Neuron Data Elements Environment
Elements Application Services

Version 4.1

C Programmer’s Guide

© Copyright 1986-1997, Neuron Data, Inc. All Rights Reserved.

This software and documentation is subject to and made available only
pursuant to the terms of the Neuron Data License Agreement and may be
used or copied only in accordance with the terms of that agreement. It is
against the law to copy the software except as specifically allowed in the
agreement. This document may not, in whole or in part, be copied
photocopied, reproduced, translated, or reduced to any electronic medium
or machine-readable form without prior consent, in writing, from Neuron
Data, Inc.

Use, duplication, or disclosure by the U.S. Government is subject to
restrictions set forth in the Neuron Data License Agreement and in
subparagraph (c)(1) of the Commercial Computer Software-Restricted
Rights Clause at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013;
subparagraph (d) of the Commercial Computer Software—L.icensing clause
at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does
not represent acommitment on the part of Neuron Data. THE SOFTWARE
AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION,
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. FURTHER, NEURON DATA DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS
REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE
SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Open Interface Element™, Data Access Element™, Intelligent Rules
Element™, and Web Element™ are trademarks of, and are developed and
licensed by Neuron Data, Inc., Mountain View, California. NEXPERT
OBJECT® and NEXPERT® are registered trademarks of, and are developed
and licensed by, Neuron Data, Inc., Mountain View, California.

Other brand or product names are the trademarks or registered trademarks
of their respective holders.

contents

Preface
Purpose of this ManUal ..o XVii
Y AN [111 1oL TSR XVii
HOW t0 USE ThiS MaNUANoooeiiiiie ettt e s s XVii
RElAted IMANUAIS........eeiieeeie ettt et e e st e e sba e e s sab e e s sraeeesans XViii

1. Introducing EE Application Services

INTFOTAUCTION ...ttt b et eb et e b nn b nn b nnas 1

Building BIOCK MECHANISIMSc.ciuiiiiiiiiie e 1
Data Source/View MeChANISM ..o s 2
APPLICAtioN SENVICES CIASSEScuiieiiieiiriiirie bbb 2

2. Using Data Source/View

Using Data Source/View in an APPHCAtIONccoeiiiinniieeeee e 5
Propagating EVENTS..........cuiiiiiiiiieset bbbttt 5
Controlled AcCCESS tO Data SOUICESciiiiririirierie ettt ettt e neeneas 6
Locking Data in Table DataSOUICES.cccceververieieereeieesieee e se e seneens 7
Locking Data in LiSt DataSOUICES.ccccviieiiiiieriieiesie et seesre et sae e et 8
Data SoUrce/View EXAMPIES ..o e e 8
OF EXAMPIE .ttt b bbbt e bt sn b nn b 8
YN = 0 0] o] L USSP 9
IR EXAMPIE ..t bbb bbb ettt eae s 9
Data SOUIFCE INTEINAIS.coiiiiiie ettt 9
Internals for Ol Core Data SOUICES..........cociiiriri ettt 10
INternals fOor DA Data SOUICES.cocuiiiiriiiiitene ettt bbb 10
RecordSetDataSource IMplementation ..., 10
Properties from VariantTable ... 10
Methods from VariantTable ... 11
Internals for IRE Data SOUFCEScocoiiiiriiiiiiie ettt bbb 12
EXAMPIE ot 14
LYo T8 1= o] I (=0) 14
Selection table (LIStBOX)ccvcveiiiii e 15
IRE TEXE EQIT oviviiiiiciciee ettt sttt st sa et resaera e 17
3. Tree Datasource: Managing Hierarchical Data
L070] 001 0] N PRSP U U UROPUROPT 19
TTEE DATASOUITE ..ottt ettt ettt ettt e b et e e bt e s nb e e nbeesnbeeneeas 20
INOTE bbbt ettt e bbbttt bt e s 20
=TSP URR 21
[N oT0 [ool 1o USSR 23
(101 5T] S TSP TSP U TP PTTPTTPRPP 25
o 1 O] o] = AU 26
Options for the TVIEW and BROWS VIBWS.......ccccoiiiiiiiieinese e 31
(o] 51]) SRR 31

C Programmer’s Guide iii

Contents

INIEEXPANAIEVEL ... e e 32
L0 (0] SRRSO 33
BUIlING 8 Tree DataSOUICEcoveiriiiiiiiitiiiteiet ettt 33
Creating and Destroying a Tree DataSOUICEccccciviererererierieieesesesese e see e 33
Creating and Destroying a NOde ACCESSOIccciveierieieie e see e see e see e eaesreens 34
Creating and Destroying an Edit ODJECT ..., 35
/AN (o 18T TN 1N o T 1= S 36
Y/ FTaT=To [T aTo 1Y/ 1= 0 0 To] YA SRS UTSRSSSN 45
Editing @ Tree DataSOUICE.........ciuiiieiieieite ettt ese e ste et te et esta et e reeaesreenresnnenre s 48
Datasource-LeVel EQITiNgG ... 50
[N\ [oTo (oo Y LT I o 1) 1] oo USSR 55
AAVANCEA TOPICS . eeviieiiiieieriee sttt ettt b e bbbt sttt ettt et 56
NOAE-COUNT FUNCLIONScouiiiiiiiiiiitceie e s 56
MaNAgING the CUTISOTcciiiiiiiieie bbb 59
ACting ON MUILIPIE NOUES ..o e 59
Persistent Data Storage and Relational Tables ..o 61

4. Graph Datasource: Managing Graph Data

L0 0] 01T 0 -SSR 63
Graph DAtASOUICEccuiiiiiieiieitisie ettt ettt ettt bbb e bt b e sbe st b e sbesbesee b e e e e ene e 63
I oo 1= PSSRSO 64
o [1= SRS 67
(€T =T o] o TP UR P 70
ACCESSOL ..ttt ettt ettt ettt b e st b e e a ekt b e bRt e R e R bt e Re e b e e b e e nne e b e 74
(101 5T] S TSP TSP U TP PTTPTTPRPP 76
Bt ODJECT ...ttt bttt b e b e b bbb e et 78
Options for the DGRAM VIBW......cc.ciiiiiiiiie et e 84
L1 (0] . SRS 85
(o8] o] TP TP TOTPTTPRPPO 86
7T To o] 01 Y 2SSOSR 87
(D T=To | =10 010 4 1=] OSSPSR 87
Custom Node and Link OPLiONScccccoveiiieiiiiie e 102
BUilding @ Graph DataSOUICEccueveieiieeesesese sttt e et se s re e snesre e sresrennes 117
Creating a Graph DAtaSOUICEcociiiiriiriie et 117
Creating and Destroying an Edit ODJECtcccoviiiiiiiiiiiinee e 118
CrEALING ACCESSOIS ...veiviieiieitiitesiesteieteee e e e e e este e stestesteseess et esteseesseseesesreasesresresreneen 118
CreatiNg NOUES ..o ettt b e sb e sre e 122
Creating EAQES ..o e bbb 129
5. Args Class
L@ =T YT PSR 133
APT OVEIVIBW ...ttt ettt st sttt st et et e bt ebesbesbesbe st see e e 133
Scanning the List of Command ArgUMENTS..........cccoerierrinieneese e 134
6. ArNum Class
OVEBIVIBWV ...ttt b bbb s et bk oot e s e st et e Rt e bt e bt e bt eb e eb e e b e e b e ebesee b e e e e nes 137
APT PIINCIPIE ..ottt b bt bbbt se e 137
1Y/ F- To] 0 LT TP U U TR PTURUPPTURRTT 137
CoNSLruCtOrs aNd DESEIUCTONcviiiiiiiietiee ettt sb e 138

C Programmer’s Guide

Contents

ClONE, COPY, RESEL ...ttt b e b b st 138
Changing the Length of the Array ... 139
L€ (0] oF- LI @ 10 [T 1= USSR 139
ACCESSING EIBMENTS. ..ottt re e sraesreanees 139
FINAING EIBMENTS ...ttt et e ene e teaneenneanes 140
Yo Lo [T aTo =1 1= 0 g T=T o SR 141
REMOVING EIBMENTS ..ottt aeeneenaeenes 141
RS0 o 1 o USSR 142
REMOVING DUPHICALEScviiiieieieee ettt 142
7. ArObj Class
OVEIVIBW ..ottt b bbb b e bbbtttk bbbttt n e 145
A ad I o 1 (ot -SSR 145
COoNStructors aNd DESTIUCTONc.viiiiiieiriece et 148
(04 [0 0 Lo O] o)V = LT TS 148
Changing the LENGLNc.oo i 148
(€1 o] 0T @ 10 (=TT TSR 148
ACCESSING EIBMENTS.oiiiiiiciiie et et e e ne e resnenrenrennens 149
[gL [g Yo = =10 0 T=T o 149
P e [T o N =1 [=T 1= o) £ 150
REMOVING EIBMENTSoviiiiie et r e nre s 151
3] 1] o TSR 152
T (oA /T T U] o] [ToF: L= 152
8. ArPtr Class
TECNNICAI OVEIVIBWcviiiiietee e bbbttt ettt 153
AP PIINCIPIES ..ttt bbb e 153
1Y Tod 01 PSS SPPRRIRN 153
Constructors anNd DESIIUCTONcoiiiiiii et be e s be e sreens 154
L0700 151 4 g1 (1 (o] £ SR 154
DIESTIUCTON ...ttt ekt et sb e n e nb e eneenne e nne s 154
ClONE, COPY, RESEL ...ttt bbb b st 154
Changing the length Of the arrayccccooviie i 155
L€ (0] oF- VI @ 10 [T 1= OSSR 155
ACCESSING EIBMENTS. ...ttt e e sre e sreanes 155
FINAING EIBMENTS ...t sttt et ene e reaneenneenes 156
Yo Lo [aTo T =1 1= 0 g T=T o SR 157
REMOVING EIEMENTS ..o 158
ST o 1 [o SR 158
REMOVING DUPHICALESc.eiiiieieeieeee et 159
9. ARRay Class
OVEIVIBW ..ottt etttk ettt bbbttt b et b ettt ettt 161
10. ARRec Class
OVEIVIBW ..ottt bbbt bt b bbbt b ket b ettt bttt 163
APIPIINCIPIE ..o 163
1Y Tod {01 PRSPPI 163
Constructors anNd DESIIUCTONccviiiiiie ettt sre e sreens 164
CONSEIUCTONS ..ttt bbb bbbt b e b e n b b snens 164
1D 1213 1 1 [(] O PRPSPR 164
ClONE, COPY, RESEL ...ttt bbb b b st sn e 164
Changing the IENQGLNocv e 164

C Programmer’s Guide v

Contents

L€ (0] oF- LI @ 10 [T 1= USSR 165
ACCESSING EIBMENTS. ..ottt re e sraesreanees 165
FINAING EIBMENTS ... sttt b et ene e teaneenaeenes 165
YN0 [0 [T aTo =1 =T 0 o 1=T o | £ SR 166
REMOVING EIBMENTS ..ottt aeeneenaeenes 167
RS0 o 1 o USSR 167
REMOVING DUPHICALEScviiiieieieee ettt 168
11. Avl Class
OVEBIVIBW ...ttt ettt ettt ettt et et et s b e et e st e et e e b e e b e ebt e b e e aseebeeabeebeeabesbeerbesbeesbesteenbe e 169
DAta STTUCTUIES .. .veevee ettt s et e et e e st e e be e sae e e beesbaeebeesrbeebeesabeesteesnreesbeens 169
AVITree and AVINOGE CIASSES.........coviviiiiiiieiie ettt ere e 170
AVINOGE CISS.....uiiiiiriiieitiece ettt et be et be et e s be e b e s be e s beebbesbeeabesbeenbeenas 170
CoNStructors aNd DESIIUCTONc.cccviiviiiiiiecie ittt ettt se e e sbe e sbeesbesreens 170
CONVENIENCE FUNCLIONS ..ottt ere et sbe et ste e sbe s e sbeeraesbeenbesbeens 170
ACCESSING the AVINOGE KBYcviiviiiieiecieeese et snen 171
SCANNING AVINOGEScveieiiiccee et e e a e resresre e e e e 171
AVITIEE ClASS....uiitiiiiiticcie ettt b e et b e et s be et e s beesbesbe e s beebaesbeeabesbeenteanas 172
CoNStructors aNd DESIIUCTONc.cccviiiiieeireiie ittt ettt ettt s aesbe e sbeebesbeens 172
L@ 11 1= =T TSRS 172
Propagating an ACHION........ccceiiieeeeee st e et re e nrenrens 173
CUITENT NOAE AP ...ttt be et e s bs e ebeeae e resaneare s 173
12. Base Class
TEChNICAl SUMMIAIYoeie s renre s re st e s 177
2T T (ol B - = R Y o 1= SRS 177
BOOIENUIM ...t ettt st s ae et st st e s be e s beeraesbeerbesbeenbesbeenrenas 181
L1 o)Y/ = 0 115 1o S SS 181
L 0 0] 0] =1 o T o o PSSR 182
=Y =1 U T2 o OO PSR PROSRR 182
VertENUM and HOFZENUM.........ccoiiiiiiecce ettt ere et ere e ere et saes 183
VEISION ENUM ..ottt et be e st s be et e st s beebee s beentesbeenbeanas 183
(D= 18 Te o [T o 1AV - Uod o 1TSS 184
EXIE SEATUS ...vt ittt et ettt s ae et e s be e b e s ba e beerae b e eab e beenbeebeenreras 187
MiSCEllaneoUS BaSIC IMACKOScvccviiuiiiieiee ettt et be et s be e eresaeesresnes 188

13. BBuf Class

vi

OVEBIVIBW ...ttt ettt sttt et e st e et e e be et e e bt e beeasesbeenteebeeatesbeesbesteestesraenbe e 191
Oz 10 0] 0] LTRSS 191
EXAMPIES: .o ettt bbb bbb e e e 191

BBUT ClaSS.....cuiiiie ettt te e s be e b e s te e te s te et e e te et e eaeenteeneenas 193

SPECIAIIZATION FIAGS.ceiieiiiieiee bbb e 193

DAtA STIUCTUIES ...ttt b et b et b e b b e e ebe b e e beebe e bt e sbenbeenne e 193

CoNSLrUCtOrs anNd DESEIUCTONcviuiiiiiiietiee ettt sb e 194
(070 8151 4 g1 (o1 (0] £ B SS 194
[1=E] £ B [o! (o] G ST E PP PP PR VT PPPR PP 195

(2T (o I=TaTo IVAVA 01 (- @] o =] -1 o] o 1< 195

=TT @] =T =1 o] 1SR 196

ACCESSING Private FIlaS......cocviiiice et 197

Installing Custom Paging Methods............cccciiiiiciiiie e 199

C Programmer’s Guide

Contents

14. Cell Class

TEChNICAl SUMMAIYoviii e e et nre s ne e e s 201
DAta STTUCTUIESeeeiee ettt et e et e et e e te e st e e beesaaeebeesrbeeteesabeesteesnneeteens 201
Cell RANGE OPEIAtIONS.......cvieeeieieeee ettt sa et seeneere s e resresresresrenrenes 202
15. Char Class
TeChNICAl SUMIMATYciiiiiiiiee bbbt 203
ENVIrONMENt Variables........ccvoiiiiie ettt et srae e 205
DALA STTUCTULIES ...ttt ettt e e e eeate e e et e e et e e s eaaeeeetbeeesnteeesnbeeeaseeeans 205
Character LENGEN ..ot 207
(O F=1 = To1 (=1 a0 To [TP 207
Basic Character ClasSifiCationccoocviiieiceeiee ettt 209
BasiC Character CONVEISION.........ccuieiieeiee ettt ettt ete e te et e e ebe s reeebe s sraeereesaee s 210
Conversions between ASCI and EBCDICc..cocv et 212
16. Cs Class
OVEIVIBW ...ttt ettt ettt ettt e e b e st e e s b e et e e sbe e sabeeabeeesbeebeesabeesbaesaeeebessareenbeesreas 215
(070 T0 [T £SO PO 215
Creating and DESIIOYINGcuoiiiiiiiiieire ettt 219
L0708 151 4 1 (1 (o] £ S S 219
1D 1213 1 1 [(] PO PRPSPRP 219
CONVENIENCE FUNCLIONSvviiiiccie ettt ettt et sttt e e be e b e s eteesneeearas 219
CONVENIEBNCE IMIACTOS.c.veiiiie ettt ettt ettt et st et e sat e e ebe e s baeebe e stbeebeesbeeenteesneeearas 220
Predefined COOE SEES......ccvi ittt et be e rae e be e stbeebeesaee s 221
LOCAI IMTACIOS ...ttt ettt ettt s b e et e e sbe e e be e sbaeebeestbeebeesabeesbeesareenbeens 222
ISO LATIN1 Character Information Definition...........cccccoceviiiiiicieiiiecee e 222
ASCII Character Information Definitionc..ccoceiiiiie i 222
JIS0208 Character Information Definitioncccove i 222
JIS0201 Character Information Definitioncccove i 223
17. Ct Class
TEChNICAl SUMMAIYoviiiicese et e e bt st re e 225
DT U7 T IV o 1= SR 226
L0 =T =1 (=T N Y T 226
Creating and DiISPOSINGccciiieiieieeeese et e e e re e resre st sresre e e 229
V(10 0] o 1T gl =¥ [Tox £ o] OO RRRTRRRRTRO 230
18. Ds Module
(DT E] o I @ A= YT S 235
CIASSES. .. ettt ettt ettt ettt te et ebe et e s be et e s b e et e s be et e e b e e b e ehe e beeRbeebeeRbeebeeRbeabeenbeabeenbenbeenbe e 235
VIBW INTEITACEvi ittt ettt ettt s be et s be et esbe e s beetaesbeerbesbeenbeanas 235
EItION INTEITACEcuiicie ettt be et be e sbeenrenas 236
(010 LN 1] (= = = RPN 237
Contained/Container Data Source INterfaceocccvveieiieie i 237
(O17=T 1 [To r=Ta o D11 o To K=Y 1 o S 237
L0 F- 11O OO RSSO PPRORO 238
Edition OPEIatiONccccooiiiiiiiiiieieeeeiee et ettt sb b see 238
Modifications IMPIlemMENTAtioN ...t 238
(DT = I T T U [o SRS 238

C Programmer’s Guide Vil

Contents

19. Err Class

OVEIVIBW ..ottt bbb bbbt b bbbt b ekt b ettt bbbt 239
DisSCIPlINEd EXCEPLIONScuviuiiiiiiiiiieiieieeie sttt sbe b sne 239
Error Handling ANd REPOITING ...vovviiiiiieieiete e 240
ENLrY/ZEXIT IMIBCTOSoviveciiiicciesicie ettt ene e e snennesnennens 241
EFTOI RECOVEIY ..ottt ettt nbeennenreen 241
REEIY e 241
SIGNAlING A FAITUIE ..o e 242
FALAI EFTOIS ..ottt bbb bbbt e 243
= o] g O] 1)1 £ PR SR 244
EFTOT TTACING oottt bbbttt 245
Global Variables And INitialization ... 245
Advanced Error REPOITING ..o 247
Summary Of Error Handling And REPOrtingcccocevvveiiiiineniecence e 247
Reporting Errors for Calls to Third Party APIS ... 248

DAtA STFUCTUIES ...ttt b e et nr e b et b e e b e e s e nbeennenis 249

ErrFrame API for Error Reporting and Discriminationccccooeveveienininenenene, 249
g g o = 10 0TI O - TSSO US PSSP 250

1Y Tod {01 PSSR URTROPN 251
Context Messages and TraCiNgccccccovveeeeeieiesese e ese e re e srenees 251

MisC Macros FOr Error REPOITINGcc.coviieieiiieisese s s et sne e snens 252

ERR_LIB, ERR_EXTERN ..ottt 252

INTEIAIIZALION IMACTOSc.iicieieeeee ettt 253

FALAL EFTOTS ...ttt et ettt ne bbb bbb e b anes 253

SIGNALING FAIIUIES.....eoiiee e et sre e e e 253

(1T 1= = L[aTo IAYAY - Ug T g T S 254

QUENYING the Error STALEccvcceeececece et 254

AASSEITIONS ...ttt ettt et 254

ST o] TR =T oTo] o] Vo [P 255

Error Conditions Signaled by Error Module............ccccooviiiienciceicesese e 255

Exiting from the APPLICAtION.......ccooviieicee s 255

(8] N1 D@ =7Cot=T o £ o] i o F= T Lo | 1o o 255

W16 EXCepPtions HaNAIINGcooveiviriiieicicee e 256

V] F=Tol S Cot=T o] £ To] g FS3 o =TT | 1T o PSS 257

20. File Class

TeChNICAl SUMIMATYouiiiiiiiie bbbt 259

DAtA STIUCTUIES ... ettt ettt ettt ettt e sbeete s reentesreesbeeneenbeenseneeennennas 263

ENUMEIAEA TYPES ...ttt bbbt 264

ACCESSING File ALIFIDULES ... 266

Checking Existence and Access Rights Of @ File ... 270

Opening and ClOSING 8 FIle ..ot 271

Querying and Changing Position in @ File ... 273

Reading @nd WIITINGccoiiiiiiiec bbb 276

MIiSCEIANEOUS FUNCLIONSeiviiiieiieieeee e snesnenee e 280

Default SEArCh Pathi.........cccco i e 281

Direct access t0 NAIVE FIle 170 ..o 282

o 0 S PUSS 283

viii C Programmer’s Guide

Contents

21. FMgr Class

TEChNICAl SUMMAIYoviii e e et nre s ne e e s 285
DT L B IV o 1= 285
L0 =T = =T I Y 1= 288
Querying and Changing FileZDirectory AttribUtes..........ccocevvviveriicieeiecr e 293
Finding File Type by Mac Type or by File EXtENSIONcccccceverivericccece e 295
L@ = 11| T TS 298
1@ 07/ 1 o TSR 298
Y101 V7 T Vo S 299
1= L 1 Vo S 301
Performing an ACLIONccco e 303

22. FName Class

TeChNICAl SUMIMATYciiiiiiiiee bbbt 307
DAtA TYPES ..ot 311
ENUMEIATEA TYPES ...ttt bbbttt 313
FIlE NAME SYNTAX .ottt sb e enes 316
FiNd Path NAME SYNTAX........cciiiiiiiiiiee e 317
Checking Path Name Validity ... 317
Evaluating Variable EXPreSSIONS ... 318
CoNVErsioN DETWEEN SYNTAXES........cciiiiiiiiieceee e 319
CONVEISION STALUS ...ttt bbbt b ettt 320
Extracting File COMPONENTScc.ciiiiiiiiiite s 321
Directories Specified as Paths Or @S FileS ... 322
TOP DIFECLOTY ...ttt bbb bbbttt et 324
Current Volume / CUrrent DIFECLOTYcoviiiiiiiiiiisene e 324
ParENT DIFECIOTYoviiiiieiite ettt ettt bt e bbbt bt b et eb e enes 326
HOME DIFECLOTNY ...ttt bbbt bbbttt 326
ADSOIULE / REIAtIVE PAITS.......ciiiiiiii ettt 327
Comparing File NAMES ..ot 328
Generating Temporary and Backup File Names ... 328
23. Hash Class

L@ =T Y1 PSR 331
DAtA STIUCTUIES ...ttt ettt be et b e b b e e b e b e e b e b e e be e s e nbeenbennas 331

NDHAESNINTO ..o 331
CoNStructors and DESTIUCTONccovrieiriiiersrceees e 332
CONVENIENCE FUNCLIONSc.oviiiiiiecicc s 332

Resetting a Hash Table ... 333
Creating and Disposing Hash TabIes..........ccociiiiiiiiiiee e 333

Defining a Hash Table ... 333
Querying the Hash Table INformation...........cocoiiinee e 334
USING HASH TADIES ...ttt 335
Perform An Action ONn All The ENTIES.........cccviiiiiriiccsieeee s 335
DefaUlt METNOS.cc.o i ettt bbb e 336

Default Hashingccooveccccese et s nnen 336

Default COMPATISONcooiiiiiiiie ettt sb et sbe e see 336

Default String CIONING ..o s 336
HaSh TabIe ENTFIES ..o st 336

STALISTICS ... 337

C Programmer’s Guide iX

24,

25.

26.

21.

28.

29.

Contents

Heap Class
OVEIVIBW ..ottt bbb bbbt b bbbt b et b et b ettt et 339
[T=T= T o T =T 339
COoNSLruCtOr @Nd DESTIUCTONccuiiiiiiciiiciciere bbbttt 339
CONVENIENCE FUNCLIONS ..ottt 340
L T=T=T T . SR 340
Heap ManipulatioN...........ccoiiiiiice et nren 340
ISet Class
L@ 1Y =T Y T RS 343
DT L7 BT 1 8 (o1 L U] =SSR 343
Constructors and Destructor INterval SEtsS ... 343
SPECIAI INTEIVAIS ... 344
Adding and Removing INTErVAalS ..o 344
Comparing and CombinNiNg TWO SELS........ccociiiiiiiireee e 345
MCH Class
TeChNICAl SUMIMATY ...ttt 347
Compiler INTOrMALIONcoooiii e 352
Nfier Class
OVEBIVIBWV ...ttt ettt b bbbt b e b b e e et e s e st et e b e e bt e bt e bt et e eb e e b e e b e nbesaeen e e e e nes 355
Creating and DISPOSINGooieiiieie ettt ettt sbe bbb sbe e e 356
Broadcasting @ NOtIFICAtIONcooiiiiiii s 356
Notifier Client Creation and DeStruCtion ... 356
Associating Client Data with the Notifier Client Pointer...........ccccooooieiiiiiiiieincns 357
Notifier Client Registration and Unregistration............c.ccocvereienenenenciniesesceeseie 357
Convienience: Unregistration, destruction and deallocationccccccoovvvennee. 357
Convienience: Allocation, construction and registrationcccccceeevveiveiviiennnn, 358
Convienience: Unregistration, destruction and deallocationcccccocvenee. 358
Pack Class
OVEBIVIBWV ...ttt b bbb s h bt bttt h et e e e bt b e bt e bt e bt s bt e b e e b et ne et ne s 359
Short Description of the Compression Algorithms: ... 359
Choice of a Compression AIQOrithim:cccov i 359
CoNStructors and DESIIUCTONc..iiiiiiiirieieses e 360
F N - o - SRS 361
(00] 0] o] =157 [] o KU O SU PO SO TP PR RPN 361
DECOMPIESSION ..ttt bbbttt b et bbbt nens 361
WOrst Case PerfOrMENCEScoueiiiiiieieeeese ettt see e sa 362
RLE (Run Length ENCOAING)c.ovveiiiiiiiiiiiitiitie e 362
o Tod 1= | TR 362
CCITT FaX COMPIESSIONvitiiiiiiiitiieteiet ettt bbbttt 363
OVEIVIBW .otttk bbb bbbttt ettt 363
EXAMPIES: .ottt bbbt bbb e 363
GENEIAL CASE ... ittt ettt b et b ekt bbb b e e 364
PIfd Class
OVEIVIBW ..ottt bbbt b et b bbb skt b ekttt ettt 365
Scope of Documented AP ... 365
Permanent Field Data TYPEScccciiiiiiiiir s 365
FIeld CategOriBSouiiieiiieiiee bbb 366
C Programmer’s Guide

Contents

DAtA STFUCTUIES ...ttt b e e e nr e b e b b e b e e s e nbeennenis 366
WARNING: ..ottt ettt ettt b et e b be s benaenes 366
30. Point Class
OVEBIVIBWV ...ttt bbbt bt bbb et et e s b e st et e Rt ekt e bt e bt eb e eb e s b e e b e nbeseeen et e e enes 367
CONSLIUCLOIS / DESTIUCTON ...ttt b e e 367
SELS ANA QUETIES ...ttt e e et s bt b e bttt st e b e e b e nbe e sa b nee s 368
31. Pool Class
OVEBIVIBWV ...ttt bbb bbb bbb et s st h e bt bt e bt bt et eb e s b et e e e 371
Pool oriented Memory Managementccoeoveeinennene e 371
(oo] =Y T oV (o] o PO SRS SRS 372
Constructors anNd DESIIUCTONcviiiiiie ettt sbe e sreens 372
CONSEIUCTONS ..ottt bbb bbbt b e en bt nbeanenes 372
DIESTIUCTON ..ttt b bbbt e bt e e beenre b e e b 373
Setting/Querying the Information on a Memory POOlcccocov e, 373
Allocating and DealloCatingcccviieiiiii i 373
STALISTICS ...ttt ettt bbb bbb ettt bbbt bttt b e bbb e e 374
32. Ptr Class
TECNNICAI OVEIVIBW ...c.cviiiiieesie e bbbttt sttt et 375
DT U7 B IV o 1= SR 375
L0 =T =1 (=T R Y TS 376
N T |] 011 0 SRR 377
AllOC, Free, aNd REAIIOC ..ot 377
Functions for Memory Copy, MOVE, SEl.........cccccuiireiriiirieeeiesse s sessesens 379
SEALISTICS ¢ttt bbbttt et b e e 381
LOW-IEVEI BYTE COPIES.....ccuiiiiieiiesiiiieiie ittt e ettt e e sttt st en e neeneetesneanesrenrenrens 381
Machine-Independent Memory Representations for Integerscccccevevvevveivciviinnnnas 382
Memory Representations fOr StriNGSccccovveiiiiie i 383
Errors Signalled DY PLr CIass........ccoviiiiiiiiiie s 384
33.RClas Class
PEISISTENT DALA.......ciuiiiieiite ettt ettt b et b e b enes 387
(O =TI S {CTo 1] £ - L X o] o P 388
AllOCation/DealloCation ... e 389
MEMBDEE FUNCLIONSoviiiiiiee ettt et sbe e 389
Accessing the Class CallDacKs ... 389
Querying Database of ReSOUIce Classes........ccovvviiieiiiiciiciee e 390
TeStiNG INNEFITANCEccveeieece e re e sreenreaneas 390
Setting the Class CallDACKScooviiiiie e 391
34. Rect Class
TEChNICAl SUMIMAIYoviiii e e esre s re e e e 393
POINT FUNCLIONS. ...ttt bbbt sttt sb bbb e b enes 394
RECE FUNCLIONS ...ttt bbbttt sb et et abe e 395
Rectangles Defined by Origin and EXTENtccccoovvieiiiinie i 397
Rectangles Defined by Beginning and ENd..............ccocvovviiie i 398
35. Res Class
TEChNICAl SUMMIAIYovii e e e r e ne e e s 399
(O17=T 1 [To r=Ta o D115 o To 1Y 1 o 404
Saving To a Resource Databaseccccoviirieiiiiiiniescs e 405

C Programmer’s Guide xi

Contents

Output to a TEXt RESOUICE File........ciiiiiiiiiiiie e 405
Resource Library INitialization............cccooviiiiiicce e 405
Loading and FiNdiNG RESOUICEScceiiiieieiie sttt te e sae e sae s 407
Accessing the Name 0f @ RESOUICE........cocv i 410
Accessing Client Data 0f @ RESOUICEccoiviieiiiie et 411
Accessing Children of @ RESOUICEcccvcviiiie e 411
Accessing the Class Of A RESOUICEccviviieiii e 412
RESOUICE STALES ..ot ettt b e bt e e nbeennenis 412
ReSOUICE NOTITICATIONScc.eieiiiiiieiee b 412
SENAiNG NOUITICALIONSociii e 415

SeNdiNg VEISUS POSTING ..ovoiviiiiiiiieeeeee et 415

Sending A Notification With Dataccccoevviviiniiiin e 415
Responding to a NOtIfICAtIONcccoveiiiiic s 418
CONLFOI DALA. .. .veeiveieteet bbbttt bbbt 418
(%] aalaaF=TaTe Y/ F- T T=To 1= o =T o | S 418

(070 ag] 0 gF- TaTe I = To U 1 1] oL RS 419

GENETAl PUMPOSE ...ttt bbbttt 419

COMMANGD SOUICESvveviericiieite ettt sttt sttt st sbe st et e et et e e bt e sbeenbesbeenbesbeeaesbeesresres 419

Handling Command NOLIfICAtioNScccceiiiiiii e 420
RESOUICE SCIIPTING .ttt bbbttt et b et b e b b e 420
Error Handling ULHTIESccvoiiie ettt 420

36. Rgn Class

TEChNICAl SUMIMAIYoviiii e e esre s re e e e 421
L0 =T =1 =T N Y 1= 421
[0] 014V 2 LT o [o] o 1SR 422
Region Rectangular BOUNSccuoiciiiiieiicnse st sre s 422
(R To o] ol I -V g 1] F= 11 o) o 1PN 422
Comparisons With Other REQIONScccviiiieii i 423
Operations between TWO REGIONS.........cccviiiieiieiiieiesese et 423
Operations between a Region and a Rectanglecccccoceveveveieieccieiene e 424
Regions Specified by @ POIYQON ... s 425
Performing an Action on Each Rectangle Component of a Region..........c.cccceevvvennnee. 426

37. RLib Class

TEChNICAl SUMMIAIY ..o e e renre s ne e e s 427
Yoot 1S] o T o] = U =T RSP 427
Loading, Unloading, and ClOSINGccceieiiiiiiiiiin s sne e 428

38. SBuf Class
TeChNICAl SUMIMATYciiiiiiiieee bbbttt 431
SIMPIE QUETIES ...ttt bbbt b bbbttt 431
(=T = L1 o o SRS 432
MIiSCEIANEOUS QUETTES.....cuiiiiieieeieeieie ettt sttt e e e e eneesesneenesreseennens 432
ChangiNg CONTENEScoiuiiiiiie bbbttt 433
(0= T 010 01 7= 5] (o] o S 434
IMIBECIING ...t bbbttt bt 435

39. Scrpt Class
TeChNICAl SUMIMATY ...t ettt 437
RVA VAT Lo 1= A Tod | o) S 437
VATTADIES ..ottt e ebe e e re e eare e ra e 438
SCIIPE DALA TYPES .ottt bbbttt b ettt 438

Xii

C Programmer’s Guide

Contents

STALEIMENTS ...ttt b bt se e bt s e b e e 438
SE L ettt bRt R ettt ettt et 439
Using the Scripting ENVIFONMENT ..ot 439
Extending the SCrPt LANQUAGEcvoveieiiieieese ettt 440
RegiStering CONSLANTScccociiireieriiee e sresnenrens 440
REQISTENNG EVENTSoiiiiiiiiiiiieitiie ettt 440
REQISTENING VEIDS ..ot 441
Running a Script in Standalone Applications..........ccoeoieriiiins 444
BaAE SCIIPLS. ..ttt b et bbbt ekt h et b e enes 445
40. Set Class
OVEBIVIBWV ...ttt b bbb bbb e e e e et et e Rt e bt e b e e bt eb e eb e s b e e b e nbesee b e e e e nes 447
CoNSLruCtOrs aNd DESEIUCTONoviiiiiiiiitise et sbe b 447
SPECIAL SNATEA SELS... ..o bbb e e 447
Adding, Removing, Accessing EIemMeNnts.........ccoiiiiiiiiiiii e 448
Comparing and CombiniNg TWO SetS.........cccciiiiiiiiiiie e e 449
41. Str Class
TeChNICAl SUMIMAIYc.viiii ettt re e aesaeesreaneas 451
D F L Bl Y/ o 1T S TP U TP P P PR PP PR 453
CloNiNg aNd DiSPOSING......couiiiieieieiieise ettt be bbb b b e 455
SEL AN APPENA ... ettt bbb bbb 457
RS 1 [o T =T o o | o o USSR 458
Iterating through STHINGS.........oiiee e e 458
WIiting iNtO StriNG BUFFEISc.ooiiiece e 460
BasSiC StriNG COMPATISONSc.oiiieiiieiieiie ettt ettt sb bbb e 464
TeStING MALCRES ..o e are s 465
1= U V1 o [SRR 467
Scanning Of NUMEIC VAIUESccooiiiie e 470
Formating the NUMEriC ValUES........c.cooveiiiiece et 473
BaSIC CONVEISIONScviiiiiiiie ettt st bbbt eb ettt sb b e sn b e 475
Loading from RESOUICESccveiiieicie sttt sre e sre e e saeaneas 477
Conversions BEtWEeN COAe TYPEScviiiiririieriesie ettt 477
42. StrL Class
TEChNICAl SUMMAIY ...oeiicee et e et re s re e e e 479
ClBSS ettt bR et et e s 479
ACCESSING The SIIINGS ...viiiiiicie e e e e e sre e nnens 479
43. StrR Class
TEChNICAl SUMMIAIYoeiice ettt ne et e ne e e s 483
CLBSS .t b et bt bbb 483
Loading @ String RESOUICEc.civirieieeceeiee et e e e e re e snesresrenrens 483
g1y T T I = A 484
ACCESSING The 1. e 484
44, Var Class
TYPE SYSTEM ...t e 485
Variant” ManNAgEMENTttt 487
L - TSRS 487
(070 a1V =T £5] T 0 I AV, =1 1 g o T £ 487
L) (o] ¢ g U Lo o TN 1Y 1=1 1 To o LS R 490

C Programmer’s Guide xiii

Contents

45, VarDs Class
Variant Data SOUICE VAIUE...........coooiiiiiiiene s 493
N o] 1) {Tor= LA (o] 1TSS PSR 494
VarianNt DAta SOUFCEcoviuiiiieiiieiee ettt ettt et n s 494
46. VarGr
DESION OVEIVIBW......eiiiiiiiiiieiiie ettt b et bbbttt ettt 495
GraP PrOPEITIESc.eviectiectit ettt ettt 495
(€T =T o] o 1 1 4 S 495
NOdE ANA EAQE ACCESSOIS ..veveviiiieieieieieeaeasestesessessessessessessessessessessssssssssessessessesessens 496
INOAE ACCESSOI ...ttt bbbt e et b et et e e et e st e b e e b e bt sbeebesbesbesbesbeseens 496
(04 [0] o T 3= W g To o L= oo =11 o | S 497
EAQE ACCESSOIS ..ovivrcvieieitictesiesesteste et e e e et teste s te st e bestesbesbesae s enseseeseeneetessesresteseenrens 497
AN EAQE ACCESSOI ..eiiiiiieiieie ettt sttt bbbt b ettt b bbb sbe b sae e 497
ClONE AN EAQE ACCESSON ...ttt et 498
B L T =To [TCI= Vool Yo) 498
CloNe an “iN” @AQE BCCESSOIoiviiiiieiieieeere ettt sttt sb b b sae e 499
“OUL” EAQE ACCESSOLeeviieiiiieieiteit ettt ettt b ettt et 499
Clone an “OUt” EAQE ACCESSOc.cveeeiereeeiiatesesiesrestessessessessesesessssesessessessessesses 500
UNdirected EAQE ACCESSOLoiuiiiiieieieieeee ettt sttt et sbe st sne s 501
Clone an Undirected EAQE ACCESSOLccoiiirieerieienieenieesie sttt 502
Node ACCESSOIS NAVIGALIONcoviiiiiiirieiirieieriere et 502
Edge-AcCesSOr NAVIGAtION. ..o 504
AV | Ml o [[AN ol =T o] S 504
“IN7 EAQE ACCESSOIS ...vitititiieieieeiietieiee e ete s e besbesbesbesbesbesee s e e esta e e st abeebesbesbesbesbesaeneas 505
“OUL” EAQE ACCESSOIS ..oviiiiiiieiiiieitete ettt ettt sttt b ettt sttt et 505
Undirected EAQE ACCESSOIS ...ccviueiiiieiieieieeteteste e ste e ste e ste st ete e e esaeses e snessessesnens 506
Adding and RemMOVING NOUEScccoeiiiieiceir et snens 507
Adding and RemMOVING EAQEScccoeiiiicicesr e 508
(1= o] a B AN [0 [o o] 0 T-T o = 509
ACCESSON VALIAILY ..ot se 509
[[oT0 [@01 U | £ PUPSS 509
NOTE ID .t ettt ettt b et nb et b e b e b e anes 510
NOAE VAIUE ... ettt b bbb b nee s 510
NOAE XOTIGIN ittt bbb s 511
oo (I @ T o 1 s TSP 512
NOAE HEIGNT ..t sae e e 512
[N o0 (=AY T | 1 ST SS 513
Additional NOAE PrOPEITIESccvccveveiieiiiise et e e se e sre e nnens 513
(€1 =T o] g Bl o [[o o] o 1=1 o =T 514
ACCESSON VALIAILY ..ottt 514
EAQE COUNT ..ottt 515
[0 [0 =N | 5 TSSO 515
EAQE VAIUE ... ettt bbb 516
DiIreCted EAQE ..ot 516
Additional EAQe Propertiescccccoviiiiieiieiiisie s sesesie e es s sse e e ssessessesnens 517
Node-Relationship DISCOVEIYccvieiiiiicieicieee st se e esne e nnens 518
Getting and Setting the CUISOIS.........coii i e 518
Xiv C Programmer’s Guide

Contents

CoNVENIENCE METNOAS ..o e 519
Advanced Objects and MethOdS..........cooviiiieie e 519
Node and EAQE ODJECESccouiciiiiiieieiese ettt 520
o) O] o= £ SRS 527
Modification DESCIIPLIONScoiiiiiiiiiiiire e 527
ClaSS OPEIALIONSo.ecuirieiiiieiiiieisiet et ettt bbbt 527
47. VarLs Class
DESIGN OVEIVIBW......ceiitiiiite ittt ettt b et a e b b e et e et e st et e e be e bt ebesbesbeebe b e e e 529
(O 1= OSSOV 529
Reading and Writing iN the LiSt.........coiiiiii e 529
T A] L P 529
ROW THEIES oottt 530
ROW VAIUES ...ttt ettt bbb bbb b e 530
MOITYING The LIST......oieiieiiiiiiie bbb e 531
Reading and Setting the CUIrSOr ROW..........ccciiiiiiiiiii e 531
EItION ODJECTS. ...cuiitiiii ettt sttt b ettt sbesbe e sr e 532
Modification DESCIIPTIONScoiiiiiieiicee e et sbe e see 533
NOTITICATIONS. ...t ettt b e b bbb e b e e 533
48. VarTb Class
TECHNICAI OVEIVIBW ...ttt sb e 535
CHASS . et h bbb b b e et 535
TaADIE INTEFACTION.c.eiiiiiiiciieee ettt b e bbb e 535
REAA SUPPOIT ...ttt bbbttt 535
ROW THLIE ..ottt ettt sa bbbt st e eeneas 536
LI 1] Lo I 11 =TT 536
Reading and Setting the Cursor Row and Columnccocoviiiniiniincececs 537
EQITION SUPPOIT ..ottt ettt bbb en e nes 537
EQItION ODJECTS. .. .c.iiiiiitiicieet bbbttt b et 539
MOdIfiCatioNS QUETIESccuiiiiieieieiiee ettt ettt sbesbenee e 540
ROW INTEFACTIONeiiiii ettt sbe bbbt st e nneneas 541
(07] [81 0] o T {01 =1 =T £ o] o IS 541
(0= | I Vg (=T Uod (] o TR 541
Virtual Interface IMplementation ... 541
Variant List IMpIemMentation ... 541
Variant List Row Implementation ... 541
Variant List ROW IMplementation ... 541
Variant List Cell Implementation ..o 541
49. VarTr
DESION OVEIVIBW. ...ttt b et b et bbbttt et 543
Tree-DataSourCe PrOPEITIES ..o 543
THEE THLIE ettt et et r e 543
INOTE ACCESSOISvieeeieiteieite sttt ettt sttt bbb b et s b et sb et e be e s be e be e e be e et st ebe et 544
NOde-AcCeSSOr NAVIQATION.........cciiveieiiecices e e e re e nrens 544
Convenient NaVIgation ... 545
Adding and RemMOVING NOUEScoiiiiiiiiee e 546
ClaSS OPEIALIONS ...ttt ettt et et b et e be b e b et e b be e s 547
Tree-NOAE PrOPEITIEScoiiiiiiiiriciereete ettt sne e 547
Tree-Node Discovery and Navigationccocevoeviiiiineneiercseiesie e 547

C Programmer’s Guide XV

Contents

Reading and Setting the CUISOr ..o e 547
Modifying the Tree DAtaSOUICEccceiiieeieiie st seesre s 548
Tree-NOAE VAIUES ...c.ooeiieiiee e ettt be e e 548
TFEE-NOUE IDS ...oviieiiiiiiie bbbttt et bbb nbene s 549
Modifying the Tree-Node DataSOUICEcccoveveiiieiirrsesese et e e snens 549
Modification DESCIIPLIONScieiiiieiieeec e et nrens 550
50. VStr Class
TeChNICAl SUMIMATYciiiiiiiiee bbbt 551
ChangiNg CONTENEScoiuiiiiiiee bbbttt 551
L@ T 1= T TR 553
Concatenation, INSertion, DEIETIONc..oovv it 553
COMPAIISONS ...ttt b bbb bt e bbbt b s bbbt e bt ettt 554
LOAAING RESOUITEScoeieiiiieiiiieeste ettt bbbttt ettt 555
ATTAYS OF STFINGS vttt ettt 555
INAEX ... 557
XVi C Programmer’s Guide

Preface

Purpose of this Manual

This manual describes Open Interface Element™, the C language
application programming interface (API) for developing applications with
graphical user interfaces for any standard windowing system. The Open
Interface APl is a highly modular ANSI C library. The modules group calls
by categories that closely follow standard interface functionality.

In this document “Open Interface Element™” and “Open Interface” will be
used interchangeably.

Audience

This manual is designed for people who understand programming
concepts, the C language, and Open Interface. If you are not familiar with
programming concepts, you may need to review an introductory
programming book before you use the API. If you are not familiar with
Open Interface, you may need to review the Programming Guide. For a
complete list of available documents, see Related Manuals below.

How to Use This Manual

To communicate the API’s functionality to you in this manual, we have
chosen to adhere to the organization of the software itself. This approach
was adopted in favor of the traditional chapter-oriented reference manual
for several reasons. Most importantly it permits you to transfer your
experience using the Open Interface API directly into using this manual to
locate call descriptions. Therefore the body of this reference documents
each call in alphabetical order, by software module.

Overall, we believe this yields a significant usability improvement. Because
the APl is already highly modular and the calls themselves follow a
standard naming convention that places the module name in front of the
call, you will always be able to find the call by deciding which module it
belongs to. To aid in this task, the Reference Manual includes a standard
table of contents and running page heads.

Document table of contents
A standard listing of all the calls contained in this volumen of
the reference following this Preface. Because all calls are
organized by module name they appear in alphabetical order.
Although, you may notice that each module’s data structures
and enumerated types always begin a new module.

C Programmer’s Guide XVii

Preface

Page heads
If you have acquainted yourself with the organization of the
API, you are ready to use the reference to locate calls. To help
you find the desired module and call, each page shows the
module name printed across the top of the page. Simply
flipping the top corner of the page will reveal this information.

Related Manuals

Xviii

This manual is a member of the Open Interface document set. Each
document addresses a different aspect of the product. To avoid duplicating
information between manuals, references to related topics in other manuals
are given when needed. It is therefore recommended that you familiarize
yourself with the complete set of Open Interface documents as follows.

Programming Guide
Reference Manual: Volume 1 and Volume 2
Reference Manual Supplement

User’s Guide

C Programmer’s Guide

Chapter

Introduction

Introducing EE Application
Services

The Elements Environment Application Services (EAS) provide the support
layer for built-in memory and print management, graphic primitives, error
handling, file I/0, asynchronous event management, and string
manipulation services to reduce the development time spent coding these
low-level, platform specific functions. These services enable the portability
of the graphical presentation layers of an application as well as the
integration layers.

EAS provides is the underlying support for Internationalization to allow
quick ports of applications to any of a dozen single-byte or double-byte
foreign languages including Japanese.

Internationalization features include character sets, porting support and
rendering, edit-in-place, standard or native in-text widgets, and string
manipulation services.

Building Block Mechanisms

In addition to these low-level services, EE Application Services feature
higher level application development services that provide more complex
building blocks which you can use to assemble your application.

These building block mechanisms, such as the Data Source/View
mechanism, free the application developer from performing repetitive
coding tasks related to the manipulation of data, data sources, and the
display of data for complex widgets such as tables and list boxes.

C Programmer’s Guide

Chapter 1 Introducing EE Application Services

Data Source/View Mechanism

Data Source/View is a mechanism designed to provide underlying
bi-directional linkage protocols between views and data sources for
applications written in C, C++, and scripts.

B0 Arods | Epstion 6 | A I
_/—'V 1 TO
Sorvems 9 —
Del1s 99 L FROM
Teu 2
e I >l Sheett ([«

on [Test:0] |'| 2
g Oracle _m Epsi|0n6
Sybase _
> Informix

Epsilon6

The Data Source View mechanism allows you to present and access the
same data (such as information from a database) in multiple views, such as
a spreadsheet-like table, a choice box, or an input field.

This manual describes the architecture of the data source/view mechanism
and includes information for using it in developing applications. The
OOScript language class definitions that support the Data Source/View
mechanism are described in Chapter 2, “Core Reference”, of the OOScript
Language Reference manual.

Application Services Classes

The EE Application Services or (Core Services) are provided through
C/C++ or OOScript language classes. These classes include:

VStr
Str
SBuf
Base
APP
CT
File
FMgr
FName
MCH
Ptr

2 C Programmer’s Guide

Application Services Classes

= Variant...
m Data Source...
m Resource (Rlib, RClass,...)

The C/C++ classes are described in the OIE API Reference. The OOScript
Language Reference describes the equivalent classes for scripting.

C Programmer’s Guide

Chapter 1 Introducing EE Application Services

4 C Programmer’s Guide

Chapter

2 Using Data Source/View

The Data Source/View (DS/V) mechanism provides a data-centric as
opposed to widget-centric approach to programming. The following
sections describe the high-level tasks required for using the DS/V
mechanism to create applications. DS/V examples and internals for the
Open Interface Element (OIE), Intelligent Rules Element (IRE), and the Data
Access Element are also included.

Using Data Source/View in an Application

The typical procedure for using Data Source/Views is as follows:

1. Create and initialize a data source from a server (Core, DA, or IR) or use
the Resource Manager method, LoadlInit(), to load and initialize a data
source of a given type:

— VariantDataSource

— VariantListDataSource
— VariantTableDataSource
— RecordSetDataSource

— NxDataSource

— NxTableDataSource

2. Create one or more view or views.
3. Register a view (ListBox, ChoiceBox, TextEdit or CheckBox) to a data
source.

Note: Some data sources support only certain views. For more
information about datasource views, see the OOScript
Programmer’s Guide.

4. Setthe view option using the property you want from the ViewOptions
metaclass.
Note: For a complete list of view options, see the OOScript
Programmer’s Guide.

5. Populate the data source with data. Populating the data source can also
be done prior to registering the view.

Propagating Events

When a view (widget) is registered to a data source, the view's default
notification handler is reset to the DSV handler as appropriate for the type

C Programmer’s Guide 5

Chapter

2

Using Data Source/View

of widget. It is important to allow DSV to still process these notifications.
The following events are handled by DSV for each type of view:

CBOX_NFY...
MOUSECLICK
KEYCHAR
ELTSELECTED
ELTDRAW
GETELTSTRING
END

CBUT_NFY....

s HIT

= PROPOSE
m END

LBOX_NFY....
CELLDRAW
CELLSTRING
END

ENDEDIT
SELOPERATION
STARTEDIT
VALIDATE

TED_NFY....
= END

KEYCHAR
QUERYVALIDATE
VALIDATE

HIT

Note: If you are using callbacks, you must use the default procedure for
these events or you will disable the data source update mechanism.

Controlled Access to Data Sources

To prevent conflicts in accessing the same data, the Data Source/View
mechanism provides synchronized and controlled access by allowing only
one view to modify the data at any one time.

Simple data manipulations (typically cell-type operations) do not require an
explicit edit to be initiated on the data source. Data updates are handled,
transparently, by the view registration default methods. When data is
changed through the views, an "atomic" edition is performed on the data
source that begins an edition, updates the data and ends.

Programmatic control over data source updating can be done when an
application updates data sources by explicitly beginning an edition on the
data source, performing the updates, and ending or aborting the edition.

C Programmer’s Guide

Controlled Access to Data Sources

Complex operations require building an edition. A complex operation
might be performing multiple operations (locally or globally, in the case of
a list or table) on a data source.

The following procedure describes the steps you must follow to implement

synchronization and controlled access:

1. Before modification of data takes place, you must make an Edition
authorization request. This request locks the data source or part of the
data source.

2. Request to start a edition on a data source (or a subset of a data source
such as a cell, row or column in the case of a table).
— If the data source has an open edition (i.e., is locked) the request is
denied.
— If the there is an open edition, the views will access the data from
the data source in a read-only mode.
3. Once the data source is locked, you can make any changes to the data
source or the part you locked. You can make your changes to the data
source through the edition.

4. End or abort the edition.
When all updates to the data are complete, you must do one of the
following:
“end” the data source edition (all changes are made).
— "abort" the edition (all changes are not made).
Note: In this release, Data Source Views only supports “End”
or “Abort” i.e., all changes are made or none are made.

5. Ifthe owner of the data source (in the case of IR or DA data sources) has
updated the data during your edition, your attempt to end the edition
and update the data source may be rejected.

6. If your request has been granted, you obtain a lock on the data source

(or subset). No one, other than you or the owner of the data source, can
abort the edition.

Note: For IR data sources, the owner is the Rules Processor. For
DA data sources, the owner is DA itself.
Locking Data in Table Datasources.

In table data sources, Data Source/Views can lock data at any one of the
following levels:

m Cell

= Row

= Column

m Entire Table

The locking is exclusive. If you lock a cell and try to also lock the same row
or lock the entire table, the lock request is rejected.

C Programmer’s Guide 7

Chapter 2 Using Data Source/View

Locking Data in List Datasources.

In list data sources, Data Source/Views can lock data at any of the following

levels:
m Cell
m Entire list

Controlled Access Example

Here is an example of an edit operation upon initializing a table datasource:

edit :=
if(lisnull(edit));

edi t . RowCol umCount (2,
edit. ColumTitle(0) =
edit.ColumTitle(l) =
edit. ColumTitle(2) =
edit.ColumTitle(3) =
edit. ColumTitle(4) =
edit. ColumTitle(5) =
edit. ColumTitle(6) =
edit. Cell Val ue(0,0) =
edit.Cell Value(0,1) =
edit. Cell Val ue(0,2) =
edit. Cell Value(0,3) =
edit. Cell Val ue(0,4) =
edit. Cell Value(0,5) =
edit. Cell Val ue(0,6) =
edit. Cell Value(1,0) =
edit.CellValue(1,1) =
edit. Cell Value(1,2) =
edit.Cell Value(1,3) =
edit.Cell Value(1,4) =
edit.Cell Value(1,5) =
edit. Cell Value(1,6) =
edit. End();

Data Source/View Examples

internal _ds. StartEdit();

7);

" ompany” ;
"Contact";

" Addr ess";
"Gity";

"State";

"Zip:

"YTD Pur chases";

"XYZ Cor poration";
"Jane Doe";

"123 Main Street";
"Anyt own";

" A -

"10001- 0000";
12500. 00;

"Sony";

"Doris Doubl eday";

"268 River Oaks Parkway";
"San Jose";

" CA" -

"94041-1230";

80000. 00;

The following examples illustrate the use of the Data Source/Views
mechanism using Neuron Data’ s OOScript language. The coding is similar

The following example links a TextEdit to a VariantDataSource with a
simple at oni ¢ edition performed automatically by setting the value of the

ref erence

a reference to the Core server

/[l initialize

in C/C++,
Ol Example
VariantDataSource.
Linking a TextEdit to a Variant Data Source
/[l "ted" a TextEdit object
/'l "coreserver"
/'l Create a datasource.
ds := coreserver. Vari ant Dat aSources. Create();
ds.lnit();
8

C Programmer’s Guide

Data Source Internals

DA Example

IR Example

ds ="hello"; //"atomic" edition performed here
ds. Regi st er Vi ew(t ed);

/1 the TextEdit then displays the data in the ds data source

The following example links a DA DatabaseViewDataSource (created from
a DatabaseView) to a ListBox.

Linking a DA DatabaseViewData Source to a List Box

/1l "dat abasevi ew' a Dat abaseVi ew obj ect reference
/1 "l box" a ListBox object reference

/1 "coreserver" a reference to the Core server

/1 "daeserver" a reference to the DA Core server

/1 "databasevi ew' has already been populated with data from
/1 a database sonewhere...
dat abasevi ew : =

daeser ver . Dat abaseVi ewDat aSour ces. Cr eat eFr onDat abaseVi ew;
Dat abaseVi ew. Regi st er Vi ew(| box) ;

/1 the ListBox then displays the data in the data source

The following example links a Text Edit with a IR slot with automatic and
implicit controlled edition.

Linking a TextEdit with an NXP slot

/1 Assune that a Text Edit object reference is in the ted
vari abl e

/1 and nxsvr contains the Nx serve

ds : = nxsvr.NxTabl eDat aSources. Create();

ds. Atom = nxsvr. Cbjects. Car.Col or; // assuming that Car. Col or
is aslot in NXP

ds. Strategy = nxsvr. Engi ne. VSTRAT_VFWRD,
ds. Regi sterViewted);

/1 the rest (local update, forwarding the data,...) is handl ed
/1 automatically by the |IRE data source

Data Source Internals

Data Source Internals defines the relationships and inheritance of the data
sources for the OIE, DAE, and IRE.

C Programmer’s Guide 9

Chapter

2

Using Data Source/View

Internals for Ol Core Data Sources

The Ol Core data sources Var i ant Dat aSour ce, Var i ant Li st Dat aSour ce
and Var i ant Tabl eDat aSour ces can all be created dynamically or stored as
persistent resources.

The data that they contain must (in the present release) be assigned at
runtime. Data in these data sources cannot be persistently stored.

Internals for DA Data Sources

The DA class Recor dSet Dat aSour ce is a subclass of the
Var i ant Tabl eDat aSour ce, and inherits all of the methods and properties
from that data source.

The RecordSetDataSource maintains a “contains a” relationship with the
RecordSet that it was created from. This means that there is only one copy
of the data. The views registered to a RecordSetDataSource are viewing the
data that is in the RecordSet itself.

Note: A RecordSet is created and saved in an RC file. Since the data source
needs to rely on a mechanism to derive its data, the RecordSet needs
to be loaded manually and initialized in the database view or the
Resource (RC file?) must be explicitly loaded.

RecordSetDataSource Implementation

The Recor dSet Dat aSour ce inherits the Var i ant Tabl eDat aSour ce
interfaces, but certain operations possible through this interface are not
suitable for a RecordSet, such as setting row titles (there are no row titles in
the RecordSet).

The tables below describe the properties and methods from the
VariantTable as applied to the Recor dSet Dat aSour ce. Properties or
methods not listed below are not implemented.

Properties from VariantTable

10

The Vari ant Tabl e class provides some standard operations for handling
modifications to the RecordSet through its properties. If you change the
property of a datasource, depending upon the options you set, you will
change the data contained or represented in the RecordSet and views. The
final data storage mechanism (database, flat file) is not changed until it is
explicitly updated.

The following VariantTableDataSource properties can be used to perform
operations on the RecordSetDataSource.

Use this property... To...

RowCount Return the number of records in the RecordSet.
Col umCount Return the number of columns in the RecordSet
ColumTitle Return the name of the column in the RecordSet
Cur sor Row Perform either a Get or Set CursorRow operation:

C Programmer’s Guide

Internals for DA Data Sources

Use this property...

To...

Cells

Use a CursorRow Set to set the current record position in
the RecordSet.

Use a CursorRow Get to return the current record
position in the RecordSet.

Perform a Get or a Set:

Use a Cell Get to retrieve the value from the RecordSet
for the specified row (record) and column.

Use a Cell Set to set the value into the RecordSet for the
specified row (record) and column.

The following VariantTableDataSource properties can be used to perform
operations on the DatabaseViewDataSource.

Use this property...

To...

RowCount

Col utmCount
ColumTitle
Cur sor Row

Cells

Return the number of records in the DatabaseView.
Return the number of columns in the DatabaseView.
Return the name of the column in the DatabaseView
Perform either a Get or Set CursorRow operation:

Use a CursorRow Set to set the current record position in
the DatabaseView.

Use a CursorRow Get to return the current record
position in the DatabaseView.

Perform a Get or a Set:

Use a Cell Get to retrieve the value from the
DatabaseView for the specified row (record) and column.

Use a Cell Set to set the value into the DatabaseView for
the specified row (record) and column.

For more information about the VVariantTable class, refer to Chapter 2, “Core
Reference,” of the OOScript Language Reference manual.

Methods from VariantTable

The VariantTable class provides some standard operations for handling
modifications to the RecordSet. The following VariantTable methods can be
used to perform operations on the RecordSetData Source.

Use this Method...

To...

AddCol um
AddRow

RowCol ummCount
RenoveRow
RenmoveCol umm

C Programmer’s Guide

Not implemented.
Add a record to the RecordSet at the specified index.
Not implemented.
Not implemented.
Not implemented.

11

Chapter

2

Using Data Source/View

Using the RecordSet contained in a RecordSetDataSource

The RecordSet that is contained in a RecordSetDataSource needs to be used
to update the database when necessary. You can invoke the following
methods on a RecordSetDataSource to update a RecordSet.

Use this Method... To...
AddRecor d Add a row to the end of the RecordSetDataSource.
RenoveNt hRecor d Delete a row from the RecordSetDataSource.

When to Use RecordSet Data

In general, once you have created a RecordSetDataSource from a RecordSet,
you should avoid updating the data in the RecordSet using its own
interface. Only the basic operations of adding and removing rows on the
RecordSet will be reflected in the RecordSetDataSource. Full control over
updating data and positioning the current record in a RecordSet is provided
through the RecordSetDataSource interface.

You should use the data in the RecordSet, when you need to update the
backend database with the values that have been updated in the RecordSet.
It is then more convenient to extract the data from the RecordSet using its
own interface for operations like parameter binding.

Internals for IRE Data Sources

12

In the same way that you create data sources from Core or DA data, you can
create data sources from IR data. The update is done automatically
(deferred is not currently supported).

Note: User input is forwarded to the inference engine only after a
Continue/Start. In the case of the table: slot value changes or objects
added or deleted from a class are reflected automatically in the data
source.

IRE supports two types of data sources: atomic data sources which are
instances of the class NxDataSource, and table data sources which are
instances of the class NxTableDataSource. The NxDataSources are used to
display values of IRE slots into Text Edits or into button states, while
NxTableDataSources are used to display the slot values of objects of a
specific class or sub-objects of a specific object.

You should use the IRE data sources whenever you want to either present
multiple views of slots values or whenever you want to have the changes of
the slot values dynamically updated on the screen while the IRE rule
processor is running. Whether the user changes the values or the IRE rule
processor, the slots are updated immediately (no deferred) and all views
synchronized if the correct options have been set on the views (see the view
option cur sor). You just need to create a data source, set its IOE properties,
associate it with one or more views and eventually set the view options.

C Programmer’s Guide

Internals for IRE Data Sources

Creating IRE data sources are a little bit different from the Data Access data
sources. IRE Data sources have additional properties to be set at creation:

Atom

In the case of an atomic data source, the Atom property should be set
to the IRE slot whose value will be displayed or edited. In the case of a
table data source, the Atom property should be set to either the IRE
class whose direct children objects (and indirect objects through
subclasses) will be displayed, or the IRE object whose direct children
objects will be displayed.

ColumnProperty(Index)- only for NxTableDataSources

This property defines the mapping between the data sources columns
and the IRE properties of the Atom. The mapping isn’t always on a one-
to-one basis. The column of data (derived from a data source) shown in
a view might have less IRE slot properties than the original object
property actually contains. The ViewOption property of the Data
Source controls what data is displayed. For each column (Index) of the
data source, you should associate the IOE object reference of a IRE
property of the IRE atom.

slot Listbox View
miin { !
A P2 P5
e — 4 K
/ /
L pA4
[I— p2
data ps| ™| -

NX data source

You can derive a small subset of original data at the data source layer and
use an even smaller subset of that for your view.

Figure 2-1 Mapping of data, data source, and view

C Programmer’s Guide

Note: You should first define the dimensions of your data
source tables prior setting the ColumnProperty() on a
data source. This can be done by using the method
RowColCount (x,y) where x is the number of rows (0 for
infinite), and y the number of columns (0 for infinite).

Strategy

This property defines which strategy will be applied when
volunteering the value back to the IRE slots after the user updated the
value from the views. If the Strategy property of the data source is not
set, the IRE data source will update the IRE slots using the strategy
defined in the DefaultVolunteerStrategy property of the Engine
meta-class. Refer to the IRE IOE server Reference for the list of potential
values for this property.

Currently the IRE data sources are supporting only the following
views: Text Edits and buttons for single data sources, ListBoxes for table
data sources.

13

Chapter

Example

2

Using Data Source/View

Note: There is no special behavior for choice boxes. You need
to get the value of slots and stored them in choice items.

The following example links an IRE class Tanks with three IRE properties
Name, Level, HasProblem:

Linking IRE class with IRE properties

ds : = nxsvr.NxTabl eDat aSour ces. Create();

ds. Atom = nxsvr. d asses. Tanks;

ds. RowCol Count (0, 3);

ds. Col umProperty(0)= nxsvr. Properties. Nane;

ds. Col umProperty(1)= nxsvr. Properties. Level;

ds. Col umProperty(2)= nxsvr. Properties. Hasprobl em

ds. Regi st er Vi ew(nyLBox) ;

The following VariantTable properties and methods, when applied to the
NxTableDataSource, perform the specified changes. Properties or methods
not listed below are not supported.

Use thismethod or To...

property...
RowCount Return the number of records in the NxTableDataSource.
Col utMmCount Return the number of columns in the NxTableDataSource.
ColumTitle Return the name of the column in the NxTableDataSource.
Cur sor Row Perform a Get or Set operation:
Get: Returns current record position in the
NxTableDataSource.
Set: Sets the current record position in the
NxTableDataSource.
Cells Perform a Get or Set operation:

Get: Retrieves the value from the NxTableDataSource for the
specified row (IRE object) and column.

Set: Sets the value into the NxTableDataSource for the
specified row (IRE object) and column.

Note: RowCol utmCount, AddRow, AddCol umrm, RenpveCol umm and
RenoveRow are not allowed operations on NxTabl eDat aSour ces.
You need to directly use the methods Delete/CreateObject on the IRE
class/object.

If the IRE Rule processor adds or removes objects from the class or object the
data source is based on the view will be updated accordingly.

As you design an application usually you have two types of tables:
= Aninput table where the user can edit the values.
m A selection table where the user can select a current row.

Input Table (LBox)

14

In the case of an input table, the data source transparently handles the
update of the back-end data (IRE slots) and the updates of the other views

C Programmer’s Guide

Internals for IRE Data Sources

registered to this data source. The IRE data sources uses the strategy set on
the data source or the Default Volunteer Strategy set on the Engine Object
to volunteer back the value tot he IRE slot, when the cell edition is done.

Listbox views are by default input table if a Text Edit has been attached for
edition (Refer to the LBox editor section of the Open Interface User’s Guide).
Non-editable columns can be defined through the view option
“noeditcolumn” and specifying the range of non-editable columns. If you
do set the headers on the listbox the data source will display automatically
the name of the IRE object for each listbox row, and the name of the
property for each listbox column. The title of these headers can be changed
by setting the Title property of the data source columns and/or rows.

To start the edition, you should use the following keys:
m double click (cell edition)

m CTR+e (cell edition)

m CTR+m (continued edition)

m ESC (abort edition)

Note: You still need to attach a Text Edit to the listbox to set the View in an
edit mode

The following example shows an input table with one column that is
non-editable:

Input table with non-editable column

on event WGTSI NI Tl ALI ZED
tanks := rul esvr. d asses. t anks;
rProps := rul esvr. Properties;
/Il Use a table data source to link the listbox to the
/'l class Tanks

ds : = rul esvr. NxTabl eDat aSour ces. Create();
ds. RowCol umCount (0, 3);// set the size of the data
/] source

ds. Atom = tanks;
ds. Regi sterView SELF);
/'l set the colum mapping wth field and colum | abels
ds. Col umProperty(0) = rProps. Nane;
ds. Col ums(0).Title = "Tanks";
ds. Col umProperty(1) = rProps.|evel;
ds. Colums(1).Title = "Level";
ds. Col utmProperty(2)= rProps. probl em
ds. Colums(2).Title = "Has Probl ent;
/] set the view non editable for colums 0 and 2
SELF. Vi ewOpt i ons. Unedi t abl eCol ums = "[0...0][2...2]";
end event

Selection table (ListBox)

In the case of a selection table, the data source transparently handles the

selection but you should trap the CELLSELECTED event of the view or set
a callback for CellSelectedProc, to process the selection update. If the cursor
property of the data source has been set to “controls”, the data source just

C Programmer’s Guide 15

Chapter

16

2

Using Data Source/View

sets the current row to the row selected by the user. And you can get the
current row index by looking up the property CursorRow of the data
source, while the property CursorColumn indicates the current column of
the selection.

The current cell contents (text) can be access through the property cells as
follows:

current Cel | Contents = string

(SELF. Dat a. Cel | s(SELF. Dat a. Cur sor Row,

dsEnp. Cur sor Col um))

Note: From the view you can access the data source by using the property
Data of the Litsbox object.

Listbox views are selection table if you set the Listbox selection flag (in
particular, Single vs. multiple selections) on the Listbox. (Refer to the LBox
editor section of the Open Interface User’s Guide). If you do set the headers
on the listbox the data source will display automatically the name of the IRE
object for each listbox row, and the name of the property for each listbox
column. The title of these headers can be changed by setting the RowTitle
and ColumnTitle properties of the data source.

The following example registers a listbox to a data source at its initialization.
This is a selection table which sets the contents of another data source based
on the information contained in the current cell (1 column listbox).

Registering a listbox to a data source

on event WGT_I NI TI ALI ZED
dsEmp : = nxsvr.NxTabl eDat aSour ces. Create();
dsEmp. At om = nxsvr. Cl asses. enpl oyees;
dsEnp. RowCol umCount (0, 1) ;
dsEnmp. Col umProperty(0) = nxsvr.Properties. nane;
dsEnp. Regi st er Vi ewm SELF);
SELF. Vi ewOpti ons. Cursor Option = "control s";

end event

on event LBOX_CELLSELECTED
dsEnmp : = SELF. Dat a;
t heEnpl oyee = string (dsEnp. Cel | s(dsEnp. Cursor Row, 0));
if (theEnpl oyee == "Unknown") // verify whether the
/1 Enployee is a valid | RE object
return;

if (isnull(dsEnp2)) // verify whether the other data
/'l source has been created

return;
dsEnp2. At om : = nxsvr. Obj ect s. $t heEnpl oyee;
dsEmp2. RowCol utmCount (0, 2) ;
dsEnmp2. Col uimPr operty(0) = nxsvr.Properties. nature;
dsEmp2. Col uimPr operty(1) = nxsvr.Properties. anpunt;
end event

In this particular example, the “$” is used to force the evaluation of the
variable theEmployee prior the resolution of the object expression. DsEnp2
is in fact set to the IRE object whose name is value of t heEnpl oyee.

C Programmer’s Guide

Internals for IRE Data Sources

IRE Text Edit

The following example links a Text Edit with a IRE slot with automatic and
implicit controlled edition.

Linking a Text Edit with an IRE slot

/1
/1
ds

ds.

ds.
ds.

/1
11

C Programmer’s Guide

Assune that a Text Edit object reference is in the ted
vari abl e nxr contains the Nx server
;= nxsvr. NxTabl eDat aSour ce. Create();

Atom : = nxsvr. Cbject.Car.Color; // assuming that Car. Col or
/1l ia avalid slot in IRE

Strategy = nxsvr. Engi ne. VSTRAT_VFWRD,

Regi sterVi ew(ted);

the rest (local update, forwarding the data,...) is handl ed
automatically by the NEXPERT data source

17

Chapter 2 Using Data Source/View

18 C Programmer’s Guide

Chapter

Concepts

Tree Datasource: Managing
Hierarchical Data

A tree datasource is a container of hierarchically organized nodes. The tree
datasource is similar to the other datasources—for example, list (sequential)
and table (tabular) datasources—in that it is based on a specific data model.
In this case, the data model is a hierarchy.

You can display the contents of the tree datasource in the TVIEW and
BROWS views, which are supplied by the Open Interface Element. The
Elements Environment datasource/views mechanism supports the interface
between the datasource and the TVIEW and BROWS views.

This chapter discusses these topics:

m Concepts

Options for the TVIEW and BROWS Views
Building a Tree Datasource

Editing a Tree Datasource

Advanced Topics

Note: Datastored inthe tree datasource is not persistent. However, you can
write a routine to traverse the datasource and write its contents to a
persistent data-storage medium, such as a local hard disk or
database.

If you haven’t already done so, read the chapters on the TVIEW and
BROWS widgets in the Open Interface Element C Programmer’s Guide . See
Chapter 3 of this book for information about registering a view with a
datasource.

Storing information based on a hierarchical data model, the tree datasource
is founded on these basic concepts:

m Tree Datasource
Node

Tree

Node Accessor
Cursor

Edit Object

This section discusses the preceding concepts, which are then used in
“Building a Tree Datasource” on page 33 to tell you how to program a tree
datasource.

C Programmer’s Guide 19

Chapter 3 Tree Datasource: Managing Hierarchical Data

Tree Datasource

The tree datasource—an object of the VARTR class—is a container class that
stores and manages hierarchically arranged nodes. When you dispose the
tree datasource, any contained objects are also disposed.

Using the APIs supplied with the tree datasource (VARTR object), you can:

m Program the creation and destruction of nodes contained by the
datasource object

m Enumerate the nodes in the datasource by index and traverse them
using the methods in the VARTR API

Node

A node is the elementary component of a tree. Each node has these
properties:

m IDand Value

m Navigational References

As Figure 3-1 shows, each node stores references to:
m Its parent node

m The next sibling or root node

m The previous sibling or root node

m |Its first child node

If any of these references accesses a memory location where no node exists,
then the reference indicates that the current node is the last valid node. For
example, if the Parent reference accesses an empty node location, the node
is a root node, which has no parent.

ID Value
<«— Parent
Prev —
Next —
FirstChild

Figure 3-1 The Structure of a Node

ID and Value

Each node in the tree datasource has an ID property and a VValue property.
Both the ID and Value properties:

m Store variant data

m Can contain any variant-supported type

For example, ID may be a variant containing a string, while Value may be
an object reference.

ID

You can assign any variant data to a node ID property. Node IDs need not
be unique, but they may be more useful if they are. You can set the ID:

m When you create a node

20 C Programmer’s Guide

Concepts

Tree

m During a separate editing session

A unique node ID can be very helpful. This is especially true if you need to
associate it with the primary key of a relational-database table. For example,
if a node represents an employee in an organization, you may want to:

m Set ID to an employee number

m Set Value to the employee name

m Then associate the node with a row from a table datasource that shares
a common employee number

Value

Like the node ID property, you can set the node Value to any variant value.
The Value property represents the “data” part of the node contents. You can
use the node Value any way you want. For example, you may simply set it
to an employee name in an organizational hierarchy, or you may set it to an
employee number that acts as a key to display employee data stored in a
row of a table datasource.

Navigational References

Each node supports API tree traversal through these mechanisms:
m Parent Reference

m Next and Previous Sibling References

m First Child Reference

These references provide access to the corresponding nodes relative to the
currently accessed nodes. For more information about accessing nodes, see
“Node Accessor” on page 23.

Parent Reference

The parent reference, which Figure 3-1 shows as “Parent,” provides access
to the parent node. If the current node is a root node, the parent reference is
meaningless.

Next and Previous Sibling References

The sibling references, which Figure 3-1 shows as “Next” and “Prev,”
provides access to the next and previous sibling nodes, respectively. If the
current node is a root node, these references provide access to the next and
previous root nodes, respectively.

First Child Reference

The first child reference, which Figure 3-1 shows as “FirstChild,” provides
access to the first child node. After accessing the first child node, you can use
the first child reference again to descend deeper into the hierarchy.
Alternately, you can use the sibling references to access the siblings of the
first child node.

A tree is a hierarchical node network that emanates from a single root node.
A tree datasource may store one or more trees. Each tree has exactly one root

C Programmer’s Guide 21

Chapter

22

3

Tree Datasource: Managing Hierarchical Data

node. Therefore, the tree datasource can contain only as many trees as it
does root nodes.

The notion of a subtree is also supported to a limited extent. A subtree may
be based on any node in the datasource. While you can remove an entire
subtree, there is no API support for “relocating” a subtree to a new position
in the datasource. In other words, you cannot use the API to assign a subtree
to a new parent node.

These concepts are instrumental in the description of trees and tree
navigation:

= Root Node
m Parent-Child Node Relationship
m Sibling Node Relationship

Root Node

A root node is a node that has no parent node, but can have child nodes. This
is the topmost node in a tree hierarchy. It is always the first node created
after the tree datasource is created.

Root nodes each have one unique feature that differentiates them from
non-root nodes: they have no parent node. As Figure 3-2 shows, the Parent
reference of a root node accesses an empty node location:

ID Value
{#}<«— Parent
Prev —
Next]
FirstChild

Figure 3-2 Unique Characteristics of a Root Node

Relative to a root node, you can position a node accessor. With a node accessor,
you can add child nodes and other root nodes (from which you can build
other trees) to the tree datasource. Like the maximum number of child
nodes, the number of root nodes is limited by the size of an Int16 datatype
on each platform.

Parent-Child Node Relationship

The parent-child relationship is a convenient way to explain the
relationships in the tree datasource. Figure 3-3 shows how node references
establish the relationships between parent nodes and their child nodes:

C Programmer’s Guide

Concepts

Y
ID Value ID Value 19}
<«— Parent Parent
Prev — Prev —
Next) Next]
FirstChild FirstChild
ID Value
Parent
Prev
Next
FirstChild :l—>

o

ID Value
Parent

Prev —
Next]
FirstChild

19}

Figure 3-3 Parent-Child Node Relationship

Any node can have child nodes. Any tree in the tree datasource can expand
to the full extent of the memory available in the executing system. For any
parent node, the number of child nodes than can be indexed by the tree

datasource is limited to the size of an Int32 datatype. For example, if you are

using 16-bit integers, a parent node can have no more than 216 child nodes.

Sibling Node Relationship

In addition to child nodes, each node can have sibling nodes. In Figure 3-3,
the Prev reference of the first child accesses an empty node location; there is
no “previous sibling.” Likewise, the Next reference of the last sibling node
accesses an empty node location; there is no “next sibling.”

Node Accessor

A node accessor is a hode indexing mechanism that references and traverses
the nodes in the tree datasource. You cannot access the nodes directly,
therefore you must use a node accessor to access them.You must also use
accessors to identify the node in a node-level edit operation.

You need at least one node accessor to traverse—using the
VARTRNODEACCESSOR API—the nodes in a tree datasource. After
moving the node accessor to the appropriate node in the hierarchy, your

C Programmer’s Guide 23

Chapter

24

3

Tree Datasource: Managing Hierarchical Data

application can modify either the datasource structure or the node
properties.

This code fragment shows how to create and destroy a node accessor:

/* Declare a tree-datasource pointer variable. */
Var TrPtr treeDs,;

/* Decl are a node-accessor pointer variable. */
Var Tr NodeAccessor Pt r nodeAccessor;

/* Assi gn a tree-datasource object to the tree-datasource
poi nter variable. */
treeDs = VARTR Create();

/* Assign a node-accessor object to the node-accessor pointer
variable. */
nodeAccessor = VARTRNODEACCESSOR Create();

I* Destroy the node accessor. */
VARTRNODEACCESSOR_Di spose(nodeAccessor) ;

/* Destroy the tree datasource. */

RES Rel ease((ResPtr)treeDs);

Using the APIs, you can create edit objects to support either node-level or
datasource-level modifications using the node accessors. For more
information about node accessors, see “Adding Nodes” on page 36 and
“Destroying a Node-Accessor Object” on page 46.

With a node accessor, you can traverse the node hierarchy using functions
in the VARTRNODEACCESSOR API. With these functions, you can move
the accessor relative to its current node location. You can also move it
directly to a specific location using the indexing scheme shown in

Figure 3-4:

0 0 O fFirst Child O First Child
1 :
Second Child
Sibling Second Child O IFirst Child
Index:
Oton-1 1
Second Child
1 1 0 0
First Child First Child
1
Second Child
: 0= :
Second Child First Child
1 -
(n-1) Second Child

Figure 3-4 Node Indexing in the Tree Datasource

The sibling index in Figure 3-4 ranges from 0 to n-1, where n is a one-based
counter that represents the number of sibling nodes at a particular level of
the hierarchy. The origin of a tree is the root node. The sibling index of the

C Programmer’s Guide

Concepts

Cursor

first root node is 0. The index of the last root node is the number of root
nodes minus one (n-1).

The zero-based sibling index is useful when moving the node accessor
directly to the nth root, child, or sibling node (see “Adding Nodes” on page
36 for examples of how to use the API). The following functions return
one-based counters:

m GetNumRoots()
= GetNumcChildren()
m GetNumsSiblings()

These functions work well with the GoNthRoot(), GoNthChild(), and
GoNthSibling() functions to position the node accessor on the next empty
node location. These are further described in “Node-Count Functions” on
page 56.

The sibling index applies to root nodes, too, even though they do not share
a common parent node. Each tier of the hierarchy uses the same index
scheme. Using the sibling index, combined with the depth of the node in the
hierarchy, a composite index of this form uniquely identifies each node in
the datasource:

(<root index> <child index> ..., <tier <n> index>)
where the number of indices in the composite index equals the tier number,
n, of the node being represented. The order of the sibling indices in the

composite index is from most significant to least significant, or from the root
level downward.

For example, using the preceding notation in Figure 34, the node, “First
Root”->“Second Child”->*First Child,” has a composite index of (0,1,0).

The tree datasource supports a node cursor, which is a property of the tree

datasource. Like the Title property, you can set and get the cursor. You can;

m Set the cursor by associating it with a node accessor using the
VARTR_SetCursor(vartr, accessor) function

m Then access the node at the current cursor location using the
VARTR_GetCursor(vartr) function

When a TVIEW or BROWS view is registered with a tree datasource, you
can set a view option to either control the datasource cursor through the
view or simply reflect the current location of the datasource cursor as it
traverses the internal hierarchy.

This code fragment shows how to set and get a cursor:

/* Declare a tree-datasource pointer variable. */
Var TrPtr treeDs;

/* Declare a browser pointer variable. */
BrowsPtr browsWt ;

/* Decl are a node-accessor pointer variable. */
Var Tr NodeAccessor Pt r nodeAccessor;

/* Declare two variant pointer variables. */
VarPtr varl D, varVal ue;

/* Assi gn a browser object to the browser pointer variable. */

C Programmer’s Guide 25

Chapter 3

Edit Object

26

Tree Datasource: Managing Hierarchical Data

browsWjt = BROAS _Create();

/* Assign a tree-datasource object to the tree-datasource
poi nter variable. */
treeDs = VARTR Create();

/* Register the browser with the tree datasource. */

DS RegisterView((DsPtr)treeDs, (ResPtr)w n->browsWt);

DS _Set Vi ewOptions((DsPtr)treeDs, (ResPtr)w n->browsWit,
"cursor", "CONTROLS");

/* Assign a node-accessor object to the node-accessor pointer
vari able. */
nodeAccessor = VARTRNODEACCESSOR Create();

/* Assign variant objects to the variant-pointer variables. */
varl D = VAR New();
var Val ue = VAR New();

/* Set a cursor at the location of the node accessor. */
VARTR_Set Cur sor (treeDs, nodeAccessor);

/* Position the node accessor and edit the tree. */

/* Use "conveni ence" APl functions to edit the ID and Val ue
properties of the node at the current cursor |location. */

VAR _Set Str(varl D, "0000");

VAR_Set St r(var Val ue, "Node");

VARTR_Set Nodel D(treeDs, VARTR GetCursor(treeDs), varlD);

VARTR_Set NodeVal ue(treeDs, VARTR Get Cursor(treeDs), varVal ue);

I Destroy the variant objects.
VAR _Del ete(varlD);
VAR _Del et e(var Val ue) ;

/* Destroy the node accessor. */
VARTRNCODEACCESSOR_Di spose(nodeAccessor) ;

/* Destroy the tree datasource. */

RES Rel ease((ResPtr)treeDs);

“Destroying a Node-Accessor Object” on page 46 shows an alternative use
of the GetCursor() function. For information about setting the cursor
behavior, see “Options for the TVIEW and BROWS Views” on page 31.

To perform edit operations on the tree datasource or the nodes it contains,

your application must use an edit object The tree datasource uses edit objects

to:

m Create working copies of the data

m Protect the datasource from corruption resulting from simultaneous
editing sessions sharing a common datasource

The tree datasource supports these editing levels:
m Datasource Editing
m Node Editing

If the data to be modified is locked by another view, no edit object can be
created. This locks your application out of the data. To prevent your
application from hanging when it encounters a data lock, you can create
your edit object within a conditional construct that checks for the
availability of the data and supplies an alternative if the data is locked.

C Programmer’s Guide

Concepts

Editing the datasource includes the following four steps:
1. Create an edit object

2. Execute the edit operations

3. Commit the edit operations

4. Destroy the edit object

In addition to the direct approach to managing edit objects, a set of
“convenience” APIs supplies functions that manage the edit objects
automatically for single edit operations. For more information about the
“convenience” APIs, see “Convenience APl Functions” on page 29.

Datasource Editing

When you want to modify the structure of the datasource—for example, to
create new nodes—your application needs a datasource edit object. When a
datasource edit object is created to support an editing operation for one
view, no other view can create an edit object for that datasource. This
includes node edit objects for editing node data, because the node you may
want to edit may also be edited during the datasource-level editing session.

The datasource edit object is created, locking the datasource, when an object
of the VARTR class executes the StartEdit() function. This is a public
function inherited from the DS class. The tree datasource is unlocked when
the DSEDIT_End() function executes, as shown in this example:

/* Declare pointer variables. */

Var TrPtr treeDs;
Var Tr NodeAccessor Pt r nodeAccessor ;

/* Declare a datasource-level edit pointer. */
Var TrEdi t Ptr edit TreeDs;

/* Create objects and assign themto pointer variables. */
treeDs = VARTR Create();
nodeAccessor = VARTRNODEACCESSOR Create();

/* Execute the StartEdit() function to create a datasource edit
object, and assign it to the datasource edit pointer. */
editTreeDs = VARTR StartEdit(treeDs);

/* Position the node accessor and edit the tree. */
VARTRNODEACCESSOR_GoNt hRoot (VARTR_Get NunRoot Nodes(t r eeDs)) ;
VARTREDI T_AddNode(edi t TreeDs, nodeAccessor);

VARTRNODEACCESSOR_GoFi r st Root (nodeAccessor);
VARTREDI T_RenoveNode(edi t Tr eeDs, nodeAccessor);

/* Execute the DSEDI T_End() function. */
DSEDI T_End((DsEdi t Pt r) edi t Tr eeDs) ;

/* Destroy other objects. */
VARTRNODEACCESSOR_Di spose(nodeAccessor) ;
RES Rel ease((ResPtr)treeDs);

When the DSEDIT_End() function executes, all tree modifications are
committed, and the datasource-level lock is released.
Node Editing

When you want to edit the data properties of a node in a tree
datasource—for example, to change the node Value—your application
needs only a node edit object, not a datasource edit object. Instead of locking

C Programmer’s Guide 27

Chapter

28

3

Tree Datasource: Managing Hierarchical Data

the entire datasource from access by other views, you only need to lock the
node you want to modify.

A node edit object is created, locking the accessed node, when an object of
the VARTR class executes the StartNodeEdit() function. This is a public
function inherited from the DS class. All edit operations are committed, the
edit object is destroyed, and the accessed node is unlocked when the
DSEDIT_End() function executes, as this example shows:

/* Declare pointer variables. */
Var TrPtr treeDs;

Var Tr NodeAccessor Pt r nodeAccessor;
VarPtr varl D, varVal ue;

/* Declare a node-level edit pointer. */
Var Tr NodeEdi t Pt r edi t Node;

treeDs = VARTR Create();

nodeAccessor = VARTRNODEACCESSOR Create();
varl D = VAR New();

var Val ue = VAR _New();

/* Position the node accessor and edit nodes. */

VARTRNCODEACCESSOR_GoFi r st Root (nodeAccessor) ;

whil e (VARTR_|I sNodeVal i d(treeDs, nodeAccessor)) {
VARTRNODEACCESSOR _GoNext (nodeAccessor) ;

}

/* Datasource-level edit object created, edits comitted, and
edit object destroyed by the AddNode() function. See
"Conveni ence APl Functions" for nore information. */

VARTR_AddNode(treeDs, nodeAccessor);

/* Execute the StartNodeEdit() function to create a node-|evel
edit object, and assign it to the node-level edit pointer.
edi t Node = VARTR St art NodeEdit(treeDs, nodeAccessor);

/* StartNodeEdit() returns NULL if the node accessor is not on a

valid node. The follow ng conditional ensures that the edit
operations are not attenpted if the edit object was not
created. */
if (editNode != NULL) {
VAR Set Str(varl D, "0000");
VAR Set Str(var Val ue, "New Node");
VARTRNCDEEDI T_Set | D(edi t Node, varlD);
VARTRNCDEEDI T_Set Val ue(edi t Node, var Val ue);

/* Commit the edit operations and di spose of the node-level edit
object. */
DSEDI T_End((DsEdi t Pt r) edi t Node) ;
} /* End if. */

/* Di spose of other objects. */

VAR Del ete(varlD);

VAR Del et e(var Val ue) ;

VARTRNODEACCESSOR D1 spose(nodeAccessor) ;

RES Rel ease((ResPtr)treeDs);

The code in the preceding example creates a node edit object after the
VARTR_AddNode() function, because the “convenience” API functions
create their own edit objects. The AddNode() function would fail to execute
if a node edit object was created before it. As with datasource edit objects,
all node modifications are committed and the node-level lock is released
when the DSEDIT_End() function executes.

C Programmer’s Guide

Concepts

Convenience API Functions

When editing a tree datasource, you can use either the standard APIs or the
convenience APIs to complete the edit operations. When using the standard
APIs, you must:

1. Create an edit object to start the edit operation

2. Perform any necessary editions to the datasource
3. Commit the edit operation

4. Destroy the edit object

When using the “convenience” APIs, steps 1, 3, and 4 from the preceding list
are completed automatically. You can perform both:

m Node Editing with the “Convenience” APIs
m Datasource Editing with the “Convenience” APIs

In other words, your application can use the “convenience” API to edit the
datasource or its contents without formally creating an edit object. For
example, when the VARTR_AddNode(vartr, accessor) function executes:

m An edit object is automatically created

m The new node is added at the location specified by the node accessor
m The edit operations are committed

m The edit object is destroyed

The “convenience” API functions are useful for performing single edit
operations. However, these functions can inhibit performance when used to
perform batch edit operations.

Datasource Editing with the “Convenience” APIs

If you want to change the ID and Value properties of a specific node in the
datasource, the “convenience” API functions are most useful. To directly
manage the required edit object would add some unnecessary complexity
to your application logic.

In the next example, a datasource edit object is create by the “convenience”
function, VARTR_AddNode(). This creates a datasource edit object, adds a
node, commits the node addition to the datasource, and destroys the edit
object.

/* Declare pointer variables. */
Var TrPtr treeDs;
Var Tr NodeAccessor Ptr nodeAccessor;

/* Initialize the pointer variables. */
treeDs = VARTR Create();
nodeAccessor = VARTRNODEACCESSOR Create();

/* Move the node accessor to the next enpty root-node
| ocation. */

VARTRNODEACCESSOR_CGoFi r st Root (nodeAccessor) ;

whi |l e (VARTR | sNodeVal i d(treeDs, nodeAccessor)) {
VARTRNODEACCESSOR _GoNext (nodeAccessor) ;

}

/* Add a node using the "convenience" API. A datasource edit
object is created, edit operations are conmtted, and the
edit object is destroyed by the nilr eeDs- >AddNode()
function. */

VARTR_AddNode(treeDs, nodeAccessor);

C Programmer’s Guide 29

Chapter

30

3

Tree Datasource: Managing Hierarchical Data

/* Dispose of other objects. */

VAR Del ete(varlD);

VAR_Del et e(var Val ue) ;
VARTRNODEACCESSOR_Di spose(nodeAccessor) ;
RES Rel ease((ResPtr)treeDs);

If the preceding code fragment was intended to build a hierarchy of
nodes—for example, a datasource with 10 root nodes, each with 10 children,
and so on—the “convenience” API functions would not be appropriate. For
such operations, use batched edit operations as described in “Datasource
Editing” on page 27.

Node Editing with the “Convenience” APIs

If you want to change the ID and Value properties of a specific node in the
datasource, the “convenience” API functions are most useful. To directly
manage the required edit object would add some unnecessary complexity
to your application logic.

In the next example, a node edit object is create by each of the convenience
API functions, VARTR_SetNodelD() and VARTR_SetNodeValue(). Each
of these functions creates a node edit object, commits its edit operation, and
destroys the edit object.

/* Declare pointer variables. */
Var TrPtr treeDs;

Var Tr NodeAccessor Ptr nodeAccessor;
VarPtr varl D, var Val ue;

/* Initialize the pointer variables. */
treeDs = VARTR Create();

nodeAccessor = VARTRNODEACCESSOR Create();
varl D = VAR New();

var Val ue = VAR _New();

/* Move the node accessor to the next enpty root-node
| ocation. */

VARTRNCDEACCESSOR_GoFi r st Root (nodeAccessor) ;

whil e (VARTR_| sNodeVal i d(treeDs, nodeAccessor)) {
VARTRNODEACCESSOR _GoNext (nodeAccessor) ;

}

/* Add a node using the "convenience" API. A datasource edit
object is created, edit operations are conmtted, and the
edit object is destroyed by the nilr eeDs- >AddNode()
function. */

VARTR_AddNode(treeDs, nodeAccessor);

/* Set the variant objects to sone initializing values. */
VAR _Set Str(varl D, "0000");
VAR Set Str(var Val ue, "New Node");

/* Set the node I D and Val ue properties using the "convenience"
APls. A node edit object is created, edit operations are
conmitted, and the edit objects are destroyed by each of the
following two functions. */

VARTR_Set Nodel D(t reeDs, nodeAccessor, varlD);

VARTR_Set NodeVal ue(treeDs, nodeAccessor, varVal ue);

/* Di spose of other objects. */

VAR Del ete(varl D);

VAR_Del et e(var Val ue) ;
VARTRNODEACCESSOR _Di spose(nodeAccessor) ;
RES_Rel ease((ResPtr)treeDs);

If the preceding code fragment was intended to traverse and initialize each
node in the hierarchy, the “convenience” API functions would not be

C Programmer’s Guide

Options for the TVIEW and BROWS Views

appropriate. For such operations, use batched edit operations as described
in “Node Editing” on page 27.

Options for the TVIEW and BROWS Views

The tree datasource supports these view options for the TVIEW and
BROWS views:

m cursor

= initexpandlevel

m autosize (BROWS view, only)

To set view options, use the third and fourth parameters of the
DS_SetViewOption() function, as shown here:
DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w n>-><vi ew>,
{["cursor", "{CONTROLS| REFLECTS}"] |
["initexpansionlevel", "{0..<n>}"] |
["aut osize", "{FALSE| TRUE}"]
1)

cursor

The cursor view option determines whether the view cursor controls or

reflects the position of the datasource cursor. The cursor view option has

two possible settings: CONTROLS (the default) and REFLECTS. Here is

the format for the setting the “cursor” option:

DS_Set Vi ewOpt i on(<dat asource>, (ResPtr)<w n>-><vi ew>,
"cursor", "{CONTROLS| REFLECTS}");

With cursor set to CONTROLS, the cursor position (active node) in the

view determines the position of the datasource cursor. This ensures that the

datasource cursor and view cursor are synchronized.

With cursor set to REFLECTS, the view cursor reflects the current location
of the datasource cursor. This setting ensures that the view is continually
updated when the node accessor is moved programmatically.

When multiple views are registered with a common datasource, each
registered view can manipulate the position of the datasource cursor if
cursor is set to CONTROLS. For example, if two views control the position
of the datasource cursor, moving one view cursor changes the position of
the datasource cursor, which the other registered view reflects.

In this example, the tviewWgt cursor reflects the current location of the
datasource cursor, while browsWgt controls the position of the datasource
cursor:

VarTrPtr treeDs;

BrowsPtr browsWt ;
TViewPtr tviewWgt ;

iDéf_Regi sterView (DsPtr)treeDs, (ResPtr)w n->browsWjt)
DS RegisterView((DsPtr)treeDs, (ResPtr)w n->tvi ewt)

DS_Set Vi ewOpt i on((DsPtr)treeDs, (ResPtr)w n->tvi ewt,
“cursor", "REFLECTS");

DS_Set Vi ewOpt i on((DsPtr)treeDs, (ResPtr)w n->browsWt,
"cursor", "CONTROLS");

C Programmer’s Guide 31

Chapter

3

Tree Datasource: Managing Hierarchical Data

If both view cursors control the position of the datasource cursor, any
change in the cursor position of one view is automatically reflected in the
other view.

initexpandlevel

32

The initexpandlevel option sets the number of levels to which the root node
expands in the display when the view is registered with a tree datasource.
Here is the syntax for using the initexpandlevel option:
DS_Set Vi ewOpt i on(<dat asource>, (ResPtr)<vi ew>,

"initexpandl evel ", "{0..<n>}");
where n is the number of levels of expansion from the root node in the
treeDs hierarchy. The default expansion level depends on the type of view
to which it applies. By default, BROWS views are fully expanded (n
expansion levels displayed), while TVIEW views are collapsed to root
nodes only (zero expansion levels displayed).

Warning: If two views sharing a common tree datasource have initial
expansion levels that differ, the displayed views may also differ,
depending on the setting of the cursor option.

In the following code fragment, assume the tree datasource, treeDs, has six
expansion levels. Widgets tviewWgt and browsWgt share treeDs as a
common datasource with browsWgt controlling the datasource cursor and
tviewWagt reflecting it. However, if the browsWgt cursor is placed on a level
4 node, the tviewWgt cursor is unable to reflect its position in the display,
because it is initially expanded only to two expansion levels.

Var TrPtr treeDs;

BrowsPtr browsWt ;
TViewPtr tviewgt ;

bSLRegi sterView (DsPtr)treeDs, (ResPtr)w n->browsWjt)
DS RegisterView((DsPtr)treeDs, (ResPtr)w n->tvi ewt)

DS _Set Vi ewOption((DsPtr)treeDs, (ResPtr)w n->tvi ewgt,
“cursor", "REFLECTS");

DS _Set Vi ewOpti on((DsPtr)treeDs, (ResPtr)w n->browsWt,
“cursor", "CONTROLS");

DS _Set Vi ewOption((DsPtr)treeDs, (ResPtr)w n->tvi ewgt,

"initexpandl evel ", "2");
DS _Set Vi ewOpti on((DsPtr)treeDs, (ResPtr)w n->browsWt,
"initexpandl evel ", "6");

In the next example, however, the tviewWgt cursor can correctly reflect the
position of the datasource cursor, because it is expanded to the same level
as the browsWgt widget, which controls the datasource cursor:

VarTrPtr treebDs;

BrowsPtr browsWt ;

TViewPtr tvi ewWdt ;

DS RegisterView((DsPtr)treeDs, (ResPtr)w n->browsWt)
DS_Regi sterView((DsPtr)treeDs, (ResPtr)w n->tvi ewgt)

DS_Set Vi ewOpti on((DsPtr)treeDs, (ResPtr)w n->tvi ewgt,
“cursor", "REFLECTS");

DS _Set Vi ewOption((DsPtr)treeDs, (ResPtr)w n->browsWt,
"cursor", "CONTROLS");

DS_Set Vi ewOpti on((DsPtr)treeDs, (ResPtr)w n->tvi ewgt,

"ini texpandl evel ", "6");
DS _Set Vi ewOption((DsPtr)treeDs, (ResPtr)w n->browsWt,
"ini texpandl evel ", "6");

C Programmer’s Guide

Building a Tree Datasource

autosize

For BROWS views only, you can set the autosize option to TRUE to create
automatically sized nodes. With autosize enabled, all bounding boxes for
the sibling nodes at a given expansion level have the maximum width for
nodes at that level. Here is the syntax for using the autosize option:

DS_Set Vi ewOpt i on(<dat asource>, (ResPtr)<vi ew>,
{"autosize", "{FALSE| TRUE}");

The default value for the autosize option is FALSE. With the default setting,
the bounding-box widths are based on the string lengths of the node Value
properties.

This code fragment shows how to enable the autosize option:

Var TrPtr treeDs;
BrowsPtr browsl;
DS RegisterView((DsPtr)treeDs, (ResPtr)w n->browsl)

.D'S'_Set\ﬂ ewOption((DsPtr)treeDs, (ResPtr)w n->browsl,
"aut osi ze", "TRUE");

Building a Tree Datasource

A tree datasource is a container of hierarchically arranged nodes. It can
consist of one or more trees. Each node has variant ID and Value properties.
These may be supplied when the node is created or during a separate
editing session.

Building a tree datasource involves these tasks:
m Creating and Destroying a Tree Datasource
Creating and Destroying a Node Accessor
Creating and Destroying an Edit Object
Adding Nodes

Managing Memory

The preceding list is somewhat simplified, but does explain the basic
process, parts of which you may need to reiterate.

If you are constructing your datasource hierarchy interactively using the
BROWS and TVIEW views—probably a more realistic approach—see
“Editing a Tree Datasource” on page 48 for examples that show the
programmatic aspect of the datasource/views relationship. For more
information about options for the supported view widgets, see “Options for
the TVIEW and BROWS Views” on page 31.

Creating and Destroying a Tree Datasource

Before you can begin creating trees in the tree datasource, your application
must first create a tree datasource. This code fragment creates treeDs as a
VarTrPtr variable and initializes treeDs to the value returned by
VARTR_Create():

/* Declare a pointer variable for the tree datasource. */
Var TrPtr treeDs;

/* Create a tree-datasource object and assign it to the pointer

vari able. */
treeDs = VARTR Create();

C Programmer’s Guide 33

Chapter

3

Tree Datasource: Managing Hierarchical Data

I* Destroy the tree-datasource object. */

RES _Rel ease((ResPtr)treeDs);

The preceding code fragment creates and destroys a tree datasource with
the structure shown in Figure 3-5. The simple box in Figure 3-5 represents
the memory location of the datasource object, treeDs.

Figure 3-5 Untitled Tree Datasource

The examples in the following sections build on this simple representation
to construct a tree structure hierarchically from left (parents) to right
(children). For more information about tree datasources, see “Tree
Datasource” on page 20.

After the datasource object has served its purpose, use the RES_Release()
function to destroy it. For more information about memory management,
see “Destroying the Tree-Datasource Object” on page 46.

Creating and Destroying a Node Accessor

34

A node accessor is an indexing mechanism that references the nodes in the
hierarchy. With a node accessor, you can use the tree-datasource APIs to
traverse the hierarchy. You need a node accessor in two instances:

m When you are simply updating information about a particular node

m When you are making structural changes—such as adding or removing
nodes—to the tree datasource

This code fragment shows how to create and destroy a node accessor:

/* Declare a tree-datasource pointer variable. */
VarTrPtr treeDs;

/* Declare a tree-edit pointer variable. */
Var TrEdi t Ptr edit TreeDs;

/* Decl are a node-accessor pointer variable. */
Var Tr NodeAccessor Ptr nodeAccessor;

/* Assi gh a tree-datasource object to the tree-datasource
poi nter variable. */
treeDs = VARTR Create();

/* Assign a tree-level edit object to the tree-edit pointer
variable. */
editTreeDs = VARTR StartEdit(treeDs);

/* Assign a node-accessor object to the node-accessor pointer
variable. */
nodeAccessor = VARTRNODEACCESSOR Create();

1% Destroy the node accessor. */
VARTRNODEACCESSOR Di spose(nodeAccessor) ;

This creates nodeAccessor as a VarTrNodeAccessorPtr variable and
initializes nodeAccessor to the value returned by
VARTRNODEACCESSOR_Create(). When your application is finished
with the node accessor, use the
VARTRNODEACCESSOR_Dispose(accessor) function to free the memory

C Programmer’s Guide

Building a Tree Datasource

allocated for it. For more information about memory management, see
“Destroying a Node-Accessor Object” on page 46.

For more information about tree-datasource edit objects, see “Node
Accessor” on page 23.

Creating and Destroying an Edit Object

To build a tree datasource, you have to modify its hierarchical structure. To
do so, you need a datasource edit object. This code fragment creates and
destroys a datasource edit object, editTreeDs:

Var TrPtr treeDs;

/* Declare a datasource-edit pointer variable. */
Var TrEdi t Ptr editTreeDs;

treeDs = VARTR Create():

/* Assign an edit object to the datasource-edit pointer
variable. */
editTreeDs = VARTR StartEdit(treeDs);

/* Edit operations defined. */

/* Commit edit operations to the datasource and destroy the edit
object. */
DSEDI T_End((DsEdi tPtr) edit TreeDs);

In this example, editTreeDs is a VarTrEditPtr variable and is assigned a
datasource edit object—the value returned by the VARTR_StartEdit()
function. When the DSEDIT_End() function executes, all editing operations
are committed to the datasource, and the edit object is destroyed. For more
information about tree-datasource edit objects, see “Datasource Editing” on
page 27.

As a first use of the datasource edit object, assign a title to the datasource, as
shown here:

Var TrPtr treeDs;
Var TrEdi t Ptr edit TreeDs;

treeDs = VARTR Create():
editTreeDs = VARTR StartEdit(treeDs);

/* Set the title of the tree datasource. */
VARTREDI T_Set Titl e(edit TreeDs, "Tree Datasource");

/* Commit editing operations to the datasource and destroy the
edit object. */

DSEDI T_End((DsEdi t Ptr) edit TreeDs) ;

Note the use of the string literal in quotation marks. Unlike the node ID and

Value properties, the VARTREDIT_SetTitle() function accepts a string as

the datasource title. Building on the example from Figure 3-5, executing the

preceding VARTREDIT_SetTitle() function adds a title to the tree

datasource, as Figure 3-6 shows:

Tree Datasource

Figure 3-6 Titled Tree Datasource

C Programmer’s Guide 35

Chapter 3

Tree Datasource: Managing Hierarchical Data

Adding Nodes

36

After creating a node accessor, you use the VARTRNODEACCESSOR API
to position the node accessor where you want to create a node. You must
perform these tasks when:

m Creating the First Root Node
m Creating Child Nodes and Siblings
m Creating Additional Trees

Creating the First Root Node

To create the first root node, you need:
m A tree datasource

m A datasource edit object

m A node accessor

Building on the structure in Figure 3-6, the next task in creating your tree
datasource is to add the first root node to it, which Figure 3-7 shows:

a1 |

L

=
| Tree Datasource I—J_First Root Node |

— Y Y =

Figure 3-7 Creating the First Root Node in a Tree Datasource

These are the typical tasks in creating the first root node:

1. Moving the Node Accessor to the First Unoccupied Root-Node
Location

2. Adding a Node
3. Setting the Node ID and Value Properties

This code fragment shows how to implement these steps to create the first
root node:

Var TrPtr treebDs;

Var Tr NodeAccessor Pt r nodeAccessor ;
Var Ptr varl D, varVal ue;

Var TrEdit Ptr editTreeDs;

treeDs = VARTR Create();

nodeAccessor = VARTRNODEACCESSOR Create();
varl D = VAR New();

varVal ue = VAR _New();

edit TreeDs = VARTR StartEdit(treeDs);

/* Set the title of the tree datasource. */
VARTR Set Titl e(nEdi t TreeDs, "Tree Datasource");

/* Move the node accessor to the first unoccupi ed root-node
| ocation. */
VARTRNODEACCESSOR_GoNt hRoot (nodeAccessor,
VARTR_Get NunRoot s(treeDs));

/* Add a node at the first enpty root-node |ocation. */
VARTREDI T_AddNode(edi t TreeDs, nodeAccessor);

C Programmer’s Guide

Building a Tree Datasource

/* Set the node ID and Val ue properties. */

VAR Set Str(varl D, "New');

VAR Set Str(varVal ue, "First Root Node");

VARTREDI T_Set Nodel D(edit TreeDs, nodeAccessor, varlD);
VARTREDI T_Set NodeVal ue(edi tTreeDs nodeAccessor, varVal ue);

DSEDI T_End((DsEdi t Ptr) edit TreeDs) ;

VAR Del ete(varlD);

VAR Del et e(var Val ue)

VARTRNODEACCESSCR _Di spose(nodeAccessor) ;
RES Rel ease((ResPtr)treeDs);

You can also create the first root node using a “convenience” API. This
creates and disposes of the edit object for you. This code fragment shows
how to use the “convenience” functions to create the first root node in the
datasource:

Var TrPtr treeDs;
Var Tr NodeAccessor Pt r nodeAccessor;
VarPtr varl D, varVal ue;

treeDs = VARTR Create();

nodeAccessor = VARTRNODEACCESSOR Create();
varl D = VAR New()

var Val ue = VAR New()

/* Set the title of the tree datasource using the "convenience"
APl . */
VARTR SetTitle(treeDs, "Tree Datasource");

/* Move the node accessor to the first unoccupi ed root-node
| ocation. */

VARTRNCODEACCESSOR_GoFi r st Root (nodeAccessor) ;

whi l e (VARTR | sNodeVal i d(treeDs, nodeAccessor) {
VARTRNODEACCESSOR _GoNext (nodeAccessor)

}

/* Add a node. */
VARTR_AddNode(treeDs, nodeAccessor);

/* Set the node ID and Val ue properties using "conveni ence" API
functions. */

VAR Set Str(varl D, "New');

VAR Set Str(varVal ue, "First Root Node");

VARTR_Set Nodel D(treeDs nodeAccessor, varlD);

VARTR_Set NodeVal ue(treeDs, nodeAccessor, varVal ue);

VAR Del ete(varlD);

VAR Del et e(var Val ue)

VARTRNODEACCESSOR _Di spose(nodeAccessor)
RES Rel ease((ResPtr)treeDs);

The “convenience” API functions:
1. Create an edit object.
2. Perform the specified operation.

3. Dispose of the edit object when the operation is complete.

Tip: Because these “convenience” functions create and dispose of an
edit object for each operation, they are not very efficient for
performing batches of editing operations.

C Programmer’s Guide 37

Chapter

38

3

Tree Datasource: Managing Hierarchical Data

Moving the Node Accessor to the First Unoccupied Root-Node Location

When you are creating the first root node in a tree datasource, traversing the
datasource to find the first unoccupied root node is very simple. All of the
functions in the VARTRNODEACCESSOR API move the accessor to the
same node. The VARTRNODEACCESSOR_GoFirstRoot() function is
used for simplicity and clarity in the preceding code fragment.

The following traversal approach is a more universal. That is because it
moves the node accessor to the first unoccupied root-node location,
regardless of the number of root nodes in the datasource.

/* Declarations. */

Var TrPtr treeDs;
Var Tr NodeAccessor Pt r nodeAccessor ;

/* Assi gnnents. */
treeDs = VARTR Create();
nodeAccessor = VARTRNODEACCESSOR Create();

/* Move the node accessor to the first unoccupi ed root-node
| ocation. */
VARTRNCODEACCESSOR_GoNt hRoot (nodeAccessor,
VARTR_Get NurmmRoot s(treeDs));

In this case, the number of existing root nodes is used as an argument for the
VARTRNODEACCESSOR_GoNthRoot() function. The value returned by
the VARTR_GetNumRoots() function is a one-based counter, while the
VARTRNODEACCESSOR_GoNthRoot() function expects a zero-based
index. This ensures that the node accessor points to the next unoccupied
root node.

Warning: The VARTR_GetNumRoots() function returns the number of
root nodes in the datasource at the time the edit object is created.
Do not use this return value as a control-loop counter, unless the
edit object is created and destroyed within the loop, as the
“convenience” API functions do.

You may want to use this nested construct to check the validity of the node
before adding a new node:

/* Declarations. */
Var TrPtr treeDs;
Var Tr NodeAccessor Pt r nodeAccessor ;

/* Assi gnnents. */
treeDs = VARTR Create();
nodeAccessor = VARTRNODEACCESSOR Create();

/* Move the node accessor to the first unoccupi ed root-node
| ocation. */

VARTRNCODEACCESSOR_GoFi r st Root (nodeAccessor) ;

whil e (VARTR | sNodeVal i d(treeDs, nodeAccessor))
VARTRNODEACCESSOR _GoNext (nodeAccessor) ;

}

Adding a Node

After positioning the node accessor at the first unoccupied node location,
execute the VARTREDIT_AddNode() function to add a node:

/* Declarations. */
Var TrPtr treebDs;
Var Tr NodeAccessor Ptr nodeAccessor;

C Programmer’s Guide

Building a Tree Datasource

/* Assi gnnents. */
treeDs = VARTR Create();
nodeAccessor = VARTRNODEACCESSOR Create();

/* Move the node accessor to the first unoccupi ed root-node
| ocation. */

VARTRNCODEACCESSOR_GoFi r st Root (nodeAccessor) ;

whil e (VARTR | sNodeVal i d(treeDs, nodeAccessor))
VARTRNODEACCESSOR _GoNext (nodeAccessor) ;

}
VARTR_AddNode(treeDs, nodeAccessor);

Note: You can also “insert” nodes in the hierarchy. For more information,
see “Inserting Nodes versus Adding Nodes” on page 51.

Setting the Node ID and Value Properties

Although setting the node ID and Value properties are optional tasks when
you are building the node hierarchy, you may want to add a routine to your
code to ensure the uniqueness of the node IDs. The ID field, and possibly
the Value field, must be unique when associating a node with row data in a
table datasource.

To add data to the nodes as you create them, you can use the “convenience”
API functions—VARTR_SetNodelD() and VARTR_SetNodeValue()—to
set the ID and Value properties. Alternately, the application can end the
datasource-level editing session and start a node-level editing session. For
more information, see “Node-Level Editing” on page 55.

Creating Child Nodes and Siblings

After creating the first root node, you can methodically create multiple
generations of child and sibling nodes. Creating child and sibling nodes is
similar to creating the first root node. In each case, you:

1. Move the node accessor to the appropriate node location.
2. Add anode.
3. Optionally set the node ID and Value properties.

Creating the First Child Node

Continuing with the structure in Figure 3-7, the next task in building your
tree datasource is to add the first child node, as Figure 3-8 shows:

= =
| Tree Datasource I—J_First Root Node |

r— — — /1

| Tree Datasource |—| First Root Node |

U |

e

Figure 3-8 Creating the First Child Node

To create the first child node, use the VARTRNODEACCESSOR API to
traverse the node hierarchy, relative to the first root node, to the first
unoccupied child node. This code fragment shows how to create the first

C Programmer’s Guide 39

Chapter

40

3

Tree Datasource: Managing Hierarchical Data

child node, using the VARTRNODEACCESSOR_GoFirstChild() function
to position the node accessor:

Var TrPtr treeDs;

Var Tr NodeAccessor Ptr nodeAccessor;
Var Ptr varl D, varVal ue;

Var TrEdi t Ptr edit Tr eeDs;

treeDs = VARTR Create();

nodeAccessor = VARTRNODEACCESSOR Create();
varl D = VAR New()

var Val ue = VAR New()

editTr eeDs VARTR_St artEdit(treeDs);

/* Move the node accessor to the first unoccupi ed root-node
| ocation. */
VARTRNODEACCESSOR _GoNt hRoot (nodeAccessor,
VARTR _Get NunRoot s(treeDs));

/* Add a node at the first enpty root-node |ocation. */
VARTREDI T_AddNode(edi t TreeDs, nodeAccessor);

/* Set the node ID and Val ue properties. */

VAR Set Str(varlD, "0");

VAR Set Str(varVal ue, "First Root Node");

VARTREDI T_Set Nodel D(edi t TreeDs, nodeAccessor, varlD);
VARTREDI T_Set NodeVal ue(edi t Tr eeDs, nodeAccessor, varVal ue);

/* Relative to the first root node, nobve the node accessor to
the first unoccupied child-node |ocation. */
VARTRNODEACCESSOR_CGoFi r st Chi | d(nodeAccessor) ;

/* Add a node at the first child-node |location. */
VARTREDI T_AddNode(edi t TreeDs, nodeAccessor);

/* Set the node ID and Val ue properties. */

VAR Set Str(varl D, "0,0");

VAR Set Str(varValue, "First Child Node");

VARTREDI T_Set Nodel D(edit TreeDs, nodeAccessor, varlD);
VARTREDI T_Set NodeVal ue(edi tTreeDs nodeAccessor, varVal ue);
DSEDI T_End((DsEdi t Pt r) edi t TreeDs) ;

VAR Del et e(var| D);

VAR Del et e(var Val ue) ;
VARTRNODEACCESSOR _Di spose(nodeAccessor) ;
RES Rel ease((ResPtr)treeDs);

The following traversal approach is more universal. This is because it moves
the node accessor to the first unoccupied child-node location, regardless of
the number of child nodes.

/* Declarations. */
Var TrPtr treeDs;
Var Tr NodeAccessor Pt r nodeAccessor ;

/* Assignments. */
treeDs = VARTR Create();
nodeAccessor = VARTRNODEACCESSOR Create();

/* Relative to the first root node, npve the node accessor to
the first unoccupied child-node |ocation. */
VARTRNCDEACCESSOR_GoFi r st Root (nodeAccessor) ;
i f (VARTR_I sNodeVal i d(treebDs, nodeAccessor)) {
whil e (VARTR | sNodeVal i d(treeDs, nodeAccessor))
VARTRNODEACCESSOR _GoNext (nodeAccessor) ;
/[* End while. */
} /* End if. */

In this case, the number of existing sibling nodes is used as an argument for
the VARTRNODEACCESSOR_GoNthSibling() function. The value

C Programmer’s Guide

Building a Tree Datasource

returned by the VARTR_GetNumSiblings() function is a one-based
counter, while the VARTRNODEACCESSOR_GoNthSibling() function
expects a zero-based index. This ensures that the node accessor points to the
next unoccupied sibling node.

Warning: Like the VARTR_GetNumRoots() function, the
VARTR_GetNumsSiblings() function returns the number of
sibling nodes relative to the node accessor when the edit object is
created. Do not use this return value as a control-loop counter,
unless the edit object is created and destroyed within the loop.

This approach first checks the validity of the root node. If the root node is
valid, the node accessor moves to the next empty child location, as in the
preceding example.

/* Declarations. */

Var TrPtr treeDs;
Var Tr NodeAccessor Pt r nodeAccessor;

/* Assignnments. */
treeDs = VARTR Create();
nodeAccessor = VARTRNODEACCESSOR Create();

/* Relative to the first root node, nopve the node accessor to

the first unoccupied child-node |ocation. */
VARTRNCODEACCESSOR_GoFi r st Root (nodeAccessor) ;
if (VARTR_I sNodeValid(treeDs, nodeAccessor)) {

VARTRNODEACCESSOR _GoNt hChi | d(nodeAccessor,

VARTR_Get Nunthi | dren(tr eeDs,
nodeAccessor));

} /* End if. */

Creating Sibling Nodes

Building on the structure in Figure 3-8, the next task in creating your tree
datasource is to add the second child, or next sibling, node, as Figure 3-9
shows:

_— o

| Tree Datasource |—| First Root Node |—| First Child Node |

e |

| Tree Datasource |—| First Root Node |——| First Child Node |

Tree Datasource |—| First Root Node I——| First Child Node |

| TSooond G vode]

Figure 3-9 Creating the Second Child Node

To create the second child node, move the node accessor, relative to the first
child node, to the first unoccupied sibling node. This code fragment shows
how to create the second child node, which Figure 3-10 shows, using the
VARTRNODEACCESSOR_GoNext() function to position the node
accessor:

Var TrPtr treeDs;
Var Tr NodeAccessor Ptr nodeAccessor;

C Programmer’s Guide 41

Chapter

42

3

Tree Datasource: Managing Hierarchical Data

VarPtr varl D, var Val ue;
Var TrEdi t Ptr edit TreeDs;

treeDs = VARTR_O' eate();

nodeAccessor = VARTRNODEACCESSOR Create();
varlD = VAR . New() ;

var Val ue = VAR New()

edit TreeDs VARTR_St artEdit(treeDs);

/* Move the node accessor to the first unoccupi ed root-node
| ocation. */
VARTRNODEACCESSOR_GoNt hRoot (nodeAccessor,
VARTR_Get NunRoot s(treeDs));

/* Add a node at the first enpty root-node |ocation. */
VARTREDI T_AddNode(edi t TreeDs, nodeAccessor);

/* Set the node ID and Val ue properties. */

VAR Set Str(varl D, "0");

VAR Set Str(varVal ue, "First Root Node");

VARTREDI T_Set Nodel D(edit TreeDs, nodeAccessor, varlD);
VARTREDI T_Set NodeVal ue(edi tTreeDs nodeAccessor, varVal ue);

/* Relative to the first root node, nopve the node accessor to
the first child-node | ocation. */
VARTRNODEACCESSOR_GoFi r st Chi | d(nodeAccessor) ;

/* Add a node at the first child-node |ocation. */
VARTREDI T_AddNode(edi t TreeDs, nodeAccessor);

/* Set the node I D and Val ue properties. */

VAR Set Str(varlD, "0,0");

VAR_Set Str(varValue, "First Child Node");

VARTREDI T_Set Nodel D(edi t TreeDs, nodeAccessor, varlD);
VARTREDI T_Set NodeVal ue(edit Tr eeDs, nodeAccessor, varVal ue);

/* Relative to the first child node, npbve the node accessor to
the first unoccupied sibling-node |ocation. */
VARTRNODEACCESSOR_GoNext (nodeAccessor) ;

/* Add a node at the first child-node |ocation. */
VARTREDI T_AddNode(edi t TreeDs, nodeAccessor);

/* Set the node ID and Val ue properties. */

VAR Set Str(varlD, "0,1");

VAR _Set Str(var Val ue, "Second Child Node");

VARTREDI T_Set Nodel D(edi t Tr eeDs, nodeAccessor, varlD);
VARTREDI T_Set NodeVal ue(edi tTreeDs nodeAccessor, varVal ue);
DSEDI T_End((DsEdi t Pt r) edi t Tr eeDs) ;

VAR _Del ete(varlD);

VAR Del et e(var Val ue)

VARTRNODEACCESSCR _Di spose(nodeAccessor) ;

RES Rel ease((ResPtr)treeDs);

The following traversal method is more universal. This is because it moves
the node accessor to the first unoccupied child-node location, regardless of
the number of children.

The next code fragment, the internal while loop moves the node accessor to
the first unoccupied child-node location, regardless of the number of
children. After each pass through the while loop:

= Anode is added.

m The node accessor is returned to the parent-node.

In this example, the “convenience” API functions are used to clarify the
application logic. An Intl6 constant, maxNodes, is set to 10 to limit the
number of children that are created:

C Programmer’s Guide

Building a Tree Datasource

/* Declarations. */

Var TrPtr treeDs;

Var Tr NodeAccessor Pt r nodeAccessor ;
Int16 i, naxNodes;

/* Assi gnnents. */
treeDs = VARTR Create();
nodeAccessor = VARTRNODEACCESSOR Create();

/* Relative to the first root node, create nodes at, the first
10 chil d-node | ocations. */
VARTRNCODEACCESSOR_GoFi r st Root (nodeAccessor) ;
for (i = VARTR_Get NunChi |l dren(treeDs, nodeAccessor),
maxNodes = 10; i < maxNodes; i++) {
VARTRNODEACCESSOR_CoFi r st Chi | d(nodeAccessor) ;
whil e (VARTR_ | sNodeVal i d(treeDs, nodeAccessor)) {
VARTRNCODEACCESSOR_GoNt hChi | d(nodeAccessor,
VARTR_Get Nunthi | dren(treeDs,
nodeAccessor));

}
VARTR_AddNode(treeDs, nodeAccessor);
VARTRNODEACCESSOR_GoPar ent (nodeAccessor) ;

| Tree Datasource I—IF;st Eoot_N(Ee _||——| First Child Node |

— Second Child Node |

—— Third Child Node |

— Fourth Child Node |

— Fifth Child Node |

— Sixth Child Node |

— Seventh Child Node |

— Eighth Child Node |

— Ninth Child Node |

! Tenth Child Node |

Figure 3-10 Creating the Next Sibling Node

Creating Additional Trees

To create additional trees, you need additional root nodes. Using each root
node as a starting point, you can build trees by employing the programming
techniques discussed in “Creating Child Nodes and Siblings” on page 39.
Figure 3-11 shows the creation of a second root node, from which you can
methodically build another tree:

C Programmer’s Guide 43

Chapter

44

Tree Datasource: Managing Hierarchical Data

| ——{First Child Node

\—{ nth Child Node |

Tree Datasource |—| First Root Node }—'—{ First Child Node |

\—{ nth Child Node

Tree Datasource I——| First Root Node }—'—{ First Child Node

\—{ nth Child Node

a1 |

Figure 3-11 Creating Additional Trees

To create additional root nodes, move the node accessor to the first root
node, then use the VARTRNODEACCESSOR_GoNext() function, as
needed, to move the accessor to the first unoccupied root node. This code
fragment shows how to create a second root node;

Var TrPtr treebDs;

Var Tr NodeAccessor Pt r nodeAccessor ;
Var Ptr varl D, varVal ue;

VarTrEdi t Ptr edit TreeDs;

treeDs = VARTR_Or eate();

nodeAccessor = VARTRNODEACCESSOR Create();
varlD = VAR . New() ;

var Val ue = VAR Nev\()

edit TreeDs = VARTR StartEdit(treeDs);

/* Move the node accessor to the first unoccupi ed root-node
| ocation. */

VARTRNCDEACCESSOR_GoFi r st Root (nodeAccessor) ;

whi | e (VARTR | sNodeVal i d(treeDs, nodeAccessor))
VARTRNCODEACCESSOR_GoNext (nodeAccessor)

}
VARTREDI T_AddNode(edi t TreeDs, nodeAccessor);

/* Set the node I D and Val ue properties. */

VAR Set Str(varl D, " 1") ;

VAR_Set St r (var Val ue, "Second Root Node");

VARTREDI T_Set Nodel D(edit TreeDs, nodeAccessor, varlD);
VARTREDI T_Set NodeVal ue(editTr eeDs nodeAccessor, varVal ue);
DSEDI T_((DsEdi t Pt r) edi t Tr eeDs) ;

C Programmer’s Guide

Building a Tree Datasource

VAi?_DeI ete(varl D) ;

VAR_Del et e(var Val ue) ;

VARTRNODEACCESSOR_Di spose(nodeAccessor) ;

RES Rel ease((ResPtr)treeDs);

You can also use this traversal approach to move the node accessor directly
to the first unoccupied root-node location, regardless of the number of root
nodes:

/* Declarations. */

Var TrPtr treeDs;
Var Tr NodeAccessor Ptr nodeAccessor;

/* Assi ghnents. */
treeDs = VARTR Create();
nodeAccessor = VARTRNODEACCESSOR Create();

/* Move the node accessor to the first unoccupi ed root-node
| ocation. */
VARTRNODEACCESSOR _GoNt hRoot (nodeAccessor,
VARTR _Get NunRoot s(treeDs));

In this case, the number of existing root nodes is used as an argument for the
VARTRNODEACCESSOR_GoNthRoot() function. The value returned by
the VARTR_GetNumRoots() function is a one-based counter, while the
VARTRNODEACCESSOR_GoNthRoot() function expects a zero-based
index. This ensures that the node accessor points to the next unoccupied
root node.

Managing Memory

Memory usage accumulates as you create objects for your datasource,
regardless of the specific object type. To adequately manage your memory
usage, you should destroy an object after it has served its purpose.

The code fragments that show you how to work with the tree datasource
consistently illustrate the destruction of edit objects. However, you should
also destroy both the tree-datasource and node-accessor objects.

This code fragment shows a general framework for creating and destroying
objects; the pairs of creation and destruction calls are indented for clarity:

/* Declare a tree-datasource pointer variable. */
Var TrPtr treeDs;

/* Declare an edit pointer variable. */
Var TrEdi t Ptr edit TreeDs;

/* Decl are a node-accessor pointer variable. */
Var Tr NodeAccessor Ptr nodeAccessor;

/* Assi gn a tree-datasource object to the tree-datasource
poi nter variable. */
treeDs = VARTR Create();

/* Assign an edit object to the tree-edit pointer variable.
*/
editTreeDs = VARTR StartEdit(treeDs);
/* Assign a node-accessor object to the node-accessor
poi nter variable. */
nodeAccessor = VARTRNODEACCESSCOR Create();

/* Position the node accessor and edit the tree. */

C Programmer’s Guide 45

Chapter 3 Tree Datasource: Managing Hierarchical Data

/* Destroy the node-accessor object. */
VARTRNODEACCESCR Dest ruct (nodeAccessor) ;

/* Commit the changes and destroy the edit object. */
DSEDI T_End((DsEdi t Ptr) edit TreeDs);

/* béétroy the tree-datasource object. */

RES Rel ease((ResPtr)treeDs);

The formal creation and destruction of the datasource-level edit object,
illustrated in the preceding code fragment, is most useful when performing
editing operations in batches. For single operations, the “convenience” API
is effective. This is because, using the cursor as a node reference, it
automatically creates an edit object, completes the editing operation, and
disposes of the edit object—all in one step.

Destroying the Tree-Datasource Object

The tree-datasource object may be the object least often destroyed in your
application. However, good object construction and destruction habits can
minimize application errors created by memory leaks.

For example, an application that sequentially loads and unloads several
different organizational hierarchies continues to increase its memory usage
if the datasource objects are not destroyed and created again when needed.
Simply disassociating a view from a datasource—DS_UnregisterView()
function—is not enough to avoid memory leaks in your application.

This code fragment shows how to create and destroy a tree datasource:

/* Declare a tree-datasource pointer variable. */
VarTrPtr treeDs;

/* Assi gh a tree-datasource object to the tree-datasource
poi nter variable. */
treeDs = VARTR Create();

/* Destroy the tree-datasource object. */

RES Rel ease((ResPtr)treeDs);

Before destroying your tree datasource, you will undoubtedly need to
compose a routine to traverse the hierarchy and write the data to a
persistent storage medium, such as a flat-file format on a local hard disk.
You might want to associate each node in the tree datasource with a row in
atable datasource, using the query mechanism supplied by the Data Access
Element.

Destroying a Node-Accessor Object

Depending on the logic of your application, you may want to create
multiple node accessors or aliases to a single node accessor. If you create
multiple node-accessor objects and assign them to pointer variables, you
must destroy each of them separately, as shown here:

/* Declare a tree-datasource pointer variable. */
VarTrPtr treeDs;

/* Declare a tree-edit pointer variable. */
VarTrEdi t Ptr editTreeDs;

/* Declare three node-accessor pointer variables. */

Var Tr NodeAccessor Ptr nodeAccessor _1;
Var Tr NodeAccessor Pt r nodeAccessor_2;

46 C Programmer’s Guide

Building a Tree Datasource

Var Tr NodeAccessor Ptr nodeAccessor _3;

/* Assi gn a tree-datasource object to the tree-datasource
poi nter variable. */
treeDs = VARTR Create();

/* Assign a node-accessor objects to the node-accessor
poi nter variables. */

nodeAccessor _1 = VARTRNODEACCESSOR Create();

nodeAccessor _2 = VARTRNODEACCESSOR Create();

nodeAccessor _3 = VARTRNODEACCESSOR Create();

/* Move the node accessors and edit the tree datasource. */

/* Destroy each of the node accessors separately. */
VARTRNODEACCESOR _Di spose(nodeAccessor _1);
VARTRNODEACCESOR _Di spose(hodeAccessor _2);
VARTRNODEACCESOR _Di spose(nodeAccessor _3);

/* Destroy the tree-datasource object. */

RES _Rel ease((ResPtr)treeDs);

You can also set aliases to a node accessor by assigning the node-accessor
pointer returned by the VARTR_GetCursor() function to a node-accessor
pointer variable. This code fragment shows how you might use such aliases
to your node accessor:

/* Declare a tree-datasource pointer variable. */
Var TrPtr treeDs;

/* Declare multiple node-accessor pointer variables. */
Var Tr NodeAccessor Ptr nodeAccessor;

Var Tr NodeAccessor Ptr manager ;

Var Tr NodeAccessor Ptr enpl oyee;

/* Assi gh a tree-datasource object to the tree-datasource
poi nter variable. */
treeDs = VARTR Create();

/* Assign a node-accessor object to the node-accessor
poi nter variable. */
nodeAccessor = VARTRNODEACCESSOR Create();

/* Set a cursor at the location of the node accessor. */
VARTR _Set Cur sor (treeDs, nodeAccessor);

/* Assign two node-accessor objects returned by the
Get Cursor() function to the extra node-accessor
vari abl es. */

manager = VARTR Get Cursor(treeDs);

enpl oyee = VARTR Get Cursor (treeDs);

);' Move t he node accessor and aliases, and edit the tree
dat asource. */

/* Di spose of the node-accessor object. */
VARTRNODEACCESCOR _Di spose(nodeAccessor) ;

/* Destroy the tree-datasource object. */

RES Rel ease((ResPtr)treeDs);

In the preceding example, only nodeAccessor must be destroyed, because
manager and employee are only aliases to the node-accessor object,
nodeAccessor. Upon destroying the node accessor object, the two aliases
become meaningless.

C Programmer’s Guide 47

Chapter

Tree Datasource: Managing Hierarchical Data

Editing a Tree Datasource

48

The concept of “editing” the tree datasource described in this section is
based on the assumption that you are using one or more views to control the
movement of the cursor in the datasource. You should keep this in mind
when evaluating the code examples in this section.

When editing a tree datasource, these editing levels apply:
m Datasource-Level Editing
m Node-Level Editing

The notion of “subtree” locking is not yet supported, so editing operations
must lock either the entire tree or a single node. Editing operations involve
these steps:

1. Move the node accessor to a specific location.

2. Create either a datasource or a node edit object.

3. Perform editing operations.

4. End the editing operation and commit the modifications.

All editing operations require a node-accessor pointer with a node-accessor
object assigned to it. For information about node-accessor declarations, see
“Creating and Destroying a Node Accessor” on page 34.

In addition to the node accessor, you need either a datasource-level or
node-level edit object. Specifically, you need:

m A datasource edit object when modifying a tree structure

m A node edit object to limit modifications to the node ID and Value
properties

The edit object is a working copy of the tree or node you are editing. All
modifications are committed to the datasource when the DSEDIT_End()
function executes.

Note: See “Datasource Editing” on page 27 and “Node Editing” on page 27
for more information about datasource and node edit objects,
respectively.

After declaring the node accessor and the required edit objects, you can
position the node accessor on any node location in the tree datasource. You
can traverse the tree datasource to complete any datasource-level or
node-level editing operations using the node-accessor API listed in

Table 3-1:

Table 3-1 Basic Functions for Traversing the Tree Datasource

Function Description
GoFi r st Root (accessor) Move accessor to the first root node.
GoFi rst Chi | d(accessor) Move accessor to the first child node

relative to the current accessor location.

GoFi rst Si bl i ng(accessor) Move accessor to the first sibling node of the
current accessor location.

GoPar ent (accessor) Move accessor to the parent node of the
current accessor location.

C Programmer’s Guide

Editing a Tree Datasource

Function

Description

GoPrev(accessor)

GoNext (accessor)

Move accessor to the previous sibling node
of the current accessor location.

Move accessor to the next sibling node of
the current accessor location.

The functions in Table 3-2 require the indexing system described in “Tree
Datasource” on page 20. Note that nodes are indexed from 0.

Table 3-2 “Convenience” Functions for Traversing the Tree Datasource

Function

Description

GoNt hRoot (accessor,

GoNt hChi | d(accessor,

GoNt hSi bl i ng(accessor,

Gol D(accessor, id)

Move accessor to the nth root node,
specified by index (zero-based), of the tree
datasource.

Move accessor to the nth child node,
specified by index (zero-based), relative to
the current accessor location.

Move accessor to the nth sibling node,
specified by index (zero-based), relative to
the current accessor location.

Move accessor to the node with the
specified id.

The functions in Table 3-3 comprise a useful APl with which to retrieve
information from the tree datasource and the nodes it contains:

Table 3-3 Functions for Getting Miscellaneous Information

Function

Description

GetTitle(treeDs)
Get NunRoot s(treeDs)

Get NuntChi | dren(treeDs, accessor)

Get Nunsi bl i ngs(treeDs, accessor)

QueryNodel D(treeDs, accessor, idPtr)

Quer yNodeVal ue(treeDs, accessor,

Get Nodel D(treeDs, accessor)

Get NodeVal ue(treeDs, accessor)

| sNodeVal i d(treeDs, accessor)

C Programmer’s Guide

Get the title of the tree datasource, treeDs.

Get the number (one-based) of root nodes
in the tree datasource, treeDs.

Get the number (one-based) of child nodes
relative to the current accessor location.

Get the number (one-based) of sibling
nodes relative to the current accessor
location.

Copy the data setting of the node ID
property at the current accessor location to
the address to which idPtr points.

Copy the data setting of the node Value
property at the current accessor location to
the address to which valuePtr points.

Get a pointer to the variant object that
stores the data of the node ID property at
the current accessor location.

Get a pointer to the variant object that
stores the data of the node VValue property
at the current accessor location.

Returns a boolean value indicating
whether a node exists at the current
accessor location.

49

Chapter

3

Tree Datasource: Managing Hierarchical Data

This code shows how to create and dispose of a datasource edit object:

Var TrPtr treeDs;
Var Tr NodeAccessor Ptr nodeAccessor;

/* Declare a datasource-level edit pointer. */
Var TrEdi t Ptr edit TreeDs;

treeDs = VARTR Create():
nodeAccessor = VARTRNODEACCESSOR Create();

/* Assign a datasource edit object to the edit pointer. */
editTreeDs = VARTR StartEdit(treeDs);

/* Commit the edit operations, and destroy the edit object. */
DSEDI T_End((DsEdi t Ptr) edi t TreeDs);

You can use the datasource edit object to edit at the node level, too. If you
want to restrict modifications to the node level only, this code shows how to
create and dispose of a node edit object:

Var TrPtr treeDs;
Var Tr NodeAccessor Ptr nodeAccessor;

/* Declare a datasource-level edit pointer. */
Var TrEdi t Ptr editTreeDs;

treeDs = VARTR Create():
nodeAccessor = VARTRNODEACCESSOR Create();

/* Assign a node edit object to the edit pointer. */
edit TreeDs = VARTR StartNodeEdit(treeDs, nodeAccessor);

DSEDI T_End((DsEdi t Pt r) edi t Tr eeDs) ;

Modifications are committed when you call the DSEDIT_End() function.
This also releases the data lock that was created when the
VARTR_Startedit() function executed. If you call another
VARTR_StarteEdit() before the DSEDIT_End() function executes, the
Startedit() function will fail, because the data is still locked.

Datasource-Level Editing

50

When you make structural changes to a tree datasource, you need a
datasource edit object. This locks the entire datasource to prevent
simultaneous editing of the datasource from another view.

These are datasource-level editing operations:

Setting the Title of the Tree Datasource

Inserting Nodes versus Adding Nodes

Modifying Node Data Using the “Convenience” API
Removing a Node

Removing a Tree

The functions in Table 3—-4 support the structural modifications to the tree
datasource and are supplied by the VARTREDIT API.

C Programmer’s Guide

Editing a Tree Datasource

Table 3-4 Functions for Structural Modifications to the Tree Datasource

Function Description

SetTitle(treeDs) Sets the Title property of the tree
datasource, treeDs.

AddNode(accessor) Add a node at the current accessor location.

RermoveNode(accessor) Remove the node at the current accessor

location. Child nodes of the node to be
removed become the children of the parent
node of the removed node.

RenmoveTr ee(accessor) Remove the hierarchy beneath the current
accessor location.

Setting the Title of the Tree Datasource

The tree datasource has a Title property to which you can assign a string
value using the VARTREDIT_SetTitle(vartr, string) function. Likewise,
you can retrieve the current title assigned to the tree datasource using the
VARTR_GetTitle(vartr) function.

Inserting Nodes versus Adding Nodes

You can add a node at any valid node-accessor location. If a node is already
present, the new node is inserted before the existing node. If there is no node
at the current accessor location, you can add a node.

Figure 3-12 shows the insertion of a “third” child node between the “first”
and “second” child nodes. The inserted node becomes the sibling of the first
two nodes.

———
root second | —— root
=1

Figure 3-12 Inserting a Child Node

This code fragment shows how to programmatically inserta child node,
“third,” with the node-accessor position at the “second” node location:

Var TrPtr treebDs;
Var Tr NodeAccessor Ptr nodeAccessor;
Var Ptr var Val ue;

treeDs = VARTR Create();
nodeAccessor = VARTRNODEACCESSOR Create();
var Val ue = VAR _New();

/* Enpty accessor |ocation. */
VARTRNCODEACCESSOR_GoNt hRoot (VARTR_Get NunRoot s(t r eeDs,
nodeAccessor));

/* Add first root node. */

VARTR_AddNode(treeDs, nodeAccessor);

VAR Set Str(varVal ue, "root");

VARTR_Set NodeVal ue(treeDs, nodeAccessor, varVal ue);

/* Enpty accessor location. */

VARTRNODEACCESSOR_GoNt hChi | d(VARTR_Get NunChi | dren(treeDs,
nodeAccessor));

C Programmer’s Guide 51

Chapter

52

3

Tree Datasource: Managing Hierarchical Data

/* Add first child node. */

VARTR_AddNode(treeDs, nodeAccessor);

VAR _Set Str(varValue, "first");

VARTR_Set NodeVal ue(treeDs, nodeAccessor, varVal ue);

/* Enpty accessor location. */
VARTRNODEACCESSOR_GoNext (nodeAccessor) ;

/* Add second child node. */

VARTR_AddNode(treeDs, nodeAccessor);

VAR_Set St r(var Val ue, "second");

VARTR_Set NodeVal ue(treeDs, nodeAccessor, varVal ue);

/* Add the third child node at the "second" node |ocation. */
VARTR_AddNode(treeDs, nodeAccessor);

VAR_Set Str(varValue, "third");

VARTR_Set NodeVal ue(treeDs, nodeAccessor, varVal ue);

VAR Del ete(varlD);

VAR_Del et e(var Val ue) ;
VARTRNODEACCESSOR_Di spose(nodeAccessor) ;
RES _Rel ease((ResPtr)treeDs);

If you add a node at an unoccupied accessor location, a new node is created
with a Next reference that accesses an empty node location. In other words,
the new node is the last node in the sibling or root list.

Var TrPtr treeDs;
Var Tr NodeAccessor Pt r nodeAccessor;
Var Ptr var Val ue;

treeDs = VARTR Create();
nodeAccessor = VARTRNODEACCESSOR Create();
varVal ue = VAR _New();

/* Enpty root-|evel accessor |ocation. */
VARTRNODEACCESSOR_GoNt hRoot (VARTR _Get NunRoot s(treeDs));

/* Add first root node. */

VARTR_AddNode(treeDs, nodeAccessor);

VAR Set Str(varVal ue, "1st root");

VARTR_Set NodeVal ue(treeDs, nodeAccessor, varVal ue);

/* Enpty root-|evel accessor |ocation. */
VARTRNODEACCESSOR _GoNext (nodeAccessor) ;

/* Add second root node. */

VARTR_AddNode(treeDs, nodeAccessor);

VAR Set Str(varValue, "2nd root");

VARTR_Set NodeVal ue(treeDs, nodeAccessor, varVal ue);

I* Enpty root-Ilevel accessor location. */
VARTRNODEACCESSOR _GoNext (nodeAccessor) ;

/* Add nth root node. */

VARTR_AddNode(treeDs, nodeAccessor);

VAR Set Str(varValue, "nth root");

VARTR_Set NodeVal ue(treeDs, nodeAccessor, varVal ue);

VAR Del et e(var| D);

VAR Del et e(var Val ue) ;
VARTRNODEACCESSOR _Di spose(nodeAccessor) ;
RES Rel ease((ResPtr)treeDs);

Modifying Node Data Using the “Convenience” API

Using the “convenience” functions supplied with the VARTREDIT class,
you can perform these node-level editing operations using a datasource edit
object:

C Programmer’s Guide

Editing a Tree Datasource

m Setting the Node ID
m Setting the Node Value

You can set the node ID using the VARTREDIT_SetNodelD() function.
Likewise, you can set the value using the VARTREDIT_SetNodeValue()
function.

With the “convenience” functions in Table 3-5, you can easily modify node
data during a datasource editing session. You do not need a node edit
object. However, you do need a datasource edit object to prevent editing of
the datasource from other views.

Table 3-5 “Convenience” Functions for Modifying Node Data

Function Description
Set Nodel D(edi t Tr eeDs, Set the ID property of the node at
accessor, id) the current accessor location to id.
Set NodeVal ue(edi t Tr eeDs, Set the Value property of the
accessor, val ue) node at the current accessor

location to value.

This code fragment uses the “convenience” API to set the node ID of the
first child of the first root to ““0,0” and to set the node Value to “first child”:

Var TrPtr treeDs;

Var Tr NodeAccessor Ptr nodeAccessor;
Var TrEdi t Ptr edit TreeDs;

VarPtr varl D, varVal ue;

treeDs = VARTR_O' eate();

nodeAccessor = VARTRNODEACCESSOR Create();
varlD = VAR . New() ;

var Val ue = VAR New()

editTreeDs = VARTR_St artEdit(treeDs);

/* Create the first root node. */
VARTRNCODEACCESSOR_GoFi r st Root (nodeAccessor) ;
VARTREDI T_AddNode(edi t TreeDs, nodeAccessor);

/* Go to the first child of the first root node. */
VARTRNODEACCESSOR_GoFi r st Chi | d(nodeAccessor) ;
VARTREDI T_AddNode(edi t TreeDs, nodeAccessor);

/* Set the node | D and node val ue. */

VAR _Set Str(varl D, "0, 0);

VAR Set Str(varValue, "first child");

VARTREDI T_Set Nodel D(edi t Tr eeDs, nodeAccessor, varlD);
VARTREDI T_Set NodeVal ue(edi tTreeDs nodeAccessor, varVal ue);
DSEDI T_End((DsEdi t Pt r) edi t Tr eeDs) ;

VAR Del ete(varlD);

VAR Del et e(var Val ue)

VARTRNODEACCESSCR _Di spose(nodeAccessor) ;
RES Rel ease((ResPtr)treeDs);

Removing a Node

When you remove a node from the tree hierarchy, child nodes become the
children of the parent of the node being removed. If the node being removed
is a root node, its child nodes become root nodes.

C Programmer’s Guide 53

Chapter

54

3

Tree Datasource: Managing Hierarchical Data

Figure 3-13 shows the nodes with labels that indicate their positions in the
hierarchy. Note that the immediate child nodes of the root node become root
nodes.

Figure 3-13 Removing a Node

This code fragment shows how to edit the tree structure on the left side of
Figure 3-13 to produce the structure on the right:
Var TrPtr treeDs;

Var Tr NodeAccessor Pt r nodeAccessor ;
Var TrEdi t Ptr edit TreeDs;

treeDs = VARTR Create();
nodeAccessor = VARTRNODEACCESSOR Create();
editTreeDs = VARTR StartEdit(treeDs);

/* Create the tree structure on the left side of
Fi gure 3-13. */

)’-*.Go to the second child node of the first root node. */
VARTRNODEACCESSOR_GoFi r st Root (nodeAccessor) ;
VARTRNCDEACCESSOR_GoNt hChi | d(nodeAccessor, 1);

/* Remove a node. */
VARTREDI T_RenoveNode(edi t TreeDs, nodeAccessor);
DSEDI T_End((DsEdi tPtr)edit TreeDs);

VAi?TRNCDEACCESS(P_Di spose(nodeAccessor) ;
RES Rel ease((ResPtr)treeDs);

Removing a Tree

When you remove a tree or subtree from the tree hierarchy, the child nodes
of the current node are removed recursively. If the accessed node is a root
node, VARTREDIT_RemoveTree() removes the entire tree. Figure 3-14
shows the nodes with labels that indicate their positions in the hierarchy:

Figure 3-14 Removing a Tree

This code fragment shows how to edit the tree structure on the left side of
Figure 3-14 to produce the structure on the right:

C Programmer’s Guide

Editing a Tree Datasource

Var TrPtr treeDs;
Var Tr NodeAccessor Ptr nodeAccessor;
Var TrEdi t Ptr edit TreeDs;

treeDs = VARTR Create();
nodeAccessor = VARTRNODEACCESSOR Create();
edit TreeDs = VARTR StartEdit(treeDs);

/* Create the tree structure on the left side of
Fi gure 3-14. */

/* Go to the second child of the first root node. */
VARTRNCODEACCESSOR_GoFi r st Root (nodeAccessor) ;
VARTRNCODEACCESSOR_GoNt hChi | d(nodeAccessor, 1);

/* Rermove a tree. */
VARTREDI T_RenoveTree(edi t TreeDs, nodeAccessor);
DSEDI T_End((DsEdi t Ptr) edit TreeDs) ;

\/Ai?TRNODEACCESSCR_Di spose(nodeAccessor) ;
RES _Rel ease((ResPtr)treeDs);

Node-Level Editing

Function

There are only two operations you can perform at the node level:
m Setting the Node ID
m Setting the Node Value

You can use the functions in Table 3-6 to get and set node data. While all of
these are useful, only VARTRNODEEDIT_SetID() and
VARTRNODEEDIT_SetValue() require you to declare a node edit object.

Table 3-6 Functions for Getting and Setting Node Data

Description

QueryNodel D(treeDs, accessor, idPtr) Copy the ID property of the node at the

current accessor location to the address
stored by idPtr.

Quer yNodeVal ue(treeDs, accessor, valuePtr) CopytheValueproperty of the node at the

current accessor location to the address
stored by valuePtr.

Get Nodel D(t reeDs, accessor) Get a pointer to the variant object that

stores the data of the ID property at the
current accessor location.

Get NodeVal ue(treeDs, accessor) Get a pointer to the variant object that

stores the data of the VValue property of the
node at the current accessor location.

Set | D(edi t Node, id) Set the ID property of the node at the

current accessor location to id.

Set Val ue(edi t Node, val ue) Set the Value property of the node at the

current accessor location to value.

Set Nodel D(edi t TreeDs, accessor, id) Set the ID property of the node at the

current accessor location to id.

Set NodeVal ue(edi t TreeDs, accessor, val ue) Setthe Value property of the node at the

current accessor location to value.

| sNodeVal i d(treeDs, accessor) Get a boolean value indicating whether a

node exists in the tree datasource at the
current accessor location.

C Programmer’s Guide 55

Chapter 3 Tree Datasource: Managing Hierarchical Data

Setting the Node ID

You can:

m Getacopy of the node ID using VARTR_QueryNodelD()
m Geta pointer to the ID using VARTR_GetNodelD()

m Set the ID using VARTRNODEEDIT_SetID()

Thiscode sets the node ID of the first child of the first root to “0,0” and sets
the node value to “first child”:

Var TrPtr treeDs;

Var Tr NodeAccessor Ptr nodeAccessor;

Var Tr NodeEdi t Pt r edi t Node;
VarPtr varl D, varVal ue;

treeDs = VARTR Create();

nodeAccessor = VARTRNODEACCESSOR Create();
varl D = VAR _New();

var Val ue = VAR New();

/* Go to the first child of the first root node. */
VARTRNODEACCESSOR_CoFi r st Root (nodeAccessor) ;
VARTR_AddNode(treeDs, nodeAccessor)

VARTRNODEACCESSOR_GoFi r st Chi | d(nodeAccessor) ;
VARTR_AddNode(treeDs, nodeAccessor)

/* Set the node ID and node val ue. */

edi t Node = VARTR St art NodeEdit(treeDs, nodeAccessor);

VAR Set Str(varl D, "0,0");

VAR Set Str(varValue, "first child");

VARTRNODEEDI T_Set | D(edi t TreeDs, nodeAccessor, varlD);
VARTRNCDEEDI T_Set Val ue(edi t TreeDs, nodeAccessor, var Val ue);
DSEDI T_End((DsEdi t Pt r) edi t Node) ;

VAR Del ete(var| D);

VAR Del et e(var Val ue) ;
VARTRNODEACCESSOR _Di spose(nodeAccessor) ;
RES Rel ease((ResPtr)treeDs);

Setting the Node Value

You can:

m Getacopy of the Value using VARTR_QueryNodeValue()
m Geta pointer to the Value using VARTR_GetNodeValue()
m Set the Value using VARTRNODEEDIT_SetValue()

Advanced Topics

The following issues are more advanced topics that provide very useful
information when creating a datasource application:

m Node-Count Functions

m Managing the Cursor

m Acting on Multiple Nodes

m Persistent Data Storage and Relational Tables

Node-Count Functions

In the examples supplied in the following sections, these node-count
functions in the VARTR API are used to help traverse the tree datasource:

56 C Programmer’s Guide

Advanced Topics

GetNumRoots()
GetNumcChildren()

m GetNumSiblings()

Before planning the logic of your application, you should familiarize
yourself with the basic behaviors of these hode-count functions. These
functions return the number of applicable nodes that are present in the
datasource at the time you create the edit object. The current number of
applicable nodes is not reflected until the editing operations are committed
to the datasource.

The following code fragment does not work. In this case, the while loop
never terminates, because the edit operations are not committed to the
datasource before each evaluation of the control criterion. Specifically, the
VARTR_GetNumRoots() function returns the same value on each cycle of
the loop, so the control criterion never evaluates FALSE.

Var TrPtr treeDs;

Var Tr NodeAccessor Pt r nodeAccessor ;
VarTrEdi t Ptr edit TreeDs;

I nt 16 naxRoot s;

treeDs = VARTR Create();
nodeAccessor = VARTRNODEACCESSOR Create();
editTreeDs = VARTR StartEdit(treeDs);

/* Add nodes as |long as the number of root nodes is |less than
maxRoots. */
maxRoots = 10;
whil e (VARTR Get NunRoot s(treeDs) < maxRoot s)
VARTRNODEACCESSOR_GoNt hRoot (VARTR_Get NunRoot s(treeDs),
nodeAccessor) ;
VARTREDI T_AddNode(edi t TreeDs, nodeAccessor);

DSEDI T_End((DsEdi t Pt r) edi t Tr eeDs) ;

However, if you create and destroy the edit object within the while
loop—effectively, the same as using the “convenience” API function— you
can use the return value from the VARTR_GetNumRoots() function as a
counter. In this example, the VARTR_StartEdit() and DSEDIT_End()
functions are located, respectively, as the first and last executable lines of
code within the while loop:

Var TrPtr treeDs;

Var Tr NodeAccessor Pt r nodeAccessor ;
Var TrEdi t Ptr edit TreeDs;

I nt 16 naxRoot s;

treeDs = VARTR Create();
nodeAccessor = VARTRNODEACCESSOR Create();
edit TreeDs = VARTR StartEdit(treeDs);

maxRoots = 10;
whil e (VARTR Get NunRoot s(treeDs) < maxRoots) {
/* Create edit object. */
editTreeDs = VARTR StartEdit(treeDs);
VARTRNODEACCESSOR_GoNt hRoot (nodeAccessor,
VARTR_Get NunRoot s(treeDs));
VARTREDI T_AddNode(edi t TreeDs, nodeAccessor);

/* Commit the edit operations and destroy the edit object. */

DSEDI T_End((DsEdi t Ptr)edi t TreeDs);

C Programmer’s Guide 57

Chapter 3 Tree Datasource: Managing Hierarchical Data

The preceding example is the same as using the “convenience” API as
shown here:

Var TrPtr treeDs;
Var Tr NodeAccessor Ptr nodeAccessor;
I nt 16 nmaxRoot s;

treeDs = VARTR Create();
nodeAccessor = VARTRNODEACCESSOR Create();

maxRoots = 10;
whi | e (VARTR Get NunRoot s(treeDs) < maxRoots) {
VARTRNODEACCESSOR_GoNt hRoot (nodeAccessor,
VARTR_Get NunRoot s(treeDs));
/* Create edit object, add a node, comit the edit operations
and, destroy the edit object. */
VARTR_AddNode(treeDs, nodeAccessor);

}

The next code fragment does not work. Upon initial examination, this
appears to be a simpler way to perform the intended tasks of the two
preceding examples:

Var TrPtr treeDs;

Var Tr NodeAccessor Pt r nodeAccessor ;
VarTrEdi t Ptr edit TreeDs;

Int16 i, maxRoots;

treeDs = VARTR Create();
nodeAccessor = VARTRNODEACCESSOR Create();
editTreeDs = VARTR StartEdit(treeDs);

i = 0;

maxRoots = 10;

VARTRNCDEACCESSOR_GoFi r st Root (nodeAccessor) ;

whi |l e (VARTR_| sNodeVal i d(treeDs, nodeAccessor) &&

(i < maxRoots))

VARTREDI T_AddNode(edi t TreeDs, nodeAccessor);
VARTRNODEACCESSOR_GoNext (nodeAccessor) ;
i ++;

}

DSEDI T_End((DsEdi t Pt r) edi t Tr eeDs) ;

In the preceding code fragment, the IsNodeValid() control-loop criterion
evaluates FALSE after only the first pass through the loop, because the node
created in the first pass is not yet committed to the datasource.

In this code fragment, the Int16 declaration and while loop create the same
nodes as the preceding code fragment, except that the nodes are created as
children of the parent node instead of as siblings of the first child:

Var TrPtr treeDs;

Var Tr NodeAccessor Ptr nodeAccessor;
VarPtr varl D, var Val ue;

Var TrEdi t Ptr edit TreeDs;

treeDs = VARTR Create();

nodeAccessor = VARTRNODEACCESSOR Create();
varl D = VAR New() ;

var Val ue = VAR New();

/* Using the "conveni ence" APl, add a node at the next enpty
root - node | ocation. */

VARTRNODEACCESSOR_GoNt hRoot (nodeAccessor,

VARTR_Get NunRoot s(treeDs));

VARTR_AddNode(treeDs, nodeAccessor);

/* Set variants and use themto set the node | D and Val ue
properties. */

58 C Programmer’s Guide

Advanced Topics

var| D->Set Str("r0000");

var Val ue->Set Str (" Fi rst Root Node");

VARTR_Set Nodel D(treeDs, nodeAccessor, varlD);
VARTR_Set NodeVal ue(treeDs, nodeAccessor, varVal ue);

/* Add nodes as long as the nunber of root nodes is |less than
maxNodes. */

Int16 naxNodes = 10;

whil e (VARTR_Get NuntChi | dren(treeDs, nodeAccessor) < maxNodes)

{

/* Create a datasource edit object, and assign it to the edit
poi nter variable. */
editTreeDs = VARTR StartEdit (treeDs);

/* Descend fromthe parent to the next "enpty" chil d-node
| ocation. */
VARTRNODEACCESSOR_GoNt hChi | d(nodeAccessor,
VARTR_Get Nunthi | dren(treeDs, nodeAccessor));

/* Add a node and set the node |ID and Val ue properties. */
VARTREDI T_AddNode(edi t TreeDs, nodeAccessor);
var| D->Set Str (" c0000");
var Val ue->Set Str (" Chi |l d Node");
VARTREDI T_Set Nodel D(edi t TreeDs, nodeAccessor, varlD);
VARTREDI T_Set NodeVal ue(edi t TreeDs, nodeAccessor, varVal ue);

/* Commit the changes to the datasource, and destroy the edit
object. */
DSEDI T_End((DsEdi t Ptr)edi t TreeDs);

/* Return the node accessor to the parent node. */
VARTRNCODEACCESSOR_GoPar ent (nodeAccessor) ;
}

/* Di spose of the accessor and datasource. */
VARTRNODEACCESSOR_Di spose(nodeAccessor) ;

RES Rel ease((ResPtr)treeDs);

In this case, the number of existing child nodes is used as an argument for
the VARTRNODEACCESSOR_GoNthChild() function. The value
returned by the VARTR_GetNumChildren() function is a one-based
counter, while the VARTRNODEACCESSOR_GoNthChild() function
expects a zero-based index. This ensures that the node accessor points to the
next unoccupied sibling node.

Managing the Cursor

When building or editing the tree datasource interactively through a view
widget, you can set a cursor in the datasource to follow the movement of the
cursor in the view. The functions in Table 3-7 supply cursor management

for the tree datasource:

Table 3-7 Cursor Functions

Function Description

Set Cursor (treeDs, accessor) Set accessor as the datasource cursor.
Get Cur sor (treeDs) Get the datasource cursor.

Acting on Multiple Nodes

Some datasource editing operations may require more than one node
accessor. One example of the use of multiple node accessors is for moving
or copying a node, or a subtree represented by the node, to a new location

C Programmer’s Guide 59

Chapter 3 Tree Datasource: Managing Hierarchical Data

in the hierarchy. This is the same as assigning the node, subtree, or copy a
new parent.

Figure 3-15 shows the child nodes of the first root being assigned the second
root node as a new parent node:

- o
Tree Datasource I——| First Root Node I——| First Child Node _|,

—| Second Child Node |

! Third Child Node |

Tree Datasource I——| First Root Node

—| Second Root Node I——| First Child Node |

— Second Child Node |

| Third Child Node |

Figure 3-15 Assigning Child Nodes a New Parent Node

This code fragment uses the “convenience” API functions to perform this
operation in the tree datasource using two node accessors,
nodeAccessorFrom and nodeAccessorTo:

Var TrPtr treeDs;

Var Tr NodeAccessor Pt r nodeAccessor From
Var Tr NodeAccessor Pt r nodeAccessor To;
VarPtr varl D, var Val ue;

treeDs = VARTR Create();

nodeAccessor From = VARTRNODEACCESSOR Create();
nodeAccessor To = VARTRNODEACCESSOR Create();
varlD = VAR . New() ;

var Val ue = VAR New()

/* Using the "convenience" APls, create the initial hierarchy:
one root root node with the three children and a second root
node with no children. */

VARTRNCODEACCESSOR_GoFi r st Root (nodeAccessor From ;

VARTR_AddNode(treeDs, nodeAccessorFrom ;

VAR Set Str(varl D, "0");

VAR Set Str(varVal ue, "First Root Node");

VARTR_Set Nodel D(t reeDs, nodeAccessor From varlD);

VARTR_Set NodeVal ue(treeDs nodeAccessor From var Val ue);

VARTRNODEACCESSOR_GoFi r st Chi | d(nodeAccessor From ;
VARTR_AddNode(treeDs, nodeAccessorFrom ;

VAR Set Str(varlD, "0,0");

VAR_Set Str(varValue, "First Child Node");

VARTR_Set Nodel D(treeDs nodeAccessor From varlD);
VARTR_Set NodeVal ue(treeDs, nodeAccessor From var Val ue);

VARTRNODEACCESSOR_GoNext (nodeAccessor Fron) ;
VARTR_AddNode(treeDs, nodeAccessorFrom ;

60 C Programmer’s Guide

Advanced Topics

VAR Set Str(varlD, "0,1");

VAR Set Str(varVal ue, " Second Child Node") ;

VARTR_Set Nodel D(treeDs, nodeAccessor From varlD);
VARTR_Set NodeVal ue(treeDs nodeAccessor From var Val ue);

VARTRNODEACCESSOR_GoNext (nodeAccessor Fron) ;
VARTR_AddNode(treeDs, nodeAccessorFrom ;

VAR Set Str(varlD, "0,2");

VAR_Set Str(varValue, "Third Child Node");

VARTR_Set Nodel D(treeDs nodeAccessor From varlD);
VARTR_Set NodeVal ue(treeDs, nodeAccessor From var Val ue);

VARTRNODEACCESSOR_GoNt hRoot (nodeAccessor From

VARTR_Get NunRoot s(treeDs));
VARTR_AddNode(treeDs, nodeAccessorFrom ;
VAR _Set Str(varl D, "1");
VAR_Set St r (var Val ue, "Second Root Node");
VARTR_Set Nodel D(treeDs nodeAccessor From varlD);
VARTR_Set NodeVal ue(treeDs, nodeAccessor From var Val ue);

/* Move the "Front accessor to the first root node. */
VARTRNCODEACCESSOR_GoFi r st Root (nodeAccessor From ;

/* Move the "To" accessor to the second root-node. */
VARTRNODEACCESSOR_GoNt hRoot (nodeAccessor To, 1);

/* Execute the while loop until all children of the first root
node are relocated. */
whil e (VARTR | sNodeVal i d(treeDs, nodeAccessorFrom) {

/* Move the "Fron' accessor to the FIRST child of the first
root node. */
VARTRNODEACCESSOR_GoFi r st Chi | d(nodeAccessor From) ;

/* Move the "To" accessor to the LAST EMPTY child | ocation of
t he second root node. */

VARTRNODEACCESSOR_GoNt hChi | d(nodeAccessor To,
nilr eeDs- >CGet Nunthi | dr en(nodeAccessor To)) ;

/* Add new child with ID and Val ue properties of the "Front
node. */
VARTR_AddNode(treeDs, nodeAccessorTo);
VARTR_Set Nodel D(treeDs nodeAccessorTo
VARTR_Get Nodel D(treeDs, nodeAccessorFrom);
VARTR_Set NodeVal ue(treeDs, nodeAccessorTo,
VARTR_Get NodeVal ue(treeDs, odeAccessorFron));

/* Renove the child node fromthe first root. */
VARTR_RenpveNode(treeDs, nodeAccessor Fronj;

/* Move the "Fronm' and "To" node accessors to the first and
second root nodes, respectively. */

VARTRNODEACCESSOR _GoPar ent (nodeAccessor Fron ;

VARTRNCODEACCESSOR_GoPar ent (nodeAccessor To) ;

}

VAR _Del ete(varlD);

VAR Del et e(var Val ue)

VARTRNODEACCESSCR _Di spose(nodeAccessor From ;
VARTRNODEACCESSCOR _Di spose(nodeAccessor To) ;
RES Rel ease((ResPtr)treeDs);

Persistent Data Storage and Relational Tables

The tree datasource has no mechanism for persistent data storage.
However, you can design your own scheme for writing data to, and reading
data from, a persistent storage medium. You may want to store the
hierarchy in a flat-file format. Alternately, you could create a database

C Programmer’s Guide 61

Chapter

62

3

Tree Datasource: Managing Hierarchical Data

schema or spreadsheet file to store the pertinent information for the
hierarchy.

Relying on the uniqueness of the node ID, you can also use the inherent
hierarchical design of the tree datasource to store node information as part
of the corresponding row data in a table datasource. You would construct
the table datasource indirectly by a query to a relational table. You could
then design an algorithm to reconstruct the tree datasource from the row
data—one row for each node—in the table datasource each time the
application executes.

To associate nodes with row data from a relational table, use a table
datasource to store extended data pertaining to the node. Allow the tree
datasource to store the relationship between the rows. In this case, each
node ID in the tree datasource is unique and corresponds to a column value
in exactly one row in the relational table.

C Programmer’s Guide

Chapter

Concepts

Graph Datasource:
Managing Graph Data

A graph datasource is a container of freely arranged nodes and edges. The
graph datasource is similar to the other datasources—for example, list
(sequential), table (tabular), and tree (hierarchical) datasources—because it
is based on a specific data model. In this case, the data model is a graph,
which combines hierarchical and neighbor relationships.

You can display the contents of the graph datasource in a DGRAM view,
which is supplied by the Open Interface Element. The Elements
Environment datasource/views mechanism supports the interface between
the datasource and the DGRAM view.

This chapter discusses these topics:
m Concepts

m Options for the DGRAM View
m Building a Graph Datasource

Note: Data stored in the graph datasource is not persistent. However, you
can write a routine to traverse the datasource and write its contents
to a persistent data-storage medium, such as a local hard disk or
database.

If you haven’t already done so, read the chapter on the DGRAM widget in
the Open Interface Element C User's Guide. See Chapter 2 of this book for
information about registering a view with a datasource.

The graph datasource stores information for a graph data model. These
concepts describe its use:

Graph Datasource

Node

Edge

Graph

Accessor

Cursor

Edit Object

This section discusses thee preceding concepts, which are then used in

“Building a Graph Datasource” on page 117 to tell you how to program a
graph datasource.

Graph Datasource

The graph datasource—an object of the VARGR class—is a container class
that stores and manages nodes and the edges that define the relationships

C Programmer’s Guide 63

Chapter

Node

64

4

Graph Datasource: Managing Graph Data

between them. When your application disposes of a graph datasource, any
contained objects are also disposed.

Using the APIs supplied with the graph datasource (VARGR object), your
application can add and remove nodes and edges contained by the
datasource object. You can also use the methods in the VARGR API to
enumerate the nodes and edges in the datasource and to traverse them with
an index.

A node is one of the two basic components of a graph (the other being edge;
see “Edge” on page 67). Each node has these properties:

ID and Value

XOrigin and YOrigin
Height and Width
Custom Node Properties
Edge References

Each node also has references to its:
m “In” edges

m “Out” edges

m Undirected edges

The API uses these references to traverse the graph datasource. In the
conceptual figures that follow, beginning with Figure 4-1, these references
are named, respectively:

= InEdge
m OutEdge
m UndirEdge

ID Vaue
XOrigin| YOrigin
Width | Height
Custom Properties
InEdge

OutEdge
UndirEdge q—'

Figure 4-1 Structure of a Node

As Figure 4-1 shows, each node has references to its:

m Parents
m Children
m Neighbors

If any of these references accesses a memory location where no edge exists,
then the reference indicates that the current edge is the last valid edge. If the
InEdge reference has access to no valid edge location, then the edge is a root
node, which has no parent. Likewise, if the OutEdge reference has access to
no valid edge location, then the node has no children.

C Programmer’s Guide

Concepts

You can also think of the edge references in Figure 4-1 as the edge-reference
mechanisms shown in Figure 4-2;

From Parents “In" Edges

_ “Out” Edges —»1_;_0 Ehl_ldr:sn
- — o Neighbors
From Neighbors| Undir” Edges g

Figure 4-2 Edge-Reference Mechanisms

The arrows in the edge-reference mechanism in Figure 4-2 represent the
edges that connect the related nodes. The arrows in Figure 4-1, on the other
hand, refer to the edges that define the node relationships.

You can use the functions in the VARGRNODEACCESSOR API to:
m Get the number of related parent, child, and neighbor nodes
m Access any of them by index

For more information about node accessors, see “Node Accessor” on page
74.

ID and Value

Each node in the graph datasource has an 1D property and a Value
property. Both the ID and Value properties store variant (VAR) data and
can contain any variant-supported type. For example, the ID property may
be expressed as a variant containing a string, while the VValue property may
be an object reference.

ID

You can assign any variant data to a node ID property. Node IDs need not
be unique, but they may be more useful if they are. You can assign data to
the 1D property when you create a node or during separate edit sessions.

A unique node ID can be very helpful, especially if you need to associate it
with the primary key of a relational-database table. For example, if a node
represents a device on a computer network, you may want to set the node
ID to its asset number, set the Value to the device name, and associate the
node with a row in a table datasource that shares the same asset number.

Value

Like the node ID, you can set the node Value property to any variant type.
The Value property represents the “data” part of the node contents. Your
use of the Value may range from an employee name in an organizational
hierarchy to an employee number acting as a key to display employee data
stored in a row of a table datasource.

XOrigin and YOrigin

You can use the XOrigin and YOrigin properties to store the x and y
coordinates, respectively, of the upper left corner of the bounding box for
the node when it is represented in the DGRAM view. Specifically, XOrigin
and YOrigin store the number of pixels from the left side and top of the
DGRAM view.

C Programmer’s Guide 65

Chapter

66

4

Graph Datasource: Managing Graph Data

Note: XOrigin and YOrigin can actually store any variant data.

Height and Width

You can use the Height and Width properties to store the lengths, in pixels,
of the sides of the bounding box for a node in the DGRAM view.

If you do not set these properties, the size of the node is determined by the
DGRAM view options or the default sizes for the view widget. If there are
values, however, they override any defaults that the view supplies.

Note: As with the XOrigin and YOrigin properties, you can set the Height
and Width properties to any variant value.

For more information about DGRAM view options, see “Options for the
DGRAM View” on page 84.

Custom Node Properties

Custom node properties are additional properties that you can define, which
qualify individual nodes or collections of nodes. You can create a property
and set or get its value using the VARGR and VARGREDIT APIs. For more
information, see “Custom Node Properties” on page 103.

Edge References

Each node has three edge references to support navigation to its parent, child,
and neighbor nodes. Edge references are used by the APIs to traverse and
edit the graph datasource.

Edges are either directed—that is, “in”” or “out” edges—or undirected. A node
may have any number of parents, children, and neighbors. Any two nodes
can have multiple edges relating them. If a pair of nodes is related through
multiple edges, all of the edges must be either directed or undirected. Two
nodes cannot be related through both directed and undirected edges.

Directed-Edge References

A reference to a directed edge defines a parent-child (hierarchical or
antecedent) node relationship. In Figure 4-11:

m The OutEdge reference of the parent node defines the link from the
parent or “source” node to the directed edge.

m The ToNode reference of the directed edge defines the link to the child
or “target” node.

Also in Figure 4-11:

m The InEdge reference of the child node defines the link from the child
node to the directed edge.

m The FromNode reference of the directed edge defines the link back to
the parent node.

Undirected-Edge References

A reference to an undirected edge defines a neighbor node relationship. In

Figure 4-12:

m The UndirEdge reference of one neighbor defines the link to the
undirected edge.

C Programmer’s Guide

Concepts

m The ToNode reference of the undirected edge defines the link to the
neighboring node.

Also in Figure 4-12:

m The UndirEdge reference of the neighboring node defines the link to the
undirected edge.

m The FromNode of the undirected edge defines the link back to the initial
neighbor node.

Edge

An edge is one of the two basic components of a graph (the other being node;
see “Node” on page 64). It indicates a relationship between any two nodes
in a graph datasource. Edges cannot exist apart from nodes. As a result, an
edge becomes undefined if the node at either end of it is removed.

Each edge has these properties:
m IDand Value

m Directed

m Custom Properties

In addition to these properties, each edge also references the nodes at either
end of it. Figure 4-3 shows these as “FromNode” and “ToNode.” These
references respectively access either:

m The parent and child nodes
m The nth and nth+1 neighbor nodes

ID | Vaue
Directed

L Custom Properties
FromNode

ToNode

Figure 4-3 Edge Structure

Alternately, you can think of the references in Figure 4-3 as the node
references shown in Figure 4-4 and Figure 4-5. In these edge-centric figures,
the node-reference arrows represent the OutEdge and InEdge references of
the respective parent and child nodes.

M “From” Node

“To” Node

To Child

Figure 4-4 Node-Reference Mechanisms for Parent-Child Nodes

In Figure 4-5, the node-reference mechanism uses connecting lines without
arrows to represent neighbor relationships. Undirected edges still use
ToNode and FromNode references to access the nodes at either end, but

C Programmer’s Guide 67

Chapter

68

4

Graph Datasource: Managing Graph Data

From Nei ghbor’

they are significant only when traversing the nodes to find a particular node
using an index.

“From” Node
“To” Node

To Neighbor

Figure 4-5 Node-Reference Mechanisms for Neighbor Nodes

ID and Value

Each edge in the graph datasource has an ID property and a Value
property. Both the ID and Value properties store variant data. For example,
the ID may be set to a variant containing a string, while the VValue may be
an object reference.

ID

You can assign any variant data to an edge 1D property. Edge IDs need not
be unique, but they may be more useful if they are. You can set the IDs when
you create the edge or during a separate edit session.

Like the node ID, a unique edge ID can be very helpful, especially if you
need to associate it with the primary key of a relational-database table. If a
node represents a device on a network, an edge may represent the cable that
connects the networked devices, which also needs a unique asset number.
You can set its asset number to the edge ID, set the cable name to the Value,
and associate the node with a row in a table datasource that shares the asset
number.

Following this paradigm, you may consider the nodes “active” network
components, while the edges are “passive” components. All components in
the network are material resources, each requiring an asset number. For
cable that is ordered in bulk, an asset number may be used for an entire roll.
Edges that represent segments of bulk-ordered cable in the graph
datasource may all share a common edge ID. Other passive components
that are separately ordered, such as cables for peripheral devices and
software keys, may have different asset numbers and unique edge IDs.

Value

Edge Value properties, like edge IDs, are variant types. They represent the
“data” part of the edge contents. You may use the Value property to simply
elaborate on the relationship between the two nodes at either end of the
edge, or you may adopt numerous other uses for it.

Directed

Each edge has a Directed property that indicates whether the edge is
directed or undirected:

m If the Directed property is TRUE, the edge connects a parent node to a
child node.

m |f the Directed property is FALSE, the edge connects two neighbor
nodes.

C Programmer’s Guide

Concepts

Any two nodes can have multiple edges relating them. If multiple edges
relate a pair of nodes, all of the edges must be either directed or undirected.
Two nodes cannot be related through both directed and undirected edges.

While you can define multiple directed or multiple undirected edges
between nodes, you cannot define both directed and undirected edges
between a pair of nodes. The node relationship in Figure 4-6 is invalid,
because both directed and undirected edges relate the two nodes.

Figure 4-6 Not Supported: Combining Directed and Undirected Edges

Directed Edges

A directed edge indicates a parent-child, or antecedent, relationship between
two nodes. Each directed edge can access, through the FromNode reference,
to the node whose OutEdge reference accesses it. Each directed edge also
can access, through the ToNode reference, the node whose InEdge reference
accesses it. For an illustration of this relationship, see “Parent-Child Node
Relationship” on page 72.

As shown in Figure 4-7, the parent-child relationship loosely describes a
hierarchical node relationship. Because any two nodes may have multiple
directed edges defining their relationship, one node may relate to another
node as both a parent and a child. However, they may not be related by a
combination of directed and undirected edges.

From To

To From

Figure 4-7 Single and Multiple Directed Edges

Although you can change a directed edge to an undirected edge by setting
Directed to FALSE, you cannot change the direction of a directed edge.

FromNode and ToNode (Figure 4-3) are determined by the order in which
nodes are specified when the edge is added, which determines its direction.

If you need to change the direction of an edge, remove the existing edge
using the RemoveEdgeBetween(vargr, source, target) function, and add
another directed edge using the AddDirEdge(vargr, source, target) function
from either the VARGR or VARGREDIT API. Using the parent-child
paradigm, the parent node would be the source node.

Undirected Edges

An undirected edge indicates a neighbor, or nonhierarchical, relationship between
two nodes. You can create an undirected edge, using the
AddUndirEdge(vargr, nodel, node2) function from either the VARGR or the

C Programmer’s Guide 69

Chapter

Graph

70

4

Graph Datasource: Managing Graph Data

VARGREDIT API, to connect any two nodes that are not already related
hierarchically.

Each undirected edge, through the FromNode and ToNode references,
respectively, accesses nodel and node2 specified by the AddUndirEdge()
function. For an illustration of this relationship, see “Neighbor Node
Relationship” on page 73.

Figure 4-8 shows the nonhierarchical relationship between neighbor nodes.
You can create multiple undirected edges to relate any two nodes just as you
can with directed edges. However, with undirected edges, there is no real
significance to the FromNode and ToNode references, except that they
determine the order in which the nodes in the datasource are traversed.

From To
To From
From To
To From

Figure 4-8 Single and Multiple Undirected Edges

For example, when traversing neighboring nodes, the GoNext() and
GoPrev() functions from the VARGRNODEACCESSOR API use the
FromNode and ToNode references to move the accessor to the nth
neighboring node.

If you need to change the traversal order, remove the existing edge using the
RemoveEdgeBetween(vargr, nodel, node2) function, and add another
undirected edge using the AddUndirEdge(vargr, nodel, node2) function
from the VARGR API. If you need to change several edges, use the
functions from the VARGREDIT API to complete the edit operations more
efficiently.

Custom Properties

Custom properties are additional properties that you can define. You can
create a property and set and get its value using the VARGR and
VARGREDIT APIs. For more information, see “Custom Link Properties”
on page 110.

A graph is a general mathematical abstraction that can represent many data
models. Each graph consists of:

m Data represented by node objects
m Edge objects representing the relationships between the nodes

Thus, a graph is a collection of nodes with various relationships between
them

A graph datasource may contain one or more graphs. It may also be
considered a graph, itself. A graph may be either connected or
disconnected. In a connected graph, a node accessor can traverse all nodes in

C Programmer’s Guide

Concepts

the graph through a common edge using the VARGRNODEACCESSOR
API. In a disconnected graph, one or more of the nodes is not related to the
other nodes through an edge.

These concepts are instrumental in describing graphs:
= Root Node

m Parent-Child Node Relationship

m Neighbor Node Relationship

Nodes may have parents, children, and neighbors. These associations are
established using directed and undirected edges. A directed edge indicates
a parent-child relationship. An undirected edge indicates a neighbor
relationship.

In Figure 4-9, nodes A, C, D, and G are root nodes, because they have no
parent nodes. Node A is the parent of node B. Node B has two neighbors,
nodes C and D, which are also neighbors to each other. Node D has two
children, nodes E and F. In addition to being a root node, node G is also
disconnected from the remainder of the graph, because it has no edges.

A

!

2N

E F G

Figure 4-9 Node Relationships in a Graph

For more information about nodes, see “Node” on page 64. For more
information about edges, see “Edge” on page 67.

Root Node

A root node is a node that has no parent node, but may have child and
neighbor nodes. This characteristic differentiates them from all other nodes.

{9} ID Vaue
XOrigin| Y Origin
Width | Height
Custom Properties
InEdge

OutEdge
UndirEdge q—’

Figure 4-10 Unique Characteristics of a Root Node

C Programmer’s Guide 71

Chapter

72

4

Graph Datasource: Managing Graph Data

Relative to a root node, you can position a node accessor to add other root
nodes. Root nodes can be related through undirected edges, or they may
simply be disconnected—inaccessible through a common edge—from the
other root nodes.

Note: If you add a directed edge between two root nodes, one of the related
nodes becomes a child of the other and is no longer a root node.

Parent-Child Node Relationship

A parent-child node relationship is hierarchical or antecedent. You establish
such a relationship in a graph datasource through a directed edge.

Figure 4-11 shows how the node references in the node-edge-node
structure establish the parent-child relationship.

Parent ¥
ID Vaue to Neighbor
XOrigin| YOrigin
Width | Height
Custom Properties
— InEdge J R
OutEdge T ID Value
UndirEdge Directed=TRUE
Custom Properties
FromNode
ToNode
ID Vaue | child
XOrigin| YOrigin
Width | Height to Neighbor
Custom Properties
InEdge
OutEdge
UndirEdge to Child

Figure 4-11 Parent-Child Node Relationship

You connect the parent and child nodes through an edge with its Directed
property set to TRUE. For directed edges, FromNode identifies the parent
node, and ToNode identifies the child node.

Using the VARGRNODEACCESSOR API, you can instruct a node
accessor to move from a parent node to its first child node with the
GoFirstChild(node) function. You can then use the GoNext(node) and
GoPrev(node) functions to traverse the child nodes of the parent node.

The GoNext(node) function is meaningless unless one of the “GoFirst” or
“GoNth” functions executes first. These functions include:

GoFirstRoot() and GoNthRoot()
GoFirstNeighbor() and GoNthNeighbor()
GoFirstParent() and GoNthParent()
GoFirstChild() and GoNthChild()

C Programmer’s Guide

Concepts

To add a child node after the last child node:

1.
2.
3.

Move the accessor to the last valid child node.

Execute the GoNext(node) function.
Using either the VARGR or VARGREDIT API, execute the

C Programmer’s Guide

AddNode(node) function.

Because a node can have multiple parents, you can use the GoNext(node)
and GoPrev(node) functions to traverse the parent nodes of a child node.
You can also add new parents.

Neighbor Node Relationship

Two nodes that share an undirected edge are neighbors. Neighbor nodes may
or may not share a common parent. Figure 4-12 shows the node-edge-node
relationship of two neighbors.

Parent Parent Neighbor

ID Value ID Value

XOrigin| Y Origin ID Vaue XOrigin| Y Origin

Width | Height Directed=FAL SE Width | Height
Custom Properties Custom Properties Custom Properties
— InEdge -1 FromNode | L]] InEdge
OutEdge H ToNode — OutEdge
UndirEdge [UndirEdge :l’
Child Child

Figure 4-12 Neighbor Node Relationship

The two nodes in Figure 4-12 are connected through an edge with its
Directed property set to FALSE. For undirected edges, FromNode and
ToNode define the order in which nodes are traversed, but do not imply a
direction.

Using the VARGRNODEACCESSOR API, you can instruct a node
accessor to move from a node to its first neighbor with the
GoFirstNeighbor(node) function. You can then use the GoNext(node) and
GoPrev(node) functions to traverse the neighbor nodes.

The GoNext(node) function is meaningless unless one of the “GoFirst” or
“GoNth” functions executes first. These functions include:

GoFirstRoot() and GoNthRoot()
GoFirstNeighbor() and GoNthNeighbor()
GoFirstParent() and GoNthParent()
GoFirstChild() and GoNthChild()

To add a neighbor node:

1. Position the accessor on a valid node.
2. Execute the GoNext(node) function.

3. Using the VARGR or VARGREDIT API, execute the AddNode(node)
function.

73

Chapter

Accessor

74

4

Graph Datasource: Managing Graph Data

An accessor is an index mechanism by which you can traverse the nodes and
edges in the graph datasource. You cannot access hodes or edges directly,
therefore you must use accessors to access them. You must also use
accessors to identify any node or edge to be modified by an edit operation.

The graph datasource supplies two basic accessor types:
m Node Accessor
m Edge Accessor

There are four types of edge accessors, which give you added flexibility and
provide optimal navigational performance for your application.

The graph datasource also support a node cursor and an edge cursor. For
more information about cursors, see “Cursor” on page 76.

Node Accessor

A node accessor is a node index mechanism that references and traverses the
nodes in the graph datasource. You cannot access the nodes directly,
therefore you must use a node accessor to access them.You must also use
accessors to identify the node in a node-level edit operation.

You need at least one node accessor to traverse—using the
VARGRNODEACCESSOR APIl—the nodes in a graph datasource. After
moving the node accessor to the appropriate node in the graph, your
application can modify either the datasource structure or the properties of
the nodes it contains.

In many cases, you need two node accessors to identify the endpoints of an
edge relating a pair of nodes. This code fragment shows how to create and
destroy two node accessors:

/* Declare pointer variables. */
Var G Ptr graphDs;

/* Decl are node-accessor pointers. */
Var G NodeAccessor Pt r nodeAccessor Fr om
Var Gr NodeAccessor Ptr nodeAccessor To;

graphDs = VARGR Create();

/* Create node accessors. */
nodeAccessor From = VARGRNODEACCESSOR Create();
nodeAccessor To = VARGRNODEACCESSOR Create();

I* Destroy the node accessor. */
VARTRNODEACCESSOR _Di spose(nodeAccessor) ;

I* Destroy the graph datasource. */
RES Rel ease((ResPtr)graphDs);

The preceding code fragment declares two accessors—nodeAccessorFrom
and nodeAccessorTo—because two nodes are required to define an edge
between them.

Edge Accessor

An edge accessor is an edge index mechanism that references and traverses
the edges in the graph datasource. You cannot access edges directly,

C Programmer’s Guide

Concepts

therefore you must use an edge accessor to access them. There are three
types of edges:

m “In” edges
= “Out” edges
m Undirected edges

These three edge-accessor APIs support the preceding respective edge
types:

m VARGRINEDGEACCESSOR

s VARGROUTEDGEACCESSOR

m VARGRUNDIREDGEACCESSOR

Use the API functions supplied with these accessor objects to traverse and
edit the edges in the datasource. APls for “in,” “out,” and undirected edge
accessors pertain only to edges of the node referenced by the node accessor

that defined the edge accessor.

In addition to the type-specific accessor APIs, your application can traverse
all of the edges in the graph datasource using the functions supplied with
the universal VARGRALLEDGEACCESSOR API. “All” edge accessors do
not require a node accessor when they are created; these pertain to the entire
graph datasource.

This code fragment shows how to create an undirected edge between two
nodes and how to set the edge Value property:

/* Declare pointer variables. */
Var G Ptr graphDs;
Var Ptr var Val ue;

/* Declare a datasource edit pointer. */
Var G NodeEdi t Pt r edi t Node;

/* Declare two node accessors for the two nodes at either end of
the edge to be added. */

Var Gr NodeAccessor Ptr nodeAccessor From

Var G NodeAccessor Pt r nodeAccessor To;

/* Declare an undirected edge-accessor pointer. */
Var Gr Undi r EdgePt r undi r EdgeAccessor;

graphDs = VARGR Create();
edi t Node VARGR St art Edi t (graphDs) ;
var Val ue VAR _New() ;

/* Create two node-accessors, and assign themto
nodeAccessor From and nodeAccessor To. */

nodeAccessor From = VARGRNODEACCESSOR Create();

nodeAccessor To = VARGRNODEACCESSOR Create();

/* Create an undirected edge accessor based on the node accessed
by nodeAccessorFrom assign it to undirEdgeAccessor. */
undi r EdgeAccessor =
VARGRUNDI REDGEACCESSOR_Cr eat e(nodeAccessor Fronj ;

/* Create several root nodes. */

/* Move nodeAccessorFromto the first root node, and nove
nodeAccessorTo to the second root node. */
VARGRNODEACCESSOR_GoFi r st Root (nodeAccessor Fronj ;
VARGRNCODEACCESSOR_GoFi r st Root (nodeAccessor To) ;
VARGRNODEACCESSOR _CGoNext (nodeAccessor To) ;

/* Add an undirected edge between the nodes accessed by
nodeAccessor From and nodeAccessor To. */

C Programmer’s Guide 75

Chapter

Cursor

76

4

Graph Datasource: Managing Graph Data

VARGREDI T_AddUndi r Edge(edi t G- aphDs,
nodeAccessor From nodeAccessor To);

/* Use undirEdgeAccessor to set the Value property of the new
edge to "Nei ghbor." */
VAR_Set St r(var Val ue, "Nei ghbor");
VARGREDI T_Set EdgeVal ue(edi t GraphDs,
undi r EdgeAccessor, var Val ue);
VAR_Del et e(var Val ue) ;
DSEDI T_End((DsEdi t Ptr) edi t GraphDs) ;

In the preceding example:
1. The creation of several root nodes is implied.
2. Two node accessors are created to access the first two root nodes.

3. Anundirected edge accessor is declared, using nodeAccessorFrom as
an argument.

4. Anundirected edge is defined using the two node accessors.

5. The variant, “Neighbor,” is assigned to the VValue property referenced
by the undirected edge accessor.

The graph datasource supports two types of cursor:
m Node Cursor
m Edge Cursor

The node cursor and edge cursor are properties of the graph datasource.
Like the Title property, you can set and get the node and edge cursors.

When a DGRAM view is registered with the graph datasource, you can set
an option to cause the view either control the datasource cursor or simply
reflect the current location of the datasource cursor as it traverses the
internal hierarchy.

Node Cursor

The node cursor is a property of the graph datasource. You can:

m Set the node cursor by associating it with a node accessor using the
VARGR_SetNodeCursor(vargr, nodeaccessor) function.

m Access the node at the current cursor location using the
VARGR_GetNodeCursor(vargr) function.

This code fragment shows how to set and get a node cursor:

/* Declare a graph-datasource pointer variable. */
Var GrPtr graphDs;

/* Declare a browser pointer variable. */
DG anPtr w n->dgramigt ;
W nPtr wi nDG am

/* Decl are a node-accessor pointer variable. */
Var G- NodeAccessor Ptr nodeAccessor;

/* Declare two variant pointer variables. */
Var Ptr varl D, varVal ue;

/* Create the node and edge accessors. */

wi n- >dgramiAgt =
(DG anPt r) PANEL_Get NanedWjt ((Panel Ptr)wi n, "DG ant');

C Programmer’s Guide

Concepts

/* Assign a graph-datasource object to the graph-datasource
poi nter variable. */
graphDs = VARGR Create();

/* Register the diagranmer with the graph datasource, and set
the "cursor" view option. */
DS _Regi sterVi ew((DsPtr)graphDs, (ResPtr)w n->dgramjt);
DS_Set Vi ew(pt i ons((DsPtr)graphDs (ResPtr)w n- >dgran\/‘gt
‘cursor' " CONTROLS") ;

/* Create node and edge accessors. */
nodeAccessor = VARGRNODEACCESSOR Create();

/* Set a cursor at the location of the node accessor. */
VARGR_Set NodeCur sor (gr aphDs, nodeAccessor);

/* Position the node accessor. */

/* Use "conveni ence" APl functions to edit the ID and Val ue
properties of the node at the current cursor |location. */
VAR Set Str(varl D, "0000");
VAR Set Str(var Val ue, "Node");
VARTR_Set Nodel D(graphDs VARTR_Get NodeCur sor (graphDs), varlD);
VARTR_Set NodeVal ue(gr aphDs,
VARTR_Get NodeCur sor (graphDs), varVal ue);

i Destroy the variant objects.
VAR Del ete(varlD);
VAR_Del et e(var Val ue) ;

I+ Destroy the node accessor. */
VARTRNODEACCESOR _Di spose(hodeAccessor) ;

I* Destroy the graph datasource. */
RES_Rel ease((ResPtr) graphDs);

For information about setting the cursor behavior, see “Options for the
DGRAM View” on page 84.

Edge Cursor

The edge cursor is a property of the graph datasource. You can:

m Set the node cursor by associating it with a node accessor using the
VARGR_SetEdgeCursor(vargr, edgeaccessor) function.

m Access the node at the current cursor location using the
VARGR_GetEdgeCursor(vargr) function.

This code fragment shows how to set and get an edge cursor:

/* Decl are a graph-datasource pointer variable. */
Var G Ptr graphDs;

/* Declare a browser pointer variable. */
DG anPtr w n->dgr amigt ;

/* Decl are a node-accessor pointer variable. */
Var G Al | EdgeAccessor Ptr al | EdgeAccessor;

/* Declare two variant pointer variables. */
VarPtr varl D, var Val ue;

/* Create the node and edge accessors. */
wi n- >dgramiAgt =
(DG anPt r) PANEL_Get NanedWjt ((Panel Ptr)wi n, "DG am');

/* Assign a graph-datasource object to the graph-datasource

poi nter variable. */
graphDs = VARGR Create();

C Programmer’s Guide 77

Chapter 4

Edit Object

78

Graph Datasource: Managing Graph Data

/* Register the diagranmer with the graph datasource, and set
the "cursor" view option. */
DS _Regi sterVi ew((DsPtr)graphDs, (ResPtr)w n->dgramjt);
DS _Set Vi ewOpti ons((DsPtr)graphDs, (ResPtr)w n->dgrangt,
"cursor", "CONTROLS");

)

/* Create node and edge accessors. */
al | EdgeAccessor = VARGRALLEDGEACCESSOR Create();

/* Set a cursor at the location of the edge accessor. */
VARGR_Set EdgeCur sor (graphDs, al | EdgeAccessor);

/* Position the edge accessor. */

/* Use "conveni ence" APl functions to edit the ID and Val ue
properties of the edge at the current cursor |location. */

VAR _Set Str(varl D, "0000");

VAR _Set Str(var Val ue, "Edge");

VARTR_Set Edgel D(gr aphDs, VARTR Get EdgeCur sor (graphDs), varlD);

VARTR_Set EdgeVal ue(graphDs, VARTR Get EdgeCur sor (gr aphDs),

var Val ue) ;

i Destroy the variant objects.
VAR Del ete(varlD);
VAR_Del et e(var Val ue) ;

I+ Destroy the node accessor. */
VARGRALLEDGEACCESSOR _Di spose(al | EdgeAccessor) ;

I* Destroy the graph datasource. */
RES_Rel ease((ResPtr) graphDs);

For information about setting the cursor behavior, see “Options for the
DGRAM View” on page 84.

To perform edit operations on the graph datasource or the nodes it contains,
your application must use an edit object The graph datasource uses edit
objects to:

m Create working copies of the data

m Protect the datasource from corruption resulting from simultaneous
editing sessions sharing a common datasource

The graph datasource supports these editing levels:

m Datasource Editing

= Node Editing

m Edge Editing

If the data to be modified is locked by another view, no edit object can be

created. This locks your application out of the data. To prevent your

application from hanging when it encounters a data lock, you can create

your edit object within a conditional construct that checks for the
availability of the data and supplies an alternative if the data is locked.

Editing the datasource includes the following four steps:
1. Create an edit object

2. Execute the edit operations

3. Commit the edit operations

4. Destroy the edit object

C Programmer’s Guide

Concepts

In addition to the direct approach to managing edit objects, a set of
“convenience” APIs supplies functions that manage the edit objects
automatically for single edit operations. For more information about the
“convenience” APIs, see “Convenience API Functions” on page 80.

Datasource Editing

When you want to modify the structure of the datasource—for example, to
create new nodes and edges—yYyou need a datasource edit object. When you
create a datasource edit object for a particular view, no other view can create
an edit object for that datasource. This includes edit objects for editing node
and edge data, because the node or edge you may want to edit may also be
edited during the datasource-level edit session.

The datasource edit object is created, locking the datasource, when a
VARGR object executes the StartEdit() function. This is a public function
inherited from the DS class. The graph datasource is unlocked when the
DSEDIT_End() function executes, as shown in this example:

/* Declare pointer variables. */

Var G Ptr graphDs;

/* Decl are node and edge accessors. */

Var G NodeAccessor Ptr nodeAccessor;

Var G Al | EdgeAccessor Ptr al | EdgeAccessor;
Var G Edit Ptr edit GraphDs;

/* Assign addresses to pointers. */

graphDs = VARGR Create();

/* Assign node and edge accessors. */
nodeAccessor = VARGRNODEACCESSOR Create();

al | EdgeAccessor = VARGRALLEDGEACCESSOR Create();
/* Create the datasource-level edit object. */
edi t GraphDs = VARGR_Start Edit(graphDs);

/* Position node accessor and edit the graph. */

/* Execute the DSEDI T _End() function. */

DSEDI T_End((DsEdi t Pt r)edi t G- aphDs) ;

When the DSEDIT_End() function executes, all graph modifications are
committed, and the datasource-level lock is released.

Node Editing

To set the data properties of a node in a graph datasource—for example, to
update its x and y coordinates—you do not need to lock the entire datasource
from access by other views with a datasource edit object. Instead, you only
need to lock the node that you want to modify.

A node edit object is created, locking the node referenced by the node
accessor, when an object of the VARGR class executes the
StartNodeEdit(vargr, accessor) function. This is a public function inherited
from the DS class. The accessed node is unlocked when the DSEDIT_End()
function executes, as shown in this example:

Var G Ptr graphDs;

Var G NodeAccessor Pt r nodeAccessor ;
Var G- NodeEdi t Ptr edit Node;

graphDs = VARGR Create();
accessor = VARGRNODEACCESSCR Create();

/* Execute the StartNodeEdit() function. */
edi t Node = VARGR_St art NodeEdi t (graphDs, nodeAccessor);

/* Position the node accessor and edit node data. */

C Programmer’s Guide 79

Chapter

80

4

Graph Datasource: Managing Graph Data

/* Execute the DSEDI T_End() function. */
DSEDI T_End((DsEdi t Pt r) edi t Node) ;

When the DSEDIT_End() function executes, all node modifications are
committed, and the node-level lock is released.

Edge Editing

To set the data properties of an edge in a graph datasource—for example, to
change its label—you do not need to lock the entire datasource from access
by other views with a datasource edit object. Instead, you only need to lock
the edge that you want to modify.

An edge edit object is created, locking the edge referenced by the edge
accessor, when an object of the VARGR class executes the
StartEdgeEdit(vargr, accessor) function. This is a public function inherited
from the DS class. The accessed node is unlocked when the DSEDIT_End()
function executes, as shown in this example:

Var GrPtr graphDs;

Var G Al | EdgeAccessor Ptr al | EdgeAccessor;
Var G EdgeEdi t Ptr edi t Edge;

graphDs = VARGR Create();

accessor = VARGRALLEDGEACCESSOR Create();

/* Execute the StartEdgeEdit() function. */
edi t Edge = VARGR_St art EdgeEdi t (graphDs, al | EdgeAccessor);

/* Position the node accessor and edit edge data. */

/* Execute the DSEDI T_End() function. */
DSEDI T_End((DsEdi t Pt r) edi t Node) ;

When the DSEDIT_End() function executes, all edge modifications are
committed, and the edge-level lock is released.

Convenience API Functions

When editing a graph datasource, you can use either the standard APIs or
the convenience APIs to complete the edit operations. When using the
standard APIs, you must:

1. Create an edit object to start the edit operation.

2. Perform any necessary editions to the datasource.
3. Commit the edit operations.

4. Destroy the edit object.

When using the “convenience” APIs, steps 1, 3, and 4 from the preceding list
are completed automatically. You can perform:

m Datasource Editing with the “Convenience” APIs

m Node Editing with the “Convenience” APIs

m Edge Editing with the “Convenience” APls

In other words, your application can use the “convenience” API to edit the

datasource or its contents without formally creating an edit object. For
example, when the VARGR_AddNode(vargr, accessor) function executes:

m An edit object is automatically created
m The new node is added at the location specified by the node accessor

C Programmer’s Guide

Concepts

m The edit operations are committed
m The edit object is destroyed

The “convenience” API functions are useful for performing single edit
operations. However, these functions can inhibit performance when used to
perform batch edit operations.

Datasource Editing with the “Convenience” APIs

If you want to change the ID and Value properties of a specific node in the
datasource, the “convenience” API functions are most useful. To directly
manage the required edit object would add some unnecessary complexity
to your application logic.

In the next example, a datasource edit object is create by the “convenience”
function, VARGR_AddNode(). This creates a datasource edit object, adds a
node, commits the node addition to the datasource, and destroys the edit
object.

/* Declare pointer variables. */

Var GrPtr graphDs;
Var Gr NodeAccessor Ptr nodeAccessor;

/* Initialize the pointer variables. */
graphDs = VARGR Create();
nodeAccessor = VARGRNODEACCESSOR Create();

/* Move the node accessor to the next enpty root-node
| ocation. */

VARGRNODEACCESSOR_CGoFi r st Root (nodeAccessor) ;

whi | e (VARGR | sNodeVal i d(graphDs, nodeAccessor)) {
VARGRNODEACCESSOR _GoNext (nodeAccessor) ;

/* Add a node using the "convenience" API. A datasource edit
object is created, edit operations are conmtted, and the
edit object is destroyed by the VARGR AddNode() function. */

VARGR_AddNode(gr aphDs, nodeAccessor);

/* Di spose of other objects. */

VAR Del ete(varlD);

VAR _Del et e(var Val ue) ;

VARGRNODEACCESSOR D1 spose(nodeAccessor) ;

RES_Rel ease((ResPtr) graphDs);

If the preceding code fragment was intended to build a complete node
network, the “convenience” API functions would not be appropriate. For
such operations, use batched edit operations as described in “Datasource

Editing” on page 79.

Node Editing with the “Convenience” APIs

If you want to change the ID and Value properties of a specific node in the
datasource, the “convenience” API functions are most useful. To directly
manage the required edit object would add some unnecessary complexity
to your application logic.

In the next example, a node edit object is create by each of the convenience
API functions, VARGR_SetNodelD() and VARGR_SetNodeValue(). Each
of these functions creates a node edit object, commits its edit operation, and
destroys the edit object.

/* Declare pointer variables. */

Var G Ptr graphDs;
Var Gr NodeAccessor Ptr nodeAccessor;

C Programmer’s Guide 81

Chapter

82

4

Graph Datasource: Managing Graph Data

VarPtr varl D, var Val ue;

/* Initialize the pointer variables. */
graphbDs = VARGR_Cr eate();

nodeAccessor = VARGRNODEACCESSOR Create();
varl D = VAR New() ;

var Val ue = VAR New()

/* Move the node accessor to the next enpty root-node
| ocation. */

VARGRNODEACCESSOR_GoFi r st Root (nodeAccessor) ;

whi | e (VARGR | sNodeVal i d(gr aphDs, nodeAccessor)) {
VARGRNODEACCESSOR _GoNext (nodeAccessor) ;

}

/* Add a node using the "conveni ence" APlI. A datasource edit
object is created, edit operations are conmtted, and the
edit object is destroyed by the VARGR _AddNode() function. */

VARGR_AddNode(gr aphDs, nodeAccessor);

/* Set the variant objects to sone initializing values. */
VAR Set Str(varl D, "0000");
VAR_Set St r (var Val ue, "New Node");

/* Set the node I D and Val ue properties using the "convenience"
APls. A node edit object is created, edit operations are
comritted, and the edit objects are destroyed by each of the
following two functions. */

VARGR_Set Nodel D(gr aphDs, edit G aphDs, varlD);

VARGR_Set NodeVal ue(graphDs, edit G aphDs, varVal ue);

/* Di spose of other objects. */

VAR _Del ete(varlD);

VAR Del et e(var Val ue)

VARGRNODEACCESSCR _Di spose(nodeAccessor) ;

RES_Rel ease((ResPtr) graphDs);

If the preceding code fragment was intended to traverse and initialize each
node in the hierarchy, the “convenience” API functions would not be
appropriate. For such operations, use batched edit operations as described
in “Node Editing” on page 79.

Edge Editing with the “Convenience” APIs

If you want to change the ID and Value properties of a specific edge in the
datasource, the “convenience” API functions are most useful. To directly
manage the required edit object would add some unnecessary complexity
to your application logic.

In the next example, an edge edit object is create by each of the convenience
API functions, VARGR_SetEdgelD() and VARGR_SetEdgeValue(). Each
of these functions creates a edge edit object, commits its edit operation, and
destroys the edit object.

/* Declare pointer variables. */

Var G Ptr graphDs;

Var G NodeAccessor Pt r nodeAccessor From
Var G NodeAccessor Ptr nodeAccessor To;
Var G Al | EdgeAccessor Ptr al | EdgeAccessor;
VarPtr varl D, varVal ue;

/* Initialize the pointer variables. */
graphDs = VARGR Create();

nodeAccessor From = VARGRNODEACCESSCOR Create();
nodeAccessor To = VARGRNODEACCESSOR Creat e();

al | EdgeAccessor = VARGRALLEDGEACCESSCOR Oreate()
varl D = VAR New();

var Val ue = VAR Nev\()

C Programmer’s Guide

Concepts

/* Move the "source" node accessor to the next enpty root-node
| ocation. */

VARGRNCODEACCESSOR_GoFi r st Root (nodeAccessor Fron ;

whi | e (VARGR | sNodeVal i d(gr aphDs, nodeAccessor Fronj) {
VARCGRNODEACCESSOR_GoNext (nodeAccessor Fronj ;

}

/* Add a node using the "conveni ence" APl at the "source"
accessor location. A datasource edit object is created, edit
operations are committed, and the edit object is destroyed
by the VARGR AddNode() function. */

VARGR_AddNode(gr aphDs, nodeAccessor From ;

/* Set the variant objects to sone initializing values. */
VAR Set Str(varl D, "n0000");
VAR_Set St r (var Val ue, "New Node");

/* Set the node I D and Val ue properties using the "convenience"
APls. A node edit object is created, edit operations are
conmtted, and the edit objects are destroyed by each of the
following two functions. */

VARGR_Set Nodel D(gr aphDs, nodeAccessor From varlD);

VARGR_Set NodeVal ue(gr aphDs, nodeAccessor From var Val ue);

/* Move the node accessor to the next enpty root-node
| ocation. */
VARGRNODEACCESSOR_GoNt hRoot (VARGR _Get NunRoot s(gr aphDs) ,
nodeAccessor To) ;
whil e (VARGR | sNodeVal i d(graphDs, nodeAccessorTo)) {
VARGRNODEACCESSOR_GoNext (nodeAccessor To) ;
}

/* Add a node using the "conveni ence" APl at the "target"
accessor location. A datasource edit object is created, edit
operations are committed, and the edit object is destroyed
by the VARGR_AddNode() function. */

VARGR_AddNode(gr aphDs, nodeAccessor To);

/* Set the node ID and Val ue properties using the "convenience"
APls. A node edit object is created, edit operations are
conmtted, and the edit objects are destroyed by each of the
following two functions. */

VARGR_Set Nodel D(gr aphDs, nodeAccessorTo, varlD);

VARGR_Set NodeVal ue(graphDs, nodeAccessor To, varVal ue);

/* Add a directed edge between the two root nodes using the
"conveni ence" API. A datasource edit object is created, edit
operations are committed, and the edit object is destroyed
by the VARGR AddEdge() function. */

VARGR_AddDi r Edge(gr aphDs,

nodeAccessor From nodeAccessor To);

/* Set the variant objects to sone initializing values. */
VAR _Set Str(varl D, "e0000");
VAR Set Str(var Val ue, " New Edge");

/* Set the edge ID and Val ue properties using the "convenience"
APls. An edge edit object is created, edit operations are
conmtted, and the edit objects are destroyed by each of the
following two functions. */

VARGRALLEDGEACCESSOR _GoBet ween(al | EdgeAccessor,

nodeAccessor From
nodeAccessor To) ;

VARGR_Set Edgel D(gr aphDs, al | EdgeAccessor, varlD);

VARGR_Set EdgeVal ue(graphDs, all EdgeAccessor, var Val ue) ;

/* Di spose of other objects. */

VAR _Del ete(varlD);

VAR Del et e(var Val ue)

VARGRNODEACCESSCR _Di spose(nodeAccessor From ;
VARGRNODEACCESSOR _Di spose(nodeAccessor To) ;

C Programmer’s Guide 83

Chapter

4

Graph Datasource: Managing Graph Data

VARGRNODEACCESSOR_Di spose(al | EdgeAccessor) ;

RES_Rel ease((ResPtr) graphDs);

If the preceding code fragment was intended to traverse and initialize each
edge in the datasource, the “convenience” API functions would not be
appropriate. For such operations, use batched edit operations as described
in “Edge Editing” on page 80.

Options for the bcrAM View

84

The graph datasource supports the general-purpose options for DGRAM
views:

m autosize

m cursor

m readonly

m Diagrammer

m Custom Node and Link Options

For example, the Diagrammer option accepts a parameter string that
applies to the entire DGRAM view. You can also define node and link
properties to which you can assign values.

To set view options, use the third and fourth arguments of the
DS_SetViewOption() argument list, as shown here;
DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,

{["aut osi ze", "{FALSE| TRUE}"]|
["cursor", "{CONTROLS| REFLECTS}"]|

["readonly", "{FALSE| TRUE}"]|

["Di agranmmer", "<paraneter_|ist>"]|
["<node_property>: <val ue>", "<paraneter_|ist>"]]|
["<link_property>: <val ue>", "<paraneter_|ist>"]

}
)
In the preceding syntax, parameter_list is an expression that represents a
series of pertinent parameter settings. A parameter list is enclosed in
guotation marks, can have any number of parameter settings within it, and
follows this format:

"<par anet er _1>=<val ue_1>;
<par anet er _2>=<val ue_2>;

<par anmet er _n>=<val ue_n>"
You can only use parameter lists when setting node and link parameters
with:
m The Diagrammer option
m Any options you may define using the node_property:value and
link_property:value formats

Table 4-1 lists the types and possible values for each of these parameters.

C Programmer’s Guide

Options for the DGRAM View

autosize

Table 4-1 Parameter Values for Diagrammer and Custom Options

Type Values Default Value
Bool ean 0| FALSE| NO OTHERS See Option or
1| TRUE| YES Parameter
NodeShape 0| DEFAULT| RECT| RECTANGLE RECTANGLE
1| ROUNDRECT| ROUNDRECTANGLE
2| ELLI PSE
3| DI AMOND
4| HEXAGON
5] TRI ANGLE
Li nkShape DEFAULT| DI AGONAL DI AGONAL
Rl GHTANGLE
Pen Pen. <pen_nane> DGRAM-specific
<nodul e_nane>. <pen_nane>
Font Font . <f ont _nane> DGRAM-specific
<nmodul e_nane>. <f ont _nane>
Col or Col or . <col or _name> DGRAM-specific

<nodul e_nane>. <col or _nane>

This SetViewOption() function illustrates the parameter values listed in
Table 1-1:

DS_Set Vi ewOpt i on(graphDs, (ResPtr)w n->dgramigt,
"Di agrammer ",
"NodeW = 72; NodeH 18;
XGid = 36; YGid 36;
G i dAli gnnent = TRUE;
BgCol or = Col or. Bl ack;

NodeSt andar dDDat a. Shape = ROUNDRECTANGLE;
NodeSt andar dDDat a. BgCol or = Col or. Navy;
NodeFocusDDat a. BgCol or = Col or. Bl ue;

NodeSt andar dDDat a. Label Col or = Col or. Wi te;
NodeSt andar dDDat a. Fr anePen = Pen. Sol i d;
NodeSt andar dDDat a. Label Font = Font. Ari as;

Orientation = VERTI CAL;

Li nkSt andar dDDat a. Shape = RI GHTANGLE;

Li nkSt andar dDDat a. Li nkDi r Col or = Col or. Bl ue;
Li nkFocusDDat a. Li nkDi r Col or = Col or. Red;

Li nkSt andar dDDat a. Li nkUndi r Col or = Col or. Navy;
Li nkFocusDDat a. Li nkUndi r Col or = Col or. Mar oon;
Li nkSt andar dDDat a. Li nkPen = Pen. Sol i d;

Li nkSt andar dDDat a. Li nkLabel = Font. Ari as;

You can set the autosize option to TRUE to create automatically sized
nodes. With autosize enabled, bounding boxes for all nodes in a specified
expansion level are the maximum width for nodes at that level. Here is the
syntax for using the autosize option;
DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,

"aut osi ze", "{FALSE| TRUE}");
The autosize default is FALSE. With autosize set to TRUE, the
bounding-box widths are based on the string lengths of the node Value
properties. This code fragment shows how to enable the autosize option:

Var G Ptr graphDs;
DG anPtr dgramit;

C Programmer’s Guide 85

Chapter

cursor

86

4

Graph Datasource: Managing Graph Data

graphDs = VARGR Create();
Wi n->dgrammgt =
(DG anPt r) PANEL_Get NanedWjt ((Panel Ptr)wi n, "DG ant');
DS _Regi sterVi ew((DsPtr)graphDs, (ResPtr)w n->dgramjt)
DS _Set Vi ewOpti on((DsPtr) graphDs, (ResPtr)w n->dgramigt,
"aut osi ze", "TRUE");

The cursor option determines whether the view cursor controls or reflects
the position of the datasource cursor. The cursor option has two possible
settings:

m CONTROLS (the default)

m REFLECTS

Here is the format for the setting the cursor option:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"cursor”, "{CONTROLS| REFLECTS}");

With cursor set to CONTROLS, the cursor position or active node in the

view determines the position of the datasource cursor. This ensures that the

datasource cursor and view cursor are synchronized.

With cursor set to REFLECTS, the view cursor reflects the current location
of the datasource cursor. This setting ensures that the view is continually
updated when the datasource cursor is moved programmatically. When
you change the view cursor, the datasource cursor is not updated.

When multiple views are registered with a common datasource and with
cursor setto CONTROLS, each registered view can manipulate the position
of the datasource cursor. For example, if two views control the datasource
cursor, movement of one view cursor changes the position of the datasource
cursor, which is reflected in the other registered view.

This example has two DGRAM views, dgram1 and dgram2, registered to a
common graph datasource, graphDs. The dgram1 cursor reflects the
current location of the datasource cursor. The dgram2 cursor controls the
position of the datasource cursor:

Var G Ptr graphDs;
W nPtr wi nDG am
DG anPtr wi n->dgrant;
DG anPtr wi n->dgran;

Wi n->dgraml =

(DGranPt r) PANEL_Get NanedWjt ((Panel Ptr)wi n, "DG am');
Wi n->dgran? =

(DGranPt r) PANEL_Get NanedWjt ((Panel Ptr)wi n, "DG am');
DS_Regi st er Vi ew((DsPtr)graphDs, (ResPtr)w n->dgrant)
DS_Regi ster Vi ew((DsPtr)graphDs, (ResPtr)w n->dgran®)

iD;S._Set Vi ewOpti on((DsPtr)graphDs, (ResPtr)w n->dgramt,
"cursor", "REFLECTS");

DS_Set Vi ewpt i on((DsPtr) graphDs, (ResPtr)w n->dgrang,
“cursor”, "CONTROLS");

In the next example, both view cursors control the position of the datasource

cursor. Any change in the cursor position of one view is automatically

reflected in the other view.

Var G Ptr graphDs;

DG anPtr wi n->dgrant;

DG anPtr wi n->dgrang;

C Programmer’s Guide

Options for the DGRAM View

Wi n->dgraml =

(DG anPt r) PANEL_Get NanedWjt ((Panel Ptr)wi n, "DG ant');
Wi n->dgran? =

(DG anPt r) PANEL_Get NanedWjt ((Panel Ptr)wi n, "DG ant');
DS _Regi sterVi ew((DsPtr)graphDs, (ResPtr)w n->dgrani)
DS Regi sterView((DsPtr)graphDs, (ResPtr)w n->dgranR)

b'S'_Set\ﬂ ewOption((DsPtr)graphDs, (ResPtr)w n->dgran,
"CONTROLS") ;

"cursor", ;
DS_Set Vi ewOpti on((DsPtr) graphDs, (ResPtr)w n->dgrant,
“cursor"”, "CONTROLS");
readonly
When readonly is FALSE (the default), you can right-click on a node or link
to display a popup menu. This lets you access the Node Edition and Link
Edition dialogs. In these, you can change the ID, Value, Width, or Height
of the node or the VValue property or Directed property of a link.
DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"readonl y", "{FALSE| TRUE}"):
With readonly set to TRUE, the application user cannot right-click to display
the popup menu and, therefore, cannot access the Node and Link Edition
dialogs.
Diagrammer

You can use the Diagrammer option to set many different parameters:
m Basic Diagrammer Parameters

m “Standard” View Settings for Nodes and Links

m “Focus” View Settings for Nodes and Links

These parameters have varied scopes. As a result, only a general syntax for
the Diagrammer option is shown here:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agranmmer"”,
"[<basi c_paraneter_list>] |
[<standard_node_and_l i nk_paraneter_list>] |
[<focus_node_and_l i nk_paraneter_list>]"

A complete parameter list for each scope is supplied in the sections that
follow.

Basic Diagrammer Parameters

With the basic Diagrammer parameters, you can set these diagram
characteristics:

Dimensions of the node bounding box
Grid and snap

Magnification

Overview configuration

Link orientation

Background

Here is the syntax supporting these characteristics:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agranmer"”,
"[NodeW = <integer>;] |
[NodeH = <integer>;] |

C Programmer’s Guide 87

Chapter

88

4 Graph Datasource: Managing Graph Data

[XGid = <integer>;] |

[YGid = <integer>;] |

[GidAlignnent = {FALSE| TRUE};] |

[Scal eFactor = <real >;]

[Overvi ew = { 0] DEFAULT| NO HI DE| NOOVERVI EW |
1| TOP|

2| LEFT
1
[Oientation =

{ 0| DEFAULT| HORZ| HORI ZONTAL] ,
1] VERT| VERTI CAL

Oycles = {F}AL]SE| TRUE};] |

[
[BitmapFile, <filenane>;] |
[BgCol or = <col or _resource>; "

NodeW

This integer value specifies the width of a node in pixels. If the Autosize
option is enabled, this option and the NodeH parameter are ignored.

This syntax shows how to specify the node width:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w nres>-><vi ew>,
"Di agramer",

NodeW = <i nt eger >;
)

This code fragment sets the node width to 72 pixels—that is, 1 inch on a
72-pixel-per-inch display:

DS _Set Vi ewOpti on(graphDs, (ResPtr)w n->dgramigt,
"Di agramer ", "NodeW= 72");

Type: Int32
Default: DGRAM-specific
Synonyms: Width

NodeH

This integer value specifies the width of a node in pixels. If the Autosize
option is enabled, this option and the NodeW parameter are ignored.

This syntax shows how to specify the node height:

DS_Set Vi ewOpt i on(<dat asource>, (ResPtr)<w nres>-><vi ew>,
"Di agrammer ",

NodeH = <int eger >;
yo
This code fragment sets the node height to 24 pixels—that is, 1/3 inch on a
72-pixel-per-inch display:

DS_Set Vi ewOpt i on(graphDs, (ResPtr)w n->dgramigt,
"Di agrammer ", "NodeH = 24");

Type: Int32
Default: DGRAM-specific

Synonyms: Height

C Programmer’s Guide

Options for the DGRAM View

XGrid
This integer value specifies the size of the x-axis grid in pixels. This syntax
shows how to specify the x-axis grid:
DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agramer",
XGid = <int eger >;

yo
This code fragment sets the x-axis grid to 36 pixels—that is, 172 inch on a
72-pixel-per-inch display:

DS_Set Vi ewOpt i on(gr aphDs, (ResPtr)wi

amigt ,
"Di agramer", "XG& ")

o>
1

Type: Int32
Default: DGRAM-specific

Synonyms: None

YGrid
This integer value specifies the size of the y-axis grid in pixels. This syntax
shows how to specify the y-axis grid:
DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agramer ",
Yaid = <int eger >;

). c
This code fragment sets the y-axis grid to 36 pixels—that is, 1/2 inch on a
72-pixel-per-inch display:

DS_Set Vi ewOpti on(graphDs, (ResPtr)w
"Di agrammer", "YGi

o >S

Type: Int32
Default: DGRAM-specific

Synonyms: None

GridAlignment

With GridAlignment set to FALSE (the default), you can move nodes and
links in an unconstrained manner within the DGRAM view. If you set
GridAlignment to TRUE, the diagram contents snap to the grid. This
syntax shows how to set the GridAlignment parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agramer",

Gri dAlignnent = { FALSE| TRUE};
Vo
This code fragment sets both the x-axis and y-axis grid to 36 pixels—that is,

a grid of 1/2- inch squares on a 72-pixel-per-inch display—with diagram
components snapping to the grid:
DS _Set Vi ewOpti on(graphDs, (ResPtr)w n->dgramigt,
“"Diagramer", "YGid = 36; Y&Gid = 36;
GidAlignnent = TRUE");

C Programmer’s Guide 89

Chapter

90

4

Graph Datasource: Managing Graph Data

In the preceding example, the grid may or may not be visible.
Type: Boolean

Default: FALSE

Synonyms: Align, Alignment

ScaleFactor

The ScaleFactor parameter controls the zoom level of the diagram. The
default for this parameter is 1.00. This syntax shows how to set the
ScaleFactor parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agramer",
Scal eFactor = <doubl e>;

Vo

Note: The ScaleFactor setting is assumed to be 1.00 when you use pixels for
dimensioning NodeW, NodeH, XGrid, and YGrid.

This code fragment sets the ScaleFactor to 2.00, which displays the diagram

at twice its default size:

DS_Set Vi ewOpti on(graphDs, (ResPtr)w n->dgramigt,
"Di agramer ", "Scal eFactor = 2.00");

Type: Double
Default: 1.00

Synonyms: Scale

Overview

The DGRAM overview is a high-level view of the entire graph. With the
overview, you can position a virtual view window, rather than using scroll
bars, to display the specific nodes and edges (links. This syntax shows how
to set the Overview parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agrammer ",
Overvi ew = { 0] DEFAULT| NO HI DE| NOOVERVI EW |
1| TOR|
2| LEFT
)
This code fragment enables an Overview display to the left of the diagram:

DS_Set Vi ewOpti on(graphDs, (ResPtr)w n->dgramigt,
"Di agrammer ", "Overview LEFT");
/* "Diagramer", "Overview = 2"); */

Type: Enuner at ed
Default: NOOVERVIEW

Synonyms: None

Orientation

With Orientation setto HORIZONTAL (the default), a link emanates from
the “center” of the node through the sides of the bounding box. If you set

C Programmer’s Guide

Options for the DGRAM View

Orientation to VERTICAL, the links emanate from the bottom and top
sides of the nodes. This syntax shows how to set the Orientation parameter
for a center link:
DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,

"Di agramer",

Orientation = {0] DEFAULT| HORZ| HORI ZONTAL]
1| VERT| VERTI CAL} ;

)
This code fragment sets the Orientation to have the links emanate from the
top and bottom sides of the pertinent nodes:

DS_Set Vi ewOpti on(graphDs, (ResPtr)w n->dgramigt,
"Diagramrer”, "Orientation VERTI CAL") ;
/* "Diagramer", "Orientation 1"); */
Type: Enumerated

Default: HORIZONTAL

Synonyms: None

Cycles

With Cycles set to TRUE (the default is FALSE), a warning is returned
when a cyclic node reference is created. Two cyclic references are shown in

Figure 4-13:
A
/ \ oR A -
B C

Figure 4-13 Cyclic Node Reference

If you are planning an itinerary for a trip on which you plan to return to
your original departure point, a cyclic reference is very appropriate. In this
case, Cycles should be set to FALSE to avoid unnecessary warnings.

However, if your application tracks family history, you can have your
application warn you, by setting Cycles to TRUE, when an inappropriate
parent-child relationship is established by a user.

This syntax shows how to set the Cycles parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agrammer ",

Oycles = {FALSE| TRUE};
_
Type: Boolean
Default: FALSE

Synonyms: None

C Programmer’s Guide 91

Chapter

92

4

Graph Datasource: Managing Graph Data

BitmapFile

You can place a bitmap image in the background of a diagram by specifying
a filename for the BitmapFile parameter. Background images help when
using a DGRAM view to display mapping information, such as floor plans
for a computer network. This syntax shows how to set the BitmapFile
parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agramer",
Bi i ;TBpFi le = <fil enane>;
)
This code assigns the filename “network.gif” to the BitmapFile parameter:

DS_Set Vi ewOpti on(graphDs, (ResPtr)w n->dgramigt,
"Di agrammer", "BitmapFile = network.gif");

All nodes and links in the diagram are superimposed on the bitmap file in
the background.

Type: String
Default: None

Synonyms: None

BgColor

The BgColor parameter defines the color to be used in the background of
the diagram. If a bitmap file is supplied as a background image, the BgColor
setting is ignored. This syntax shows how to set the BgColor parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agrammer ",
BgOoI or = <col or_resource>;
)
This code assigns the color resource “res.blue” to the BgColor parameter:

DS_Set Vi ewOpt i on(graphDs, (ResPtr)w n->dgramigt,
"Di agrammer ", "BgCol or = res. blue");

Type: Color
Default: DGRAM-specific
Synonyms: Bg

“Standard” View Settings for Nodes and Links

The “standard” view settings set the display characteristics for nodes and
links that are not currently selected in the diagram. In addition to enabling
and disabling the labels for these diagram components, these parameter set
these characteristics:

m Shapes
m Colors
m Pens

m Fonts

C Programmer’s Guide

Options for the DGRAM View

Here is the syntax supporting these “standard” characteristics:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agramer ",
"[NodeSt andar dDDat a. Fr aneCol or =
<col or _resource>;] |
[NodeSt andar dDDat a. BgCol or =
<col or _resource>;] |
[NodeSt andar dDDat a. Label Col or =
<col or _resource>;] |
[NodeSt andar dDDat a. Fr anePen =
<pen_resource>;] |
[NodeSt andar dDDat a. Label Font =
<font_resource>;] |
[NodeSt andar dDDat a. Dr awLabel = {FALSE| TRUE};] |
[NodeSt andar dDDat a. Shape =
{ 0| DEFAULT| RECT| RECTANGLE|
1| ROUNDRECT| ROUNDRECTANGLE|
2| ELLI PSE]|
3| DI AMOND|
4] HEXAGON|
5| TRI ANGLE
B

[Link. Color =
<col or _resource>;] |
[Li nkSt andar dDDat a. Li nkDi r Col or =
<col or _resource>;] |
r
I

[Li nkSt andar dDDat a. Li nkUndi r Col o
<col or _resource>;]
[Li nkSt andar dDDat a. Label Col or =
<col or _resource>;] |
[Li nkSt andar dDDat a. Li nkPen =
<pen_resource>;] |
[Li nkSt andar dDDat a. Label Font =
<font_resource>;] |
[Li nkSt andar dDDat a. Dr awLabel = {FALSE| TRUE};] |
[Li nkSt andar dDDat a. Shape =
{ 0| DEFAULT]| DI AGONAL |
1| R GHTANGLE
b1

NodeStandardDData.FrameColor

NodeStandardDData.FrameColor sets the color of the frame around the
node. This syntax shows how to set the NodeStandardDData.FrameColor
parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agrammer ",

NodeSt andar dDDat a. Fr ameCol or =
<col or _resource>;

Type: Color
Default: DGRAM-specific

Synonyms: Node.FColor, Node.FrameColor

NodeStandardDData.BgColor

NodeStandardDData.BgColor sets the color of the node. This syntax shows
how to set the NodeStandardDData.BgColor parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agramer",

C Programmer’s Guide 93

Chapter

94

4

Graph Datasource: Managing Graph Data

Nbd;leSt andar dDDat a. BgCol or = <col or _resource>;
Vo
Type: Color
Default: DGRAM-specific
Synonyms: Node.Bg, Node.Color, Node.BgColor

NodeStandardDData.LabelColor

NodeStandardDData.LabelColor sets the color of the node label. This
syntax shows how to set the NodeStandardDData.LabelColor parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agramer",

NbbléSt andar dDDat a. Label Col or =
<col or _resource>;

Vo
Type: Color

Default: DGRAM-specific
Synonyms: Node.Fg, Node.FgColor, Node.LabelColor

NodeStandardDData.FramePen

NodeStandardDData.FramePen sets the pen to use for the node label. This
syntax shows how to set the NodeStandardDData.FramePen parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agranmmer"”,

NbdéSt andar dDDat a. Fr amePen = <pen_resour ce>;

Vo
Type: Pen

Default: DGRAM-specific

Synonyms: Node.Pen, Node.FramePen

NodeStandardDData.LabelFont

NodeStandardDData.LabelFont sets the font for the node label. This syntax
shows how to set the NodeStandardDData.LabelFont parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agrammer",

N.odlileSt andar dDDat a. Label Font = <font_resource>;
Vo
Type: Font
Default: DGRAM-specific
Synonyms: Node.Font, Node.LabelFont

C Programmer’s Guide

Options for the DGRAM View

NodeStandardDData.DrawLabel

NodeStandardDData.DrawlLabel specifies whether or not to display node
labels. This syntax shows how to set the NodeStandardDData.DrawlLabel
parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agramer",

NodeSt andar dDDat a. Dr awLabel = { TRUE| FALSE} ;
Lo
Type: Boolean
Default: TRUE

Synonyms: Node.DrawLabel

NodeStandardDData.Shape
NodeStandardDData.Shape specifies the default node shape. This syntax
shows how to set the NodeStandardDData.Shape parameter:
DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agramer",

NodeSt andar dDDat a. Shape =
{ 0| DEFAULT| RECT| RECTANGLE]
1| ROUNDRECT| ROUNDRECTANGLE|
2| ELLI PSE|
3| DI AMOND|
4] HEXAGON|
5| TRI ANGLE
b

yo
Type: Enumerated

Default: RECTANGLE
Synonyms: Shape, Node.Shape

Link.Color

Link.Color sets the link color if the LinkStandardDData.LinkDirColor or
LinkStandardDData.LinkUndirColor parameter is not set. This syntax
shows how to set the Link.Color parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agrammer",

Li nk. Col or = <col or _resource>;
y; S
Type: Color
Default: DGRAM-specific

Synonyms: None

LinkStandardDData.LinkDirColor

LinkStandardDData.LinkDirColor sets the default color of all directed
links. This syntax shows how to set the LinkStandardDData.LinkDirColor
parameter:

C Programmer’s Guide 95

Chapter

96

4

Graph Datasource: Managing Graph Data

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agrammer ",

L| hi(St andar dDDat a. Li nkDi r Col or =
<col or _resource>;

Vo
Type: Color
Default: DGRAM-specific
Synonyms: Link.DirColor

LinkStandardDData.LinkUndirColor

LinkStandardDData.LinkUndirColor sets the default color of undirected
links. This syntax shows how to set LinkStandardDData.LinkUndirColor:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agrammer ",

L| hI’(St andar dDDat a. Li nkUndi r Col or =
<col or _resource>;

Vo
Type: Color
Default: DGRAM-specific
Synonyms: Link.UndirColor

LinkStandardDData.LabelColor

LinkStandardDData.LabelColor sets the color of the node label. This
syntax shows how to set the LinkStandardDData.LabelColor parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agramer ",

Li hkSt andar dDDat a. Label Col or =
<col or _resource>;

yo
Type: Color

Default: DGRAM-specific
Synonyms: Link.LabelColor

LinkStandardDData.LinkPen

LinkStandardDData.LinkPen sets the pen for the link label. This syntax
shows how to set the LinkStandardDData.LinkPen parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agrammer",

Li nkSt andar dDDat a. Li nkPen = <pen_r esour ce>;
y; S
Type: Pen
Default: DGRAM-specific

Synonyms: Link.Pen

C Programmer’s Guide

Options for the DGRAM View

LinkStandardDData.LabelFont

LinkStandardDData.LabelFont sets the font for the node label. This syntax
shows how to set the LinkStandardDData.LabelFont parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agramer",

Li 'nlil<St andar dDDat a. Label Font = <font_resource>;
yo
Type: Font
Default: DGRAM-specific
Synonyms: Link.Font

LinkStandardDData.DrawLabel

LinkStandardDData.DrawLabel specifies whether or not to display node
labels. This syntax shows how to set the LinkStandardDData.DrawLabel
parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agramer",

Li nkSt andar dDDat a. Dr awLabel = { TRUE| FALSE} ;
o
Type: Boolean
Default: FALSE

Synonyms: Link.DrawLabel

LinkStandardDData.Shape

LinkStandardDData.Shape specifies the default shape for links. This

syntax shows how to set the LinkStandardDData.Shape parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agrammer ",

NodeSt andar dDDat a. Shape =
{ 0] DEFAULT| DI AGONAL |
1| RI GHTANGLE

" } ’
)
Type: Enumerated
Default: DIAGONAL

Synonyms: Link.Shape

“Focus” View Settings for Nodes and Links

The “focus” view settings set the display characteristics for nodes and links
that are currently selected in the diagram. In addition to enabling and
disabling the labels for diagram components, these parameter set these
characteristics:

m Shapes
m Colors

C Programmer’s Guide 97

Chapter 4 Graph Datasource: Managing Graph Data

m Pens
m Fonts

Here is the syntax supporting these “focus” characteristics:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agrammer ",
"[NodeFocusDDat a. FraneCol or =
<col or _resource>;] |
[NodeFocusDDat a. BgCol or =
<col or _resource>;] |
[NodeFocusDDat a. Label Col or =
<col or _resource>;] |
[NodeFocusDDat a. Fr amePen = <pen_resource>;] |
[NodeFocusDDat a. Label Font =
;] |
[NodeFocusDDat a. Dr awLabel = {FALSE| TRUE};] |
[NodeFocusDDat a. Shape =
{ 0] DEFAULT| RECT| RECTANGLE|
1| ROUNDRECT| ROUNDRECTANGLE]
2| ELLI PSE|
3| DI AMOND|
4| HEXAGON|
5| TRIANGLE};] |

[Li nkFocus. Col or =

{Col or. Red| <col or _resource>};] |
[Li nkFocusDDat a. Li nkDi r Col or =

<col or _resource>;] |
[Li nkFocusDDat a. Li nkUndi r Col or =

<col or _resource>;] |
[Li nkFocusDDat a. Label Col or =

<col or _resource>;] |
[Li nkFocusDDat a. Li nkPen = <pen_resource>;] |
[Li nkFocusDDat a. Label Font =

;] |
[Li nkFocusDDat a. Dr awLabel = {FALSE| TRUE};] |
[Li nkFocusDDat a. Shape =

{ 0| DEFAULT| DI AGONAL|

1| RI GHTANGLE}; 1"
)

NodeFocusDData.FrameColor

NodeFocusDData.FrameColor sets the color of the frame around the node.
This syntax shows how to set the NodeFocusDData.FrameColor

parameter:
DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agramer",
NodeFocusDDat a. Fr aneCol or = <col or _resource>;
)
Type: Color

Default: Color.Red

Synonyms: NodeFocus.FColor, NodeFocus.FrameColor

NodeFocusDData.BgColor

NodeFocusDData.BgColor sets the color of the node. This syntax shows
how to set the NodeFocusDData.BgColor parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agramer ",

NodeFocusDDat a. BgCol or = <col or _resource>;

98 C Programmer’s Guide

Options for the DGRAM View

Type: Color
Default: DGRAM-specific

Synonyms: NodeFocus.Bg, NodeFocus.Color, NodeFocus.BgColor

NodeFocusDData.LabelColor

NodeFocusDData.LabelColor sets the color of the node label. This syntax
shows how to set the NodeFocusDData.LabelColor parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agramer",

i\l'oblglaFocusDDat a. Label Col or = <col or _resource>;
Vo
Type: Color
Default: DGRAM-specific
Synonyms: NodeFocus.Fg, NodeFocus.FgColor, NodeFocus.LabelColor

NodeFocusDData.FramePen

NodeFocusDData.FramePen sets the pen for the node label. This syntax
shows how to set the NodeFocusDData.FramePen parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agramer ",

NodeFocusDDat a. Fr anePen = <pen_r esour ce>;
): ..
Type: Pen
Default: DGRAM-specific

Synonyms: NodeFocus.Pen, NodeFocus.FramePen

NodeFocusDData.LabelFont

NodeFocusDData.LabelFont sets the font for the node label. This syntax
shows how to set the NodeFocusDData.LabelFont parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agrammer ",

i\bdéFocusDDat a. Label Font = <font_resource>;
)s
Type: Font
Default: DGRAM-specific

Synonyms: NodeFocus.Font, NodeFocus.LabelFont

NodeFocusDData.DrawLabel

NodeFocusDData.DrawLabel specifies whether or not to display node
labels. This syntax shows how to set the NodeFocusDData.DrawLabel
parameter:

C Programmer’s Guide 99

Chapter 4 Graph Datasource: Managing Graph Data

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agrammer ",

NodeFocusDDat a. Dr awLabel = { TRUE| FALSE}
Lo
Type: Boolean
Default: TRUE

Synonyms: NodeFocus.DrawLabel

NodeFocusDData.Shape
NodeFocusDData.Shape specifies the default node shape. This syntax
shows how to set the NodeFocusDData.Shape parameter:
DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agramer",
NodeFocusDDat a. Shape =
{ 0| DEFAULT| RECT| RECTANGLE|

1| ROUNDRECT| ROUNDRECTANGLE]|

2| ELLI PSE]|

3| DI AVOND)

4| HEXAGON|
5| TRI ANGLE
b

Vo
Type: Enumerated

Default: RECTANGLE
Synonyms: NodeFocus.Shape

LinkFocus.Color

LinkFocus.Color sets the link color if the LinkFocusDData.LinkDirColor
or LinkFocusDData.LinkUndirColor parameter is not set. This syntax
shows how to set the LinkFocus.Color parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agranmmer"”,

Li nkFocus. Col or = <col or _resource>;

yo
Type: Color

Default: Color.Red

Synonyms: None

LinkFocusDData.LinkDirColor

LinkFocusDData.LinkDirColor sets the default color of all directed links.
This syntax shows how to set the LinkFocusDData.LinkDirColor
parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agrammer",

Li nkFocusDDat a. Li nkDi r Col or = <col or _resource>;

)

100 C Programmer’s Guide

Options for the DGRAM View

Type: Color
Default: Color.Red

Synonyms: LinkFocus.DirColor, LinkFocus.LinkDirColor

LinkFocusDData.LinkUndirColor

LinkFocusDData.LinkUndirColor sets the default color of undirected
links. This syntax shows how to set LinkFocusDData.LinkUndirColor:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agramer",

L| hi(FocusDDat a. Li nkUndi r Col or =
<col or _resource>;

Type: Color
Default: Color.Red
Synonyms: LinkFocus.UndirColor, LinkFocus.LinkUndirColor

LinkFocusDData.LabelColor

LinkFocusDData.LabelColor sets the color of the node label. This syntax
shows how to set the LinkFocusDData.LabelColor parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agranmmer"”,

Li nkFocusDDat a. Label Col or = <col or _resour ce>;

yo
Type: Color
Default: DGRAM-specific

Synonyms: LinkFocus.LabelColor

LinkFocusDData.LinkPen

LinkFocusDData.LinkPen sets the pen for the link label. This syntax shows
how to set the LinkFocusDData.LinkPen parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agrammer",

Li nkFocusDDat a. Li nkPen = <pen_r esour ce>;
y; S
Type: Pen
Default: DGRAM-specific

Synonyms: LinkFocus.Pen, LinkFocus.LinkPen

LinkFocusDData.LabelFont
LinkFocusDData.LabelFont sets the font for the node label. This syntax
shows how to set the LinkFocusDData.LabelFont parameter:
DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agramer",

C Programmer’s Guide 101

Chapter

4

Graph Datasource: Managing Graph Data

Li nkFocusDDat a. Label Font = <font_resource>;
)s
Type: Font
Default: DGRAM-specific

Synonyms: LinkFocus.Font, LinkFocus.LabelFont

LinkFocusDData.DrawLabel

LinkFocusDData.DrawlLabel specifies whether or not to display node
labels. This syntax shows how to set the LinkFocusDData.DrawlLabel
parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"Di agrammer ",

Li nkFocusDDat a. Dr awLabel = { TRUE| FALSE} ;
Lo
Type: Boolean
Default: FALSE

Synonyms: LinkFocus.DrawLabel

LinkFocusDData.Shape

LinkFocusDData.Shape specifies the default shape for links. This syntax
shows how to set the LinkFocusDData.Shape parameter:
DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,

"Di agr anmer ",

Li nkFocusDDat a. Shape =
{ O] DEFAULT]| DI AGONAL |
1| RI GHTANGLE

1 } !
)
Type: Enumerated
Default: DIAGONAL

Synonyms: LinkFocus.Shape

Custom Node and Link Options

102

You manage the basic node and link parameter using the Diagrammer
option. You can also define custom node and link properties to which you
can assign values and store them in the graph datasource. These
“options”—property:value—support all of the same general, “standard,” and
“focus” parameters as the Diagrammer option, except that you can define
gualified node and link subsets.

For example, a mapping application might use a City node property with
values of Large, Medium, and Small. In the same example, a Road link
property might have values of Fast, Moderate, and Slow to indicate the
relative speed grades of the roads between the cities.

Warning: The parser for the Elements Environment is case-sensitive. Verify
that any strings you define for the properties and values in the

C Programmer’s Guide

Options for the DGRAM View

SetNodeProperty() and SetEdgeProperty() functions are exactly
the same as those used in the SetViewOptions() function.

These two sections discuss the node and link portions of this example:

m Custom Node Properties
m Custom Link Properties

Each property:value pair is a customized option of the graph datasource. It
can have any number of associated assignment statements in its variable
list; these can apply to all qualified nodes or links. Y

Warning: You must use value strings consistently, because the graph

datasource does not check for the proper usage of custom
properties and values.

Custom Node Properties

For the currently accessed node, you use the SetNodeProperty() function to
set a custom node property and assign a value to it, as shown here:

Var Rec <val ue_vari abl e>;

VAR_Set St r (<val ue_vari abl e>,

<val ue>");

iD-S._Set NodePr opert y(<dat asour ce>, <node_accessor >,

"<node_property>",

&<wval ue_vari abl e>);

The SetNodeProperty() function assigns the variant value stored at the
address of the value_variable. The custom node properties specified in the

SetViewOption() function are meaningless unless you assign some custom
node properties to the nodes in the graph datasource. Here is an example:

Var Rec cit ylLar ge;

VAR Set Str(cityLarge,

"Large");

b.S'_Set NodePr operty(graphDs, nodeAccessor,
"a

ty", &ci

tylLarge);

bSLSet\ﬁ ewpt i on(graphDs, (ResPtr)w n->dgramigt,

"City: Large"

DS_Set Vi ewOpt i on(<dat asour ce>,
"<node_property>: <val ue>",

C Programmer’s Guide

Hei ght = <i

[FocusDDat a.
[FocusDDat a.
[FocusDDat a.
[FocusDDat a.
[FocusDDat a.
[FocusDDat a.
[FocusDDat a.

St andar dDDat a.
St andar dDDat a.
St andar dDDat a. Shape =

, "Wdth = 144; Hei ght
Here is the SetViewOption() syntax for the custom node properties:

(ResPtr) <wi ndow>- ><vi ew>,

"[Wdth = <integer>;] |

nt eger >; |

n

Label Font
Dr awLabel

onFocus = {FALSE| TRUE};] |
St andar dDDat a.
St andar dDDat a.
St andar dDDat a.
St andar dDDat a. Fr anePe

= 48");

= <pen_resource>;]
= <font_resource>;]
= {FALSE| TRUE};] |

{ 0| DEFAULT| RECT| RECTANGLE]|
1] ROUNDRECT| ROUNDRECTANGLE|

2| ELLI PSE|

3| DI AMOND)

4] HEXAGON|

5| TRIANGLE} ;] |
FrameCol or = <col or_resource>;]
BgCol or = <col or _resource>;]
Label Col or = <col or_resource>;]

FranmePen = <pen_resource>;]

Label Font
Dr awLabel
Shape =

<f ont _resource>;]

{ FALSE| TRUE} ;]

103

FranmeCol or = <col or _resource>;]
BgCol or = <col or _resource>;]
Label Col or = <col or _resource>;]

Chapter 4 Graph Datasource: Managing Graph Data

{ 0| DEFAULT| RECT| RECTANGLE|
1| ROUNDRECT| ROUNDRECTANGLE|
2| ELLI PSE]
3| DI AMOND|
4| HEXAGON|
5| TRI ANGLE} ;]

)
A geographical mapping application using City as a node property with

values of Large, Medium, and Small might be implemented with this code
fragment:

Var GrPtr graphDs;

Var Gr NodeAccessor Ptr nodeAccessor;
DG anPtr w n->dgramigt ;

Str answer;

StrlVval |en;

/* Define value variables for node properties. */
VarPtr citySmall, cityMedium citylarge;
enum citySi ze {

Smal | = 1,

Medi um

Lar ge

b
citySize theSize;

/* Assign objects to the pointers. */
graphDs = VARGR Create();

nodeAccessor = VARGRNODEACCESSOR Create();
citySmall = VAR New();

ci tyMedi um = VAR _New();

cityLarge = VAR New);

Wi n->dgramigt =
(DGranPt r) PANEL_Get NanedWjt ((Panel Ptr)wi n, "DG am');

/* Define value strings for the custom node properties. */
VAR Set Str(citySmall, "Small");

VAR Set Str(cityMedi um "Medium');

VAR Set Str(cityLarge, "Large");

/* Set a node cursor using "nodeAccessor." */
VARGR_Set NodeCur sor (gr aphDs, nodeAccessor);

/* Set the cursor option to "CONTROLS." */
DS_Set Vi ewOpti on((DsPtr) graphDs, (ResPtr)w n->dgramht,
"Cursor", "CONTROLS");

/* Set common node options. */
DS_Set Vi ewOpti on((DsPtr) graphDs, (ResPtr)w n->dgramt,
"Di agramer ",
"NodeSt andar dDDat a. Shape = RECTANGLE") ;
/* Set the paraneters for the custom node options. */
DS_Set Vi ewOpti on((DsPtr) graphDs, (ResPtr)w n->dgramht,
"City: Small", "NodeW= 72; NodeH = 12");:
DS_Set Vi ewOpti on((DsPtr) graphDs, (ResPtr)w n->dgramht,
"City: Mediunt’, "NodeW = 108; NodeH = 18");
DS_Set Vi ewOpti on((DsPtr) graphDs, (ResPtr)w n->dgramhjt,
"City:Large", "NodeW= 144; NodeH = 24");

/* Define properties and val ues for individual nodes. */
if (ASKW AskQuestion("1=Small, 2=Medium 3=Large", answer)) {
I en = STR Get Len(answer);
theSize = (enum CitySi ze) STR_Get Decl nt (answer, &l en);
switch (theSize) {
case Smal | :
VARGR_Set NodePr operty(graphDs, nodeAccessor,
"City", citySmall);
br eak;

104 C Programmer’s Guide

Options for the DGRAM View

case Medi um
VARCR_Set NodePr operty(graphDs, nodeAccessor,
"City", cityMedium;
br eak;
case Large:
VARCR_Set NodePr operty(graphDs, nodeAccessor,
"City", citylLarge);
br eak;
def aul t:
ALRTW Ck("Not a valid nunber");
br eak;
} /*End switch. */
} /* End if. */

Width

This integer value specifies the width of a node in pixels. If the Autosize
option is enabled, this option and the Height parameter are ignored.

This syntax shows how to specify the node width:

DS_Set Vi ewOpt i on(<dat asource>, (ResPtr)<w nres>-><vi ew>,
"<node_property>: <val ue>",

Wdth = <int eger >;
)

For nodes with options, City:Large, this code fragment sets the node width
to 72 pixels—that is, 1 inch on a 72-pixel-per-inch display:

DS_Set Vi ewOpt i on(graphDs, (ResPtr)w n->dgramigt,
"City:Large", "Wdth = 72");

Type: Int32
Default: DGRAM-specific
Synonyms: W

Height

This integer value specifies the width of a node in pixels. If the Autosize
option is enabled, this option and the Width parameter are ignored.

This syntax shows how to specify the node height:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w nres>-><vi ew>,
"<node_property>: <val ue>",

Hei i;ht = <integer>;
);

For nodes with options, City:Large, this code fragment sets the node height
to 24 pixels—that is, 1/3 inch on a 72-pixel-per-inch display:

DS_Set Vi ewOpti on(graphDs, (ResPtr)w n->dgramigt,
"City:Large", "Height = 24");

Type: Int32
Default: DGRAM-specific
Synonyms: H

onFocus

With onFocus set to FALSE (the default), all nodes with the specified
node_property:value combination are displayed using the “standard” graphic

C Programmer’s Guide 105

Chapter

106

4

Graph Datasource: Managing Graph Data

settings that apply to them. With onFocus set to TRUE, all nodes with the
specified node_property:value combination are displayed using the “focus”
graphic settings that apply to them.

In cases where multiple custom options are applied to a particular node
with conflicting onFocus settings, the last onFocus setting applied to these
nodes is in effect in the display.

This syntax shows how to set the onFocus parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<node_property>: <val ue>",

onFocus = { TRUE| FALSE}
Vo
Type: Boolean
Default: FALSE

Synonyms: None

StandardDData.FrameColor

StandardDData.FrameColor sets the color of the frame around the node.
This syntax shows how to set the StandardDData.FrameColor parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<node_property>: <val ue>",

St andar dDDat a. Fr aneCol or =
<col or _resource>;

Type: Color
Default: DGRAM-specific

Synonyms: FrameColor, FColor

StandardDData.BgColor

StandardDData.BgColor sets the color of the node. This syntax shows how
to set the StandardDData.BgColor parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<node_property>: <val ue>",

St ébdar dDDat a. BgCol or = <col or _resource>;
Vo
Type: Color
Default: DGRAM-specific
Synonyms: BgColor, Color, Bg

StandardDData.LabelColor

StandardDData.LabelColor sets the color of the node label. This syntax
shows how to set the StandardDData.LabelColor parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<node_property>: <val ue>",

Si éhdar dDDat a. Label Col or =

C Programmer’s Guide

Options for the DGRAM View

<col or _resource>;

Vo
Type: Color

Default: DGRAM-specific
Synonyms: LabelColor, FgColor, Fg

StandardDData.FramePen

StandardDData.FramePen sets the pen for the node label. This syntax
shows how to set the StandardDData.FramePen parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<node_property>: <val ue>",

St éhdar dDDat a. FranePen = <pen_resour ce>;

y: ce
Type: Pen

Default: DGRAM-specific

Synonyms: FramePen, Pen

StandardDData.LabelFont

StandardDData.LabelFont sets the font for the node label. This syntax
shows how to set the StandardDData.LabelFont parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<node_property>: <val ue>",

Si éhdardDDat a. Label Font = <font_resource>;

Vo
Type: Font

Default: DGRAM-specific
Synonyms: LabelFont, Font

StandardDData.DrawLabel

StandardDData.DrawlLabel specifies whether or not to display node labels.
This syntax shows how to set the StandardD Data.DrawLabel parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<node_property>: <val ue>",

St andar dDDat a. Dr awLabel = { TRUE| FALSE} ;
Lo
Type: Boolean
Default: TRUE

Synonyms: DrawLabel

StandardDData.Shape

StandardDData.Shape specifies the default node shape. This syntax shows
how to set the StandardDData.Shape parameter:

C Programmer’s Guide 107

Chapter 4 Graph Datasource: Managing Graph Data

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<node_property>: <val ue>",

NodeSt andar dDDat a. Shape =
{ 0| DEFAULT| RECT| RECTANGLE]
1| ROUNDRECT| ROUNDRECTANGLE|
2| ELLI PSE|
3| DI AVOND)|
4| HEXAGON|
5| TRI ANGLE
. s
)
Type: Enumerated
Default: RECTANGLE

Synonyms: Shape

FocusDData.FrameColor

FocusDData.FrameColor sets the color of the frame around the node. This
syntax shows how to set the FocusDData.FrameColor parameter:

DS_Set Vi ewOpt i on(<dat asource>, (ResPtr)<w ndow>- ><vi ew>,
"<node_property>: <val ue>",

behsDDat a. FraneCol or = <col or _resource>;
)
Type: Color
Default: Color.Red

Synonyms: Focus.FrameColor, Focus.FColor

FocusDData.BgColor

FocusDData.BgColor sets the color of the node. This syntax shows how to
set the FocusDData.BgColor parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<node_property>: <val ue>",

FocusDDat a. BgCol or = <col or _resour ce>;

yo
Type: Color

Default: DGRAM-specific

Synonyms: Focus.BgColor, Focus.Color, Focus.Bg

FocusDData.LabelColor

FocusDData.LabelColor sets the color of the node label. This syntax shows
how to set the FocusDData.LabelColor parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<node_property>: <val ue>",

FocusDDat a. Label Col or = <col or _resour ce>;

)
Type: Color

108 C Programmer’s Guide

Options for the DGRAM View

Default: DGRAM-specific

Synonyms: Focus.LabelColor, Focus.FgColor, Focus.Fg

FocusDData.FramePen

FocusDData.FramePen sets the pen for the node label. This syntax shows
how to set the FocusDData.FramePen parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<node_property>: <val ue>",

FocusDDat a. Fr anePen = <pen_r esour ce>;
y: -
Type: Pen
Default: DGRAM-specific

Synonyms: Focus.FramePen, Focus.Pen

FocusDData.LabelFont

FocusDData.LabelFont sets the font for the node label. This syntax shows
how to set the FocusDData.LabelFont parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<node_property>: <val ue>",

FocusDDat a. Label Font = <f ont _resource>;
): S
Type: Font
Default: DGRAM-specific

Synonyms: Focus.LabelFont, Focus.Font

FocusDData.DrawLabel

FocusDData.DrawLabel specifies whether or not to display node labels.
This syntax shows how to set the FocusDData.DrawLabel parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<node_property>: <val ue>",

FocusDDat a. Dr awLabel = { TRUE| FALSE} ;
)
Type: Boolean
Default: TRUE

Synonyms: Focus.DrawLabel

FocusDData.Shape
FocusDData.Shape specifies the default node shape. This syntax shows
how to set the FocusDData.Shape parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<node_property>: <val ue>",

FocusDDat a. Shape =

{ 0] DEFAULT| RECT| RECTANGLE]
1] ROUNDRECT| ROUNDRECTANGLE|

C Programmer’s Guide 109

Chapter

110

4

Graph Datasource: Managing Graph Data

2| ELLI PSE
3| DI AVOND)|
4| HEXAGON|
5| TRI ANGLE
}s

Vo
Type: Enumerated

Default: RECTANGLE

Synonyms: Focus.Shape

Custom Link Properties

You control the standard link parameters with the Diagrammer option. You
can also define custom link properties to which you can assign values. For

example, a link property, Road, might have values of Fast, Moderate, and
Slow.

For the currently accessed edge, use the SetEdgeProperty() function to
define a property and assign a value to it, as shown here:

Var Ptr <val ue_vari abl e>;
<val ue_vari abl e> = VAR New();
VAR _Set Str(<val ue_vari abl e>, "<val ue>");

iD;S'_Set EdgePr operty((DsPtr) <dat asour ce>,
(Var Gr EdgeAccessor) <edge_accessor >,
"<link_property>", <value_variabl e>);

\/AR_DeI et e(<val ue_vari abl e>);

The SetEdgeProperty() function assigns the variant value stored at the
address of the value_variable. The custom node properties specified in the
SetViewOption() function are meaningless unless you assign some custom
edge properties to the nodes in the graph datasource. Here is an example:

Var Ptr roadFast;
roadFast = VAR New();
VAR Set Str(roadFast, "Fast");

bSI_Set NodePr operty((DsPtr) graphDs,
(Var G EdgeAccessor Pt r) al | EdgeAccessor,
"Road", roadFast);

bSI_Set Vi ewOption((DsPtr)graphDs, (ResPtr)w n->dgramigt,
"Road: Fast", "StandardDDat a. Li nkPen =
Map. Fast ") ;

\/AR_DeI et e(roadFast);
Here is the SetViewOption() syntax for the custom node properties:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<l'ink_property>: <val ue>",
"[Li nkCol or = <col or _resource>;] |
[onFocus = {FALSE| TRUE};] |
[St andar dDDat a. Li nkDi r Col or =
<col or _resource>;] |
[St andar dDDat a. Li nkUndi r Col or =
<col or _resource>;] |

[St andar dDDat a. Label Col or = <col or _resource>;]

[St andar dDDat a. Li nkPen = <pen_resource>;] |
[St andar dDDat a. Label Font = ;]
[St andar dDDat a. Dr awLabel = {FALSE| TRUE};] |
[St andar dDDat a. Shape =
{ O] DEFAULT| DI AGONAL|
1| RI GHTANGLE} ;1 |

C Programmer’s Guide

Options for the DGRAM View

[FocusCol or = <col or_resource>;] |

[FocusDDat a. Li nkDi r Col or = <col or _resource>;]
[FocusDDat a. Li nkUndi r Col or = <col or _resource>;]

[FocusDDat a. Label Col or = <col or_resource>;]
[FocusDDat a. Li nkPen = <pen_resource>;]
[FocusDDat a. Label Font = <font_resource>;]

[FocusDDat a. Dr awLabel = {FALSE| TRUE};] |

[FocusDDat a. Shape =
{ 0] DEFAULT| DI AGONAL |
1| R GHTANGLE} ;]

)

A mapping application using Road as an edge property with values of Fast,

Moderate, and Slow might be implemented with this code fragment:

Var G Ptr graphDs;

Var G Al | EdgeAccessor Ptr edgeAccessor;
DG anPtr w n->dgramigt ;

Str answer;

Strlval |en;

/* Define value variables for node properties. */
Var Ptr roadSl ow, roadMbderate, roadFast;
enum r oadSpeed {

Slow = 1,
Moder at e,
Fast

s
r oadSpeed mRoadSpeed,;

/* Assign objects to the pointers. */
graphDs = VARGR Create();

nodeAccessor = VARGRNODEACCESSOR Create();
roadSl ow = VAR New();

roadModerate = VAR _New();

roadFast = VAR New();

Wi n->dgramigt =
(DGranPt r) PANEL_Get NanedWjt ((Panel Ptr)wi n, "DG am');

/* Define value strings for the custom node properties.
VAR Set Str(roadSl ow, "Slow');

VAR Set Str(roadMvbderate, "Mderate");

VAR Set Str(roadFast, "Fast");

/* Set a edge cursor using "nEdgeAccessor." */
VARGR_Set EdgeCur sor (gr aphDs, nmEdgeAccessor);

/* Set the cursor option to "CONTROLS."
DS_Set Vi ewOpti on((DsPtr) graphDs, (ResPtr)w n->dgramht,
"Cursor", "CONTROLS");
/* Set commbn edge options. */
DS_Set Vi ewOpt i on((DsPtr) graphDs, (ResPtr)w n->dgranmjt,
"Di agrammer ",
"Li nkSt andar dDDat a. Shape = DI AGONAL") ;
/* Set the paraneters for the custom edge options. */
DS_Set Vi ewOpt i on((DsPtr) graphDs, (ResPtr)w n->dgramt,
"Road: Sl ow',
" St andar dDDat a. Li nkPen = Map. Sl ow') ;
DS_Set Vi ewOpt i on((DsPtr) graphDs, (ResPtr)w n->dgramjt,
"Road: Mbder at e",

*/

" St andar dDDat a. Li nkPen = Map. Moderate");

DS_Set Vi ewOpt i on((DsPtr) graphDs, (ResPtr)w n->dgramt,
"Road: Fast ",
" St andar dDDat a. Li nkPen = Map. Fast");

/* This sets the enunerated "nRoadSpeed" variable to the

correspondi ng value. Define properties and val ues for

i ndi vi dual edges. */

C Programmer’s Guide

Chapter 4 Graph Datasource: Managing Graph Data

if (NDAskW : AskQuesti on(" 1=Sl ow,
2=Nbder at e,
3=Fast", answer)) {
| en=NDSt r: : Get Len(answer) ;
nmRoadSpeed =(enum r oadSpeed) NDSt r: : Get Decl nt (answer, & en);
switch (nRoadSpeed) ({
case Sl ow
VARCR_Set EdgePr opert y(graphDs,
(Var Gr EdgeAccessor Pt r) nEdgeAccessor,
"Road", nRoadSl ow);
br eak;
case Mbderate:
VARCGR_Set EdgePr operty(graphDs,
(Var Gr EdgeAccessor Pt r) nEdgeAccessor,
"Road", mRoadMbderate);
br eak;
case Fast:
VARCR_Set EdgePr opert y(graphDs,
(Var Gr EdgeAccessor Pt r) nEdgeAccessor,
"Road", nRoadFast);
br eak;
defaul t:
br eak;
} /*End switch. */
} /* End if. */

LinkColor

LinkColor sets the link color if the StandardDData.LinkDirColor or
StandardDData.LinkUndirColor parameter is not set. This syntax shows
how to set the LinkColor parameter:

DS_Set Vi ewOpt i on(<dat asource>, (ResPtr)<w ndow>- ><vi ew>,
"<link_property>: <val ue>",

L| nkOoI or = <col or_resource>;
): ..
Type: Color
Default: DGRAM-specific

Synonyms: Color

onFocus

With onFocus set to FALSE (the default), all nodes with the specified
link_property:value combination are displayed using the “standard” graphic
settings that apply to them. With onFocus set to TRUE, all nodes with the
specified link_property:value combination are displayed using the “focus”
graphic settings that apply to them.

In cases where multiple custom options are applied to a particular link with
conflicting onFocus settings, the last onFocus setting applied to these nodes
is in effect in the display.

This syntax shows how to set the onFocus parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<link_property>: <val ue>",

onFocus = { TRUE| FALSE};
o
Type: Boolean
Default: FALSE

112 C Programmer’s Guide

Options for the DGRAM View

Synonyms: None

StandardDData.LinkDirColor

StandardDData.LinkDirColor sets the default color of all directed links.
This syntax shows how to set the StandardDData.LinkDirColor parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<li nk_property>: <val ue>",

St andar dDDat a. Li nkDi r Col or =
<col or _resource>;

Vo
Type: Color

Default: DGRAM-specific

Synonyms: DirColor

StandardDData.LinkUndirColor

StandardDData.LinkUndirColor sets the default color of undirected links.
This syntax shows how to set StandardDData.LinkUndirColor:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<link_property>: <val ue>",

Si éhdardDDat a. Li nkUndi r Col or =
<col or _resource>;

Vo
Type: Color

Default: DGRAM-specific

Synonyms: UndirColor

StandardDData.LabelColor

StandardDData.LabelColor sets the color of the node label. This syntax
shows how to set the StandardDData.LabelColor parameter:;

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<link_property>: <val ue>",

St andar dDDat a. Label Col or =
<col or _resource>;

Type: Color
Default: DGRAM-specific

Synonyms: LabelColor

StandardDData.LinkPen

StandardDData.LinkPen sets the pen for the link label. This syntax shows
how to set the StandardDData.LinkPen parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<li nk_property>: <val ue>",

St andar dDDat a. Li nkPen = <pen_r esour ce>;

C Programmer’s Guide 113

Chapter

114

4

Graph Datasource: Managing Graph Data

Type: Pen
Default: DGRAM-specific

Synonyms: Pen

StandardDData.LabelFont

StandardDData.LabelFont sets the font for the node label. This syntax
shows how to set the StandardDData.LabelFont parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<li nk_property>: <val ue>",

St andar dDDat a. Label Font = <f ont _resource>;
): S
Type: Font
Default: DGRAM-specific

Synonyms: Font

StandardDData.DrawlLabel

StandardDData.DrawLabel specifies whether or not to display node labels.
This syntax shows how to set the StandardDData.DrawLabel parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<link_property>: <val ue>",

St andar dDDat a. Dr awLabel = { TRUE| FALSE} ;
Vo
Type: Boolean
Default: FALSE

Synonyms: DrawlLabel

StandardDData.Shape

StandardDData.Shape specifies the default shape for links. This syntax
shows how to set the StandardDData.Shape parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<link_property>: <val ue>",

St andar dDDat a. Shape =

{0 DEFAULT| DI AGONAL |
1] RI GHTANGLE

b

Vo
Type: Enumerated

Default: DIAGONAL
Synonyms: Shape

C Programmer’s Guide

Options for the DGRAM View

FocusColor

FocusColor sets the link color if the FocusDData.LinkDirColor or
FocusDData.LinkUndirColor parameter is not set. This syntax shows how
to set the FocusColor parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<li nk_property>: <val ue>",

Focus. Col or = <col or _resource>;

. .
Type: Color
Default: Color.Red

Synonyms: None

FocusDData.LinkDirColor

FocusDData.LinkDirColor sets the default color of all directed links. This
syntax shows how to set the FocusDData.LinkDirColor parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<link_property>: <val ue>",

FocusDDat a. Li nkDi r Col or = <col or _resource>;
)
Type: Color
Default: Color.Red

Synonyms: Focus.LinkDirColor, Focus.DirColor

FocusDData.LinkUndirColor

FocusDData.LinkUndirColor sets the default color of undirected links.
This syntax shows how to set FocusDData.LinkUndirColor:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<link_property>: <val ue>",

FocusDDat a. Li nkUndi r Col or =
<col or _resource>;

Type: Color
Default: Color.Red

Synonyms: Focus.LinkUndirColor, Focus.UndirColor

FocusDData.LabelColor

FocusDData.LabelColor sets the color of the node label. This syntax shows
how to set the FocusDData.LabelColor parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<li nk_property>: <val ue>",

FocusDDat a. Label Col or = <col or _resour ce>;

)
Type: Color

C Programmer’s Guide 115

Chapter

116

4

Graph Datasource: Managing Graph Data

Default: DGRAM-specific

Synonyms: Focus.LabelColor

FocusDData.LinkPen

FocusDData.LinkPen sets the pen for the link label. This syntax shows how
to set the FocusDData.LinkPen parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<li nk_property>: <val ue>",

FocusDDat a. Li nkPen = <pen_r esour ce>;
): S
Type: Pen
Default: DGRAM-specific

Synonyms: Focus.LinkPen, Focus.Pen

FocusDData.LabelFont

FocusDData.LabelFont sets the font for the node label. This syntax shows
how to set the FocusDData.LabelFont parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<link_property>: <val ue>",

FocusDDat a. Label Font = <f ont _resource>;
): S
Type: Font
Default: DGRAM-specific

Synonyms: Focus.LabelFont, Focus.Font

FocusDData.DrawLabel

FocusDData.DrawLabel specifies whether or not to display node labels.
This syntax shows how to set the FocusDData.DrawLabel parameter:

DS_Set Vi ewOpt i on(<dat asour ce>, (ResPtr)<w ndow>- ><vi ew>,
"<link_property>: <val ue>",

FocusDDat a. Dr awLabel = { TRUE| FALSE} ;
)
Type: Boolean
Default: FALSE

Synonyms: Focus.DrawLabel

FocusDData.Shape
FocusDData.Shape specifies the default shape for links. This syntax shows
how to set the FocusDData.Shape parameter:

DS_Set Vi ewOpt i on(<dat asource>, (ResPtr)<w ndow>- ><vi ew>,
"<link_property>: <val ue>",

FocusDDat a. Shape =

{ 0] DEFAULT| DI AGONAL |
1] RI GHTANGLE

C Programmer’s Guide

Building a Graph Datasource

Vo
Type: Enumerated
Default: DIAGONAL

Synonyms: Focus.Shape

Building a Graph Datasource

A graph datasource is a container of freely arranged nodes and edges. These
may be related hierarchically or nonhierarchically—as defined by the edges
relating them—or they may not be related at all (having no edge between
them). Each node has variant ID and Value properties, which you may set
when you create the node or during a separate editing session.

Building a graph datasource involves these tasks:
Creating a Graph Datasource

Creating and Destroying an Edit Object
Creating Accessors

Creating Nodes

a B~ w Do

Creating Edges

The preceding list is somewhat simplified, but does explain the basic
process, parts of which you may need to reiterate. DGRAM For more
information about options for the DGRAM view, see “Options for the
DGRAM View” on page 84.

Creating a Graph Datasource

Before you can begin creating node relationships in the graph datasource,
your application must first create a graph datasource. This code fragment
creates graphDs as a VarGrPtr variable and initializes graphDs to the value
returned by VARGR_Create():

Var G Ptr graphDs;
graphDs = VARGR Create();

The preceding code fragment creates a graph datasource with the structure
shown in Figure 4-14. The simple box in Figure 4-14 represents the memory
location of the datasource object, graphDs.

Figure 4-14 Untitled Graph Datasource

The examples in the following sections build on this simple representation
to construct a graph with relationships—neighbor, parent-child, or
none—indicated by the shared edges. For more information about graph
datasources, see “Graph Datasource” on page 63.

C Programmer’s Guide 117

Chapter 4 Graph Datasource: Managing Graph Data

Creating and Destroying an Edit Object

Building a graph datasource requires modifying the initial structures. To
modify the structure of a graph datasource—that is, to add and remove
nodes and edges—you need a datasource edit object. This code fragment
creates and destroys a datasource edit object, editGraphDs:

Var G Ptr graphDs;

/* Declare a pointer variable for the edit object. */
Var G Edi tPtr editG aphDs;

Q.réphDs = VARCGR Create();
edit GaphDs = VARGR_Start Edit(graphDs);

/* Edit operations defined. */

/* Conmit edit operations to the datasource and destroy the edit
object. */

DSEDI T_End((DsEdi t Ptr) edi t GraphDs) ;

In this example, editGraphDs is a VarGrEditPtr variable and is assigned a

datasource edit object—the value returned by the VARGR_StartEdit()

function. When the DSEDIT_End() function executes, all edit operations

are committed to the datasource, and the edit object is destroyed. For more

information about graph-datasource edit objects, see “Datasource Editing”

on page 79.

As a first use of the datasource edit object, assign a title to the datasource, as
shown here:

Var GrPtr graphDs;
Var G Edit Ptr edit GraphDs;

graphDs = VARGR Create();
edi t G aphDs = VARGR St artEdit (graphDs);

/* Set the title of the graph datasource. */
VARGREDI T_Set Titl e(edi t GraphDs, "G aph Datasource");

/* Cgrrm t ed}t operations to the datasource and destroy the edit
object. *

DSEDI T_End((DsEdi t Pt r) edi t G aphDs) ;

Note the use of the string literal in quotation marks. Unlike the node ID and

Value properties, the VARGREDIT_SetTitle() function accepts a string as

the datasource title. Building on the example from Figure 4-14, executing

the preceding VARGREDIT_SetTitle() function adds a title to the graph

datasource, as shown in Figure 4-15:

Graph Datasource

Figure 4-15 Titled Graph Datasource

Creating Accessors

The graph datasource use two basic types of accessors: node and edge
accessors. At a minimum, building a graph datasource requires creating
node accessors by which to access and operate on the nodes within it.
Depending on the approach you take, you may also need an edge accessor
when building a graph datasource.

118 C Programmer’s Guide

Building a Graph Datasource

Creating Node Accessors

You need at least one node accessor, and possibly two or more, when
changing the structure of a graph datasource. For example, you might add
or remove nodes, or simply update information about a particular node.
Using a node accessor with the graph-datasource APIs, you can traverse the
nodes in the graph.

The third line of the following code fragment declares a node-accessor
pointer, nodeAccessor. In the last executable line of code, a node-accessor
object is created and assigned to nodeAccessor:

Var GrPtr graphDs;
Var G Edit Ptr edit GraphDs;

/* Decl are a node-accessor pointer and assign a node-accessor
object toit. */
Var G NodeAccessor Ptr nodeAccessor;

graphDs = VARGR Create();
edi t G aphDs = VARGR St artEdit (graphDs);

/* Assign a node-accessor object to the node-accessor
poi nter. */
nodeAccessor = VARGRNODEACCESSOR Create();

This creates nodeAccessor as a VarGrNodeAccessorPtr variable and
initializes nodeAccessor to the value returned by
VARGRNODEACCESSOR_Create(). For more information about node
accessors, see “Node Accessor” on page 74.

Creating Edge Accessors

You need an edge accessor to update information—ID and Value
properties—for a specific edge. Using an edge accessors with the
graph-datasource APIs, you can traverse the edge in the graph. These
edge-accessor types are supported:

m “All” Edge Accessors

m “In” and “Out” Edge Accessors

m “Undirected” Edge Accessors

“All” edge accessors are useful for traversing all of the edges in the graph
datasource, regardless of whether they are directed or undirected. “In,”
“out,” and “undirected” edge accessors are similar in that each of them
accesses edges relative to a specified node.

“All” Edge Accessors

An “all” edge accessor is the only type of edge accessor that does not access
edges relative to a particular node. That is, you do not create such an
accessor using a node accessor as an argument. Because the “all” edge
accessors are not based on a specific node as a navigational reference point,
the API for navigating them is based on edge indexes. These, in turn, are
based on the order in which you create the edges.

This fragment declares an “all” edge-accessor pointer, allEdgeAccessor,
creates an “all” edge-accessor object, and assigns it to allEdgeAccessor:

Var GrPtr graphDs;

/* Declare an "all" edge-accessor pointer. */

C Programmer’s Guide 119

Chapter

120

4

Graph Datasource: Managing Graph Data

Var G Al | EdgeAccessor Ptr al | EdgeAccessor;
Var G EdgeEdi t Ptr edi t Edge;

ig'r éphDs = VARCGR Create();

/* Assign an "all" edge-accessor object to the node-accessor
pointer. */
al | EdgeAccessor = VARGRALLEDGEACCESSOR Create();

/* Assign an "all" edge-edit object to the edge-edit pointer
based on the "all" edge accessor, all EdgeAccessor. */
edi t Edge = VARGR_St art EdgeEdi t (al | EdgeAccessor) ;

This declares a VarGrAllEdgeAccessorPtr variable, allEdgeAccessor, and
assigns the value returned by VARGRALLEDGEACCESSOR_Create() to
it. For more information about “all” edge accessors, see “Edge Accessor” on
page 74.

“In” and “Out” Edge Accessors

You define “in” and “out” edge accessors relative to a particular node. That
is, you create them using a node accessor as an argument. Because “in” and
“out” edge accessors are based on a specific node, the APIs for navigating
them traverse only those edges with one end at the specified node.

The third and fourth executable lines of the following code fragment declare
inEdgeAccessor and outEdgeAccessor, respectively, as “in” and “out”
edge-accessor pointers. Later in the example, “in” and “out” edge-accessor
objects are created and assigned to their corresponding edge-accessor
pointers.

Var G Ptr graphDs;

/* Declare a node-accessor pointer. */
Var G NodeAccessor Pt r nodeAccessor ;

/* Declare "in" and "out" edge-accessor pointers. */
Var G | nEdgeAccessor Ptr i nEdgeAccessor;
Var G Qut EdgeAccessor Ptr out EdgeAccessor;

/* Declare an edge-edit pointer. */
Var G EdgeEdi t Pt r edi t Edge;

graphDs = VARGR Create();

/* Based on the node-accessor pointer, nodeAccessor, assign
"in" and "out" edge-accessor objects, respectively, to the
"in" and "out" edge-accessor pointers. */

i nEdgeAccessor =
VARGRNODEACCESSOR _Cr eat el nEdgeAccessor (nodeAccessor) ;

out EdgeAccessor =
VARGRNCODEACCESSOR_Cr eat eQut EdgeAccessor (nodeAccessor) ;

/* Assign an "in" edge-edit object to the edge-edit pointer
based on the "in" edge accessor, inEdgeAccessor. */

edi t Edge = VARGR_St art EdgeEdi t (i nEdgeAccessor) ;

DSEDI T_End((DsEdi t Pt r) edi t Edge) ;

/* Assign an "out" edge-edit object to the edge-edit pointer
based on the "out" edge accessor, outEdgeAccessor. */

edi t Edge = VARGR_St art EdgeEdi t (out EdgeAccessor) ;

DSEDI T_End((DsEdi t Pt r) edi t Edge) :

C Programmer’s Guide

Building a Graph Datasource

This declares VarGrinEdgeAccessorPtr and VarGrOutEdgeAccessorPtr
variables, inEdgeAccessor and outEdgeAccessor, respectively, and assigns the
values returned by VARGRINEDGEACCESSOR_Create() and
VARGROUTEDGEACCESSOR_Create() to them. For more information
about “in” and “out” edge accessors, see “Edge Accessor” on page 74.

“Undirected” Edge Accessors

You define an “undirected” edge accessor, as with “in” and “out” edge
accessors, relative to a particular node. That is, you create them using a node
accessor as an argument. Because “undirected” edge accessors are based on
a specific node, the APIs for navigating them traverse only those edges with
one end at the specified node.

The third executable line of the following code fragment declares
undirEdgeAccessor as “undirected” edge-accessor pointer. Later in the
example, an “undirected” edge-accessor object is created and assigned to
the “undirected” edge-accessor pointer.

Var G Ptr graphDs;

/* Declare a node-accessor pointer. */
Var G NodeAccessor Ptr nodeAccessor;

/* Declare an "undirected" edge-accessor pointer. */
Var G Undi r EdgeAccessor Ptr undi r EdgeAccessor;

/* Declare an edge-edit pointer. */
Var G EdgeEdi t Pt r edi t Edge;

graphDs = VARGR Create();

/* Based on the node-accessor pointer, nodeAccessor, assign an
"undi rected" edge-accessor object to the "undirected"
edge- accessor pointer. */

undi r EdgeAccessor =
VARGRNODEACCESSOR _Cr eat eUndi r EdgeAccessor (nodeAccessor) ;

/* Assign an "undirected" edge-edit object to the edge-edit
poi nter based on the "undirected" edge accessor,
I nEdgeAccessor. */

edi t Edge = VARGR_St art EdgeEdi t (undi r EdgeAccessor) ;

DSEDI T_End((DsEdi t Pt r) edi t Edge) :

/* Assign an "undirected" edge-edit object to the edge-edit
poi nter based on the "undirected" edge accessor,
undi r EdgeAccessor. */

edi t Edge = VARGR_St art EdgeEdi t (undi r EdgeAccessor) ;

DSEDI T_End((DsEdi t Pt r) edi t Edge) :

This declares a VarGrUndirEdgeAccessorPtr variable, undirEdgeAccessor,
and assigns the value returned by
VARGRNODEACCESSOR_CreateUndirEdgeAccessor() to it. For more
information about “undirected” edge accessors, see “Edge Accessor” on
page 74.

C Programmer’s Guide 121

Chapter

4 Graph Datasource: Managing Graph Data

Creating Nodes

122

The first node you must create in your graph datasource is the first root
node. After doing so, you can use either of these two techniques to add
nodes to the datasource:

m Creating Linked Nodes
m Creating Unlinked Nodes

Regardless of your overall scheme, the first node you add to your
datasource is always an unlinked node. This is because there are no other
nodes to which it can be linked. Figure 4-16 shows how to create a node
accessor, add the first root node, and set its ID and Value properties:

1|

L

| Graph Datasourcel—[First Root |

Figure 4-16 Creating the First Root Node in a Graph Datasource

This code fragment shows how to add the first node in the graph
datasource:

Var G Ptr graphDs;

Var G Edi tPtr edit G aphDs;

VarPtr varlD = VAR New();
Var Ptr varVal ue = VAR _New();

/* Decl are a node-accessor pointer variable. */
Var G NodeAccessor Pt r nodeAccessor ;

graphDs = VARGR Create();

/* Assign a node-accessor object to the node-accessor
poi nter. */
nodeAccessor = VARGRNODEACCESSOR Create();

/* Assign a datasource edit object to the VarGEditPtr,
edi t GaphDs. */
edit GaphDs = VARGR St art Edit(graphDs);

/* Move nodeAccessor to the first avail able node |ocation. */
VARGRNODEACCESSOR_GoFi r st Root (nodeAccessor) ;

/* Add the first root node to begin the graph. */
VARGREDI T_AddNode(edi t G aphDs, nodeAccessor);

/* Set the node I D and Val ue properties. */

VAR Set Str(varl D, "0001"):

VAR_Set St r(varValue, "First Root"):

VARGREDI T_Set Nodel D(edi t GraphDs, nodeAccessor, varlD);
VARGREDI T_Set NodeVal ue(edi t G aphDs, nodeAccessor, varVal ue);

DSEDI T_End((DsEdi t Pt r) edi t GraphDs) ;

You can also create the first root node using a “convenience” API, which
creates and disposes of the edit object for you. This code fragment illustrates
how to use the convenience functions to create the first root node in the
datasource:

C Programmer’s Guide

Building a Graph Datasource

Var G Ptr graphDs;

Var G NodeAccessor Pt r nodeAccessor;
VarPtr varlD = VAR New();

Var Ptr varVal ue = VAR New();

Q.réphDs = VARCGR Create();
nodeAccessor = VARGRNODEACCESSOR Create();

/* Move nodeAccessor to the first avail able node |ocation. */
VARGRNCODEACCESSOR_GoFi r st Root (nodeAccessor) ;

/* Use the convenience APl to create an edit object, add the
first root node, and dispose of the edit object. */
VARGR_AddNode(gr aphDs, nodeAccessor);

/* Set the node ID and Val ue properties using "conveni ence" API
functions. */

VAR Set Str(varl D, "0001"):

VAR_Set St r(varValue, "First Root"):

VARGR_Set Nodel D(gr aphDs, nodeAccessor, varlD);

VARGR_Set NodeVal ue(graphDs, nodeAccessor, varVal ue);

The “convenience” API functions:
1. Create an edit object.

2. Perform the specified operation.
3. Dispose of the edit object when the operation is complete.

Tip: Because these “convenience” functions create and dispose of an
edit object for each operation, they are not very efficient when
used to perform batches of edit operations.

Creating Linked Nodes

After creating the first root node, the simplest way to add nodes is to add
them as child, parent, and neighbor nodes. This is because the edges
connecting them are automatically created. This can save some time and
effort initially, but you may want to later revisit the automatically created
edges and label them.

By creating innately linked nodes, you can create these nodes relationships
relative to the position of the node accessor:

m Child Nodes
m Parent Nodes
m Neighbor Nodes

Figure 4-17 shows how child, parent, and neighbor node relationships are
depicted in the related sections that follow.

Parents

_ | —

L__l___.

Children

Figure 4-17 Illustration Scheme for Child, Parent, and Neighbor Nodes

This code fragment shows how to add the first node in the graph datasource
and is assumed in the following sections:

C Programmer’s Guide 123

Chapter 4 Graph Datasource: Managing Graph Data

/* Create a graph datasource and the first root node. */
Var G Ptr graphDs;

Var G NodeAccessor Pt r nodeAccessor ;

VarPtr varlD = VAR New();

Var Ptr varVal ue = VAR New();

/* Declare an edit pointer variable. */

graphDs = VARGR Create();

nodeAccessor = VARGRNODEACCESSOR Create();
VARGRNODEACCESSOR_GoFi r st Root (nodeAccessor) ;
VARGR_AddNode(gr aphDs, nodeAccessor);

/* Set the node ID and Val ue properties using "conveni ence" API
functions. */

VAR Set Str(varl D, "0001"):

VAR_Set Str(varValue, "First Root"):

VARGR_Set Nodel D(gr aphDs, nodeAccessor, varlD);

VARGR_Set NodeVal ue(graphDs, nodeAccessor, varVal ue);

To add a linked node of a particular type to the end of the node list:

1. Create a graph datasource and the first root node.

2. Move the node accessor to the first node of the relationship type to be
created.

3. Execute the VARGRNODEACCESSOR_GoNext() function
repeatedly until an invalid node location is found.

4. Add anode.

Child Nodes

To add child nodes and the edges that connect them to the parent node:
1. Move the node accessor to the first child-node location.

2. Execute the VARGRNODEACCESSOR_GoNext() function
repeatedly until an invalid node location is found.

3. Add anode.

Figure 4-18 illustrates this process for creating the first child node, which
the code fragment that follows it also demonstrates:

L

| Graph Datasourcel—[First Root |

| Graph Datasource|—| First Root |

Graph Datasource |—| First Root |

1

-
| First Child
=

— Y Y =

Figure 4-18 Adding the First Child Node

/* Create a graph datasource and the first root node. */
Var G Ptr graphDs;

124 C Programmer’s Guide

Building a Graph Datasource

Var G NodeAccessor Pt r nodeAccessor ;
Var Ptr varl D,
Var Ptr var Val ue;

graphDs = VARGR Create();

nodeAccessor = VARGRNODEACCESSOR Create();
varl D = VAR New();

var Val ue = VAR New();

VARGRNCODEACCESSOR_GoFi r st Root (nodeAccessor) ;
VARGR_AddNode(gr aphDs, nodeAccessor);

/* Set the node I D and Val ue properties using "conveni ence" API
functions. */

VAR _Set Str(varl D, "0001"):

VAR Set Str(varValue, "First Root"):

VARGR_Set Nodel D(gr aphDs, nodeAccessor, varlD);

VARGR_Set NodeVal ue(graphDs, nodeAccessor, varVal ue);

/* Move the node accessor to the first child-node |ocation. */
VARGRNODEACCESSOR_GoFi r st Chi | d(nodeAccessor) ;

/* Execute the GoNext() function repeatedly until an invalid
node |l ocation is found. */

whil e (VARGR | sNodeVal i d(graphDs, nodeAccessor)) {
VARCGRNODEACCESSOR _GoNext (nodeAccessor) ;

}

/* The following GoNt hChild() function would replace the
preceding GoFirstChild() function and while | oop. */
/* VARGRNODEACCESSOR _GoNt hChi | d(nodeAccessor,
VARGR_Get Nunthi | dren(gr aphDs,
nodeAccessor)); */

/* Add a node. */
VARGR_AddNode(gr aphDs, nodeAccessor);

/* Set the node ID and Val ue properties using "conveni ence" API
functions. */

VAR Set Str(varl D, "0002"):

VAR_Set Str(varValue, "First Child"):

VARGR_Set Nodel D(gr aphDs, nodeAccessor, varlD);

VARGR_Set NodeVal ue(graphDs, nodeAccessor, varVal ue);

Parent Nodes

To add parent nodes and the edges that connect them to the parent node:
1. Move the node accessor to the first parent node location.

2. Execute the VARGRNODEACCESSOR_GoNext() function
repeatedly until an invalid node location is found.

3. Add a node.

When a parent node is added to the first root node, the node referenced by
the node accessor is no longer a root node. The “First Parent” node in
Figure 4-19 is now actually the first root node in the datasource, and the
“First Parent” node is its child. In fact, the “First Root” node is the firstchild
of the “First Parent” node.

C Programmer’s Guide 125

Chapter 4 Graph Datasource: Managing Graph Data

Figure 4-19 illustrates this process for creating the first parent node, which
the code fragment that follows it also demonstrates:

_—

T .
Graph Datasource |—||_ First Root |

1|

e

Graph Datasource |—| First Root | New root node

First Parent

L__T___:

Graph Datasource |—| First Root

'|_ o, '|' No longer a root node

Figure 4-19 Adding the First Parent Node

/* Create a graph datasource and the first root node. */
Var GrPtr graphDs;

Var G- NodeAccessor Pt r nodeAccessor;

VarPtr varlD = VAR New();

Var Ptr varVal ue = VAR _New();

/* Declare an edit pointer variable. */

graphDs = VARGR Create();

nodeAccessor = VARGRNODEACCESSOR Create();
VARGRNCODEACCESSOR_GoFi r st Root (nodeAccessor) ;
VARGR_AddNode(gr aphDs, nodeAccessor);

/* Set the node ID and Val ue properties using "conveni ence" API
functions. */

VAR Set Str(varl D, "0001"):

VAR _Set Str(varValue, "First Root"):

VARGR_Set Nodel D(gr aphDs, nodeAccessor, varlD);

VARGR_Set NodeVal ue(graphDs, nodeAccessor, varVal ue);

/* Move the node accessor to the first parent -node | ocation. */
VARGRNODEACCESSOR _GoFi r st Par ent (nodeAccessor) ;

/* Execute the GoNext() function repeatedly until an invalid
node | ocation is found. */

whi | e (VARGR | sNodeVal i d(graphDs, nodeAccessor)) {

} VARGRNODEACCESSOR _GoNext (nodeAccessor) ;

/* The foll owi ng GoNt hParent () function would replace the
precedi ng GoFirstParent() function and while |oop. */
/* VARGRNODEACCESSOR_GoNt hPar ent (nodeAccessor,
, VARGRNODEACCESSOR _Get NunPar ent s()) ;
*

/* Add a node. */
VARGR_AddNode(gr aphDs, nodeAccessor);

/* Set the node I D and Val ue properties using "conveni ence" API
functions. */

VAR _Set Str(varl D, "0003"):

VAR Set Str(varValue, "First Parent"):

VARGR_Set Nodel D(gr aphDs, nodeAccessor, varlD);

VARGR_Set NodeVal ue(graphDs, nodeAccessor, varVal ue);

126 C Programmer’s Guide

Building a Graph Datasource

Neighbor Nodes

To add neighbor nodes and the edges that connect them to the reference
node:

1. Move the node accessor to the first neighbor-node location.

2. Execute the VARGRNODEACCESSOR_GoNext() function
repeatedly until an invalid node location is found.

3. Add a node.

Figure 4-20 illustrates this process for creating the first neighbor node,
which the code fragment that follows it also demonstrates:

;
| Graph Datasourcel—L First Root

]

. —

|Graph Datasource|—| First Root |—| Flrst Ne1ghbor

Figure 4-20 Adding the First Neighbor Node

/* Create a graph datasource and the first root node. */
Var G Ptr graphDs;

Var G- NodeAccessor Pt r nodeAccessor;

VarPtr varlD = VAR New();

Var Ptr varVal ue = VAR _New();

/* Declare an edit pointer variable

graphbDs = VARGR_Cr eate();

nodeAccessor = VARGRNODEACCESSOR Create();
VARGRNODEACCESSOR_GoFi r st Root (nodeAccessor)
VARGR AddNode(graphDs, nodeAccessor);

/* Set the node I D and Val ue properties using "conveni ence" API
functions. */

VAR_Set St r (var | D, 0001"):

VAR Set Str(varVal ue, "First Root"):

VARGR_Set Nodel D(gr aphDs nodeAccessor, varlD);

VARGR_Set NodeVal ue(graphDs, nodeAccessor, var Val ue);

/* Move the node accessor to the first nei ghbor - node
| ocation. */
VARGRNODEACCESSOR_GoFi r st Nei ghbor (nodeAccessor) ;

/* Execute the GoNext () function repeatedly until an invalid
node | ocation is found. */

whil e (VARGR | sNodeVal i d(graphDs, nodeAccessor)) {
VARCGRNODEACCESSOR_CGoNext (nodeAccessor) ;

}

/* The followi ng GoNt hNei ghbor () function would replace the
precedi ng GoFirstNei ghbor() function and while | oop. */
/* VARGR_CGoNt hNei ghbor (nodeAccessor, Get NumNei ghbors()); */

/* Add a node. */
VARGR_AddNode(gr aphDs, nodeAccessor);

/* Set the node I D and Val ue properties using "conveni ence" API
functions. */

VAR _Set Str(varl D, "0004"):

VAR Set Str(varVal ue, "First Neighbor"):

C Programmer’s Guide 127

Chapter

128

4

Graph Datasource: Managing Graph Data

VARGR_Set Nodel D(gr aphDs, nodeAccessor, varlD);
VARGR_Set NodeVal ue(graphDs, nodeAccessor, varVal ue);

Creating Unlinked Nodes

To create unlinked nodes in the graph datasource, you simply add root
nodes. You can add root nodes much like you add linked nodes, except that
the node accessor traverses root-node locations.

To add unlinked nodes to the datasource:
1. Move the node accessor to the first root node location.

2. Execute the VARGRNODEACCESSOR_GoNext() function
repeatedly until an invalid node location is found.

3. Add anode.

When you add a root node to the datasource, the new node is referenced by
the datasource object. Figure 4-21 shows the creation of a second root node.
You can add edges to an unlinked node as described in “Creating Unlinked
Nodes” on page 128.

| Graph Datasourcel—[First Root _||

a1 |

| Graph Datasource First Root |

r—-— — — /7

L - — — — 4

Graph Datasource First Root

Second Root |

a1 |

Figure 4-21 Adding an Unlinked Node

/* Create a graph datasource and the first root node. */
Var G Ptr graphDs;

Var G- NodeAccessor Pt r nodeAccessor;

VarPtr varlD = VAR New();

Var Ptr varVal ue = VAR _New();

/* Declare an edit pointer variable. */

graphDs = VARGR Create();

nodeAccessor = VARGRNODEACCESSOR Create();
VARGRNCODEACCESSOR_GoFi r st Root (nodeAccessor) ;
VARGR_AddNode(gr aphDs, nodeAccessor);

/* Set the node I D and Val ue properties using "conveni ence" API
functions. */

VAR _Set Str(varl D, "0001"):

VAR _Set Str(varValue, "First Root"):

VARGR_Set Nodel D(gr aphDs, nodeAccessor, varlD);

VARGR_Set NodeVal ue(graphDs, nodeAccessor, varVal ue);

/* Move the node accessor to the first root-node |ocation. */
VARGRNCDEACCESSOR_GoFi r st Root (nodeAccessor) ;

/* Execute the GoNext() function repeatedly until an invalid

C Programmer’s Guide

Building a Graph Datasource

node |l ocation is found. */

whil e (VARGR | sNodeVal i d(graphDs, nodeAccessor)) {
VARGRNODEACCESSOR _GoNext (nodeAccessor) ;

}

/* The follow ng GoNt hRoot () function woul d replace the
precedi ng GoFirstRoot() function and while |oop. */
/* VARCGR_GoNt hRoot (nodeAccessor, Get NunRoots()); */

/* Add a node. */
VARGR_AddNode(gr aphDs, nodeAccessor);

/* Set the node I D and Val ue properties using "conveni ence" API
functions. */

VAR _Set Str(varl D, "0003"):

VAR Set Str(varValue, "First Parent"):

VARGR_Set Nodel D(gr aphDs, nodeAccessor, varlD);

VARGR_Set NodeVal ue(graphDs, nodeAccessor, varVal ue);

Creating Edges

When adding linked nodes to a graph datasource, you do not have to manually
define the edges that connect two related nodes. However, if you want to link two
unlinked nodes, you must create an edge to define the relationship between them.

These two issues are of primary concern when creating edges:
m Node-Accessor and Edge-Accessor Requirements
m Adding Directed and Undirected Edges

Node-Accessor and Edge-Accessor Requirements

When adding linked nodes to the graph datasource, you only need one node
accessor. However, when adding an edge to a pair of unlinked nodes, you
have to have two node accessors. In addition, you must create an
appropriate edge accessor to set the edge 1D and Value properties.

This code fragment shows the declarations for the node and edge accessor
that you need when adding edges between nodes:

/* Create a graph datasource and node and edge accessors. */
Var G Ptr graphDs;

Var Gr NodeAccessor Pt r nodeAccessor From

Var G NodeAccessor Pt r nodeAccessor To;

Var & | nEdgeAccessor Ptr i nEdgeAccessor;

Var G Qut EdgeAccessor Ptr out EdgeAccessor;

Var G Undi r EdgeAccessor Ptr undi r EdgeAccessor;

ig'r éphDs = VARCGR Create();

/* Create node accessors for both the "Fronf and "To" nodes. */
nodeAccessor From = VARGRNODEACCESSOR Create();
nodeAccessor To = VARGRNODEACCESSOR Create();

/* Move the "Fronf and "To" accessors to two unlinked nodes. */

/* Create an "out" edge accessor for the node referenced by
nodeAccessor From the source node. */

out EdgeAccessor =
VARGRNODEACCESSOR _Cr eat eQut EdgeAccessor (nodeAccessor Fron) ;

/* Create an "in" edge accessor for the node referenced by
nodeAccessor To, the source node. */

i nEdgeAccessor =
VARGRNCODEACCESSOR_Cr eat el nEdgeAccessor (nodeAccessor To) ;

C Programmer’s Guide 129

Chapter

130

4

Graph Datasource: Managing Graph Data

/* Create an "undirected" edge accessor for the node referenced
by nodeAccessorFrom an arbitrarily chosen end node. */

undi r EdgeAccessor =
VARGRNODEACCESSOR _Cr eat eUndi r EdgeAccessor (nodeAccessor From) ;

Adding Directed and Undirected Edges

There are some slight differences between the ways directed and undirected
edges are handled. Directed edges are defined using a “source” node and a
“target” node. For undirected edges, the terms “source” and “target” are
irrelevant—that is, unless the Directed property of the edge is subject to
change.

These two examples illustrate the differences between these types of edges:
m Directed Edges
m Undirected Edges

Directed Edges

The following example uses directed edges. The two node accessors are
nodeAccessorFrom and nodeAccessorTo. The edge accessor used to set the
edge ID and Value properties is arbitrarily chosen to be an “out” edge
accessor based on the node referenced by nodeAccessorFrom. It could just
as easily be an “in” edge accessor based on the node referenced by
nodeAccessorTo.

/* Create a graph datasource and the first root node. */
Var G Ptr graphDs;

Var G NodeAccessor Pt r nodeAccessor From

Var G NodeAccessor Ptr nodeAccessor To;

Var G Qut EdgeAccessor Ptr out EdgeAccessor;

VarPtr varlD = VAR New();

VarPtr varVal ue = VAR New();

graphDs = VARGR Create();

/* Create node accessors for both the "Fronf and "To" nodes. */
nodeAccessor From = VARGRNODEACCESSOR Create();
nodeAccessor To = VARGRNODEACCESSOR Create();

)’.*' Move the "Fromt' and "To" accessors to two unlinked nodes. */

/* Add a directed edge using nodeAccessorFromto identify the
source of the edge, while using nodeAccessorTo to identify
the target node. */

VARGR_AddDi r Edge(gr aphDs, nodeAccessor From nodeAccessor To);

/* Create an "out" edge accessor for the node referenced by
nodeAccessor From the source node. */

out EdgeAccessor =
VARGRNODEACCESSOR _Cr eat eQut EdgeAccessor (nodeAccessor Fron) ;

/* Set the edge ID and Val ue properties using "conveni ence" API
functions. This automatically creates an edge accessor for
the edit operation and di sposes of it for you. */

VAR _Set Str(varl D, "0001"):

VAR _Set Str(varVal ue, "First Edge"):

VARGR_Set Edgel D(gr aphDs, out EdgeAccessor, varlD);

VARGR_Set EdgeVal ue(graphDs, out EdgeAccessor, var Val ue);

C Programmer’s Guide

Building a Graph Datasource

Undirected Edges

This example uses undirected edges. The two node accessors are
nodeAccessorl and nodeAccessor2. The edge accessor that is used to set the
edge ID and Value properties is an “undirected” edge accessor based on the
node referenced by nodeAccessorl. It could just as easily be an “undirected”
edge accessor based on the node referenced by nodeAccessor2.

/* Create a graph datasource and the first root node. */
Var GrPtr graphDs;

Var G NodeAccessor Pt r nodeAccessor 1;

Var G- NodeAccessor Ptr nodeAccessor 2;

Var G Undi r EdgeAccessor Ptr undi r EdgeAccessor;

VarPtr varl D = VAR New();

Var Ptr varVal ue = VAR New();

graphDs = VARGR Create();

/* Create node accessors for both the "1" and "2" nodes. */
nodeAccessor1l = VARGRNODEACCESSCOR Create();
nodeAccessor2 = VARCRNODEACCESSOR Create();

/* Move the "1" and "2" accessors to two unlinked nodes. */

/1 Add an undirected edge using nodeAccessorl and nodeAccessor?2
to identify its end points. */
VARGR_AddUndi r Edge(gr aphDs, nodeAccessorl, nodeAccessor?2);

/* Create an "undirected" edge accessor for the node referenced
by nodeAccessorl. */

undi r EdgeAccessor =
VARCGRNODEACCESSOR _Cr eat eUndi r EdgeAccessor (nodeAccessor 1) ;

/* Set the edge I D and Val ue properties using "conveni ence" API
functions. This automatically creates an edge accessor for
the edit operation and di sposes of it for you. */

VAR Set Str(varl| D, "0001"):

VAR_Set St r(var Val ue, "First Edge"):

VARGR_Set Edgel D(gr aphDs, undi r EdgeAccessor, varlD);

VARCR_Set EdgeVal ue(gr aphDs, undir EdgeAccessor, varVal ue);

C Programmer’s Guide 131

Chapter 4 Graph Datasource: Managing Graph Data

132 C Programmer’s Guide

Chapter

Overview

Args Class

This class is a facility to read arguments from the command-line.

It is similar to using the standard argc/argv except that:

m Itcan be used from any part of the application. The argc/argv needs to
be specified only once at the program initialization.

m It supports response files. Response files can be used when the
command line is too long for the operating system (command lines are
limited to 128 characters on DOS, to 512 characters on VMS; there is no
limitation on Mac/MPW; on Unix, there is no limitation in shell scripts
but the input is limited to 512 characters when typing in an interactive
shell). If one of the arguments starts with a @, then it is assumed to be
@<file>. The given argument is replaced by the content of <file>.

Example:

If a file myprog.opt contains the following line:

-optionl -option2 -option3 -option4d

Then the following command line:

myprog @ryprog. opt -option5

will be equivalent to:

myprog -optionl -option2 -option3 -optiond -option5

API Overview

Your main routine should contain, before the initialization of the

Open Interface libraries:
main L2(int, argc, char**, argv)

{
NDArgs: :Init(argc, argv)

}

Then any class in your program can refer to the command-line arguments
with:

Str arg;

for (arg = NDArgs::GetFirst(); arg; arg = NDArgs::GetNext()) {
}

or with:

I nt i, nargs = NDArgs:: GetNun();

for (i =1; i < nargs; i++) {

Str arg = NDArgs::CGetNth(i);

C Programmer’s Guide 133

Chapter 5 Args Class

or with:
ArrayPtr args = NDArgs:: CGetAll();
I nt i ndex, len = args->CetlLen();

for (index = 1; index < len; index++) {
Str arg = (Str)args->CGetEl t(i);

}

If some class processes an option, it might also decides that no other class
should process the same option. This can be done with:

NDAr gs: : RenoveNt h(i ndex) ;

Note: The Oth argument is usually not useful because it contains the name
of the program itself. ARGS_GetFirst() is equivalent to
ARGS_GetNth(1);

Scanning the List of Command Arguments

Init

void ARGS_Init(CRTL_int argc, CRTL_char** argv);
Should be called from the main routine before any other initialization.
Arguments like @<file> are replaced by the content of the given file. If
ARGS _Init is called more than once, only the last attempt is considered.
ARGS_Init MUST be called before any of the following calls can be used. It
must also be called before the Open Interface Core library is initialized. All
the other calls can only be used after the Open Interface Core library is
initialized.

GetAll

ArrayPtr ARGS_GetAll(void);
Returns the list of all the arguments (including the application name itself).
The list of arguments will be an array of strings.

GetNum

ArglVal ARGS_GetNum(void);
Returns the number of arguments (including the application name itself).

GetNth

CStr ARGS_GetNth(ArgIVal n);

Returns the nth argument. It returns NULL if there are fewer arguments
than n.

GetExecName

CStr ARGS_GetExecName(void);
Returns the application name.

134 C Programmer’s Guide

Scanning the List of Command Arguments

GetFirst

CStr ARGS_GetFirst(void);

Returns the first argument after the application name. It returns NULL if
there is no argument.

GetNext

CStr ARGS_GetNext(void);

Returns the next argument. GetNext can be called only after ARGS_GetFirst
has been called at least once. It returns NULL when all arguments have been
read.

RemoveNth

void ARGS_RemoveNth(ArglVal n);
Extract the nth argument from the list.

InsertNth

void ARGS_InsertNth(ArglVal n, CStr arg);
Inserts the new argument arg into the list at given index n.

C Programmer’s Guide 135

Chapter 5 Args Class

136 C Programmer’s Guide

Chapter

Overview

ArNum Class

The ArNum class implements a generic class corresponding to collections of
numeric values.

An ArNum instance is a collection of possibly duplicate and possibly
ordered elements expected to be numeric values of the same value.

The ArNum classes handle the dynamic allocation and deallocation of the
internal structures that keep track of the items, with a limit in number of
refernces being set to MAXINT32/sizeof(element) or the maximum
available memory in the system.

Arnums grow as the number of elements stored in the array increases.

The ArNum classes perform deep copies: when an array object is copied
into another, all the numeric values of the original are copied into the
destination.

API Principle

Macros

This class implements a generic numeric values collection class.

The APl is implemented in terms of macros that get compiled in the
application when a particular reference collection class is defined.

The API is type-safe. If an arnum is an array of integers, all its items will be
integers of the same time otherwize compiler warnings will be generated.

The following compile-time types are defined:

Type Description

ARNUM Type of the ArNum

ARNUM ELT Type of the ArNum element
ARNUM KEY Type of the search key

This API provides a set of macros that can be use to declare and implement
collections of numeric values.

ARNUM_DECLARECLASS(ARNUM_ELT, ARNUM_KEY)

Declares the class ArNumOf<ARNUM_ELT>, the collection class that
keeps track of ARNUM_ELT numeric values. The class needs to be
implemented using the ARNUM_IMPLEMENTCLASS macro.

C Programmer’s Guide 137

Chapter 6 ArNum Class

ARNUM_IMPLEMENTCLASS(ARNUM_ELT, ARNUM_KEY)

Implements the class ArNumOf<ARNUM_ELT>, which must have been
declared using ARNUM_DECLARECLASS.

ARNUM_DEFCLASS(ARNUM_ELT, ARNUM_KEY)

Declares and provides an exclusively inline implementation for the
ArNumOf<ARNUM_ELT> class, the collection class that keeps track of
ARNUM_ELT numeric values.

ARNUM_DEFSTRUCT(STRUCT_NAME, ARNUM_ELT)

Defines the <STRUCT_NAME> structure implementing the collection of
<ARNUM_ELT> numeric values.

Constructors and Destructor

Constructors
void ARNUM_Construct(ArNumPtr arnum);
Default ARNUM construction.
void ARNUM_ConstructLen(ArNumPtr arnum, ArraylVal len);

Constructs the ARNUM with 'len’ elements. The contents of the ARNUM is
initialized with NULL. The elements can then be set with ARNUM _SetElIt.

void ARNUM_ConstructAlloc(ArNumPtr artpr, ArraylVal alloc);

Constructs the ARNUM with 0 elements but a buffer allocated for “alloc’
elements.

Then, you may fill the array by calling ARNUM_AppendElt and the array
logic will not need to reallocate the buffer as long as the number of elements
does not exceed "alloc'.

void ARNUM_ConstructArnum(ArNumPtr arnum, ArNumPtr arnum2);
Constructs the ARNUM as a copy of ‘arnum2'. This is a deep copy.

Destructor

void ARNUM_Destruct(ArNumPtr arnum);

Default ARNUM destruction. All the values stored in the arnum are lost at
this point.

Clone, Copy, Reset

Reset

void ARNUM_Reset(ArNumPtr arnum);

Resets the contents of the ARNUM. After this call, the length of the ARNUM
will be 0.
You are responsible for freeing the elements of the ARNUM.

138 C Programmer’s Guide

Changing the Length of the Array

Changing the Length of the Array

SetlLen

void ARNUM_SetLen(ArNumPtr arnum, ArraylVal len);
Sets the number of elements of the ARNUM to ’len’ and reallocates the
contents of the ARNUM if necessary. If the ARNUM grows, the new
elements are initialized with zeros.

SetAlloc

void ARNUM_SetAlloc(ArNumPtr arnum, ArraylVal alloc);

Reallocates the contents of the ARNUM for ’alloc’ elements if necessary but
does not change the number of elements in the ARNUM.

Global Queries

GetLen

ArraylVal ARNUM_GetLen(ArNumCPtr arnum);
Returns the number of elements in the ARNUM.

ISEmpty
BoolEnum ARNUM_ISsEmpty(ArNumCPtr arnum);
Returns whether the ARNUM is empty or not.

IsinRange

BoolEnum ARNUM _IsInRange(ArNumCPtr arnum, ArraylVal i);

Returns whether ’i’ is a valid index for the ARNUM (in the [0, len-1] range,
where len is the length of the ARNUM).

Accessing Elements

GetNthEIt

ARNUM_ELT ARNUM_GetNthEIt(ArNumCPtr arnum, ArraylVal i);
Returns the element at index ’I'. Fails if the index is not in the [0, len-1]

range.
UnboundedGetNthEIt

ARNUM_ELT ARNUM_UnboundedGetNthEIt(ArNumCPtr arnum, ArraylVal i);

Same as ARNUM_GetNthEIt but returns 0 if i’ is out of range instead of
failing.

C Programmer’s Guide 139

Chapter 6 ArNum Class

SetNthElt

void ARNUM_SetNthEIt(ArNumPtr arnum, ArraylVal i, ARNUM_ELT elt);

Sets the element at index 'I’. Fails if the index is not in the [0, len-1] range. If
you are replacing an existing element, you are responsible for freeing the
old element (if needed).

UnboundedSetNthElt

void ARNUM_UnboundedSetNthEIt(ArNumPtr arnum, ArraylVal i, ARNUM_ELT elt);

Same as ARNUM_SetNthEIt but extends the array if ’i’ is out of range and
elt is not NULL (i’ must be positive).

Finding Elements

The comparison procedure used for ordering purposes is specified on a
call-basis. It always takes the element as first argument, and a search key as
second argument. The search key is a pointer to an object (or to void), and
must not necessarily be of the same type as the reference to the stored object.
You can implement and use as many ad-hoc comparison procedures as
needed. The search (ARNUM _SortedLookup and ARNUM_SortedFind)
uses a binary dichotomy, which makes it efficient even on large sorted
arrays (search time grows in O(log(n))).

ContainsElt

BoolEnum ARNUM_ContainsElt(ArNumCPtr arnum, ARNUM_ELT elt);
Returns whether or not the ARNUM contains ’elt’.

LookupElt

ArraylVal ARNUM_LookupEIt(ArNumCPtr arnum, ARNUM_ELTCPtr elt);

Returns the index of the first occurence of ’elt’ in the ARNUM. Returns -1 if
the ARNUM does not contain ’elt’.

FindElt

ArraylVal ARNUM_FindEIt(ArNumCPtr arnum, ARNUM_ELTCPtr elt);

Same as ARNUM_Lookup routines but signal a failure if the ARNUM does
not contain ’elt’.

SortedLookupElt

BoolEnum ARNUM _SortedLookupEIt(ArNumCPtr arnum, CmpProc proc,
ARNUM_KEY key, ArraylValPtr result);

Searches element which matches key in the ARNUM. The ARNUM must be
sorted in increasing order according to ’proc’. 'proc’ will be called as
(*proc)(elt, key) to determine how the elements of the array compare with
‘key’.
Returns BOOL_TRUE and sets "*result’ to the index of the matching entry if
a match is found.

If no match is found, returns BOOL_FALSE and *result is set to the index at
which key should be inserted if we had to insert it in the sorted array.

140 C Programmer’s Guide

Adding Elements

SortedFindElt

ArraylVal ARNUM_SortedFindEIt(ArNumCPtr arnum, CmpProc proc,
ARNUM_KEY key);

Searches element which matches 'key’ in the ARNUM. The ARNUM must
be sorted in increasing order according to 'proc’. 'proc’ will be called as
(*proc)(elt, key) to determine how the entries in the array compare with
‘key’.

This routine returns the index of the element where the match occured. If no
match is found, this routine signals a failure.

Adding Elements

AppendElt

void ARNUM_AppendEIt(ArNumPtr arnum, ARNUM _ELT elt);
Adds ’elt’ at the end of the ARNUM. Does not modify the indices of the

other elements in the ARNUM. The length of the ARNUM increases by one.
UnigAppendElt

void ARNUM_UnigAppendEIt(ArNumPtr arnum, ARNUM_ELT elt);
Appends ’elt’ to the ARNUM if ’elt’ is not already in the ARNUM.

InsertNthEIt

void ARNUM _InsertNthEIt(ArNumPtr arnum, ArraylVal i, ARNUM_ELT elt);

Inserts "elt’ at index 'I'. The elements which were at index 'i’ or greater are
moved one index further in the ARNUM. The relative order of the ARNUM
elements is preserved by this call.

SortedInsertElt

ArraylVal ARNUM_SortedinsertEIt(ArNumPtr arnum, CmpProc proc, ARNUM_ELT elt);

Insert "elt’, using 'proc’ to compare elements of the ARNUM. Returns the
index at which the element was inserted.

ArraylVal ARNUM_SortedUniglnsertElt(ArNumPtr arnum, CmpProc proc,
ARNUM_ELT elt);

Same as ARNUM_SortedXXX calls but do not insert if the element is already
in the ARNUM. Return the index at which the element was inserted or
found.

Removing Elements

RemoveNthElt

void ARNUM_RemoveNthEIt(ArNumPtr arnum, ArraylVal i);

Removes the element at index 'I. In case i’ is not the last index, the last
element is moved to index 'i’, so this routine does not preserve the ordering

C Programmer’s Guide 141

Chapter 6 ArNum Class

of the elements in the ARNUM. ARNUM _ExtractNthEIt preserves the
ordering but is less efficient.
Removeklt

void ARNUM_RemoveEIt(ArNumPtr arnum, ARNUM_ELT elt);
Removes the first occurence of "elt’ in the ARNUM. Element ’elt’ must be in
the ARNUM. This call is less efficient than ARNUM_RemoveNthEIt
because it requires finding elt’ in the ARNUM first. This call does not
preserve the ordering of the elements in the ARNUM.

ExtractNthEIt

void ARNUM_ExtractNthEIt(ArNumPtr arnum, ArraylVal i);
Removes the element at index ’I’. This call preserves the relative ordering

of the ARNUM elements.

ExtractElt
Same as corresponding ARNUM_Remove calls but preserve the relative
ordering of the elements in the ARNUM.

SortedExtractElt

ArraylVal ARNUM_SortedExtractEIt(ArNumPtr arnum, CmpProc cmp, ARNUM_ELT elt);

Extracts ’elt’, using 'proc’ to compare elements of the ARNUM. Returns the
index at which the element was found.

Sorting

Sort

void ARNUM_Sort(ArNumPtr arnum, CmpProc proc);
Sorts the ARNUM. ’proc’ is the procedure which will be used to compare
the elements. (See basepub.h for the definition of CmpProc). This call uses
the QuickSort algorithm which is very efficient on large arrays.

IsSorted

BoolEnum ARNUM_IsSorted(ArNumCPtr arnumc, CmpProc proc);
Returns whether a is sorted or not according to 'proc’.

Removing Duplicates
RemoveDupls

void ARNUM_RemoveDupls(ArNumPtr arnum);
Removes duplicate elements in the ARNUM.

142 C Programmer’s Guide

Removing Duplicates

SortedRemoveDupls

void ARNUM_SortedRemoveDupls(ArNumPtr arnum);

Removes duplicates in the ARNUM, assumes that it is sorted. This routine
is more efficient than ARNUM_RemoveDupls because duplicates are
necessarily contiguous in this case.

C Programmer’s Guide 143

Chapter 6 ArNum Class

144 C Programmer’s Guide

Chapter

ArObj Class

The ArObj class implements the generic collection of objects.

Overview
The ArObj class differs from ArPtr in that the stored elements are object
values rather than pointers to external objects.
An ArObj is a collection of possibly duplicate and possibly ordered
elements expected to be objects of all the same size.
The ArObj classes handle the dynamic allocation and deallocation of the
internal structures that keep track of the items, with a limit in number of
items being set to MAXINT32/sizeof(element) or the maximum available
memory in the system. ArObjs grow as the number of elements stored in the
array increases.

API Principle

The APl is implemented in terms of macros that get compiled in the
application when a particular object collection class is defined.

The API is type-safe. All objects stored in the array must be of the same type
as the arrays element type or a subclass of the eleOment type, otherwise,
compile-time warnings will be generated.

The following compile-time types are defined:

Identifiers Description
AROBJ_ELT Type of the array element
AROBJ_KEY Type of the search

If key represents an object it must be a pointer not a value. Objects are
cloned using the copy constructor for AROBJ_ELT when they are added to
the array.

Array elements are destroyed using the destructor for AROBJ_ELT when
the array is destroyed or made smaller or an element is set to a new value.
Objects are compared using the == and != operators for AROBJ_ELT during
comparison and lookup operations. Obijects stored in the array must have
at least the following public members:

Identifier Description

Def ault constructor AROBJ_ELT::AROBJ_ELT(void)

Copy constructor AROBJ_ELT::AROBJ_ELT(const AROBJ_ELT&)
Destruct or AROBJ_ELT::~AROBJ_ELT(void)

C Programmer’s Guide 145

Chapter

Identifier

7

ArObj Class

oper at or == int AROBJ_ELT:.operator==(const AROBJ_ELT&)
const

operator!= int AROBJ_ELT::operator!=(const AROBJ ELT&)
const

This class is only available in the C++ version of the Elements product.

Usage

To create arrays of a given object type the array of objects class for that type
must first be declared and implemented using the macros described below.

An AROBJ_DECLARE_xxx macro is used in a header file to declare an array
which holds a specific type of object.

An AROBJ_IMPLEMENT _xxx macro is used in a C++ source file to
implement an array which holds a specific type of object.

AROBJ_DECLARE_xxxand AROBJ_IMPLEMENT _xxx should each appear
once and only once in the files for a project for each element type
(AROBJ_ELT).

Description

AROBJ_DECLARE_CLASS(AROBJ_ELT, AROBJ_KEY) Declares an array of objects class which

holds elements of a class of type
AROBJ_ELT. Search methods which
accept a key will use a key of type
AROBJ_KEY.

AROBJ_| MPLEMENT_CLASS(ARCBJ_ELT, AROBJ_KEY) Implements an array of objects class

146

which holds elements of a class of type
AROBJ_ELT. Search methods which
accept a key will use a key of type
AROBJ_KEY.

AROBJ_ELT and AROBJ_KEY should be the same as the values passedto
corresponding AROBJ DECLARE_CLASS.

Example

For example, if we want to use arrays of objects of the class MyObj which
will be searched using a key of type MyObj*, we first need to declare the
array in a header file (myarray.h). The class MyObj must have at least the
public methods shown below.
class Whj {
public:
My Qbj (voi d) ;
MyQbj (const MyQbj & myCbj ToCopy) ;
~MyQoj (voi d) ;
i nt operator==(const MyCbj & nyCbj ToConpare) const;
int operator!=(const MyCbj & nyChj ToConpare) const;

s
Declare the array of MyODbj objects class
AROBJ_DECLARE_CLASS(MyObj, MyObj*)

In a C++ source file (e.g. myarray.cpp) we need to implement the array of
MyObj objects class:

C Programmer’s Guide

API Principle

#i ncl ude "nyarray. h"

AROBJ_| MPLEMENT _CLASS(MyQbj ,

M Qoj *)

Then we can use an array of objects of type MyObj as shown below:

#i ncl ude "nyarray. h"

voi d MyFunc(voi d)

{

NDAr Cbj OF MyObj arrayOf My

Construct enpty array.

Arrayl Val i;

for (i =0; i
My Coj

< 20;
next Qbj ;

i ++)

oj ect s;

{

Construct a instance of MyObj

arrayOf MyQbj ect s. AppendEl t (next Obj) ;

Append a copy of next Qbj

}
M Qbj * newCbj
Const ruct

arrayOf MyObj ect s. Set Nt hEl t (10,

to the array.

new MyQbj ;
a new instance of MyObj

on the heap.
*newOhj) ;

Set the 11'th element to a copy of new(bj.

del ete newlbj ;
Done with new(bj .

Identifer

AROBJ_DECLARE_EXPORT_CLASS
(AROBJ_ELT, AROBJ_KEY, LI B_DECLEXPORT)

AROBJ_| MPLEMENT_NESTED_CLASS
(ENCL_SCOPE, AROBJ_ELT, AROBJ_KEY)

For example:

Decl ares array of MyQObj
cl ass Foo {
publi c:

ARCBJ_DECLARE_CLASS(MWy Qoj ,

}s

I mpl enments array of MyQbj

Foo: : NDAr Ohj OF My oj

AROBJ_| MPLEMENT _NESTED_CLASS(Foo,

C Programmer’s Guide

Description

Declares an array of objects class which holds
elements of a class of type AROBJ_ELT. Search
methods which accept a key will use a key of type
AROBJ_KEY. LIB_DECLEXPORT can be used to
specify an export/import directive to the Win16
or Win32 compilers for use when building DLL's.
e.g. _ declspec(dllexport)

Like AROBJ_IMPLEMENT_CLASS except that
the corresponding AROBJ_DECLARE_CLASS is
placed inside a class scopedefined by
ENCL_SCOPE.

in scope of class Foo:

MyQbj CPt r)
in scope of class Foo:

M Qoj, MyQoj CPtr)

147

Chapter ! ArObj Class

Constructors and Destructor

Constructors

void AROBJ_ConstructObjs(ArraylVal start, ArraylVal num);
Default AROBJ construction.

Constructs the array with “len' elements. The elements are initialized using
the default constructor for AROBJ_ELT.
Destructor

void AROBJ_DeleteObjs(ArraylVal start, ArraylVal num);
Destroys the array and all its elements..

Clone, Copy, Reset

Reset

void AROBJ_Reset(void);

Resets the contents of the array. After this call, the length of the array will
be 0.

Changing the Length

SetlLen

void AROBJ_SetLen(ArraylVal len);
Sets the number of elements of the array to “len' . If the AROBJ grows, the
new elements are created using the default constructor for AROBJ_ELT. If
the array shrinks elements are destroyed using the destructor for
AROBJ_ELT.

SetAlloc

void AROBJ_SetAlloc(ArraylVal alloc);

Reallocates the capacity of the array for “alloc' elements if necessary but
does not change the number of elements in the array.

Global Queries
GetlLen

ArraylVal AROBJ_GetLen(void);
Returns the number of elements in the array.

148 C Programmer’s Guide

Accessing Elements

ISEmpty
BoolEnum NDArObjOfAROBJ_ELT::IsEmpty(void);
BoolEnum AROBJ_IsEmpty(void);

Returns whether the array is empty.

IsinRange

BoolEnum AROBJ_IsInRange(ArraylVal i);

Returns BOOL_TRUE if 'i'is a valid index for the array (in the range [0,
len-1] where len is the length of the array).

Accessing Elements

GetNthEIt

AROBJ_ELT AROBJ_GetNthEIt(ArraylVal i);

Returns a copy of the element at index "i'. Fails if the index is not in the [0,
len-1] range.

GetNthEItRef

const AROBJ_ELT AROBJ_GetNthEItRef(ArraylVal i);
Returns a const reference to the element at index “i'. Fails if the index is not
in the [0, len-1] range.

AROBJ_ELT AROBJ_GetNthEItRef(ArraylVal i);

Returns a reference to the element at index "i'. Fails if the index is not in the
[0, len-1] range.

SetNthElt

void AROBJ_SetNthEIt(ArraylVal i, const AROBJ_ELT elt);

Sets the element at index "i' to copy to object 'elt’. Fails if the index is not in
the [0, len-1] range.

Finding Elements

Note: The comparison procedure used for ordering purposes is specified on
a call-basis.

It always takes the address of the stored object as first argument, and a
search key as second argument. The search key is a pointer toan object (or
to void), and must not necessarily be of the same type as the reference to the
stored object. You can implement and use as many ad-hoc comparison
procedures as needed.

The search (NDArObjOfAROBJ_ELT::SortedLookup and
NDArObjOfAROBJ_ELT::SortedFind) uses a binary dichotomy, which
makes it efficient even on large sorted arrays (search time grows in

O(log(n))).

C Programmer’s Guide 149

Chapter ! ArObj Class

ContainsElt

BoolEnum AROBJ_ContainsElt(const AROBJ_ELT elt);

Returns BOOL_TRUE if the array contains an object equal to “elt'.
Comparison is done using the == operator for AROBJ ELT.

LookupElt

ArraylVal AROBJ_LookupElt(const AROBJ_ELT elt);

Returns the index of the first occurrence of an object which is equal to “elt'.
Comparison is done using the == operator for AROBJ_ELT. Returns -1 if the
array does not contain “elt'.

FindElt

ArraylVal AROBJ_FindElt(const AROBJ_ELT elt);
Same as AROBJ_Lookup routine but signal a failure if “elt'.

SortedLookupElt

BoolEnum AROBJ_SortedLookupEIt(CmpProc proc, AROBJ_KEY key,
ArraylValPtr result);

Searches element which matches key in the array. The array must be sorted
in increasing order according to “proc’. “proc’ will be called as (*proc)(addr,
key) to determine how the elements of the array compare with “key'. “addr
is the address of an element in the array. Returns BOOL_TRUE and sets
“*result' to the index of the matching entry if a match is found. If no match
is found, returns BOOL_FALSE and *result is set to the, index at which key
should be inserted if we had to insert it in the sorted array.

SortedFindElt

ArraylVal AROBJ_SortedFindEIt(CmpProc proc, AROBJ_KEY key);

Searches element which matches “key' in the array. The array must be sorted
in increasing order according to “proc'. "Proc' will be called as (*proc)(addr,
key), where “addr’ is the address of an element in the array, to determine
how the entries in the array compare with “key'. This routine returns the
index of the element where the mach occurred. If no match is found, this
routine signals a failure.

Adding Elements

AppendElt
void AROBJ_AppendElt(const AROBJ_ELT elt);
Adds “elt' at the end of the array. Does not modify the indices of the other
elements in the array. The length of the array increases by one.
UnigAppendElt

void AROBJ_UnigAppendElt(const AROBJ_ELT elt);

Appends “elt' to the array if "elt' is not already in the array. Comparison is
done using the == operator for AROBJ_ELT.

150 C Programmer’s Guide

Removing Elements

InsertNthEIt

void AROBJ_InsertNthEIt(ArraylVal i, const AROBJ_ELT elt);

Inserts a copy of elt' at index "i'. The elements which were at index "i' or
greater are moved one index further in the array. The relative order of the
array elements is preserved by this call.

SortedInsertElt

ArraylVal AROBJ_SortedlnsertEIt(CmpProc proc, const AROBJ_ELT elt);

Insert a copy of “elt’, using “proc' to compare addresses the array elements.
The key passed to “proc' is the address of the copy of “elt'. Returns the index
at which the element was inserted. This call only applies to arrays of
structures or scalars.

SortedUniglInsertElt

ArraylVal AROBJ_SortedUniqglnsertElt(CmpProc proc, const AROBJ_ELT elt);

Same as NDArObjOfAROBJ_ELT::SortedInsertElt but does not insert if the
element is already in the array. The key passed to “proc' is the address of
“elt'. Returns the index at which the element was inserted or found.

Removing Elements

RemoveNthElt

void AROBJ_RemoveNthEIt(ArraylVal i);

Removes the element at index “i'. In case "i' is not the last index, the last
element is moved to index "i', so this routine does not preserve the ordering
of the elements in the array. NDArObjOfAROBJ_ELT::ExtractNthEIt
preserves the ordering but is less efficient.

RemoveElt

void AROBJ_RemoveElt(const AROBJ_ELT elt);

Removes the first occurence of “elt' in the array. Comparison is done using
the == operator for AROBJ_ELT. Element “elt' must be in the array. This call
does not preserve the ordering of the elements in the array.

ExtractNthEIt

void AROBJ_ExtractNthEIt(ArraylVal i);
Removes the element at index "i'. This call preserves the relative ordering

of the array elements.
ExtractElt

void AROBJ_ExtractElt(const AROBJ_ELT elt);

Same as corresponding NDArObjOfAROBJ_ELT::RemoveElt call but
preserves the relative ordering of the elements in the array.

C Programmer’s Guide 151

Chapter ! ArObj Class

SortedExtractElt

ArraylVal AROBJ_SortedExtractElt(CmpProc cmp, const AROBJ_ELT elt);

Extracts “elt’, using “proc' to compare elements of the array. Element “elt'
must be in the array.The key passed to “proc' is the address of “elt'.

Sorting

Sort

void AROBJ_Sort(CmpProc proc);

Sorts the array using “proc' to compare the elements. The key passed to
“proc’ is the address of an element.

IsSorted

BoolEnum AROBJ_IsSorted(CmpProc proc);

Returns BOOL_TRUE if the array is sorted according to “proc'. The key
passed to “proc' is the address of an element.

Removing Duplicates

RemoveDupls

void AROBJ_RemoveDupls(void);

Removes duplicate elements in the array. The elements are compared using
the == operator of AROBJ_ELT.

SortedRemoveDupls

void AROBJ_SortedRemoveDupls(void);

Removes duplicates in the array, assumes that it is sorted. The elements are
compared using the != operator of AROBJ_ELT. This routine is more
efficient than NDArObjOfAROBJ_ELT::RemoveDupls because duplicates
are necessarily contiguous in this case.

152 C Programmer’s Guide

Chapter

8 ArPtr Class

The ArPtr class implements a generic class corresponding to collections of
references to objects.

Technical Overview

An ArPtr instance is a collection of possibly duplicate and possibly ordered
elements expected to be references to objects allocated and deallocated
elsewhere in the application.

The ArPtr classes handle the dynamic allocation and deallocation of the
internal structures that keep track of the items, with a limit in number of
references being set to MAXINT32/sizeof(ClientPtr) or the maximum
available memory in the system. ArPtrs grow as the number of elements
stored in the array increases.

The ArPtr classes perform shallow copies: when an array object is copies
into another, only the references to the objects are copied, and not the objects
themselves.

API Principles
This class implements a generic reference collection class.

The APl is implemented in terms of macros that get compiled in the
application when a particular reference collection class is defined. The API
is type-safe. If an arptr is an array of pointers to a given structure, its items
have to be pointers to the given structure, otherwise, compile-time
warnings will be generated.

The following compile-time types are defined:

Type Description

ARPTR Type of the ArPtr
ARPTR_ELT Type of the ArPtr element
ARPTR_KEY Type of the search key

Macros

This API provides a set of macros that can be use to declare and implement
collections of pointers.

ARPTR_DECLARECLASS(ARPTR_ELT, ARPTR_KEY)

Declares the class ArPtrOf<ARPTR_ELT>, the collection class that keeps
track of ARPTR_ELT pointers. The class needs to be implemented using the
ARPTR_IMPLEMENTCLASS macro.

ARPTR_IMPLEMENTCLASS(ARPTR_ELT, ARPTR_KEY)

Implements the class ArPtrOf<ARPTR_ELT>, which must have been
declared using ARPTR_DECLARECLASS.

C Programmer’s Guide 153

Chapter 8 Arptr Class

ARPTR_DEFCLASS(ARPTR_ELT, ARPTR_KEY)

Declares and provides an exclusively inline implementation for the
ArPtrOf<ARPTR_ELT> class, the collection class that keeps track of
ARPTR_ELT pointers.

Constructors and Destructor

Constructors

void ARPTR_Construct(ArPtrPtr arptr);
Default ARPTR constructor.

void ARPTR_ConstructLen(ArPtrPtr arptr, ArraylVal len);

Constructs the ARPTR with “len' elements. The contents of the ARPTR is
initialized with NULL. The elements can then be set with ARPTR_SetElt.

void ARPTR_ConstructAlloc (ArPtrPtr artpr, ArraylVal alloc);

Constructs the ARPTR with 0 elements but a buffer allocated for "alloc'
elements.

Then, you may fill the array by calling ARPTR_AppendElt and the array
logic will not need to reallocate the buffer as long as the number of elements
does not exceed “alloc'.

void ARPTR_ConstructArPtr (ArPtrPtr arptr, ArPtrPtr arptr2);

Constructs the ARPTR as a copy of “arptr2' This is a shallow copy. In case
the elements are pointers to other objects, the ARPTR will contain the same
pointers as “arptr2'.

Destructor

void ARPTR_Destruct(ArPtrPtr arptr);

Default ARPTR destructor. If the ARPTR contains pointers to objects which
have been allocated on the heap, only the ARPTR will be deallocated and
the application is responsible for the deallocation of the objects referenced
by the ARPTR.

Clone, Copy, Reset

Reset

void ARPTR_Reset(ArPtrPtr arptr);

Resets the contents of the ARPTR. After this call, the length of the ARPTR
will be 0. You are responsible for freeing the elements of the ARPTR.

154 C Programmer’s Guide

Changing the length of the array

Changing the length of the array

SetlLen

void ARPTR_SetLen(ArPtrPtr arptr, ArraylVal len);
Sets the number of elements of the ARPTR to “len' and reallocates the
contents of the ARPTR if necessary. If the ARPTR grows, the new elements
are initialized with zeros.

SetAlloc

void ARPTR_SetAlloc(ArPtrPtr arptr, ArraylVal alloc);

Reallocates the contents of the ARPTR for “alloc' elements if necessary but
does not change the number of elements in the ARPTR.

Global Queries

GetLen

ArraylVal ARPTR_GetLen(ArPtrCPtr arptr);
Returns the number of elements in the ARPTR.

ISEmpty
BoolEnum ARPTR_ISEmpty(ArPtrCPtr arptr);
Returns whether the ARPTR is empty or not.

IsinRange

BoolEnum ARPTR_IsInRange(ArPtrCPtr arptr, ArraylVal i);

Returns whether "i' is a valid index for the ARPTR (in the [0, len-1] range,
where len is the length of the ARPTR).

Accessing Elements

GetNthEIt

ARPTR_ELT ARPTR_GetNthEIt(ArPtrCPtr arptr, ArraylVal i);
Returns the element at index "I'. Fails if the index is not in the [0, len-1]

range.
GetNthEItAddr

ARPTR_ELTPtr ARPTR_GetNthEItAddr(ArPtrCPtr arptr, ArraylVal i);

Returns the address of the element at index “I'. Fails if the index is not in the
[0, len-1] range.

C Programmer’s Guide 155

Chapter 8 Arptr Class

UnboundedGetNthElt

ARPTR_ELT ARPTR_UnboundedGetNthEIt(ArPtrCPtr arptr, ArraylVal i);
Same as ARPTR_GetNthEIt but returns 0 if "i' is out of range instead of
failing.

SetNthEIt

void ARPTR_SetNthEIt(ArPtrPtr arptr, ArraylVal i, ARPTR_ELT elt);

Sets the element at index "I'. Fails if the index is not in the [0, len-1] range.
If you are replacing an existing element, you are responsible for freeing the
old element (if needed).

UnboundedSetNthElt

void ARPTR_UnboundedSetNthEIt(ArPtrPtr arptr, ArraylVal i, ARPTR_ELT elt);

Same as ARPTR_SetNthEIt but extends the array if "i' is out of range and elt
is not NULL (Ci' must be positive).

Finding Elements

The comparison procedure used for ordering purposes is specified on a
call-basis.

It always takes the element as first argument, and a search key as second
argument. The search key is a pointer to an object (or to void), and must not
necessarily be of the same type as the reference to the stored object. You can
implement and use as many ad-hoc comparison procedures as needed.

The search (ARPTR_SortedLookup and ARPTR_SortedFind) uses a binary
dichotomy, which makes it efficient even on large sorted arrays (search time
grows in O(log(n))).

ContainskElt

BoolEnum ARPTR_ContainsElt(ArPtrCPtr arptr, ARPTR_ELT elt);
Returns whether or not the ARPTR contains “elt'.

LookupEltArraylVVal ARPTR_LookupEIt(ArPtrCPtr arptr, ARPTR_ELT elt);
Returns the index of the first occurrence of “elt' in the ARPTR.

Returns -1 if the ARPTR does not contain “elt'.
FindElt

ArraylVal ARPTR_FindEIt(ArPtrCPtr arptr, ARPTR_ELT elt);

Same as ARPTR_Lookup routines but signal a failure if the ARPTR does not
contain “elt'.

SortedLookupElt

BoolEnum ARPTR_SortedLookupElt(ArPtrCPtr arptr, CmpProc proc, ARPTR_KEY key,
ArraylValPtr result);

Searches element which matches key in the ARPTR. The ARPTR must be
sorted in increasing order according to “proc'.” proc' will be called as

156 C Programmer’s Guide

Adding Elements

(*proc)(elt, key) to determine how the elements of the array compare with
“key'.

Returns BOOL_TRUE and sets *result' to the index of the matching entry if
a match is found.

If no match is found, returns BOOL_FALSE and *result is set to the index at
which key should be inserted if we had to insert it in the sorted array.

SortedFindElt

ArraylVal ARPTR_SortedFindEIt(ArPtrCPtr arptr, CmpProc proc, ARPTR_KEY key);

Searches element which matches “key' in the ARPTR. The ARPTR must be
sorted in increasing order according to “proc'. “proc’ will be called as
(*proc)(elt, key) to determine how the entries in the array compare with
“key'.

This routine returns the index of the element where the mach occured. 1f no
match is found, this routine signals a failure.

Adding Elements

AppendElt

void ARPTR_AppendEIlt(ArPtrPtr arptr, ARPTR_ELT elt);
Does not modify the indices of the other elements in the ARPTR. The length

of the ARPTR increases by one.
UnigAppendElt

void ARPTR_UnigAppendEIt(ArPtrPtr arptr, ARPTR_ELT elt);
Appends “elt' to the ARPTR if “elt' is not already in the ARPTR.

InsertNthEIt

void ARPTR_InsertNthEIt(ArPtrPtr arptr, ArraylVal i, ARPTR_ELT elt);
Inserts “elt' at index “I'. The elements which were at index "i' or greater are
moved one index further in the ARPTR. The relative order of the ARPTR
elements is preserved by this call.

SortedInsertElt

ArraylVal ARPTR_SortedInsertElt(ArPtrPtr arptr, CmpProc proc, ARPTR_ELT elt);
Insert “elt’, using “proc' to compare elements of the ARPTR.

Returns the index at which the element was inserted.
SortedUnigInsertElt

ArraylVal ARPTR_SortedUniqlnsertEIt(ArPtrPtr arptr, CmpProc proc, ARPTR_ELT elt);

Same as ARPTR_SortedXxx calls but do not insert if the element is already
in the ARPTR. Return the index at which the element was inserted or found.

C Programmer’s Guide 157

Chapter 8 Arptr Class

Removing elements

RemoveNthElt

void ARPTR_RemoveNthEIt(ArPtrPtr arptr, ArraylVal i);
Removes the element at index "I'. In case "i' is not the last index, the last
element is moved to index "i', so this routine does not preserve the ordering
of the elements in the ARPTR. ARPTR_ExtractNthEIt preserves the
ordering but is less efficient.

Removeklt

void ARPTR_RemoveEIlt(ArPtrPtr arptr, ARPTR_ELT elt);
Removes the first occurrence of “elt' in the ARPTR. Element “elt' must be in
the ARPTR. This call is less efficient than ARPTR_RemoveNthEIlt because it
requires finding “elt' in the ARPTR first. This call does not preserve the
ordering of the elements in the ARPTR.

ExtractNthElt

void ARPTR_ExtractNthEIt(ArPtrPtr arptr, ArraylVal i);
Removes the element at index "I'. This call preserves the relative ordering of

the ARPTR elements.
ExtractElt

void ARPTR_ExtractEIt(ArPtrPtr arptr, ARPTR_ELT elt);
Same as corresponding ARPTR_Remove calls but preserve the relative

ordering of the elements in the ARPTR.
SortedExtractElt

ArraylVal ARPTR_SortedExtractEIt(ArPtrPtr arptr, CmpProc cmp, ARPTR_ELT elt);

Extracts “elt’, using “proc' to compare elements of the ARPTR. Returns the
index at which the element was found.

Sorting

Sort

void ARPTR_Sort(ArPtrPtr arptr, CmpProc proc);
Sorts the ARPTR. “proc' is the procedure which will be used to compare the
elements. (See basepub.h for the definition of CmpProc). This call uses the
QuickSort algorithm which is very efficient on large arrays.

IsSorted

BoolEnum ARPTR_IsSorted(ArPtrCPtr arptrc, CmpProc proc);
Returns whether a is sorted or not according to “proc'.

158 C Programmer’s Guide

Removing Duplicates

Removing Duplicates

RemoveDupls

void ARPTR_RemoveDupls(ArPtrPtr arptr);
Removes duplicate elements in the ARPTR.

SortedRemoveDupls

void ARPTR_SortedRemoveDupls(ArPtrPtr arptr);

Removes duplicates in the ARPTR, assumes that it is sorted. This routine is
more efficient than ARPTR_RemoveDupls because duplicates are
necessarily contiguous in this case.

C Programmer’s Guide 159

Chapter 8 Arptr Class

160 C Programmer’s Guide

Chapter

ARRay Class

Overview

This module defines the base implementation for all Open Interface
collection classes.

Collection classes can be:
m Collection of possibly duplicate items
- (Bags)
m Indexable collections of possibly duplicate items
— (Collections)
m Collection of unduplicated items
- (Sets)
m Sequences of items with insert and remove operations at any index in
the sequence

— (Cover dequeues, queues, stacks)

Collection classes can be:
m Pointer-based collections:

— Only reference to objects are stored

— Copies are shallow copies

— Obijects are allocated, deallocated by the application.
m Value-based collections:

— The actual value of the object is stored

— Copies are deep copies

— Copies are allocated, deallocated by the application.

The implementation of the collection classes takes care of all internal
allocation issues. When an element is inserted, Open Interface takes care of
adjusting the size of the structures used to keep track of the items in the
collection.

In this version of Open Interface, the following generic collection classes are
offered:

m ArPtr classes (see arptrpub.h):
— Pointer-based collection, or integer-based collections
— Duplicate or not items
— Ordered or not items
— Indexable
— Insert/remove at any index
m ArRec classes (see arrecpub.h):
— Uniform-size value-based collections
— Duplicate or not items
— Ordered or not items
— Indexable
— Insert/remove at any index

C Programmer’s Guide 161

Chapter 9 ARRay Class

m ArNum classes (see arnumpub.h):
— Uniform-size value-based collections for numeric values
— Duplicate or not items
— Ordered or not items
— Indexable
— Insert/remove at any index
Note: For compatibility reasons, this module also implements a set of
macros that allow to directly manipulate instances of ARRAY.

The programmer should avoid those macros, and use the classes
implemented in arptrpub.h, arrecpub.h and arnumpub.h.

162 C Programmer’s Guide

Chapter

10

Overview

API Principle

Macros

ARRec Class

The ArRec module implements the generic collection of records.

A n ArRec is a collection of possibly duplicate and possibly ordered
elements expected to be records of all the same size.

The ArRec classes handle the dynamic allocation anddeallocation of the
internal structures that keep track of the items, with a limit in number of
items being set to MAXINT32/sizeof(element) or the maximum available
memory in the system.

ArRecs grow as the number of elements stored in the array increases.

The APl is implemented in terms of macros that get compiled in the
application when a particular record collection class is defined.

The API is type-safe. If an ArRec an array of records, what is stored is
expected to be the same type of records, otherwise, compile-time warnings
will be generated.

The following compile-time types are defined:

Type Description

ARREC Type of the array

ARREC ELT Type of the array element

ARREC KEY Type of the search key (must be a reference to an object).

Even though the collection classes defined through this module store object
values and not references, the API calls take references to objects as
arguments, and return references to objects.

This API provides a set of macros that can be use to declare and implement
collections of records.

ARREC_DECLARECLASS(ARREC_ELT, ARREC_KEY)

Declares the class ArRecOf<ARREC_ELT>, the collection class that keeps
track of ARREC_ELT records. The class needs to be implemented using the
ARREC_IMPLEMENTCLASS macro.

ARREC_IMPLEMENTCLASS(ARREC_ELT, ARREC_KEY)

Implements the class ArRecOf<ARREC_ELT>, which must have been
declared using ARREC_DECLARECLASS.

C Programmer’s Guide 163

Chapter 10 ARRec Class

ARREC_DEFCLASS(ARREC_ELT, ARREC_KEY)

Declares and provides an exclusively inline implementation for the
ArRecOf<ARREC_ELT> class, the collection class that keeps track of
ARREC_ELT records.

Constructors and Destructor

Constructors
void ARREC_Construct(ArRecPtr arrec);
Default ARREC construction

void ARREC_ConstructLen(ArRecPtr arrec, Arraylval len);

Constructs the ARREC with len elements. The contents of the ARREC is
initialized with zeros.

Destructor

void ARREC_Destruct(ArRecPtr arrec);

Default ARREC destruction. All the records stored in the arrec are lost at
this point.

Clone, Copy, Reset

Reset

void ARREC_Reset(ArRecPtr arrec);

Resets the contents of the ARREC. After this call, the length of the ARREC
will be 0. You are responsible for freeing the elements of the ARREC.

Changing the length

SetlLen

void ARREC_SetLen(ArRecPtr arrec, ArraylVal len);
Sets the number of elements of the ARREC to len and reallocates the
contents of the ARREC if necessary. If the ARREC grows, the new elements
are initialized with zeros.

SetAlloc

void ARREC_SetAlloc(ArRecPtr arrec, ArraylVal alloc);

Reallocates the contents of the ARREC for alloc elements if necessary but
does not change the number of elements in the ARREC.

164 C Programmer’s Guide

Global Queries

Global Queries

GetLen

ArraylVal ARREC_GetLen(ArRecCPtr arrec);
Returns the number of elements in the ARREC.

ISEmpty
BoolEnum ARREC_ISEmpty(ArRecCPtr arrec);
Returns whether the ARREC is empty or not.

IsinRange

BoolEnum ARREC_IsInRange(ArRecCPtr arrec, ArraylVal i);

Returns whether i is a valid index for the ARREC (in the [0, len-1] range,
where len is the length of the ARREC).

Accessing Elements

GetNthEIt

ARREC_ELTPtr ARREC_GetNthEIt(ArRecCPtr arrec, ArraylVal i);

Returns the address of the element at index I. Fails if the index is not in the
[0, len-1] range.

SetNthEIt

void ARREC_SetNthEIt(ArRecPtr arrec, ArraylVal i, ARREC_ELTPtr elt);
Sets the element at index I. Fails if the index is not in the [0, len-1] range.

Finding Elements

Note: Thecomparison procedure used for ordering purposes is specified on
a call-basis. It always takes the address of the stored object as first
argument, and a search key as second argument. The search key is a
pointer to an object (or to void), and must not necessarily be of the
same type as the reference to the stored object. You can implement
and use as many ad-hoc comparison procedures as needed. The
search (ARREC_SortedLookup and ARREC_SortedFind) uses a
binary dichotomy, which makes it efficient even on large sorted
arrays (search time grows in O(log(n))).

ContainsElt

BoolEnum ARREC_ContainsElt(ArRecCPtr arrec, ARREC_ELTPtr elt);
Returns whether or not the ARREC contains elt.

C Programmer’s Guide 165

Chapter 10 ARRec Class

LookupElt

ArraylVal ARREC_LookupEIt(ArRecCPtr arrec, ARREC_ELTCPtr elt);

Returns the index of the first occurrence of elt in the ARREC. Returns -1 if
the ARREC does not contain elt.

FindEltArraylVVal ARREC_FindEIt(ArRecCPtr arrec, ARREC_ELTCPtr elt);
Same as ARREC_Lookup routine but signal a failure if elt.

SortedLookupElt

BoolEnum ARREC_SortedLookupEIlt(ArRecCPtr arrec, CmpProc proc, ARREC_KEY Kkey,
ArraylValPtr result);

Searches element which matches key in the ARREC. the ARREC must be
sorted in increasing order according to proc. Proc will be called as
(proc)(addr, key) to determine how the elements of the ARREC compare
with key. Addr is the address of an element in the ARREC.

Returns BOOL_TRUE and sets result to the index of the matching entry if a
match is found.

If no match is found, returns BOOL_FALSE and result is set to the index at
which key should be inserted if we had to insert it in the sorted ARREC.

SortedFindElt

ArraylVal ARREC_SortedFindEIt(ArRecCPtr arrec, CmpProc proc, ARREC_KEY Kkey);
Searches element which matches key in the ARREC.

The ARREC must be sorted in increasing order according to proc. Proc will
be called as (proc)(addr, key), where addr is the address of an element in the
ARREC, to determine how the entries in the ARREC compare with key.

This routine returns the index of the element where the mach occurred. If no
match is found, this routine signals a failure.

Adding elements

AppendElt

void ARREC_AppendEIt(ArRecPtr arrec, ARREC_ELTPtr elt);

Adds elt at the end of the ARREC. Does not modify the indices of the other
elements in the ARREC. The length of the ARREC increases by one.

UnigAppendEltvoid ARREC_UnigAppendEIt(ArRecPtr arrec, ARREC_ELTPtr elt);
Appends elt to the ARREC if elt is not already in the ARREC.
InsertNthElt

void ARREC_InsertNthEIt(ArRecPtr arrec, ArraylVal i, ARREC_ELTPtr elt);

Inserts elt at index I. The elements which were at index i or greater are
moved one index further in the ARREC.

The relative order of the ARREC elements is preserved by this call.

166 C Programmer’s Guide

Removing Elements

SortedInsertEltArraylVal ARREC_SortedInsertElIt(ArRecPtr arrec, CmpProc proc,
ARREC_ELTPtr elt);

Insert elt, using proc to compare addresses of the ARREC elements. Returns
the index at which the element was inserted. This call only applies to
ARRECS of structures or scalars.

SortedUniglInsertElt

ArraylVal ARREC_SortedUniglnsertEIt(ArRecPtr arrec, CmpProc proc,
ARREC_ELTPtr elt);

Same as Sorted calls but do not insert if the element is already in the ARREC.
Return the index at which the element was inserted or found.

Removing Elements

RemoveNthElt

void ARREC_RemoveNthEIt(ArRecPtr arrec, ArraylVal i);

Removes the element at index I. In case i is not the last index, the last
element is moved to index i, so this routine does not preserve the ordering
of the elements in the ARREC. ARREC_ExtractNthEIlt preserves the
ordering but is less efficient.

RemoveElt

void ARREC_RemoveEIt(ArRecPtr arrec, ARREC_ELTPtr elt);

Removes the first occurrence of elt in the ARREC. Element elt must be in the
ARREC. This call does not preserve the ordering of the elements in the
ARREC.

ExtractNthEltvoid ARREC_ExtractNthEIt(ArRecPtr arrec, ArraylVal i);

Removes the element at index I. This call preserves the relative ordering of
the ARREC elements.

ExtractEltvoid ARREC_ExtractEIt(ArRecPtr arrec, ARREC_ELTPtr elt);

Same as corresponding ARREC_Remove calls but preserve the relative
ordering of the elements in the ARREC.

SortedExtractEltArraylVal ARREC_SortedExtractEIt(ArRecPtr arrec, CmpProc cmp,
ARREC_ELTPtr elt);

Extracts elt, using proc to compare elements of the ARREC. Returns the
index at which the element was found.

Sorting

Sort

void ARREC_Sort(ArRecPtr arrec, CmpProc proc);

Sorts the ARREC by passing the address of the elements instead of the
elements themselves to the comparison routine.

C Programmer’s Guide 167

Chapter 10 ARRec Class

IsSorted

BoolEnum ARREC_IsSorted(ArRecCPtr arrecc, CmpProc proc);
Returns whether a is sorted or not according to proc.

Removing Duplicates

RemoveDupls

void ARREC_RemoveDupls(ArRecPtr arrec);
Removes duplicate elements in the ARREC.

SortedRemoveDupls

void ARREC_SortedRemoveDupls(ArRecPtr arrec);

Removes duplicates in the ARREC, assumes that it is sorted. This routine is
more efficient than ARREC_RemoveDupls because duplicates are
necessarily contiguous in this case.

168 C Programmer’s Guide

Chapter

11

Overview

Avl Class

This module implements the "Balanced Binary Tree" data structure.

This data structure is particularly adapted to hold a sorted collection of
objects, especially when insertions, extractions and searches will be
frequently performed and when the number of objects in the collection
cannot be known in advance.

Some data structures (i.e. hash tables) may be more efficient for certain
operations (i.e. search) but the balanced binary tree is a good compromise in
which the three major operations (search, insertion and extraction) are
reasonably efficient.

In a AviTree (as implemented in this module), every node of the tree holds
a key and may have two children nodes. The nodes belonging to the left
branch of node N, if any, hold keys which are smaller than the key of N and
the nodes belonging to its right branch, if any, hold keys which are larger
than the key of N.

In addition, the tree is balanced, which means that the tree is reorganized
when nodes are inserted or deleted so that on every node, the depths of the
left and right branches do not differ by more than one. This rebalancing
slows down insertion and extraction operations but guarantees that
subsequent searches will be quasi optimal (searches will usually be
necessary before insertions, so insertion performance is at stake t00).

The API is organized around two data structures:

A AvINode represents a node of the binary tree. A AvlTree represents the
whole tree. It contains global information about the tree as well as a pointer
to the root node.

The AvINode structure is public so that you may subclass it and create a
AvITree of MyNode nodes (derived from AvINode).

Data Structures

NDAvITreePos

The following structure is mostly used to communicate information
between AVL_TreeLookupKey and AVL_TreelnsertNode.

Data structure describing a position in a AviTree. .

Identifiers Descriptions
Near est closest node found
Near Cmp how close the closest node is

C Programmer’s Guide 169

Chapter 11 Aviclass

AviTree and AvINode Classes

The AviTree class is the base class for AVL trees; the AvINode class is the
base class for nodes in an AVL tree.

AvINode Class

Constructors and Destructor

Alloc
AvINodePtr AVL_Node(void);
Defaultallocator. It returns a pointer to an allocated AviNode. The AvINode
is at this point not yet constructed.
Constructors
void AVL_NodeConstruct(AvINodePtr avinode);
Default construction.
void AVL_NodeConstructKey(AvINodePtr avinode, ClientPtr key);
Constructs the node, and assigns 'key’ to be its key.

Destructor

void AVL_NodeDestruct(AvINodePtr avinode);
Default destructor for AviINodes.

Dealloc

void AVL_NodeDealloc(AvINodePtr avinode);
Deallocates the AviINode. The AvINode should have been destructed first.

Convenience Functions

These functions are provided for allocation and construction, destruction
and deallocation.
NodeNewSetKey

AvINodePtr AVL_NodeNewSetKey(ClientPtr key);
Creates a new AvINode with “key' as key.

NodeDispose

void AVL_NodeDispose(AvINodePtr avinode);

Destroys "avinode'. The contents of the AvINodeKey field will not be
disposed by this call and should be disposed (if necessary) just before
issuing this call.

170 C Programmer’s Guide

Accessing the AviNode Key

Accessing the AviNode Key

SetKey

void AVL_NodeSetKey(AvINodePtr avinode, ClientPtr key);

Changes the key in the AvINode object. Normally you should set the key at
the construction time, but you may want to use this call if you want to set
the AvINode as its own key, which may be interesting if you have
subclassed the AvINode and if the key information is in one (or several) of
the subclasses fields. You are not allowed to use this call once the AviINode

has been inserted in the AviTree.

GetKey

ClientPtr AVL_NodeGetKey(AvINodeCPtr avinode);
Returns the key stored in the AvINode object.

Scanning AviNodes

GetPrev
GetNext

AvINodePtr AVL_NodeGetPrev(AvINodePtr avinode);
AvINodePtr AVL_NodeGetNext(AvINodePtr avinode);

Return previous and next avinode (sorted according to key comparison
proc).

GetParent
GetLeftChild
GetRightChild

AvINodePtr AVL_NodeGetParent(AvINodePtr avinode);
AvINodePtr AVL_NodeGetLeftChild(AvINodePtr avinode);
AvINodePtr AVL_NodeGetRightChild(AvINodePtr avinode);

Return respectively the parent, left child or right child AvINode of the
current node.

GetFirstLeaf
GetLastLeaf

AvINodePtr AVL_NodeGetFirstLeaf(AvINodePtr avinode);
AvINodePtr AVL_NodeGetLastLeaf(AvINodePtr avinode);

Return respectively the leftmost and rightmost descendant node of the
AvINode

C Programmer’s Guide

171

Chapter 11 Aviclass

AviTree Class

Constructors and Destructor

Alloc

AvITreePtr AVL_TreeAlloc(void);

Returns a pointer to an allocated AviTree. The Avl tree is at this point not
yet constructed.

Constructors
void AVL_TreeConstruct(AviTreePtr avitree);
Default constructor for Avl trees.

void AVL_TreeConstructCmpProc(AvITreePtr avltree, CmpProc cmp);

Constructs the Avl tree with 'cmp’ as the key comparison procedure. It will
be called as follows:

cmp = (*proc) (keyl, key2)
keyl and key2 will be two keys (either AvINodeKey field of a AvINode or

the key argument passed to AVL_TreeCurFindKeyKey or
AVL_TreeLookupKey).

Destructor

void AVL_TreeDestruct(AvITreePtr avltree);
Default destructor for Avl trees.

Dealloc

void AVL_TreeDealloc(AvITreePtr avitree);
Default deallocation for an AviTree.

Queries

GetlLen

AvllVal AVL_TreeGetLen(AvITreeCPtr avitreec);
Returns the number of nodes in the tree.

GetFirstNode
GetLastNode

AvINodePtr AVL_TreeGetFirstNode(AvITreeCPtr avltreec);
AvINodePtr AVL_TreeGetLastNode(AvITreeCPtr avltreec);

Return the first/last AvINodes in the tree (sorted according to the key
comparison proc).

172 C Programmer’s Guide

Propagating an Action

CurFindKeyKey

AvINodePtr AVL_TreeCurFindKeyKey(AvlTreePtr avitree, ClientCPtr key);

This call returns the AviINode which matches 'key’ and fails if no node
matches key.

LookupKey

AvINodePtr AVL_TreeLookupKey(AvITreePtr avitree, ClientCPtr key,
AvITreePosPtr pos);

This call returns the AvINode which matches 'key’ if ’key’ is already in the
Avltree, NULL otherwise. If 'pos’ is not NULL, *pos describes the node next
to where ’key’ should be inserted. This information may be passed to
AVL_TreelnsertNode.

InsertNode

void AVL_TreelnsertNode(AvITreePtr avitree, AvINodePtr avinode, AviTreePosPtr pos);

This call inserts 'avinode’ in the Avltree at position 'pos’ which should have
been obtained through a call to AVL_TreeLookupKey. This call rebalances
the tree if necessary.

ExtractNode

void AVL_TreeExtractNode(AvITreePtr avitree, AvINodePtr avinode);

This call extracts 'avinode’ from ’avltree’. This call rebalances the tree if
necessary.

Propagating an Action

PerfProc

PerfEnum AVL_TreePerfProc(AviINodeCPtr avinode, ClientPtr arg);
Callback function used when propagating an action.

PropagateAction

PerfEnum AVL_TreePropagateAction(AvITreeCPtr avitreec, AvlTreePerfProc proc,
ClientPtr arg);

Calls
ret = (*proc) (avl node, arg)

for each 'avinode’ in the tree, as long as 'ret’ is PERF_CONTINUE. The
nodes will be visited in the order defined by the key comparison proc.
Propagating an action with this call is usually more efficient than iterating
through the nodes with AVL_NodeGetNext.

Current Node API

The original design of the AvITree API was oriented around the concept of
a "current node," like many other Open Interface APIs (i.e. list box). Our
experience with this API (and others) demonstrated that although this type
of API has advantages (separation between queries and actions), it is

C Programmer’s Guide 173

Chapter 11 Aviclass

somewhat heavy and unnatural to use. Also, the fact that there is only one
current node complexifies the coding when queries on related nodes need
to be done in the middle of an iteration loop (cursor contention).

So, the new API described above is more classic, but we have kept a
cursor-oriented API for compatibility.

In this API, the current node of a AviTree may be positioned through calls
to AVL_TreeGoFirstNode routines, or by calling AVL_TreeCurFindKey.
Then, the current node may be queried by calling AVL_TreeCurGetNode.
The AVL_TreeCurlnsertNode and AVL_TreeCurExtractNode routines are
cursor-oriented version of AVL_TreelnsertNode and
AVL_TreeExtractNode.

GoFirstNode
GoLastNode

void AVL_TreeGoFirstNode(AvITreePtr avltree);
void AVL_TreeGoLastNode(AvITreePtr avltree);

Positions the current node on the first or last node of the tree (sorted
according to the key comparison proc).

GoPrevNode
GoNextNode

void AVL_TreeGoPrevNode(AvITreePtr avltree);
void AVL_TreeGoNextNode(AvITreePtr avitree);

Changes the current node to the previous/next node. The current node
becomes NULL when these calls are applied to the first/last nodes of the
tree.

GoNode

void AVL_TreeGoNode(AvITreePtr avitree, AvINodePtr avinode);
Sets the current node to be "avinode’ (which must belong to the AviTree).

CurGetNode

AvINodePtr AVL_TreeCurGetNode(AvITreeCPtr avltreec);

Returns the current AviINode in the tree. The current node must have been
previously positioned by a call to AVL_TreeGoFirstNode, ..., or by acall to
AVL_TreeCurFindKey.

CurGetNearestNode

AvINodePtr AVL_TreeCurGetNearestNode(AvITreeCPtr avitree, CmpEnumPtr cmpp);

This call should be issued after a call to AVL_TreeCurFindKey and returns
the node which is nearest to the key passed to AVL_TreeCurFindKey.
*cmpp is set to CMP_EQUAL if the node matches the key exactly, to
CMP_UNDER or CMP_OVER otherwise to indicate how the nearest node
is positioned relative to the key.

174 C Programmer’s Guide

Current Node API

CurFindKey

AvINodePtr AVL_TreeCurFindKey(AvITreePtr avitree, ClientCPtr key);

Searches “key' in the AviTree. This call sets the current node to the node
matching “key', to NULL if “key' is not already in the AvITree. Information
about the "nearest” node may also be obtained by calling
AVL_TreeCurGetNearestNode after this call.

CurlnsertNode

void AVL_TreeCurlnsertNode(AvITreePtr avitree, AvINodePtr avinode);

Inserts "avinode' in the AviTree. A call to AVL_TreeCurFindKey MUST
have been done just before this call. “avinode' becomes the current node of
the tree.

CurExtractNode

void AVL_TreeCurExtractNode(AvITreePtr avitree);

Extracts a node from the AviTree. A call to AVL_TreeCurFindKey MUST
have been done just before.

C Programmer’s Guide 175

Chapter 11 Aviclass

176 C Programmer’s Guide

Chapter

2 Base Class

The Base class implements a number of basic Open Interface tools, macros,
and data structures.

Technical Summary

The Base is an unusual class in that it is mostly enumerated types and
macros that are used throughout the Open Interface libraries. The class is
composed of tools for booleans, comparisons, debugging, memory
manipulation, general enumerated types, and miscellaneous macros and
constants.

Of those groupings, only the debugging and memory manipulation macros
are unusual. Inthe debugging tools, there are macros that will aid in setting
up a debugging environment. This includes debugging flags, generating
code only when debugging flags are on, indicating the file name and line
number that source is on, not implemented yet tools, and assertion
checking.

The memory manipulation tools are designed to work on a contiguous
block of memory. This includes API’s to clear, copy, move or set a block of
memory.

The Base class is divided into the following categories.

Standard constant definitions

Debugging

Memory manipulation

Maximum integer values

Miscellaneous Enumerated Types

Miscellaneous Macros.

See also:

Mch, Str classes.

Basic Data Types

Double
Long

Defines portable data types for long integers and double floats.

C Programmer’s Guide 177

Chapter 12 Base Class

Portable data types for long integers and double floating point numbers.
These data types are described below:

Identifier
Long
Doubl e

Description

4-byte integer.

Double floating point number (usually 8 bytes, but this is machine
dependent).

Use these data types to insure cross platform portability.

Data types for integers. These data types are described below:

Description

Same as int (you cannot assume that an int can hold more than 16
bits if you want your code to be portable).

Note: On the Macintosh, it is defined as “short” for the THINK C
environment. This lets you use the 4-byte integers option in your
project and still call Open Interface libraries built with the 2-byte
option.

8 bit integer (may be 16 bits if compiler does not support signed
keywords

16 bit integer
32 bit integer
64 bit integer (not supported by all operating systems).

UInt/UInt8/UInt16/UInt32

Data types for unsigned integers.

These data types are described below:

Int

Int8

Int16

Int32

Int64
Identifier
I nt
Int8
Int16
I nt 32
I nt 64
See also

Ulint

Uint8

Uintl6

Uint32

Uint64
Identifier
Ul nt
ulnt8
Ul nt 16
Ul nt 32
Ul nt 64

178

Description

Unsigned integer (may be 16 or 32 bits).

8 bit unsigned integer

16 bit unsigned integer

32 bit unsigned integer

64 bit unsigned integer (not supported by all operating systems)

C Programmer’s Guide

Basic Data Types

See also

Int/Int8/1nt16/1nt32

Maximum integer and unsigned integer constants.

These constants represent the maximum values for each of the signed and
unsigned integer types.

Description

Maximum 8 bit signed integer (127).
Maximum 16 bit signed integer (32,767).
Maximum 32 bit signed integer (2,147,483,647).

Maximum 64 bit signed integer (2,147,483,647). Not supported by
all operating systems, specifically DOS.

Maximum 8 bit unsigned integer (255).
Maximum 16 bit unsigned integer (65535).
Maximum 32 bit unsigned integer (4,294,967,295).

Maximum 64 bit unsigned integer (4,294,967,295). Not supported
by all operating systems, specifically DOS.

If you want the minimum value of each of these types, use the negative of
these constants for the signed types and zero for the unsigned types.

MAXINT8

MAXINT16

MAXINT32

MAXINT64

MAXUINTS8

MAXUINT16

MAXUINT32

MAXUINT64
Identifier
MAXI NT8
MAXI NT16
MAXI NT32
MAXI NT64
MAXUI NT8
MAXUI NT16
MAXUI NT32
MAXUI NT64

ClientPtr

Pointer that can contain 32 bits or less of client information.

typedef void C_FAR * ClientPtr;

ClientPtr is a data type for storing 32 bits or less of client information. On
64 bit machines with the appropriate operating system, ClientPtr can be a 64

bit item.

It is perfectly legal to use ClientPtr to hold any pointer or any integer type.

If you store less than 32-bit integer values in a ClientPtr, you must use the
following typecasting to avoid warnings on PC compilers:

Cienthtr X;

Intl16 Y,

X = (CientPtr)y;// no problemwth Intl6

y = (Int16)(Int32)x;// cast with (Int32) to avoid warning.
See also

Res Ptr

C Programmer’s Guide

179

Chapter 12 Base Class

HugePtr

Data type for a huge pointer.

typedef void C_HUGE *HugePtr;

Byte
BytePtr

HugeStr

180

This type of pointer is only required if you are porting to the PC (MS
Windows or PM) and require structures larger than 64K.

On the PC, most buffers are less than 64K and therefore fit into a single
segment. Most of the library functions (from Open Interface or from your
compiler) make the assumption that all pointers arguments are contained in
one segment.

Huge buffers can cross over segment boundaries and therefore require
special functions to handle operations on them; if you are doing pointer
arithmetic on those buffers (like p++), it is also necessary to declare the
pointers as huge.

The memory manager has a 16 bytes overhead.

See also

HugeStr, HUGELIMIT

Pointer and data type for a byte.

BytePtr is a pointer to Byte, which is an unsigned 8-bit quantity.

When working with binary data, you should use the void*, Byte or BytePtr
types. To work with strings, use the Char or Str types.

See also

Char, Str

Pointer to a huge string

HugeStr is a pointer to a huge string. This type of pointer is only required
if you are porting to the PC (MS Windows or PM) and require structures
larger than 64K.

On the PC, most buffers are less than 64K and therefore fit into a single
segment. Most of the library functions (from Open Interface or from your
compiler) make the assumption that all pointers arguments are contained in
one segment.

Huge buffers can cross over segment boundaries and therefore require
special functions to handle operations on them; if you are doing pointer
arithmetic on those buffers (like p++), it is also necessary to declare the
pointers as huge.

The memory manager has a 16 bytes overhead.

See also

HugePtr, HUGELIMIT

C Programmer’s Guide

BoolEnum

HUGELIMIT

BoolEnum

BoolEnum

BOOL_OF

Defines an upper limit for a non-huge pointer.

HUGELIMIT is a constant defining an upper limit for a non-huge pointer.

See also

HugePtr, HugeStr

Defines boolean values.

BoolEnum is the constant indicating a boolean (true or false) value. Many
Open Interface routines return a code of this type.

Identifier Description
BOOL_FALSE False.
BOOL_TRUE True.

You can take advantage of the specific values of BOOL_FALSE and
BOOL_TRUE through the use of the BOOL_OF macro.

Converts an integer to a boolean.

BoolEnum BOOL_OF (Int number);

CpyEnum

CpyEnum

BOOL_OF converts the number passed to a boolean and returns a
BoolEnum. It considers all integers not equal to zero to be BOOL_TRUE and
all integers equal to zero to be BOOL_FALSE.

BOOL_OF is defined as:

#def i ne BOOL_OF(b) ((b) ? BOOL_TRUE : BOOL_FALSE)

Defines codes for the result of a copy process.

CpyEnum is the enumerated type indicating the result of a copy process.
Copy processes may be either successful or have to truncate part of the
result. This enumerated type is indicating which took place.

Identifier Description
CPY_K Copy was successful.
CPY_TRUNC Truncation occurred during copy.

C Programmer’s Guide 181

Chapter 12 Base Class

CmpEnum

CmpEnum

INT_Compare

Defines codes for the result of a comparison.

CmpEnum is an enumerated type indicating the result of a comparison.
Comparisons yield one of three results: a>b,a<banda=b. This
enumerated type is used to indicate which took place.

Identifier Description

CVP_UNDER First entity was shorter/smaller/less than second entity.
CVP_EQUAL Entities were equal.

CVP_OVER First entity was longer/larger/greater than second entity.

Compares two integers and returns a CmpEnum to indicate the result.

CmpEnum INT_Compare (Int numberl, Int number2);

INT_ToCmp

IINT_Compare compares numberl to number2 and returns a CmpEnum to
indicate the result. If numberl is less than number2 then CMP_UNDER is
returned. If numberlis greater than number2 then CMP_OVER s returned.
If numberl is equal to number2 then CMP_EQUAL is returned.

INT_Compare will work for any numeric type.

INT_Compare is defined as:
q(ﬁtd;e;ige I NT_Conpare(a, b) (((a) < (b)) ? CW_UNDER : (((b) <
a ¢

CVWP_OVER : CWMP_EQUAL))

Converts the integer passed into a CmpEnum.

CmpEnum INT_ToCmp (Int number);

PerfEnum

PerfEnum

182

INT_ToCmp converts the number passed into a CmpEnum. All integers
that are greater than 0 are CMP_OVER. Those equal to zero are
CMP_EQUAL. And those less than zero are CMP_UNDER.

INT_ToCmp will also work for non-integer numerics as well.

INT_ToCmp is defined as:
#define INT_ToCnp(i) ((i) > 0) ? OWP_OVER : (((i) == 0) ?
CVP_EQUAL :

CMP_UNDER)

Defines codes for how a routine should propagate an action.

C Programmer’s Guide

VertEnum and HorzEnum

CmpProc

PerfEnum is the enumerated type indicating whether an action should be

propagated or not.

Identifier Description
PERF_STOP Stop propagation.
PERF_CONTI NUE Continue propagation.
See also

WinPerfProc

Type definition for comparison functions.

CmpProc is the type definition for a comparison function that you will
write. Your function must be formally declared the same as this type
definition. Your function will return a CmpEnum as the result of the
comparison performed on the two ClientPtr’s passed.

See also

CmpEnum

VertEnum and HorzEnum

HorzEnum

VertEnum

Defines codes for the horizontal direction.

HorzEnum is the enumerated type indicating horizontal direction. Possible

directions are left and right.

Identifier Description
HORZ_LEFT Horizontal direction to the left.
HORZ_RI GHT Horizontal direction to the right.

Defines codes for vertical direction.

VertEnum is the enumerated type indicating vertical direction. Possible

directions are up and down.

Identifier Description
VERT_UP Vertical upward direction.
VERT_DOWN Vertical downward direction.

Version Enum

VersEnum

Defines codes for version numbers.

C Programmer’s Guide

183

Chapter 12

Base Class

VersEnum is the enumerated type indicating the version numbers.

Identifier Description
VERS_MAJOR Major version number.
VERS_M NOR Minor version number.

Debugging Macros

DBG_CHECK

Signals a failure if an expression is false.

void DBG_CHECK (xpr);

DBG_CHECKSTR

DBG_ERROR

184

DBG_CHECK is a debugging macro used to determine whether an
expression is valid. If the expression is true, nothing will happen. If the
expression is false, DBG_CHECK will signal a failure. This macro is only
active if DBG_ON is defined.

DBG_CHECK is defined as:

#i f def DBG_ON

#define DBG CHECK(t) ERR_CHECK(t)

See also

DBG_CHECKSTR, DBG_ERROR, DBG_FILE, DBG_LINE, DBG_NIY,
DBG_ON, DBG_SOURCE

Signals a specific failure and generates a message if an expression is false.
#i f def DBG_ON

defi ne DBG_CHECKSTRERR _CHECKSTR (xpr, str)
#el se

defi ne DBG_CHECKSTR (xpr, str)

#endi f

DBG_CHECKSTR is a debugging macro used to determine whether an
expression is valid. If the expression is true, nothing will happen. If the
expression is false, DBG_CHECKSTR will signal a failure and generate the
error message:

assertion <str> failed file ... line ...

This macro is only active if DBG_ON is defined.

DBG_CHECKSTR is identical to DBG_CHECK but should be used in the
special case when xpr is too long to fit on one line or it contains a quote (")
symbol.

See also

DBG_CHECK, DBG_ERROR, DBG_FILE, DBG_LINE, DBG_NIY,
DBG_ON, DBG_SOURCE

Invokes ERR_FailAssert with the current file name and line number.

C Programmer’s Guide

Debugging Macros

#i f def DBG_ON

defi ne DBG_ERRORERR Fail Error ((str) DBG_FILE,
DBG_LI NE)

#el se

defi ne DBG_ERROR

#endi f

DBG_ERROR is used to invoke an error. It makes a call to ERR_FailAssert
with the current file name and line number (DBG_FILE and DBG_LINE).

One of the more effective places to use DBG_ERROR is in the default case of
a switch statement. If you know that the default should never be reached,
place a DBG_ERROR to signal a failure.

See also

DBG_CHECK, DBG_FILE, DBG_LINE, DBG_NIY, DBG_ON,
DBG_SOURCE

DBG_FILE
DBG_LINE

Determines the current file name and line number.

DBG_FILE and DBG_LINE are define as the compiler directives _ FILE__
and __LINE__, respectively. Use them to determine the current file name
and line number for the line they are called from.

Statement Description
DBG_FI LE Current file name.
DBG_LI NE Current line number.

See also

DBG_CHECK, DBG_ERROR, DBG_NIY, DBG_ON, DBG_SOURCE

DBG_NIY

Signals a warning to the error handler.

#i f def DBG_ON

define DBG NI YERR WarnNiy ((str)DBG FILE, DBG LI NE)
#el se

define DBG N'Y

#endi f

DBG_NIY signals a warning to the error handler. If the default error
handler is installed, a dialog will appear on the screen indicating that that
routine is not implemented yet. This macro does not signal a failure, only a
warning.

See also

DBG_CHECK, DBG_ERROR, DBG_FILE, DBG_LINE, DBG_ON,
DBG_SOURCE

DBG_ON

Defines whether the debugging/assertion macros are active.

C Programmer’s Guide 185

Chapter 12

DBG_ON;

DBG_REQUIRE

DBG_SCCS

Base Class

DBG_ON needs to be defined in the command line or in the makefile for
your compiler. This flag needs to be set if you want the
debugging/assertion monitoring macros to be active. You set DBG_ON by
passing it to the compiler.

For the THINK_C compiler on the Macintosh, you must define DBG_ON in
the mchpub.h header file since there is no command line interface.
See also

DBG_CHECK, DBG_ERROR, DBG_FILE, DBG_LINE, DBG_NIY,
DBG_SOURCE

Checks that assertion t is true.
#i f def DBG_ON

define DBG REQU RE (t, nsg)if (! (t)) ERR Fail
(S_Modul eNanme, nsg)

DBG_LI NE)

#el se

define DBG REQUI RE (t, nsQ)

#endi f

If assertion fails, it generates a failure with message #num loaded from
current module S_ModuleName (see errpub.h).

Holds the SCCS (Source Code Control System) name and version number of
afile.

DBG_SCCS (str)

DBG_SOURCE

Macro to hold the SCCS (Source Code Control System) name and version
number of a file.

See also

DBG_FILE, DBG_LINE, DBG_CHECK(expr), DBG_ERROR, DBG_NIY,
DBG_SOURCE

Activates source code if DBG_ON is defined.

DBG_SOURCE (source code source);

186

When DBG_ON is defined, the DBG_SOURCE macro is evaluated into the
source indicated. When DBG_ON is not defined, DBG_SOURCE evaluates
to nothing.

DBG_SOURCE is defined as:

#i f def DBG_ON

#def i ne DBG_SOURCE(code) code
#el se

#def i ne DBG_SOURCE(code)

#endi f

C Programmer’s Guide

EXxit Status

See also

DBG_CHECK, DBG_ERROR, DBG_FILE, DBG_LINE, DBG_NIY, DBG_ON

Exit Status

EXIT_FAIL
EXIT_OK

Returned by the “main” function to indicate whether it has completed
successfully.

Flags that should be returned by the “main” function to indicate whether it
has completed successfully.

Although ANSI defines 2 similar constants (EXIT_SUCCESS and
EXIT_FAILURE), these constants are used differently on VMS, so use
EXIT_OK and EXIT_FAIL instead for maximum portability.

BASE_NOMINMAX

Al ows overriding of the MN, MAX, EVEN, ODD, and ABS nacros.
i f ndef BASE_NOM NVAX

#i fdef M N
#undef M N
#endi f

#i f def MAX
#undef MAX
#endi f

#i f def EVEN
#undef EVEN
#endi f

#i f def ODD
#undef QDD
#endi f

#i f def ABS
#undef ABS
#endi f

#define MN (x, y) ((x) < (y) ? (x)
#define MAX (x, y) ((x) > (y) ? (%)

—~
<<

#define EVEN (x) (((x) %2) == 0)
#define ODD (x) (((x) %2) !'=0)

#define ABS (x) ((x) >=07?2x: - (X))
#endi f /* BASE_NOM NVAX */

BASE_NOMINMAX is a flag that allows you to override the MIN, MAX,
EVEN, ODD, and ABS macros. You might want to set this flag if you have
a conflict with other definitions by the same name that are included after the
basepub.h file. If set, the definitions for MIN, MAX, EVEN, ODD, and ABS
override any previous definitions for these identifiers.

See also

MIN, MAX, EVEN, ODD, ABS

C Programmer’s Guide 187

Chapter 12 Base Class

Miscellaneous Basic Macros

ABS
Computes the absolute value of an integer.

Int ABS (integer number);

ABS takes a number and returns the same number if the number is positive
and returns the negative of the number if it is negative.

ABS will work on any integer type and many other numerics.

ABS is defined as:
#defi ne ABS(x) ((x) >=07?x: -(x))

C_INITOFFSET
C_OFFSET
Provides the offset in a C structure.
C_OFFSET isa macro for the offset in a C structure. Use it instead of offsetof
to avoid problems with unsigned integer arithmetic.
C_INITOFFSET is the same macro, but without the (int) cast. Use it for static
initializations only. This was mainly introduced due to a MPW 3.2 bug.
EVEN

Determines whether an integer is even.
BoolEnum EVEN (Int number);

EVEN determines whether the number passed is even. It returns
BOOL_TRUE if itis even and BOOL_FALSE if it is odd.

EVEN is defined as:

#define EVEN (x) ((((x) %2) == 0) ? BOOL_TRUE : BOOL_FALSE)
MAX

Returns the greater of the two numbers passed.
Int MAX (numeric numberl, numeric number2);

MAX returns the greater of two numbers passed.

MAX is defined as:

#define MAX(x, y) ((x) > (y) ? (x) © (y))
MIN

Returns the lesser of the two numbers received.
Int MIN (numeric numberl, numeric number2);

MIN returns the lesser of numberl and number2. This macro will work for
any numeric data type.

MIN is defined as:
#define M N(x, y) ((x) <(y) 2 (x) = (y)

188 C Programmer’s Guide

Miscellaneous Basic Macros

NULL
Null value for pointers.
#i fdef NULL
undef NULL
#endi f
#ifdef (C_I1SANSI) && !defined (_WATCOMC)
define NULL ((void*)O0)
#el se
define NULLO
#endi f
NULL is the null or empty value for pointers.
0oDbD

Determines whether an integer is odd.

BoolEnum ODD (integer number);

ODD determines whether the number passed is odd. It returns
BOOL_TRUE if it is odd and BOOL_FALSE if it is even.

ODD is defined as:
#define ODD (x) ((((x) %2) !'= 0) ? BOOL_TRUE : BOOL_FALSE)

C Programmer’s Guide 189

Chapter 12 Base Class

190 C Programmer’s Guide

Chapter

13

Overview

Examples:

BBuf Class

This class provides a portable and very efficient way to read/write binary
data from/to a memory buffer or a file.

It is extremely portable since it can accomodate any byte order (i.e. order of
bytes inside an integer) in both the source (a file or a memory buffer) and
the destination (machine-specific representation).

m InaGIF file, numeric values are always stored in LSB format (Least
Significant Byte first)

m In aTIFF file, numeric values are stored in either MSB or LSB format.
The actual format is stored as a special flag at the beginning of the file.

In all these cases, you also have to consider what the natural order is on your
machine (LSB format on Intel-based machines, MSB format on Sun, Mac,
HP, IBM RS/6000, ..).

The main design issue in this class is to provide the kind of flexibility
described above while preserving a reasonable performance.

[A] Paging Mechanism and Data Source

Examples:

Rather than invoking the native File 1/0 routines for every read/write
operation, it is usually faster to work on a local buffer and to read/write the
buffer from/to the file only when necessary. This is known as a paging
mechanism.

Using a paging mechanism has another advantage since it allows the same
API to be used for data loaded from a file, or from a memory buffer, or from
any other source (like an inter-process communcation or a database query).
All the source-specific functions are defined as call-back methods. You can
adapt this code by choosing between several pre-defined sets of methods or
by implementing your own custom methods.

m Ifall the data is already loaded in a memory buffer (which should be a
BytePtr), you can just make BBuf point to this buffer. Your code will
look like this:

#def i ne BBUF_ENDI AN BBUF_ENDI ANNATI VE
#def i ne BBUF_OPTNOPAG NG
#i ncl ude <bbuf pub. h>
static void S _ParseBuf L2(BytePtr, buf, Int, buflen)

NdBBuf bbuf (buf, buflen);
Int8

Int16

Ui nt 32

bbuf - >ReadI nt 8(
bbuf - >Readl nt 16(&

C Programmer’s Guide 191

Chapter 13

[B] Data Format

192

BBuf Class

bbuf - >ReadUl nt 32(& nt 32) ;
S DoSonet hi ng(int8, intl6, uint32);
}
m If the input source is a file but you do not want to load the whole file
into memory, you should open the file and make the BBuf point to the

file:

#def i ne BBUF_ENDI AN BBUF_ENDI ANBI G
#i ncl ude <filepub. h>
#i ncl ude <bbuf pub. h>
static void S ParseFile L1(Str, nane)

FilePtr file = new NdFi | e(nane);
Ui nt 32\ ui nt 32;

file->C0pen(Fl LE_| OREAD, FILE_FMTBI NARY) ;
NdBBuf bbuf (file, 1, 512);

bbf uf - >Readl| nt 32(&ui nt 32) ;
S DoSonet hi ng(ui nt 32);
file->C ose();
delete file;
}
m If the data does not come from a file but from some other input source
(from inter-process communication for instance), you can install your

own methods. Your code will look like this:

#defi ne BBUF_ENDI AN BBUF_ENDI ANNATI VE
#i ncl ude <bbuf pub. h>

static BBuf Met hodsRec S_Channel Met hods = {
S Channel Seek,
S Channel Read,
S Channel Wi te,
S _Channel Fl ush,
S Channel End

S
static void S_ReadChannel L1(M/Channel Ptr, channel)
NdBBu bbuf ((dientPtr)channel);
Ui nt 32 ui nt 32;

bbuf - >Set Met hods(&S_Channel Met hods) ;

bbuf - >ReadUl nt 32(&ui nt 32) ;
S DoSonet hi ng(ui nt32); ..

In the general case, it is not always possible to read numeric values from a
file with a simple C assignment between integers. There are 2 things which
can prevent it;

4. File endianity:

When reading multi-bytes integers (Int16, Int32, UInt16 or UInt32), the
order of the bytes in afile is not necessary the same as what the machine
architecture expects. For instance, Windows bitmap files are always in
Little-Endian format (also known as MSB: the Least Significant Byte is
stored first). If the local machine architecture is also Little-Endian, then
no conversion will be necessary. However if the current machine
architecture is Big-Endian (or MSB: Most Significant Byte first), then
numeric values need to be converted (bytes are swapped).

5. Dataalignment:

Some machine architectures request that 2-bytes integers be always
stored in memory at an even address and that 4-bytes integers be

C Programmer’s Guide

BBuf Class

always stored at an address which is a multiple of 4. This alignment
constraint allows the Arithmetic & Logic Unit to perform some
optimization on arithmetic operations. Unfortunately, this means that
you can not read an integer value with a single C assignment if the
value is not aligned on a nhormal boundary. This happens frequently
when reading values from a memory buffer loaded from a file. In this
occurs, the integer value must be read byte by byte.

BBuf Class

The BBuf class is the base class for 1/0 buffered operations.

Specialization Flags

The following flags are used to specialize the API defined in this file. These
flags need to be defined before including bbufpub.h. Flags which are not
defined explicitly will take a default value.

Type
BBUF_ENDI AN

BBUF_ENDI ANBI G
BBUF_ENDI ANLI TTLE
BBUF_ENDI ANNATI VE

BBUF_ENDI ANREVERSE

BBUF_ENDI ANVARI ABL

E

Data Structures

NDBBufMethods

Description

Should always be defined. It can be used to improve 1/0
performance in case the order of bytes in numeric values
read from the BBuf is known at compile-time.

Must be one of:
Most significant byte is stored first (example: MacPaint).
Least significant byte is stored first (example: Gif).

Bytes are stored in the same order as on the local machine
(order given by MCH_ENDIAN).

Bytes are stored in the reverse order (relative to the native
order given by MCH_ENDIAN).

Bytes order is not known at compile-time. The real order
(probably specified somewhere in the file) must be set at
run-time with an explicit call to BBUF_SetEndianity
(example: Tiff).

Structure containing the paging methods (which will be called only if an
operation can not be performed on the current page)

Type
SeekPr oc

ReadPr oc

C Programmer’s Guide

Description

SeekProc(bbuf, pos) should move the current position to pos and
load the page containing the byte at current position. The
PageBeginPos, PageBeginPtr, PageEndPtr and CurPtr should be

updated.

should just skip n bytes. The method should fail if an attemp to read
past the end of data is made. The PageBeginPos, PageBeginPtr,
PageEndPtr and CurPtr should be updated.

193

Chapter 13 BBufClass

WiteProc WriteProc(bbuf, buf, len) should write len bytes of buf to the bbuf,
starting at position BBUF_CurPos. If bufis NULL, WriteProc should
just skip n bytes in bbuf and leave the skipped bytes unchanged. If
an attemp to write past the end of data is made, the BBuf should be
expanded and TotalSize updated. If buf is NULL, extra bytes are set
to 0. WriteProc should then update TotalSize, PageBeginPos,
PageBeginPtr, CurPtr and PageEndPtr.

Fl ushProc FlushProc(bbuf)should write any unsaved data and flush the
changes. FlushProc is called by an explicit call to BBUF_Flush.
FlushProc should then update PageModified.

EndPr oc EndProc(bbuf) should write unsaved data, flush changes and
close/terminate/deallocate anything which has been opened /
initialized/allocated during or after the Init.. method. EndProc is
called by an explicit call to BBUF_Destruct.

For all of these methods, if the PageModified is set to BOOL_TRUE, the
current page should be saved before being paged out.

Constructors and Destructor

Constructors

Alloc

BBufPtr BBUF_Alloc(void);

Returns a pointer to an allocated BBuf. The BBuf is not yet constructed and
needs to be constructed before being used.

NDBinBuf

void BBUF_Construct(BBufPtr bbuf);
Default construction.

void BBUF_ConstructBuf(BBufPtr bbuf, BBufBytePtr data, BBufOffsetVal len);

Constructs the bbuf to point to data. The size of data must be len. For best
performance, you can declare BBUF_HASSMALLBUF if you only used
buffer smaller than HUGELIMIT, and you can also declare
BBUF_OPTNOPAGING if you only use this type of BBuUf.

NDBinBuf

void BBUF_ConstructFile(BBufPtr bbuf, FilePtr file, BBufPageVal maxbufs,
BBufOffsetVal bufsize);

Constructs the bbuf to point to file (which must have been opened before).
To improve performance, the paging methods will use several buffers of
bufsize bytes. maxbufs is the maximum number of buffers. maxbufs and
bufsize must be > 0. The appropriate paging methods are installed. The file
should be opened in Binary mode. The file is not closed by BBUF_Destruct.

194 C Programmer’s Guide

Read and Write Operations

NDBinBuf

void BBUF_ConstructData(BBufPtr bbuf, ClientPtr data);

Constructs a BBuf and attaches to it some custom data (which can be
eventually NULL). This data can be accessed/changed afterward with the
Get/SetMethodData calls BBUF_SetMethodData.

After this call, you should probably install your custom paging methods
(with BBUF_SetMethods) and set explicitly the total size (with
BBUF_SetTotalSize).

Destructor

void BBUF_Destruct(BBufPtr bbuf);

Destructs the bbuf. In particular, it calls the End method.
For instance, if Init method had allocated some buffers, the End method will
free them.

Dealloc

void BBUF_Dealloc(BBufPtr bbuf);
Deallocates the bbuf. The bbuf must have been allocated using BBUF_Alloc.

Read and Write Operations

ReadNBytes

void BBUF_ReadNBytes(BBufPtr bbuf, HugeBytePtr ptr, BBufOffsetVal len);

Reads “len' bytes from the bbuf and puts result into “ptr'. ptr should be
allocated for at least “len’ bytes.

ReadIntx
ReadUIntx

void BBUF_ReadInt8(BBufPtr bbuf, Int8Ptr valptr);
void BBUF_ReadUInt8(BBufPtr bbuf, UInt8Ptr valptr);
void BBUF_ReadInt16(BBufPtr bbuf, Int16Ptr valptr);
void BBUF_ReadUInt16(BBufPtr bbuf, UInt16Ptr valptr);
void BBUF_ReadInt32(BBufPtr bbuf, Int32Ptr valptr);
void BBUF_ReadUInt32(BBufPtr bbuf, UInt32Ptr valptr);
Reads an Int8, Int16, Int32, UInt8, UInt16 or a UInt32 respectively and writes

it into valptr.
WriteNBytes

void BBUF_ WriteNBytes(BBufPtr bbuf, HugeByteCPtr ptr, BBufOffsetVal len);

Writes len bytes of ptr to the bbuf. If the current position is past the end of
dataand if BBuf was initialized with BBUF_ConstructFile, the Write method
will be called and TotalSize will be updated.

C Programmer’s Guide 195

Chapter 13 BBufClass

Writelntx
WriteUIntx

void BBUF_Writelnt8(BBufPtr bbuf, Int8 val);
void BBUF_Writelnt16(BBufPtr bbuf, Int16 val);
void BBUF_WriteInt32(BBufPtr bbuf, Int32 val);
void BBUF_WriteUInt8(BBufPtr bbuf, UInt8 val);
void BBUF_WriteUInt16(BBufPtr bbuf, UInt16 val);
void BBUF_WriteUInt32(BBufPtr bbuf, UInt32 val);
Writes an Int8, Int16, Int32, UInt8, UIntl16, UInt32 respectively into the bbuf.

Flush

void BBUF_Flush(BBufPtr bbuf);

Calls the FlushProc method. For instance, if BBuf was initialized with afile
(file must be writable), the Flush method will save any local buffer which
has been modified and flush the changes to the file.

Seek Operations

CurPos

BBufOffsetVVal BBUF_CurPos(BBufCPtr bbuf);
Returns current position.

SeekTo

void BBUF_SeekTo(BBufPtr bbuf, BBufOffsetVal pos);
Sets position to absolute offset. The new position must be between 0 and

TotalSize-1.
SeekBy

void BBUF_SeekBy(BBufPtr bbuf, BBufOffsetVal pos);
Sets position to offset relative to current position. The new position must be

between 0 and TotalSize-1.
SkipRead
void BBUF_SkipRead(BBufPtr bbuf, BBufOffsetVal pos);
Skips <n> bytes from current position. The hew position must stay between
0 and TotalSize-1. Same as BBUF_SeekBy except that offset must be > 0.
SkipWrite
void BBUF_SkipWrite(BBufPtr bbuf, BBufOffsetVal pos);

Skips <n> bytes from current position. If new position is beyond the end of
data, the Write method is called to write zeros at the end and update the
TotalSize field.

196 C Programmer’s Guide

Accessing Private Fields

LoadCurPage

void BBUF_LoadCurPage(BBufPtr bbuf);

Loads the current page (if needed). Although we do not encourage direct
memory access, you may read directly as many as (PageEndPtr-CurPtr)
bytes starting from the current position (address returned by
BBUF_GetCurPtr(bb)).

After a Read, a Write or a Seek operation, CurPtr is always between
PageBeginPtr and PageEndPtr, inclusive. If CurPtr is left at PageEndPtr,
BBUF_LoadCurPage loads the next page and CurPtr is set to PageBeginPtr.
If CurPtr is between PageBeginPtr and PageEndPtr-1, BBUF LoadCurPage
does nothing.

Accessing Private Fields

GetClientData

ClientPtr BBUF_GetClientData(BBufCPtr bbuf);
void BBUF_SetClientData(BBufPtr bbuf, ClientPtr data);

Respectively, returns user-defined data set by BBUF_SetClientData and sets
the ClientData. The ClientData should be used only by the client, and not by
the paging methods.

GetEndianity

EndianEnum BBUF_GetEndianity(BBufCPtr bbuf);
void BBUF_SetEndianity(BBufPtr bbuf, EndianEnum endian);

Respectively , returns the real order of bytes in integers and sets the real
order of bytes in integers for the bbuf.

These calls can be used only if BBUF_ENDIAN is set to
BBUF_ENDIANVARIABLE. The real order of bytes should be set at
run-time by BBUF_SetEndianity to either ENDIAN_BIG or
ENDIAN_LITTLE.

GetTotalSize
SetTotalSize

BBufOffsetVVal BBUF_GetTotalSize(BBuUfCPtr bbuf);
void BBUF_SetTotalSize(BBufPtr bbuf, BBufOffsetVal len);

Respectively, returns the total size of data and sets the total size of data for
the bbuf. If the BBuf is constructed with a buffer, Size is initialized to the
specified buffer size. If the BBuf is initialized with BBUFConstructFile, Size
is initialized to the size of the file.

If the BBuf is initialized with BBUF_ConstructData, Size should be set
explicitly with BBUF_SetTotalSize.

TotalSize is updated if an attemp to write past the end of the data is made.
TotalSize can not decrease.

C Programmer’s Guide 197

Chapter 13 BBufClass

The following fields should not be accessed or modified by the client code,
but only by the paging methods:

GetPagingData
SetPagingData

ClientPtr BBUF_GetPagingData(BBufCPtr bbuf);
void BBUF_SetPagingData(BBufPtr bbuf, ClientPtr data);

Respectively, returns PagingData and modifies PagingData. If BBuf is
initialized with BBUF_ConstructBuf, PagingData is set to NULL.

If BBuf is initialized with BBUF_ConstructFile, PagingData is set to the
specified file. If BBuf is initialized with BBUF_ConstructData, PagingData
is set to the specified ClientPtr.

IsPageModified
SetPageModified

BoolEnum BBUF_IsPageModified(BBuUfCPtr bbuf);
void BBUF_SetPageModified(BBufPtr bbuf, BoolEnum mod);

Respectively, returns BOOL_TRUE if current page has been
modified,BOOL_FALSE otherwise, and sets/unsets the PageModified flag.

GetPageBeginPos
SetPageBeginPos

BBufOffsetVVal BBUF_GetPageBeginPos(BBufCPtr bbuf);
void BBUF_SetPageBeginPos(BBufPtr bbuf, BBufOffsetVal pos);

Respectively, returns the offset to the first byte in current page, and sets the
offset to the first byte in current page.

GetPageBeginPtr
SetPageBeginPtr

BBufBytePtr BBUF_GetPageBeginPtr(BBUfCPtr bbuf);
void BBUF_SetPageBeginPtr(BBufPtr bbuf, BBufBytePtr pageBeg);

Respectively, returns a pointer to the first byte of current page, and sets the
pointer to the first byte of current page.

GetPageEndPtr
SetPageEndPtr

BBufBytePtr BBUF_GetPageEndPtr(BBufCPtr bbuf);
void BBUF_SetPageEndPtr(BBufPtr bbuf, BBufBytePtr pageEnd);

Respectively, returns a pointer to the first byte after current page, and sets
the pointer to the first byte after current page. The page size can be
computed with:

PageSi ze = PageEndPtr - PageBeginPtr.

198 C Programmer’s Guide

Installing Custom Paging Methods

GetCurPtr
SetCurPtr

BBufBytePtr BBUF_GetCurPtr(BBufCPtr bbuf);
void BBUF_SetCurPtr(BBufPtr bbuf, BBufBytePtr cur);

Respectively, returns a pointer to the byte at current position, and modifies
the pointer to the byte at current position. The CurPtr should always be
between PageBeginPtr and PageEndPtr-1.

The current position offset can be computed with:
CurPos = CurPtr - PageBegi nPtr + PageBegi nPos.

Installing Custom Paging Methods

QueryMethods

void BBUF_QueryMethods(BBufCPtr bbuf, BBufMethodsPtr methods);
Fills methods with the methods installed in the bbuf.

SetMethods

void BBUF_SetMethods(BBufPtr bbuf, BBufMethodsPtr methods);
Installs the methods in methods in the bbuf.

C Programmer’s Guide 199

Chapter 13 BBufClass

200 C Programmer’s Guide

Chapter

4 Cell Class

The Cell class implements the Open Interface cell and range data structures
and tools.

Technical Summary

More specifically, this class implements the CellPtr, CellRec, RangePtr, and
RangeRec data structures as well as a utility to determine whether a cell is
within a specified range.

The cell and range structures are similar to the Point16 and Rect16 structure,
the difference being that the names of the cell structure fields (Col, Row) are
better suited to represent cells in a table than the (x,y) fields of the Point16
data structure.

See also

Rect, LBox classes

Data Structures

CellPtr
CellRec

RangePtr
RangeRec

Pointer and data structure for cells.

CellPtr is a pointer to CellRec, a data structure that stores the row and
column indices of a cell.

This structure is the same as Point16Rec but for use with cells.

See also

RANGE_ContainsCell.

Pointer and data structure for ranges.

RangePtr is a pointer to RangeRec, the data structure that stores the origin
and extent of a range. The fields of this structure are described below.

Field Description
i Coordinates of the top left cell of the table.
Ext Ext.Col determines the width of the table and Ext.Row

determines its height.

C Programmer’s Guide 201

Chapter 14 ceiclass

See also

RANGE_ContainsCell

Cell Range Operations

ContainsCell
Determines whether a cell is within a range.

BoolEnum RANGE_ContainsCell (RangeRec range, CellPtr cell);

RANGE_ContainsCell determines whether a cell is within a range. Returns
BOOL_TRUE if the cell is within the limits established by the range,
otherwise it returns BOOL_FALSE.

202 C Programmer’s Guide

Chapter

5 Char Class

The Char class implements the Open Interface character data structures and
utilities.

Technical Summary

The functions in this class offers support for English, European, and Asian
languages by providing functions which handle single-byte and multibyte
characters.

Languages

The culturally dependent rules to control collation, case conversions, word
delimitation, and so on are encapsulated in a language environment object.
The LgEnv class gives more detailed information about language
environments and the resources which parameterize them.

The APIs which do not take any LgEnvPtr argument perform operations
without taking into account cultural specificities (i.e. case conversions
limited to the ASCII range).

The APIs which take into account cultural specificities take a LgEnvPtr
argument. If you pass NULL in this argument, the default language
environment (as defined by the ND_CHARLANG environment variable)
will be assumed.

Character Types

Open Interface APIs allow your application to support a single native
language or a more general environment with more than one language or
character set. Writing your application using the Open Interface APIs
enables you to switch language environments by resetting an environment
variable.

Open Interface offers two basic data types, Native and UNICODE.

The Native Character Type

If you intend your application to operate in one language at a time, you can
use native types for your data. Many systems dedicated to a specific locale
already have a native code type specified.

When you use the Native calls, write your application with i f statements
and include separate pieces of code for each language. For example, if the
native code type is SJIS, the application will perform different operations
than if the native language is English and it will require a different set of
APIs.

While this process can result in duplicated code, switching languages is as
easy as setting an environment variable (ND_CHARNATIVE, see below) to
change the native language.

C Programmer’s Guide 203

204

Chapter 15 char Class

The UNICODE Character Type

This type supports UNICODE characters. UNICODE strings contain
UNICODE characters.

Conversion

Open Interface provides APIs which enable you to convert strings and
characters from one type to another.

Character Encoding

The ChCode and NatCode types encode multibyte characters in an
unsigned 32 bit integer. ChCode and NatCode types contain four bytes:
Bytel, Byte2, Byte3 and Byte4, with Bytel being the least significant byte
and Byte4 being the most significant.

Multibyte character encoding is shown in the following table:

Byte Number Contents

Byt el First byte of the multibyte character.

Byt e2 Second byte of the multibyte character, or NULL.
Byt e3 Third byte of the multibyte character, or NULL.
Byt e4 NULL.

Char and ChCode values are always identical for pure ASCII characters, but
differ for multibyte characters.

Environment Variables and Flags

The ND_CHARNATIVE environment variable defines the native language
for the application. When you want to change from one native language to
another, you must reset this environment variable. This cannot be done
dynamically.

Open Interface Character API's

The APIs in Open Interface Char class enable you to manipulate characters
and obtain information about them. The APIs let you get a character code,
obtain an ASCII character's classification, convert ASCII characters, convert
characters between data types, convert between ASCII and EBCDIC, get a
character length, and get a specified byte of a character.

The basic character classification APls enable you to obtain information
such as whether the character is alphanumeric, hexadecimal, a control
character, or a space. The CHAR_Asciils APIs assume that the character is
in the C RTL classification specified.

Char Class Operations

m Testing whether a character is ASCI|I.

m Converting between ASCII and EBCDIC.

m Getting character information (such as length).
Char and NatChar Data Types

The Char and NatChar data types are defined in the base class.

C Programmer’s Guide

Environment Variables

Environment Variables

ND_CHARNATIVE

ND_CHARLANG

Defines the native code type in which NatStr and NatChar objects are
encoded.

On an ASCIlI-based machine, you cannot choose an EBCDIC-based native

code type. Similarly, on an EBCDIC-based machine, you cannot choose an
ASCIlI-based native code type. Character constants (e.g., 'a’) have been set to
their ASCII or EBCDIC values at compile time. As a result, code which has
been compiled on an EBCDIC host assumes that the Char type is EBCDIC

based.

Defines the default language environment which defines the precise set of
rules for string collation, case conversion, word delimitation, and so on.

Data Structures

CharPtr

ChCodePtr

NatCharPtr

NatCodePtr

UniCodePtr

Data type for a global character pointer.

See also

Char

Data type for a character code pointer.

See also

ChCode

Data type for a native character pointer.

See also

NatChar
Data type for a native character code pointer.
See also

NatCode

Data type for a UNICODE character pointer.

C Programmer’s Guide 205

Chapter 15 char Class

UniStrPtr

ChCode

NatCode

UniCode

UniStr

CharlInfoVval

Strival

206

See also

UniCode

Data type for a UNICODE string pointers.

See also

UniStr

Data type for a multibyte character code. ChCode is an unsigned 32-bit
integer.

See also

ChCodePtr

Data type for a native character code. NatCode is an unsigned 32-bit integer.

See also

NatCodePtr

Data type for a UNICODE character. A UniCode character is an unsigned
16-bit integer.

See also

UniCodePtr

Data type for a UNICODE string.

See also

UniStrPtr

A 32-bit integer used for character classification information.

A 32-bit integer used for indexing strings and characters.

C Programmer’s Guide

Character Length

Character Length

GetLen

Returns the length of the character whose first byte contains the specified
8-bit character.

StriVal CHAR_GetLen (Char ch);

CodeGetLen

CHAR_GetLen returns the length in bytes of the character whose first byte
contains the specified 8-bit character.

The length result depends on the values of the ND_CHARNATIVE
environment variable.

See also

CHAR_CodeGetLen, CHAR_NatGetLen

Returns the length of the character whose first byte contains the specified
8-bit character code.

StriVal CHAR_CodeGetLen (ChCode chCode);

NatGetLen

Returns the length in bytes of the character whose first byte contains the
specified 8-bit character code. The length result depends on the values of the
ND_CHARNATIVE environment variable.

See also

CHAR_GetLen, CHAR_NatGetLen

Returns the length of the native character whose first byte contains the
specified 8-bit character code.

StrlvVal CHAR_NatGetLen (NatChar natCh);

CHAR_NatGetLen returns the length in bytes of the character whose first
byte contains the specified 8-bit character code. The length result depends
on the values of the ND_CHARNATIVE environment variable.

See also

CHAR_GetLen, CHAR_CodeGetLen

Character Code

The "ChCode' and "NatCode' types encode multibyte characters in a
unsigned 32 bit integer.

If bl, b2, b3 and b4 are the bytes of a "ChCode' or "NatCode', b1l begin
the least significant byte and b4 the most significant, the multi-byte

C Programmer’s Guide 207

Chapter 15 char Class

character is encoded as follows:

bl: first byte of the multi byte character.

b2: second byte of the multi byte character, or 0.
b3: third byte of the multi byte character, or 0.
b4: 0 (for now).

With this encoding, the Char and ChCode values are always identical for
pure ASCII characters, but will differ on multi-byte characters.

You can extract information from a multi-byte character with the following
API:

GetByte...
Returns the contents the specified byte of a multibyte character.
Char CHAR_GetByte (ChCode chcode, Int bytenum);
Char CHAR_GetBytel (ChCode chcode);
Char CHAR_GetByte2 (ChCode chcode);
Char CHAR_GetByte3 (ChCode chcode);
Returns the contents of the specified byte of a multibyte character.

The CHAR_GetByte function takes a byte number as an argument. You can
specify a byte number between zero (the first byte) and 2 (the third byte).

CHAR_GetBytel obtains the first byte, CHAR_GetByte2 obtains the second
byte, and CHAR_GetByte3 obtains the third byte of a multibyte character.

See also

CHAR_NatGetByte

NatGetByte...
Returns the contents the specified byte of a multibyte character.
NatChar CHAR_NatGetByte (NatCode natcode, Int byteEnum);
NatChar CHAR_NatGetBytel (NatCode natcode);
NatChar CHAR_NatGetByte2 (NatCode natcode);
NatChar CHAR_NatGetByte3 (NatCode natcode);
Returns the contents of the specified byte of a native multibyte character.

The CHAR_GetByte function takes a byte number as an argument. You can
specify a byte number between zero (the first byte) and 2 (the third byte).
CHAR_GetBytel obtains the first byte, CHAR_GetByte2 obtains the second
byte, and CHAR_GetByte3 obtains the third byte of a native multibyte
character.

See also

CHAR_GetByte

208 C Programmer’s Guide

Basic Character Classification

Basic Character Classification

ISAsCii...
Determines whether the character is ASCII.

BoolEnum CHAR _IsAscii (ChCode chcode);
BoolEnum CHAR _IsAsciiAlpha (ChCode chcode);
BoolEnum CHAR_IsAsciiUpper (ChCode chcode);
BoolEnum CHAR_IsAsciiLower (ChCode chcode);
BoolEnum CHAR _IsAsciiAINum (ChCode chcode);
BoolEnum CHAR_IsAsciiDigit (ChCode chcode);
BoolEnum CHAR_IsAsciiHexDigit (ChCode chcode);
BoolEnum CHAR _IsAsciiOctDigit (ChCode chcode);
BoolEnum CHAR_IsAsciiSpace (ChCode chcode);
BoolEnum CHAR _IsAsciiPunct (ChCode chcode);
BoolEnum CHAR_IsAsciiControl (ChCode chcode);
BoolEnum CHAR_IsAsciiPrint (ChCode chcode);
BoolEnum CHAR_IsAsciiGraph (ChCode chcode);

The CHAR_IsAscii... macros classify characters according to the C RTL
standard rules. Use these macros if you need to classify ASCII characters
only. The return value is FALSE if the given character is not an ASCI|
character.

On an EBCDIC system, the CHAR_IsAscii... macros automatically assume
that the chcode argument is an EBCDIC character code, not an ASCII code.

The various versions of the CHAR_IsAscii... macros are described in the
following table:

Macro Inquiry

CHAR I sAsci i (chcode) Does the character belong to the ASCII
set?

CHAR_I sAsci i Al pha(chcode) Is the character an ASCII letter?

CHAR_I sAsci i Upper (chcode) Is the character an ASCII upper case
letter?

CHAR_I sAsci i Lower (chcode) Is the character an ASCII lower case
letter?

CHAR_I sAsci i Al Num(chcode) Is the character an ASCI| letter or a
digit?

CHAR_I sAscii Di gi t (chcode) Is the character an ASCII digit?

CHAR_I sAsci i HexDi gi t (chcode) Is the character an ASCII hexadecimal
digit?

CHAR_I sAscii Cct Di gi t (chcode) Is the character an ASCII octal digit?

CHAR_I sAsci i Space(chcode) Is the character an ASCII space
character?
CHAR_I sAsci i Punct (chcode) Is the character an ASCII punctuation?

C Programmer’s Guide 209

Chapter 15 char Class

CHAR_I sAsci i Control (chcode) Is the character an ASCII control
character?

CHAR_I sAscii Print(chcode) Is the character an ASCII printable
character?

CHAR_I sAsci i Graph(chcode) Is the character an ASCII "graph”
character?

The ChCode value corresponds to the Char value on the ASCII range, so
you can pass either ChCode or Char values to the these calls.

See also

CHAR_Asciils...

Asciils...

Same as CHAR_IsAscii... macros except that an error is generated if the
character is not ASCII.

BoolEnum CHAR_AsciilsAlpha (Char ch);
BoolEnum CHAR_AsciilsUpper (Char ch);
BoolEnum CHAR_AsciilsLower (Char ch);
BoolEnum CHAR_AsciilsAINum (Char ch);
BoolEnum CHAR_AsciilsDigit (Char ch);
BoolEnum CHAR_AsciilsHexDigit (Char ch);
BoolEnum CHAR_AsciilsOctDigit (Char ch);
BoolEnum CHAR_AsciilsSpace (Char ch);
BoolEnum CHAR_AsciilsPunct (Char ch);
BoolEnum CHAR_AsciilsControl (Char ch);
BoolEnum CHAR_AsciilsPrint (Char ch);
BoolEnum CHAR_AsciilsGraph (Char ch);

The CHAR_Asciils... functions are similar to the corresponding
CHAR_IsAscii... macros except that they assume that the character is ASCI|
and they signal an error if the character is not ASCII (for debugging libraries

only).

See also

CHAR_IsAscii

Basic Character Conversion

AsciiDigitGetint
AsciiHexDigitGetInt
AsciiOctDigitGetint

Returns the integer value of an ASCII digit.

210 C Programmer’s Guide

Basic Character Conversion

Int CHAR_AsciiDigitGetlInt (Char ch);
Int CHAR_AsciiHexDigitGetlInt (Char ch);
Int CHAR_AsciiOctDigitGetInt (Char ch);

Returns the integer value of an ASCII digit. The digit argument must be a
decimal, hexadecimal, or octal digit or else the result is unreliable.

In the debugging library, this function signals an error if the input is not an
ASCII digit.

See also

CHAR_AsciiDigitGetBase

AsciiAlphaGetBase

Returns the base value of an ASCII letter.

Int CHAR_AsciiAlphaGetBase (Char ch);

AsciiGetLower

CHAR_AsciiAlphaGetBase returns the base value of an ASCII letter. The
base value is an integer between 0 and 25. The char argument must be an
ASCII letter or else the result is unreliable.

In the debugging library, this function signals an error if the input is not an
ASCII character.

See also

CHAR_AsciiDigitGetint

Converts an ASCII character to lower case.

Char CHAR_AsciiGetLower (Char ch);

AsciiGetUpper

CHAR_AsciiGetLower converts an ASCII character to lower case. The char
argument must be an ASCII character or else the result is unreliable.

In the debugging library, this function signals an error if the input is not an
ASCII character.

See also

CHAR_AsciiGetUpper

Converts an ASCII character to upper case.

Char CHAR_AsciiGetUpper (Char ch);

CHAR_AsciiGetUpper converts an ASCII character to upper case. The char
argument must be an ASCII character or else the result is unreliable.

In the debugging library, this function signals an error if the input is not an
ASCII character.
See also

CHAR_AsciiGetLower

C Programmer’s Guide 211

Chapter 15

AsciiGetControl

Char Class

Converts a character to a control character.

Char CHAR_AsciiGetControl (Char ch);

AsciiGetGraph

CHAR_AsciiGetControl converts a character to a control character. An
ASCII character is converted to control characters in the [00-1f] + 7f range.
EBCDIC characters are converted to EBCDIC control codes.

Converts A and a to MA.

Converts [and { to /[.

Converts ? to DEL.

With the debugging library, this function signals an error if the input is not
an ASCII or EBCDIC character.

See also

CHAR_AsciiGetGraph

Converts a control character into a character.

Char CHAR_AsciiGetGraph (Char ch);

AsciiGetEbcdic

CHAR_AsciiGetGraph converts control characters into characters. For
ASCII, converts a control character into the corresponding ASCII character
in the [0x3f-0x5f] range. Converts EBCDIC control characters to EBCDIC
codes. Converts DEL to ?.

In the debugging library, this function signals an error if the input is not an
ASCII or EBCDIC control character.

See also

CHAR_AsciiGetControl

Converts an ASCII character to an EBCDIC character.

Byte CHAR_AsciiGetEbcdic (Byte b);

CHAR_AsciiGetEbcdi converts an ASCII character to the first byte of an
EBCDIC character.

See also

CHAR_EbcdicGetAscii

Conversions between ASCII and EBCDIc

EbcdicGetAscii

212

Converts an EBCDIC character to an ASCII character.

C Programmer’s Guide

Conversions between ASCII and EBCDIc

Byte CHAR_EbcdicGetAscii (Byte b);

ToAscii

CHAR_EbcdicGetAscii converts an EBCDIC character to an ASCII
character. If the EBCDIC character does not belong to the ASCII set, the
value returned is in the [80-ff] range.

You rarely need to convert EBCDIC codes to ASCII, but in some cases you
may need to. For example, you might want to compare strings according to
the ASCII order, or use | ex and yacc tables which were generated on an
ASCII host.

See also

CHAR_AsciiGetEbcdic

Converts a native character to ASCII.

Byte CHAR_ToAscii (Char ch);

FromAscii

Converts a native character to ASCIIl. On an ASCII host, this function does
nothing.

See also

CHAR_FromAscii

Converts an ASCII code to a native character.

Char CHAR_FromAscii (Byte b);

CHAR_FromAscii converts an ASCII code to a native character. On an
ASCII host, this function does nothing.

See also

CHAR_ToAscii

C Programmer’s Guide 213

Chapter 15 char Class

214 C Programmer’s Guide

Chapter

16

Overview

Code Sets

CsldEnum

Cs Class

The Cs module defines a generic "code set" data structure. See the definition
of code types, code sets, and code mappings in charpub.h.

A "code set" must define 3 methods:
m GetCharlInfo()

which should return character information of the code set;
m CvtChar()

which should convert a character of the code set; and
m TransChar()

which should translate a character from the specified code set.

These member functions vary depending on the code set that is specified at
creation time. This module is used mainly from the Ct module.

Unfortunately, there are a fairly large number of standard code sets, and
many manufacturers have "extended" the standard code sets in proprietary
ways. To minimize the amount of overlap between reference code sets, we
will consider that the overall coding scheme combines code sets in such
cases.

For example, the Microsoft Windows ANSI 1252 code set combines the 1ISO
8859-1 code set (a0-ff range) and MS/Windows extensions in the 80-9f range
(special quotes, bullet). So, a code set is actually defined by a combination
of several code sets and a code mapping.

Some coding schemes assign glyphs to control characters in the 00-1f range
(i.e. Macintosh lozenge). This will be handled by defining a coding scheme
with a special code set which partially covers the 00-1f range.

Also, some coding schemes assign non-standard glyphs to some ASCII
characters. (For example, Japanese fonts have a Yen sign instead of a
backslash, and an overbar instead of tilde). We will still consider these
characters to be the ASCII character, because most existing software treats
them according to their ASCII semantics, not according to their actual

glyphs.

Data type for code set id.

C Programmer’s Guide 215

Chapter 16 csclass

ISO Code Set

These are the strict ISO code sets, which only cover the a0-ff range.

Type Description
CS_ASCI |

CS_| SO_LATI N1
CS_| SO LATI N2
CS_| SO _LATI N3
CS_| SO LATI N4
CS I SO CYRILLIC
CS_| SO _ARABI C
CS_| SO _GREEK
CS_| SO HEBREW
CS_| SO _LATI N9

CS_EMPTY_809f covers the 80-9f range by not associating any character
to such codes

Various extensions for the 80-9f range (i.e. ANSI 1252) are considered as
separate code sets.

ADOBE Code Sets

Type Description
CS_ADOBE_STD covers the a0-ff range

CS_ADOBE_LATI extends ISO_LATINL1 in the 80-9f range
N1

CS_ADOBE_SYMB covers the 20-7f and a0-ff ranges
L

CS_ADOBE_ZAPF covers the 00-ff range (to be verified)
DB

Macintosh Code Sets

216

The Macintosh Roman character set is completely different from
ISO_LATINL1 and covers the 80-ff range.

The Macintosh defines extensions to the ISO_ARABIC and 8 for Arabic and
Hebrew. These extensions cover at least the 80-9f range (R2L variants of
corresponding ASCII punctuations), but also fill empty slots of the a0-ff
range.

We still have to investigate whether there are significant differences or not
between the Macintosh Greek code set and the ISO_GREEK (the UNICODE
document says that they are identical) and between the Macintosh symbol

C Programmer’s Guide

Code Sets

font and the ADOBE symbol font (the UNICODE document gives Mac
addition in the 00-1f range).

Type
CS_MAC_ROVAN
CS_MAC _ARABI C
CS_MAC_HEBREW

MS/Windows Code Sets

The MS/Windows code sets are not simply related to the 1SO code sets,
except the 1252 code which extends the ISO_LATIN1 code set and is limited
to the 80-9f range.

Type
CS_MBW EASTEUR
O

CS_MBW CYRI LLI
C

CS_MBW ANSI
CS_MBW GREEK
CS_MBW TURK
CS_NMBW HEBREW
CS_NMBW ARABI C

PC Code Pages

The PC code pages cover the 80-ff range, and also assign glyphs to the 00-1f
range. They coincide on many characters ,but we consider them as separate
code sets for the whole 0-ff range.

Note: The 1004 code set described in the UNICODE document seems
identical to ISO_LATINI, so it is not listed here.

Type
CS_PC 850
CS_PC 857
CS_PC 863
CS_PC_437
CS_PC_860
CS_PC 861
CS_PC 865
CS_PC 852
CS_PC 869
CS_PC 855
CS_PC 864
CS_PC_M4

C Programmer’s Guide 217

Chapter 16 csclass

CJK Code Sets

UNICODE

EBCDIC

218

JIS_0201, JIS_0208 and JIS_0212 are two-code sets for Japanese characters.

Type Description
CS_JI S 0201 covers only the half-width katakana

CS_JI S 0208 the primary Japanese code set; contains full width katakana,
hiragana, kanji, CJK, punctuation, full-width Latin, Greek,
Cyrillic letters, symbols

CS JI S 0212 not very widespread. We will not distinguish the different
variants of these JIS standards (i.e. 1978, 1990)

CS_KSC 5601 the standard encoding for Hangul (Korean)
CS_@B 2312 the standard encoding for Mainland China
CS BI & the standard encoding for Taiwan

Some portions of UNICODE map more or less directly to existing code sets,
so we could unify specific portions of UNICODE with standard code sets.

Type
CS_UNI CODE

The problem with this approach is that UNICODE pages have holes because
some characters are unified and so do not quite map to standard code sets.

Unifying between UNICODE and old style code sets would introduce quite
some complexities, so we will avoid it except in the ASCIl and ISO_LATIN1
cases.

Also, UNICODE is special in many respects (diacritical marks,
directionality), so it is better to consider it as a separate code set overall than
to try to unify parts of it with other standards.

The ASCII and ISO_LATINZ1 portions of the UNICODE code set will be
unified with ASCII, ISO_LATIN1 and EMPTY_809f (first page of
UNICODE). The rest of UNICODE will be treated as a separate code set.

The EBCDIC code sets only contain EBCDIC characters which do not map
to pure ASCII characters. In the CsChar representation, EBCDIC characters
which map to ASCII are unified with ASCII and coded as CS_ASCII.

Type
CS_EBCDI C

For now, we have a generic EBCDIC brand, but we may distinguish several
later, when we get more precise documentation (UNICODE documentation
describes 037, 500V1, 1026 and 875 variants of the EBCDIC standard).

C Programmer’s Guide

Creating and Destroying

HP
Type
CS_HP_ROVANS
CNS
Type

CS_CNS11643_1
CS_CNS11643_2
CS CNS11643_3

Creating and Destroying

Alloc

CsPtr CS_Alloc(void);

Returns a pointer to an allocated but not yet constructed code set object. The
object should be constructed before being used.

Constructors

void CS_Construct(CsPtr cs);
Default code set object constructor.

void CS_Constructld(CsPtr cs, CsldEnum csid);
Constructs the code set object from the “csid' information.

Destructor

void CS_Destruct(CsPtr cs);
Default code set object destructor.

Dealloc

void CS_Dealloc(CsPtr cs);
Deallocates the notifier.

Convenience Functions

New

CsPtr CS_New(CsldEnum csid);
Creates new code set object and constructs it with csid.

Dispose
void CS_Dispose(CsPtr cs);
Destructs and deallocates the code set object.

C Programmer’s Guide 219

Chapter 16 csclass

Dispose0
void CS_Dispose0(CsPtr cs);
Disposes a code set object if it is not NULL.

Convenience Macros

The following code set functions can be called for any code set. All the
following operations are implemented as macros which use member
functions defined for this class.

GetCsld

CsldEnum CS_GetCsld(CsCPtr cs);
Get the code set’s id.

GetCharlLen

StriVal CS_GetCharLen(CsCPtr cs);
Get the character length for the code set.

GetCharlInfo

CharlInfoVal CS_GetCharIlnfo(CsCPtr cs, CsCode code);
Get the ‘charinfo' value of the character “code'.

CvtChar
Converts a character within the code set.

BoolEnum CS_CvtChar(CsCPtr cs, CsCode in, CharCvtSet flags, LQEnvCPtr Igenv,
CsCodePtr out);

Convert the character in "in' described in “flags' and set the result to “out'.
“Igenv' specifies a language environment. ‘flags' specifies the ways of
translation. If bool is true, it indicates the conversion is reversible;
otherwise, not reversible.

The 'flags' could be:

Type Description
CHAR_CVT_DOWNCASE

CHAR_CVT_UPCASE

CHAR _CVT_STRI PDI ACR

CHAR _CVT_SPLI TDI GRAPHS

CHAR CVT_HI RAGANA (CS_JIS_0208 only)
CHAR CVT_KATAKANA (CS_JIS_0208 only)
CHAR CVT_PRECOVPOSE (CS_UNICODE only)
CHAR CVT_DECOVPOSE (CS_UNICODE only)
CHAR_CVT_NOCOVPAT (CS_UNICODE only)

If the 'flags' is NULL, it translates as much as possible. UNICODE
conversion can be done by specifying UNICODE to ‘cs' code set.

220 C Programmer’s Guide

Predefined Code Sets

TransChar
Converts a character between two code sets.

BoolEnum CS_TransChar(CsCPtr cs, CsCode code, CharCvtSet flags, CsCPtr incs,
CsCodePtr chcodeptr);

Translates the character of specified code set to the character within this
code set. 'flags' specifies the ways of translation. If bool is true, it indicates
the conversion is reversible; otherwise, not reversible.

The 'flags' could be:

Type Description
CHAR _CVT_STRI PDI ACR ('in'codeset=CS_ISO_LATIN1,CS_ADOBE_STD...
etc.)

CHAR_CVT_SPLI TDI GRAPHS (‘out’ code set = ASCII)

CHAR CVT_FULLW DTH (in code set = CS_ASCII, CS_ISO_GREEK,
CS_ISO_CYRILLIC ...)

(out code set = CS_JIS_0208, maybe CS_KSC_5601 ...
)
CHAR_CVT_HALFW DTH (in code set = CS_JIS_0208, maybe CS_KSC_5601 ...)

(out code set = CS_ASCII, CS_ISO_GREEK,
CS_ISO_CYRILLIC ...)

If the 'flags' is NULL, it translates as much as possible. UNICODE
conversion can be done by specifying UNICODE to ‘cs' code set.

If the character cannot be translated, ‘out’ is set to NULL.

ToUni

BoolEnum CS_ToUni(CsCPtr cs, CsCode cscode, UniCodePtr uni);
Converts cscode to unicode. If it cannot be converted, returns false;

otherwise, set the unicode to uni and return true.
FromUni

BoolEnum CS_FromUni(CsCPtr cs, CsCode cscode, CsCodePtr uni);

Converts unicode to cscode. If it cannot be converted, returns false
otherwise set the cscode value to cscode and return true.

Predefined Code Sets

GetCsNative

CsPtr CS_GetCsNative(void);
Returns a pointer to the native code set.

GetCsUnicode

CsPtr CS_GetCsUnicode(void);
Returns a pointer to the Unicode code set.

C Programmer’s Guide 221

Chapter 16 csclass

GetCsGlobal

CsPtr CS_GetCsGlobal(void);
Returns a pointer to the global code set.

Local Macros

Type Definition

CHARI NFO_UNKNOWN CHAR_DOM_UNKNOWN | CHAR_LEVEL_BASIC |
CHAR_LEX_UNKNOWN | CHAR_CASE_NONE

CHARI NFO_UNKNOWN_FULLW DTH CHARINFO_UNKNOWN | CHAR_WIDTH_FULL
CHARI NFO_UNKNOAN_HAL FW DTH CHARINFO_UNKNOWN | CHAR_WIDTH_FULL

ISO LATIN1 Character Information Definition

Type Definition
| S1_COoMm CHAR_DOM_LATIN | CHAR_LEVEL_BASIC | CHAR_WIDTH_HALF

ASCII Character Information Definition

Type Definition

ASCI | _COM CHAR_DOM_GENERIC | CHAR_LEVEL_BASIC | CHAR_WIDTH_HALF |
CHAR_LOOSE_ASCII_MASK

JIS0208 Character Information Definition

Type Definition

J1 S0208_COMm CHAR_WIDTH_FULL

J1 S0208_1KU_COM J1S0208_COM | CHAR_DOM_MISC | CHAR_LEVEL_EXTENDED |
CHAR_CASE_NONE

JI S0208_2KU_COM J1S0208_COM | CHAR_DOM_MISC | CHAR_LEVEL_EXTENDED |
CHAR_CASE_NONE

J1 S0208_3KU_CoMm JIS0208_ COM | CHAR_DOM_GENERIC | CHAR_LEVEL_BASIC |
CHAR_LOOSE_ASCII_MASK

JI S0208_4KU_COM J1S0208_COM | CHAR_DOM_HIRAGANA | CHAR_LEVEL_BASIC |
CHAR_CASE_NONE | CHAR_LEX_BASE_LETTER

JI S0208_5KU_COM J1S0208_COM | CHAR_DOM_KATAKANA | CHAR_LEVEL_BASIC
| CHAR_CASE_NONE | CHAR_LEX_BASE_LETTER

J1 S0208_6KU_COM JIS0208_COM | CHAR_DOM_GREEK | CHAR_LEVEL_BASIC |
CHAR_LEX_BASE_LETTER

JI S0208_7KU_COM J1S0208_COM | CHAR_DOM_CYRILLIC | CHAR_LEVEL_BASIC |
CHAR_LEX_BASE_LETTER

JI S0208_8KU_COM J1S0208_COM | CHAR_DOM_MISC | CHAR_LEVEL_EXTENDED |

CHAR_CASE_NONE | CHAR_LEX_SPECIAL

J1'S0208_16TOB4KU_COM JIS0208_ COM | CHAR_DOM_KANII | CHAR_LEVEL_BASIC |
CHAR_CASE_NONE | CHAR_LEX_BASE_LETTER

222 C Programmer’s Guide

JIS0201 Character Information Definition

JIS0201 Character Information Definition

Type Definition

J1'S0201_COM CHAR_WIDTH_FULL | CHAR_DOM_KATAKANA |
CHAR_LEVEL BASIC | CHAR_CASE_NONE |
CHAR_WIDTH_HALF

J1 S0201_CODE_MASK
J1'S0201_DI ACR_DOUBLEDOTS_MASK
J1'S0201_DI ACR Cl RCLE_MASK
J1'S0201_LOSTI NFO_MASK

C Programmer’s Guide 223

Chapter 16 csclass

224 C Programmer’s Guide

Chapter

7 Ct Class

his Ct class implements the Open Interface code type structures and
utilities.

Technical Summary

The functions in this class offers support for English, European, and Asian
languages by providing support for many different character code types.

Multibyte characters require the use of code sets, code mappings, and code
types. These represent the characters in an alphabet as numeric codes and
determine how these codes are placed within a multibyte character
structure.

Code Sets

A code set (or character set) represents each character in an alphabet by a
numeric code. The numeric codes in each code set vary in their hexadecimal
range.

Most code sets are extensions to the ASCII character set. EBCDIC is an
exception. Code sets are combined with mappings to form a code type.

The current version of Open Interface supports the ASCII, ISO_LATIN1,
JIS 0201, and JIS_0208 code sets.

Code Mapping

A code mapping determines the representation of the encoded character
within a multibyte character, which is an unsigned 32-bit integer. A
mapping includes the placement of bytes within the character and any
manipulation that might be needed for each byte.

Sometimes mapping is more complex than simple byte placement. The JIS

code set defines codes where the first and second bytes are in the 0x21 - 0x7e

range. JIS bytes cannot be inserted into a string regardless of the byte order

because the JIS code would be indistinguishable from the ASCII codes.

Several mappings address this problem:

m The JEUC mapping transposes a JIS code in the 0xal-0xfe range by
adding 0x80 to each byte.

m The SJIS mapping is more complex and includes a transposition of JIS
code in the (0x80-0x9f, 0x40-0xfe) or (0xe0-0xff, 0x40-0xfe) ranges.
Code Types

A code type (or "coding scheme™) combines one or more code sets with a
code mapping.

For single-byte ASCII or extended ASCII characters, the byte value maps
directly to the code value. For these alphabets, the code set and the code
type are identical.

C Programmer’s Guide 225

Chapter 17

Data Types

ChCode

Ct

Ct Class

For multibyte characters, different code types can be based on the same code
set but on different code mappings. For example, the Japanese EUC code
type offered by Sun and the SJIS code type offered by Sony are two different
mappings of the JIS code set. The UNICODE code type consists of mappings
of existing standard code sets.

Open Interface provides two levels of support for code sets, tested and
untested. The CT_ASCII, CT_SIJIS, and CT_JEUC code types are fully
supported and tested. Also, a wide range of other standard code types are
implemented but not tested.

Code types supported and tested under the current version of Open

Interface include the following:

m ASCII Code Type. The CT_ASCII code type contains the CS_ASCII
code set.

m CJK Code Types. Inthe CJK code type group, Open Interface offers the
CT_SJISand CT_JEUC. The CT_SIIS code type is a combination of
CS_ASCII and the CS_JIS 0201 and CS_JIS 0208 code sets. CT_JEUC
combines CS_ASCII with CS_JIS_0201, CS_JIS_ 0208, and CS_JIS_0212.
The remainder of the CJK code types are supported but are not fully
tested in the current version.

See also

Char class.

Data type for a code value within a code type.

Defines the code type data record.

Private data elements in the record are the code type id, the code set pointer,
the maximum character length for the code type, and the pointer to a code
set.

See also

CT_GetCharLen, CT_GetFwrd, CT_GetBwrd, CT_Getinfo, CT_CvtChar,
CT_CvtCtToCs, CT_CvtCsToCt

Enumerated Types

CtldEnum

CT_ID

226

Data type for a code type id.

Code type ids identify a complete character coding system.

C Programmer’s Guide

Enumerated Types

ASCII Code Type

Code type ids identify a complete character coding system. They are built
from an association of code sets and a code mapping. Code type categories
include: ASCII, ISO 8859-X, Adobe, Macintosh, Microsoft Windows, PC,
CJK, UNICODE, EBCDIC, Global, and HP code types.

Code Type Id
CT_ASCl |

ISO 8859-X Code Types.

Code Type Id
CT_I SO_LATI N1
CT_1 SO LATI N2
CT_1 SO _LATI N3
CT_I SO_LATI N4
CT_1SO CYRI LLI ¢
CT_1 SO_ARABI ¢
CT_| SO_GREEK
CT_| SO HEBREW
CT_1 SO _LATI N9
ADOBE Code Types
Code Type Id

CT_ADOBE_STD
CT_ADOBE_LATI N1
CT_ADOBE_SYMBOL
CT_ADOBE_ZAPFDB

Macintosh Code Types

Code Type Id

CT_MAC_ROVAN
CT_MAC_ARABI ¢
CT_MAC_HEBREW

Microsoft Windows Code Types

Code Type Id

CT_NMBW EASTEURO
CT_MBW CYRI LLI ¢
CT_MBW ANSI
CT_NMBW GREEK
CT_NMBW TURK
CT_MBW HEBREW
CT_MBW ARABI ¢

C Programmer’s Guide

Description

CT_ASCII characterizes pure ASCII: single byte strings and
fonts which only provide glyphs for the ASCII range.

Description

The 1SO-8859 code types characterize single byte strings
and fonts which combine the ASCII, the EMPTY_809f and
the 1ISO_8859 X code sets.

Description

STD is ASCII + EMPTY_809f + ADOBE_STD
LATINI is ASCIl + ADOBE_LATIN1 + 1SO_LATIN1
SYMBOL is ASCII (00-1f only) + EMPTY_809f +
ADOBE_SYMBOL.

ZAPFDB is ADOBE_ZAPFDB only.

Description

ROMAN is ASCII + MAC_ROMAN
ARABIC is ASCII + ISO_ARABIC + MAC_ARABIc
HEBREW is ASCII + ISO_HEBREW + MAC_HEBREW

Description

1252 is ASCIl + MSW_ANSI + ISO_LATIN1
125X is ASCII + MSW_125X

227

Chapter 17 ctciass

PC Code Types

Code Type Id Description
CT_PC_850 PC_XXX ASCII + PC_XXX

CJK Code Types

Code Type Id Description

CT_SJI'S SJIS is ASCII + JIS_0201 (a0-df range) + JIS_0208 (80-9f + e0-ff / 40-ff)
CT_JEUc EUC is ASCII + JIS_0201 (8e / al-fe) + JIS_0208 (al-fe / al-fe) +
CT_KSc JIS_0212 (8f / al-fe / al-fe) (not implemented)
CT_G&B KSC is ASCII + KSC_5601 (al-fe / al-fe)
CT_BI G GB is ASCII + GB_2312 (al-fe / al-fe)

BIG5 is ASCII + BIG5 (al-fe / 40-7e, al-fe)

UNICODE Code Type

Code Type Id Description
CT_UNI CODE UNICODE is ASCII + EMPTY_809f + ISO_LATIN1 + UNICODE

EBCDIC Code Type

Code Type Id Description
CT_EBCDI ¢ = EBCDIC replaces ASCII and ASCII extensions completely.

HP Code Type

Code Type Id Description
CT_HP_ROVANS The Hewlett-Packard Roman code type.

UTF8 Code Type

Also called FSS-UTF or UTF2. Characters can be 1, 2, or 3 byte. 1 byte
characters are the same as ASCI|I.

Code Type Id Description
CT_UTF8 UNICODE transformation format.

228 C Programmer’s Guide

Creating and Disposing

CNS Code Type

This is EUC based encoding which can mix up to 16 code sets. In this version
we only support CNS11643-1, CNS11643-2, and CNS11643-3.

Code Type Id Description
CT_UTF8 Yet another code type for Traditional Chinese.

ASCI | (CNS11643-0) +

CNS11643-1 (al-fe / al-fe) +
CNS11643-2 (8e / al / al-fe / al-fe)
CNS11643-3 (8e / a2 / al-fe / al-fe)
In general,

CNS11643-X (8e / a0 + X/ al-fe /| al-fe)
where: 1 =< X =< 16

As of October 15, 1995, only 1 <= X <=7 are defined.

Creating and Disposing

Alloc

CtPtr CT_Alloc (void);
Returns a pointer to an allocated but not yet constructed Ct. The Ct should

be constructed before being used.
Construct
void CT_Construct (CtPtr ct);

Default Ct construction.

Constructld
void CT_Constructld (CtPtr ct, CtldEnum ctid);

Constructs the Ct with the specified code type “ctid' type data and member
functions. It fills the Ct with specified code type data/member functions, by
calling a initialization routine. In each initialization proc., it may overwrite
default values in the Ct and set its own data and member functions. Each
code type should have its initialization proc, which this function will call.

Destruct

void CT_Destruct (CtPtr ct);
Default Ct destruction.

Dealloc

void CT_Dealloc (CtPtr ct);
Deallocates the notifier.

New

CtPtr CT_New (CtldEnum ctid);
Creates new code type object and constructs it with “ctid'.

C Programmer’s Guide 229

Chapter 17 ctciass

Dispose
void CT_Dispose (CtPtr ct);
Destructs and deallocates the code type object.

Dispose0

void CT_Dispose0 (CtPtr ct); */
Destructs and deallocates the code type object if it is not NULL.

Member Functions

GetCtld
Gets the code type id.

CtldEnum CT_GetCtld (CtCPtr ct);
CT_GetCtld returns the code type id from the code type data record

structure.
See also

Ct.

GetFwrd
Returns the value of the character found at the beginning of a string.

ChCode CT_GetFwrd (CtCPtr ct, CStr str, StrlValPtr lenp);
Returns the value of the character found at the beginning of global string.

The lenptr is set to the length of the character.
See also

CT_GetBwrd, Ct.

GetBwrd

Returns the character code for the character found in front of a given index
in a string.

ChCode CT_GetBwrd (CtCPtr ct, CStr str, StrlVal pos, StrlValPtr lenp);

Returns the character code for the character found in front of a given index
in a global string. The lenptr is set to the length of the character.

The CT_GetBwrd macro can be called for any code type. For more
information, see Ct.

See also

CT_GetFwrd, Ct

Getinfo

Returns the CharlnfoVal for a character.

230 C Programmer’s Guide

Member Functions

CharlnfoVal CT_GetInfo (CtCPtr ct, ChCode ch);

Returns the CharlnfoVal for a character. For more information on
CharlnfoVal, see the Char class.

See also

CharlnfoVal, Ct

CvtChar
Converts a character and sets the result.

BoolEnum CT_CvtChar (CtCPtr ct, ChCode in, CharCvtSet flags, LQENVCPtr Igenv,
ChCodePtr out);

Converts a character to a character code in a given language environment.
Converts the character given by the character code in the language
environment specified, applies the flag, and sets the chcodeptr with the
result. If the Boolean return value is true, then the conversion is reversible,
otherwise it is irreversible. The flag options are:

CHAR CVT_DOWNCASE
CHAR_CVT_UPCASE

CHAR CVT_STRI PDI ACR
CHAR CVT_SPLI TDI GRAPHS

CHAR CVT_HI RAGANA (CS_JIS_0208 only)
CHAR CVT_KATAKANA (CS_JIS_0208 only)
CHAR CVT_PRECOVPOSE (CS_UNICODE only)
CHAR CVT_DECOVPOSE (CS_UNICODE only)
CHAR CVT_NOCOVPAT (CS_UNICODE only)

If the flag is NULL, the macro converts the character as completely as

possible. UNICODE conversion can be done by specifying UNICODE as the
codeset. If the character cannot be converted, chcodeptr is set to NULL. For
more information on flags and language environments, see the Char class.

If the Boolean return value is true, it indicates the conversion is reversible,
otherwise the conversion is irreversible.

See also

Ct, CT_CvtCtToCs, CT_CvtCsToCt

CvtCtToCs
Converts a character code from its code type form to its code set form.

CsCode CT_CvtCtToCs (CtCPtr ct, ChCode ch, CsPtr* cs);

Converts a code type character code to the code set character code and gets
a pointer to the code set structure of the character.

See also

CT_CvtCsToCt, Ct

C Programmer’s Guide 231

Chapter 17 ctciass

CvtCsToCt
Converts a character code from its code set form to its code type form.

ChCode CT_CvtCsToCt (CtCPtr ct, CsCode code, CsCPtr cs);
Converts a code set character code to the code type character code and sets

a pointer to the code set structure of the character.
See also

CT_CvtCtToCs, Ct

ToUni
Converts chcode to unicode.

BoolEnum CT_ToUni (CtCPtr ct, ChCode ch, UniCodePtr uni);
If the chcode cannot be converted to UNICODE it returns FALSE; otherwise,

TRUE.
FromUni
Converts unicode to chcode.

BoolEnum CT_FromUni (CtCPtr ct, UniCode uni, ChCodePtr ch);
If the UNICODE cannot be converted to chcode it returns FALSE; otherwise,

TRUE.
GetMaxCharLen
Returns the maximum character length supported by a code type.

StriVal CT_GetMaxCharlLen (CtCPtr ct);
CT_GetMaxCharLen returns the maximum character length supported by a

code type.
IsSingleOnly
Determines whether a code type defines single-byte characters only.

BoolEnum CT_IsSingleOnly (CtCPtr ct);
CT _IsSingle determines whether a code type supports single-byte
characters only. If the BoolEnum return value is TRUE, the code type
supports single-byte characters only. If the code type is not single-byte only,
the macro returns FALSE.

GetUpper
Returns the upper case form of a character.

ChCode CT_GetUpper (CtCPtr ct, ChCode chcode);
CT_Get Upper returns the upper case form of a character.

See also

CT_GetLower

232 C Programmer’s Guide

Member Functions

GetLower
Returns the lower case form of a character.

ChCode CT_GetLower (CtCPtr ct, ChCode chcode);
CT_GetLower returns the lower case form of a character.

See also

CT_GetUpper

C Programmer’s Guide 233

Chapter 17 ctciass

234 C Programmer’s Guide

Chapter

8 Ds Module

This module specifies the virtual Data Source.

Design Overview

A data source is an object that can be used as an intermediary between the
data itself and the different views on this data. The classes defined in this
module are pure virtual. A number of subclasses are described in other
modules.

Classes

The DataSource data structure is private. It is a subclass of Res.

Class

RClasPtr DS_Class(void);
Returns a pointer to the DataSource class.

View Interface

RegisterView

void DS_RegisterView(DsPtr ds, ResPtr view);
Register the resource view with the data source.

SetViewOption

void DS_SetViewOption(DsPtr ds, ResPtr view, CStr option, CStr info);
Set info as the option for the view registered in the data source.

GetViewOption

CStr DS_GetViewOption(DsCPtr ds, ResCPtr view, CStr option);

Returns the string corresponding to option for the view registered with the
data source.

UnregisterView

void DS_UnregisterView(DsPtr ds, ResPtr view);
Unregisters view from the data source.

C Programmer’s Guide 235

Chapter 18 Ds Module

ViewGetDs

DsPtr DS_ViewGetDs(ResPtr view);
Returns the data source, if any, associated to the view.

Edition Interface

DsEditCompletionEnum

Enumerated type describing the success of the edition.

Methods Description

DSEDI T_COVPLETI ONOK The edition was successfully completed
DSEDI T_COVPLETI ONFAI LED The edition failed for some reason
DSEDI T_COVPLETI ONPREEMPTED The edition was preempted

StartEdit

DsEditPtr DS_StartEdit(DsPtr ds);
Opens an edition on the whole data source. The operations are done
through the edition object returned by this call.

End

DsEditCompletionEnum DSEDIT_End(DsEditPtr dsEdit);
Commit the edition on the whole of the data source. The edition object is

destroyed and deleted.
Abort

void DSEDIT_Abort(DsEditPtr dsEdit);
Abort the edition on the data source. The edition object is destroyed and

delete.
AddOperation

DsEditOpPtr DSEDIT_AddOperation(DsEditPtr dsEdit);
Add an operation to the edition

SetOwner

void DSEDIT_SetOwner(DsEditPtr dsEdit, ResPtr owner);
Set owner of the edition. Results normally not re-propagated by to the
owner (useful for asynchronous updates to avoid confusion between
current view and current value).

GetOwner

ResPtr DSEDIT_GetOwner(DsEditPtr dsEdit);
Retrieve owner (if any) of the edition.

Default constructors and destructors for the base DsEdit and DsEditOp
classes.

236 C Programmer’s Guide

Update Interface

Update Interface

StartUpdateEdit

DsUpdateEditPtr DS_StartUpdateEdit(DsPtr ds);
Opens an update on the whole data source. The operations are done

through the edit object returned.
End

void DSUPDATEEDIT_End(DsUpdateEditPtr dsEdit);
Commit the update on the whole of the data source. The edit object is

destroyed and deleted.
Abort

void DSUPDATEEDIT_Abort(DsUpdateEditPtr dsEdit);
Abort the update on the data source. The edit object is destroyed and delete.

Contained/Container Data Source Interface

Data source can be contained in another. For example, a table data source
may decide to instantiate a value data source to allow manipulation of the
data in a particular cell of the table.

AddContDs

void DS_AddContDs(DsPtr ds, DsPtr contDs);
Adds contDs as a contained data source to the data source.

RemoveContDs

void DS_RemoveContDs(DsPtr ds, DsPtr contDs);
Removes contDs from the data source.

Creating and Disposing
Create

DsPtr DS_Create (RClasPtr rclas);
Creates a datasource object.

C Programmer’s Guide 237

Chapter 18 Ds Module

Class

Edition Operation
DsEditOpEnum

Methods
DSEDI T_OPENUM NHERI T

DsEditTypeEnum

Methods
DSEDI T_TYPEENUM NHERI T

DsEditStateEnum

Methods

DSEDI T_STATECLOSED
DSEDI T_STATEOPEN

DSEDI T_STATEPREEMPTED

Modifications Implementation
DsModsSetEnum

Methods
DS_MODSBI TSETI NHERI T

Data Source

Description
(DSEDITOP)

Description
(DSEDITTYPE)

Description

Description
(DSMODS)

extern "C" RClasPtr DsGetClass(void);

extern "C" void DsConstruct(ResPtr res, RClasCPtr rclas,

RClasCreateCPtr rCreate);

extern "C" void DsDestruct(ResPtr res);

238

C Programmer’s Guide

Chapter

19 Err Class

This class provides support for error handling and error reporting.

Overview

Open Interface uses an exception based error handling mechanism,
following the "disciplined exceptions” model descibed by B Meyer in Object
Oriented Software Construction (OOSC, pg 144).

Actually, error handling is only a part of a global programming philosophy.
The "disciplined exceptions” model can only be fully understood in the
context of the "contracting metaphor" described in detail in OOSC. The
reader is encouraged to read this difficult but enlightning book. The
fundamental idea of the "contracting metaphor” is that a contract is
associated with every routine that you write or that you use.

The contract states what the client of the routine (the caller) should
guarantee at the time he calls the routine (preconditions). It also states what
the implementer of the routine guarantees the routine will do
postconditions) in case it was called in acceptable conditions (with the
preconditions satisfied).

For example, the contract behind the strlen(char* str) function is:

Item Description
Precondi tions Str must be a valid zero terminated C string.
Post condi ti ons Strlen will return the length of str in bytes.

If you pass an invalid address (i.e. 0) to strlen, you violate the preconditions.
The key idea is that it is crucial to define precisely who is responsible for
what in a program, so that if anything goes wrong one can know who must
be blamed and fix the problem. Then, there are no half-successes,
half-failures which are so confusing, only successes (the contract has been
fulfilled) or failures (the contract could not be fulfilled).

Disciplined Exceptions

In this context, a failure (I prefer using "failure" than "error") is defined by
the fact that a routine cannot fullfill its contract, either because the caller did
not meet the preconditions or because the routine cannot meet the
postconditions (i.e. because it does an 1/0 operations which fails or because
there is a bug).

Failures are not reported through special return values (as is usual in C) but
by an out of band mechanism (exceptions). If a failure occurs in a routine,
the routine simply does not return, the execution continues elsewhere (in a
recovery clause of one of the calling routines, see later). As a result,
procedures should be declared with the void return type.

C Programmer’s Guide 239

Chapter 19 Errclass

In the "disciplined exceptions” scheme, a routine may handle failures in one
of two ways:

m Return to its caller without fullfulling its contract. If necessary, the
routine should clean up its state (restore the class invariant in OOSC
terms) before returning. The failure is propagated to the caller.

m Try to fullfill its contract by another mean. The error state will be

cleared and another path will be tried. If the retry is successful, the
caller won't notice that the routine had failed in the first place.

Error Handling And Reporting

240

The error handling class provides mechanisms to:

m Setup arecovery environment where the execution will resume in case
of failure.

Clear the error state and attempt a retry in a routine.
Generate (signal) a failure.
Report warning and failure messages to the user.

The error handling mechanisms (recovery, retry, signalling) are based on
the "disciplined exception" model, as described above. The error reporting
scheme is not described in OOSC. Reporting errors is is a complex issue
because failures are usually detected in low level routines which do not
know where to report the error (is it a windows based, terminal based, batch
application). Also, reporting only the low-level failure is usually
insufficient. The user also wants the know the high level context in which
the error occurred (it is not very interesting to know that an assertion of the
memory manager failed if we do not know in which context the memory
manager was being used).

This implies several things:

m We need a mechanism to keep context information in intermediate
procedures.

Error reporting must be initiated by the low level.

The "user-interface aware" high level needs a way to set-up the
procedure which will display the error.

m Reporting procedures may be nested. The most specific reporting
procedure (closest to the current procedure in the stack frame) will be
the one which reports the error or warning.

The idea is that the reporting procedure will be called from the low level. At
this time, all the context information is available. Our scheme also provides
"warnings" in addition to "failures”. When a failure occurs, the failure is
reported to the user and then the execution continues in the recovery clauses
of the routines which are on the stack until one routine attempts a retry.

On the other hand, warnings are reported to the user but then the execution
continues normally in the routine. With those mechanisms, we should also
be able to design "smart" warning procedures which gives several options
to the user:

m Abort operation (an exception will be generated), continue or continue
and discard subsequent warnings (in case the same warning keeps
being repeated).

C Programmer’s Guide

Overview

Entry/Exit Macros

Every procedure or function which uses error handling mechanisms should
start with an ERR_XIN macro (immediately after the declaration of the
automatic variables) and end with an ERR_XOUT (procedures) or
ERR_XRET (functions) macro.

void MODUL_Proc (Typel argl)

Type2 autovarl;

ERR XIN;

ERR_XOUT:

Where X is one of the following : TRACE, MSG(id), RECOV, RETRY.

Note: All the paths exiting from the routine must end with an ERR_XOUT
or ERR_XRET statement. You are not allowed to use a "return” in
such a routine, you should use ERR_XOUT or ERR_XRET instead.
Forgetting an ERR_XOUT or ERR_XRET clause on one of the paths
will confuse the error handling mechanism and generate a fatal error
if the DBG_ON compilation flag is set.

If you use these macros in a file, you must define a static char* variable
called S_ModuleName and initialize it to the name of the module to which
the source file belongs. This module name is used by the error reporting
procedure to generate traceback information or to load error messages.

You can use the ERR_INMODULE macro to define this variable. After the
#include directives at the top of the file, you should add the following
statement:

ERR_| NMODULE(" Modul ™)
where "Modul" is the name of the module. Which translates into:
static const char S_Mdul eNane[] = "Modul ";

Error Recovery

Retry

Every routine may have an error recovery label where execution will
resume in case there is a failure (in the routine or in a subroutine it called).
If you do not provide an error recovery label, the execution will resume in
the error recovery clause of one of the callers of your routine. All the
information which was on the stack of your routine at the time of the failure
will be lost.

Usually, you should use the recovery clause to put your program back in a
stable state. For example, you will release resources which had been
allocated by the routine or reset a global variable which had been
temporarily modified by your routine.

In some cases, your routine can retry to fullfill its contract by another way.
In such cases, you should use the ERR_RETRYIN/OUT/RET macros:

void MODUL_Proc (void)
I nt attenpts= 0;

ERR _RETRYI N,

MODUL_ReadFr onConnection();// mght fail

ERR_RETRYQUT; // success, execution will continue normally in
//caller.

err_catch:

C Programmer’s Guide 241

Chapter 19

Err Class

if (++attenpts <= 5) ERR RETRY;// will branch to ERR_RETRYI N
ERR_RETRYQUT;// failure will be propagated to caller.

Another use of the RETRY mechanism is to convert a routine which signals
its errors through the exception mechanism into a routine which returns a
status code (if you do not like our exception based error handling, you can
write a little wrapper around every API call in the following way):

Bool Enum MODUL_ProcWt hRet Status (voi d)

Bool Enum success = BOOL_TRUE;

ERR _RETRYI N;

if (success) MODUL_ProcWthExceptions();
ERR_RETRYRET(success);

err_catch:

success = BOOL_FALSE;
ERR_RETRY;

Note: This routine never fails!
Important: You should be careful and not put a function call in the
argument of ERR_CATCHRET and ERR_RETRYRET. The function
would be called after the error recovery environment has been
unlinked (see implementation of ERR_RET below). The following
code is incorrect because the error recovery will not resume at the
err_catch label of the current routine but in one of its callers.

ERR_CATCHI N;
ERR_CATCHRET(MyFunc(myarg));

The following code is correct:

M/ Type result;
ERR_CATCHI N,

result = MyFunc(nyarg);
ERR_CATCHRET(resul t);

Signalling A Failure

242

Above, we have described how to recover from failures. Now, how do we
signal a failure, for example if we notice some abnormal condition or if some
system call fails?

Three calls are provided to signal failures:
= ERR Fail

m ERR_FailStr and

m ERR_FailSilent

Item Description

ERR _Fai | Signals a failure. The error message will be loaded
from the "list of strings" resource called
Modul.Errors" where "Modul" is the first
argument passed to ERR_Fail (usually you pass
S_ModuleName, the name of the current module).
The second argument is the index of the message
in the list of strings" resource (from 0 to n-1 where
n is the number of messages in the resource. The
message may contain some printf formatting
directives (%d, %I, ...) in which case you pass
additional arguments.

ERR Fail Str Signals a failure. Instead of loading the error
message from a resource, the error message is
hard-coded and passed as firstargument. For now,
printf like formatting is not supported by that
routine.

C Programmer’s Guide

Overview

ERR Fail Si | ent Signals a failure silently (by disabling the error
reporting mechanism).

A typical use of ERR_Fail will be the following:

#defi ne MODUL_FAI LFI LEOPEN2

FI LE* MODUL_Fi | eOpen(char* nane)
FILE* file;

file = fopen(nane, "r");
if (file == NULL) ERR Fail ("Mdul ", MODUL_FAI LFI LEOPEN, nane);
return file;

The modul.rc resource file will contain the following resource definition:

StrL.Compile

Name Modul.Errors

Text: "error #0".

Text : "error #1".

Text : "cannot open file %s".
Text: "error #3".

WARNINGS

If you want to generate a warning, you can use one of the following calls:

Item Description

ERR_Warn Generates awarning. The warning message will be
loaded from the "list of strings" resource called
Modul.Warnings" where "Modul" is the first
argument passed to ERR_Warn (usually you pass
S_ModuleName, the name of the current module).
The second argument is the index of the message
in the list of strings" resource (from 0 to n-1 where
n is the number of messages in the resource. The
message may contain some printf formatting
directives (%d, %I, ...) in which case you pass
additional arguments.

ERR_WarnStr Generates a warning. Instead of loading the
message from a resource, the message is
hard-coded and passed as firstargument. For now,
printf like formatting is not supported by that
routine.

The major difference between warnings and failures is that execution will
continue normally after a warning instead of resuming in recovery code as
is the case with failures.

Fatal Errors

A fatal error is an error which will cause the program to terminate without
attempting any recovery. Usually, you should not use fatal errors but signal
failures instead to give a chance to continue. Fatal errors will be generated
internally by the error handler in case we are completely lost (error recovery
data corrupted, failure while recovering from a failure, ...).

But if you really want to terminate the program, you can use ERR_Fatal
which will terminate the program with a message and dump a core file on

C Programmer’s Guide 243

Error Contexts

244

Chapter 19 Errclass

UNIX or call ERR_EXxit which will display a message and terminate the
program. The message is hardcoded in this case because we do not want to
risk failing while loading the error message.

As mentioned previously, we want our error reporting to include high level
context information as well as a low level message describing the failure
detected at the low level.

The way to achieve this is to set up some "error context messages" in high
level procedures. If a failure is detected in a lower level routine, the
procedure which reports the failure can display the error message and can
also scan the "error contexts" which are active at that time and display the
"error context messages".

Usually, the error context messages begin with a present participe (an ing
form), for example: "loading ...", "opening ...", "compiling ..." whereas the
error message usually starts with "unexpected ..." or "cannot ...". Error
contexts should indicate the state the program is in, not a particular error or
abnormal condition. Then the whole error message (with contexts) will be

something like:

Item Description
ERROR Unexpected end of file.
Wi | e Reading file header loading file "myapp.dat"

initializing application.

The first message (unexpected end of file) is specified in the ERR_Fail call
which signalled the failure (probably in a low level call like FILE_Read).

The other messages have been set up at a higher level, for example in calls
like RLibReadHeader, RLIB_LoadFile, MYAPP_Init.

To set up an error context, you use the ERR_MSGIN/OUT/RET macros:

defi ne RLI B_MSGREADHEADERL

defi ne RLI B_MSG.OADFI LE3

voi d RLi bReadHeader (RLi bPtr rlib)
ERR_MSG N(RLI B_ MSGREADHEADER) ;

RLi bReadHeader code

FILE Read(...);

more RLibReadHeader code.

ERR_MSGOUT;

voi d RLI B _LoadFil e(char* fil enane)
RLi bPtr rli b;

ERR_MSG N(RLI B_MSGLOADFI LE) ;
ERR_SETOPTSTR(fi | enane) ;

RLI B_LoadFi | e code

RLi bReadHeader (rlib);

nore RLI B LoadFil e code
ERR_MSGOUT;

The message numbers (RLIB_MSGXXX codes) are indices in a resource
called "RLib.Messages". The rlib.rc resource file will contain the following
resource:

C Programmer’s Guide

Overview

Error Tracing

(StrL.Compile

Name RLib.Messages

Text : "message #0".

Text : "reading file header".
Text: "message #2".

Text : "loading file \"%s\"".

In the first case (RLibReadHeader), the message does not contain any
formatting directive. In the second case, the ERR_SETOPTSTR macro sets
up “filename' as the parameter of the formatting directive contained in the
message.

Three macros are currently provided for formatting context messages:

Item Description

ERR_SETOPTSTR Sets up a string parameter.

ERR_SETOPTVSTR Sets up a variable string (see vstrpub.h) parameter.
ERR_SETOPTI NT Sets up an integer parameter.

It is possible to implement other formatting directives by using the
FormatProc field of the error frame. This will be documented later in the
"advanced error reporting" section.

Note: Context messages are formatted at the time failures are reported, not
at the time the routine is entered, so there is very little overhead in
setting up context messages.

In debugging versions of your program, it may be interesting to get a
complete traceback of the execution stack in addition to the context
messages. Context messages are for the end user of your application, the
complete traceback will give the name of the source files and the line
numbers and is for the developper of the application.

If you use the ERR_TRACEIN/OUT/RET macros in all your routines, you
will get a complete traceback in case of failure. These macros are controlled
by the ERR_TRACEALL compilation flag. If ERR_TRACEALL is set, the
macros will turn into effective code and the traceback mechanism will be
fully operational. If this flag is not set, ERR_TRACEIN is a NOP and
ERR_TRACEOUT/RET become simple return statements. Then you get
optimal performance but you lose the traceback information.

We recommend that you turn on the ERR_TRACEALL compilation flag
when producing debugging and prerelease versions of your software. Once
you are confident in the stability of your software, you can turn that flag off
to get optimal performance.

Global Variables And Initialization

As a general rule, Open Interface does not define any global variables. The
error handling is the exception because we need a global variable for
performance reasons. This raises problems when software has to be

C Programmer’s Guide 245

246

Chapter 19 Errclass

packaged in DLLs on MS/Windows and OS/2 PM) because global variables
cannot be exported by DLLs.

So, instead of having one global variable for the whole application, we use
one global variable per linking unit. A linking unit is either a library DLL,
shareable image, shared library, object library) or the set of object files which
are linked with the “main’ routine but are not part of any library (on systems
which support DLLs or shared libraries, a linking unit is a set of files which
get linked together).

The error handling uses the ERR_LIB global variable. As each linking unit
must define its own global variable and we do not want to have multiply
defined symbols, ERR_LIB must be redefined in every C file so that all the
C files belonging to the same linking unit define ERR_LIB the same way
(and not the same way as C files belonging to other linking units).

This ERR_LIB redefinition must be done before including any Open
Interface header file.

So every C file using Open Interface headers should start as follows:
m Filesin linking unit MYLIB.

define ERR LIB MYLIB

i ncl ude <wgt pub. h>

/1 for exanple

m Files in linking unit MYAPP ("main’ linking unit).
defi ne ERR_LI B MYAPP

i ncl ude <errpub. h>

/1 for exanple

Note: If you forget to redefine ERR_LIB, errpub.h won't compile properly.
This error handling global variable must be declared and initialized once in
every linking unit. Usually, every library should have one initialization

entry point where you will initialize ERR_LIB. You will also need to
initialize ERR_LIB in your "main’ routine.

The following macros are provided to declare and initialize ERR_LIB:

Item Description

ERR_DECLARE Declares ERR_LIB.

ERR_LI BCREATEI NI T Allocates, and initializes ERR_LIB for a library.

ERR | SLI BCREATED IsBOOL_FALSE if ERR_LIB has not been allocated
for a library.

ERR MAININIT Initializes ERR_LIB for the ‘main' routine.

and also:

Item Description

ERR_EXTERN Special macro used by the Macintosh version to

allow precompiled headers.

ERR_LIBINIT isamacro that checks whether ERR_LIB for a library has been
allocated, and, if it has not, creates and initializes it by using

ERR_LIBCREATEINIT) and if it has, returns (using a return’ statement. It is
always very dangerous to hide a return statement in a macro which does not

C Programmer’s Guide

Overview

make it obvious. A better way would be to actually use the
ERR_ISLIBCREATED and ERR_LIBCREATEINIT macros.

A library initialization routine will look like:

ERR_DECLARE

void MYLIB Init()

i f (!ERR_| SLI BCREATED) ({
ERR _LI BCREATEI NI T;

Your “main' routine will look like:

ERR_DECLARE
i nt mai n(int argc, char**argv)
ERR_MAI NI NI T;

Note: If you are not using any error handling macro in your linking unit,
you do not need to use ERR_DECLARE and
ERR_LIBCREATEINIT/ERR_MAININIT

Advanced Error Reporting

This section will cover two topics:

m Formatting context messages (beyond what the ERR_SETOPTXXX
macros provide).

m Installing a custom error reporting procedure.
These topics will be documented later.

The only documented routines for now are:
m ERR_TraceBack() Outputs error traceback starting from the top error
frame for the current exception.

m ERR_FrameTraceBack(ErrFramePtr frame) Outputs error traceback
starting from the error frame specified by frame'.

Summary Of Error Handling And Reporting

To set up an error recovery label in a routine, use
ERR_CATCHIN/OUT/RET. If the routine attempts a retry, you should use
ERR_RETRYIN/OUT/RET instead.

The ERR_RETRY macro will clear the error state and branch at the
beginning of the routine.

m Tosignal a failure, use ERR_Fail, ERR_FailStr or ERR_FailSilent.

m To generate a warning, use ERR_Warn, ERR_WarnStr.

m To set up context messages, use ERR_MSGIN/OUT/RET. You can

parameterize context messages with the ERR_SETOPTSTR/VSTR/INT
macros.

m To set up traceback information, use ERR_TRACEIN/OUT/RET.

The error reporting messages are loaded from "list of string" resources see
the StrL module). Every module may define three "list of string" resources:

Item Description

Modul . Errors Messages associated with failures.
Modul . War ni ngs Messages associated with warnings.
Modul . Messages Context messages.

Where "Modul" is the name of the module.

C Programmer’s Guide 247

Chapter 19 Errclass

Note: Ifyou have an error recovery label in a function (not a procedure), the
value returned by ERR_CATCHRET(val) after the err_catch label will
be meaningless because the execution will not continue normally in
the caller) at that point. You should nevertheless use
ERR_CATCHRET rather than ERR_CATCHOUT to keep lint (and
some smart C compilers) happy.

The error recovery mechanism uses the setimp/longjmp calls, so you
should be careful about using “register' variables. Any variable which
may be modified in the body of the routine (before the err_catch
label) should be declared with the C_VOLATILE keyword so that the
compiler does not assign it to a register.

The (non documented) ERR_Signal procedure is called by ERR_Fail,
ERR_FailStr, ERR_Warn and ERR_WarnStr. When you are running
your application from a debugger, you are encouraged to set a
breakpoint on this procedure (ERR_Signal), so that you can examine
the contents of the stack and of your variables when a failure occurs.
You should also set a breakpoint on ERR_Fatal to trap fatal errors.

Reporting Errors for Calls to Third Party APIs

248

Certain of the modules in Open Interface provide a portable interface to
third party APIs, such as calls to the underlying operating system (eg. the
FILE and FMGR modules.) The contracting metaphor used by Open
Interface's error mechanism is not always appropriate for these interfaces,
because the underlying operating system call or third party product may
not have been designed with the contracting metaphor in mind. There are
two issues which are important here:

1. The contracting metaphor is inherently boolean in that the called
routine either fulfils its contract or it does not and fails. Certain third
party API calls fit this boolean model (eg. memory allocation), whereas
others do not (eg. file access) because they may return an error status for
a number of different reasons which may be of interest to the upper
levels of the software (for the forming of dialog boxes, determining a
retry mechanism, etc.)

2. Assertions should be used to indicate controllable programming errors
that reflect the underlying contract, eg. a pointer must be not be NULL,
a positive extent must be supplied for a buffer, etc. However if one of
the input parameters to a routine is derived from input typed by a user,
for instance from the contents of a text edit in a dialog box, then that
input is not under the control of the program. In such instances it might
be more appropriate to return that information to the caller instead of
asserting beacuse the system call failed.

For this reason for those API calls which interface to the operating system
or other third party product, and for which the contracting metaphor may
not be appropriate there are usually two versions of the call provided, one
of which aserts and another which does not but returns a boolean value
indicating whether or not the call succeeded. The calls usually take the same
arguments, with the asserting version being declared as void and the
non-asserting version being declared as BoolEnum, and the non-asserting
version takes the name of the asserting version and appends "Try" to the
beginning (eg. FILE_Open and FILE_TryOpen in the FILE module.) An

C Programmer’s Guide

Data Structures

error reporting structure is maintained by the ERR module which can be
used to store information about the call which failed. It is the responsibility
of the module which made the call to the routine which failed to write to this
structure, and the it is the responsibility of the caller of the module to check
this structure if an error has occurred.

The error reporting structure contains the following three fields:

Item Description

Code A enumeration of the error code, which is defined
by the module which writes to the structure ie.
there is one set of constants for module A, antother
set for module B, etc.).

SysCode The system specific error code.
FuncNane The name of the API call which returned an error
status.

An API call is provided, ERR_GetErrFuncCallPtr, to obtain a pointer to this

structure.

Data Structures

NDErrFuncCall
Item Description
Er r CodeVal Code;
Er r SysVal SysCode;
CStr FuncName;

GetErrFuncCallPtr

ErrFuncCallPtr ERR_GetErrFuncCallPtr (void)
Returns a pointer to the error reporting structure.

ErrFrame API for Error Reporting and Discrimination

FrameGetTop

ErrFramePtr ERR_FrameGetTop (void)

Returns topmost error frame.

This call is only valid inside catch blocks. The frame returned by this call
may be used to discriminate among exception types, or to report the
exception in a custom fashion.

FrameQueryMessage

void ERR_FrameQueryMessage (ErrFrameCPtr frame, Str buf, StrlVal size)

Formats the frame's end user message into “buf', not writing more than size'
characters.

C Programmer’s Guide 249

Chapter 19 Errclass

FrameQueryTraceback

void ERR_FrameQueryTraceback (ErrFrameCPtr frame, Str buf, StrlVal size)
Formats the frame's traceback message into “buf’, not writing more than

size' characters.
FrameQueryFullTraceback

void ERR_FrameQueryFullTraceback (ErrFrameCPtr frame, VStrPtr vstr)
Formats the full traceback message into “vstr'.

FrameSetReported

void ERR_FrameSetReported (void)
Marks the error frames to indicate that the error has been reported to the

user.
FramelsReported

BoolEnum ERR_FramelsReported (void)
Returns whether or not the error has already been reported to the user.

FrameReport

void ERR_FrameReport (ErrFrameCPtr frame)
Invokes the global error reporting routine.

FrameDefReport

void ERR_FrameDefReport (ErrFrameCPtr frame)
Invokes the default error reporting routine.

GetReportProc

ErrReportProc ERR_GetReportProc (void)
Returns the global error reporting procedure.

SetReportProc

void ERR_SetReportProc (ErrReportProc proc)
Overrides the global error reporting procedure.

ErrFrame Class

ErrFrame

Private stuff.

Item Description
ErrFranePtr Next

ErrJnpPtr Env

Bool Enum Failed; for propagate
Tr aceback CStr File

Er r Li neVal Line

250 C Programmer’s Guide

Macros

Cont ext
Errl dVal
Er r TypeVal

Handlers and Client Data.

Item

Er r For mat Pr oc
Err Report Proc
CientCprtr
ErrGol Ptr

Macros

Recovery and retry.

Item

ERR_CATCHI N
ERR_CATCHOUT
ERR_CATCHRET(val)
ERR RETRYI N
ERR_RETRYOUT
ERR_RETRYRET(val)
ERR RECOVER
ERR_RETRY
ERR_RECOVER_SI LENT
ERR_RETRY_SI LENT

Context Messages and Tracing

The context messages and

CStr Module
Id

Type

Description
FormatProc;
ReportProc;
ClientData;

ErrLib;

Description

Entry of routine with error cleanup code.
Exit of procedure with error cleanup code.
exit of function with error cleanup code.
Entry of routine with error retry code.
Exit of procedure with error retry code.
Exit of function with error retry code.
Recover directive. (will be documented later).
Retry directive.

Recover with no error reporting.

Retry with no error reporting.

tracing mechanisms can be turned off or on by

using the ERR_TRACEALL compilation flag. If ERR_TRACEALL is
defined, then the following macros will generate messages and tracing
information. If not, they won't do anything.

Item

ERR_| N(e00) ;
e00.1d =id

ERR_QUT(e00)
ERR_RET(e00, val)

C Programmer’s Guide

Description
Entry of routine with error context message

Exit of procedure with error context message
Exit of function with error co

251

Chapter 19 Errclass

Misc Macros For Error Reporting

Item Description

ERR_SETOPTI NT(val) Sets up an optional integer argument for error
reporting.

ERR_SETOPTSTR(str) Sets up an optional string argument for error
reporting.

ERR_SETOPTVSTR(Vvstr) Sets up an optional variable string argument for

error reporting.

SetReportPrint
SetReportSilent
Print

void ERR_SetReportPrint (ErrFramePtr errframe)
void ERR_SetReportSilent (ErrFramePtr errframe)
void ERR_Print (ErrFrameCPtr errframe)

Default REPORT procedures.

Do not install "Print' with ERR_SETREPORT, but use "SetReportPrint".
Print’ must not be directly installed but can be called from a normal report
procedure.

Format

void ERR_Format (ErrFrameCPtr errframe, Str str, StriVal len)
Default FORMAT procedure (used by ERR_Print).
Format' loads a message with ERR_MsgLoad and then calls the
user-defined format procedure (if any).

LoadMsg

void ERR_LoadMsg (ErrFrameCPtr errframe, Str str, StrlVal len)
Loading the error message from resource file.

ERR_LIB, ERR_EXTERN

ERR_LIB

Global variable for error handling. All the files which belong to the same
linking unit should define ERR_LIB the same way. ERR_LIB must be
defined BEFORE including any Open Interface header file.

MAC_HEADERS

Special macro to declare ERR_LIB, used in the case MAC_HEADERS is
defined, i.e. on Mac when using precompiled headers. ERR_EXTERN must
be in all your C files except the main module which has ERR_DECLARE
(See your Macintosh manual for more information on precompiled headers
with THINK C or MPW)

252 C Programmer’s Guide

Initialization Macros

Initialization Macros

Item Description

ERR_LI BDECLARE Declares global variable for error handling.
ERR | SLI BCREATED Has the library been created.

ERR_LI BCREATEI NI T Create and initialize the library.
ERR_MAININIT Initialization of error handling in “main’.

The following macro is preserved for compatibility purposes only.

Note: Is this still needed or can we just forget about the DS issues.

Fatal Errors

Fatal

void ERR_Fatal (CStr msg)
Exits with a message and produces a “core dump' (on UNIX).

Exit
void ERR_EXit (CStr msg)
Exits with a message.

Signaling Failures

Fail
void ERR_Fail (CStr modname, ErrldVal msgld, ...)

Generates a failure and displays the error message which is in
"“modname'.Errors" at index ‘msgld'. If the message contains conversion
specifications like "%d" or "%.2s"), the conversion will apply on the
additional arguments (it works like printf).

FailStr

void ERR_FailStr (CStr str, ...)
Generates a failure and displays “str' instead of loading a message from the

resource file).
FailSilent

void ERR_FailSilent (void)
Generates a 'silent' failure (without message).

FailAssert

void ERR_FailAssert (CStr cstr, CStr fileName, ErrLineVal line)
Use DBG_CHECK or ERR_CHECK instead.

C Programmer’s Guide 253

Chapter 19 Errclass

FailError

void ERR_FailError (CStr fileName, ErrLineVal line)
Use DBG_ERROR instead.

Generating Warnings

Warn

void ERR_Warn (CStr modname, ErrldVal msgld, ...)

Generates awarning and displays a warning message loaded from resource.
Conversion specifications, if any, will apply.

WarnStr

void ERR_WarnStr (CStr str, ...)

Generates a warning and displays “str' instead of loading a message from
the resource file).

Querying the Error State

InError

BoolEnum ERR_InError (void)

Returns whether we are currently executing error. Recovery code
(BOOL_TRUE) or whether we are executing normally (no failure signalled,
or last failure was cleared by a RETRY).

Assertions

Item Description

ERR_CHECK(t) Checks that <t> is true. If <t> is false, generates the
error message: assertion <t> failed file ... line ... "
This assertion is not controlled by the DBG_ON
compilation flag. Usually, you will use
DBG_CHECK rather than ERR_CHECK because
you want assertions to disappear in production
code. (See basepub.h for DBG_XXX macros).

ERR_CHECKSTR(t, str) Same as ERR_CHECK except that it generates the
message: assertion <str> failed file ... line This is to
be used in the special cases when <t> is too long to
fiton one line or if it contains a (). You should use
DBG_CHECKSTR instead.

ERR_ASSERT(1) Is a synonym for ERR_CHECK ifdef
DBG_NOCHECKSTR.

254 C Programmer’s Guide

Error Reporting

Error Reporting

TraceBack

void ERR_TraceBack (void)

Outputs error traceback starting from the top error frame for the current
exception.

FrameTraceBack

void ERR_FrameTraceBack (ErrFramePtr frame)
Outputs error traceback starting from the error frame specified by frame'.

Error Conditions Signaled by Error Module

The error module signals the following error conditions:

Item Description

WARNNI Y Not implemented yet warning (see DBG_NIY macro).

FAI LI NTR Failure generated when the program receives an interrupt
from the keyboard.

FAILQUIT Failure generated when the program receives a "quit' signal.

FAI LASSERT Failure generated when an assertion was not satisfied see
DBG_CHECK and ERR_CHECK macros).

FAI LERROR Failure generated by DBG_ERROR.

FAI LEXCEPTI ON Failure raised by an exception.

Exiting from the Application

ModExit

void ERR_ModEXxit (void)

Broadcasts an “exit” message to all modules. This is called implicitly when
the application is exited and need not be called.

UNIX Exception Handling

On UNIX, Open Interface installs signal handlers to catch system exceptions
such as bus error, floating point exceptions, ... The handlers are installed
during the initialization of the Open Interface libraries (usually GW_Liblnit)
from a static table describing which handler should be installed for which
signal. By default, Open Interface catches the following signals: INT, ILL,
FPE, SEGV, TERM, HUP, QUIT, TRAP, EMT, BUS, SYS, PIPE and ALRM. If
your program relies on signals, you may want to prevent Open Interface
from installing some signal handlers (typically SIGPIPE or SIGALRM). To
do so, you can query and modify the table of system handlers with the
following calls.

C Programmer’s Guide 255

Chapter 19 Errclass

SysExceptProc

void ERR_SysExceptProc (ErrSigVal);
Data type for UNIX exception handler.

SetSysExceptHandler

void ERR_SetSysExceptHandler (ErrSigVal sig, ErrSysExceptProc proc)

Records “proc' as the signal handler for signal “sig' in Open Interface's
exception handler table. You can pass 0 as “proc' to prevent Open Interface
from trapping signal “sig'. This call may be called before initializing the
Open Interface libraries.

GetSysExceptHandler

ErrSysExceptProc ERR_GetSysExceptHandler (ErrSigVal sig)

Returns the signal handler for signal “sig' currently installed in Open
Interface's exception handler table. This call may be called before initializing
the Open Interface libraries.

SysException

void ERR_SysException (ErrSigVal sig)

Default exception handler installed by Open Interface. You may call this
procedure from your own signal handler. This procedure reinstalls the
exception handler through a call to the “signal’ system call and then triggers
the Open Interface exception mechanism (ERR_CATCHXXX,
ERR_RETRYXXX directives, see above).

Note: This call does not return to its caller. The exception handler which is
reinstalled by this call is the handler in Ol's exception handler table,
so you need to modify Ol's table through “SetSysExceptHandler" if
you want your custom handler to be reinstalled correctly.

W16 Exceptions Handling

Under W16 API, only one interrupt handler per application can be
registered by calling InterruptRegister(). By default, Open Interface always
registers a native interrupt handler to trap the error signals such as GP Fault,
divided by zero, and etc.. Open interface will un-register installed handler
when program terminated.

For any reason, user can use the following function to disable or enable this
interrupt registration mechanism.

Item Description

ERR_MswRegi st er I nt errupt (bool) Enable/Disable the native
interrupt registration
mechanism and set default
action for ERR_LIBINIT,
ERR_MAININIT.

ERR_MswRegi st er I nt errupt Onl ni t (bool) Set default action for
ERR_LIBINIT, ERR_MAININIT.

256 C Programmer’s Guide

Mac Exceptions Handling

MswRegisterinterrupt

void ERR_MswRegisterinterrupt (BoolEnum bool)

Enable/Disable the ND native interrupt mechanism according to bool'. Also
calls ERR_MswRegisterinterruptOnlinit(bool) to set the default action of
ERR_LIBINIT, ERR_MAININIT.

It can be called at any time to enable/disable the ND native interrupt
mechanism.

If itis called before the Error module initialization, i.e. before ERR_LIBINIT
or ERR_MAININIT it will determine whether the initialization installs the
ND native interrupt handler.

MswisInterruptRegistered

BoolEnum ERR_MswilsinterruptRegistered (void)

Return BOOL_TRUE if a ND native interrupt handler is registered.

MswRegisterInterruptOninit

void ERR_MswRegisterinterruptOnlnit (BoolEnum bool)

If "bool' is set to BOOL_FALSE the ND native interrupt handler will be not
be enabled by ERR_LIBINIT or ERR_MAININIT. The default setting is
BOOL_TRUE. It must be called before the Error module initialization, i.e.
before ERR_LIBINIT or ERR_MAININIT.

Mac Exceptions Handling

NoMacSignals

Open Interface installs low level error handlers to recover from 680X0
exceptions such as bus error, address error or illegal instruction. If, for some
reason, you want to prevent this in your application you need to call
"NoMacSignals'() at the very beginning of your main() routine. The current
exception handlers are restored when the application quits or is switched to
the background).

void ERR_NoMacSignals (void)

Disables the low level signal mechanism. It must be called before the Error
module initialization, i.e. before ERR_LIBINIT or ERR_MAININIT.

C Programmer’s Guide 257

Chapter 19 Errclass

258 C Programmer’s Guide

Chapter

O File Class

This class provides a portable File /0 API.

Technical Summary

File management and file 1/0 is a rather complex issue. The main
differences between operating systems are the following:

Fil e nanes: Different syntaxes.

Text files: Special record-oriented format on some systems (mainframes).
Different ‘newline’ delimiters.

File Creator and type signatures on the Macintosh.
attributes:

The File API provides the following services:

Checking the existence and attributes (owner, access mode) of files.
Opening (or creating) and closing files.

Reading/writing data from/to a file (binary and text files).

Seek and tell operations.

Filename conversions.

Reading directories.

This class provides a portable API to open a text file or a binary file and
perform 1/0 operations (i.e. Read and Write) on files.

This class is built on top of the FName and FMgr classes. File names are
automatically converted to native syntax if necessary. Use FName if you
need more advanced file name conversions. Use FMgr for advanced queries
and modifications on the file manager.

Quick Overview of Various File 1/0 Packages

The various systems have several differences, especially with text files and
with record-oriented files, making generic file /0 a complex issue. The
following table summarizes some of the differences between systems:

File System Comments

Uni x On Unix, everything is simple: all files are unstructured. If
the file contains text, the lines are separated by a \n character
in the byte stream.

Maci nt osh On the Macintosh, files have some additional attributes
(Type, Creator, Volld). Files are unstructured but lines are
separated by a \r character in the text files.

DOS, OS/ 2, NT On the PC, files are also unstructured. In text files, lines are
separated by a \r\n on the disk but the C runtime library
allows you optionally to open the file in TEXT mode, in which
case the C RTL maps \r\n into \n on reads and \n into \r\n
on writes.

C Programmer’s Guide 259

260

Chapter 20 File class

VNVS On VMS, RMS supports many file organizations and record
attributes, but everything behaves as on UNIX if the file is
converted to Stream_LF, which is the recommended format
for binary files. The normal native format for text files is
record-oriented, but Stream_LF is also accepted by most
native text editors as long as the lines are not too long (less
than 512 characters). In record-oriented files, records can be
fixed size or variable size.

| BM Mai nf rane On the mainframe, a large number of formats are supported,
including a flat format for binary files. The native
representation for text files is record-oriented (i.e.
line-oriented). The SAS/C RTL includes four libraries: First,
a Unix-like 170 library (open, read, write, Iseek, etc.). This
library is compliant to Unix specifications, but is very
inefficient (each file is entirely copied to a large memory
buffer where all the 170 operations are then performed).
Second, a Standard 1/0 library (fopen, fread, fwrite, etc.).
This library is efficient but does not fully comply to the ANSI
standard. Third, an ‘Augmented Standard 170’ library
(afopen, afread, afwrite, etc.) which is a supplement to the
Standard I/0 library to support features which are not
supported by ANSI standard (like record-oriented 1/0). And
finally, a very complete and very efficient native 1/0 library.
This library is non-portable.

Tandem Text files are also special record-oriented files.
Mai nf r anes

Overview of Open Interface File I/0

Open Interface File 170 is very similar to that provided by the Standard
(ANSI) 170 library. It actually extends its functionality to address some of
the portability issues. Here is a summary of the features of Open Interface
File 170:

Record-oriented file I/O: This is particularly important because it is the
native representation of text files on VMS and CMS and it is not supported
by the ANSI library. A typical CMS application will have to use afopen,
afread, afreadh, etc. instead of fopen, fread, etc.

Text files with incomplete last line: This occurs very frequently on Unix
because, with some text editors (gnu-emacs for instance), it is possible to
save a text file which does not end with a final \n. The problem is that other
applications (compilers, other text editors, SCCS, ftp, etc.) will complain or
will fail when reading such a file. A well-behaved application should not
complain but should always save the file with a line terminator at the end of
the file. This is handled automatically if a file is opened in Open Interface’s
FILE_FMTLINE format.

Better specifications: In the ANSI specifications, the opening flags for fopen
are confusing and incomplete. The POSIX standard committee actually had
to introduce a new ‘fdopen’ call which tries to provide modes not covered
by fopen.

Performance: The VMS implementation of the Standard ANSI library can
be inefficient. A typical VMS or CMS application might use instead
system-specific calls, and maybe use some tricks like preloading files in the
global section.

Macintosh signatures: This class supports Macintosh Creator and Type
signatures. It also supports file names which contain Volumes (i.e. logical

C Programmer’s Guide

Technical Summary

disk). Thisis not supported by the ANSI library. A typical Mac application
will have to use FSOpen, FSRead, etc. instead of fopen, fread, etc.

PC limitations: This class removes an important limitation on PC where
fread and fwrite are limited to a buffer of 32k bytes. In this class,
FILE_ReadNBytes and FILE_WriteNBtyes are limited to MAXINT32.

Search paths: A search path is a list of directories the application should
look through when trying to open afile which is not in the current directory.
This feature is available on DOS but requires using DOSFileOpen instead of
fopen. This feature is not usually available on any other system.

File name conversion: File names are automatically converted to the
appropriate syntax if they are specified in a foreign syntax (for instance,
DOS file names are converted to Unix names when running on Unix).

If some native features are still not covered by this API (for instance,
opening a file in Shared access on the Macintosh), it is still possible to
retrieve the native file descriptor and call the native API directly. Beware
that such calls might not be portable and should be clearly identified, and if
possible isolated in one central place in your code.

General Principles for the File API

FilePtr: Most API calls in this File class take a FilePtr as their first argument.
A FilePtr is a pointer to a private FileRec structure which is similar to a FILE
structure (usually defined in stdio.h) and which serves as an handle to the
actual system file. Several FilePtrs could point to the same system file,
although this is not recommended.

Checking existence and access rights: Once a FilePtr has been created (with
FILE_New), you can either check that the corresponding system file actually
exists (with FILE_Find) and that it has the appropriate access rights (with
FILE_GetAccess), before actually trying to open the file, or you can try to
open the file directly (with FILE_Open or FILE_TryOpen).

Opening modes: FILE_Open takes two extra parameters: a FilelOEnum
and aFileFmtEnum. The FilelOEnum modes control the Read-Write access.
They are the same as the mode argument of fopen (READ, WRITE,
APPEND, etc.). The FileFmtEnum mode specifies the expected format of
the file. This can be one of the following three formats: The firstis BINARY
format, in which files are read and written exactly as they appear in the
physical storage device, without any conversion. The next is TEXT format,
in which line separators (\n on Unix, \r on Mac, \r\n on PC, separate
records on IBM Mainframes, Tandem and VMS) are automatically
translated into a unique and a portable representation which is"\n'. The last
is LINE format. The TEXT format can be very inefficient on some systems,
so Open Interface introduces this line-oriented file 1/0.

Read/Write: The API for Read and Write operations is completely different
depending on the file format: In Binary and Text format, the API is very
similar to the standard ANSI routines (although the implementation might
use machine-specific calls). In Line format, FILE_ReadLine and
FILE_WriteLine are slightly different from the standard gets and puts.

Seek/Tell: Here also the API is completely different depending on the file
format: In Binary format, the current position is a numeric offset and can be
set arbitrarily. In Text format, it is only possible to set the position to a place

C Programmer’s Guide 261

262

Chapter 20 File class

which has already been visited. The current position is not kept as a
numeric offset (because of the line terminators). In Line format, the current
position is always at the beginning of a line. The file system may also
support special files (like FIFO, pipes, terminal on Unix) in which it is not
possible at all to change the current position.

Examples of Using this API

Open a binary file “data” and read 200 bytes starting at offset 300:

{
FilePtr file = FILE_New("data");
Byte buf[200];

FILE Open(file, FILE | OREAD, FILE_FMIBI NARY);
FI LE_SeekBi naryTo(file, 300);
FI LE_ReadNBt yes(file, buf, 200);
FI LE_Cl ose(file);
FI LE_Di spose(file);
}

Open atextfile “myapp.rc”, or “defaults.rc” if myapp.rc does not exist, then
print all the lines which start with “Definition™:

{
FilePtr file = FILE New"data");

Byt e buf [200] ;

FILE Open(file, FILE | OREAD, FILE_FMIBI NARY);
FI LE_SeekBi naryTo(file, 300);
FI LE_ReadNBtyes(file, buf, 200);
FI LE_Cl ose(file);
FI LE_Di spose(file);
}

Open a text file in READWRITE mode if possible, or in READ mode if it is
read-only, or create the file if it does not exist.

{
if (FILE_Find(file)) {
if (FILE_IsWitable(file)) {
FI LE Backup(file);
FI LE_(pen(file, FILE_|I OREADWRI TE,
FI LE_FMITEXT) ;
} else
FI LE_Open(file, FILE_I OREAD,
FI LE_FMITEXT) ;

}
} else {
FMgr Cr eat eFi | eRec i nfo;
i nfo. Access = FMGR_ACCESSDEFAULTS;
i nfo. Macl ds. Creat or = FMGR_MACCREATORO T;
i nfo. Macl ds. Type = FMER_MACTYPETEXT;
FILE CreateQpen(file, & nfo, FILE FMITEXT);
}
}
Summary

The File class does the actual opening, reading, writing, and closing of files
— the manipulation of data within a file. It uses the FMgr class for
performing operations on files as a whole — copying them, moving them,
setting file attributes, etc., and it uses the FName class to do string
manipulation when converting file names between the syntax of the various
systems.

C Programmer’s Guide

Data Structures

See also

FName class and FMgr class.

Data Structures

FilePtr

FileLinePosPtr
FileLinePosRec

FileNatRefPtr
FileNatRefRec

FileOffsetVal

Pointer to the private structure that stores information for performing file
1/0.

FilePtr is a pointer to a file object. The file data structure is kept private, but
some fields can be accessed indirectly through the API.
See also

FILE_New, FILE_Dispose

Position type for files opened in line format mode.

FileLinePosRec is the position type for files opened in line format mode.
The NatPos is a machine-specific opaque type. LineNumber is the current
line number. The first line of the file is line 0. This type is only used for files
opened in FILE_ FMTLINE mode.

See also

FILE_CurLineNumber, FILE_QueryLinePos, FILE_SetLinePos

The structure for storing native representation of a file handle and/or file
pointer.

FileNatRefRec is the structure for storing the native representation of a file
handle and/or file pointer. On ANSI systems, the FilelD == fileno
(StdioFile).

See also

FILE_QueryNatRef, FILE_SetNatRef

Data type for storing file size and offset values.

FileOffsetV