committed, the title will be copied onto
the column “index” in the table data source.

SetTitle

void VARTBEDIT_SetTitle(VarTbEditPtr edit, CStr str);

Sets the title of the table through a edition object to “title.” When the edition
object is committed, the title will be copied into the table.

SetCursorRow

void VARTBEDIT_SetCursorRow(
VarTbEditPtr edit, VarTbIndexVal index);

Sets the table cursor row in the edition object to “index.” When the edition
object is committed, the cursor row of the table will reflect the same value.

SetCursorColumn

void VARTBEDIT_SetCursorColumn(
VarTbEditPtr edit, VarTbIndexVal index);

Sets the table cursor column of the edition object to “index.” When the
edition object is committed, the cursor column of the table will reflect the
same value.

Modifications Queries

GetMods

VarTbModsCPtr VARTB_GetMods(VarTbPtr varTb);

Get a description of the last modifications committed on the table data
source.
540 C Programmer’s Guide

Row Interaction
Row Interaction

The largest part of the interface for this object is in fact in the DS interface.
In particular, opening a edition for this object is done through DS_StartEdit.

Column Interaction

The largest part of the interface for this object is in fact in the DS interface.
In particular, opening a edition for this object is done through DS_StartEdit.

Cell Interaction

The largest part of the interface for this object is in fact in the DS interface.
In particular, opening a edition for this object is done through DS_StartEdit..

Virtual Interface Implementation

Variant List Implementation

extern "C" RClasPtr VarTbGetClass(void);

extern "C" void VarTbConstruct(ResPtr res, RClasCPtr rclas, RClasCreateCPtr rCreate);

extern "C" void VarTbDestruct(ResPtr res);

Variant List Row Implementation

extern "C" RClasPtr VarTbRowGetClass(void);

extern "C" void VarTbRowConstruct(ResPtr res, RClasCPtr rclas,
RClasCreateCPtr rCreate);

extern "C" void VarTbRowDestruct(ResPtr res);

Variant List Row Implementation

extern "C" RClasPtr VarTbColGetClass(void);

extern "C" void VarTbColConstruct(ResPtr res, RClasCPtr rclas, RClasCreateCPtr rCreate);

extern "C" void VarTbColDestruct(ResPtr res);

Variant List Cell Implementation

extern "C" RClasPtr VarTbCellGetClass(void);

extern "C" void VarTbCellConstruct(ResPtr res, RClasCPtr rclas, RClasCreateCPtr rCreate);

extern "C" void VarTbCellDestruct(ResPtr res);
C Programmer’s Guide 541

Chapter VarTb Class48
542 C Programmer’s Guide

Chapter
49 VarTr 49

Design Overview

This module implements the variant tree datasources. A variant tree data
source is a datasource that keeps track of a hierarchical collection of nodes
that have properties stored in variants. Each one of these variants can hold
a value of any of the types supported by the Variant class (see VARPUB.H).

The variant tree data sources contain a collection of nodes. The nodes are
never accessed directly as objects, instead node accessors are created to
traverse the tree-datasource object. The accessors are then used in
conjunction with the tree-datasource object to perform operations such as
add nodes, remove nodes, and set values on the nodes.

The datasource data structure is private.

Class

RClasPtr VARTR_Class(void);

Returns a pointer to the resource class for VarTr.

Class

RClasPtr VARTRNODEACCESSOR_Class(void);

Returns a pointer to the resource class for VarTrNodeAccessor.

Tree-Datasource Properties

Methods of the tree-datasource object associated with the title and number
of nodes in the tree datasource.

Tree Title

The variant tree datasources can have a title that views can use to identify it.

GetTitle

CStr VARTR_GetTitle(VarTrPtr varTr);

BoolEnum VARTR_SetTitle(VarTrPtr varTr, CStr str);

Gets the title for the tree datasource, if any.

SetTitle

void VARTREDIT_SetTitle(VarTrEditPtr edit, CStr str);

Sets the title of the tree edit object to “title.” When the edit object is
committed, the title will be copied into the tree.
C Programmer’s Guide 543

Chapter VarTr49
Node Accessors

Use accessors to traverse the tree datasource for nodes.

The node accessor is created and manipulated completely independently of
the tree datasource. It is a pointer to a node.

Create

VarTrNodeAccessorPtr VARTRNODEACCESSOR_Create(void);

Allocates and constructs a node accessor for traversing nodes in a tree
datasource.

Creates and constructs a variant-tree-datasource node accessor.

Clone

VarTrNodeAccessorPtr VARTRNODEACCESSOR_Clone(VarTrNodeAccessorCPtr src);

Creates a node accessor using “src” as a template.

Destruct

void VARTRNODEACCESSOR_Destruct(
VarTrNodeAccessorPtr accessor);

Dispose

void VARTRNODEACCESSOR_Dispose(
VarTrNodeAccessorPtr accessor);

Destroys and deallocates a variant-tree-datasource node accessor.

Dispose0

void VARTRNODEACCESSOR_Dispose0(
VarTrNodeAccessorPtr accessor);

If given a null pointer, does nothing; otherwise, destroys and deallocates the
specified variant- tree-datasource node accessor.

Node-Accessor Navigation

How to traverse a tree datasource with a node accessor.

The node accessor can be positioned with the absolute methods:
■ GoFirstRoot
■ GoNthRoot

From any given position, the node accessor can also be positioned with
these absolute methods:
■ GoFirstChild
■ GoNthChild
■ GoFirstSibling
■ GoNthSibling
■ GoParent

Or with these relative methods:
544 C Programmer’s Guide

Node-Accessor Navigation
■ GoNext
■ GoPrev

GoFirstRoot

void VARTRNODEACCESSOR_GoFirstRoot(
VarTrNodeAccessorPtr accessor);

Positions the node accessor on the first root node.

GoFirstChild

void VARTRNODEACCESSOR_GoFirstChild(
VarTrNodeAccessorPtr accessor);

Positions the node accessor on the first child node of the node where it is
currently positioned.

GoFirstSibling

void VARTRNODEACCESSOR_GoFirstSibling(
VarTrNodeAccessorPtr accessor);

Positions the node accessor on the first sibling node of the node where it is
currently positioned.

GoNext

void VARTRNODEACCESSOR_GoNext(
VarTrNodeAccessorPtr accessor);

Positions the node accessor on the next node.

GoPrev

void VARTRNODEACCESSOR_GoPrev(
VarTrNodeAccessorPtr accessor);

Positions the node accessor on the previous node.

GoParent

void VARTRNODEACCESSOR_GoParent(
VarTrNodeAccessorPtr accessor);

Positions the node accessor on the parent node of the node where it is
currently positioned.

Convenient Navigation

GoNthRoot

void VARTRNODEACCESSOR_GoNthRoot(
VarTrNodeAccessorPtr accessor, VarTrIndexVal index);

Positions the node accessor on the nth root node.

GoNthChild

void VARTRNODEACCESSOR_GoNthChild(VarTrNodeAccessorPtr accessor,
VarTrIndexVal index);

Positions the node accessor on the nth child node of the node where it is
currently positioned.
C Programmer’s Guide 545

Chapter VarTr49
GoNthSibling

void VARTRNODEACCESSOR_GoNthSibling(
VarTrNodeAccessorPtr accessor, VarTrIndexVal index);

Positions the node accessor on the nth sibling node of the node where it is
currently positioned.

Adding and Removing Nodes

Adding and removing nodes in a tree datasource using a node accessor.

AddNode

BoolEnum VARTR_AddNode(
VarTrPtr varTr, VarTrNodeAccessorPtr accessor);

Adds a node at the position identified by the node accessor “accessor.” If
there is a node already at this position, the new node will be inserted before
the existing node. An edit object is internally used for the operation.

AddNode

void VARTREDIT_AddNode(
VarTrEditPtr edit, VarTrNodeAccessorPtr accessor);

Adds a node at the position identified by the node accessor “accessor” to the
edit object. If there is a node already at this position, the new node will be
inserted before the existing node.

RemoveNode

BoolEnum VARTR_RemoveNode(
VarTrPtr varTr, VarTrNodeAccessorPtr accessor);

Removes a node at the position identified by the node accessor “node.” An
edit object is internally used for the operation.

RemoveNode

void VARTREDIT_RemoveNode(
VarTrEditPtr edit, VarTrNodeAccessorPtr accessor);

Removes a node at the position identified by the node accessor “node.”

RemoveTree

BoolEnum VARTR_RemoveTree(
VarTrPtr varTr, VarTrNodeAccessorPtr accessor);

Removes a tree starting from the position identified by the node accessor
“accessor.” An edit object is used internally for the operation.

RemoveTree

void VARTREDIT_RemoveTree(
VarTrEditPtr edit, VarTrNodeAccessorPtr accessor);

Removes a tree starting from the position identified by the node accessor
“accessor.”
546 C Programmer’s Guide

Class Operations
Class Operations

Create

VarTrPtr VARTR_Create(void);

 Creates and constructs an instance of the VarTr class.

Tree-Node Properties

Using the node accessors to get and set properties for nodes in the tree
datasource.

Tree-Node Discovery and Navigation

GetNumRoots

VarTrIndexVal VARTR_GetNumRoots(VarTrPtr varTr);

Returns the number of root nodes in the tree datasource.

GetNumChildren

VarTrIndexVal VARTR_GetNumChildren(
VarTrPtr varTr, VarTrNodeAccessorCPtr accessor);

Returns the number of child nodes relative to the current “accessor”
location.

GetNumSiblings

VarTrIndexVal VARTR_GetNumSiblings(
VarTrPtr varTr, VarTrNodeAccessorCPtr accessor);

Returns the number of sibling nodes relative to the current “accessor”
location.

IsNodeValid

BoolEnum VARTR_IsNodeValid(
VarTrPtr varTr, VarTrNodeAccessorCPtr accessor);

Returns BOOL_TRUE if a node exists at the current “accessor” location.

AreNodesEqual

BoolEnum VARTR_AreNodesEqual(VarTrPtr varTr,
VarTrNodeAccessorPtr node1, VarTrNodeAccessorPtr node2);

Returns BOOL_TRUE if both accessors refer to the same node in the tree.

Reading and Setting the Cursor

Methods of the tree-datasource object to read and set the node and edge
cursors.

A tree variant datasource keeps track of one cursor that can be on any node.
This cursor is a user-allocated node accessor. No special action is attached
to the action of moving the cursor around in the datasource itself. The user
can obtain the cursor by VARTR_GetCursor call, and use
C Programmer’s Guide 547

Chapter VarTr49
VARTRNODEACCESSOR_Go* calls to manipulate the cursor to different
locations.

GetCursor

VarTrNodeAccessorPtr VARTR_GetCursor(VarTrPtr varTr);

SetCursor

BoolEnum VARTR_SetCursor(
VarTrPtr varTr, VarTrNodeAccessorPtr accessor);

These routines get and set the current position of the node cursor. The caller
is responsible for disposing of the accessor returned from the get method.
The Set routine sets the tree-node cursor to “node” by internally creating
and committing an edit object. It returns BOOL_TRUE if the internal edit
could take place, BOOL_FALSE if not.

DisposeCursor

void VARTR_DisposeCursor(VarTrPtr varTr);

Destructs and deallocates a variant-tree-datasource cursor. The internal
reference in the tree datasource is also reset to NULL. Use this call after the
VARTR_SetCursor call to reset the cursor for later use.

SetCursor

void VARTREDIT_SetCursor(
VarTrEditPtr edit, VarTrNodeAccessorPtr accessor);

Modifying the Tree Datasource

Tree-Node Values

QueryNodeValue

void VARTR_QueryNodeValue(
VarTrPtr varTr, VarTrNodeAccessorCPtr accessor, VarPtr value);

Returns the value of the node referenced by node accessor “node” into the
variant “value.”

GetNodeValue

VarPtr VARTR_GetNodeValue(
VarTrPtr varTr, VarTrNodeAccessorCPtr accessor);

SetNodeValue

BoolEnum VARTR_SetNodeValue(
VarTrPtr varTr, VarTrNodeAccessorCPtr accessor, VarCPtr value);

Gets and sets the value for the node in the variant tree datasource. The caller
is responsible for disposing of the variant returned from the get method.
The set method sets the value of the node to “value” by internally creating
and committing an edit, and returns BOOL_TRUE if it succeeded.
548 C Programmer’s Guide

Modifying the Tree-Node Datasource
Tree-Node IDs

QueryNodeID

void VARTR_QueryNodeID(
VarTrPtr varTr, VarTrNodeAccessorCPtr accessor, VarPtr id);

Returns the data stored in the ID field of the node referenced by node
accessor “node” into the variant “value.”

GetNodeID

VarCPtr VARTR_GetNodeID(
VarTrPtr varTr, VarTrNodeAccessorCPtr accessor);

SetNodeID

BoolEnum VARTR_SetNodeID(VarTrPtr varTr, VarTrNodeAccessorCPtr accessor,
VarCPtr id);

Gets and sets the ID for the node in the variant tree datasource. The caller is
responsible for disposing of the variant returned from the get method. The
set method sets the ID of the node to “value” by internally creating and
committing an edit, and returns BOOL_TRUE if it succeeded.

StartEdit

VarTrEditPtr VARTR_StartEdit(VarTrPtr varTr);

Opens an edit globally for the variant tree datasource. NULL will be
returned if no edit could be opened; otherwise, a constructed edit is
returned.

StartNodeEdit

VarTrNodeEditPtr VARTR_StartNodeEdit(
VarTrPtr varTr, VarTrNodeAccessorCPtr accessor);

Opens an edit globally for the variant tree node pointed to by the node
accessor. NULL will be returned if no edit could be opened; otherwise, a
constructed edit is returned.

Modifying the Tree-Node Datasource

SetNodeValue

void VARTREDIT_SetNodeValue(
VarTrEditPtr edit, VarTrNodeAccessorCPtr accessor, VarCPtr value);

Sets the data for Value field of the node at the current “accessor” location to
“value” in the tree edit object. When the edit object is committed, the new
data is stored in the datasource.

SetValue

void VARTRNODEEDIT_SetValue(
VarTrNodeEditPtr edit, VarCPtr value);

Sets the data for Value field of the node at the current “accessor” location to
“value” in the node edit object. When the edit object is committed, the new
data is stored in the datasource.
C Programmer’s Guide 549

Chapter VarTr49
SetNodeID

void VARTREDIT_SetNodeID(
VarTrEditPtr edit, VarTrNodeAccessorCPtr accessor, VarCPtr id);

Sets the data for ID field of the node at the current “accessor” location to
“id” in the tree edit object. When the edit object is committed, the new data
is stored in the datasource.

SetID

void VARTRNODEEDIT_SetID(VarTrNodeEditPtr edit, VarCPtr id);

Sets the data for ID field of the node at the current “accessor” location to
“id” in the node edit object. When the edit object is committed, the new data
is stored in the datasource.

Modification Descriptions

GetMods

VarTrModsCPtr VARTR_GetMods(VarTrPtr varTr);

Get a description of the last modifications made on the tree datasource
through an edit object.
550 C Programmer’s Guide

Chapter
50 VStr Class 50

he VStr class implements the Open Interface variable string data structures
and utilities.

Technical Summary

Variable strings support multibyte characters. For more information about
multibyte characters, see the Char class. For more information about
multibyte strings, see the Str class.

A VStr object is a string object which owns its buffer and automatically
handles buffer reallocation when the string changes or grows. Use a VStr to
represent string fields of aggregates: names of resources and button labels,
for example. Use an SBuf string instead when you need to perform complex
editing operations on potentially long strings.

The APIs in the Open Interface VStr class enable you to manipulate variable
strings and obtain information about them. You can allocate and deallocate
memory for variable strings; initialize and destroy them; change their
contents; obtain the string length and string contents; concatenate, insert,
and delete strings and characters; compare variable strings; load resources
into them; and copy, initialize, and dispose of arrays.

The VStr class API is divided into the following categories:
■ Accessing C string inside.
■ Allocation and Deallocation.
■ Comparisons.
■ Concatenation and Duplication.
■ Data Structures.
■ Lists of variable strings.
■ Loading from resource file.
■ Queries.

See also

Str, Array, Char classes.

Changing Contents

SetStr

Replaces the contents of a variable string with a copy of a string.

void VSTR_SetStr(VStrPtr vstr, CStr str);

VSTR_SetStr replaces the contents of a variable string with a copy of a
source string. Unlike in VSTR_SetVStr, source is a string rather than a
variable string.
C Programmer’s Guide 551

Chapter VStr Class50
SetNatStr

Replaces the contents of a variable string with a copy of a native string.

void VSTR_SetNatStr(VStrPtr vstr, NatCStr str);

VSTR_SetNatStr replaces the contents of a variable string with a copy of a
native string.

SetCtStr

Replaces the contents of a variable string with a copy of an encoded native
string.

void VSTR_SetCtStr(VStrPtr vstr, CtCPtr ct, NatCStr str);

VSTR_SetCtStr replaces the contents of a variable string with a copy of a
native string encoded in the code type passed.

SetStrSub

Replaces the contents of a variable string with a copy of a substring.

void VSTR_SetStrSub(VStrPtr vstr, CStr str, StrIVal slen);

VSTR_SetStrSub replaces the contents of a variable string with a copy of a
substring.

SetNatStrSub

Replaces the contents of a variable string with a copy of a native substring.

void VSTR_SetNatStrSub(VStrPtr vstr, NatCStr str, StrIVal slen);

VSTR_SetNatStrSub replaces the contents of a variable string with a copy of
a native substring.

SetCtStrSub

Replaces the contents of the vstr by a copy of str.

void VSTR_SetCtStrSub(VStrPtr vstr, CtCPtr ct, NatCStr str, StrIVal slen);

Set

Copies one variable string to another.

void VSTR_Set(VStrPtr vstr, VStrCPtr vstr2);

VSTR_Set copies the contents of vstr2 into a variable string.

Copy

Copies one variable string to another.

void VSTR_Copy(VStrPtr vstr, VStrCPtr vstr2);

VSTR_Copy copies the contents of vstr2 into a variable string.
552 C Programmer’s Guide

Queries
Queries

GetLen

Returns the length of a variable string.

StrIVal VSTR_GetLen(VStrCPtr vstr);

VSTR_GetLen determines the length of the variable string passed and
returns an integer indicating the string length.

GetStr

Returns the string equivalent of a variable string.

CStr VSTR_GetStr(VStrCPtr vstr);

VSTR_GetStr retrieves the string equivalent of the variable string passed
and returns it.

QueryStrSub

Finds a substring within a variable string.

void VSTR_QueryStrSub(VStrCPtr vstr, CStrPtr strp, StrIValPtr lenp);

VSTR_QueryStr sets the string pointer to the substring found within a
variable string. Sets the length pointer to the length of the substring.

Concatenation, Insertion, Deletion

AppendStr

Appends a string to a variable string.

void VSTR_AppendStr(VStrPtr vstr, CStr str);

VSTR_AppendStr appends a string to a variable string.

AppendStrSub

Appends a substring to a variable string.

void VSTR_AppendStrSub(VStrPtr vstr, CStr str, StrIVal slen);

VSTR_AppendStrSub appends a substring to a variable string.

Append

Appends one variable string to another.

void VSTR_Append(VStrPtr vstr, VStrCPtr vstr2);

VSTR_Append appends one variable string to another. The variable string
passed as the second argument is appended to the variable string passed as
the first argument.
C Programmer’s Guide 553

Chapter VStr Class50
AppendChar

Appends a character to a variable string.

void VSTR_AppendChar(VStrPtr vstr, ChCode ch);

VSTR_AppendChar appends a character to a variable string.

TruncAt

Truncates a variable string exactly to the length specified.

void VSTR_TruncAt(VStrPtr vstr, StrIVal pos);

VSTR_TruncAt truncates exactly to length.

Truncate

Truncates a variable string at or before the length specified.

void VSTR_Truncate(VStrPtr vstr, StrIVal pos);

VSTR_Truncate truncates at or before length.

Clear

Resets a variable string.

void VSTR_Clear(VStrPtr vstr);

VSTR_Clear resets the contents of a variable string.

Comparisons

CmpStr
ICmpStr

Compares a variable strings with another string by comparing the
characters in each string by code value.

CmpEnum VSTR_CmpStr(VStrCPtr vstr, CStr str2);

CmpEnum VSTR_ICmpStr(VStrCPtr vstr, CStr str2);

VSTR_CmpStr and VSTR_ICmpStr compare the a variable string with a
string. The characters in each string are compared by code value. No
attempt is made to compare characters across code sets. The ASCII order is
used for ASCII characters, so a is sorted after Z, but between A and B.

VSTR_ICmpStr is the same at VSTR_CmpStr but ignores case differences in
the comparison.

Use these calls when you need a fast way to perform comparisons, but you
do not need a high degree of accuracy.

Cmp
ICmp

Compares two variable strings, ignoring case differences in the ASCII
range,
554 C Programmer’s Guide

Loading Resources
CmpEnum VSTR_Cmp(VStrCPtr vstr, VStrCPtr vstr2);

CmpEnum VSTR_ICmp(VStrCPtr vstr, VStrCPtr vstr2);

VSTR_Cmp compares the strings by comparing the characters in each string
by code value.

VSTR_ICmp is the same as VSTR_Cmp but it ignores case differences in the
ASCII range only.

Use these calls when you need a fast way to perform comparisons, but you
do not need a high degree of accuracy.

Loading Resources

SetRes

Sets the given string resource as the contents of a variable string.

void VSTR_SetRes (VStrPtr vstr, CStr mod, CStr res);

VSTR_SetRes sets the given string resource as the contents of a variable
string.

Arrays Of Strings

Constructor

VStr array construction.

VStrArrayPtr VSTR_ArrayAlloc (void);

Allocates a VStr array.

void VSTR_ArrayConstructVStrArray(VStrArrayPtr va, VStrArrayCPtr va2);

Constructs the VStr array as a clone of `va2’. Performs a `deep’ copy, the
VStr array contains copies of the strings in `va2’.

Destructor

Default VStr array destruction.

void VSTR_ArrayDestruct(VStrArrayPtr va);
C Programmer’s Guide 555

Chapter VStr Class50
556 C Programmer’s Guide

Index 51

Numerics
2-byte characters 351

A
abort operations 240
ABS 188
absolute file names 308
absolute values 188
access bit constants 290
access rights 286, 290
accessors See graph datasources
ADOBE code sets 216
ADOBE code type 227
alignment 377
allocation 137, 153, 163

failing 376
memory pool 373

ANSI C compiler See C language
application programming interface (API)

Args calls 133–135
ArNum calls 137–143
ArObj calls 145–152
ArPtr calls 153–159
ARRay calls 161–162
ArRec calls 163–168
Avl calls 169–175
Base calls 177–189
BBuf calls 191–199
Cell calls 201–202
Char calls 203–213
Cs calls 215–223
Ct calls 225–233
Ds calls 235–238
Err calls 239–257
File calls 259–283
FMgr calls 285–305
FName calls 307–329
Hash calls 331–337
Heap calls 339–341
ISet calls 343–345
Mch calls 347–353
Nfier calls 355–358
Pack calls 359–364
PFld calls 365–366
Point calls 367–369
Pool calls 371–374
Ptr calls 375–385
RClas calls 387–392
Rect calls 393–398
Res calls 399–420
Rgn calls 421–426
RLib calls 427–429

application programming interface (continued)
SBuf calls 431–436
Scrpt calls 437–446
Set calls 447–449
Str calls 451–478
StrL calls 479–481
StrR calls 483–484
Var calls 485–487
VarDs calls 493–494
VarGr calls 495–527
VarLs calls 529–533
VarTb calls 535–541
VarTr calls 543–550
VStr calls 551–555

applications 1
exiting 255
nonwindow-based 405
running 444

APPSTARTUP event 444
argc/argv 133
ARGS_GetAll 134
ARGS_GetExecName 134
ARGS_GetFirst 135
ARGS_GetNext 135
ARGS_GetNth 134
ARGS_GetNum 134
ARGS_Init 134
ARGS_InsertNth 135
ARGS_RemoveNth 135
arguments See command-line arguments
ARNUM_AppendElt 141
ARNUM_Construct 138
ARNUM_ConstructAlloc 138
ARNUM_ConstructArnum 138
ARNUM_ConstructLen 138
ARNUM_ContainsElt 140
ARNUM_DECLARECLASS 137
ARNUM_DEFCLASS 138
ARNUM_DEFSTRUCT 138
ARNUM_Destruct 138
ARNUM_ExtractNthElt 142
ARNUM_FindElt 140
ARNUM_GetLen 139
ARNUM_GetNthElt 139
ARNUM_IMPLEMENTCLASS 138
ARNUM_InsertNthElt 141
ARNUM_IsEmpty 139
ARNUM_IsInRange 139
ARNUM_IsSorted 142
ARNUM_LookupElt 140
ARNUM_RemoveDupls 142
ARNUM_RemoveElt 142
ARNUM_RemoveNthElt 141
ARNUM_Reset 138
ARNUM_SetAlloc 139
ARNUM_SetLen 139
C Programmer’s Guide 557

Index
ARNUM_SetNthElt 140
ARNUM_Sort 142
ARNUM_SortedExtractElt 142
ARNUM_SortedFindElt 141
ARNUM_SortedInsertElt 141
ARNUM_SortedLookupElt 140
ARNUM_SortedRemoveDupls 143
ARNUM_SortedUniqInsertElt 141
ARNUM_UnboundedGetNthElt 139
ARNUM_UnboundedSetNthElt 140
ARNUM_UniqAppendElt 141
AROBJ_AppendElt 150
AROBJ_ConstructObjs 148
AROBJ_ContainsElt 150
AROBJ_DeleteObjs 148
AROBJ_ExtractElt 151
AROBJ_ExtractNthElt 151
AROBJ_FindElt 150
AROBJ_GetLen 148
AROBJ_GetNthElt 149
AROBJ_GetNthEltRef 149
AROBJ_InsertNthElt 151
AROBJ_IsEmpty 149
AROBJ_IsInRange 149
AROBJ_IsSorted 152
AROBJ_LookupElt 150
AROBJ_RemoveDupls 152
AROBJ_RemoveElt 151
AROBJ_RemoveNthElt 151
AROBJ_Reset 148
AROBJ_SetAlloc 148
AROBJ_SetLen 148
AROBJ_SetNthElt 149
AROBJ_Sort 152
AROBJ_SortedExtractElt 152
AROBJ_SortedFindElt 150
AROBJ_SortedInsertElt 151
AROBJ_SortedLookupElt 150
AROBJ_SortedRemoveDupls 152
AROBJ_SortedUniqInsertElt 151
AROBJ_UniqAppendElt 150
ARPTR_AppendElt 157
ARPTR_Construct 154
ARPTR_ConstructAlloc 154
ARPTR_ConstructArPtr 154
ARPTR_ConstructLen 154
ARPTR_ContainsElt 156
ARPTR_DECLARECLASS 153
ARPTR_DEFCLASS 154
ARPTR_Destruct 154
ARPTR_ExtractElt 158
ARPTR_ExtractNthElt 158
ARPTR_FindElt 156
ARPTR_GetLen 155

ARPTR_GetNthElt 155
ARPTR_GetNthEltAddr 155
ARPTR_IMPLEMENTCLASS 153
ARPTR_InsertNthElt 157
ARPTR_IsEmpty 155
ARPTR_IsInRange 155
ARPTR_IsSorted 158
ARPTR_LookupElt 156
ARPTR_RemoveDupls 159
ARPTR_RemoveElt 158
ARPTR_RemoveNthElt 158
ARPTR_Reset 154
ARPTR_SetAlloc 155
ARPTR_SetLen 155
ARPTR_SetNthElt 156
ARPTR_Sort 158
ARPTR_SortedExtractElt 158
ARPTR_SortedFindElt 157
ARPTR_SortedInsertElt 157
ARPTR_SortedLookupElt 156
ARPTR_SortedRemoveDupls 159
ARPTR_SortedUniqInsertElt 157
ARPTR_UnboundedGetNthElt 156
ARPTR_UnboundedSetNthElt 156
ARPTR_UniqAppendElt 157
array number

append number 141
append unique element 141
construct allocated ARNUM 138
construct ARNUM 138
construct with ’len’ 138
default constructor 138
default destructor 138
detect element 140
extract element 142
extract Nth element 142
find element 140
find sorted element 141
get length 139
get Nth element 139
get unbounded Nth element 139
insert Nth element 141
insert sorted element 141
insert sorted unique element 141
look up element 140
look up sorted element 140
reallocate ARNUM 139
remove duplicates 142
remove element 142
remove Nth element 141
remove sorted duplicates 143
reset contents 138
return empty ARNUM 139
return range 139
return sorted 142
set length 139
set Nth element 140
set unbounded Nth element 140
558 C Programmer’s Guide

Index
array number (continued)
sort ARNUM 142
sort extracted element 142

array objects 145
append 150
append unique element 150
construct array with len 148
default constructor 148
destroy array 148
detect elt object 150
extract element 151
extract sorted element 152
find elt 150
find sorted element 150
get length 148
get Nth element 149
insert Nth element 151
insert sorted element 151
insert sorted unique element 151
look up element 150
look up sorted element 150
reallocate capacity 148
remove duplicate elements 152
remove element 151
remove Nth element 151
remove sorted duplicate elements 152
reset array 148
return array 152
return empty array 149
set length 148
set Nth element 149
sorting 152
testing index validity 149

array pointer
append element 157
append unique element 157
construct ARPTR 154
construct with 0 elements 154
construct with len 154
default constructor 154
default destructor 154
detect elements 156
detect empty ARPTR 155
detect range 155
extract element 158
extract Nth element 158
extract sorted element 158
find elements 156
get length 155
get Nth element 155
get Nth element address 155
get unbounded Nth element 156
graphs 64, 66, 67
insert Nth element 157
insert sorted element 157
insert sorted unique element 157
look up element 156
look up sorted element 156
reallocates contents 155
remove elements 158
remove Nth element 158
remove sorted duplicates 159
removing duplicates 159
reset contents 154

array pointer (continued)
returns sorted pointer 158
search matching key 157
set Nth element 156
set unbounded Nth element 156
sorting 158

array record
append element 166
append unique element 166
construct with len 164
default constructor 164
default destructor 164
detect elements 165
detect empty record 165
extract element 167
extract Nth record 167
extracts sort element 167
find elements 166
find sorted element 166
get length 165
get Nth element 165
insert sorted element 167
insert sorted unique record 167
inserts Nth element 166
lookup elements 166
lookup sorted element 166
reallocates contents 164
remove elements 167
remove Nth element 167
remove sorted records 168
reset contents 164
return sorted record 168
returns range 165
set length 155, 164
set Nth element 165
sorting 167

arrays element types 145
ARREC_AppendElt 166
ARREC_ContainsElt 165
ARREC_DECLARECLASS 163
ARREC_DEFCLASS 164
ARREC_ExtractElt 167
ARREC_ExtractNthElt 167
ARREC_FindElt 166
ARREC_GetLen 165
ARREC_GetNthElt 165
ARREC_IMPLEMENTCLASS 163
ARREC_InsertNthElt 166
ARREC_IsEmpty 165
ARREC_IsInRange 165
ARREC_IsSorted 168
ARREC_LookupElt 166
ARREC_RemoveDupls 168
ARREC_RemoveElt 167
ARREC_RemoveNthElt 167
ARREC_Reset 164
ARREC_SetAlloc 164
ARREC_SetLen 164
ARREC_SetNthElt 165
C Programmer’s Guide 559

Index
ARREC_Sort 167
ARREC_SortedExtractElt 167
ARREC_SortedFindElt 166
ARREC_SortedInsertElt 167
ARREC_SortedLookupElt 166
ARREC_SortedRemoveDupls 168
ARREC_SortedUniqInsertElt 167
ARREC_UniqAppendElt 166
ASCII character

writing to a native string 463
writing to a string 462, 463, 476

ASCII characters 209, 210
byte value mapping 225
converting to EBCDIC 212
converting to lower case 211
converting to native 213
converting to upper case 211
define primary set 350
get base value 211
get integer values 210
information definition 222

ASCII code type 227
assertion macros 185
assertions 254
assignment statements 438
asynchronous notifications 415
atomic data sources 12, 13
attached resources 401
auto backup flag 268
autosizing graph nodes 85
AVL_Node 170
AVL_NodeConstruct 170
AVL_NodeConstructKey 170
AVL_NodeDealloc 170
AVL_NodeDestruct 170
AVL_NodeDispose 170
AVL_NodeGetFirstLeaf 171
AVL_NodeGetKey 171
AVL_NodeGetLastLeaf 171
AVL_NodeGetLeftChild 171
AVL_NodeGetNext 171
AVL_NodeGetParent 171
AVL_NodeGetPrev 171
AVL_NodeGetRightChild 171
AVL_NodeNewSetKey 170
AVL_NodeSetKey 171
AVL_TreeAlloc 172
AVL_TreeConstruct 172
AVL_TreeConstructCmpProc 172
AVL_TreeCurExtractNode 175
AVL_TreeCurFindKey 175
AVL_TreeCurFindKeyKey 173
AVL_TreeCurGetNearestNode 174
AVL_TreeCurGetNode 174
AVL_TreeCurInsertNode 175
AVL_TreeDealloc 172

AVL_TreeDestruct 172
AVL_TreeExtractNode 173
AVL_TreeGetFirstNode 172
AVL_TreeGetLastNode 172
AVL_TreeGetLen 172
AVL_TreeGoFirstNode 174
AVL_TreeGoLastNode 174
AVL_TreeGoNextNode 174
AVL_TreeGoNode 174
AVL_TreeGoPrevNode 174
AVL_TreeInsertNode 173
AVL_TreeLookupKey 173
AVL_TreePerfProc 173
AVL_TreePropagateAction 173
AvlNode 169

change current node 174
construct node, assign key 170
create new 170
deallocate 170
default allocator 170
default constructor 170
default destructor 170
destroying 170
find current key 173
finding 175
get current node 174
get first/last node 172
get key 171
get left child 171
get leftmost descendant node 171
get nearest current node 174
get next node 171
get parent of current node 171
get previous node 171
get rightmost descendant node 171
look up key 173
set key 171

AvlTree 169
allocator 172
callback function 173
constructors 172
default constructor 172
default deallocator 172
default destructor 172
extract node 175
extracting nodes 173
get number of nodes 172
go first or last node 174
inserting nodes 173, 175
position data structure 169
propagate action 173
set current node 174

B
backup files 280
bare scripts 437, 445
Base class 177
BASE_NOMINMAX 187
BBUF_Alloc 194
560 C Programmer’s Guide

Index
BBUF_Construct 194
BBUF_ConstructBuf 194
BBUF_ConstructData 195
BBUF_ConstructFile 194
BBUF_CurPos 196
BBUF_Dealloc 195
BBUF_Destruct 195
BBUF_Flush 196
BBUF_GetClientData 197
BBUF_GetCurPtr 199
BBUF_GetEndianity 197
BBUF_GetPageBeginPos 198
BBUF_GetPageBeginPtr 198
BBUF_GetPageEndPtr 198
BBUF_GetPagingData 198
BBUF_GetTotalSize 197
BBUF_IsPageModified 198
BBUF_LoadCurPage 197
BBUF_QueryMethods 199
BBUF_ReadInt16 195
BBUF_ReadInt32 195
BBUF_ReadInt8 195
BBUF_ReadNBytes 195
BBUF_ReadUInt16 195
BBUF_ReadUInt32 195
BBUF_ReadUInt8 195
BBUF_SeekBy 196
BBUF_SeekTo 196
BBUF_SetClientData 197
BBUF_SetCurPtr 199
BBUF_SetEndianity 197
BBUF_SetMethods 199
BBUF_SetPageBeginPos 198
BBUF_SetPageBeginPtr 198
BBUF_SetPageEndPtr 198
BBUF_SetPageModified 198
BBUF_SetPagingData 198
BBUF_SetTotalSize 197
BBUF_SkipRead 196
BBUF_SkipWrite 196
BBUF_WriteInt16 196
BBUF_WriteInt32 196
BBUF_WriteInt8 196
BBUF_WriteNBytes 195
BBUF_WriteUInt16 196
BBUF_WriteUInt32 196
BBUF_WriteUInt8 196
binary data 191
binary files 259

current absolute positon 274
read byte 276
read N bytes 277
return current offset 274
set file position 274

binary files (continued)
write byte 276
write N bytes 277

binary trees 169
See also AvlNode; AvlTree

BOOL_OF 181
boolean conversion 181
boolean values 181
BoolEnum 181
buffer See memory buffer; string buffer
Byte 180
BytePtr 180

C
C language

export function prototype 347
freeing memory 378
portable const keyword 347
register variables 349
registering resources 403
scripting functionality 437
signed integers 350
volatile keyword 350

C++ language
construct/destruct resources 402
registering resources 403
scripting functionality 437

C_CONST 347
C_EXPORT 347
C_FAR 348
C_INITOFFSET 188
C_NEAR 348
C_NOSHARE 349
C_OFFSET 188
C_READONLY 349
C_REG... register variables 349
C_SIGNED 350
C_VOLATILE 350
calls to verbs 439
CCITT fax compression 363
CCITT Group3 algorithm 359, 363
CCITT Group4 algorithm 359, 363
ccittFlags 363
CellPtr 201
CellRec 201
cells 201

range operations 202
Char data type 204
CHAR_AsciiAlphaGetBase 211
CHAR_AsciiDigitGetInt 211
CHAR_AsciiGetControl 212
CHAR_AsciiGetEbcdic 212
CHAR_AsciiGetGraph 212
CHAR_AsciiGetLower 211
CHAR_AsciiGetUpper 211
CHAR_AsciiHexDigitGetInt 211
C Programmer’s Guide 561

Index
CHAR_AsciiIsAlNum 210
CHAR_AsciiIsAlpha 210
CHAR_AsciiIsControl 210
CHAR_AsciiIsDigit 210
CHAR_AsciiIsGraph 210
CHAR_AsciiIsHexDigit 210
CHAR_AsciiIsLower 210
CHAR_AsciiIsOctDigit 210
CHAR_AsciiIsPrint 210
CHAR_AsciiIsPunct 210
CHAR_AsciiIsSpace 210
CHAR_AsciiIsUpper 210
CHAR_AsciiOctDigitGetInt 211
CHAR_CodeGetLen 207
CHAR_EbcdicGetAscii 213
CHAR_FromAscii 213
CHAR_GetByte 208
CHAR_GetByte1 208
CHAR_GetByte2 208
CHAR_GetByte3 208
CHAR_GetLen 207
CHAR_IsAscii 209
CHAR_IsAsciiAlNum 209
CHAR_IsAsciiControl 209
CHAR_IsAsciiDigit 209
CHAR_IsAsciiGraph 209
CHAR_IsAsciiHexDigit 209
CHAR_IsAsciiLower 209
CHAR_IsAsciiOctDigit 209
CHAR_IsAsciiPrint 209
CHAR_IsAsciiPunct 209
CHAR_IsAsciiSpace 209
CHAR_NatGetByte 208
CHAR_NatGetByte1 208
CHAR_NatGetByte2 208
CHAR_NatGetByte3 208
CHAR_NatGetLen 207
CHAR_ToAscii 213
character

append to string buffer 433
ASCII base value 211
define default language 205
define native code type 205
finding 467, 469
get 8-bit character length 207
get ASCII integer value 210
get code 459
get native character code 459
get native character length 207
global character pointer 205
information definition 222
lower case form 233
match string 465
multibyte character pointer 206
native character pointer 205
testing for ASCII 209, 210

character (continued)
UNICODE character pointer 205
upper case form 232

character code 207
See also code sets
getting from a string 459, 460
writing into a string 462, 463

character conversion
ASCII character to EBCDIC 212
ASCII character to lower case 211
ASCII character to upper case 211
ASCII to native character 213
character to character code 231
character to control character 212
chcode to unicode 232
code set to code type 232
code type to code set 231
control character to character 212
cscode to unicode 221
EBCDIC character to ASCII 212
native character to ASCII 213
unicode to chcode 232
unicode to cscode 221

character sets 203
define primary 350

CHARINFO_UNKNOWN 222
CHARINFO_UNKNOWN_ FULLWIDTH
222
CHARINFO_UNKNOWN_ HALFWIDTH
222
CharInfoVal 206
CharPtr 205
charts See graphs
ChCode 206, 226
ChCodePtr 205
chip architecture 351
CJK code sets 218
CJK code type 228
class

See also resource class
default allocation method 389
get first alphabetically 390
get next alphabetically 390
verify for resource 420
verify inheritance 412

client data
get resource 411
set resource 411

ClientPtr 179
closing files 272
CmpEnum 182
CmpProc 183
CNS code sets 219
CNS code type 229
code mapping 225
code pages 217
code set objects

allocator 219
construct from csid 219
562 C Programmer’s Guide

Index
code set objects (continued)
convert character 220
convert from unicode 221
convert to unicode 221
create new 219
deallocate notifier 219
default destructor 219
default object constructor 219
destruct/deallocate 219
dispose not NULL 220
get character length 220
get charinfo value 220
get global 222
get id 220
get native 221
get unicode 221
translate character 221

code sets 215, 226
ADOBE 216
CNS 219
data type 215
defined 225
EBCDIC 218
HP 219
ISO 216
Japanese characters 218
Macintosh 216
MS/Windows 217
PC code pages 217
UNICODE 218

code type ids 226, 230
code type structures 225
code types 225

code value 226
constructor 229
create new 229
deallocate notifier 229
default constructor 229
define data record 226
destruct/deallocate 230
destruct/deallocate if not null 230
destructor 229
determine single-byte characters 232
get character code 230
get character value 230
get CharInfoVal 230
get maximum length 232
pointer to allocated 229

coding scheme See code types
collection classes 161
collections

numeric values 137
object references 153
objects 145
records 163

command objects 418
command-line arguments 133

extract Nth argument 135
get application name 134
get first argument 135
get list 134
get next argument 135

command-line arguments (continued)
get Nth argument 134
get number 134
initialization procedure 134
insert new argument 135

commits 237
comparison functions 183
comparisons 182

file names 328
hash tables 333
sets 449
strings 554

compilers
define in-use compiler 352
far keyword 348
near keyword 348
signed integers 350
VMS-specific keywords 348, 349
volatile keyword 350

compression 361
compression algorithms 359

See also pack objects
conditional statements 438
conflicts, macros 187
connected graphs 70
constants 179, 440

access bits 290
file name components 315
file name error signals 314
file name syntax 312
Mac creator and type signature 291
registering 440
system-specific file names 312

containers 237
context messages 244, 251
contiguous values 343
control characters 212
controlled access 6
conversions 204, 307

See also character conversion
integer internal storage 382, 383
string internal storage 384

coordinates 393
See also rectangle
graph origins 65
set for region 423, 424

copying 181
core services 2
CpyEnum 181
CS_Alloc 219
CS_Construct 219
CS_ConstructId 219
CS_CvtChar 220
CS_Dealloc 219
CS_Destruct 219
CS_Dispose 219
CS_Dispose0 220
CS_FromUni 221
C Programmer’s Guide 563

Index
CS_GetCharInfo 220
CS_GetCharLen 220
CS_GetCsGlobal 222
CS_GetCsId 220
CS_GetCsNative 221
CS_GetCsUnicode 221
CS_New 219
CS_ToUni 221
CS_TransChar 221
CsIdEnum 215
Ct 226
CT_Alloc 229
CT_Construct 229
CT_ConstructId 229
CT_CvtChar 231
CT_CvtCsToCt 232
CT_CvtCtToCs 231
CT_Dealloc 229
CT_Destruct 229
CT_Dispose 230
CT_Dispose0 230
CT_FromUni 232
CT_GetBwrd 230
CT_GetCtId 230
CT_GetFwrd 230
CT_GetInfo 231
CT_GetLower 233
CT_GetMaxCharLen 232
CT_GetUpper 232
CT_ID 226
CT_IsSingleOnly 232
CT_New 229
CT_ToUni 232
CtIdEnum 226
current directory 324
current volume 324
cursor types (graphs) 76

view options 86
cyclic graphs 519

D
DA data sources 10
dat format 399
data 331, 387
data alignment 192
data mapping 13
data source 235

See also variant data source
abort edition 236
abort update 237
add contDs 237
add edition operation 236
commit edition 236
commit update 237

data source (continued)
complete edition 236
constructor 237
controlled access 6
controlled access example 8
get associated view 236
get edition owner 236
get view option 235
open edition 236
open update 237
register view 235
remove contDs 237
set edition owner 236
set view option 235
unregister view 235

data source edition objects 493, 532, 539
Data Source Internals 9

DA data sources 10
IRE data sources 12
OI core 10

data source/view mechanism 2, 5
data access 6
examples 8, 14, 17
locking data 7
propagating events 5

data source/view types
CBOX_NFY 6
CBUT_NFY 6
LBOX_NFY 6
TED_NFY 6

data structures
AvlNode 169
Balanced Binary Tree 169
file I/O 263
hash tables 331
I/O buffering 193
Macintosh type and creator signatures 286
memory management statistics 375
store Macintosh signature 287

data types 177
allow macros overriding 187
file manager 285–288
file names 311
huge string 180
native string 453
native string pointer 454
scripts 438
signed integers 350
string 454
string pointer 454
UNICODE string 455
UNICODE string pointer 455

DataSource class 235
edition operations 238
modifications implementation 238

datasource edit objects 79
DBG_CHECK 184
DBG_CHECKSTR 184
DBG_ERROR 185
DBG_FILE 185
DBG_LINE 185
DBG_NIY 185
564 C Programmer’s Guide

Index
DBG_ON 185
DBG_REQUIRE 186
DBG_SCCS 186
DBG_SOURCE 186
deallocation 137, 153, 163

failing 376
debugging macros

activate source code 186
checks assertion truth 186
defining active 185
determine current file name 185
determine line number 185
expression failure check 184
hold SCCS info 186

debugging tools 177
decimal

converting string to text 473
get string integer 470

decoding routines 361
decompression 361
detached resources 401
DGRAM view 63

options 84
origins 65

diagrammer See graph diagrammer
directories 311, 324

convert file to path 323
convert path to file 322
copy contents 299
create new 286, 298
deleting 301
get current 326
get parent 326
get top 324, 326
get wildcard expression 304
match files 303
move 300
purge files 302
query current 325
query current parent 326
query current top 324
query current volume 325
query home 327
query parent 327
query top 327
remove contents 301
rename 300
set current 325
test for top level 324
test path 327
test specification 322

disconnected graphs 71, 72
disjoint rectangles 421
disposing

string 456
DLL code 351
DOS file I/O 259
Double data type 177
drawing operations 393
DS interface 541

DS/V See data source/view mechanism
DS_AddContDs 237
DS_Class 235
DS_Create 237
DS_GetViewOption 235
DS_RegisterView 235
DS_RemoveContDs 237
DS_SetViewOption 235
DS_StartEdit 236
DS_StartUpdateEdit 237
DS_UnregisterView 235
DSEDIT_Abort 236
DSEDIT_AddOperation 236
DSEDIT_End 236
DSEDIT_GetOwner 236
DSEDIT_SetOwner 236
DsEditCompletionEnum 236
DsEditOpEnum 238
DsEditStateEnum 238
DsEditTypeEnum 238
DsModsSetEnum 238
DSUPDATEEDIT_Abort 237
DSUPDATEEDIT_End 237

E
EAS 1

See also EE applications
EBCDIC characters 212

define primary set 350
EBCDIC code sets 218
EBCDIC code type 228
edge (defined) 66
edge accessors 74, 129, 497

creating 119–121
edge cursors 74, 76

view options 86
edge edit objects 80
edge ID values 68
edge pointer arrays 66, 67
edit objects 78–80, 527

adding titles 118
creating/destroying 118

edition interfaces 236
edition objects 493, 532, 539
EE applications 1

bi-directional linkage 2
services classes 2

elements
See also array objects
accessing 149, 155, 165
adding 141, 150, 166
finding 149, 156
in arrays 145
numeric values 137
removing 141, 151, 167
removing duplicates 142, 152, 159, 168
C Programmer’s Guide 565

Index
Elements Environment Application Services 1
encoded native strings 552
encoding routines 361
endianity 192, 197
entry/exit macros 241
enumerated types 177

code set ids 215
code type ids 226
comparison results 182
convert integer to enum 182
copy results 181
data source edition 238
data source modification 238
describe file extension 296
describe file type 297
describe persistent field 366
edition interface 236
file compression 364
file manager 288–293, 295
file names 313
file open modes 265
horizontal direction 183
identify file types 295
interval sets 343
Macintosh creator and type signatures 291
memory manager 376
memory pool 374
perform action 183
persistent field categories 366
persistent fields 365
regions 421
register script event 441
register script verb 443
resource class flags 387
resource notification 412
set bit operations 449
specify file errors 264
specify file format 264
VarTypeEnum 485
version 184
vertical direction 183

environment
chip architecture selection 351
operating system selection 351
windowing system selection 352

environment variables 282
ERR_ASSERT 254
ERR_CHECK 254
ERR_CHECKSTR 254
ERR_DECLARE 246
ERR_Exit 244, 253
ERR_EXTERN 246
ERR_Fail 242, 253
ERR_FailAssert 253
ERR_FailError 254
ERR_FailSilent 243, 253
ERR_FailStr 242, 253
ERR_Fatal 243, 253
ERR_Format 252
ERR_FrameDefReport 250

ERR_FrameGetTop 249
ERR_FrameIsReported 250
ERR_FrameQueryFullTraceback 250
ERR_FrameQueryMessage 249
ERR_FrameQueryTraceback 250
ERR_FrameReport 250
ERR_FrameSetReported 250
ERR_FrameTraceBack 255
ERR_GetErrFuncCallPtr 249
ERR_GetReportProc 250
ERR_GetSysExceptHandler 256
ERR_InError 254
ERR_INMODULE 241
ERR_ISLIBCREATED 246, 253
ERR_LIB 246, 252
ERR_LIBCREATEINIT 246, 253
ERR_LIBDECLARE 253
ERR_LoadMsg 252
ERR_MAININIT 246, 253
ERR_ModExit 255
ERR_MswIsInterruptRegistered 257
ERR_MswRegisterInterrupt 257
ERR_MswRegisterInterruptOnInit 257
ERR_NoMacSignals 257
ERR_Print 252
ERR_SETOPTINT 245, 252
ERR_SETOPTSTR 245, 252
ERR_SETOPTVSTR 245, 252
ERR_SetReportPrint 252
ERR_SetReportProc 250
ERR_SetReportSilent 252
ERR_SetSysExceptHandler 256
ERR_SysException 256
ERR_SysExceptProc 256
ERR_TRACEALL 245, 251
ERR_TraceBack 255
ERR_Warn 243, 254
ERR_WarnStr 243, 254
ERR_XIN 241
ERR_XOUT 241
error codes 314
error handling global variables 245, 252
error module 255
errors 239

assertions 254
broadcast exit message 255
condition signals 255
context information 244, 251
default format procedure 252
default report procedures 252
fatal 243, 253
file I/O 264, 283
file manager 288
file name signals 314
format end user message 249
format traceback message 250
566 C Programmer’s Guide

Index
errors (continued)
get global report 250
get pointer to reporting structure 249
get topmost frame 249
invoke default report 250
invoke global report 250
load message 252
mark error frame 250
memory 384
message numbers 244
output traceback 255
override global report 250
query state 254
recovering from 241
report status 250
reporting 247–249, 252, 255
retrying 241
signaling failures 242, 253
tracing 245, 251

EVEN 188
events 5

registering 440
exceptions 239

Macintosh systems 257
UNIX systems 255–256
W16 API 256–257

exit functions 255
exit status 187
EXIT_FAIL 187
EXIT_OK 187
export functions 347
EXT_IsEmpty 394
extent 393

See also rectangle

F
FailIfNotFound 268, 269
FailOnEOF 269
failures 185, 239

generate silent 253
signaling 242, 253
trapping 385

fatal errors 243, 253
file

close 272
create backup 280
create/open 271, 272
detect end of file 274
determines node type 271
find file 270
flush output buffer 281
get auto backup flag 268
get client data 270
get default search path 281
get default search path name 282
get error 283
get FailIfNotFound flag 268
get FailOnEOF flag 269
get open format and mode 273
get real file name 267

file (continued)
get search path 267
get specified name 266
go to beginning 274
go to end 274
naming conventions 307
open 271, 272
overview 259
query current text position 275
query line position 275
query native reference 282
read line 280
read N text characters 278
read next character 277
read string 279
read text line 279
read/write operations 276
return current line number 275
return current size 273
return current text offset 275
set auto backup flag 268
set client data 270
set default search path 281
set default search path name 282
set error 283
set FailIfNotFound flag 269
set FailOnEOF flag 269
set line postion 275
set native reference 283
set search path 268
set specification name 267
set text position 275
specify format 264
test for open file and mode 272
testing read access 270
testing write access 270
truncate file 281
write line 280
write N text characters 278
write next character 278
write string 279
write text line 279

file attributes 259
file compression See pack objects
file handles 263
file manager 259, 285

access rights 286, 290
add file type 297
check access permissions 293
check node type 294
copy directory 299
copy file 298
copy node 299
create file 286, 298
create new directory 286, 298
data types 285–288
delete directory 301
delete directory contents 301
delete file 301
delete node 301
detect concealed device 293
determine node existence 293
enumerated types 288–293, 295
C Programmer’s Guide 567

Index
file manager (continued)
error reporting 288
find file type ID 297
find file type information 297
get Macintosh signature 294
get Macintosh type 294
get node type 294
get Nth file type 297
get registered file types 297
modification and creation times 288
move directory 300
move file 299
move node 300
node owner information 287
node references 287
node types 290
non-asserting functions 301
perform directory action 303
perform volume action 304
purge file 302
remove file type 297
rename directory 300
rename file 299
rename node 300
return file wildcard pattern 304
return wildcard expression 304

file name 259, 307
buffer size 314
check node type 295
compare 328
conversion status 313, 320
convert to absolute 328
convert to current syntax 319
convert to given syntax 319
data types 311
define components 312, 315
describe status value 321
enumerated types 313
evaluate current expression 318
evaluate specified expression 318
extract and copy component 321
extract file component 321
find path name syntax 317
get and convert syntax 320
get component set 321
get current syntax 316
get native system syntax 316
get native temporary file 329
get real 267
get syntax 316, 319
get temporary file 328
identify syntax 313
make backup file 329
make name valid 318
merge path to full name 323, 324
parsing 323
query current syntax 316
query node information 294
reduce to component 322
reset conversion parameters 316
returning 266
set conversion flag 321
set conversion parameters 316
set current syntax 316

file name (continued)
set temporary file 328, 329
setting 267
signal errors 314
storing path name 311
syntax constants 312
test portablility 320
test status 328
validate conversion 320
validate current syntax 318
validate system syntax 317

file open modes 265
file pointers 261, 263
file type conversions 307
FILE_Backup 280
FILE_Close 272
FILE_CreateOpen 271
FILE_CurBinaryOffset 274
FILE_CurLineNumber 275
FILE_CurSize 274
FILE_CurTextOffset 275
FILE_Find 270
FILE_Flush 281
FILE_FMTLINE mode 263
FILE_FMTTEXT mode 264
FILE_GetAutoBackup 268
FILE_GetClientData 270
FILE_GetDefSearchPath 282
FILE_GetDefSearchPathName 282
FILE_GetError 283
FILE_GetFailIfNotFound 269
FILE_GetFailOnEof 269
FILE_GetNodeType 271
FILE_GetOpenFormat 273
FILE_GetOpenMode 273
FILE_GetRealName 267
FILE_GetSearchPath 267
FILE_GetSpecName 266
FILE_GotoBeg 274
FILE_GotoEnd 274
FILE_IsAtEnd 274
FILE_IsOpen 273
FILE_IsOpenBinary 273
FILE_IsOpenLine 273
FILE_IsOpenRead 273
FILE_IsOpenText 273
FILE_IsOpenWrite 273
FILE_IsReadable 270
FILE_IsWritable 270
FILE_Open 271
FILE_QueryLinePos 275
FILE_QueryNatRef 282
FILE_QueryTextPos 275
FILE_ReadByte 276
FILE_ReadChar 277
568 C Programmer’s Guide

Index
FILE_ReadLine 280
FILE_ReadNBytes 277
FILE_ReadNChars 278
FILE_ReadStr 279
FILE_ReadTextLine 279
FILE_SeekBinaryBy 275
FILE_SeekBinaryTo 274
FILE_SetAutoBackup 268
FILE_SetClientData 270
FILE_SetDefSearchPath 281
FILE_SetDefSearchPathName 282
FILE_SetError 283
File_SetFailIfNotFound 269
FILE_SetFailOnEo 269
FILE_SetLinePos 276
FILE_SetNatRef 283
FILE_SetSearchPath 268
FILE_SetSpecName 267
FILE_SetTextPos 275
FILE_Truncate 281
FILE_TryClose 272
FILE_TryCreateOpen 272
FILE_TryOpen 272
FILE_WriteByte 276
FILE_WriteChar 278
FILE_WriteLine 280
FILE_WriteNBytes 277
FILE_WriteNChars 278
FILE_WriteStr 279
FILE_WriteTextLine 280
FileErrEnum 264
FileFmtEnum 264
FileFmtEnum mode 261
FileIOEnum 265
FileIOEnum mode 261
FileLinePosPtr 263
FileLinePosRec 263
FileNatRefPtr 263
FileNatRefRec 263
FileOffsetVal 263
FilePtr 261, 263
FileTextPosPtr 264
FileTextPosRec 264
finding resources 407
floating point numbers 178
FMGR_ACCESS... constants 290
FMGR_AddFileType 297
FMGR_AllFilesWildCard 304
FMGR_CheckDir 295
FMGR_CheckFile 295
FMGR_CopyDir 299
FMGR_CopyFile 299
FMGR_CopyNode 299
FMGR_CreateDir 298

FMGR_CreateFile 298
FMGR_DeleteDir 301
FMGR_DeleteDirContent 301
FMGR_DeleteFile 301
FMGR_DeleteNode 301
FMGR_DirWildCard 304
FMGR_Exists 293
FMGR_FindFileTypeId 297
FMGR_FindFileTypeInfo 297
FMGR_GetMacCreator 294
FMGR_GetMacType 294
FMGR_GetNodeType 294
FMGR_GetNthFileType 297
FMGR_GetNumFileTypes 297
FMGR_IsDevConcealed 293
FMGR_IsDir 294
FMGR_IsExecutable 293
FMGR_IsFile 294
FMGR_IsReadable 293
FMGR_IsVolume 294
FMGR_IsWritable 293
FMGR_MAC... constants 291
FMGR_MoveDir 300
FMGR_MoveFile 299
FMGR_MoveNode 300
FMGR_PerfDirFiles 303
FMGR_PerfVolumes 304
FMGR_PurgeDir 302
FMGR_QueryNodeInfo 294
FMGR_RemoveFileType 297
FMGR_TryCopyDir 302
FMGR_TryCopyFile 302
FMGR_TryCopyNode 302
FMGR_TryCreateDir 302
FMGR_TryCreateFile 302
FMGR_TryDeleteDir 302
FMGR_TryDeleteDirContent 302
FMGR_TryDeleteFile 302
FMGR_TryDeleteNode 302
FMGR_TryMoveDir 302
FMGR_TryMoveFile 302
FMGR_TryMoveNode 302
FMgrAccessSet 286
FMgrCreateDirPtr 286
FMgrCreateDirRec 286
FMgrCreateFilePtr 286
FMgrCreateFileRec 286
FmgrErrEnum 288
FMgrFileTypeEnum 289, 295
FMgrMacIdsPtr 286
FMgrMacIdsRec 286
FMgrMacIdVal 287
FMgrNodeEnum 290
FMgrNodePtr 285
C Programmer’s Guide 569

Index
FMgrNodeRec 285
FMgrOwnerPtr 287
FMgrOwnerRec 287
FMgrRefsVal 287
FMgrSizeVal 287
FMgrTimesPtr 287
FMgrTimesRec 287
FMgrTimeVal 288
FNAME_Cmp 328
FNAME_COMP... constants 315
FNAME_Convert 319
FNAME_ConvertFromTo 319
FNAME_ConvertInPlace 320
FNAME_CurDirStr 326
FNAME_CvtDirFileToPath 323
FNAME_CvtDirPathToFile 322
FNAME_CvtToAbsolute 328
FNAME_DirQueryParent 326
FNAME_Equal 328
FNAME_Evaluate 319
FNAME_EvaluateIn 318
FNAME_FAIL... constants 314
FNAME_FindSyntax 317
FNAME_GetCompSet 321
FNAME_GetCurSyntax 316
FNAME_GetStatus 320
FNAME_GetSysSyntax 316
FNAME_GetTmpPath 328
FNAME_HomeDirStr 327
FNAME_IsAbsolute 328
FNAME_IsConvertible 320
FNAME_IsDirAsFile 322
FNAME_IsPortable 320
FNAME_IsTopDir 324, 328
FNAME_IsValid 318
FNAME_IsValidIn 318
FNAME_MakeBackupName 329
FNAME_MakeTmpFileName 329
FNAME_MakeValid 318
FNAME_MakeValidIn 318
FNAME_MAXLEN 311, 314
FNAME_MergeFile 323
FNAME_MergePath 324
FNAME_ParentDirStr 326
FNAME_QueryComps 322
FNAME_QueryCurDir 325
FNAME_QueryCurParams 316
FNAME_QueryCurVolume 325
FNAME_QueryHomeDir 327
FNAME_QueryParentDir 326, 327
FNAME_QueryTopDir 324, 327
FNAME_ReduceComps 322
FNAME_ResetCurParams 317
FNAME_SetCurDir 325

FNAME_SetCurParams 316
FNAME_SetCurSyntax 316
FNAME_SetStatus 321
FNAME_SetTmpPath 329
FNAME_SplitFile 323
FNAME_SplitPath 323
FNAME_StatusGetMsg 321
FNAME_StxGetName 316
FNAME_STXMASK... constants 312
FNAME_SysTmpPath 329
FNAME_TopDirStr 324
FNAME_VolumeQueryCurDir 325
FNAME_VolumeSetCurDir 326
FNameBuf 310, 311
FNameCompSet 312
FNameCompSetEnum 315
FNameParamsPtr 312
FNameParamsRec 312
FNameStatusEnum 313
FNameStxEnum 313
FNameStxMaskVal 312
FSS-UTF code type 228

G
global string type 451
global variables 245, 252, 438
graph datasources 63

See also graphs
accessors 65, 74, 118–121, 129
adding directed edge 66, 69, 130

example 130
adding edit objects 78–80, 118
adding nodes 64, 71, 122–129
adding undirected edge 66, 69, 130

example 131
autosizing nodes 85
basic components 64, 67
building 117–131

basic tasks 117
creating child nodes 124
creating edges 129
creating linked nodes 123
creating neighbor nodes 127
creating parent nodes 125
creating unlinked nodes 128
cursor types 76
default fields 64, 67
define cursor type options 86
define default link shape 114, 116
define default node shape 109
define edge connections 68
define frame color 106, 108
define label color 106, 108, 113, 115
define link color 112, 113, 115
define node color 106, 108
display labels 107, 109, 114, 116
display nodes 105, 112
edge pointer arrays 66, 67
570 C Programmer’s Guide

Index
graph datasources (continued)
link unlinked nodes 129
navigating through nodes 66
origins 65
parent/child node relationships 72, 123
set default node shape 107
set edge ID 68
set edge values 68
set label font 107, 109, 114, 116
set link properties 102, 110
set node height 66, 88, 105
set node ID 65
set node properties 102, 103
set node values 65
set node width 66, 88, 105
set pen 107, 109, 113, 116
set view options 84
specify as readonly 87
updating 527

graph diagrammer 87–102
add bitmap file 92
define background color 92
define default link shape 102
define default node shape 100
define frame color 93, 98
define label color 94, 96, 99, 101
define link color 95, 96, 100, 101
define node color 93, 98
define orientation 90
define overview window 90
display node labels 95, 97, 99, 102
display node/links 92, 97
reference cyclic nodes 91
set axes values 89
set default link shape 97
set default node shape 95
set font 94, 97, 99, 101
set grid alignment 89
set node size 88
set parameter values 85, 87
set pen 94, 96, 99, 101
set zoom level 90

graph edit objects 519, 527
graph properties 495

edges 514, 517, 524, 526
links 102, 110
nodes 102, 103, 509, 513, 524

graphs 70
See also graph datasources
accessor validity 509
adding and removing edges 508
adding and removing nodes 507
changing 519, 527
declare edge accessor 74
edge accessors 497
edge IDs 515, 525
edge-accessor navigation 504
edge-accessor validity 514
getting and setting cursors 518
neighboring nodes 73, 127
node accessors 496
node IDs 510, 521
node-accessor navigation 502

graphs (continued)
root nodes 71, 122
x origins 511, 522
y origins 512, 522

H
hash table 331

add entry 336
allocate 332
compare entries 333
construct with info 332
deallocate 332
default comparison 336
default constructor 332
default destructor 332
default hashing procedure 336
default string cloning 336
defining members 331
dispose 333
dispose stored data 334
extract key entry 335
fill hashInfo 334
get bin index 336
get data clone 333
get default clone string info 334
get default integer info 334
get default pointer info 334
get default string info 334
get entry 336
get entry key 337
get entry value 337
hashing procedures 333
insert key entry 335
lookup key entry 335
parametrized for hashInfo 332
parametrized for integers 332
parametrized for pointers 333
parametrized for strings 333
query default settings 334
query info 334
query statistical info 337
remove entry 337
reset contents 333
return data clone 334
set entry value 337
store information 333, 334
test entry existence 336
trigger iteration 335

HASH_AddGetEntry 336
HASH_Alloc 332
HASH_CompareProc 333
HASH_Construct 332
HASH_ConstructInfo 332
HASH_DataCloneProc 333
HASH_DataDisposeProc 334
HASH_Dealloc 332
HASH_DefCompareInt 336
HASH_DefCompareIStr 336
HASH_DefComparePtr 336
HASH_DefCompareStr 336
C Programmer’s Guide 571

Index

HASH_DefHashInt 336
HASH_DefHashIStr 336
HASH_DefHashPtr 336
HASH_DefHashStr 336
HASH_DefStrKeyClone 336
HASH_DefStrKeyDispose 336
HASH_Destruct 332
HASH_Dispose 333
HASH_EntryGetValue 337
HASH_EntrySetValue 337
HASH_Extract 335
HASH_GetDefIntInfo 334
HASH_GetDefIStrInfo 334
HASH_GetDefPtrInfo 334
HASH_GetDefStrInfo 334
HASH_GetDefStrKeyClonedInfo 334
HASH_GetEntry 336
HASH_GetEntryKey 337
HASH_HashProc 333
HASH_Insert 335
HASH_InsertGetEntry 336
HASH_KeyCloneProc 334
HASH_KeyDisposeProc 334
HASH_Lookup 335
HASH_New 332
HASH_NewForIn 332
HASH_NewForIStr 333
HASH_NewForPtr 333
HASH_NewForStr 333
HASH_Perf 335
HASH_QueryDefInfo 334
HASH_QueryInfo 334
HASH_QueryStats 337
HASH_RemoveEntry 337
HASH_Reset 333
heap 339

add with no reorder 340
allocate 339
corrected 340
create 340
deallocate 339
default constructor 339
default destructor 339
dispose 340
extract top-most entry 340
get size 340
insert entry 340
perform proc on entry 341

HEAP_Add 340
HEAP_Alloc 339
HEAP_Construct 339
HEAP_Correct 340
HEAP_Dealloc 339
HEAP_Destruct 339
HEAP_Dispose 340

HEAP_GetSize 340
HEAP_Insert 340
HEAP_New 340
HEAP_Perf 341
HEAP_QueryFirst 340
HorzEnum 183
HP code sets 219
HP code type 228
huge pointer 180, 377, 378

allocate/deallocate 379
get byte 382
manipulation functions 380
set byte 382
swap byte 382

HUGELIMIT 181
HugePtr 180
HugeStr 180

I
I/O See input; output
IBM mainframes file I/O 260
InEdgePtrArr 64, 66
inheritance 390

testing 412
initialization 245, 253
input 191, 259
input tables 14
Int 178
INT_Compare 182
INT_ToCmp 182
Int16 178
Int32 178
Int64 178
Int8 178
integer constants 179
integer data types 178
integers

absolute value 188
convert to machine format 383
convert to standard format 382
evaluate odd 189
get decimal substring 472
get greater 188
get hex substring 472
get lesser 188
get radix 471
get string 470
get substrings 473
getting decimal string 470
memory allocation 382
read machine-dependent 383
signed 350
write machine-dependent 383

international applications 1
interrupt handler 256
572 C Programmer’s Guide

Index

interval sets 343
add intervals 344
allocate 343
check interval existence 345
comparing and combining 345
compute complement 345
count intervals 344
deallocate 344
default constructor 344
default destructor 344
detect element 345
enumerated types 343
get all elements 345
get biggest element 345
get smallest element 345
get universal intervals 344
query intervals 344
remove intervals 344
set intervals 344

IRE data sources 12
ISET_AddIntervals 344
ISET_Alloc 343
ISET_Construct 344
ISET_ContainsElt 345
ISET_ContainsIntervals 345
ISET_Dealloc 344
ISET_Destruct 344
ISET_GetMaxElt 345
ISET_GetMinElt 345
ISET_GetNumIntervals 344
ISET_IsAll 345
ISET_MixGetPartSet 345
ISET_MixQueryParts 345
ISET_QueryComplement 345
ISET_QueryIntervals 344
ISET_RemoveIntervals 344
ISET_SetIntervals 344
ISET_UniversalSet 344
ISO 8859-X code type 227
ISO code sets 216

character information definition 222

J
Japanese characters 218
JIS0201 character information 223
JIS0208 character information 222

K
keys 331

L
library 427

close 429
exit from resource 406
get first alphabetically 428

library (continued)
get name 427
get next alphabetically 428
get pointer 427
initialize and load script 439
initialize resource 406
install 406
install and initialize script 439
install script 439
load 428
load and edit 428
load and initialize 406
load and return 428
open 429
unload and close 429
unload and uninstall script 439

Link Edition dialog 87
linking

DA RecordSetData to ListBox 9
IRE class with properties 14
TextEdit to VariantDataSource 8
TextEdit with IRE slot 17
TextEdit with NXP slot 9

linking units 246
list data sources 8
listbox views 16
loading resources 407
local variables 438
locking data 7
Long data type 177
loops 438
LZW algorithm 359
Lzw algorithm 363

M
MAC_HEADERS 252
machine specific definitions 347
Macintosh look

code sets 216
code type 227
creator signatures 286, 287, 291
enumerated file type 291
exception handling 257
file I/O 259
file type 286
operating system selection 352
windowing system selection 352

macros 177
check node type 294
code sets 220, 222
compare two integers 182
compute absolute integer value 188
conflicts 187
declare exported function 347
define odd numbers 189
determine even numbers 188
entry/exit 241
error context messages 245
error handling global variable 246
error reporting 252
C Programmer’s Guide 573

Index
macros (continued)
implement MSW code 351
initialization 253
numeric collections 137
object collections 146
object pointers 153
offset in C structure 188
portable const keyword 347
provide offset in C structure 188
record collections 163
recovery and retry 251
return empty value 189

MAX 188
MAXINT16 179
MAXINT32 179
MAXINT64 179
MAXINT8 179
MAXUINT16 179
MAXUINT32 179
MAXUINT64 179
MAXUINT8 179
MCH_Cc 352
MCH_CHIP 351
MCH_MSWDLLCODE 351
MCH_OS 351
MCH_WCHAR 350
MCH_WIN 352
memory 371

allocation failures 376
get allocation failure callback 385
huge pointers 377, 378
integer size 137
manipulation tools 177

memory buffer 191
allocate 194
clear 379
construct custom data bbuf 195
construct data bbuf 194
construct file bbuf 194
deallocate 195
default constructor 194
destructor 195
detect modified page 198
flush changes to file 196
get beginning page position 198
get client data 197
get current pointer 199
get endianity 197
get paging data 198
get size 378
get total size 197
load current page 197
paging mechanism 191
paging methods 193, 199
query methods 199
read integers 195
read len bytes 195
resize 379
return current position 196
return pointer to current page 198
return pointer to first byte 198

memory buffer (continued)
seek operations 196
set absolute offset 196
set beginning page position 198
set client data 197
set current pointer 199
set endianity 197
set methods 199
set PageModified flag 198
set paging data 198
set pointer to current page 198
set pointer to first byte 198
set relative offset 196
set size 378, 379
set total size 197
skip bytes from current position 196
specialization flags 193
write integers 196
write len bytes 195

memory manager 375
access blocks 377
alignment check 377
allocate huge pointer 379
allocate new pointer 378
clear pointer 379
compare pointers 380
convert integers 382
convert strings 384
copy pointer 380, 382
deallocate huge pointer 379
deallocate/dispose memory 378
describe statistics 375
error handling routines 384
get aligned size 377
get buffer size 378
get failure callback 385
get statistics 381
match pointer size 380
move pointer 380
output statistics 381
read integers 383
read pointer value 381
read strings 384
resize pointer 379
set buffer size 378, 379
set failure callback 385
set pointer values 381
store integers 382
store strings 383
swap pointer 380
swap pointer bytes 382
trap failures 385
write integers 383
write string 384

memory pool 371
allocate 372
construct with info 373
deallocate 373
deallocate pointer 373
default constructor 373
default destructor 373
definition 372
fill poolInfo 373
fill with statistical info 374
574 C Programmer’s Guide

Index
memory pool (continued)
reset stats 374
return pointer to cell 373
update 373

messages 244
send vs. post 415

metadata 387
microprocessor chip architecture 351
Microsoft Windows See MSW look
MIN 188
MS/Windows code sets 217
MS/Windows code type 227
MSW look

huge strings 180
implement MSW code 351
operating system selection 352
portable far keyword 348
portable near keyword 348
windowing system selection 352

multibyte character pointer 206
multibyte characters 203, 225

See also variable strings
code mapping 225
code types 226
define encoding 350
encoding 204, 207
get byte-specific 208

N
NatChar 204
NatCharPtr 205
NatCode 206
NatCodePtr 205
native character code

writing to a string 464
native characters 203

converting to ASCII 213
pointer 205

native file managers 285
native interrupt handler 256
native rectangle type 394
native string

writing a native character code 464
writing an ASCII character 463

native substrings 552
NatPos 263, 264
NatStr 453
ND_CHARLANG 205
ND_CHARNATIVE 204, 205
NDArObj::IsEmpty 149
NDFMgrFileExt 296
NDFMgrFileType 297
NDHashInfo 331
NDHashStatsInfo 337
NDISetInterval 343
NDPFld 366
NDPoolFragStatsInfo 374

NDPoolStatsInfo 374
NDScrptRegisterEvent 441
NDScrptRegisterVerb 443
NFIER_Alloc 356
NFIER_Broadcast 356
NFIER_ClientAlloc 356
NFIER_ClientConstruct 356, 357
NFIER_ClientConstructProc 356, 357
NFIER_ClientDealloc 356, 357
NFIER_ClientDestruct 356, 357
NFIER_ClientGetClientData 357
NFIER_ClientNewRegister 358
NFIER_ClientSetClientData 357
NFIER_ClientUnregisterDispose 358
NFIER_Construct 356
NFIER_Destruct 356
NFIER_RegisterNfierClient 357
NFIER_UnregisterNfierClient 357
node accessors 65, 74, 129, 544

creating 119
node cursors 74, 76

view options 86
node edit objects 79
Node Edition dialog 87
node ID values 65
nodes

binary trees 169
file system entities 285
graphs 64, 71

creating 122–129
properties 102, 103

variant trees 543
nonwindow-based applications 405
notification variable 439
notifications 355, 415

See also notifier
notifier 355

add client 357
allocate 356
allocate and register 358
associate client with data 357
broadcast notification 356
construct client 356
deallocate client 356, 357, 358
default client constructor 356, 357
default client destructor 356, 357
default constructor 356
default destructor 356
get client data 357
remove client 357
unregister 358

NT file I/O 259
NULL 189
null values 189
numeric sets See interval sets
numeric values 137

reading 192
C Programmer’s Guide 575

Index
NxDataSource 12
properties 13

NxTableDataSource 12
properties 13

O
object collections 145
object pointers 153
object references 153
object sets See set
ODD 189
OI Core data sources 10
OI example 8
Open Interface File I/O 260
opening files 271, 272
operating system selection 351
origins 393

See also rectangle
OS/2 file I/O 259
OutEdgePtrArr 64, 66
output 191, 259
output buffer 281

P
pack objects

allocate 360
deallocate 360
decode with CCITT 363
decode with LZW 363
decode with PackBits 362
decode with RLE algorithm 362
decode with specified method 364
default constructor 360
default destructor 360
encode with CCITT 363
encode with LZW 363
encode with PackBits 362
encode with RLE algorithm 362
encode with specified method 364

PACK_Alloc 360
PACK_CcittDecode 363
PACK_CcittEncode 363
PACK_Construct 360
PACK_Dealloc 360
PACK_Decode 364
PACK_Destruct 360
PACK_Encode 364
PACK_LzwDecode 363
PACK_LzwEncode 363
PACK_PkbDecode 362
PACK_PkbEncode 362
PACK_RleDecode 362
PACK_RleEncode 362
PackBits algorithm 359, 362
PackMethodEnum 364

PackRec 361
paging mechanism 191
paging methods 193, 199
path name 311
PC code pages 217
PC code type 228
PerfEnum 182, 426
persistent data 387
persistent fields 365

categories 366
describe to resource manager 366
enumerated types 365
resources 403

persistent objects 399
persistent resources 10
PFldCatEnum 366
PFldRec

warning 366
PFldTypeEnum 365
PM look

huge buffer 180
huge strings 180
operating system selection 351
portable far keyword 348
portable near keyword 348
windowing system selection 352

point objects 367
construct with values 367
default constructor 367
default destructor 367
get distance between 369
get X coordinate 368
get Y coordinate 368
increment coordinates 368
regions 421
reset coordinates 368
set coordinates same values 368
set X coordinate 368
set Y coordinate 368
test for null 368
test values 369

point structures 393
POINT16_AbsDist 369, 394
POINT16_Construct 367
POINT16_ConstructWithValues 367
POINT16_Destruct 367
POINT16_Equals 369
POINT16_GetX 368
POINT16_GetY 368
POINT16_IncXY 368, 395
POINT16_IsInRectExt 369
POINT16_IsNull 368
POINT16_Reset 368
POINT16_SetSameXY 368
POINT16_SetX 368
POINT16_SetXY 368, 395
POINT16_SetY 368
POINT32_AbsDist 369, 394
576 C Programmer’s Guide

Index
POINT32_Construct 367
POINT32_ConstructWithValues 367
POINT32_Destruct 367
POINT32_Equals 369
POINT32_GetX 368
POINT32_GetY 368
POINT32_IncXY 368, 395
POINT32_IsInRectExt 369
POINT32_IsNull 368
POINT32_Reset 368
POINT32_SetSameXY 368
POINT32_SetX 368
POINT32_SetXY 368, 395
POINT32_SetY 368
pointer 377

See also memory manager
client information 179
resource library 428
resource notification 413

polygonal regions 425
pool See memory pool
POOL_Alloc 372
POOL_Construct 373
POOL_ConstructInfo 373
POOL_Dealloc 373
POOL_Destruct 373
POOL_DisposePtr 373
POOL_NewPtr 373
POOL_QueryInfo 373
POOL_QueryStats 374
POOL_ResetStats 374
POOL_SetInfo 373
private stuff 250
program termination 243
properties 10

graph edges 514, 517, 524, 526
graph links 102, 110
graph nodes 102, 103, 509, 513, 524
variant trees 543, 547

PTR_AlignCheck 377
PTR_Clear 379
PTR_Cmp 380
PTR_Copy 380
PTR_CopyByte 382
PTR_DefFailProc 385
PTR_Dispose 378
PTR_GetAlignedSize 377
PTR_GetByte 381
PTR_GetFailProc 385
PTR_GetSize 378
PTR_HugeClear 381
PTR_HugeCmp 381
PTR_HugeCopy 381
PTR_HugeCopyByte 382
PTR_HugeDispose 379

PTR_HugeGetByte 382
PTR_HugeGetSize 379
PTR_HugeMatches 381
PTR_HugeMove 381
PTR_HugeNew 379
PTR_HugeSet 381
PTR_HugeSetByte 382
PTR_HugeSetSize 379, 381
PTR_HugeSwap 381
PTR_HugeSwapByte 382
PTR_Int16ToMch 383
PTR_Int16ToStd 382
PTR_Int32ToMch 383
PTR_Int32ToStd 382
PTR_Int8ToMch 383
PTR_Int8ToStd 382
PTR_Matches 380
PTR_Move 380
PTR_New 378
PTR_QueryStats 381
PTR_ReadInt16 383
PTR_ReadInt32 383
PTR_ReadInt8 383
PTR_ReadStr 384
PTR_Set 379
PTR_SetByte 382
PTR_SetFailProc 385
PTR_SetSize 378, 379
PTR_StatsOutput 381
PTR_StrToMch 384
PTR_StrToStd 384
PTR_Swap 380
PTR_SwapByte 382
PTR_WriteInt16 383
PTR_WriteInt32 383
PTR_WriteInt8 383
PTR_WriteStr 384
PtrFailEnum 376
PtrStatsPtr 375
PtrStatsRec 375

R
RANGE_ContainsCel 202
RangePtr 201
RangeRec 201
ranges 201

contain cells 202
rc format 399
RCLAS_Add 388
RCLAS_ClassDefNfy 418
RCLAS_CPlusRegister 388
RCLAS_FindByName 390
RCLAS_GetConstruct 389
C Programmer’s Guide 577

Index
RCLAS_GetDefNfy 390
RCLAS_GetDelete 389
RCLAS_GetDestruct 389
RCLAS_GetFields 389
RCLAS_GetFirst 390
RCLAS_GetFlags 389
RCLAS_GetModName 389
RCLAS_GetName 389
RCLAS_GetNew 389
RCLAS_GetNext 390
RCLAS_GetParentClass 389
RCLAS_GetSizeOfRes 389
RCLAS_GetTemplate 389
RCLAS_GetVersion 389
RCLAS_IsSubClassOf 390
RCLAS_OperatorDelete 389
RCLAS_OperatorNew 389
RCLAS_ProcessDefNfy 392
RCLAS_ProcessParentDefNfy 392, 418
RCLAS_Register 388
RCLAS_SetConstructProc 391
RCLAS_SetDefNfy 391
RCLAS_SetDeleteProc 391
RCLAS_SetDestructProc 391
RCLAS_SetFields 391
RCLAS_SetFlags 391
RCLAS_SetModName 391
RCLAS_SetName 391
RCLAS_SetNewProc 391
RCLAS_SetParentClass 391
RCLAS_SetSizeOfRes 391
RCLAS_SetVersion 391
RClasFlagsSetEnum 387
RClasRec 387
read-only graphs 87
record collections 163
RecordSet

defined 10
modifying 11
updating 12

RecordSetDataSource 10
implementation 10
methods 12

RECT16_ContainsPoint 394
RECT16_Copy 396
RECT16_CopyResetOri 396
RECT16_Equals 395
RECT16_GetBegX 398
RECT16_GetBegY 398
RECT16_GetEndX 398
RECT16_GetEndY 398
RECT16_GetExtX 397
RECT16_GetExtY 397
RECT16_GetOriX 397
RECT16_GetOriY 397

RECT16_IncludesNonEmptyRect 396
RECT16_IncludesRect 396
RECT16_IncOriExtXY 394
RECT16_Intersection 396
RECT16_Intersects 396
RECT16_IsEmpty 395
RECT16_IsValid 397
RECT16_MakeFit 397
RECT16_MakeValid 397
RECT16_MoveInside 397
RECT16_Reset 395
RECT16_SetBegX 398
RECT16_SetBegY 398
RECT16_SetByPoints 395
RECT16_SetEndX 398
RECT16_SetEndY 398
RECT16_SetExtX 398
RECT16_SetExtY 398
RECT16_SetOriExtXY 394
RECT16_SetOriX 398
RECT16_SetOriY 398
RECT16_Union 396
RECT32_ContainsPoint 394
RECT32_Copy 396
RECT32_CopyResetOri 396
RECT32_Equals 395
RECT32_GetBegX 398
RECT32_GetBegY 398
RECT32_GetEndX 398
RECT32_GetEndY 398
RECT32_GetExtX 397
RECT32_GetExtY 397
RECT32_GetOriX 397
RECT32_GetOriY 397
RECT32_IncludesNonEmptyRect 396
RECT32_IncludesRect 396
RECT32_IncOriExtXY 394
RECT32_Intersection 396
RECT32_Intersects 396
RECT32_IsEmpty 395
RECT32_IsValid 397
RECT32_MakeFit 397
RECT32_MakeValid 397
RECT32_MoveInside 397
RECT32_Reset 395
RECT32_SetBegX 398
RECT32_SetBegY 398
RECT32_SetByPoints 395
RECT32_SetEndX 398
RECT32_SetEndY 398
RECT32_SetExtX 398
RECT32_SetExtY 398
RECT32_SetOriExtXY 394
RECT32_SetOriX 398
578 C Programmer’s Guide

Index
RECT32_SetOriY 398
RECT32_Union 396
rectangle 393

call callback proc 426
callback method 426
contained within 395
contains specified rectangle 396
copy/reset origin 396
copying 396
create intersection 425
determine union 396
disjointed 421
exclusive Or with region 425
get begin/end coordinates 398
get distance between points 394
get origin/extent 397
increment origin/extent 394
intersects with 396
invalid 393
make coordinates valid 397
make equal 395
make fit 396
move 397
reposition 396
reset coordinates 395
set begin/end coordinates 398
set coordinates 395
set origin/extent 394, 398
set point location 395
subtract from region 425
test for empty 395
test for empty point 394
test for specified point 394
union with region 425
validate coordinates 397

region 421
associate with rectangle 424
check for empty 422
constructor 425
create intersection 423, 425
create union 424, 425
determine inside points 423
get boundaries 422
get rectangle position 423
perform exclusive Or 424, 425
perform offset 422
relative position 421
reset to empty 422
set coordinates 423, 424
subtract from another 424
subtract rectangle 425
test equality 423
translate by offset 422

register variables 349
RegisterEventRec 440
registering resource views 235
RegisterVerbRec 441
relative file names 308
RES_CheckClass 420
RES_Class 404
RES_Clone 404

RES_CmdIssue 419
RES_CmdSend 419
RES_CmdTableHandle 420
RES_CmdUpdate 419
RES_Create 404
RES_DefNfy 414
RES_ExecuteScript 420
RES_FilenameOutputRc 405
RES_Find 410
RES_FindByFullName 409
RES_GetClass 412
RES_GetClientData 411
RES_GetName 410
RES_GetNfyCmd 419
RES_GetNfyData 417
RES_GetNfyHandlerClientData 415
RES_GetNfyHandlerProc 414
RES_GetNfyProc 414
RES_GetNthChild 411
RES_GetNumChildren 411
RES_InheritsFrom 412
RES_IsCmdSource 419
RES_IsInitialized 412
RES_IsNamed 410
RES_LibExit 406
RES_LibInit 406
RES_LibInstall 406
RES_LibLoadInit 406
RES_Load 407
RES_LoadByFullName 407
RES_LoadChildren 409
RES_LoadDetach 408
RES_LoadInit 408
RES_LoadInitDetach 409
RES_LockedSendNfyData 416
RES_QueryFullName 410
RES_Release 404
RES_RemoveNfyHandler 415
RES_SaveDat 405
RES_SendCtrlNfyData 418
RES_SendNfy 416
RES_SendNfyData 416
RES_SendNfyEnd 417
RES_SendNfyInit 417
RES_SendNfyReset 417
RES_SetClientData 411
RES_SetNfyHandler 414
RES_SetNfyHandlerClientData 415
RES_SetNfyProc 414
RES_Use 405
RES_VERIFY 420
ResNfyProc 413
C Programmer’s Guide 579

Index
resource 10, 399
attached vs. detached 401
check full name 410
check if initialized 412
check if named 410
clone persistent fields 404
count children 411
create 404
deallocate persistent fields 404
default command routing 418
default notification handler 413
define notifications 412
edit definitions 399
exit library 406
filter attributes 366
find 410
find by full name 409
find Nth resource 477
find string 477
finding 477
get class 412
get client data 411
get client notification 414, 415
get IsCommandSource flag 419
get name 410
get notification handler 414
get notify data 417
get Nth child 411
handle command 420
increment reference count 405
initialize library 406
install library 406
issue execution command 419
issue update command 419
load and edit dat file 428
load and initialize attached 408
load and initialize detached 409
load and initialize library 406
load at run time 399
load by class name 410
load by full name 407, 409
load by module name 407
load children 409
load detached 408
loading 477
naming 400
nonwindow-based applications 405
notify and send 416
persistent fields 365, 403
query full name 410
reference count 401
remove notification handler 414
save at run time 399
save to binary file 405
save to text file 405
scripting functionality 437
send CtrlNfyData notification 418
send NFYEND 417
send NFYINIT 417
send NFYRESET 417
send notification 416
send vs. post 415
set client data 411
set client notification 414, 415

resource (continued)
set notification handler 414
start command routing 419
trigger default notification 418
trigger default parent notification 418
verify class 420
verify inheritance 412

Resource Browser 387
resource class 387, 400

access 412
default allocation 389
default deallocation 389
determine subclasses 390
enumerated types 387
find by name 390
find library 427
get default notification 390
get fields 389
get first class 390
get installed class method 389
get library name 427
get next class 390
get pointer 404
notification codes 412
registering 388, 403
registering new 388
set callbacks 391
set default notification 391
set fields 391
trigger default notification 391, 392

resource library object 427
See also library

resource manager 399
resource scripting 420

execute script 420
resource views 235
responder objects 399
response files 133
RETRY mechanism 241
RGN_Construct 425
RGN_IsEmpty 422
RGN_IsEqual 423
RGN_IsPointInside 423
RGN_POSCROSS 421
RGN_POSINSIDE 421
RGN_PropagateAction 426
RGN_QueryBounds 422
RGN_RectIntersect 425
RGN_RectPos 423
RGN_RectSet 424
RGN_RectSubtract 425
RGN_RectUnion 425
RGN_RectXOr 425
RGN_Reset 422
RGN_RgnIntersect 424
RGN_RgnSet 423
RGN_RgnSubtract 424
RGN_RgnUnion 424
RGN_RgnXOr 424
580 C Programmer’s Guide

Index
RGN_Translate 422
RgnPosEnum 421
RLE algorithm 359, 362
RLIB_Close 429
RLIB_Dispose 429
RLIB_Find 427
RLIB_GetFirst 428
RLIB_GetLibName 427
RLIB_GetNext 428
RLIB_LoadEdit 428
RLIB_LoadFile 428
RLIB_LoadLibFile 429
RLIB_Open 429
RLIB_Unload 429
RLibPtr 428
Run Length Byte Encoding 359, 362

S
SBUF_AppendChar 433
SBUF_AppendSBuf 433
SBUF_AppendStr 433
SBUF_AppendStrSub 433
SBUF_AppendVStr 433
SBUF_Clear 433
SBUF_CountToIndex 432
SBUF_DownCase 435
SBUF_DownCaseSub 435
SBUF_GetBwrd 432
SBUF_GetByte 432
SBUF_GetFwrd 432
SBUF_GetLen 431
SBUF_GetStr 431
SBUF_GetSubStr 431
SBUF_IMatchesChar 436
SBUF_IMatchesSBuf 436
SBUF_IMatchesStr 436
SBUF_IMatchesStrSub 436
SBUF_IndexToCount 432
SBUF_InsertChar 433
SBUF_InsertSBuf 433
SBUF_InsertStr 433
SBUF_InsertStrSub 433
SBUF_InsertVStr 433
SBUF_MatchesChar 435
SBUF_MatchesIChar 435
SBUF_MatchesISBuf 435
SBUF_MatchesIStr 435
SBUF_MatchesIStrSub 435
SBUF_MatchesSBuf 435
SBUF_MatchesStr 435
SBUF_MatchesStrSub 435
SBUF_RemoveChar 434
SBUF_RemoveRange 434

SBUF_ReplaceChar 434
SBUF_SetSBuf 433
SBUF_SetStrSub 433
SBUF_SetVStr 433
SBUF_Truncate 434
SBUF_UpCase 434
SBUF_UpCaseSub 434
script 437

compile 445
compile string resource 445
compile to file 445
copy return value 446
data types 438
dispose 446
execute 445
get return type 445
handler format 437
initialize and load library 439
install and initialize library 439
install in resource 420
install library 439
language extensions 440
load, compile and execute 444
register constants 440
register events 441
register verbs 441, 443
set string return value 443
unload and uninstall library 439

script variables 438
scripting language See script
SCRPT_Compile 445
SCRPT_CompileFile 445
SCRPT_CompileResource 445
SCRPT_Dispose 446
SCRPT_Execute 445
SCRPT_ExecuteApp 444
SCRPT_GetReturnType 445
SCRPT_LibExit 439
SCRPT_LibInit 439
SCRPT_LibInstall 439
SCRPT_LibLoadInit 439
SCRPT_QueryReturnValue 446
SCRPT_RegisterConstants 440
SCRPT_RegisterEvents 441
SCRPT_RegisterVerbs 443
SCRPT_RunApp 444
SCRPT_SetStringReturnValue 443
SCVRB_LibInstall 439
SCVRB_LibLoadInit 439
selection tables 15
SELF variable 439
services classes 2
set 447

See also interval sets
add element 448
add multiple elements 448
allocate pointer 447
combine 449
C Programmer’s Guide 581

Index
set (continued)
combine and extract 449
compare 449
count elements 448
deallocate 447
default constructor 447
default destructor 447
empty 448
empty then copy 448
query elements 448
remove element 448
remove multiple elements 448
set elements 448
set shared empty set 447
test equality 449
test for elements 448

SET_AddElt 448
SET_AddElts 448
SET_Alloc 447
SET_AreEqual 449
SET_Construct 447
SET_ContainsElt 448
SET_Copy 448
SET_Dealloc 447
SET_Destruct 447
SET_EmptySet 447
SET_GetNumElts 448
SET_MixGetPartSet 449
SET_MixQueryParts 449
SET_QueryElts 448
SET_RemoveElt 448
SET_RemoveElts 448
SET_Reset 448
SET_SetElts 448
SetMixPartSetEnum 449
shared resources 401
signal file name errors 314
signed integer constants 179
signed integers 350
silent failures 253
sorting large arrays 158
Source Code Control System (SCCS) 186
standalone applications 444
STR_Append 457
STR_AppendSub 458
STR_AsciiDownCase 475
STR_AsciiDownCaseSub 475
STR_AsciiUpCase 475
STR_AsciiUpCaseSub 475
STR_Clone 455
STR_Cmp 464
STR_CmpSub 464
STR_CtGetBwrd 460
STR_CtGetCode 459
STR_CtGetFwrd 460
STR_Dispose 456

STR_Dispose0 456
STR_Equals 465
STR_EqualsSub 465
STR_FindFirst 467
STR_FindFirstChar 467
STR_FindFirstCharSub 467
STR_FindFirstSub 468
STR_FindIFirst 468
STR_FindIFirstSub 468
STR_FindILast 468
STR_FindILastSub 469
STR_FindLast 469
STR_FindLastChar 469
STR_FindLastCharSub 469
STR_FindLastSub 469
STR_FromCt 477
STR_FromCtSub 477
STR_FromUni 478
STR_FromUniSub 478
STR_GetBwrd 459
STR_GetCode 459
STR_GetDecInt 470
STR_GetDecInt16 470
STR_GetDecInt32 470
STR_GetDecUInt 470
STR_GetDecUInt16 470
STR_GetDecUInt32 470
STR_GetDouble 471
STR_GetFwrd 459
STR_GetHexInt 470
STR_GetHexInt16 470
STR_GetHexInt32 470
STR_GetHexUInt 470
STR_GetHexUInt16 470
STR_GetHexUInt32 470
STR_GetLen 458
STR_GetRadixInt 471
STR_GetRadixInt16 471
STR_GetRadixInt32 471
STR_GetRadixUInt 471
STR_GetRadixUInt16 471
STR_GetRadixUInt32 471
STR_GetTruncLen 458
STR_ICmp 464
STR_ICmpSub 464
STR_IEquals 465
STR_IEqualsSub 465
STR_IFindFirst 467
STR_IFindFirstSub 468
STR_IFindLast 469
STR_IMatches 466
STR_IMatchesPat 466
STR_IMatchesPatSub 466
STR_IMatchesSub 467
582 C Programmer’s Guide

Index
STR_Matches 466
STR_MatchesChar 465
STR_MatchesPat 466
STR_MatchesPatSub 466
STR_MatchesSub 467
STR_NatPutAscii 463
STR_NatPutCode 463
STR_NatWriteAscii 463
STR_NatWriteCode 464
STR_NewSet 455
STR_NewSetSub 456
STR_Put 461
STR_PutAscii 462
STR_PutAsciiLower 476
STR_PutAsciiLowerSub 476
STR_PutAsciiUpper 476
STR_PutAsciiUpperSub 476
STR_PutCode 462
STR_PutDecInt 473
STR_PutDecInt16 473
STR_PutDecInt32 473
STR_PutDecUInt 473
STR_PutDecUInt16 473
STR_PutDecUInt32 473
STR_PutDouble 475
STR_PutHexInt 474
STR_PutHexInt16 474
STR_PutHexUInt 474
STR_PutHexUInt16 474
STR_PutHexUInt32 474
STR_PutRadixInt 474
STR_PutRadixInt16 474
STR_PutRadixInt32 474
STR_PutRadixUInt 474
STR_PutRadixUInt16 474
STR_PutRadixUInt32 474
STR_PutSub 461
STR_ResFind 477
STR_ResFindNth 477
STR_ResLoad 477
STR_ResLoadNth 477
STR_Set 457
STR_SetSub 457
STR_SubGetDecInt 472
STR_SubGetDecInt16 472
STR_SubGetDecInt32 472
STR_SubGetDecUInt 472
STR_SubGetDecUInt16 472
STR_SubGetDouble 473
STR_SubGetHexInt 472
STR_SubGetHexInt16 472
STR_SubGetHexInt32 472
STR_SubGetHexUInt 472
STR_SubGetHexUInt16 472

STR_SubGetHexUInt32 472
STR_SubGetRadixInt 473
STR_SubGetRadixInt16 473
STR_SubGetRadixInt32 473
STR_SubGetRadixUInt 473
STR_SubGetRadixUInt16 473
STR_ToCt 477
STR_ToCtSub 477
STR_ToUni 478
STR_ToUniSub 478
STR_WriteAscii 462
STR_WriteCode 463
string

See also substrings; variable strings
append string 457
append to string butter 433
append to variable string 553
basic types 451
clone string 455
compare two strings 464
compare two strings for equality 465
compare with variable string 554
compile 445
convert ASCII character to lower case 476
convert ASCII character to upper case 476
convert decimal integer into string buffer

473
convert to machine format 384
convert to standard format 384
converting 473, 474
copy to buffer 458
copying 455
define native string type 453
define UNICODE string pointer 455
defines native string pointer 454
defines UNICODE string type 455
disposes of string buffer 456
disposing 456
find first character 467
find first string 468
find first substring 468
find last character 469
find last string 469
find last substring 469
finding last string 468
get character code 459, 460
get character code, native string 459
get code in front of string location 460
get decimal integer 470
get double real numeric value 471
get double real string 471
get hexadecimal integer 470
get integer radix 471
get length 458
get new copy 455
get radix integer 471
getting a character code 459
getting an integer 470
global string pointer 454
global string type 454
huge string type 180
load resource 477
C Programmer’s Guide 583

Index
string (continued)
load string resource 484
match character 465
match pattern 466
match string 466
memory allocation 383
native string types 451
put native code 463
set substring 457
set variable string 555
write ASCII character 462
write ASCII character into native string

463
write ASCII character into string 462
write ASCII character to buffer 476
write ASCII character to upper case 476
write character 463
write character code 462, 463
write character code into string 463
write into buffer 461
write native ASCII character 463
write native character code 464
write native code into native string 463
write substring to buffer 461
write to buffer 461

string buffer 431
append contents 433
change contents 433
clear contents 433
convert byte offset 432
convert character count 432
convert decimal integers into 473
convert string to lower case 435
convert string to upper case 434
get byte 432
get character code 432
get contents 431
get length 431
get specified string 431
insert at index specified 433
match case-insensitive string 436
match case-sensitive string 435
match string with specified case 435
remove character 434
remove character range 434
replace character 434
truncate string 434

string list resource
add string 480
find nth string 481
get length 479
get nth string 480
inserts new string 480
load nth string 481
remove string 480
set nth string 480

string resource
find string resource 484
get id 484
get string 484
set id 484
set string 484

StrIVal 206, 454

StrIValPtr 454
STRL_AddStr 480
STRL_AddStrAtIndex 480
STRL_Class 479
STRL_FindNthStr 481
STRL_GetLen 479
STRL_GetNthStr 480
STRL_LoadNthStr 481
STRL_RemoveIndex 481
STRL_SetNthStr 480
STRR_Class 483
STRR_FindStr 484
STRR_GetId 484
STRR_GetStr 484
STRR_LoadStr 484
STRR_SetId 484
STRR_SetStr 484
subclasses 390
subresources 400
substring

append sububstring 458
compare 464
compare two substrings 464, 465, 467
convert ASCII character to lower case 476
convert substring to lower case 476
find first character 467
find last character 469
finding first substring 468
finding within a string 468
get double 473
get double real numeric value 473
get integer, decimal substring 472
get integer, given radix 473
get integer, hex substring 472
match subpattern 466
match substring containing pattern 466
match substrings 467
set new substring 456
set substring 457

substrings
append to variable string 553
finding 553
get from buffer 431
replace variable string with 552

symbolic constants 440
synchronized access 6
synchronous notifications 415

T
T4 encoding See CCITT Group3 algorithm
T6 encoding See CCIT Group4 algorithm
table data sources 7, 12, 13
table types 14
Tandem mainframes file I/O 260
584 C Programmer’s Guide

Index
text files 259
get next character 277
query current position 275
read line 279
read N characters 278
read string 279
return current offset position 275
set current position 275
write character 278
write N characters 278
write null-terminated string 279
write string and line terminator 279, 280

tracing mechanism 245, 251
truncate file 281
truncating strings 434, 554
types See data types

U
UInt 178
UInt16 178
UInt32 178
UInt64 178
UInt8 178
UndirEdgePtrArr 64, 66
UndirPtrArr 67
UniCode 206
UNICODE character pointer 205
UNICODE character type 204
UNICODE code sets 218
UNICODE code type 228
UniCodePtr 205
UniStr 206
UniStrPtr 206
UNIX exception handling 255–256
Unix file I/O 259
unsigned integer constants 179
unsigned integer types 178
update interfaces 237
user input 12
user-defined ClientData 411
UTF2 code type 228
UTF8 code type 228

V
VAR 490, 491
VAR_Clear 490
VAR_ContainsRef 490
VAR_Convert 487
VAR_ConvertToValue 487
VAR_CopyToBoolean 489
VAR_CopyToByte 489
VAR_CopyToChar 489
VAR_CopyToChCode 489
VAR_CopyToClientPtr 490

VAR_CopyToDouble 489
VAR_CopyToFloat 489
VAR_CopyToInt 488
VAR_CopyToInt16 488
VAR_CopyToInt32 488
VAR_CopyToInt64 488
VAR_CopyToInt8 488
VAR_CopyToLong 489
VAR_CopyToStr 490
VAR_CopyToType 487
VAR_CopyToUInt 488
VAR_CopyToUInt16 488
VAR_CopyToUInt32 488
VAR_CopyToUInt64 488
VAR_CopyToUInt8 488
VAR_CopyToULong 489
VAR_CopyToValue 488
VAR_CopyToVARWChar 489
VAR_CopyToVARWStr 490
VAR_GetType 490
VAR_IsEmpty 490
VAR_IsNULL 491
VAR_IsNULLObj 491
VAR_TryConvert 487
VAR_TryConvertToValue 487
VAR_TryCopyToBoolean 489
VAR_TryCopyToByte 489
VAR_TryCopyToChar 489
VAR_TryCopyToChCode 489
VAR_TryCopyToClientPtr 490
VAR_TryCopyToDouble 489
VAR_TryCopyToFloat 489
VAR_TryCopyToInt 488
VAR_TryCopyToInt16 488
VAR_TryCopyToInt32 488
VAR_TryCopyToInt64 488
VAR_TryCopyToInt8 488
VAR_TryCopyToLong 489
VAR_TryCopyToStr 490
VAR_TryCopyToType 487
VAR_TryCopyToUInt 488
VAR_TryCopyToUInt16 488
VAR_TryCopyToUInt32 488
VAR_TryCopyToUInt64 488
VAR_TryCopyToUInt8 488
VAR_TryCopyToULong 489
VAR_TryCopyToValue 488
VAR_TryCopyToVARWChar 489
VAR_TryCopyToVARWStr 490
VAR_TryUpdate 490
VAR_Update 490
VARDS_Class 493
VARDS_DefNfy 494
VARDS_GetValue 493
C Programmer’s Guide 585

Index
VARDS_QueryValue 493
VARDS_SetValue 493
VARDSEDIT_SetValue 493
VARGR class 63
VARGR_AddDirectedEdge 508
VARGR_AddNode 507
VARGR_AddUndirectedEdge 508
VARGR_AreEdgesEqual 515
VARGR_AreNodesEqual 509
VARGR_Class 495
VARGR_Create 527
VARGR_GetEdge 520
VARGR_GetEdgeCursor 519
VARGR_GetEdgeId 515
VARGR_GetEdgeIsDirected 516
VARGR_GetEdgeNumEdges 515
VARGR_GetEdgeProperty 517
VARGR_GetEdgeValue 516
VARGR_GetMods 527
VARGR_GetNode 520
VARGR_GetNodeCursor 518
VARGR_GetNodeHeight 512
VARGR_GetNodeId 510
VARGR_GetNodeNumChildren 509
VARGR_GetNodeNumNeighbors 510
VARGR_GetNodeNumParents 509
VARGR_GetNodeProperty 514
VARGR_GetNodeValue 511
VARGR_GetNodeWidth 513
VARGR_GetNodeXOrigin 511
VARGR_GetNodeYOrigin 512
VARGR_GetNumEdges 496
VARGR_GetNumNodes 496
VARGR_GetNumRootNodes 496
VARGR_GetTitle 495
VARGR_IsChildNode 518
VARGR_IsEdgeValid 515
VARGR_IsNeighborNode 518
VARGR_IsNodeValid 509
VARGR_IsParentNode 518
VARGR_QueryCyclicResult 519
VARGR_QueryEdgeId 515
VARGR_QueryEdgeProperty 517
VARGR_QueryEdgeValue 516
VARGR_QueryNodeHeight 512
VARGR_QueryNodeId 510
VARGR_QueryNodeProperty 513
VARGR_QueryNodeValue 510
VARGR_QueryNodeWidth 513
VARGR_QueryNodeXOrigin 511
VARGR_QueryNodeYOrigin 512
VARGR_RemoveEdge 508
VARGR_RemoveEdgeBetween 508
VARGR_RemoveEdgeProperty 517

VARGR_RemoveNode 507
VARGR_RemoveNodeProperty 514
VARGR_SetEdgeCursor 519
VARGR_SetEdgeId 515
VARGR_SetEdgeIsDirected 516
VARGR_SetEdgeProperty 517
VARGR_SetEdgeValue 516
VARGR_SetNodeCursor 518
VARGR_SetNodeHeight 512
VARGR_SetNodeId 510
VARGR_SetNodeProperty 514
VARGR_SetNodeValue 511
VARGR_SetNodeWidth 513
VARGR_SetNodeXOrigin 511
VARGR_SetNodeYOrigin 512
VARGR_SetTitle 495
VARGR_StartEdgeEdit 519
VARGR_StartNodeEdit 519
VARGRALLEDGEACCESSOR_ Clone 498
VARGRALLEDGEACCESSOR_ Construct
497
VARGRALLEDGEACCESSOR_ Construct-
Copy 497
VARGRALLEDGEACCESSOR_ Create 498
VARGRALLEDGEACCESSOR_ Dealloc 498
VARGRALLEDGEACCESSOR_ Destruct
497
VARGRALLEDGEACCESSOR_ Dispose 498
VARGRALLEDGEACCESSOR_ GoBetween
505
VARGRALLEDGEACCESSOR_ GoFirst 504
VARGRALLEDGEACCESSOR_ GoId 505
VARGRALLEDGEACCESSOR_ GoIndexed
504
VARGRALLEDGEACCESSOR_ GoNext 504
VARGRALLEDGEACCESSOR_ GoPrevious
504
VARGRALLEDGEACCESSOR_Alloc 497
VARGREDGE_GetFromNode 524
VARGREDGE_GetId 525
VARGREDGE_GetIsDirected 526
VARGREDGE_GetProperty 526
VARGREDGE_GetToNode 524
VARGREDGE_GetValue 525
VARGREDGE_QueryValue 525
VARGREDGE_RemoveProperty 526
VARGREDGE_SetId 525
VARGREDGE_SetIsDirected 526
VARGREDGE_SetProperty 526
VARGREDGE_SetValue 525
VARGREDGE_StartEdit 527
VARGREDGEEDIT_RemoveProperty 527
VARGREDGEEDIT_SetId 525
VARGREDGEEDIT_SetIsDirected 526
586 C Programmer’s Guide

Index
VARGREDGEEDIT_SetProperty 526
VARGREDGEEDIT_SetValue 525
VARGREDIT_AddDirectedEdge 508
VARGREDIT_AddNode 507
VARGREDIT_AddUndirectedEdge 508
VARGREDIT_RemoveEdge 508
VARGREDIT_RemoveEdgeBetween 509
VARGREDIT_RemoveEdgeProperty 517
VARGREDIT_RemoveNode 507
VARGREDIT_RemoveNodeProperty 514
VARGREDIT_SetEdgeCursor 519
VARGREDIT_SetEdgeId 515
VARGREDIT_SetEdgeIsDirected 516
VARGREDIT_SetEdgeProperty 517
VARGREDIT_SetEdgeValue 516
VARGREDIT_SetNodeCursor 518
VARGREDIT_SetNodeHeight 513
VARGREDIT_SetNodeId 510
VARGREDIT_SetNodeProperty 514
VARGREDIT_SetNodeValue 511
VARGREDIT_SetNodeWidth 513
VARGREDIT_SetNodeXOrigin 511
VARGREDIT_SetNodeYOrigin 512
VARGREDIT_SetTitle 495
VARGRINEDGEACCESSOR_ Construct 498
VARGRINEDGEACCESSOR_ Construct-
Copy 499
VARGRINEDGEACCESSOR_Alloc 498
VARGRINEDGEACCESSOR_Clone 499
VARGRINEDGEACCESSOR_Create 499
VARGRINEDGEACCESSOR_Dealloc 499
VARGRINEDGEACCESSOR_Destruct 499
VARGRINEDGEACCESSOR_Dispose 499
VARGRINEDGEACCESSOR_Go Indexed
505
VARGRINEDGEACCESSOR_Go Previous
505
VARGRINEDGEACCESSOR_GoFirst 505
VARGRINEDGEACCESSOR_GoId 505
VARGRINEDGEACCESSOR_GoNext 505
VARGRNODE_GetChildNode 520
VARGRNODE_GetHeight 523
VARGRNODE_GetId 521
VARGRNODE_GetInEdge 521
VARGRNODE_GetNeighborNode 520
VARGRNODE_GetNumChildren 520
VARGRNODE_GetNumNeighbors 520
VARGRNODE_GetNumParents 520
VARGRNODE_GetOutEdge 521
VARGRNODE_GetParentNode 520
VARGRNODE_GetProperty 524
VARGRNODE_GetUndirectedEdge 521
VARGRNODE_GetValue 522
VARGRNODE_GetWidth 523

VARGRNODE_GetXOrigin 522
VARGRNODE_GetYOrigin 522
VARGRNODE_QueryValue 521
VARGRNODE_RemoveProperty 524
VARGRNODE_SetHeight 523
VARGRNODE_SetId 521
VARGRNODE_SetProperty 524
VARGRNODE_SetValue 522
VARGRNODE_SetWidth 523
VARGRNODE_SetXOrigin 522
VARGRNODE_SetYOrigin 522
VARGRNODE_StartEdit 527
VARGRNODEACCESSOR class 65, 72, 73
VARGRNODEACCESSOR_Alloc 496
VARGRNODEACCESSOR_Clone 497
VARGRNODEACCESSOR_Construct 496
VARGRNODEACCESSOR_ConstructCopy
496
VARGRNODEACCESSOR_Create 496
VARGRNODEACCESSOR_Create InEdgeAc-
cessor 498
VARGRNODEACCESSOR_CreateOutEdgeA
ccessor 499
VARGRNODEACCESSOR_CreateUndirected
EdgeAccessor 501
VARGRNODEACCESSOR_Dealloc 497
VARGRNODEACCESSOR_Destruct 496
VARGRNODEACCESSOR_Dispose 497
VARGRNODEACCESSOR_Go Indexed 502
VARGRNODEACCESSOR_Go Previous 504
VARGRNODEACCESSOR_GoFirst Child
503
VARGRNODEACCESSOR_GoFirst Neighbor
503
VARGRNODEACCESSOR_GoFirst Parent
503
VARGRNODEACCESSOR_GoFirst Root 502
VARGRNODEACCESSOR_GoId 503
VARGRNODEACCESSOR_GoNext 503
VARGRNODEACCESSOR_GoNthChild 503
VARGRNODEACCESSOR_GoNthNeighbor
503
VARGRNODEACCESSOR_GoNthParent 503
VARGRNODEACCESSOR_GoNthRoot 502
VARGRNODEEDIT_RemoveProperty 524
VARGRNODEEDIT_SetHeight 523
VARGRNODEEDIT_SetId 521
VARGRNODEEDIT_SetProperty 524
VARGRNODEEDIT_SetValue 522
VARGRNODEEDIT_SetWidth 523
VARGRNODEEDIT_SetXOrigin 522
VARGRNODEEDIT_SetYOrigin 523
VARGROUTEDGEACCESSOR_ Alloc 500
VARGROUTEDGEACCESSOR_ Clone 500
C Programmer’s Guide 587

Index
VARGROUTEDGEACCESSOR_ Construct
500
VARGROUTEDGEACCESSOR_ Construct-
Copy 500
VARGROUTEDGEACCESSOR_ Create 500
VARGROUTEDGEACCESSOR_ Dealloc 500
VARGROUTEDGEACCESSOR_ Destruct
500
VARGROUTEDGEACCESSOR_ Dispose
500
VARGROUTEDGEACCESSOR_ GoFirst 506
VARGROUTEDGEACCESSOR_ GoIndexed
506
VARGROUTEDGEACCESSOR_ GoNext
506
VARGROUTEDGEACCESSOR_ GoPrevious
506
VARGROUTEDGEACCESSOR_GoId 506
VARGRUNDIRECTEDEDGE
ACCESSOR_Alloc 501
VARGRUNDIRECTEDEDGE
ACCESSOR_Clone 502
VARGRUNDIRECTEDEDGE
ACCESSOR_Construct 501
VARGRUNDIRECTEDEDGE
ACCESSOR_ConstructCopy 501
VARGRUNDIRECTEDEDGE
ACCESSOR_Create 501
VARGRUNDIRECTEDEDGE
ACCESSOR_Dealloc 501
VARGRUNDIRECTEDEDGE
ACCESSOR_Destruct 501
VARGRUNDIRECTEDEDGE
ACCESSOR_Dispose 501
VARGRUNDIRECTEDEDGE
ACCESSOR_GoFirst 506
VARGRUNDIRECTEDEDGE
ACCESSOR_GoId 507
VARGRUNDIRECTEDEDGE
ACCESSOR_GoIndexed 507
VARGRUNDIRECTEDEDGE
ACCESSOR_GoNext 506
VARGRUNDIRECTEDEDGE
ACCESSOR_GoPrevious 506
variable strings 551

allocate array 555
append character to 554
append string 553
append substring 553
append to string butter 433
clear contents 554
compare with string 554
comparing 554
construct array 555
copying 552

variable strings (continued)
default array destructor 555
get length 553
get string 553
query substrings 553
replace content with copy 551
replace content with native 552
replace contents 552
replace contents with substring 552
replace copy with native 552
resetting 554
set contents 555
truncate 554
truncate exactly 554

variables 438
assigning values 438
notification 439

variant data
conversion methods 487–490
convert type 487
convert value 487
copy to type 487
detect reference 490
empty variant 490
get type 490
return empty variant 490
return NULL variant 491
return NULLOBJ object 491
types 485, 485–486

variant data source 493
get values 493
notifications 494
query values 493
set values 493

variant data source lists 529
add row 531, 532
count rows 531
external declarations 541
get cursor position 531
get modification descriptions 533
get row title 530
get row value 530
get title 529
implementation 541
notifications 533
query row value 530
remove row 531, 532
set cursor position 531
set edition cursor 532
set edition row title 532
set edition row values 532
set edition rows 532
set edition title 533
set number of rows 531
set row value 530
set title 529, 530
start row edit 532

variant data source tables 535
add column 538
add edition column 539
add edition row 539
add row 537
count columns 535
588 C Programmer’s Guide

Index
variant data source tables (continued)
count rows 535
get cell values 536
get column title 536
get cursor position 537
get longest column string 536
get modifications 540
get row title 536
get table title 536
open edition 539
query cell values 536
remove column 538
remove edition column 539
remove edition row 539
remove row 537
set column values 538
set edition cell values 540
set edition column title 538, 540
set edition current column 538, 540
set edition current row 538, 540
set edition row title 538, 540
set edition rows/columns 539
set edition table title 538, 540
set number rows/columns 537
set row title 536
start cell edition 537
start edit 539
start row edition 537

variant graph datasources 495
accessors referring to same edge 515
accessors referring to same node 509
adding directed edge 508
adding nodes 507
adding undirected edge 508
allocate edge accessor 497
allocate inward edge accessor 498
allocate node accessor 496
allocate outward edge accessor 500
allocate undirected edge accessor 501
clone edge accessor 498
clone inward edge accessor 499
clone node accessor 497
clone outward edge accessor 500
clone undirected edge accessor 502
construct edge accessor 497
construct inward edge accessor 499
construct node accessor 496
construct outward edge accessor 500
construct undirected edge 501
count child nodes 520
count edges 496, 515
count neighbor nodes 520
count parent nodes 520
create edge accessor 498
create inward edge accessor 498, 499
create node accessor 496
create outward edge accessor 499, 500
create undirected edge accessor 501
creating 527
deallocate edge accessor 498, 499, 500,

501
deallocate node accessor 497
default edge-accessor constructor 497,

498, 500, 501

variant graph datasources (continued)
default edge-accessor destructor 497, 499,

500, 501
default node-accessor constructor 496
default node-accessor destructor 496
destruct/deallocate edge accessor 498,

499, 500, 501
destruct/deallocate node accessor 497
get accessor pointer 496
get child nodes 509, 520
get directed edge 516, 526
get edge 520
get edge boundaries 524
get edge cursor 519
get edge ID 515, 525
get edge origins 524
get edge properties 517, 526
get edge values 516, 525
get inward edge 521
get modification description 527
get neighbor nodes 510, 520
get node 520
get node cursor 518
get node height 512, 523
get node ID 510, 521
get node origins 511, 512, 522
get node properties 514, 524
get node values 511, 522
get node width 513, 523
get number of nodes 496
get outward edge 521
get parent nodes 509, 520
get root nodes 496
get title 495
get undirected edge 521
go to edge between 505
go to first child node 503
go to first edge 504
go to first neighbor node 503
go to first parent node 503
go to first root node 502
go to identified edge 505
go to identified node 503
go to indexed edge 504
go to indexed node 502
go to inward edge 505
go to next edge 504
go to next node 503
go to Nth child node 503
go to Nth neighbor node 503
go to Nth root node 502
go to outward edge 506
go to previous edge 504
go to previous node 504
go to undirected edge 506, 507
query cyclic result 519
query edge ID 515
query edge properties 517
query edge values 516, 525
query node height 512
query node ID 510
query node origins 511, 512
query node properties 513
query node values 510, 521
C Programmer’s Guide 589

Index
variant graph datasources (continued)
query node width 513
remove edge 508
remove edge between 509
remove edge properties 517, 526, 527
remove node properties 514, 524
remove nodes 507
set directed edge 516, 526
set edge cursor 519
set edge ID 515, 525
set edge properties 517, 526
set edge values 516, 525
set node cursor 518
set node height 512, 513, 523
set node ID 510, 521
set node origins 511, 512, 522, 523
set node properties 514, 524
set node values 511, 522
set node width 513, 523
set title 495
start edge edit 519, 527
start node edit 519, 527
testing node relationships 518
validating edge accessor 515
validating node accessor 509

variant tree datasources 543
accessors referring to same node 547
add node 546
allocate/construct node accessor 544
clone node accessor 544
construct 547
count nodes 547
describe modifications 550
destruct/deallocate cursor 548
dispose node accessor 544
get cursor 548
get node ID 549
get node value 548
go to child node 545
go to parent node 545
go to root node 545
go to sibling node 545, 546
labeling 543
properties 543, 547
query node ID 549
query node value 548
remove node 546
remove tree 546
set cursor 548
set node ID 549
set node ID field 550
set node value 548, 549
start edit 549
validate node 547

VariantDataSource 10
VariantListDataSource 10
VariantTable

methods 11, 14
properties 10, 14

VariantTableDataSource 10
properties 10, 11

VARLS_AddRow 531
VARLS_Class 529

VARLS_DefNfy 533
VARLS_GetCursorRow 531
VARLS_GetMaxRowTitleStrLen 530
VARLS_GetMaxStrLen 530
VARLS_GetMods 533
VARLS_GetNumRows 531
VARLS_GetRowTitle 530
VARLS_GetRowValue 530
VARLS_GetTitle 529
VARLS_QueryRowValue 530
VARLS_RemoveRow 531
VARLS_SetCursorRow 531
VARLS_SetNumRows 531
VARLS_SetRowTitle 530
VARLS_SetRowValue 530
VARLS_SetTitle 529
VARLS_StartRowEdit 532
VARLSEDIT_AddRow 532
VARLSEDIT_RemoveRow 532
VARLSEDIT_SetCursorRow 532
VARLSEDIT_SetNumRows 532
VARLSEDIT_SetRowTitle 532
VARLSEDIT_SetRowValue 532
VARLSEDIT_SetTitle 533
VARTB_AddColumn 538
VARTB_AddRow 537
VARTB_Class 535
VARTB_GetCellValue 536
VARTB_GetColumnTitle 536
VARTB_GetCursorColumn 537
VARTB_GetCursorRow 537
VARTB_GetMaxColStrLen 536
VARTB_GetMods 540
VARTB_GetNumColumns 535
VARTB_GetNumRows 535
VARTB_GetRowTitle 536
VARTB_GetTitle 536
VARTB_QueryCellValue 536
VARTB_RemoveColumn 538
VARTB_RemoveRow 537
VARTB_SetColumnTitle 538
VARTB_SetColValue 538
VARTB_SetCursorColumn 538
VARTB_SetCursorRow 538
VARTB_SetNumRowColumns 537
VARTB_SetRowTitle 536, 538
VARTB_SetTitle 538
VARTB_StartCellEdit 537
VARTB_StartEdit 539
VARTB_StartRowEdit 537
VARTBEDIT_AddColumn 539
VARTBEDIT_AddRow 539
VARTBEDIT_RemoveColumn 539
VARTBEDIT_RemoveRow 539
590 C Programmer’s Guide

Index
VARTBEDIT_SetCellValue 539
VARTBEDIT_SetColumnTitle 540
VARTBEDIT_SetCursorColumn 540
VARTBEDIT_SetCursorRow 540
VARTBEDIT_SetNumRowColumns 539
VARTBEDIT_SetRowTitle 540
VARTBEDIT_SetTitle 540
VARTR_AddNode 546
VARTR_AreNodesEqual 547
VARTR_Class 543
VARTR_Create 547
VARTR_DisposeCursor 548
VARTR_GetCursor 548
VARTR_GetMods 550
VARTR_GetNodeID 549
VARTR_GetNodeValue 548
VARTR_GetNumChildNodes 547
VARTR_GetNumRootNodes 547
VARTR_GetNumSiblingNodes 547
VARTR_GetTitle 543
VARTR_IsNodeValid 547
VARTR_QueryNodeID 549
VARTR_QueryNodeValue 548
VARTR_RemoveNode 546
VARTR_RemoveTree 546
VARTR_SetCursor 548
VARTR_SetNodeID 549
VARTR_SetNodeValue 548
VARTR_SetTitle 543
VARTR_StartEdit 549
VARTR_StartNodeEdit 549
VARTREDIT_AddNode 546
VARTREDIT_RemoveNode 546
VARTREDIT_RemoveTree 546
VARTREDIT_SetCursor 548
VARTREDIT_SetNodeID 550
VARTREDIT_SetNodeValue 549
VARTREDIT_SetTitle 543
VARTRNODEACCESSOR_Class 543
VARTRNODEACCESSOR_Clone 544
VARTRNODEACCESSOR_Create 544
VARTRNODEACCESSOR_Destruct 544
VARTRNODEACCESSOR_Dispose 544
VARTRNODEACCESSOR_Dispose0 544
VARTRNODEACCESSOR_GoFirst Child
545
VARTRNODEACCESSOR_GoFirst Root 545
VARTRNODEACCESSOR_GoFirst Sibling
545
VARTRNODEACCESSOR_GoNext Sibling
545
VARTRNODEACCESSOR_GoNth Child 545
VARTRNODEACCESSOR_GoNth Root 545

VARTRNODEACCESSOR_GoNth Sibling
546
VARTRNODEACCESSOR_GoParent 545
VARTRNODEACCESSOR_GoPrev Sibling
545
VARTRNODEEDIT_SetID 550
VARTRNODEEDIT_SetValue 549
verbs 439

registering 441, 443
VersEnum 183
version numbers 184
VertEnum 183
view interfaces 235
views 5

updating 14
virtual data source 235
virtual interface implementation 541
VMS file I/O 260
VMS look

file and directory names 295
noshare keyword 348
operating system selection 352
readonly keyword 349
windowing system selection 352

VStr object 551
VSTR_Append 553
VSTR_AppendChar 554
VSTR_AppendStr 553
VSTR_AppendStrSub 553
VSTR_ArrayAlloc 555
VSTR_ArrayConstructVStrArray 555
VSTR_ArrayDestruct 555
VSTR_Clear 554
VSTR_Cmp 555
VSTR_CmpStr 554
VSTR_Copy 552
VSTR_GetLen 553
VSTR_GetStr 553
VSTR_ICmp 555
VSTR_ICmpStr 554
VSTR_QueryStrSub 553
VSTR_Set 552
VSTR_SetCtStr 552
VSTR_SetCtStrSub 552
VSTR_SetNatStr 552
VSTR_SetNatStrSub 552
VSTR_SetRes 555
VSTR_SetStr 551
VSTR_SetStrSub 552
VSTR_TruncAt 554
VSTR_Truncate 554
C Programmer’s Guide 591

Index
W
W16 API exception handling 256–257
warnings 185, 240

generating 243, 254
wide characters See multibyte characters
wildcards 303, 304
windowing system selection 352

X
x-axis grids 89

Y
y-axis grids 89
592 C Programmer’s Guide

	Contents
	Preface
	Purpose of this Manual
	Audience
	How to Use This Manual
	Related Manuals

	Introducing EE Application Services
	Introduction
	Building Block Mechanisms

	Data Source/View Mechanism
	Application Services Classes

	Using Data Source/View
	Using Data Source/View in an Application
	Propagating Events
	CBOX_NFY...
	CBUT_NFY....
	LBOX_NFY....
	TED_NFY....

	Controlled Access to Data Sources
	Locking Data in Table Datasources.
	Locking Data in List Datasources.

	Data Source/View Examples
	OI Example
	DA Example
	IR Example

	Data Source Internals
	Internals for OI Core Data Sources
	Internals for DA Data Sources
	RecordSetDataSource Implementation
	Properties from VariantTable
	Methods from VariantTable
	Using the RecordSet contained in a RecordSetDataSo...
	When to Use RecordSet Data

	Internals for IRE Data Sources
	Example
	Input Table (LBox)
	Selection table (ListBox)
	IRE Text Edit

	Tree Datasource: Managing Hierarchical Data
	Concepts
	Tree Datasource
	Node
	ID and Value
	Navigational References

	Tree
	Root Node
	Parent-Child Node Relationship
	Sibling Node Relationship

	Node Accessor
	Cursor
	Edit Object
	Datasource Editing
	Node Editing
	Convenience API Functions

	Options for the TVIEW and BROWS Views
	cursor
	initexpandlevel
	autosize

	Building a Tree Datasource
	Creating and Destroying a Tree Datasource
	Creating and Destroying a Node Accessor
	Creating and Destroying an Edit Object
	Adding Nodes
	Creating the First Root Node
	Creating Child Nodes and Siblings
	Creating Additional Trees

	Managing Memory
	Destroying the Tree-Datasource Object
	Destroying a Node-Accessor Object

	Editing a Tree Datasource
	Datasource-Level Editing
	Setting the Title of the Tree Datasource
	Inserting Nodes versus Adding Nodes
	Modifying Node Data Using the “Convenience” API
	Removing a Node
	Removing a Tree

	Node-Level Editing
	Setting the Node ID
	Setting the Node Value

	Advanced Topics
	Node-Count Functions
	Managing the Cursor
	Acting on Multiple Nodes
	Persistent Data Storage and Relational Tables

	Graph Datasource: Managing Graph Data
	Concepts
	Graph Datasource
	Node
	ID and Value
	XOrigin and YOrigin
	Height and Width
	Custom Node Properties
	Edge References

	Edge
	ID and Value
	Directed
	Custom Properties

	Graph
	Root Node
	Parent-Child Node Relationship
	Neighbor Node Relationship

	Accessor
	Node Accessor
	Edge Accessor

	Cursor
	Node Cursor
	Edge Cursor

	Edit Object
	Datasource Editing
	Node Editing
	Edge Editing
	Convenience API Functions

	Options for the DGRAM View
	autosize
	cursor
	readonly
	Diagrammer
	Basic Diagrammer Parameters
	 Standard” View Settings for Nodes and Links
	 Focus” View Settings for Nodes and Links

	Custom Node and Link Options
	Custom Node Properties
	Custom Link Properties

	Building a Graph Datasource
	Creating a Graph Datasource
	Creating and Destroying an Edit Object
	Creating Accessors
	Creating Node Accessors
	Creating Edge Accessors

	Creating Nodes
	Creating Linked Nodes
	Creating Unlinked Nodes

	Creating Edges
	When adding linked nodes to a graph datasource, yo...
	Node-Accessor and Edge-Accessor Requirements
	Adding Directed and Undirected Edges

	Args Class
	Overview
	API Overview
	Scanning the List of Command Arguments
	Init
	GetAll
	GetNum
	GetNth
	GetExecName
	GetFirst
	GetNext
	RemoveNth
	InsertNth

	ArNum Class
	Overview
	API Principle
	Macros
	Constructors and Destructor
	Constructors
	Destructor

	Clone, Copy, Reset
	Reset

	Changing the Length of the Array
	SetLen
	SetAlloc

	Global Queries
	GetLen
	IsEmpty
	IsInRange

	Accessing Elements
	GetNthElt
	UnboundedGetNthElt
	SetNthElt
	UnboundedSetNthElt

	Finding Elements
	ContainsElt
	LookupElt
	FindElt
	SortedLookupElt
	SortedFindElt

	Adding Elements
	AppendElt
	UniqAppendElt
	InsertNthElt
	SortedInsertElt

	Removing Elements
	RemoveNthElt
	RemoveElt
	ExtractNthElt
	ExtractElt
	SortedExtractElt

	Sorting
	Sort
	IsSorted

	Removing Duplicates
	RemoveDupls
	SortedRemoveDupls

	ArObj Class
	Overview
	API Principle
	Constructors and Destructor
	Constructors
	Destructor

	Clone, Copy, Reset
	Reset

	Changing the Length
	SetLen
	SetAlloc

	Global Queries
	GetLen
	IsEmpty
	IsInRange

	Accessing Elements
	GetNthElt
	GetNthEltRef
	SetNthElt

	Finding Elements
	ContainsElt
	LookupElt
	FindElt
	SortedLookupElt
	SortedFindElt

	Adding Elements
	AppendElt
	UniqAppendElt
	InsertNthElt
	SortedInsertElt
	SortedUniqInsertElt

	Removing Elements
	RemoveNthElt
	RemoveElt
	ExtractNthElt
	ExtractElt
	SortedExtractElt

	Sorting
	Sort
	IsSorted

	Removing Duplicates
	RemoveDupls
	SortedRemoveDupls

	ArPtr Class
	Technical Overview
	API Principles
	Macros

	Constructors and Destructor
	Constructors
	Destructor

	Clone, Copy, Reset
	Reset

	Changing the length of the array
	SetLen
	SetAlloc

	Global Queries
	GetLen
	IsEmpty
	IsInRange

	Accessing Elements
	GetNthElt
	GetNthEltAddr
	UnboundedGetNthElt
	SetNthElt
	UnboundedSetNthElt

	Finding Elements
	ContainsElt
	FindElt
	SortedLookupElt
	SortedFindElt

	Adding Elements
	AppendElt
	UniqAppendElt
	InsertNthElt
	SortedInsertElt
	SortedUniqInsertElt

	Removing elements
	RemoveNthElt
	RemoveElt
	ExtractNthElt
	ExtractElt
	SortedExtractElt

	Sorting
	Sort
	IsSorted

	Removing Duplicates
	RemoveDupls
	SortedRemoveDupls

	ARRay Class
	Overview

	ARRec Class
	Overview
	API Principle
	Macros

	Constructors and Destructor
	Constructors
	Destructor

	Clone, Copy, Reset
	Reset

	Changing the length
	SetLen
	SetAlloc

	Global Queries
	GetLen
	IsEmpty
	IsInRange

	Accessing Elements
	GetNthElt
	SetNthElt

	Finding Elements
	ContainsElt
	LookupElt
	SortedLookupElt
	SortedFindElt

	Adding elements
	AppendElt
	InsertNthElt
	SortedUniqInsertElt

	Removing Elements
	RemoveNthElt
	RemoveElt

	Sorting
	Sort
	IsSorted

	Removing Duplicates
	RemoveDupls
	SortedRemoveDupls

	Avl Class
	Overview
	Data Structures
	NDAvlTreePos

	AvlTree and AvlNode Classes
	AvlNode Class
	Constructors and Destructor
	Alloc
	Constructors
	Destructor
	Dealloc

	Convenience Functions
	NodeNewSetKey
	NodeDispose

	Accessing the AvlNode Key
	SetKey
	GetKey

	Scanning AvlNodes
	GetPrev GetNext
	GetParent GetLeftChild GetRightChild
	GetFirstLeaf GetLastLeaf

	AvlTree Class
	Constructors and Destructor
	Alloc
	Constructors
	Destructor
	Dealloc

	Queries
	GetLen
	GetFirstNode GetLastNode
	CurFindKeyKey
	LookupKey
	InsertNode
	ExtractNode

	Propagating an Action
	PerfProc
	PropagateAction

	Current Node API
	GoFirstNode GoLastNode
	GoPrevNode GoNextNode
	GoNode
	CurGetNode
	CurGetNearestNode
	CurFindKey
	CurInsertNode
	CurExtractNode

	Base Class
	Technical Summary
	Basic Data Types
	Double Long
	Int Int8 Int16 Int32 Int64
	UInt UInt8 UInt16 UInt32 UInt64
	MAXINT8 MAXINT16 MAXINT32 MAXINT64 MAXUINT8 MAXUIN...
	ClientPtr
	HugePtr
	Byte BytePtr
	HugeStr
	HUGELIMIT

	BoolEnum
	BoolEnum
	BOOL_OF

	CpyEnum
	CpyEnum

	CmpEnum
	CmpEnum
	INT_Compare
	INT_ToCmp

	PerfEnum
	PerfEnum
	CmpProc

	VertEnum and HorzEnum
	HorzEnum
	VertEnum

	Version Enum
	VersEnum

	Debugging Macros
	DBG_CHECK
	DBG_CHECKSTR
	DBG_ERROR
	DBG_FILE DBG_LINE
	DBG_NIY
	DBG_ON
	DBG_REQUIRE
	DBG_SCCS
	DBG_SOURCE

	Exit Status
	EXIT_FAIL EXIT_OK
	BASE_NOMINMAX

	Miscellaneous Basic Macros
	ABS
	C_INITOFFSET C_OFFSET
	EVEN
	MAX
	MIN
	NULL
	ODD

	BBuf Class
	Overview
	Examples:
	[A] Paging Mechanism and Data Source

	Examples:
	[B] Data Format

	BBuf Class
	Specialization Flags
	Data Structures
	NDBBufMethods

	Constructors and Destructor
	Constructors
	Alloc
	NDBinBuf
	NDBinBuf
	NDBinBuf

	Destructor
	Dealloc

	Read and Write Operations
	ReadNBytes
	ReadIntx ReadUIntx
	WriteNBytes
	WriteIntx WriteUIntx
	Flush

	Seek Operations
	CurPos
	SeekTo
	SeekBy
	SkipRead
	SkipWrite
	LoadCurPage

	Accessing Private Fields
	GetClientData
	GetEndianity
	GetTotalSize SetTotalSize
	GetPagingData SetPagingData
	IsPageModified SetPageModified
	GetPageBeginPos SetPageBeginPos
	GetPageBeginPtr SetPageBeginPtr
	GetPageEndPtr SetPageEndPtr
	GetCurPtr SetCurPtr

	Installing Custom Paging Methods
	QueryMethods
	SetMethods

	Cell Class
	Technical Summary
	Data Structures
	CellPtr CellRec
	RangePtr RangeRec

	Cell Range Operations
	ContainsCell

	Char Class
	Technical Summary
	Environment Variables
	ND_CHARNATIVE
	ND_CHARLANG

	Data Structures
	CharPtr
	ChCodePtr
	NatCharPtr
	NatCodePtr
	UniCodePtr
	UniStrPtr
	ChCode
	NatCode
	UniCode
	UniStr
	CharInfoVal
	StrIVal

	Character Length
	GetLen
	CodeGetLen
	NatGetLen

	Character Code
	GetByte...
	NatGetByte...

	Basic Character Classification
	IsAscii...
	AsciiIs...

	Basic Character Conversion
	AsciiDigitGetInt AsciiHexDigitGetInt AsciiOctDigit...
	AsciiAlphaGetBase
	AsciiGetLower
	AsciiGetUpper
	AsciiGetControl
	AsciiGetGraph
	AsciiGetEbcdic

	Conversions between ASCII and EBCDIc
	EbcdicGetAscii
	ToAscii
	FromAscii

	Cs Class
	Overview
	Code Sets
	CsIdEnum
	ISO Code Set
	ADOBE Code Sets
	Macintosh Code Sets
	MS/Windows Code Sets
	PC Code Pages
	CJK Code Sets
	UNICODE
	EBCDIC
	HP
	CNS

	Creating and Destroying
	Alloc
	Constructors
	Destructor
	Dealloc

	Convenience Functions
	New
	Dispose
	Dispose0

	Convenience Macros
	GetCsId
	GetCharLen
	GetCharInfo
	CvtChar
	TransChar
	ToUni
	FromUni

	Predefined Code Sets
	GetCsNative
	GetCsUnicode
	GetCsGlobal

	Local Macros
	ISO LATIN1 Character Information Definition
	ASCII Character Information Definition
	JIS0208 Character Information Definition
	JIS0201 Character Information Definition

	Ct Class
	Technical Summary
	Data Types
	ChCode
	Ct

	Enumerated Types
	CtIdEnum
	CT_ID
	ASCII Code Type
	ISO 8859-X Code Types.
	ADOBE Code Types
	Macintosh Code Types
	Microsoft Windows Code Types
	PC Code Types
	CJK Code Types
	UNICODE Code Type
	EBCDIC Code Type
	HP Code Type
	UTF8 Code Type
	CNS Code Type

	Creating and Disposing
	Alloc
	Construct
	ConstructId
	Destruct
	Dealloc
	New
	Dispose
	Dispose0

	Member Functions
	GetCtId
	GetFwrd
	GetBwrd
	GetInfo
	CvtChar
	CvtCtToCs
	CvtCsToCt
	ToUni
	FromUni
	GetMaxCharLen
	IsSingleOnly
	GetUpper
	GetLower

	Ds Module
	Design Overview
	Classes
	Class

	View Interface
	RegisterView
	SetViewOption
	GetViewOption
	UnregisterView
	ViewGetDs

	Edition Interface
	DsEditCompletionEnum
	StartEdit
	End
	Abort
	AddOperation
	SetOwner
	GetOwner

	Update Interface
	StartUpdateEdit
	End
	Abort

	Contained/Container Data Source Interface
	AddContDs
	RemoveContDs

	Creating and Disposing
	Create

	Class
	Edition Operation
	DsEditOpEnum
	DsEditTypeEnum
	DsEditStateEnum

	Modifications Implementation
	DsModsSetEnum

	Data Source

	Err Class
	Overview
	Disciplined Exceptions
	Error Handling And Reporting
	Entry/Exit Macros
	Error Recovery
	Retry
	Signalling A Failure
	WARNINGS

	Fatal Errors
	Error Contexts
	Error Tracing
	Global Variables And Initialization
	Advanced Error Reporting
	Summary Of Error Handling And Reporting
	Reporting Errors for Calls to Third Party APIs

	Data Structures
	NDErrFuncCall
	GetErrFuncCallPtr

	ErrFrame API for Error Reporting and Discriminatio...
	FrameGetTop
	FrameQueryMessage
	FrameQueryTraceback
	FrameQueryFullTraceback
	FrameSetReported
	FrameIsReported
	FrameReport
	FrameDefReport
	GetReportProc
	SetReportProc
	ErrFrame Class
	ErrFrame

	Macros
	Context Messages and Tracing

	Misc Macros For Error Reporting
	SetReportPrint SetReportSilent Print
	Format
	LoadMsg

	ERR_LIB, ERR_EXTERN
	ERR_LIB
	MAC_HEADERS

	Initialization Macros
	Fatal Errors
	Fatal
	Exit

	Signaling Failures
	Fail
	FailStr
	FailSilent
	FailAssert
	FailError

	Generating Warnings
	Warn
	WarnStr

	Querying the Error State
	InError

	Assertions
	Error Reporting
	TraceBack
	FrameTraceBack

	Error Conditions Signaled by Error Module
	Exiting from the Application
	ModExit

	UNIX Exception Handling
	SysExceptProc
	SetSysExceptHandler
	GetSysExceptHandler
	SysException

	W16 Exceptions Handling
	MswRegisterInterrupt
	MswIsInterruptRegistered
	MswRegisterInterruptOnInit

	Mac Exceptions Handling
	NoMacSignals

	File Class
	Technical Summary
	Data Structures
	FilePtr
	FileLinePosPtr FileLinePosRec
	FileNatRefPtr FileNatRefRec
	FileOffsetVal
	FileTextPosPtr FileTextPosRec

	Enumerated Types
	FileErrEnum
	FileFmtEnum
	FileIOEnum

	Accessing File Attributes
	GetSpecName
	SetSpecName
	GetRealName
	GetSearchPath
	SetSearchPath
	GetAutoBackup
	SetAutoBackup
	GetFailIfNotFound
	SetFailIfNotFound
	SetFailOnEof
	GetFailOnEof
	GetClientData
	SetClientData

	Checking Existence and Access Rights of a File
	Find
	IsReadable
	IsWritable
	GetNodeType

	Opening and Closing a File
	Open
	CreateOpen
	Close
	TryClose TryCreateOpen TryOpen
	IsOpen…
	GetOpenFormat GetOpenMode

	Querying and Changing Position in a File
	CurSize
	GotoBeg
	GotoEnd
	IsAtEnd
	CurBinaryOffset
	SeekBinaryTo
	SeekBinaryBy
	CurTextOffset
	QueryTextPos
	SetTextPos
	CurLineNumber
	QueryLinePos
	SetLinePos

	Reading and Writing
	ReadByte
	WriteByte
	ReadNBytes
	WriteNBytes
	ReadChar
	WriteChar
	ReadNChars
	WriteNChars
	ReadStr
	WriteStr
	ReadTextLine
	WriteTextLine
	ReadLine
	WriteLine

	Miscellaneous Functions
	Backup
	Flush
	Truncate

	Default Search Path
	SetDefSearchPath
	GetDefSearchPath
	GetDefSearchPathName
	SetDefSearchPathName

	Direct access to native File I/O
	QueryNatRef
	SetNatRef

	Errors
	GetError
	SetError

	FMgr Class
	Technical Summary
	Data Types
	FMgrNodePtr FMgrNodeRec
	FMgrAccessSet
	FMgrCreateDirPtr FMgrCreateDirRec
	FMgrCreateFilePtr FMgrCreateFileRec
	FMgrMacIdsPtr FMgrMacIdsRec
	FMgrMacIdVal
	FMgrOwnerPtr FMgrOwnerRec
	FMgrRefsVal
	FMgrSizeVal
	FMgrTimesPtr FMgrTimesRec
	FMgrTimeVal

	Enumerated Types
	FmgrErrEnum
	FMgrFileTypeEnum
	FMgrNodeEnum
	ACCESS…�
	MAC…�

	Querying and Changing File/Directory Attributes
	Exists
	Is...
	IsDevConcealed
	QueryNodeInfo
	GetNodeType
	GetMac...
	Is...
	Check...

	Finding File Type by Mac Type or by File Extension...
	FMgrFileTypeEnum
	NDFMgrFileExt
	NDFMgrFileType
	AddFileType
	RemoveFileType
	GetNumFileTypes
	GetNthFileType
	FindFileTypeId
	FindFileTypeInfo

	Creating
	CreateDir
	CreateFile

	Copying
	CopyFile
	CopyDir
	CopyNode

	Moving
	MoveFile
	MoveDir
	MoveNode

	Deleting
	DeleteFile
	DeleteDir
	DeleteNode
	DeleteDirContent
	Try…
	PurgeDir

	Performing an Action
	PerfDirFiles
	DirWildCard
	AllFilesWildCard
	PerfVolumes

	FName Class
	Technical Summary
	Data Types
	FNameBuf
	FNameCompSet
	FNameParamsPtr FNameParamsRec
	FNameStxMaskVal

	Enumerated Types
	FNameStatusEnum
	FNameStxEnum
	FAIL…�
	MAXLEN
	FNameCompSetEnum

	File Name Syntax
	StxGetName
	GetSysSyntax
	GetCurSyntax
	SetCurSyntax
	QueryCurParams
	SetCurParams
	ResetCurParams

	Find Path Name Syntax
	FindSyntax

	Checking Path Name Validity
	IsValidIn
	IsValid
	MakeValidIn
	MakeValid

	Evaluating Variable Expressions
	EvaluateIn
	Evaluate

	Conversion between Syntaxes
	Convert
	ConvertFromTo
	ConvertInPlace
	IsConvertible
	IsPortable

	Conversion Status
	GetStatus
	SetStatus
	StatusGetMsg

	Extracting File Components
	GetCompSet
	QueryComps
	ReduceComps

	Directories Specified as Paths or as Files
	IsDirAsFile
	CvtDirPathToFile
	CvtDirFileToPath
	SplitFile
	SplitPath
	MergeFile
	MergePath

	Top Directory
	TopDirStr, QueryTopDir, IsTopDir
	QueryTopDir
	IsTopDir

	Current Volume / Current Directory
	QueryCurDir
	SetCurDir
	QueryCurVolume
	VolumeQueryCurDir
	VolumeSetCurDir
	CurDirStr

	Parent Directory
	QueryParentDir
	ParentDirStr
	DirQueryParent

	Home Directory
	HomeDirStr
	QueryHomeDir
	QueryTopDir
	QueryParentDir

	Absolute / Relative Parts
	IsTopDir
	IsAbsolute
	CvtToAbsolute

	Comparing File Names
	Cmp
	Equal

	Generating Temporary and Backup File Names
	GetTmpPath
	SetTmpPath
	SysTmpPath
	MakeTmpFileName
	MakeBackupName

	Hash Class
	Overview
	Data Structures
	NDHashInfo

	Constructors and Destructor
	Alloc
	Constructors
	Destructor
	Dealloc

	Convenience Functions
	New
	NewForInt
	NewForPt
	NewForStr NewForIStr
	Dispose
	Resetting a Hash Table
	Reset

	Creating and Disposing Hash Tables
	Defining a Hash Table
	CompareProc
	HashProc
	DataCloneProc
	DataDisposeProc
	KeyCloneProc
	KeyDisposeProc

	Querying the Hash Table Information
	QueryDefInfo
	GetDefIntInfo
	GetDefPtrInfo
	GetDefStrInfo
	GetDefStrKeyClonedInfo
	QueryInfo

	Using Hash Tables
	Insert
	Extract
	Lookup

	Perform An Action On All The Entries
	Perf

	Default Methods
	Default Hashing
	Default Comparison
	Default String Cloning

	Hash Table Entries
	AddGetEntry
	InsertGetEntry
	GetEntry
	EntryGetKey
	EntryGetValue
	EntrySetValue
	RemoveEntry
	Statistics
	QueryStats
	NDHashStatsInfo

	Heap Class
	Overview
	Heap Class
	Constructor and Destructor
	Alloc
	Constructor
	Destructor
	Dealloc

	Convenience Functions
	New
	Dispose

	Heap Size
	GetSize

	Heap Manipulation
	Add
	Correct
	Insert
	QueryFirst
	Perf

	ISet Class
	Overview
	Data Structures
	NDISetInterval

	Constructors and Destructor Interval Sets
	Alloc
	Constructor
	Destructor
	Dealloc

	Special Intervals
	UniversalSet

	Adding and Removing Intervals
	AddIntervals
	RemoveIntervals
	QueryIntervals
	SetIntervals
	GetNumIntervals
	IsAll
	GetMinElt
	GetMaxElt
	ContainsElt
	ContainsIntervals
	QueryComplement

	Comparing and Combining Two Sets
	MixGetPartSet MixQueryParts

	MCH Class
	Technical Summary
	C_CONST
	C_EXPORT
	C_FAR
	C_NEAR
	C_NOSHARE
	C_READONLY
	C_REG…�
	C_SIGNED
	C_VOLATILE
	MCH_CHAR…� MCH_WCHAR…�
	MCH_CHIP…�
	MCH_MSWDLLCODE
	MCH_OS…�
	MCH_WCHAR…�
	MCH_WIN…�

	Compiler Information
	MCH_Cc

	Nfier Class
	Overview
	Creating and Disposing
	Constructors
	Alloc
	Destructors
	ClientDealloc

	Broadcasting a Notification
	Broadcast

	Notifier Client Creation and Destruction
	ClientAlloc
	ClientConstruct
	ClientConstructProc
	ClientDestruct
	ClientDealloc

	Associating Client Data with the Notifier Client P...
	ClientSetClientData
	ClientGetClientData

	Notifier Client Registration and Unregistration
	RegisterNfierClient
	Convienience: Unregistration, destruction and deal...
	UnregisterNfierClient

	Convienience: Allocation, construction and registr...
	ClientNewRegister

	Convienience: Unregistration, destruction and deal...
	ClientUnregisterDispose

	Pack Class
	Overview
	Short Description of the Compression Algorithms:
	Choice of a Compression Algorithm:

	Constructors and Destructor
	API Usage
	Compression
	Decompression

	Worst Case Performances
	RLE (Run Length Encoding)
	RleEncode
	RleDecode

	PackBits
	PkbEncode
	PkbDecode
	LzwEncode
	LzwDecode

	CCITT Fax Compression
	Overview
	CcittEncode CcittDecode

	Examples:

	General Case
	Encode
	Decode
	PackMethodEnum

	Plfd Class
	Overview
	Scope of Documented API

	Permanent Field Data Types
	PFldTypeEnum
	Field Categories
	PFldCatEnum

	Data Structures
	NDPFld
	WARNING:

	Point Class
	Overview
	Constructors / Destructor
	Construct
	ConstructWithValues
	Destruct

	Sets and Queries
	GetX SetX
	GetY SetY
	SetXY
	IncXY
	SetSameXY
	Reset
	IsNull
	Equals
	AbsDist
	IsInRectExt

	Pool Class
	Overview
	Pool oriented memory management

	Pool Definition
	Constructors and Destructor
	Constructors
	Alloc

	Destructor
	Dealloc

	Setting/Querying the Information on a Memory Pool
	SetInfo
	QueryInfo

	Allocating and Deallocating
	NewPtr
	DisposePtr

	Statistics
	NDPoolFragStatsInfo
	NDPoolStatsInfo
	QueryStats
	ResetStats

	Ptr Class
	Technical Overview
	Data Types
	PtrStats

	Enumerated Types
	PtrFailEnum

	Alignment
	GetAlignedSize
	AlignCheck

	Alloc, Free, and Realloc
	GetSize
	SetSize
	New
	Dispose
	HugeNew HugeDispose HugeGetSize HugeSetSize

	Functions for Memory Copy, Move, Set
	Clear
	Set
	SetSize
	Copy
	Move
	Swap
	Cmp
	Matches
	Move
	HugeClear HugeSet HugeSetSize HugeCopy HugeMove Hu...

	Statistics
	QueryStats
	StatsOutput

	Low-level Byte Copies
	GetByte
	SetByte
	CopyByte
	SwapByte
	HugeCopyByte HugeGetByte HugeSetByte HugeSwapByte

	Machine-Independent Memory Representations for Int...
	Int8ToStd Int16ToStd Int32ToStd
	Int8ToMch Int16ToMch Int32ToMch
	ReadInt8 ReadInt16 ReadInt32
	WriteInt8 WriteInt16 WriteInt32

	Memory Representations for Strings
	StrToStd
	StrToMch
	ReadStr
	WriteStr

	Errors Signalled by Ptr Class
	GetFailProc
	SetFailProc
	DefFailProc

	RClas Class
	Persistent Data
	RClasFlagsSetEnum

	Class Registration
	Register
	CPlusRegister
	Add

	Allocation/Deallocation
	OperatorNew
	OperatorDelete

	Member Functions
	Accessing the Class Callbacks
	GetNew GetDelete GetConstruct GetDestruct
	Get…�
	GetDefNfy

	Querying Database of Resource Classes
	FindByName
	GetFirst
	GetNext

	Testing Inheritance
	IsSubClassOf

	Setting the Class Callbacks
	SetNewProc SetDeleteProc SetConstructProc SetDestr...
	Set…�
	SetDefNfy
	ProcessDefNfy
	ProcessParentDefNfy

	Rect Class
	Technical Summary
	Point Functions
	AbsDist
	ContainsPoint ContainsPoint32
	SetOriExtXY
	IncOriExtXY
	IsEmpty
	SetXY
	IncXY
	SetByPoints
	IsEmpty
	Reset

	Rect Functions
	Equals
	IncludesNonEmptyRect
	Copy
	CopyResetOri
	Intersects
	IncludesRect
	Union
	Intersection
	MakeFit
	MoveInside
	IsValid
	MakeValid

	Rectangles Defined by Origin and Extent
	Get...
	Set...

	Rectangles Defined by Beginning and End
	Get...
	Set...

	Res Class
	Technical Summary
	Creating and Disposing
	Create
	Clone
	Release
	Class
	Use

	Saving To a Resource Database
	SaveDat

	Output to a Text Resource File
	FilenameOutputRc

	Resource Library Initialization
	LibInstall
	LibLoadInit
	LibExit
	LibInit

	Loading and Finding Resources
	LoadByFullName
	Load
	LoadDetach
	LoadInit
	LoadInitDetach
	LoadChildren
	FindByFullName
	Find

	Accessing the Name of a Resource
	IsNamed
	GetName
	QueryFullName

	Accessing Client Data of a Resource
	SetClientData
	GetClientData

	Accessing Children of a Resource
	GetNumChildren
	GetNthChild

	Accessing the Class of A Resource
	GetClass
	InheritsFrom

	Resource States
	IsInitialized

	Resource Notifications
	Nfy…�
	ResNfyProc
	DefNfy
	SetNfyProc
	GetNfyProc
	SetNfyHandler
	GetNfyHandlerProc
	RemoveNfyHandler
	SetNfyHandlerClientData
	GetNfyHandlerClientData

	Sending Notifications
	Sending versus Posting
	Sending A Notification With Data
	SendNfy
	LockedSendNfyData
	SendNfyData
	GetNfyData
	SendNfyInit
	SendNfyEnd
	SendNfyReset

	Responding to a Notification
	ClassDefNfy
	ParentClassDefNfy

	Control Data
	SendCtrlNfyData

	Command Management
	Command Routing
	GetNfyCmd

	General Purpose
	IsCmdSource

	Command Sources
	CmdSend
	CmdIssue
	CmdUpdate

	Handling Command Notifications
	CmdTableHandle

	Resource Scripting
	ExecuteScript

	Error Handling Utilities
	CheckClass
	VERIFY

	Rgn Class
	Technical Summary
	Enumerated Types
	RgnPosEnum

	Empty Region
	IsEmpty
	Reset

	Region Rectangular Bounds
	QueryBounds

	Region Translation
	Translate

	Comparisons with other Regions
	IsEqual
	RectPos
	IsPointInside

	Operations between Two Regions
	RgnSet
	RgnIntersect
	RgnUnion
	RgnSubtract
	RgnXOr

	Operations between a Region and a Rectangle
	RectSet
	RectIntersect
	RectUnion
	RectSubtract
	RectXOr

	Regions Specified by a Polygon
	Performing an Action on Each Rectangle Component o...
	PropagateAction

	RLib Class
	Technical Summary
	Accessing Libraries
	Find
	GetLibName
	GetFirst
	GetNext

	Loading, Unloading, and Closing
	LoadEdit
	LoadFile
	LoadLibFile
	Unload
	Dispose
	Open
	Close

	SBuf Class
	Technical Summary
	Simple Queries
	GetLen
	GetStr
	GetSubStr

	Iteration
	GetBwrd GetFwrd
	GetByte

	Miscellaneous Queries
	CountToIndex
	IndextoCount

	Changing Contents
	Set…�
	Clear
	Insert…�
	Append…�
	RemoveRange
	ReplaceChar
	Truncate
	RemoveChar

	Case Conversion
	UpCase…�
	DownCase…�

	Matching
	MatchesI…�
	Matches…�
	IMatches…�

	Scrpt Class
	Technical Summary
	Widget Scripts
	Variables
	Script Data Types
	Statements
	SELF

	Using the Scripting Environment
	LibInstall
	LibLoadInit
	LibInit
	LibExit

	Extending the Script Language
	Registering Constants
	RegisterConstants
	NDScrptRegisterConst

	Registering Events
	RegisterEvents
	NDScrptRegisterEvent

	Registering Verbs
	NDScrptRegisterVerb
	RegisterVerbs
	SetStringReturnValue

	Running a Script in Standalone Applications
	Run ExecuteApp

	Bare Scripts
	Compile
	CompileFile
	CompileResource
	Execute
	GetReturnType
	QueryReturnValue
	Dispose

	Set Class
	Overview
	Constructors and Destructor
	NDSet
	Alloc
	NDSet
	Dealloc

	Special Shared Sets
	EmptySet

	Adding, Removing, Accessing Elements
	AddElt
	RemoveElt
	AddElts
	RemoveElts
	GetNumElts
	Reset
	Copy
	QueryElts
	SetElts
	ContainsElt

	Comparing and Combining Two Sets
	SetMixPartSetEnum
	MixGetPartSet
	AreEqual
	MixQueryParts

	Str Class
	Technical Summary
	Data Types
	NatStr
	NatStrPtr
	Str
	StrIVal
	StrIValPtr
	StrPtr
	UniStr
	UniStrPtr

	Cloning and Disposing
	NewSet
	Clone
	Definition
	NewSetSub
	Dispose
	Dispose0

	Set and Append
	Set
	SetSub
	Append
	AppendSub

	String Length
	GetLen
	GetTruncLen

	Iterating through Strings
	GetCode
	GetFwrd
	GetBwrd
	CtGetCode
	CtGetFwrd
	CtGetBwrd

	Writing into String Buffers
	Put
	PutSub
	PutAscii
	PutCode
	WriteAscii
	WriteCode
	NatPutAscii
	NatWriteAscii
	NatPutCode
	NatWriteCode

	Basic String Comparisons
	Cmp ICmp
	CmpSub ICmpSub
	Equals IEquals
	EqualsSub IEqualsSub

	Testing Matches
	MatchesChar
	Matches IMatches
	MatchesPat IMatchesPat
	MatchesPatSub IMatchesPatSub
	MatchesSub IMatchesSub

	Searching
	FindFirst IFindFirst
	FindFirstChar
	FindFirstCharSub
	FindFirstSub IFindFirstSub
	FindIFirst
	FindIFirstSub
	FindILast
	FindLast IFindLast
	FindLastChar
	FindLastCharSub
	FindLastSub FindILastSub

	Scanning of Numeric Values
	GetDec...
	GetHex...
	GetRadix...
	GetDouble
	SubGetDec...
	SubGetHex...
	SubGetRadix...
	SubGetDouble

	Formating the Numeric Values
	PutDec...
	PutHex....
	PutRadix...
	PutDouble

	Basic Conversions
	AsciiUpCase
	AsciiUpCaseSub
	AsciiDownCase
	AsciiDownCaseSub
	PutAsciiUpper
	PutAsciiLower
	PutAsciiUpperSub
	PutAsciiLowerSub

	Loading from Resources
	ResLoad ResLoadNth
	ResFind ResFindNth

	Conversions Between Code Types
	FromCt
	ToCt
	FromUni
	ToUni

	StrL Class
	Technical Summary
	Class
	Class

	Accessing the Strings
	GetLen
	GetNthStr
	SetNthStr
	AddStr
	AddStrAtIndex
	RemoveIndex
	LoadNthStr
	FindNthStr

	StrR Class
	Technical Summary
	Class
	Class

	Loading a String Resource
	LoadStr
	FindStr

	Accessing Text
	GetStr
	SetStr

	Accessing the Id
	GetId
	SetId

	Var Class
	Type System
	VarTypeEnum
	Basic Types
	C, C++ and Corba Basic Types
	ND-Specific Basic Types (Implementation Types)
	ND-Specific Character-Related Types
	Native Constructed Types
	 Power” Types

	 Variant” Management
	 Value” Substructure

	Class
	Conversion Methods
	Convert TryConvert
	ConvertToValue TryConvertToValue
	CopyToType TryCopyToType
	CopyToValue TryCopyToValue
	CopyToInt TryCopyToInt
	CopyToUInt TryCopyToUInt
	CopyToLong TryCopyToLong
	CopyToFloat TryCopyToFloat
	CopyToDouble TryCopyToDouble
	CopyToChar TryCopyToChar
	CopyToVARWChar TryCopyToVARWChar
	CopyToBoolean TryCopyToBoolean
	CopyToByte TryCopyToByte
	CopyToChCode TryCopyToChCode
	CopyToStr TryCopyToStr
	CopyToVARWStr TryCopyToVARWStr
	CopyToClientPtr TryCopyToClientPtr
	Update TryUpdate

	Information Methods
	Clear
	GetType
	ContainsRef
	IsEmpty
	IsNULL
	IsNULLObj

	VarDs Class
	Variant Data Source Value
	Class
	QueryValue
	GetValue
	SetValue

	Notifications
	DefNfy

	Variant Data Source

	VarGr
	Design Overview
	Class

	Graph Properties
	Graph Title
	GetTitle
	SetTitle
	SetTitle
	GetNumNodes
	GetNumRootNodes
	GetNumEdges

	Node and Edge Accessors
	Node Accessor
	Create
	Alloc
	Construct
	ConstructCopy
	Destruct
	Dealloc
	Dispose

	Clone a node accessor
	Clone

	Edge Accessors
	 All” Edge Accessor
	Alloc
	Alloc
	ConstructCopy
	Destruct
	Dealloc
	Dispose
	Create

	Clone an Edge Accessor
	Clone

	 In” edge accessor
	CreateInEdgeAccessor
	Alloc
	Construct
	ConstructCopy
	Destruct
	Dealloc
	Dispose
	Create

	Clone an “in” edge accessor
	Clone

	 Out” Edge Accessor
	CreateOutEdgeAccessor
	Alloc
	Construct
	ConstructCopy
	Destruct
	Dealloc
	Dispose
	Create

	Clone an “Out” Edge Accessor
	Clone

	Undirected Edge Accessor
	CreateUndirEdgeAccessor
	Alloc
	Construct
	ConstructCopy
	Destruct
	Dealloc
	Dispose
	Create

	Clone an Undirected Edge Accessor
	Clone

	Node Accessors Navigation
	GoFirstRoot
	GoNthRoot
	GoIndexed
	GoID
	GoFirstParent
	GoNthParent
	GoFirstChild
	GoNthChild
	GoFirstNeighbor
	GoNthNeighbor
	GoNext
	GoPrev

	Edge-Accessor Navigation
	 All” Edge Accessors
	GoFirst
	GoNext
	GoPrev
	GoIndexed
	GoID
	GoBetween

	 In” Edge Accessors
	GoFirst
	GoNext
	GoPrev
	GoIndexed
	GoID

	 Out” Edge Accessors
	GoFirst
	GoNext
	GoPrev
	GoIndexed
	GoID

	Undirected Edge Accessors
	GoFirst
	GoNext
	GoPrev
	GoIndexed
	GoID

	Adding and Removing Nodes
	AddNode
	AddNode
	RemoveNode
	RemoveNode

	Adding and Removing Edges
	AddDirEdge
	AddDirEdge
	AddUndirEdge
	AddUndirEdge
	RemoveEdge
	RemoveEdge
	RemoveEdgeBetween
	RemoveEdgeBetween

	Graph-Node Properties
	Accessor Validity
	IsNodeValid
	AreNodesEqual

	Node Counts
	GetNodeNumParents
	GetNodeNumChildren
	GetNodeNumNeighbors

	Node ID
	QueryNodeID
	GetNodeID
	SetNodeID
	SetNodeID

	Node Value
	QueryNodeValue
	GetNodeValue
	SetNodeValue
	SetNodeValue

	Node XOrigin
	QueryNodeXOrigin
	GetNodeXOrigin
	SetNodeXOrigin
	SetNodeXOrigin

	Node YOrigin
	QueryNodeYOrigin
	GetNodeYOrigin
	SetNodeYOrigin
	SetNodeYOrigin

	Node Height
	QueryNodeHeight
	GetNodeHeight
	SetNodeHeight
	SetNodeHeight

	Node Width
	QueryNodeWidth
	GetNodeWidth
	SetNodeWidth
	SetNodeWidth

	Additional Node Properties
	QueryNodeProperty
	GetNodeProperty
	SetNodeProperty
	SetNodeProperty
	RemoveNodeProperty
	RemoveNodeProperty

	Graph-Edge Properties
	Accessor Validity
	IsEdgeValid
	AreEdgesEqual

	Edge Count
	GetEdgeNumEdges

	Edge ID
	QueryEdgeID
	GetEdgeID
	SetEdgeID
	SetEdgeID

	Edge Value
	QueryEdgeValue
	GetEdgeValue
	SetEdgeValue
	SetEdgeValue

	Directed Edge
	GetEdgeIsDirected
	SetEdgeIsDirected
	SetEdgeIsDirected

	Additional Edge Properties
	QueryEdgeProperty
	GetEdgeProperty
	SetEdgeProperty
	SetEdgeProperty
	RemoveEdgeProperty
	RemoveEdgeProperty

	Node-Relationship Discovery
	IsChildNode
	IsParentNode
	IsNeighborNode

	Getting and Setting the Cursors
	GetNodeCursor
	SetNodeCursor
	SetNodeCursor
	GetEdgeCursor
	SetEdgeCursor
	SetEdgeCursor

	Convenience Methods
	StartNodeEdit
	StartEdgeEdit
	QueryCyclicResult

	Advanced Objects and Methods
	Node and Edge Objects
	GetNode
	GetEdge
	GetNumChildren
	GetChildNode
	GetNumParents
	GetParentNode
	GetNumNeighbors
	GetNeighborNode
	GetOutEdge
	GetInEdge
	GetUndirEdge
	GetID
	SetID
	SetID
	QueryValue
	GetValue
	SetValue
	SetValue
	GetXOrigin
	SetXOrigin
	SetXOrigin
	GetYOrigin
	SetYOrigin
	SetYOrigin
	GetHeight
	SetHeight
	SetHeight
	GetWidth
	SetWidth
	SetWidth
	GetProperty
	SetProperty
	SetProperty
	RemoveProperty
	RemoveProperty
	GetFromNode
	GetToNode
	GetID
	SetID
	SetID
	QueryValue
	GetValue
	SetValue
	SetValue
	GetIsDirected
	SetIsDirected
	SetIsDirected
	GetProperty
	SetProperty
	SetProperty
	RemoveProperty
	RemoveProperty

	Edit Objects
	StartEdit
	StartEdit

	Modification Descriptions
	GetMods

	Class Operations
	Create

	VarLs Class
	Design Overview
	Class
	Class

	Reading and Writing in the List
	List Title
	SetTitle

	Row Titles
	GetRowTitle
	SetRowTitle
	GetMaxRowTitleStrLen

	Row Values
	QueryRowValue
	GetMaxStrLen
	GetRowValue
	SetRowValue

	Modifying the List
	GetNumRows
	SetNumRows
	AddRow
	RemoveRow

	Reading and Setting the Cursor Row
	GetCursorRow
	SetCursorRow

	Edition Objects
	StartRowEdit
	VarLsEdit AddRow
	VarLsEdit RemoveRow
	VarLsEdit SetCursorRow
	VarLsEdit SetNumRows
	VarLsEdit SetRowValue
	SetRowTitle
	VarLSEdit SetTitle

	Modification Descriptions
	GetMods

	Notifications
	DefNfy

	VarTb Class
	Technical Overview
	Class
	Class

	Table Interaction
	Read Support
	GetNumRows
	GetNumColumns
	QueryCellValue
	GetMaxColStrLen

	Row Title
	GetRow Title
	SetRowTitle
	GetColumnTitle

	TableTitle
	GetTitle

	Reading and Setting the Cursor Row and Column
	GetCursorRow
	GetCursorColumn

	Edition Support
	StartRowEdit
	StartCellEdit
	SetNumRowColumns
	AddRow
	RemoveRow
	AddColumn
	RemoveColumn
	SetColValue
	SetRowTitle
	SetColumnTitle
	SetTitle
	SetCursorRow
	SetCursorColumn

	Edition Objects
	StartEdit
	SetNumRowColumns
	AddRow
	RemoveRow
	AddColumn
	RemoveColumn
	SetCellValue
	SetRowTitle
	SetColumnTitle
	SetTitle
	SetCursorRow
	SetCursorColumn

	Modifications Queries
	GetMods

	Row Interaction
	Column Interaction
	Cell Interaction
	Virtual Interface Implementation
	Variant List Implementation
	Variant List Row Implementation
	Variant List Row Implementation
	Variant List Cell Implementation

	VarTr
	Design Overview
	Class
	Class

	Tree-Datasource Properties
	Tree Title
	GetTitle
	SetTitle

	Node Accessors
	Create
	Clone
	Destruct
	Dispose
	Dispose0

	Node-Accessor Navigation
	GoFirstRoot
	GoFirstChild
	GoFirstSibling
	GoNext
	GoPrev
	GoParent
	Convenient Navigation
	GoNthRoot
	GoNthChild
	GoNthSibling

	Adding and Removing Nodes
	AddNode
	AddNode
	RemoveNode
	RemoveNode
	RemoveTree
	RemoveTree

	Class Operations
	Create
	Tree-Node Properties
	Tree-Node Discovery and Navigation
	GetNumRoots
	GetNumChildren
	GetNumSiblings
	IsNodeValid
	AreNodesEqual

	Reading and Setting the Cursor
	GetCursor
	SetCursor
	DisposeCursor
	SetCursor

	Modifying the Tree Datasource
	Tree-Node Values
	QueryNodeValue
	GetNodeValue
	SetNodeValue

	Tree-Node IDs
	QueryNodeID
	GetNodeID
	SetNodeID
	StartEdit
	StartNodeEdit

	Modifying the Tree-Node Datasource
	SetNodeValue
	SetValue
	SetNodeID
	SetID

	Modification Descriptions
	GetMods

	VStr Class
	Technical Summary
	Changing Contents
	SetStr
	SetNatStr
	SetCtStr
	SetStrSub
	SetNatStrSub
	SetCtStrSub
	Set
	Copy

	Queries
	GetLen
	GetStr
	QueryStrSub

	Concatenation, Insertion, Deletion
	AppendStr
	AppendStrSub
	Append
	AppendChar
	TruncAt
	Truncate
	Clear

	Comparisons
	CmpStr ICmpStr
	Cmp ICmp

	Loading Resources
	SetRes

	Arrays Of Strings
	Constructor
	Destructor

	Index

