
   
Neuron Data Elements Environment
V e r s i o n  2 . 1

Getting Started



 

© Copyright 1986 - 1997, Neuron Data, Inc.  All Rights Reserved.

This software and documentation is subject to and made available only pursuant to the 
terms of the Neuron Data License Agreement and may be used or copied only in 
accordance with the terms of that agreement.  It is against the law to copy the software 
except as specifically allowed in the agreement.  This document may not, in whole or in 
part, be copied photocopied, reproduced, translated, or reduced to any electronic 
medium or machine readable form without prior consent, in writing, from Neuron 
Data, Inc.

Use, duplication  or disclosure by the U.S. Government is subject to restrictions set forth 
in the Neuron Data License Agreement and in subparagraph (c)(1) of the Commercial 
Computer Software-Restricted Rights Clause at FAR 52.227-19; subparagraph (c)(1)(ii) 
of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, 
subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA 
FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent 
a commitment on the part of Neuron Data.  THE SOFTWARE AND 
DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY 
KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.  FURTHER, 
NEURON DATA DOES NOT WARRANT, GUARANTEE, OR MAKE ANY 
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF 
THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, 
ACCURACY, RELIABILITY, OR OTHERWISE.

Open Interface Element™, Data Access Element™, Intelligent Rules Element™, and 
Web Element™ are trademarks of and are developed and licensed by NEURON DATA, 
INC., Mountain View, California.  NEXPERT OBJECT® and NEXPERT® are registered 
trademarks of and are developed and licensed by NEURON DATA, INC., Mountain 
View, California.

Other brand or product names are the trademarks or registered trademarks of their 
respective holders.



        
Contents 1

1. The Elements Environment
About the Elements..................................................................................................................1
New Features and Enhancements in the Elements Environment 2.0...............................2

New Features and Enhancements to the Open Interface Element ...........................2
New Features for the Intelligent Rules Element (NEXPERT) ....................................3
New Features for the Data Access Element .................................................................3
Unicode and Multibyte Support ....................................................................................3
Improvements to the OOScript Language ...................................................................3
Improvements to the Development Environment ......................................................4
Improvements to the C++ API .......................................................................................4

New Features and Enhancements in the Elements Environment 2.1...............................4
Improvements to OOScript ............................................................................................4
Improvements to Datasource/Views in the Data Access Element ...........................4
Integration with Third-Party Application-Development Software ..........................5

Installation.................................................................................................................................5
For More Information about Installation ......................................................................5

Technical Support ....................................................................................................................6
The NDDN Technical Support Web Page ....................................................................6

2. The Open Interface Element
About the Software-Development Process...........................................................................7
About Resources.......................................................................................................................7
Quick Tour ................................................................................................................................9
Task1: Creating a User Interface ............................................................................................9

To Design a New Window ...........................................................................................10
About the Window Editor ............................................................................................12
To Place Widgets in Your Window .............................................................................15

About the Resource Browser Window................................................................................16
Task 2: Creating an Application-Startup Module .............................................................17
Task 3: Writing OOScript Application Logic .....................................................................20

Using Callbacks ..............................................................................................................20
Using Event-Handler Scripts ........................................................................................22

Task 4: Test and Run the Script-based Application ..........................................................23
Alternate Ways of Running a Script ............................................................................24

To Edit Existing Applications...............................................................................................24
Getting Started i



 

Contents

       
Task 5: Deploying and Porting Applications .................................................................... 24
For More Information about the Open Interface Element............................................... 26

3. The Data Access Element
The Data Access Element and OOScript............................................................................ 28
Quick Tour.............................................................................................................................. 28

Generic Data-Access Objects ....................................................................................... 28
DBVu Resource .............................................................................................................. 28
Object API ....................................................................................................................... 29

For More Information about the Data Access Element.................................................... 29
Related Subjects ............................................................................................................. 29

4. The Intelligent Rules Element
Reasoning System.................................................................................................................. 31

Rule Dynamics ............................................................................................................... 32
Integration ...................................................................................................................... 37
Open Architecture ......................................................................................................... 38

Object-oriented System......................................................................................................... 39
Object Structure ............................................................................................................. 39
Pattern Matching ........................................................................................................... 43
System Methods ............................................................................................................ 44
User-defined Methods .................................................................................................. 45

Graphical User Interface Dynamics.................................................................................... 46
Interaction from the Intelligent Rules Element to the GUI ..................................... 46
Interaction from the GUI to the Intelligent Rules Element ..................................... 47

Building Applications........................................................................................................... 48
Starting the Intelligent Rules Element ........................................................................ 49
The Main Window ........................................................................................................ 49
Displaying Popup Menus ............................................................................................ 50
Entering Text .................................................................................................................. 52
Rule Editor ..................................................................................................................... 52
Object Editor .................................................................................................................. 55

Viewing Rules and Objects .................................................................................................. 58
List Windows ................................................................................................................. 58
Rule Network ................................................................................................................. 60
Object Network .............................................................................................................. 63

Processing the Application .................................................................................................. 66
Using Hypotheses ......................................................................................................... 68
Using Data ...................................................................................................................... 75

For More Information about the Intelligent Rules Element............................................ 79
ii Getting Started



            
5. OLE Automation and OOScript
Object-Model Interoperability..............................................................................................81
OOScript ..................................................................................................................................81
For More Information about OLE Automation and OOScript ........................................82

Related Subjects ..............................................................................................................82

6. The Web Element
For More Information about the Web Element..................................................................83

7. The Distributed Messaging Element
Components of the Distributed Messaging Element ................................................85
The Distributed Messaging Element and Other Distributed Systems ...................86
The Distributed Messaging Element Applications ...................................................86

Concepts of the Distributed Messaging Element ..............................................................87
Portability ........................................................................................................................87
Data-centered Processing ..............................................................................................87
Data Object and Structure .............................................................................................87
Routers and Fully Connected Networks ....................................................................88
Data Distribution ............................................................................................................89
Event-driven Programming .........................................................................................90
Interactions with Applications .....................................................................................90
Resource Files .................................................................................................................91
Standard Object Library ................................................................................................91

For More Information about the Distributed Messaging Element .................................91

8. The Elements Application Services
Datasource/Views .................................................................................................................93

Internationalization .......................................................................................................94
For More Information about the Elements Application Services....................................94

9. C++ Programming in the Elements Environment
General Architecture..............................................................................................................95

Resource Classes ............................................................................................................96
Utility Classes .................................................................................................................96
Constructors and Destructors ......................................................................................97
Encapsulation .................................................................................................................98

Customization.........................................................................................................................98
Class-Level Customization ...........................................................................................99
Instance-Level Customization ......................................................................................99

Subclassing in C++...............................................................................................................101
Subclassing from NDRes Subclasses .........................................................................101
Getting Started iii



 

Contents

         
Defining a C++ Subclass in the Elements Environment ........................................ 103
Registering a C++ Subclass in the Resource Manager ........................................... 104

Generic Container Classes.................................................................................................. 105
Code Generation .......................................................................................................... 106
Separating Source Code and Header Files .............................................................. 107
Creating Custom Classes ........................................................................................... 108

Code Regeneration .............................................................................................................. 109
Limitations............................................................................................................................ 109

Implementation Notes for Current C Users ............................................................ 110
Using Custom Constructors and Destructors ................................................................. 112

Defining Default Constructors with RCLAS_CPLUSFULL .................................. 112
Defining Custom Constructors ................................................................................. 114

C++ Exception Handling.................................................................................................... 114
For More Information about the C++ API ....................................................................... 116

10. Building Applications in the Elements Environment
Configuring the Elements Environment .......................................................................... 117

Default Configuration ................................................................................................ 118
Compiler-Flag Options ............................................................................................... 120
Running the Elements Environment Examples ...................................................... 123
Building Applications ................................................................................................. 125
Using Makefiles ........................................................................................................... 125

11. Porting and Deploying  Applications in the Elements Environment
Porting a C or C++ Application across Platforms .......................................................... 128
Porting a Script Application across Platforms ................................................................ 129
Deploying Applications...................................................................................................... 129

Deploying a C or C++ Application ........................................................................... 130
Deploying a Script Application......................................................................................... 131

12. Localizing Applications in the Elements Environment
Translating Resources with the Resource Compiler ...................................................... 134

Task 1: Generating the Text Resource File for the .dat Libraries ......................... 135
Task 2: Generating a Skeleton Dictionary ................................................................ 135
Task 3: Editing the Dictionary ................................................................................... 135
Task 4: Creating the Localized .dat Files ................................................................. 136
Task 5: Checking Your Application .......................................................................... 136
Task 6: Changing the Date and Time Formatting .................................................. 136

Enabling the Input Methods for Multibyte Characters ................................................. 137
Enabling the Canna Input Method ........................................................................... 137
Enabling the XIM ........................................................................................................ 137
iv Getting Started



       
Fonts and Font-Family Resources......................................................................................138
Font-Family Resources ................................................................................................139

Key Concepts for Multibyte Characters and Strings ......................................................140
Code Sets .......................................................................................................................140
Code Mapping ..............................................................................................................141
Code Types ...................................................................................................................142
Fully Supported and Tested Code Types .................................................................142
Untested Code Types ..................................................................................................143

Key Character and String Types ........................................................................................145
Character Type Definitions .........................................................................................145
4-Byte Character Format .............................................................................................145
Basic String types .........................................................................................................146
Environment Variables and Flags .............................................................................146

Character APIs in the Elements Environment .................................................................147
String APIs in the Elements Environment........................................................................149
Variable-String APIs in the Elements Environment .......................................................152
Using Code Sets and Code Types ......................................................................................153
About Unicode......................................................................................................................154

Using Unicode ..............................................................................................................155
Specifying Code Types for Unicode ..........................................................................158
Limitations ....................................................................................................................162
Examples .......................................................................................................................162
Code Types for Unicode Conversion ........................................................................163
Unicode Font Mapping ...............................................................................................164

For More Information about the APIs...............................................................................166

A. PVCS Integration with the Elements Environment 2.1
Requirements for Using Level 1 PVCS Integration with the Elements Environment 

168
PVCS Features Supported in Level 1 Integration ....................................................168
PVCS Features Not Supported in Level 1 Integration ............................................168
PVCS Integration Tests ................................................................................................169

Setting Up the PVCS Integration Environment ...............................................................169
Accessing Integrated PVCS Options .................................................................................169
Configuring the Elements Environment for PVCS .........................................................170
Checking Out Files...............................................................................................................170
Checking In Files ..................................................................................................................172
Generating Reports ..............................................................................................................174
Deleting Revisions................................................................................................................175

Index .............................................................................................................................................177
Getting Started v



 

Contents

  
vi Getting Started



   

Chapter

                                     
1 The Elements Environment 1

About the Elements

The Elements Environment (EE) is a suite of cross-platform tools for quickly 
building complex, object-based applications for today’s rapidly changing 
organizations.

This product overview gives you general information about the product and 
points you to other information you need for developing your Elements 
Environment applications. The chapters that follow provide overviews of 
these items and pointers to the documentation for them.

These are the Neuron Data Elements and supporting services:
■ The Open Interface Element (OIE) provides a window-based environment 

for building graphical user interfaces (GUIs). This Element allows 
developers to build portable user interfaces that are independent of the 
windowing environment and operating system.

■ The Data Access Element (DAE) provides the front-end to independent 
data sources including flat files, relational databases, and data in 
spreadsheets and other applications.

■ The Intelligent Rules Element (IRE) lets you capture data models and 
business logic as visually accessible entities that dynamically reflect 
changes in the organizational environment.

■ OOScript is a simple, high-performance, object-aware scripting 
language that lets you create robust applications using all of the 
Elements with seamless interoperability.

■ The Web Element (WE) provides an embeddable World Wide Web 
browser and Web-link navigation for building business-critical 
applications for Intranets.

■ The Distributed Messaging Element (DME) provides a mechanism that 
allows you to partition and to dynamically configure and reconfigure 
your application components across various platforms, operating 
systems, and networking environments.

■ The Elements Application Services (EAS) are the common set of core 
services that ensure a unified development environment. Elements 
Application Services include low-level services such as file 
input/output (I/O) and internationalization, plus higher-level 
application-development services, such as datasource/views.
Getting Started 1



 

Chapter

 

The Elements Environment

   

1

                           
■ Support for true object interoperability in the Elements Environment 
through the OOScript language.

■ Support for C/C++ interfaces that let you automatically generate C and 
C++ for application code and class definitions.

New Features and Enhancements in the Elements Environment 2.0

The Elements Environment 2.0 incorporates former Neuron Data 
development tools into a cohesive suite of integrated elements, including:
■ The Open Interface Element (OIE)
■ The Data Access Element (DAE)
■ The Intelligent Rules Element (IRE)

The 2.0 release adds new features and enhancements of existing features to 
these Elements.

In addition, two new Elements have been added to the development suite:
■ The Web Element (WE)
■ The Distributed Messaging Element (DME)

Upgrading existing applications developed with older Neuron Data 
products to the Elements Environment 2.0 enables you to take advantage of 
the new features and enhancements. In addition, migrating to the Elements 
Environment 2.0 now will ease the transition to future releases of the 
Elements Environment.

New Features and Enhancements to the Open Interface Element
■ Support for the native environment on Windows 3.11, Windows 95, and 

Windows NT, including:
– native drag and drop
– native menu manager
– underlying native window widget
– native Clipboard

Note: The Open Interface 3.x used emulation of these GUI elements.

These improvements result in:
– better performance
– less memory overhead
– better desktop integration

■ New widgets for all supported platforms, including:
– treeview widget
2 Getting Started



   

New Features and Enhancements in the Elements Environment 2.0

                                     
– notebook widget
– toolbar widget
– tooltips (context-sensitive Help) for all widgets

■ Support for the native environment on the Macintosh, including:
– native Clipboard
– native balloon help

■ Long filenames (255 characters)
■ UNC pathnames
■ Setup guidelines
■ Registered icons
■ Compliance with Windows 95

New Features for the Intelligent Rules Element (NEXPERT)
■ Enhancements to tools that allow you to:

– build knowledge bases/expert systems and logic rules within a 
graphically object-oriented environment

– have “smart” access to data through an inference-driven engine
– encapsulate data models with business logic

■ Support for a context-switch API
■ A new Edit API

New Features for the Data Access Element
■ Concurrent support for multiple databases within an application
■ An array fetch for the Oracle driver
■ Linking of multiple views to a single datasource
■ Dynamic updating of editing changes to a single view with other linked 

views

Unicode and Multibyte Support
■ All of the Elements Environment products now support Unicode and 

native multibyte for Japanese and Korean. (Each locale is licensed 
separately.)

Improvements to the OOScript Language
■ Quick access to object classes and scripts through improved browsing 

and navigation
■ Support for object interoperability, which allows you to integrate 

OOScript modules with other modules through such industry 
standards as CORBA and OLE
Getting Started 3



 

Chapter

 

The Elements Environment

   

1

                                            
■ Support for callback procedures, functions, and arrays

Improvements to the Development Environment
■ You can now regenerate C++ code from the Resource Browser.
■ You can customize code generation and regeneration.
■ Documentation is now available online through Adobe Acrobat with an 

indexing search engine. 

Improvements to the C++ API
■ Full C++ classes for all Elements (except the Data Messaging Element)
■ Support for the Intelligent Rules Element C++ classes
■ Support for C++ exception handling (try/catch/throw)

New Features and Enhancements in the Elements Environment 2.1

The Elements Environment 2.1 release adds additional components and 
improvements to existing components, including:
■ Improvements to OOScript
■ Improvements to datasource/views in the Data Access Element
■ Integration with third-party application-development software
■ Support for character-based interfaces

Improvements to OOScript
■ Support in the Distributed Messaging Element for a publish- 

and-subscribe interface
■ Support in the Distributed Messaging Element for routing of serialized 

string messages to complex data, including to all Open Interface 
datasources

■ Custom routing protocols in the Distributed Messaging Element that let 
you optimize broadcast objects to support two-tier, three-tier, and n-tier 
client-server application architectures

■ Object support for datasource/views in the diagrammer, browser, and 
treeview widgets

■ New code-template editor that lets you create and save custom 
templates for application-specific scripts

Improvements to Datasource/Views in the Data Access Element
■ A tree datasource for hierarchically arranged node objects such as 

directories and subdirectories
4 Getting Started



   

Installation

       
■ A graph datasource for creating complex diagrams and graphs
■ Shared view dependencies with the treeview, browser, browser 

overview, and diagrammer widgets

Integration with Third-Party Application-Development Software

The Elements Environment now supports integration with Intersolv PVCS 
Version Manager.

Note: This product does not come with the Elements Environment 2.1. You 
must purchase it directly from the manufacturer.

PVCS integration is licensed separately. If you are licensed to integrate 
PVCS, the PVCS option on the File menu is enabled. If you are not licensed 
to integrate PVCS, this option is disabled.

Installation

With the Elements Environment suite of tools, you receive two CD-ROMs, 
one for the software and one for the documentation. You will need to install 
the software and the Adobe Acrobat Reader, which allows you to read and 
print the documentation for each Element.

Your software kit includes an Installation Guide for your specific platform. 
This booklet contains all the information you need to install:
■ The Elements Environment on your platform
■ The platform-specific Adobe Acrobat Reader

For More Information about Installation
■ For information regarding installation of the Sentinel software and 

hardware, refer to the readme.txt file in the sentinel directory of the 
Development and Deployment Kit CD-ROM.

■ For platform-specific installation information, refer to the Installation 
Guide that came with your software and documentation CD-ROMs. This 
booklet also contains information about using the online 
documentation. 
Getting Started 5



Chapter The Elements Environment1
■ For platform-specfic information regarding installing online 
documentation, refer to the files in the read_me directory on the 
Documentation Suite CD-ROM:
– rdme_mac.txt
– rdme_unx.txt
– rdme_win.txt

Technical Support

Neuron Data Corporate Headquarters USA (country code 1):

Tel: 415-943-2700 or 800-876-4900

Fax: 415-943-2756

E-mail support: @neurondata.com

For information or technical support for the Adobe Acrobat Reader, call the 
following Adobe Acrobat Technical Support telephone number:

206-628-2757

The Adobe Acrobat platform-specific ReadMe files contain more 
information about Adobe Technical Support. If you have any questions 
about the Neuron Data Online Documentation, call Neuron Data Technical 
Support.

Note: Neuron Data does not provide technical support for the Adobe 
Acrobat Readers. 

The NDDN Technical Support Web Page

NDDN, the Neuron Data Technical Support page on the World Wide Web, 
gives you the following benefits:
■ A wide range of Technical Support code examples
■ Listings of supported products and platforms
■ Numerous technical application notes (TANs) that are application- and 

platform-specific
■ Information on the latest product releases
■ Status information about reported Technical Support cases

This is the URL for the NDDN Technical Support Web page:

https://nddn.neurondata.com
6 Getting Started



Chapter
2 The Open Interface Element 2

The Open Interface Element (OIE) lets you develop cross-platform 
applications with native graphical user interfaces (GUIs). Open Interface 
comprises:
■ A Resource Editor that helps you manage your resources—such as 

windows, widgets, fonts, and other graphic elements
■ A Window Editor that helps you design windows for your application
■ A set of libraries containing standard GUI routines

About the Software-Development Process

You use the Open Interface features to create your interface, which consists 
of resources such as windows. You then save your resources in these binary 
and text files:
■ .dat file
■ .rc file

The resource database is stored in a binary file (.dat). In addition, this 
database is stored in a text file (.rc), which you can edit directly. 

The development environment also produces a C or C++ code template for 
your application. You use this template to link the application code to the 
GUI.

After adding your own code to the template, you use one of the supported 
compilers to compile the application into object files. You then link these 
object files with the Open Interface libraries to create an executable file. 

Open Interface generates a makefile to assist you in compiling and linking 
your application. When you execute your program, the resource-database 
(.dat) file is opened. Your application then has access to the resources this 
database contains.

About Resources

Open Interface uses the concept of resources to modularize many parts of the 
application code. For example, items such as windows, buttons, menus, 
fonts, colors, cursors, and icons are stored as different types of resources. 
The specific information about an item—such as its location, size, or 
Getting Started 7



Chapter The Open Interface Element2
label—is retrieved and then handled using a set of generic tools. Almost 
anything can be stored as a resource.

In object-oriented terms, resources store all the persistent information for a 
particular item. This information does not change during the execution of an 
application. For example, a text-edit widget has information associated with 
it, such as size, location, attributes, and initial values. This persistent 
information is stored in the resource .dat file. However, the information that 
a user enters into the text-edit field of the widget is not persistent and is not 
stored as a resource.

Figure 2-1   Open Interface Development Environment

Application 
Developer

Open Editor

Resource 
File (.rc)

Resource 
Compiler

Resource Database 
(.dat)

C Source 
Code (.c)

Application 
Code

C 
Compiler

Object Files 
(.o)

Open Interface 
Libraries

Linker

Executable 
File

your 
application

Programming Tool

Application Code
or  Resources
8 Getting Started



Quick Tour
Separating resources from the application code has several advantages:
■ Using string resources allows you to prepare your products for various 

international markets without rewriting your code.
■ Using a set of routines that are well defined, efficient, and generic 

greatly helps you in building resources.
■ Your code assets can be more easily shared between different parts of 

the same application and between different applications.

Quick Tour

The flexibility of the Open Interface Element gives you a number of ways to 
begin creating your application. However, the introductory exercise that 
follows presents only a few of the possible approaches.

To complete the Quick Tour, you have to:

1. Create a user interface.

2. Create an application-startup module.

3. Code the application logic using OOScript.

4. Test and run the application.

5. Deploy and port the application.

This section describes each of these tasks. The instructions show you how to 
create an application with two buttons that display two different dialog 
messages. 

Task1: Creating a User Interface

The Elements Environment’s visual editors provide a graphical 
environment for creating and manipulating:
■ Graphical user interface (GUI)
■ Application logic
■ Data access
■ Business rules

These visual editors allow you to create GUIs with simple point-and-click 
operations. For detailed information about how to start and use the editors, 
see the Open Interface Element User’s Guide. 

Note: The illustrations that follow are based on Windows NT screens. 
However, the general tasks apply to all supported platforms.
Getting Started 9



Chapter The Open Interface Element2
To Design a New Window
1. Start the Elements Environment:

– Click either the EE C or EE C++ icon.
or:

– Type ee at the command line prompt

Note: Make sure that you are running the version of the Elements 
Environment for which you are registered. 
If you have installed both the C++ and C versions, the installer 
automatically registered you for C++ builds and interpretation. 
If you use the C version of the Elements Environment, but you 
are registered for C++, the C++ servers will not load properly. 
You will receive a “Class Already Exists Error” in 
your tracebacks.

Refer to the Elements Environment Installation Guide for more information 
on how to register or unregister the servers.

Figure 2-2   Main Window for the Intelligent Rules Element (IRE)

Note: If your application is not licensed for the Intelligent Rules Element, 
you will see the Resource Browser instead of the Intelligent Rules 
Element main window and should proceed to step 3.
10 Getting Started



Task1: Creating a User Interface
2. Choose Browsers - Resource. 

The Resource Browser window is blank because no library has been 
selected.

Figure 2-3   Resource Browser Window

3. Choose File - New Application.

4. Select the appropriate directory and name the application Hello.

5. Click OK to display the Window Editor.
Getting Started 11



Chapter The Open Interface Element2
Figure 2-4   Window Editor in Small Tools Mode

About the Window Editor

The Window Editor opens in Small Tools mode by default when:
■ the monitor has a small screen
■ the monitor has low resolution
12 Getting Started



Task1: Creating a User Interface
The Small Tools mode gives you a larger viewing area, but displays only 
minimal information and options. To switch to Large Tools mode, choose 
Options - Large.

In the Large Tools mode, the type of widget you select and put in a window 
appears in a box above the widget-icon column. This is helpful information 
when you are first using the product.

Note: This exercise uses Small Tools mode.

Figure 2-5   Window Editor in Large Tools Mode

The window you are designing is in the middle of the screen. You can resize 
this window by clicking inside the window and then dragging the corner 
handles. You can add widgets such as buttons to this window.
Getting Started 13



Chapter The Open Interface Element2
The vertical toolbar to the left of the window area contains icons for various 
types of widgets. You can scroll down and see other widgets to select from 
the toolbar. The large arrow at the top of this column is the Selection Tool 
icon. You click this icon to obtain the arrow cursor and select widgets. The 
two radio buttons in the upper left of the screen control the editing mode of 
the Window Editor. The default is Widget Layout. If you click Window 
Attributes, you can define the default attributes for your new window.

Figure 2-6   Window Attributes Dialog

In the Window Attributes dialog, the four text fields in the Coordinates panel 
show the window’s placement on the screen (the xy origin and the xy extent).
14 Getting Started



Task1: Creating a User Interface
In the two text-edit fields that appear in the upper right part of your 
window, you enter the name of the window module and the label.

These buttons are in the right corner of the screen:
■ Apply implements changes you have made to the new window.
■ Revert undoes any changes you have made with the last Apply and 

displays the previously saved state.
■ OK saves your changes.
■ Cancel undoes your changes.

To Place Widgets in Your Window
6. Select the OK pushbutton icon from the vertical toolbar, and draw the 

buttons on the window.

7. Arrange the buttons and resize the window as you wish.

8. Double-click the left pushbutton to open its property window. 

9. Change the name PBut1 to PButGreeting. 

10. Change the label of PBut1 to Greeting.

11. Click Apply.

12. Click OK.

13. Double-click the right pushbutton to open its property window. 

14. Change the name of PBut2 to PButFarewell.

15. Change the label of PBut2 to Farewell.

16. Click Apply.

17. Click OK.

Note: Do not confuse name with label. The name is used to reference 
the widget in scripts and code. The label is what appears on the 
widget in the window.
Getting Started 15



Chapter The Open Interface Element2
Figure 2-7   OK Pushbutton, Window, and Property Dialog

18. Choose View - Test Mode. 

This lets you test your design and layout. 

19. Choose File - Save.

20. Choose File - Close.

About the Resource Browser Window

The Resource Browser window has two parts:
■ Browser overview
■ Browser

The panel on the left side of the window is the browser overview. This area 
allows you to rapidly scan through the modules and resources in the 
application. In this area are small iconic representations of the libraries, 
modules, and resources in your project. There is also a transparent rectangle. 
To move to another view in the browser (the panel to the right of the browser 
16 Getting Started



Task 2: Creating an Application-Startup Module
overview), you click and hold the mouse button within the rectangle, and 
then drag the rectangle to another position. The view within the browser 
shifts to the corresponding position.

Figure 2-8   Resource Browser Window

The browser shows libraries, modules, and resources. (.dat files are also 
called libraries, as they are actually collections of the objects that make up 
your application.)

You edit the filenames of a module by double-clicking the module node 
icon. You can expand the module to view the window and associated 
widgets by right-clicking the module icon and holding the button, then 
choosing Extend - Resources. You can choose Collapse to retract the view. 
Other options are also available from the dropdown menu.

Task 2: Creating an Application-Startup Module

Producing an application-startup script is an essential step in creating 
OOScript applications. To do this, you need a module designated as “main,” 
and you need to insert some startup OOScript statements in the script 
attached to the Hello (Rmod) module:

Browser Overview Browser
Getting Started 17



Chapter The Open Interface Element2
To create an application-startup module:

1. Double-click the Hello (RMod) node in the Resource Browser.

2. If Main is not checked in the Module Attributes dialog box, select it.

3. Click OK.

Figure 2-9   Hello Module Attribute Dialog

4. Right-click the Hello (RMod) node in the Resource Browser and choose 
New Application Script.

When you use OOScript, all your applications must have an 
AppStartup procedure. The AppStartup procedure is the script that is 
executed when the application launches. It provides the essential 
startup information for your application. You can either insert the 
AppStartup code using Script Editor code templates, or you can write it 
yourself.

Note: If you are coding in C or C++, you do not need an AppStartup 
script. Instead, you define the startup procedure in the function 
main().

5. Choose Category - Code Templates - Default Templates - Main(Gui).

6. Drag and drop the Main(Gui) startup script into the script-editing area.

Tip: To drag and drop the script, click the Main(Gui) listing once to 
highlight it. Then move the cursor to the right of the highlighted 
area. When the arrow cursor changes to a , drag and drop the 
text into the script-editing area.
18 Getting Started



Task 2: Creating an Application-Startup Module
Figure 2-10 shows the AppStartup script for the Hello module.

Figure 2-10   AppStartup Script

7. In the script, replace ModuleName and MainWindowName with the 
names you gave your module and window. (These should be Hello and 
Win1.)

Note: In your script statements, when you want to assign an object 
reference to a variable (or another object reference), you need to 
use the “object-initialization and assignment” operator (:=). The 
:= operator means that the object variable on the left side of the 
operator will contain a reference to the object resulting from the 
expression on the right side of the operator.

8. If you wish, test the syntax of your AppStartup script statements by 
choosing File - Check Script Syntax.

If you find errors, go over the steps carefully to see if you have left out 
or mistyped anything.
Getting Started 19



Chapter The Open Interface Element2
Task 3: Writing OOScript Application Logic

Now that you have your startup module, you can add behavior to the 
pushbutton widgets. You have two options for writing your code:
■ Callbacks allow your widgets to share event-handler procedures. You 

can group the callbacks in modules and reuse them for new widgets. 
Callbacks permit a more modular and efficient use of code by avoiding 
duplication of similar code in different widgets. 

■ Event-handler scripts allow you to write event-handler procedures for 
individual widgets. You should use this technique when behavior is 
unique to a specific widget. 

The next two sections describe these two programming techniques.

Using Callbacks

To use callbacks, you add the code as procedures to the application script. 
You can either add keywords that appear in the code using the options in the 
Category menu, or you can type the code yourself.

For this introductory application, you will add code to the existing 
AppStartUp procedure and create two new procedures. 

1. To add the code using the Category menu options, choose Category - 
Resources.

2. Double-click the name of the module Hello.

This displays the resources for the module window. 

3. Click PButGreeting.

4. Move the cursor to the right of the highlight until it appears as a . 

5. Insert PButGreeting in the main procedure beneath this line of code:

win := guiSvr.Windows.LoadInitShow("Hello","Win1");

6. Repeat steps 3–5 for PButFarewell. 
20 Getting Started



Task 3: Writing OOScript Application Logic
7. Modify the two lines where the resource names have been copied as 
follows:

win.PButGreeting.HitProc="Hello::GreetingHit";

win.PButFarewell.HitProc="Hello::FarewellHit";

Note: You could have typed the names of the pushbuttons. However, 
in a complex application with many widgets and modules, using 
the Category menu options is convenient.

These two lines of callback code reference the procedures GreetingHit 
and FarewellHit for the HIT event.  The callbacks instruct the 
application to invoke the appropriate procedure when the user  
generates a “hit” event by clicking one of the buttons.

8. Write the two procedures referenced by the callbacks beneath the 
AppStartup procedure as follows:

proc GreetingHit

    guiSvr.AlertDialogs.ShowInfo("Hello World");

end proc

proc FarewellHit

    guiSvr.AlertDialogs.ShowInfo("Goodbye");

end proc

Figure 2-11   Using Callbacks in a Script
Getting Started 21



Chapter The Open Interface Element2
Tip: You can find the names of script methods, their return values, 
and their parameters online. To do so, choose Category - 
Repositories - Neuron Data Gui Server. Select the appropriate 
category. Select the class you want to view.

Using Event-Handler Scripts

You can also write event handlers to respond to the widget events.

To create an event handler:

9. Delete the two lines of callback code you added to the AppStartup 
procedure and the two procedures you added.

10. Choose Category - Resources. 

11. Double-click Hello.

This displays the resources for the module window. 

12. Select PButGreeting.

13. Click Open Script.

14. Choose Category - Script Events. 

15. Select the HIT event, and drag and drop it into the script-editing area to 
obtain the following script template:

on event HIT

end event

16. Within the event-handler script, type this line:

guisvr.AlertDialogs.ShowInfo(“Hello world!”);

Figure 2-12   Event-Handler Script

Note: You can also use the Script Browser to insert verbs, objects, 
methods, properties, globals, and constants into your script. For 
more information, see the OOScript Language Programmer’s 
Guide.
22 Getting Started



Task 4: Test and Run the Script-based Application
Task 4: Test and Run the Script-based Application

1. In the Script Editor, choose File - Check Script Syntax to check your 
script.

2. Click Script Tracer to start the OOScript trace facility.

The Trace window displays a line-by-line analysis of the currently 
running script.

3. To run the application, choose File - Run Script. This displays the 
Hello window.

Note: By default, the Run Script command looks in your currently 
active library to compile and run a script. If you have multiple 
applications loaded in the Resource Browser, the File - Set 
Current Library... command allows you to determine the current 
library and to switch to other libraries if necessary.

4. If you have runtime errors, go back and review the previous steps.

5. If you click Farewell in the application window, the results should look 
like this:

Figure 2-13   Run Script Results
Getting Started 23



Chapter The Open Interface Element2
Alternate Ways of Running a Script

You can also run your script from the command line:

ee -ND_DYNCONFIG=runscrpt <LIBRARY_NAME>

■ UNIX users can run the Elements Environment runscrpt option in a C 
shell and create an alias to the command. 

■ PC (Windows 3.1/95/NT) users can type the command line in the 
MS-DOS window or just click the RunScript icon to execute the 
application in runtime mode.

To Edit Existing Applications 

1. From the Resource Browser, choose File - Open Library.

2. Open the application library file.

3. Right-click and hold on the library icon.

4. Choose Full Extend - Modules, Resources.

5. To edit windows, double-click the appropriate resource icon.

6. To edit a script, right-click and hold on the appropriate module icon, 
then choose Edit Application Script.

Task 5: Deploying and Porting Applications

Note: These instructions assume that you are using MSVC Microsoft 
Developer Studio. However, the steps would be similar for other 
development environments.

1. Launch Microsoft Developer Studio.

2. Close any workspaces you may have open by choosing File - Close 
Workspace.

3. Choose File - Open Workspace.

4. Move to your working directory and give your workspace a name.

5. Choose File - Open.

6. Set File of Type to All Files(*.*).
24 Getting Started



Task 5: Deploying and Porting Applications
7. Select the appropriate makefile:

– makefile.pc for Window 95 or Windows NT platforms

8. Click OK.

9. If necessary, choose File - Save As and change the filename to the name 
of the application.

This creates the appropriate project workspace.

10. If necessary, open the .c or .cpp file and implement changes.

11. Choose Build - Build <myapp>.exe.

12. Make appropriate changes to your runtime environment.

Application Components

Open Interface generates these components for each application: 
■ .rc files contain (in modules) definitions of window objects, and if 

desired, script procedures and script application logic.
■ .dat files are the binary format of the information defined in the .rc files.
■ Source files for the C or C++ languages containing the application logic.
■ Image files used in icons:

– .nxp (flat files containing business objects and rules containing 
simple data)

– .gif, .tiff, .bmp icon files containing the definition of icons used in 
the GUI

– html files (on a server) for use with the Web Element with .dat files 
for applets

Note: The .dat files are portable across platforms. You also need to use an 
Elements Environment runtime configuration and the Neuron Data 
libraries and resources to build and run the application.
Getting Started 25



Chapter The Open Interface Element2
For More Information about the Open Interface Element

■ See the Open Interface Element C/C++ Programmer’s Guide.
■ See the Open Interface Element C/C++ API Reference, Vol. 1, Widget Classes.
■ See the Open Interface Element C/C++ API Reference, Vol. 2, 

GUI Helper Classes.
■ See the Open Interface Element User’s Guide.

For more information about Elements Environment executables and the ee 
runscrpt option, refer to Chapter 10, “Building Applications in the Elements 
Environment,” in this manual.
26 Getting Started



Chapter
3 The Data Access Element 3

The Data Access Element (DAE) is a component of the Elements Environment. 
The Data Access Element is designed to:
■ Give you access to multiple data sources, such as relational databases, 

flat-file systems, object-oriented databases, or transactional databases
■ Insulate you from the underlying complexities of data access, such as 

database connections
■ Let you take advantage of database-specific functionality such as stored 

procedures, triggers, and referential integrity

With the Data Access Element, you can give a single application 
simultaneous, full read-and-write access to heterogeneous data sources in a 
host-based or networked client-server environment. The Data Access 
Element supports these standard datatypes:
■ numeric
■ interval
■ ANSI
■ char
■ real
■ variant
■ date
■ time
■ “blobs” such as text and images

In addition to transparently retrieving data, the Data Access Element gives 
you an abstraction layer, which separates the logical view of the data from the 
specific data source. This makes it much easier and more intuitive to 
manipulate data.

The Data Access Element gives you an application programming interface 
(API). This allows your applications to access any relational, flat-file, or 
hierarchical database on the network, including legacy data sources. The 
Data Access Element API is open and extensible. This lets you extend its 
functionality to meet any special requirements that your applications may 
have.

Each data source has a corresponding Data Access Element driver, which 
handles communication between the Data Access Element API and the data 
source. The Data Access Element fully supports all server-specific 
functionality related to the underlying data source.
Getting Started 27



Chapter The Data Access Element3
The Data Access Element and OOScript

You can use the Data Access Element objects in Neuron Data’s OOScript 
language for seamless integration with:
■ Other Elements Environment objects
■ OLE-automation server applications

Using the OOScript language, the Data Access Element objects are available:
■ On all platforms as in-process servers
■ For Microsoft Windows 3.1/95/NT as out-of-process, local servers 

Quick Tour

The Data Access Element gives you several key components for 
manipulating data:
■ Data-access objects
■ DBVu resource
■ An object API

Generic Data-Access Objects

The Data Access Element includes a set of generic data-access objects. These 
are application resources that let you separate application code from 
data-access information, which remains unchanged after each application 
execution. Data-access objects give your application a more modular 
structure, which makes it more efficient and maintainable. Custom editors 
in the Elements Environment let you create these data-access objects:
■ Connection object
■ Query object
■ Virtual-table or RecordSet object

DBVu Resource

You can use custom editors in the Elements Environment to combine 
data-access objects into a DBVu resource. The DBVu resource accesses 
data-dictionary information, and it lets you view and edit its data. 

You can use the Elements Application Services (EAS) datasource/views 
mechanism to link GUI objects with a DBVu resource. This lets you establish 
one or more views of the same data.
28 Getting Started



For More Information about the Data Access Element
Once registered with a datasource object, the GUI objects are synchronized 
with the data accessed through the DBVu resource. By separating the data 
from the views, the datasource/views mechanism automatically maintains 
consistency between the data and the user interface.

You can register these Open Interface Element GUI objects with DBVu 
resources:
■ Text-edit areas (input fields)
■ Check boxes
■ Choice boxes
■ List boxes (forms and tables)

Object API

Each Data Access Element resource described in this manual has a 
corresponding full-function API accessible from the C and C++ languages. 
The purpose of these resource API modules is to give you runtime control of 
the data-access objects:
■ NDCnx (connection) class
■ NDDbVu (view) class
■ NDQry (query) class
■ NDVTab (virtual table) class

For More Information about the Data Access Element

■ See the Data Access Element C/C++ Programmer’s Guide.

Related Subjects
■ OOScript language
■ Datasource/views mechanism in Elements Application Services and 

OOScript
Getting Started 29



Chapter The Data Access Element3
30 Getting Started



Chapter
4 The Intelligent Rules 
Element 4

The Intelligent Rules Element (IRE) lets you develop knowledge-based 
applications using a rich and flexible graphical user interface (GUI). You do 
not have to be an expert in programming to use the Intelligent Rules 
Element.

The Intelligent Rules Element is a hybrid system that supports:
■ A reasoning system
■ A powerful object-oriented representation 

Reasoning System

To represent reasoning, the Intelligent Rules Element uses rules. Rules are 
knowledge structures that let the system perform actions based on data, 
such as proving a goal or deducing a conclusion. A rule is also a chunk of 
knowledge representing a situation and its immediate consequences.

This is the format of a rule:

if conditions then hypothesis then do actions or else do 
alternative actions

■ The hypothesis, or goal, becomes true when the conditions are met. 

Conditions define expressions that test the values of slots.

A slot is a data value represented by an object and its property.
■ Actions are undertaken when the conditions are positively evaluated. 
■ Alternative actions are undertaken when any one of the conditions is 

negatively evaluated.
Getting Started 31



Chapter The Intelligent Rules Element4
Figure 4-1   The Components of a Rule

The block to the left of the arrow represents the Left-Hand Side (LHS) of the 
rule. This is where the conditions are expressed, with individual conditions 
represented by horizontal lines.

The blocks to the right of the arrow form the Right-Hand Side (RHS) of the 
rule:
■ The first block is the hypothesis, or goal, to be proven.
■ The middle block represents actions you specify for a positive evaluation 

of the rule’s LHS (THEN actions).
■ The lower block represents alternative actions you specify for a negative 

evaluation of the rule’s LHS (ELSE actions).

Rule Dynamics

This section briefly examines how the Intelligent Rules Element processes 
rules. 

Rule Evaluation

The building block of the reasoning path is the single rule. The Intelligent 
Rules Element processes one rule at a time. For example, assume that the 
value of a slot involved in one of a rule’s conditions is known. Since this 
slot’s value is known, the rule is “relevant.” The system can use this rule to 
try to make inferences. Each condition of a rule’s LHS can have one of these 
values:
■ “true”
■ “false”
■ “not known”

if...
conditions

then ...
hypothesis

and do ...
actions

or else ...
alternative actions

LHS RHS
32 Getting Started



Reasoning System
Assume now that all of the conditions (each line on the LHS) are verified and 
are true. The rule can now be triggered.

Figure 4-2   The Evaluation of a Single Rule

In Figure 4-2, areas that appear in black were found by the system to be true.

Actions

Rules usually have more complex structures than the simple case of an RHS 
made up of just an hypothesis. Such structures let you add actions, which 
induce some change in the overall system or its environment. Figure 4-3 
shows the kinds of actions that can be initiated when a rule is triggered:

Figure 4-3    Possible Actions Initiated by the Evaluation of a Rule

HypothesisConditions

Actions

Change the value of 
one or several data

Creating and deleting
objects and links

Read/write in databases

Reset values

Affect the influence engine

Display graphics and text

Execute external 
programs

Load new rules
Getting Started 33



Chapter The Intelligent Rules Element4
Backward Chaining

A hypothesis has a value; therefore, it can appear in the LHS of a rule as a 
condition that the system will verify. Consider the situation that Figure 4-4 
depicts:
■ The hypothesis, hypoA, of the rule has an unevaluated condition (shown 

in gray).
■ The unevaluated condition is itself another hypothesis, hypoB.
■ To evaluate hypoA to be true, the system must verify that hypoB is true.

Figure 4-4   A Hypothesis as a Condition

To verify whether hypoB is true, the system must find one or more rules with 
hypoB as the hypothesis. Once the system finds a rule with hypoB as its 
hypothesis, it evaluates the conditions in the LHS of the rule leading to 
hypoB, as shown in Figure 4-5:

Figure 4-5   The Evaluation of a Hypothesis as a Condition

This inference evaluation that the Intelligent Rules Element conducts is a 
deductive process, or backward chaining. It can be made at many levels and 
can involve many rules, as shown in Figure 4-6:

hypoA

hypoB in
LHS condition

hypoA

hypoB

LHS conditions
to be evaluated
34 Getting Started



Reasoning System
Figure 4-6    Backward Chaining with Multiple Hypotheses

Note: In multilevel backward chaining, there might be conflicts between 
rules because more than one rule may lead to a single hypothesis. The 
Intelligent Rules Element has special mechanisms to deal efficiently 
with such conflicts in a way you can define.

Forward Chaining

When the RHS actions of a rule change the values of data in other rules, this 
can trigger the evaluation of those rules, as shown in Figure 4-7. The 
triggered rule (in black) brings three other rules on the agenda for evaluation. 
This is an evocative progression, or forward chaining. The upper left rule has 
been evaluated but not activated because of a nonverified condition 
(indicated by a cross). Thus, its hypothesis is found to be false, and its RHS 
actions fail to occur.
Getting Started 35



Chapter The Intelligent Rules Element4
Figure 4-7   Forward Chaining Triggered by RHS Actions

Revisions

Rules can also trigger revisions of other rules. Consider rule 1 in Figure 4-8. 
The value of a variable caused the condition in rule 2 to fail. However, later 
an action of rule 1 modifies the state of the variable in rule 2.

Figure 4-8    Reevaluation of a Previously False Rule Triggered by Actions

If the inference engine permits it at a particular time, the rule will be revised, 
and then perhaps activated. The activation of rule 2 might place rule 3 on the 
agenda for evaluation through forward chaining, as shown in Figure 4-9:

2

1

36 Getting Started



Reasoning System
Figure 4-9    Forward Chaining Triggered by Rule Revisions

Integration

From the perspective of knowledge processing, rules in the Intelligent Rules 
Element are symmetric. This means that they can be used in both backward 
and forward chaining. Consequently, it is not necessary to define a rule as 
“forward chained” or “backward chained.” How the system processes rules 
at a given time depends on:
■ The events that occur because of an action or external information 
■ The current hypothesis that the inference engine is trying to evaluate

Figure 4-10 shows an example of a reasoning path that integrates various 
mechanisms in a knowledge base with several rules. The reasoning path 
follows this order:

1. After Rule 1 is triggered, rule 2 is placed on the agenda for evaluation.

2. The system’s focus is on rule 2 (circled in Figure 4-10).

3. Rule 2 triggers backward chaining and brings rule 3 under evaluation.

4. Rule 3, in turn, triggers backward chaining, which brings rule 4 and rule 
5 under the system’s evaluation

5. During this backward-chaining process, an action of rule 5 brings rule 6 
to the system’s attention.

6. The final evaluation of rule 2, as a result of the backward chaining, 
triggers rule 7.

2

1

3

Getting Started 37



Chapter The Intelligent Rules Element4
Figure 4-10   Integrated Forward and Backward Chaining

As shown in Figure 4-10, a rule is evaluated for one of these reasons:
■ It solves the present subtask.
■ It is the most relevant to the reasoning process. 

This opportunistic character of the Intelligent Rules Element architecture lets 
the system follow the best line of reasoning. This is crucial for building 
systems that need to adapt to changing environments.

Open Architecture

The Intelligent Rules Element architecture is event-driven:
■ It can integrate messages from external programs, which include those 

triggered by the Intelligent Rules Element rules or objects.
■ A rule or a hypothesis can become relevant when an external event 

justifies its evaluation, even if the system is currently evaluating another 
area of the knowledge base.

■ You can even make the external events have priority over the current 
focus (this priority can be set by the external mechanism). 

You can control the effect the integration with external events has on 
knowledge processing. The Intelligent Rules Element provides 
inference-control mechanisms that can either be set globally or incorporated 
into the rules themselves. These mechanisms can affect the 

2

1

3

4

5

7

6

38 Getting Started



Object-oriented System
backward-chaining paths (their exhaustivity, for example) or the 
forwarding of RHS actions. They allow you to prevent specific actions from 
having any effect on the system’s agenda and focus. The set of functions 
controlling these mechanisms is called the strategies.

Object-oriented System

Rules use reasoning on a data representation of the problem. This 
representation is made up of interrelated objects. As shown in Figure 4-11, 
the representation dimension intersects the reasoning system at the data 
level:

Figure 4-11   Intersection of the Reasoning and Representation

Object Structure

The object structure includes:
■ Objects
■ Properties
■ Classes
■ Methods

Object

An object is a basic unit of description. Objects represent the knowledge on 
which the rules reason. Objects also describe variables in the knowledge 
base. You can define hierarchical relationships between objects to give rules 
greater flexibility in reasoning.

Reasoning

Representation
Getting Started 39



Chapter The Intelligent Rules Element4
Property

A property is a characteristic that you can associate with an object or a class. 
The combination of an individual object and a specific property is called a 
slot. Slots store the actual values.

As an example, consider a condition of an Intelligent Rules Element rule:

Is object1.property1 "blue"?

This condition is part of the LHS of a rule, which is the current focus of 
attention. This is a translation of this syntax:

“Is the value of the slot (property ‘property1’ of the object ‘object1’) blue?”

Class

A class is a collection of objects that usually share properties.

Consider this condition:

Is <CLASS1>.property1 blue

This condition translates to:

“Is there any object in the class ‘CLASS1’ whose slot ‘objectx.property1’ has 
the value blue?”

Classes let you represent objects hierarchically:

Figure 4-12   The Hierarchical Structure of Classes and Objects

property1
property2 
  ...

CLASS

property1
property2
...

object1
property1
property2
...

object2
property1
property2
...

object3
property1
property2
...

object4
property1
property2
...

objectn
40 Getting Started



Object-oriented System
Inheritance

Classes can store information relevant to all their objects. The objects, when 
necessary, inherit this information. This mechanism is called inheritance. 

Figure 4-13   Inheritance of Properties by Objects of a Class

Method

A method is a sequence of actions associated with an object, class, property, 
or slot that executes under certain circumstances. 

As an example, consider the following condition of an Intelligent Rules 
Element rule that is the current focus of attention:

SendMessage   "ComputeArea" To:object1

This condition translates to:

“Trigger the method ‘ComputeArea’ attached to the object ‘object1.’”

Encapsulation

Methods let you hide procedures related to an object’s unique behavior 
within the object itself. That way, you do not have to write them elsewhere 
in the rules of the knowledge base.

property1
property2
...

CLASS1

property1
property2
...

object1 object2 object3 object4 objectn
Getting Started 41



Chapter The Intelligent Rules Element4
Figure 4-14   Method-Object Relationship

This idea that an object can be a self-contained unit that includes both the 
data and the procedures to process those data is known as encapsulation.

Polymorphism

Like properties, methods can be inherited by the children from their parent 
object. 

Methods are best used to represent related knowledge about a set of objects. 
When each object has its own way of accomplishing the same task, the 
attached methods typically use the same name for each object, such as 
“Determine_Area” or “Calculate_Cost.” Then when a rule sends a message 
to trigger the method, the message and the method bind with the list of 
objects that receive the message.

Figure 4-15 depicts one message that binds with several objects that have a 
method of the same name attached. The ability to use methods with the same 
or similar names to represent a type of task for more than one object is 
known as polymorphism.

Figure 4-15   Same Message Triggering Different Method Actions

object1

method1

SendMessage

method1
action(x1)
action(x2)
action(x...)

action(y1)
action(y2)
action(y...)

action(z1)
action(z2)
action(z...)

method1

method1
42 Getting Started



Object-oriented System
Pattern Matching

The class structure itself acts as a pointer to a set of objects, with data held 
by the structure formed by associating a property with each object. This 
structure is represented by the form class.property and is known as a 
slot.

Classes thereby provide a way to search through lists of objects in order to 
identify which objects meet a specific condition. This is called pattern 
matching. Consider the following pattern-matching condition of a rule:

=   <CARS>.color   blue

This means:

“Is there any object in the class ‘CARS’ whose slot ‘objectx.color’ has the 
value blue?”

Objects in the class “CARS” all have the property “color.” The system:

1. Evaluates the condition and identifies all the slots with the value “blue.”

2. Automatically creates a list of objects for use by the rule’s RHS actions. 

Figure 4-16 depicts a pattern-matching situation where all objects with 
“slot1 = blue” will have their slot “slot2” set to 0 by the RHS actions:

Figure 4-16    Pattern Matching on Class Creating List of Objects 

While the list is created on the basis of a condition that incorporates “slot1,” 
the RHS action can modify slot1 or any other slot of the same objects.

LHS: creating the list 
of objects with slot1=blue

RHS: setting slot2=0 for all
objects with slot1=blue
Getting Started 43



Chapter The Intelligent Rules Element4
System Methods

Methods that the system automatically triggers under circumstances that 
you define are called system methods. You can define two types of system 
methods:
■ Order of Sources
■ If Change 

Order of Sources

Order of Sources lets you define and prioritize the sources that the system can 
use during a session to obtain the value of a slot that is not known.

To evaluate a rule, the Intelligent Rules Element must have the appropriate 
information on which to base its conclusions. If the values of slots in the LHS 
conditions are unknown, the system must first obtain the values to complete 
the evaluation. 

For example, consider the following condition, and assume that there is no 
current value for the slot “car.color”:

=   car.color   blue

Assume that the value of slot1 of the class “car” is unknown. The system will 
not be able to find the value of slot1 for the object, which it needs to evaluate 
the current rule. However, the system can switch to a different source that 
you have defined to obtain the value. 

As shown in Figure 4-17, inheritance fails, and an external routine is 
computed that may provide the value:

Figure 4-17    Value Computed Externally after Inheritance Fails

slot1

slot1

No inheritance

External 
routine
44 Getting Started



Object-oriented System
For any object slot, you can declare an Order of Sources. This object-oriented 
functionality adds robustness to the system. This is because a data value can 
be
■ Inherited from the parent class
■ Fetched from an external source
■ Directly assigned

If Change Methods

If Change methods let you specify the actions that the system initiates 
whenever the value of a slot changes during the evaluation of a rule.

Assume that an RHS action of a rule changes the slot value: 

Figure 4-18   If Change Attached to an Object Slot

Assume also that there is a value for the slot at the level of the class to which 
the object belongs. When the value of the slot is changed, the system 
immediately executes the If Change methods.

User-defined Methods

You can specify when to trigger user-defined methods in an application. 
Another rule or method triggers these methods during the evaluation of a 
rule. A rule or a method always uses the SendMessage operator to trigger a 
user-defined method. Figure 4-19 depicts a rule that uses the SendMessage 
operator to trigger a method, which in turn uses its own SendMessage 
operator to trigger another method.

slot
Order of Sources

If Change
Getting Started 45



Chapter The Intelligent Rules Element4
Figure 4-19    User-defined Methods Triggered by Message Passing

Graphical User Interface Dynamics

Interaction from the Intelligent Rules Element to the GUI

The Intelligent Rules Element inference engine generates several types of 
events that provide a variety of graphical user interface (GUI) interactions: 
■ Asking questions
■ Displaying conclusions
■ Displaying alert messages
■ Updating displayed windows with new information such as: 

– a change in the value of a slot
– a change in the structure of an object
– unloaded knowledge-base file

method1

condition1
condition 2
...

action1
action 2
...

SendMessage

SendMessage

IF:

THEN:

ELSE:

method1
IF:
THEN:
ELSE:
46 Getting Started



Graphical User Interface Dynamics
Figure 4-20   Events in the Intelligent Rules Element

Figure 4-20 shows a create-object event generated by the Intelligent Rules 
Element inference engine. The GUI receives the event. The window then 
displays the data in a table element with:
■ Rows that correspond to each object
■ Columns that correspond to the properties of each object

To make this type of communication with the GUI possible, the Intelligent 
Rules Element uses the OOScript language. You can define scripts at these 
levels:
■ The application and its modules to provide startup control
■ A window
■ The individual graphical element

The LHS action in Figure 4-20 is an example of immediate updating. The script 
engine handles the create-object event from the Intelligent Rules Element by 
updating the table. 

Interaction from the GUI to the Intelligent Rules Element

The GUI has its own set of events generated by user actions. Typically, the 
end-user makes a selection from a menu or enters a value from the keyboard 
in response to an IntelligentRules Element event. The GUI engine monitors 
these user actions in the background. If one of these actions occurs within the 
area of a particular graphical element, such as a menu item or an input field, 
the system interprets it as a GUI event. Like their Intelligent Rules Element 

LHS: creating the list 
of objects with slot1=blue

RHS: setting slot2=0 for all
objects with slot1=blue

File

Obj1
Obj2
Obj3

Color
blue
blue
blue

Size

update

7
8
7

Edit
Getting Started 47



Chapter The Intelligent Rules Element4
counterparts, GUI events allow you to initiate appropriate responses such 
as: 
■ Sending information to the Intelligent Rules Element 
■ Triggering inferences in the Intelligent Rules Element
■ Requesting more information from the Intelligent Rules Element 

Figure 4-21   GUI Events and a Data Source

Figure 4-21 shows an update event that the GUI engine generates after the 
end-user modifies a value in a table and presses Enter. The same script 
engine that handles the Intelligent Rules Element events that the inference 
engine generates also handles GUI events that an end-user initiates. Thus, 
you can edit the scripts of your knowledge-based application while you 
construct the windows and GUI objects. 

Building Applications

The Intelligent Rules Element lets you build knowledge-based applications 
for a wide range of tasks by using specialized knowledge-design facilities. 

Revised data value
triggers rule
evaluation

User-edited value
updates KB data

File

Obj1
Obj2
Obj3

Color
blue
blue
blue

Size

update

7
8
99

Edit
48 Getting Started



Building Applications
Starting the Intelligent Rules Element

How you start the Intelligent Rules Element depends on the type of 
operating system your computer uses:

IBM-compatible PC

1. Set the path to include Windows, the Intelligent Rules Element, and the 
knowledge-base directories.

2. At the prompt, enter WIN EE20.

UNIX Workstations

1. Start X Windows.

2. Change the directory to $ND_HOME/bin.

3. At the prompt, enter ee20.

Macintosh

Double-click the Intelligent Rules Element application icon.

The Main Window

When you start the Intelligent Rules Element, the main window appears. 
This is the window that controls the application. The main window displays 
important options for interacting with the Intelligent Rules Element:
■ A list of the knowledge bases that you load into memory
■ A Session Control panel to monitor events
■ A customizeable control panel that lets you add button equivalents for 

commonly used menu items
■ An inference engine status field
■ A GUI engine status field

IBM

UNIX
Getting Started 49



Chapter The Intelligent Rules Element4
Figure 4-22   The Main Window of the Intelligent Rules Element

Note: See the Intelligent Rules Element User’s Guide for a complete 
description of the main window and of the rules development 
environment.

Displaying Popup Menus

Popup menus provide additional functions for the various fields in the main 
window. Popup menus also group related functions or display only relevant 
functions. These are the three types of popup menus that you will use with 
the Intelligent Rules Element facilities:

Popup Type Description Selection Method

Local popup Displays options for 
highlighted fields of the 
editor windows or for 
specific items displayed in 
the network windows.

Note: Local popup menus 
that you display for 
individual fields are 
context-sensitive; thus, 
their options vary with the 
field selected.

Click the highlighted field. If you are 
using a one-button mouse, move the 
cursor slightly to the right to display 
the popup menu.
50 Getting Started



Building Applications
Figure 4-23   Sample Popup Menus

Global popup Displays general options 
related to the active 
window outside of its 
highlighted field.

Click inside the active window but 
away from a field or button. If you are 
using a one-button mouse, use Option 
+ click.

Windows 
popup

Displays the windows that 
are open and gets system 
options outside of a 
highlighted field.

Click anywhere in the active window 
using the middle mouse button. If you 
are using a one- or two-button mouse, 
use Command + click.

Local Popup menu:
Select inside
highlighted field.

Global Popup menu:
Press right mouse
button in nonactive
area. One-button
mouse users, use
Option + click. 

Windows Popup menu:  Press middle 
mouse button inside nonactive area. 

One- and two-button mouse users, use 
Command + click (right button). 
Getting Started 51



Chapter The Intelligent Rules Element4
Entering Text

For building knowledge structures, the Intelligent Rules Element provides a 
set of six specialized editor windows. Each window has a set of toolbar buttons 
that you select to begin editing:

The following sections outline how to use the editors to build:
■ Rules
■ Objects
■ Method structures

Rule Editor

You add rules in the Intelligent Rules Element by using the Rule Editor 
window. Like other editor windows, the Rule Editor aids the 
application-development process by acting as a template for entering data. 

Button Text 
Equivalent Description

NEW Clears the editor window and highlights the first field to 
accept your entry for a new application structure.

EDIT Places the currently displayed application structure in 
edit mode and lets you make changes.

COPY Makes a duplicate of the currently displayed application 
structure and lets you make changes.

DELETE Deletes the currently displayed structure from the 
application. Note: You cannot reverse this operation. 

ACCEPT Verifies the syntax of entries of the current application 
structure, accepts the structure into the application, and 
prepares the editor window for further additions. 

CANCEL Returns the currently displayed application structure to 
its original unmodified state.

CHECK Verifies the syntax of the current application structure.

FIND Searches the application to locate the specified structure.
52 Getting Started



Building Applications
You can use the Rule Editor option to add, edit, or delete any rule in the 
knowledge base.

Figure 4-24 shows a rule with the conditions, hypothesis, and then-actions 
fields in the Rule Editor window.

Figure 4-24   Rule Editor Window

This is an example of a simple rule with three conditions, a hypothesis, and 
a single action to recreate. The exact data for the rule shown in Figure 4-24 is 
as follows:

IF =    current_task "refueling"
>     tank_1.pressure  300
=    device.orientation "inward"

THEN valve_problem
Show "valve_problem"

Building Rules in the Rule Editor

Note: Always use the text-edit line to enter or edit values for the highlighted 
fields in the Rule Editor.

1. Start the Intelligent Rules Element.

See “Starting the Intelligent Rules Element” on page 49.

2. Choose Editor - Rule. 

3. Click New. 

4. Click the highlighted field of the conditions columns and display the 
local popup menu for this field. 
Getting Started 53



Chapter The Intelligent Rules Element4
Note: If you are using a one-button mouse, make sure the cursor looks 
like a small menu. Move the cursor slightly to the right to display 
this menu.

5. Select = (equals). 

6. Enter the slot name current_task:

7. Enter "refueling" in the third field:

8. Follow steps 4–7 to complete the second condition as shown below: 

Note: Be sure to type an underscore in the name tank_1.pressure 
and to select > instead of =.

9. Follow steps 4–7 to complete the third condition as shown below:

Type into text edit field.Type into text-edit field.
54 Getting Started



Building Applications
10. Click the hypothesis field, and enter valve_problem:

11. Display the popup menu for the Actions operator column, and select 
Show:

12. Enter the filename "valve_problem":

13. In the Show File dialog, click OK.

14. Click OK to verify and compile the rule.

15. Leave the Rule Editor window open, and go to “Editing Object 
Structures in the Object Editor” on page 56.

Object Editor

You can add classes and objects in the Intelligent Rules Element using the 
Object Editor. Like the Rule Editor, the Object Editor also serves as a 
template. You can shift from creating rules to editing objects or the reverse 
at any point while developing your application.

Figure 4-25 identifies the object name tank_1, which has two properties. 
Therefore, the Object Editor in this case defines two slots:
■ tank_1.level

■ tank_1.pressure
Getting Started 55



Chapter The Intelligent Rules Element4
It also shows that these object structures belong to the class 
Regular_Tanks.

Figure 4-25   Object Editor

Editing Object Structures in the Object Editor

1. Choose Edit - Object. 

2. In the Object Editor window, click the page-flip graphic on the bottom 
left-hand corner to display the object tank_1 in the Name field.

3. Click Edit. 

4. Enter the class name Regular_Tanks:

5. Click OK to verify and compile the class. 
56 Getting Started



Building Applications
6. Click Copy to duplicate the object and its property. 

7. Enter Tank_2 to change the object name:

8. Click OK to verify and compile the new object. 

Editing Classes in the Class Editor

1. Click Classes.

2. Click Edit.

3. Click the first column of the Properties field, and enter level as the 
property name:

4. Click OK to verify and compile the class.

5. Select the datatype Float and click OK:
Getting Started 57



Chapter The Intelligent Rules Element4
6. Click the Object Editor window.

A second property level now appears. This is due to the creation of a 
property automatically inherited from the Class Editor.

7. Leave all three editor windows open, and go to “Viewing Previously 
Created Rules” on page 59.

Viewing Rules and Objects

List Windows

List windows in the Intelligent Rules Element provide a textual display of all 
the information in your application. Each of these has its own window:
■ Rules
■ Methods
■ Hypotheses
■ Data
■ Classes
■ Objects
■ Properties

Each window contains a scrollable list of related structures arranged in 
alphabetical order. You can:
■ Display List windows to examine the structures and their status
■ Print them to obtain a record of the knowledge base.
58 Getting Started



Viewing Rules and Objects
Figure 4-26 shows the rule created in the previous section:

Figure 4-26   List of Rules Window

Viewing Previously Created Rules

1. Click the still open Rule Editor to make it the frontmost window. 

2. In the Rule Editor, click in an inactive area to display the global popup 
menu. 
Getting Started 59



Chapter The Intelligent Rules Element4
3. Choose List of Rules:

4. Click Edit to view the rule again in the Rule Editor. 

5. Click Cancel to prevent the rule from changing.

6. Close the List of Rules.

Rule Network

The Rule Network window lets you view the relationships among the rules 
in your knowledge base. You can view: 
■ A single rule 
■ Specific groups of rules
■ All the rules in the knowledge base. 
60 Getting Started



Viewing Rules and Objects
Figure 4-27 shows the previously created rule in a Rule Network window. 
The rule graph shows each rule’s:
■ LHS conditions
■ Hypothesis
■ RHS actions (optional) 

Figure 4-27   Rule Network Window Rule Graph

Note: The rule graph shows a question mark (?) to indicate the current 
evaluation status of each component. During knowledge processing, 
this symbol changes.

Displaying Rules in the Rule Network Window

1. Click the Rule Editor window, which is open.

2. In the Rule Editor, click in an inactive area to display the global popup 
menu. 

Conditions

Hypothesis

Evaluation icons

Action

current_task is "refusing"
tank_1.pressure >300

device.orientaion is "inward"
=>Show "valve_problem" @ KEEP

?
?
?
?

r.1? valve_problem ?
Getting Started 61



Chapter The Intelligent Rules Element4
3. Choose Focus Rule Network:

4. Leave the Rule Network window open, and go to “Displaying 
Class-Object Hierarchies in the Object Network” on page 63.
62 Getting Started



Viewing Rules and Objects
Object Network

The Object Network window lets you view the class-object hierarchy in your 
knowledge base. You can view:
■ An object
■ Its properties
■ The classes or other objects to which it belongs

Figure 4-28 shows how the Object Network window displays the 
class-object hierarchy for an object structure. The hierarchy includes:
■ A class with its own property
■ Two objects with properties attached

This simple hierarchy shows that the objects tank_1 and tank_2 actually 
inherited the property level from their parent class Regular_Tanks:

Figure 4-28   Network Window Class-Object Hierarchy

Displaying Class-Object Hierarchies in the Object Network

1. Choose Windows - Class Editor. 

2. In the Class Editor window, click in an inactive area to display the 
global popup menu. 

Class Objects

Properties
Getting Started 63



Chapter The Intelligent Rules Element4
3. Choose Focus Object Network:

4. Position the cursor over the object tank_1, and click to expand the 
object-network diagram.

Note: The cursor changes to a right-pointing arrow when you place it 
on the object. 

5. Repeat step 4 for the object tank_2:
64 Getting Started



Viewing Rules and Objects
6. Scroll the Object Network window to reposition the object-network 
diagram. 

Note: The scroll arrows let you move the diagram left and right, as well as 
up and down.

7. Click the property level for the object tank_2 to display the local 
popup menu for this item. 

8. Choose Edit Meta-Slots.

The Meta-Slots Editor lets you control the attributes of specific slots in 
the knowledge base, including their:
– inference priority
– inheritance priority
Getting Started 65



Chapter The Intelligent Rules Element4
– data-validation attributes

9. Close the Meta-Slot Editor. 

10. Close the Object Network window, but leave the Rule Network window 
open.

Processing the Application

The Rule Network window is especially convenient for starting knowledge 
processing with a knowledge base loaded. Its special facilities give a graphic 
overview of the state of knowledge processing while inferencing is taking 
place. In the following demonstration, you will see that the graphic symbols 
of the rule graph change according to the status of the evaluation process. 
The system uses these graphic symbols—network icons—to represent the 
evaluation status of individual:
■ Conditions
■ Actions
■ Rules
66 Getting Started



Processing the Application
■ Hypotheses

In this chapter, the knowledge base consists of a single rule and the objects 
it reasons over.

These steps let you start knowledge processing with a knowledge base 
loaded: 

1. Give the system a place to start (Suggest and/or Volunteer and/or Send 
a Message).

2. Run the session (Knowcess).

3. Set up the session to run again (Restart Session).

The following sections show a knowledge-processing session from the Rule 
Network window. Two separate procedures are given for the previously 
created rule:

1. You suggest the hypothesis valve_problem. This action places the 
hypothesis on the Intelligent Rules Element agenda for evaluation. The 
system proceeds by investigating the status of the rule’s conditions. 

2. You volunteer data that appears in a condition from the same rule. This 
action also places the hypothesis valve_problem on the agenda for 
evaluation.

These actions—suggesting and volunteering the same rule—demonstrate 
the bidirectional nature of rules you build in the Intelligent Rules Element. 
It is not necessary to define the rule as one type or the other. Rule evaluation 
proceeds according to how knowledge processing was started.

Network 
Icon

Value/Meaning Description

Unknown In the initial state and not yet evaluated

False Evaluated by the system, but failed the test

True Evaluated by the system but passed the test

Not Known Evaluated by the system but found data 
to be insufficient for testing

Evoked 
hypothesis

Hypothesis currently under evaluation

Current condition 
or action

Condition or action under evaluation
Getting Started 67



Chapter The Intelligent Rules Element4
Using Hypotheses

Hypotheses can be placed directly on the Intelligent Rules Element agenda 
for evaluation. This process is referred to as suggesting an hypothesis.

Suggesting an Hypothesis from the Rule Network Window

1. Click the Rule Network window, which is still open. 

2. Click the hypothesis valve_problem to display the local popup menu 
for this item. 

3. Choose Suggest:

4. Click in an inactive area of the Rule Network window to display the 
window’s popup menu. 

Note: If you are using a one-button mouse, use Option + click.
68 Getting Started



Processing the Application
5. Choose Knowcess:

6. Click the up arrow on the top right of the main window to shrink it to 
the size of the Session Control panel. 

7. Drag the main window below the graph of the Rule Network window, 
as shown here:
Getting Started 69



Chapter The Intelligent Rules Element4
8. In the Session Control panel of the main window, click the edit-line 
arrow and select "refueling":

9. Click OK to continue the inferencing session.

After evaluating the rule’s first condition, the system displays the 
question in the Session Control panel for the second condition. 
70 Getting Started



Processing the Application
10. In the edit line of the Session Control panel in the main window, enter 
"310" and click OK. 

After the evaluating the rule’s second condition, the system displays the 
question for the third condition. 
Getting Started 71



Chapter The Intelligent Rules Element4
11. In the Session Control panel of the main window, click the edit-line 
arrow and select "Inward": 

12. Click OK to continue the inferencing session.

After the system finishes evaluating all three LHS conditions, it triggers 
the single action shown to the right of the arrow symbol (=>) in the rule 
graph. The newly displayed figure is a result of the rule’s action. 
72 Getting Started



Processing the Application
13. Close the Apropos window.

When processing is complete, the NXP Engine status shows “Done” in 
the Session Control panel of the main window. The check marks of the 
rule graph indicate the outcome of the evaluation process. 

14. Click in an inactive area of the Session Control panel to display the 
global popup menu. 
Getting Started 73



Chapter The Intelligent Rules Element4
15. Choose Restart Session.

The system returns the evaluation status of the rule graph to its original 
Unknown state, as indicated by the question marks. 

16. Leave the Session Control panel and the Rule Network window open.
74 Getting Started



Processing the Application
Using Data

Data that causes the evaluation of one of the rule’s LHS conditions can also 
place a hypotheses for evaluation on the Intelligent Rules Element’s agenda. 
This action of starting knowledge processing with data is referred to as 
volunteering data.

Volunteering Data from the Rule Network Window

1. In the Rule Network window, click the slot tank_1.pressure in the 
rule’s second condition todisplay the local popup menu for this item. 

2. Choose Volunteer:

3. Enter "310" and click OK:

4. Click in an inactive area of the Rule Network window to display the 
window’s popup menu. 
Getting Started 75



Chapter The Intelligent Rules Element4
5. Choose Knowcess:

6. In the Session Control panel, click the edit-line arrow and select 
"refueling": 

7. Click OK.

Since the value of the second condition is already known, the system 
76 Getting Started



Processing the Application
proceeds to the next unknown condition. 

8. In the Session Control panel, click the edit-line arrow and select 
"Inward": 

9. Click OK.

After the system finishes evaluating the two unknown LHS conditions, 
it triggers the single action shown to the right of the arrow symbol (=>) 
in the rule graph. The newly displayed figure is the result of the rule’s 
action. 

10. Close the Apropos window.

When processing is complete, the Session Control Panel shows the 
status of the rules engine (NXP) as “Done.” The check marks of the rule 
Getting Started 77



Chapter The Intelligent Rules Element4
graph indicate the outcome of the evaluation process. 

11. Click in an inactive area of the Session Control panel to display the 
global popup menu. 

12. Choose Restart Session:
78 Getting Started



For More Information about the Intelligent Rules Element
The system returns the evaluation status of the rule graph to its original 
Unknown state, as indicated by the question marks. 

13. To conclude this session, close the Intelligent Rules Element windows.

For More Information about the Intelligent Rules Element

■ See the Intelligent Rules Element Language Programmer’s Guide.
■ See the Intelligent Rules Element Language Reference.
■ See the Intelligent Rules Element User’s Guide.
■ See the Intelligent Rules Element C/C++ Programmer’s Guide.
Getting Started 79



Chapter The Intelligent Rules Element4
80 Getting Started



Chapter
5 OLE Automation and 
OOScript 5

Object-Model Interoperability

The Elements Environment’s built-in interoperability layer allows you to 
create enterprise-wide, business-critical applications by seamlessly 
integrating objects from different object models, such as the Elements 
Environment and Microsoft’s Object Linking and Embedding (OLE) 
standard.

Note: The Elements Environment’s interoperability layer currently 
supports the OLE object model for Microsoft Windows 3.1, Windows 
95, and Windows NT. In addition, you can access CORBA servers 
using OLE-to-CORBA bridges such as Iona’s Orbix.

The Elements Environment provides a set of object servers to access objects of 
the Neuron Data Elements through drivers to specific object models. The 
interoperability layer allows Neuron Data’s OOScript language to access 
these types of objects through object servers:
■ Objects internal to the Elements Environment, such as GUI, data-access, 

business-rule, and Web objects 
■ Objects external to the Elements Environment, such as Excel 

spreadsheet objects or other objects enabled for OLE automation

Note: You can also access the Neuron Data objects through these object 
servers by using other languages, such as Visual Basic, C, and C++. 

OOScript 

Neuron Data’s OOScript is a powerful fourth-generation language (4GL) for 
scripting. OOScript allows you to quickly build business-critical 
applications. It can effectively integrate the Elements Environment objects 
and other external objects to create a comprehensive and interoperable 
development environment.

The object-aware, event-driven OOScript language combines the 
performance and functionality of a third-generation language (3GL) with 
the visual-editing techniques of a 4GL. Using the OOScript language, you 
Getting Started 81



Chapter OLE Automation and OOScript5
can write scripts and then attach them to your application components 
(objects and modules). When system events affect your application objects, 
the attached scripts execute automatically in response.

Neuron Data provides these applications for building and editing scripts:
■ A visual Script Editor that lets you build and edit scripts for different 

objects within the Elements Environment. You can start it from any 
graphical object or resource within the Elements Environment at any 
time.

■ A visual Script Browser that allows you to locate and use external 
servers, classes, modules, script procedures, and global variables.

■ A Script Tracer gives you a basic tool for analyzing an OOScript 
application as it executes.

For More Information about OLE Automation and OOScript

■ See the Interoperable Objects OLE Server Installation Note.
■ See the OOScript Language Programmer’s Guide and the OOScript 

Language Reference. 

Related Subjects
■ The Elements Environment Application Services (EAS)
82 Getting Started



Chapter
6 The Web Element 6

The Web Element (WE) allows you to enable your applications for the World 
Wide Web. Besides being portable, the Web Element contains all the features 
that you can find in a Web browser.

The Web Element includes these components:
■ Web Element browser
■ Navigator Link and Navigator Overview
■ Web Control
■ Navigation API
■ HTML Editor 

The Web Element has these features:
■ Is compatible with HTML 2.0
■ Allows you to embed a World Wide Web browser window in an 

Elements Environment application
■ Includes Neuron Data Applets, which allow you to create dynamic, 

distributed miniapplications that clients can download from anywhere 
in an enterprise-wide Intranet or from the Internet. 

Neuron Data Applets that use the OOScript servers have full access to 
external objects, such as those available in OLE automation servers.

The Web Element Pro contains C/C++ APIs that allow you to:
■ Embed a Web Control in any window of an application 
■ Build widgets that are aware of Web Control

For More Information about the Web Element

■ See the Web Element Programming Guide.
■ For information on the Web Element OOScript classes, see the OOScript 

Language Reference.
Getting Started 83



Chapter The Web Element6
84 Getting Started



Chapter
7 The Distributed Messaging 
Element 7

The Distributed Messaging Element (DME) lets you run multiple processes on 
several computers in a distributed system. It allows you to share information 
without having to worry about low-level communications. The Distributed 
Messaging Element provides these features for building distributed systems 
and applications:
■ A comprehensive set of routines for building simple and complex 

distributed systems
■ Tools to manage the distributed systems as if they were a single 

application running on a single processor

Applications can be 
■ Self-contained programs running on one or more processors
■ Multiple threads of a single program 

Communication between the processes can be simple sequencing routines 
within a single program. It can involve more complex processes, such as 
“interrupt-driven” real-time control and transmission of messages between 
completely independent programs with long latencies. 

The Distributed Messaging Element handles data transfers between:
■ Threads of a single process
■ Processes on the same computer
■ Processes on separate computers

For intraprocess communication, the Distributed Messaging Element can 
use a variety of mechanisms, including UNIX sockets and shared memory. 
For interprocessor transfers, the Distributed Messaging Element can use:
■ Transport Communications Protocol/Internet Protocol (TCP/IP) 

sockets
■ Serial connections (including modems)
■ Other standard computer networks and protocols

Components of the Distributed Messaging Element
■ A communications protocol and interface-definition language (IDL) 

that describe the format for sending and receiving data objects on the 
physical network
Getting Started 85



Chapter The Distributed Messaging Element7
■ Router processes that are responsible for routing the data objects to the 
appropriate processes

■ A library of routines that implement the application programming 
interface (API) to the Distributed Messaging Element

The Distributed Messaging Element and Other Distributed Systems

The Distributed Messaging Element and other distributed data systems, 
such as distributed databases, differ in the following ways: 
■ The Distributed Messaging Element is a data-transmission mechanism. 

It distributes information to all appropriate processes and then 
completely erases the data from its own temporary buffers. 

Note: The only exception to this is the persistent delivery information, 
which is kept at the sender and recipient ends, not in the 
infrastructure itself. 

■ Any new processes that attach to the Distributed Messaging Element 
cannot access previously distributed information. This is unlike other 
databases, which constantly update their files to retain a current version 
of all the data that they receive. 

■ The Distributed Messaging Element does not need to maintain data 
internally. Therefore, it does not require the complicated and 
time-consuming data-locking and cache-coherency mechanisms 
inherent in other distributed systems.

The Distributed Messaging Element Applications

The Distributed Messaging Element provides a comprehensive foundation 
for distributed applications. It supports event-driven, peer-to-peer 
applications as well as client-server applications. The Distributed Messaging 
Element is distinctive in its real-time, dynamic control capabilities. 
Application areas for the Distributed Messaging Element include:
■ Distributed manufacturing systems
■ Real-time data distribution and distributed databases
■ Collaborative workgroup and workflow software
■ Distributed control systems
■ Networked multimedia applications
■ Accounting applications, such as order processing and inventory 

control
■ Integrated logistics
■ Distributed decision-support systems. 
■ Migration of applications to new distributed environments
86 Getting Started



Concepts of the Distributed Messaging Element
Concepts of the Distributed Messaging Element

The following sections describe concepts underlying the Distributed 
Messaging Element, including:
■ Data objects
■ The data-distribution method used to send data objects
■ The event-driven model of programming

Portability

The Distributed Messaging Element software is designed to be easily 
portable across different:
■ Computer architectures
■ Operating systems
■ Programming languages

Different architectures and operating systems can connect to the same 
virtual network to send and receive information from any other process. The 
Distributed Messaging Element handles all data translation required for 
communication between processes.

Data-centered Processing

The Distributed Messaging Element uses a data-centered approach, in 
which processes that exchange data indicate the type of data they exchange, 
and not their addresses or process IDs. In a data-centered approach, 
processes can be replaced, run on different processors, or simulated without 
affecting any of the other processes. This makes modular systems possible. 
Since all processes can access all data, debugging communications becomes 
easier than in an address-based system. 

An example of a data-centered system is a distributed database, in which 
processes exchange information by reading from, and writing to, database 
entries. Each process accesses the database through a local interface. The 
processes have no prior knowledge of the other processes accessing the 
database.

Data Object and Structure

Since the Distributed Messaging Element is a data-centered system, the 
organization of data in the Distributed Messaging Element is very 
important. The Distributed Messaging Element uses structures to define the 
format of each class of data. All processes use the same format for the 
structures to ensure a consistent data format. 
Getting Started 87



Chapter The Distributed Messaging Element7
Each piece of information exchanged between processes is referred to as a 
data object, which contains these fields:
■ The data itself
■ Information about the process that created the data
■ The time the data was created 
■ Information to uniquely identify the structure of the data 

The Distributed Messaging Element provides various routines for handling 
all this information as a unit.

The Distributed Messaging Element provides mechanisms for defining new 
classes of data objects in terms of the data structures they contain. Once a 
data-object class is defined, applications can:
■ Create instances of this object
■ Fill them with information
■ Exchange them with other applications

Note: In this manual, the term “object” refers to a data object.

Routers and Fully Connected Networks

The Distributed Messaging Element implements a ‘‘virtual’’ fully connected 
network, where all processes are connected to all other processes. Any 
process can read information from, and write information to, any other 
process. 

Most implementations of such a network are based on the point-to-point 
communication model. Each process in the network has an open file 
descriptor for every other process and keeps track of its connections with all 
other processes.

However, the Distributed Messaging Element implements a multipoint 
method by creating a process called the router, which is responsible for these 
tasks:
■ Maintaining all the necessary connections
■ Automatically routing information among various processes
■ Exchanging information between processes on its processor as well as 

on different processors

The user program has a single connection with its local Distributed 
Messaging Element router. It connects to other processes through the 
Distributed Messaging Element router. This simplification not only reduces 
the complexity of the user code, but also improves performance by 
optimizing the data distribution. 
88 Getting Started



Concepts of the Distributed Messaging Element
This architecture is natively multipoint, which means that messages can have 
more than one sender and receiver. Therefore, the Distributed Messaging 
Element is more scalable and flexible than point-to-point communication 
models.

Figure 7-1   Multipoint Routing versus Point-to-Point Communications

Data Distribution

Using the data-centered approach and routers, the Distributed Messaging 
Element has these mechanisms for exchanging data of a particular class:
■ A process indicates what classes of data it needs by “registering an 

interest’’ in the corresponding data format. 

Note: A process registering interest in a particular class of data is equivalent 
to saying: ‘‘Whenever data of class X is available, no matter who 
created it, I want a copy.’’ 

■ When the particular class of data is available, the Distributed Messaging 
Element router distributes the data to all processes that registered an 
interest in that class of data, but not to processes not interested in that 
class of data. 

A process does not have to know who needs the data. The process just 
communicates to its router to distribute a copy of the data to any process that 
wants it. The Distributed Messaging Element router translates this 
command into a specific set of transmissions that depend on the interests of 
all processes.

Point-to-Point Communications Multipoint Communications

Process A
Process E

Process B

Process C
Process D

Platform 1

Platform 2

Platform 4

Platform 3

Platform 1

Process A

Process B

Process C
Platform 2

Router
1

Router
2

Router
3

Process E
Platform 4

Process D

Platform 3
Getting Started 89



Chapter The Distributed Messaging Element7
Event-driven Programming

The Distributed Messaging Element API uses an event-driven model of 
programming, in which you define a set of conditions that may become true 
at some point in the execution of an application. An event occurs whenever 
a condition becomes true. 

Examples of events in a Distributed Messaging Element application include:
■ The receipt of data from another application
■ Timers
■ Keyboard input
■ File input/output (I/O) 

The Distributed Messaging Element provides mechanisms for indicating an 
“interest” in each kind of event. You have to specify an event handler to be 
invoked whenever the specified event occurs.

Interactions with Applications

An application is a piece of code that can be uniquely identified and uniquely 
addressed. An application usually is a separate executable, but it can also be
■ A thread within an executable
■ A dynamic link library (DLL)
■ A separate virtual “environment” within an executable

The Distributed Messaging Element can interact with applications in the 
following ways:
■ Seeing the applications running
■ Starting and stopping applications
■ Identifying the application that generated a piece of data 
■ Sending a piece of data to an application

The Distributed Messaging Element provides routines for these functions:
■ Initializing a new application
■ Exiting an application (not the whole executable)
■ Controlling the behavior of an application, such as reloading persistent 

information
90 Getting Started



For More Information about the Distributed Messaging Element
Resource Files

Resource files store, in a common format and directory, the following 
configuration information. The Distributed Messaging Element components 
require this information at various times during the execution of a 
distributed application: 
■ Fields contained in each kind of data object 
■ Default parameters for starting an application 
■ Information about which remote computers to connect to
■ The current configuration of the applications
■ Data that the applications have received or sent

Resource files provide a very simple file-based database. Each resource file 
contains one or more records of information. These records are instances of 
objects stored in a file. 

The Distributed Messaging Element provides tools for reading, writing, and 
updating objects in these resource files. In addition, various Distributed 
Messaging Element tools use the resource files to store information such as:
■ Object definitions
■ Connection configuration
■ Startup defaults

Standard Object Library

The standard object library contains a set of standard object definitions and 
routines that provide default capabilities for all the Distributed Messaging 
Element applications. This library includes several ‘‘utility packages’’ of 
objects or routines. Each package provides a service. It also contains one or 
more object definitions, and routines for interpreting and exchanging those 
objects. 

Capabilities of these utility packages include:
■ Monitoring the application states of all systems on the network
■ Monitoring configuration information, including routers
■ Starting and stopping remote applications
■ Automatic maintenance of connections

For More Information about the Distributed Messaging Element

■ See the Distributed Messaging Element Programmer’s Guide.
■ See the C API Reference Manual.
Getting Started 91



Chapter The Distributed Messaging Element7
92 Getting Started



Chapter
8 The Elements Application 
Services 8

To reduce development time, the Elements Application Services (EAS) 
provides the support layer for these low-level, platform-specific functions:
■ Built-in memory and print management
■ Graphic primitives 
■ Error handling
■ File input and output
■ Asychnronous event management
■ String manipulation

The Elements Application Services makes the graphical-presentation layers 
and the integration layers of an application portable.

For high-level application development, the Elements Application Services 
provides complex building blocks, which you can use to assemble your 
application. With building-block mechanisms, such as datasource/views, 
you can avoid repetitive coding tasks related to these functions:
■ Manipulation of data and sources of data
■ Display of data for complex widgets such as tables and list boxes

Datasource/Views

The datasource/views mechanism provides the underlying bidirectional 
protocols linking datasources and views for scripts written in OOScript, C, 
and C++. By using this mechanism, you avoid having to write code to 
directly manipulate widgets.

Datasource/views separately addresses:
■ Data management
■ Application logic
■ GUI management

The datasource/views mechanism allows you to concurrently access the 
same data, such as information from a database, and to present it in multiple 
views—for example:
■ A spreadsheet-like table
Getting Started 93



Chapter The Elements Application Services8
■ A choice box
■ An input field

The data can then be modified at either end of the link. When the datasource 
is modified, it can automatically update all the views, depending on the 
options present in the registered view. The datasource also controls access to 
prevent conflicts among multiple views during simultaneous changes. 

Internationalization

The Elements Application Services also provides the underlying support for 
internationalization. With the Elements Application Services, you can 
quickly port applications to several single-byte or double-byte languages, 
including Japanese. The internationalization features include:
■ Character sets
■ Porting support
■ Text rendering
■ In-place editing
■ Standard or native in-text widgets
■ String-manipulation services

See Chapter 12, “Localizing Applications in the Elements Environment,” for 
more information about internationalization.

For More Information about the Elements Application Services 

■ See the Elements Application Services C/C++ Programmer’s Guide.
94 Getting Started



Chapter
9 C++ Programming in the 
Elements Environment 9

The Elements Environment for C++ consists of:
■ A set of C++ libraries
■ A set of resource files
■ A development environment

The Elements Environment libraries themselves have been compiled in C++. 
This implementation of the product achieves a high level of object 
orientation, including:
■ Subclassing
■ Virtuality
■ Templates
■ Exception handling
■ Generic classes

The Elements Environment C++ development environment includes these 
features:
■ The C++ classes implement the same set of API calls provided in the C 

libraries. 
■ Naming conventions in the C++ API are similar to those in the C API.
■ Virtual member functions implement the notification mechanism used 

in C to achieve virtuality. 
■ There is a set of C++-specific constructors for each of the C++ classes. 

Many of these constructors are overloaded for specific processes. Some 
of the classes also have specific destructors.

■ The classes inherit directly from each other; there are no intermediate 
implementation classes.

General Architecture

The Elements Environment C++ libraries include:
■ Resource classes
■ Utility classes
Getting Started 95



Chapter C++ Programming in the Elements Environment9
Resource Classes

In the Elements Environment, the base class for objects that can be persistent 
and that support instance customization is the Neuron Data Resource 
(NDRes) class. All subclasses of NDRes inherit directly from each other in a 
single inheritance graph. These resource classes have part of their interface 
defined as virtual member functions. You can reimplement these in 
subclasses to customize their behaviors.

Utility Classes

Utility classes are a group of C++ classes that do not derive from the NDRes 
class. These objects:
■ Do not support persistence or instance customization
■ From a C++ perspective, do not offer any virtual API functions

All these classes are defined as standard C++ classes. All the API functions 
are defined as:
■ Member functions
■ Static member functions

Utility classes provide this functionality:
■ Memory management
■ Memory pools
■ Storage objects (such as arrays, hash tables, and AVL trees) 
■ Buffered input/output (I/O)
■ File I/O
■ File management 
■ Compression and decompression
■ Encryption
■ String management
■ Time management

In the case of arrays, several generic classes are defined according to 
whether the data should be stored directly or by reference.

Utility classes provide much of the functionality of the standard C++ library 
functions. In addition, they ensure that the applications you develop are 
compatible across platforms. 
96 Getting Started



General Architecture
Constructors and Destructors

Each class in the Elements Environment C++ library defines:
■ Overloaded versions of the constructor new 
■ The C++ destructor delete

C++ Constructor new and Destructor delete

The NDRes class redefines the C++ new and delete operators as calls to 
Elements Environment memory management. This allows you to create and 
delete objects with the familiar C++ new and delete operators. When you 
use these constructors to subclass from the base NDRes class, they allow 
you to construct an object from information persistently stored in the 
resource manager.

For example, to construct a window win from the information stored in the 
module mod and resource win in a loaded resource library, you can use:

NDWinPtr win = new NDWin("mod", "win");

To create a window and a button in that window, you can use:

NDWinPtr win = new NDWin;
win->Init();

NDPButPtr pbut = new NDPBut;
win->AddWgt(pbut);

You can remove the button from the window with:

win->RemoveWgt(pbut);
delete pbut;

Note: Usually, you do not delete widgets one by one. Instead, when users 
exit a window, the window manager deletes all the widgets. You 
delete windows either by using the window manager of the interface 
or by this explicit call:

win->Terminate();

The Elements Environment Constructor new

The Elements Environment constructor new allows advanced Elements 
Environment applications to subclass an object at runtime. This constructor 
takes a third argument, &array. This lets you specify, at construction time, 
the instantiation class for each of the objects that gets created. 
Getting Started 97



Chapter C++ Programming in the Elements Environment9
For example, this code will instantiate a button in the window for the 
subclass MyTBut of NDTBut:

ResRunTimeClassArray array;
ResRunTimeClassRec info;
info.ResName = "PButOk";
info.ResClass = MyTBut::Class();
array.AppendElt(&info);

NDWinPtr win = new NDWin("mod", "win", &array);

Note: When you use this runtime subclassing mechanism, make sure that 
the objects you want to instantiate are a subclass of the stored object.

Encapsulation

The Elements Environment widget classes use the C++ encapsulation 
mechanisms in a simple way:
■ The class-specific fields are protected and therefore cannot be directly 

accessed; however, they still permit subclassing.
■ The member functions are public and appear to be directly accessible. 

A large number of field names, such as TButPrivate1 and 
TButPrivate2, are encoded. Therefore, even if the corresponding fields 
are in the public section, they behave as if they were private because their 
true names are concealed.

You can access protected fields of classes only by making a call to the 
appropriate member function. In particular, you cannot use certain 
functions as freely as in C. Instead of passing pointers to the resource, you 
use member functions of the instantiated objects. For example, this function 
call does not compile in C++:

WgtPtr Wgt;

WGT_GetFgColor(wgt);

The correct implementation is

wgt->GetFgColor();

Customization

The Elements Environment allows you to customize the behavior of objects 
in classes inheriting from NDRes at two levels:
■ Class
■ Instance
98 Getting Started



Customization
Class-Level Customization

To customize the behavior of objects at the class level, you can reimplement 
virtual member functions in subclasses. This is the standard C++ mechanism 
for customization.

For example, if you want to replace the redraw method for your own 
subclass of NDPBut, you can redefine the NfyRedraw virtual member 
function for the subclass:

class MyPBut : public NDPBut {
RCLAS_CPPFULL(MyPBut, NDPBut)
void NfyRedraw(void);

};

void MyPBut::NfyRedraw(void)
{

// default drawing
NDPBut::NfyRedraw();
// custom draw in addition
...

}

Use this mechanism when you need to customize a significant number of 
instances.

Instance-Level Customization

You can customize the behavior of any instance of a given class without 
affecting the behavior of all the other instances.

Instance-level customization is most useful in specialized applications in 
which customization affects only a single instance. For example, the 
Elements Environment code generator uses this mechanism to ease 
compilation.

You can achieve instance-level customization by registering notification 
handlers to override the default behavior that the corresponding virtual 
member functions implement. 

For each virtual member of any class, there is a notification that identifies the 
callback. For example, the NfyHit virtual member function of the NDTBut 
class is identified by TBUT_NFYHIT.

You can register a callback by using the macros provided in the public 
header file respub.h. These macros allow you to register member functions 
of any particular class as callbacks.
Getting Started 99



Chapter C++ Programming in the Elements Environment9
This example shows how to customize the class Form at the instance level:

1. Create the class:

class Form : public NDWin {
protected:

NDPButPtrmPButOk;
NDLBoxPtrmLBoxData;

public:
Form();
~Form() { }
RES_NFYVOIDHANDLER(Form, NfyHitOk)// declares callback

}

2. Set the handler in the constructor for the class:

Form::Form() : NDWin("mod", "win")
{

mPButOk = (NDPButPtr)GetNamedWgt("OK");
mLBoxData = (NDLBoxPtr)GetNamedWgt("Data");
RES_SETNFYVOIDHANDLER(Form, mPButOk,

  TBUT_NFYHIT,NfyHitOk);
}

3. Implement the handler:

void Form::NfyHitOk(void)
{

NDWin::Terminate();
}

You can have the handler call the default action for the notification before or 
after it does its custom processing. You can do this by calling the DefNfy 
method if the ND<Class> pointer for the object is available:

void Form::NfyHit(void)
{

mPButOk->DefNfy(TBUT_NFYHIT); // Call default action.
Terminate();

}

Note: You have to call the DefNfy method. If you call the NfyHit method, 
it will call Form::NfyHit again and cause an infinite loop.

There is a RES_SHAREDNFYVOIDHANDLER version of the macro. This 
macro passes the ResPtr of the object that triggered the notification as a 
parameter to the handler. However, you need to know the actual type of the 
object so that you can cast it from ResPtr to <Class>Ptr to call the 
correct default action for <Class>. 
100 Getting Started



Subclassing in C++
Subclassing in C++

The Elements Environment exports its entire API as C++ classes. Except for 
the restriction on implementation classes described in “Utility Classes” on 
page 96, you can subclass any of the classes.

Subclassing from NDRes Subclasses 

The Elements Environment NDRes subclasses have to interact with the 
persistency manager. Therefore, subclassing of NDRes is different from 
subclassing in C++:
■ The NDRes subclass objects are not always created and destroyed 

explicitly through the C++ new and delete operators. Instead, in most 
Elements Environment-based applications:
– The resource manager automatically creates widgets when a 

window is loaded from the resource database.
– The resource manager automatically destroys widgets when a 

window is terminated. This can happen as a result of a user action 
from the System menu or because of an explicit call to 
NDWin::Terminate().

To maintain this capability, you have to register the C++ classes in the 
resource manager. That way, it will know how to create and destroy 
instances of these classes. Also, you must provide information about 
your widget’s persistent fields so that the Elements Environment 
resource manager can manage these fields for you.

The Elements Environment API provides mechanisms to support these 
different subclassing needs: 
– Light C++ subclassing, in which the subclass need not directly 

interact with the resource manager. See “Light Subclassing” on 
page 102 for details.

– Full C++ subclassing, in which the subclass can define new fields, 
virtual functions, constructors, destructors, and persistent fields. 
See “Full Subclassing” on page 102 for details.

■ NDWin subclass objects are not always propagated to the instances of 
the class. To avoid this problem, the Elements Environment provides 
template classes. Template classes allow widgets defined in a template for 
a window subclass to be automatically inherited by:
– All the instances of the subclass
– The templates 
– Instances of derived subclasses 
Getting Started 101



Chapter C++ Programming in the Elements Environment9
When you use the template class, the system maintains index values for 
widgets. 

Note: You cannot select inherited widgets in the Window Editor. Their 
names will be followed by an “L” in the widget list to indicate 
that they are locked. You can only edit these widgets in the 
template itself.

Light Subclassing

You can use light subclassing when you do not want the persistence manger 
to create or dispose of instances of the resulting class. In that case, the 
persistence manager does not have to know anything about the subclass in 
addition to what it already knows about the superclasses. You have to create 
and dispose of all instances. They are never stored in the resource files 
directly.

Note: Even though instances of a class are not stored in a resource-library 
file, they can be constructed from the information stored for an 
instance of a superclass. For example, suppose that mod.win is a 
window in a .dat file. Then, this constructor will construct the 
instance MyWin from the information for mod.win:

MyWin::MyWin() : NDWin("mod", "win")
{

.../...
}

Full Subclassing

Full subclassing is used when you want to define persistent fields in your 
C++ class.

The Elements Environment resource manager handles these persistent fields 
and automatically loads them from a resource database (.dat file). You can 
edit them:
■ In text form in the resource (.rc) file
■ Through an editor that you display from the Resource Browser

Conceptually, there is no major difference between full subclassing in C++ 
and resource subclassing in C. The main difference is that you must register 
the class through a call to RCLAS_CPlusRegister instead of a call to 
RCLAS_Register.

To subclass a resource class:

1. Place the RCLAS_CPPFULL macro in your subclass definition.

2. Implement the two constructors required, as well as the destructor.
102 Getting Started



Subclassing in C++
3. Initialize the OiFields static variable, which is returned by the 
GetOiFields() function, using one of these methods:

– Statically initialize the variable with the array of persistent field 
descriptors:

PFldPtr MyClass::OiFields[] = {
{ "Field1", RCLAS_OFFSET(MyClass, Field1), 

PFLD_TYPESTR,  
  PFLD_CATTEXT },
{ "Field2", RCLAS_OFFSET(MyClass, Field2), 

PFLD_TYPEINT16, 
  PFLD_CATSIZE },
{ NULL, 0, PFLD_TYPEBAD, PFLD_CATNONE }

};

– If your compiler does not let you statically initialize the variable, 
compute the offsets before registering the class:

MyClass * n = NULL;
OiFields[0].Offset = RES_OFFSETOF(n, Field1);
OiFields[1].Offset = RES_OFFSETOF(n, Field2);
Register();

4. By calling MyClass::Register() in an initialization routine, register the 
C++ class before any resource database containing instances is loaded.

5. Define how your class instances respond to the notifications sent by the 
resource or widget managers.

6. Define and implement the class API.

7. Rebuild the development environment.

8. Provide an editor for your new class if you want to fully integrate your 
subclass in the Elements Environment.

Note: The fact that the class is implemented in C++ instead of C does not 
create any special problems. 

To complete these tasks, see the example subclex.cpp and the readme.txt in 
this directory:

ee21\cpp\examples\gui\subclass 

Defining a C++ Subclass in the Elements Environment

You can define a C++ subclass using the Class Editor in the Resource 
Browser. The Class Editor allows you to specify the characteristics of the 
subclass you add. 

In the Class Editor, you can also specify that the new class appear in the 
Window Editor tools palette. If you choose this option, you can create more 
instances of the subclass by selecting the icon that you specified for your 
class in the Window Editor palette. 
Getting Started 103



Chapter C++ Programming in the Elements Environment9
When you save your class, the Elements Environment generates a resource 
class definition in the .rc text file of the module in which you defined the 
class. The resource class definition has this syntax:

(RClas.Compile
Name: "MyClass"
Parent: "MyParent"
Module: "MyMod"
Version: 8
// Define persistent fields here.

)

The instances of the subclass are described as in the .rc file:

(MyClass.Compile
Name: "MyMod.MyWgt"
...

)

Warning: The Elements Environment Class Editor does not allow you to 
modify classes that already exist. You can only edit all the 
attributes of a new class during the session in which you created 
the class. If you want to modify the class later, you need to edit the 
.rc file and recreate the resource database (.dat file) with rescomp.

Registering a C++ Subclass in the Resource Manager

The RCLAS_CPPFULL macro defines (among other things) a Register static 
member function that registers the C++ class to the resource manager. You 
should call this Register function before any instance of the subclass is 
created or loaded.

To register a C++ subclass to the resource manager:

1. Include the RCLAS_CPPFULL(class, parent_class) macro in the C++ 
class definition. 

2. Implement the two required constructors and the destructor.

These constructors are required:

<class>::<class>(RClasPtr rclas, RClasCreateCPtr cptr);
<class>::<class>();

For which the default implementation would be

<class>::<class>(RClasPtr rclas, RClasCreateCPtr cptr) : 
<pclass>(rclas, cptr)
{

.../...
}

<class>::<class>() : <pclass>(<class>::OiClass, NULL)
{

.../...
}

104 Getting Started



Generic Container Classes
Note: If any of these constructors or destructor is missing, the class will have 
undefined symbols at link time.

If you create the class in the Resource Browser, the Elements Environment 
generates the template code for all this. Thus, you do not need to type the 
code yourself.

For example, if you define MyClass as a subclass of ParentClass using the 
Resource Browser, the following code gets generated:

class MyClass : public ParentClass {
// class information such as fields, member functions

public:
// resource-manager information
RCLAS_CPPFULL(MyClass, ParentClass)

}

MyClass::MyClass(RClasPtr rclas, RClasCreateCPtr cptr) : 
ParentClass(rclas, cptr)
{

.../...
}

MyClass::MyClass() : ParentClass(MyClass::OiClass, NULL)
{

.../...
}

Then include this call in one of your initialization routines:

MyClass::Register();

Note: If you do not call MyClass::Register() in your main program before 
creating an instance of MyClass, the program will cause errors that 
are difficult to diagnose. These errors will violate segmentation when 
accessing or constructing members of MyClass.

Generic Container Classes

The Elements Environment provides a set of generic container classes that you 
can use to define any type of array. There are three types of generic arrays:
■ The generic ArPtr class, which is defined in arptrpub.h, instantiates the 

array of pointers classes. Array of pointers contains pointers to objects, 
not the objects themselves. Copying an array of pointers copies only the 
pointers. The original array and the copy share the objects. 

■ The generic ArRec class, which is defined in arrecpub.h, instantiates the 
array of objects classes. Array of objects, or structures, contains the objects 
themselves. All objects must be of the same size. Copying an array of 
objects copies the objects themselves. 
Getting Started 105



Chapter C++ Programming in the Elements Environment9
■ The generic ArNum class, which is defined in arnumpub.h, instantiates 
the array of numbers classes. Array of numbers contains numbers of any 
integral type. 

Arrays provide these services:
■ Store and retrieve an element by index
■ Look up an element by key
■ Store elements without duplication
■ Sort the elements according to a sorting method you provide

You define a specific array class by using one of the ARXXX_DEFCLASS 
macros. For example:

ARPTR_CLASS(NDWinPtr, NDWinCPtr)

defines a new C++ class ArPtrOfNDWinPtr, where each element is a 
NDWinPtr. All the methods in the class use the proper types. 

You can use this class as follows:

ArPtrOfNDWinPtr array;
NDWinPtr  aWin;

array.AppendElt(aWin);
aWin = array.GetNthElt(0);

Code Generation

From the Resource Browser in the Elements Environment, you can:
■ Generate code
■ Separate the code into header and source files

Laying Out Windows

When you use the Window Editor to create a window in the Resource 
Browser, the widgets you add to your window determine the exact code that 
gets generated in the C++ source-code template file. The code template has 
this structure:
■ The first section of the code template contains a list of #include 

statements. The list of libraries that are installed depends on the exact 
product configuration and the types of resources you included in your 
project. 

■ The Notification Handlers section contains the handler template, which 
allows you to customize actions. This section consists of a set of virtual 
member functions.
106 Getting Started



Generic Container Classes
You can customize this generated code by inserting your own code in 
the appropriate notification handlers. The custom code that you add 
overrides the default behavior of the widgets. For example:

void App1Win1::HitTButOk(void)
{

NDAlrtW::Ok(mTEd->GetStr());
}

■ The constructor for the window registers the widgets. This allows you 
to reference the widget using the variable names specified in the class 
declaration. It also registers the appropriate notifications for the added 
widgets through the WIN_SETNFYHANDLER macro in the window 
constructor method. For each widget class, the string-list resource 
<classmod>.<Myclass>CodeGNfys controls the default list of 
generated handlers. For example, for single-line text edits, the list is in 
TEd.STEdCodeGNfys.

Note: You can access each widget from anywhere as a simple member 
attribute of the window object. You can add more NfyHandlers 
if you need to.

■ The next section loads the window resource and calls the constructor. 
The Init method initializes the window.

■ The last section contains the application main() routine and a set of 
library-installation functions. The list of libraries installed depends on 
the exact product configuration. These are the resources that define the 
installation functions:
– includes for the list of includes 
– CppInstalls for the list of C++ statements to register the 

element
– CppLoadInits to load and initialize the element
– CppExits to leave the element

Separating Source Code and Header Files

The generated code can either include a declaration of the class that 
describes the window or the declaration can be output to a separate header 
file. The presence or the absence of a header-file name in the Module Editor 
of the Resource Browser determines whether or not to save the code into 
separate header and source files:
■ If the user module has entries for both—mymod.cpp and 

mymod.h—two distinct files are generated.
■ If the user module has only one source name—mymod.cpp—and no 

header name, the whole code is placed in mymod.cpp. 
Getting Started 107



Chapter C++ Programming in the Elements Environment9
The header section contains the declarations of member functions that 
implement the instance-level callbacks for each window class. It also 
contains member variables to reference the widgets in a 
programmer-friendly way with the function NDWgt::GetNamedWgt(). 

Creating Custom Classes

If you use the Class Editor to define your own custom subclass in the 
Elements Environment, all the C++ code to define and register this class will 
be automatically generated. The generated code will use the 
RCLAS_CPPFULL macro.

For example, if you create a subclass SubBrows of the class Brows with one 
persistent field F1 of type string, this code will be generated:

class SubBrows : public NDBrows {
protected:

Str F1;
public:

RCLAS_CPPFULL(SubBrows, NDBrows)
static void CppRegister(void);

};
typedef class SubBrows C_FAR * SubBrowsPtr;

PFldRec SubBrows::OiFields[] = {
{ "F1", 0, PFLD_TYPESTR, PFLD_CATOTHER },
{ (CStr)NULL }
};

SubBrows::SubBrows(RClasPtr rclas, RClasCreateCPtr 
cptr) : NDBrows(rclas, cptr)
{
}

SubBrows::SubBrows() : NDBrows(SubBrows::OiClass, 
(RClasCreateCPtr)NULL)
{
}

SubBrows::~SubBrows()
{
}

RClasPtr SubBrows::OiClass = NULL;

void SubBrows::CppRegister(void)
{

SubBrowsPtr n = NULL;
OiFields[0].Offset = RES_OFFSETOF(n, F1);
Register();

}

The main() routine of your application will contain:

SubBrows::CppRegister();
108 Getting Started



Code Regeneration
Code Regeneration

The code regeneration process maintains common source files for both 
regenerated and customized (user-generated) code. Each file usually 
contains only one module. The Elements Environment generates source files 
when they are first saved. They are then maintained by you and by the code 
regenerator.

The code-parsing strategy performs minimum updates in a reliable way. 
The parser uses code annotations, or comments, to greatly improve its 
reliability. The annotations help you distinguish text areas controlled by the 
code regenerator from areas where you enter text and edit custom code. 

The code regenerator always preserves all the original code changes that you 
make, if you made changes only where the code regenerator does not write 
to. Therefore, it systematically checks annotated areas before updating them 
in order to identify modifications. For example, if you insert text in a solid 
block, the entire section is commented out between #if 0 and #endif. The 
regenerated block is inserted above the commented-out section. You can 
later decide whether to keep the changes and merge them with the new 
version. The same thing happens in flexible areas for key commands that are 
not recognized or are no longer part of the project you are currently editing 
(for example, removed menu items).

Warning: Do not modify code within areas that contain comments alerting 
you not to modify the code. Only the code regenerator can write to 
those areas.

Regeneration is only initiated when no errors are found. If you accidentally 
alter annotations, the code regenerator provides error comments. The 
regeneration process always produces an output, even if it is only error 
messages.

Limitations

Programming in the Elements Environment has certain limitations for 
creating C++ applications.

Copy and Assignment Operations

You cannot copy any of the C++ objects, and you cannot assign one object to 
another:

NDVStr::myString("Hello");
NDVStr::copyString(myString); // Compilation error
Getting Started 109



Chapter C++ Programming in the Elements Environment9
NDVStr::assignedString;
assignedString = myString; // Compilation error

Customizing Editors in C++

You cannot customize editors using standard C++ mechanisms. If your 
application requires embedding the development environment or building 
editors for your custom classes, follow the same conventions as the C code 
listed in the custom.doc file.

Implementation Notes for Current C Users

Use the following guidelines to build the Elements Environment C++ 
libraries.

Note: Do not mix C and C++ calls in your code, if C++ exception handling 
is enabled. If you do, it will cause compiler errors.

Member Functions

Use member functions and virtual member functions instead of API calls in 
C.

For example, use:

win->Show();

instead of:

WIN_Show(win);

Note: In some cases, the conversion is not straightforward. The drawing 
API is in fact defined in the NDWgt class. Thus:

DRAW_SetColors(wgt, COLOR_Red(), COLOR_Blue());
DRAW_Rect(wgt, rect);

is converted into:

wgt->DrawSetColors(NDColor::Red(), NDColor::Blue());
wgt->DrawRect(rect);

Memory Allocation and Deallocation

Instead of the calls in C, use the Elements Environment overloaded 
operators new and delete to allocate or deallocate an instance of a class. 
These operators are in fact redefined for all classes inheriting from NDRes.

For example, use:

WinPtr = new ("mod", "win");
win->SetLabel("MyWindow");
110 Getting Started



Limitations
instead of:

WinPtr = WIN_LoadSized("mod", "win",SizeOf(winRec));
WIN_SetLabel(win, "My Window");

.../...

Constructors and Destructors

Use C++ constructors and destructors to create or destroy an instance of a 
class. 

For example, use:

NDFilePtr file = new NDFile("data");

instead of:

FilePtr file = FILE_New();
FILE_ConstructName(file, "data");

After the function AddWgt() attaches the widget to a container widget 
(either a panel or a window), you only need to call the destructor for the 
container. The container widget’s destructor will in turn call the destructor 
for each attached widget.

Overloaded Members

Use C++ overloaded members for the C API calls that are functionally the 
same but differ only in the type of arguments. 

For example, use:

Int16 i16 = 4;

Int32 i32 = 6;

ted->Set(i16);

ted->Set(i32);

instead of:

Int16 i16 = 4;

Int32 i32 = 16;

TED_SetInt16(ted, i16);

TED_SetInt32(ted, i32);

Notifications as Virtual Member Functions

Use virtual member functions instead of notifications. For each notification, 
a virtual member function takes as its argument the notification data it 
defined. The standard way of customizing class behavior in C is replaced by 
the standard C++ subclass-customization scheme (reimplementing virtual 
member functions).
Getting Started 111



Chapter C++ Programming in the Elements Environment9
These examples define a subclass of the PBut class that customizes the 
response to the NfyHit notification:

The code in C++:

class MyPButClass : public NDPBut {
.../...

public:
virtual void NfyHit(void);

}

void MyPBut::NfyHit(void)
{

// Do something.
NDPBut::NfyHit(); // Call default action if you want.
// Do something else.

}

The code in C:

typedef struct _MyPButRec {
PBUT_REC
.../...

} MyPButRec, C_FAR *MyPButPtr;

typedef enum {
PBUT_NFYINHERIT(MYPBUT)

} MyPButNfyEnum;

static void C_FAR S_MyPButDefNfy(MyPButPtr pbut, MyPButNfyEnum 
code)
{

switch (code) {
case MYPBUT_NFYHIT:

/* Do something at the class level. */
break;

default:
PBUT_DefNfy(pbut, code);

}

Using Custom Constructors and Destructors

This section provides information for developers who want to define custom 
constructors in C++ resource subclasses:
■ Defining default constructors with the RCLAS_CPLUSFULL macro 
■ Defining custom constructors for a C++ subclass

Defining Default Constructors with RCLAS_CPLUSFULL

The RCLAS_CPLUSFULL macro is designed to encapsulate all the details 
of resource subclassing in C++. The RCLAS_CPLUSFULL macro defines:
■ The special constructor 
112 Getting Started



Using Custom Constructors and Destructors
■ The registration logic

This is how the RCLAS_CPLUSFULL macro works:

1. To subclass a widget class, you place the RCLAS_CPLUSFULL macro 
in the definition of your subclass:

RCLAS_CPLUSFULL(MyClass, ParentClass)

2. This macro expands to:

private:

static RClasPtr OiClass;
static ResPtr C_FAR OiNew(RClasCreateCPtr cptr){ 

return (ResPtr)new MyClass(MyClass::OiClass, cptr);}
static void C_FAR OiDelete(ResPtr res)

{ delete (MyClass C_FAR*)res;}

protected:

MyClass(RClasPtr rclas, RClasCreateCPtr cptr);

public:

PFldRec SubMyClass::OiFields[] = 

{{ (CStr)NULL }};

void C_FAR* operator new(size_t size)
{ return MyClass::OiClass->AllocObj(size);}

void operator delete(void C_FAR* obj)
{ MyClass:OiClass->DeallocObj(obj); }

MyClass();
virtual ~MyClass();
static RClasPtr Class() { return MyClass::OiClass; }
static PFldPtr GetOiFields() { return OiFields; }
static void Register() 
{ MyClass::OiClass = RCLAS_CPlusRegister("MyClass", 

OiNew, OiDelete, (ResNfyProc) NULL,
ParentClass::Class(), MyClass::GetOiFields()); }

3. The OiClass private static variable is set to the resource class the 
resource manager creates when the class is registered.

4. The resource manager calls the OiNew and OiDelete private functions 
to create and delete instances.

5. The protected constructor takes two arguments. It is used by the 
resource manager to load instances or by subclasses to perform the 
base-class initialization.

6. The public constructor does not take any arguments. You can use it to 
construct new instances of the class from scratch.

7. The public Class function returns the resource class the resource 
manager created when the class was registered.
Getting Started 113



Chapter C++ Programming in the Elements Environment9
8. The public GetOiFields function returns the OiFields associated 
with the class.

9. The public Register() static function registers the class. You should call 
it in an initialization routine of the C++ program. 

Defining Custom Constructors

To define custom constructors in the resource subclasses, you must 
understand the role of the protected constructor.

The protected constructor takes two arguments:
■ The first is the resource class of the resource that is being instantiated. 

This will be different from the OiClass of the current C++ class if you 
call the protected constructor as a base-class constructor from a subclass 
constructor.

■ The second contains information that is private to the resource manager. 
It describes the context in which the instance is created, such as by a 
calling the new operator or by loading from the .dat file. When this 
argument is set to NULL, the resource manager considers that the 
resource is created dynamically through the new operator.

C++ Exception Handling

Two types of C++ libraries can be created from the Elements Environment 
source code:
■ Libraries that use the C++ try/catch/throw mechanisms 

internally.

Note: This is the default.

These libraries are intended for C++ programmers who:
– Use C++ exception handling in their code 
– Use the Elements Environment with other C++ libraries that rely on 

C++ exception handling
■ Libraries that use the setjmp/longjmp calls for exception handling. 

These libraries are intended for C++ programmers who:
– Do not want to use C++ exception handling 
– Rely on tools that do not support C++ exception handling, such as 

the GNU C++ compiler on most UNIX platforms
114 Getting Started



C++ Exception Handling
When C++ exception handling is enabled, these actions take place:
■ The libraries signal abnormal conditions by throwing an instance of the 

NDExcept C++ class.
■ The NDExcept class defines a function to get the frame-stack pointer.
■ The NDErrFrame class defined in the errpub.h file provides the 

functions to query the error stack for either C or C++ libraries. 
■ Queries are performed in your error handler before calling the 

ERR_RETRY and ERR_RECOVER macros. 
■ If you do not want an alert dialog, the error handler can use the 

ERR_RETRYSILENT or ERR_RECOVERSILENT macros to prevent 
the alert from being displayed.

The C++ exception handling is implemented as follows:
■ The CPP_EXCEPTION compilation flag controls whether or not C++ 

exception handling is enabled. This flag is automatically defined when 
the C++ compiler is configured for C++ exception handling.

■ The ErrFrame structure is redefined as a class with a constructor and a 
destructor, which link and unlink the stack frames. The destructor 
ensures that the error frames are properly unlinked when a C++ 
exception is thrown.

■ The ERR_CATCH macro is defined differently, depending on whether 
the compiler’s C++ exception handling is used or not. In C, its expansion 
contains a setjmp() call; in C++ it expands into the beginning of a try 
block.

■ The err_catch label becomes a macro and expands into a pair of catch 
blocks and a goto so that the code compiles when the label is 
immediately followed by a colon (:).

■ The ERR_Signal function is implemented with a C++ throw rather 
than a call to longjmp.

Existing exception-handling code based on the ERR_ macros will compile 
and work as they currently do, because they are automatically remapped in 
C++ try/catch constructs.

Note: There are a few cases where existing code will not compile with the 
CPP_EXCEPTION flag on. For example, code that branches to the 
err_catch label with an explicit goto will not compile. However, it 
can easily be modified—for example, by introducing a second label 
with a different name.
Getting Started 115



Chapter C++ Programming in the Elements Environment9
For More Information about the C++ API

■ See the Open Interface Element C++ Programmer’s Guide.
■ See the Open Interface Element C++ API Reference, Vol. 1, Widget Classes.
■ See the Open Interface Element C++ API Reference, Vol. 2, 

GUI Helper Classes.
■ See the Intelligent Rules Element C++ Programmer’s Guide.
■ See the Data Access Element C++ Programmer’s Guide.
■ See the Web Element C++ Programmer’s Guide.
■ See the Elements Application Services C++ Programmer’s Guide.
116 Getting Started



Chapter
10 Building Applications in the 
Elements Environment 10

You can use the Neuron Data Elements Environment to build your 
application after you:

1. Install the Development libraries and Deployment kits

2. Modify your environment variables with the Elements Environment 
libraries you want

This release of the Elements Environment provides these libraries for your 
applications:
■ The Open Interface Element
■ The Data Access Element, including:

– Sybase driver
– Oracle driver
– ODBC driver (for PCs only)
– ProtoDB driver (provided by Neuron Data)

■ The Intelligent Rules Element
■ The Distributed Messaging Element
■ The Web Element

Configuring the Elements Environment

You can run applications in the Elements Environment by:
■ Dynamically loading the Elements Environment libraries
■ Statically linking the Elements Environment libraries 

Note: In the development environment, you can only dynamically load the 
libraries. The Distributed Messaging Element is a runtime product 
that is linked statically. For information about building Distributed 
Messaging Element applications, see the Distributed Messaging 
Element Programmer’s Guide.

See "Default Configuration" on page 118 for the configuration files the 
Elements Environment supports.
Getting Started 117



Chapter Building Applications in the Elements Environment10
The file nd.h contains all the library-initialization statements you need to 
link optional Neuron Data Elements libraries with your application. You can 
find this file in this directory:

$ND_HOME\c\include or $ND_HOME\cpp\include

This file also contains preprocessor compilation flags. These let you enable the 
required libraries for your particular type of application. For a list of flags, 
see "Building Applications" on page 125. 

Default Configuration

Installing the Elements Environment involves only one executable 
program—ee. This file dynamically loads Neuron Data Elements based on a 
configuration file that you specify. The default configuration file, which 
enables all the Elements you install, is ee.cfg. This file is in this directory:

$ND_HOME\dat

Warning: Make sure you install only the Elements that you are licensed to 
use. If you install unlicensed Elements, the Elements Environment 
configuration file will have incorrect information. 

To verify that you installed only the Elements that you are licensed to use, 
enter this command:

c:\authfeat l

This gives you a list of Elements that you have installed. Delete the Elements 
that you are not licensed to use from the Elements Environment directory on 
your hard drive.

The following table identifies which configuration flags have been enabled 
in specific configuration files in the above directory.

Note: The ND_IM_XXX flag in this table provides the language-input 
method for international support.

Name of 
Configuration File

Elements Enabled Environment Configuration Flags
Enabled

oie.cfg Open Interface Element Development ND_OI

ND_GUI

ND_IM_XXX 

ND_EDITORS

ND_SCRIPTING

gui.cfg Open Interface Element Runtime ND_OI

ND_GUI

ND_IM_XXX 
118 Getting Started



Configuring the Elements Environment
we.cfg Open Interface Element 
and Web Element

Development ND_OI

ND_GUI

ND_IM_XXX 

ND_WE

ND_RUNSCRIPT

ND_EDITORS

ND_SCRIPTING

web.cfg Open Interface Element 
and Web Element

Runtime ND_OI

ND_GUI

ND_IM_XXX 

ND_WE

dae.cfg Open Interface Element 
and Data Access Element

Development ND_OI

ND_GUI

ND_IM_XXX 

ND_DA

ND_EDITORS

ND_SCRIPTING

da.cfg Open Interface Element 
and Data Access Element

Runtime ND_OI

ND_GUI

ND_IM_XXX 

ND_DA

ND_DA_XXX (driver flags)

ire.cfg Intelligent Rules Element 
and Open Interface 
Element

Development ND_OI

ND_GUI

ND_IM_XXX 

ND_IR

ND_IR_DB

ND_IR_EXE

ND_EDITORS

ND_SCRIPTING

rules.cfg Intelligent Rules Element 
and Open Interface 
Element

Runtime ND_IR

ND_IR_DB

ND_IR_EXE

Name of 
Configuration File

Elements Enabled Environment Configuration Flags
Enabled
Getting Started 119



Chapter Building Applications in the Elements Environment10
The Data Access Element drivers are disabled by default. To enable a 
database driver, uncomment the corresponding database-driver flag among 
these flags:

ND_DA_ORA7

ND_DA_SYB

ND_DA_PDB

ND_DA_ODBC (for PCs only)
ND_DA_DB2

Starting the Elements Environment 
■ To start the Elements Environment with the default configuration from 

your PC or Macintosh, double-click the EE icon.
■ To start the Elements Environment with the default configuration from 

a command line, enter:

ee

■ To run the Elements Environment with a specific configuration file, 
enter:

ee -ND_DYNCONFIG=configurationfile

where configuration file is the name of the file, without its extension, that 
specifies the libraries and the options that you want to load.

Including Additional Configuration Files

To include another configuration file, put the keyword Load in the 
command line, using this syntax:

load configurationfilenamewithoutextension

Compiler-Flag Options

The configuration of the Elements Environment software is controlled by a 
set of compiler flags. You can set each flag to 0 or 1 using either of these 
methods:
■ Explicitly in a #define statement in the main source-code file before 

including nd.h 
■ From the command line of the compiler. For example, this will set the 

flag to 1:

-ND_DA_ORA7

If you do not set a flag explicitly, it will take a default value as defined by 
your environment.

The keyword Option lets you specify the software components that you 
want to enable for the Elements Environment. Components include the 
120 Getting Started



Configuring the Elements Environment
individual Elements, as well as libraries that provide additional or specific 
functionality. See the following sections for the options available.

Enabling and Disabling Options
■ To turn an option on, use this syntax:

OPTIONNAME on

■ To turn an option off, use this syntax:

OPTIONNAME off

Note: Use only uppercase for the option name.
■ To ignore options, comment them out by placing them between these 

characters:

/* */

Note: If multiple definitions of the same option appear in a configuration 
file, only the last definition is used.

Common Options

You can use these options with all the Neuron Data Elements, except the 
Distributed Messaging Element:

Option Description
ND_DYNCONFIG Permits dynamic loading instead of static linking.

ND_EDITORS Provides the libraries for the graphical editors for all 
enabled Elements.

ND_SCRIPTING Provides the libraries for the scripting servers for all 
enabled Elements.

ND_RUNSCRPT Starts an application with an AppStartup script. This 
requires ND_SCRIPTING to be turned on.You can 
launch scripts without turning on ND_OI or 
ND_GUI—for example, in an automatic tester or in an 
application using only script procedures.

ND_GUI Provides the libraries for the graphical user interface 
(GUI), instead of character mode. 

Note: Character mode is not available for all Elements.

ND_IM_NATIVE Allows the Asian language input method as defined by 
the native operating system.

ND_IM_JAPANESE Japanese input method.

ND_IM_KOREAN Korean input method.

ND_SCRIPT_SERVERS Controls whether the script servers are initialized.
Getting Started 121



Chapter Building Applications in the Elements Environment10
Options Controlling the Main Neuron Data Elements

Element-specific Options

Note: The Elements Application Services libraries (Core and Res) are 
enabled by default.

Option Description
ND_OI The Open Interface Element for portable graphics and toolkit. 

This enables ND_GUI.

ND_IR The Intelligent Rules Element (formerly NEXPERT Object) for 
rules and objects.

ND_DA The Data Access Element for transparent access to databases and 
integration of the GUI with data.

ND_DM The Distributed Messaging Element for distributed objects and 
other advanced communication capabilities. 

Note: The Distributed Messaging Element is statically linked.

ND_WE The Web Element for browsing the World Wide Web. This 
requires ND_OI.

Option Description
The Intelligent Rules Element

ND_IR_DA A bridge between the Intelligent Rules Element and the Data 
Access Element for direct access from rules to relational 
databases. 

Note: The system enables this flag when you specify ND_DA 
with your compiler.

ND_IR_EXE Library that provides the Intelligent Rules Element’s built-in 
execute functions. This requires ND_IR.

ND_IR_DB Library that provides access to spreadsheets and 
nonrelational databases. This requires ND_IR. For access to 
relational databases, it requires ND_DA and ND_DA_XXX.

The Data Access Element (DAE)

Note: All these options require ND_DA.

ND_DA_ORA7 DAE Oracle7 driver. 

ND_DA_SYB DAE Sybase driver. 

ND_DA_ODBC DAE ODBC driver.

ND_DA_PDB DAE ProtoDB driver. 

ND_DA_DB2 DAE Informix driver. 
122 Getting Started



Configuring the Elements Environment
Running the Elements Environment Examples

To check if you can create Elements Environment C and C++ applications, 
try to recreate one of the sample applications installed in this directory:

ND_HOME\c\examples\xxx or ND_HOME\cpp\examples\xxx 

These sections show you how to run the examples. Before you run an 
example, compile it using the make file provided. 

Examples for the Open Interface Element

1. Change to this directory:

examples\gui\lbox

2. If you are using a Microsoft compiler, enter:

nmake -f makefile.pc

or

If you are using a UNIX compiler, enter:

make

The Elements Environment resource compiler (rescomp) runs on the file 
lboxex.rc to generate lboxex.dat and creates the lboxex object file. The 
linker creates the application executable, lboxex. 

Note: The order of execution depends on the make program used, and 
it is not important.

3. Enter this command to build and run the lboxex application:

lboxex

A window with several pushbuttons appears. 

Note: If the window does not appear, check the nd.dbg file generated 
by the ee executable.

Examples for the Data Access Element

1. Change to this directory:

examples\da\dataview

2. If you are using a Microsoft compiler, enter:

nmake -f makefile.pc

or

If you are using a UNIX compiler, enter:

make

The Elements Environment resource compiler (rescomp) runs on the file 
dataview.rc to generate dataview.dat and creates the dataview object 
file. Then the linker creates the application executable, dataview. 
Getting Started 123



Chapter Building Applications in the Elements Environment10
Note: The order of execution depends on the make program used, and 
it is not important.

3. Enter this command to build and run the dataview application:

dataview 

A window with datasource connection options appears. 

Note: If the window does not appear, check the ND.DBG file generated 
by the ee executable.

Examples for the Intelligent Rules Element

1. Change to this directory:

examples\rules\hello

2. If you are using a Microsoft compiler, enter:

nmake -f makefile.pc

or

If you are using a UNIX compiler, enter:

make

The compiler creates the helloxx object files. Then, the linker creates the 
helloxx application executables. 

3. Enter this command to run the hello1 application:

hello1 

A window with a NXP> prompt should appear. 

Note: For a tutorial based on the helloxx examples, see the Intelligent Rules 
Element Programmer’s Guide.

Examples for the Web Element

1. Change to this directory:

examples\web\webwgt

2. If you are using a Microsoft compiler, enter:

nmake -f makefile.pc

or

If you are using a UNIX compiler, enter:

make

The Elements Environment resource compiler (rescomp) runs on the file 
webwex.rc to generate webwex.dat and creates the webwex object file. 
Then, the linker creates the application, webwex. 

Note: The order of execution/creation depends on the make program 
used, and it is not important.
124 Getting Started



Configuring the Elements Environment
3. Enter this command to build and run the webwex application: 

webwex 

A window that tries to connect to the World Wide Web over your 
network connection appears. Establishing the connection might take 
some time. The window appears only when the connection is 
established; otherwise, it times out. 

Examples for the Distributed Messaging Element

See the Distributed Messaging Element Programmer’s Guide. 

Building Applications

After generating applications from your Elements Environment executable, 
you can:
■ Statically link them with the appropriate libraries (the default)
■ Load the libraries dynamically. To choose dynamic loading, you must 

use the ND_DYNCONFIG flag. Alternately, you can uncomment this 
flag in your configuration file.

You must also compile and link your application with the appropriate 
libraries. The file nd.h contains all the library-initialization statements 
required to link the Elements Environment libraries with your application. 
You can find it in this directory:

ND_HOME\c\include or ND_HOME\cpp\include

This file is included in the main source-code file generated by the Elements 
Environment executable. To support the initialization statements provided 
by nd.h, there are compiler flags that let you link your application with the 
appropriate libraries. 

See "Compiler-Flag Options" on page 120 for a list and description of the 
options currently available.

Using Makefiles

The Elements Environment includes two files in the ND_HOME/mkinc 
directory for the supported compilers:
■ For a specific application, makedef.inc defines the compilation and 

linking flags, and the required libraries.
■ makerule.inc contains the rules to compile and link. 

The main make file, which the Elements Environment generates, has the 
target files needed to build the Elements in your application. The main make 
file must include makedef.inc and makerule.inc.
Getting Started 125



Chapter Building Applications in the Elements Environment10
126 Getting Started



Chapter
11 Porting and Deploying  
Applications in the 
Elements Environment 11

In the Elements Environment, you can develop applications on one platform 
and port them to other platforms. You can then deploy the applications to 
end-users. 

There are two versions of the Elements Environment kits:
■ The Development kit
■ The Deployment kit

The only difference between the two kits is that the Development kit has the 
Resource Browser and related files; the Deployment kit does not have these 
files. All other libraries and header files are the same. The kits also have the 
same layout on all platforms.

Note: You must have both the Development kit and the Deployment kit to 
build and deploy your applications.

Follow these guidelines when you port or deploy applications that you 
develop using the Elements Environment:
■ When you rebuild the application for the first time, always use the 

DEBUG libraries—libdbg (except for the Intelligent Rules Element). 
This lets you easily detect errors.

■ Start porting the application that you are developing as soon as you can. 
This helps you discover:
– Problems specific to a platform
– Common problems that are easier to track on one system than on 

another

For example, if you develop on both Windows and UNIX, it is often 
easier to debug your code on UNIX than on Windows.

■ When porting an application that is ready to be delivered to users, use 
a nonrestricted version of the Open Interface Element libraries. 

■ Initialize the nd.dat file. This is a special resource file containing user and 
security information for all Neuron Data products you have installed. 
After you initialize nd.dat, you can use it for deploying your application 
to end-users.
Getting Started 127



Chapter Porting and Deploying Applications in the Elements Environment11
See your Installation Guide for information about initializing this file.

Note: In all the procedures in this chapter, source platform is the platform on 
which you developed your application. Target platform is the platform 
to which you are porting your application.

Porting a C or C++ Application across Platforms

1. Install the Elements Environment Development or Deployment kit on 
the target platform.

Follow the instructions in the Installation Guide for the appropriate 
platform. 

2. Copy all the application files from the source platform to the target 
platform, including:

– C and C++ source files
– header files
– .rc files
– makefiles
– knowledge bases
– bitmap files
– flat files

Note: When you copy files from one system to another, make sure that 
you copy compiled knowledge-base files and bitmap files in 
binary mode. Copy all text files in text mode. Verify that the 
end-of-line characters convert properly.

3. Edit the makefile for the target platform.

See ee21.txt in the ee21\doc directory of the Elements Environment 
CD-ROM for instructions.

Note: If you do not have the Elements Environment Development kit 
on the target platform, you can create a makefile from the 
Elements Environment Development kit on the source platform. 
You can also modify a makefile from an example in the Open 
Interface Element.

4. Rebuild your application.

5. Use rescomp to compile the .rc resource files and generate a new .dat 
library file.
128 Getting Started



Porting a Script Application across Platforms
6. Modify the environment variables for your system.

See the appropriate .pdf files for your platform in the Sys_conf directory 
of the documentation CD-ROM. 

Porting a Script Application across Platforms

1. Install the Elements Environment Development or Deployment kit on 
the target platform.

Follow the instructions in the Installation Guide for the appropriate 
platform. 

2. Copy these Elements Environment files from the source platform to the 
target platform:

– .rc files
– knowledge-base files
– .nxp flat-file databases

Note: If your application uses a mixture of C or C++ and OOScript, also 
copy the source file, header file, and makefile from the source 
platform to the target platform.

3. Rebuild your application.

4. Use rescomp to:

– Compile the .rc resource files
– Generate a new .dat library file

5. Modify the environment variables for your system.

See the appropriate .pdf files for your platform in the Sys_conf directory 
of the documentation CD-ROM. 

Deploying Applications

Applications built with the Elements Environment are not protected by the 
hardware key (Macintosh and PC) or security server (UNIX and OpenVMS). 
Only the development-environment tools are so protected. However, you 
cannot deliver an application with a Deployment kit containing this 
restricted banner: “This is for development only.” Therefore, you must 
purchase a porting kit, which is exactly the same thing without this 
restriction.
Getting Started 129



Chapter Porting and Deploying Applications in the Elements Environment11
Note: Deploy your application with the same nd.dat file as the one you used 
when you built it. Do not reinstall the .dat files from the master disks 
or tape, because your nd.dat file contains a valid serial number.

Using the installation process of your application, you must provide a way 
to protect files, such as .dat files and libraries, from being modified.

Deploying a C or C++ Application

This section assumes that you have already developed the application in the 
Open Interface Element and ported it to the target user system.

1. Rebuild your application without the debugging information.

2. Make sure you have the following files to run your Elements 
Environment  application on similar platforms:

– The executable program of the application
– The Elements Environment libraries for platforms using DLLs or 

shareable libraries

Note: Modify your makefile to point to the /dll directory instead of the 
/dlldbg directory, and use the nondebug and nonrestricted 
libraries.

– Any database client libraries if you based your application on the 
Data Access Element

– Your application’s .dat files
– The Elements Environment .dat files (taken from the 

/dat/$ND_LANG and /dat directories)

Note:  If you are not using scripts, you do not need ndresed.dat and 
ndlm*.dat. 

– Any additional files specific to your application, such as bitmaps, 
knowledge bases, and flat files

Note: Maintain the same directory structure when you copy the Elements 
Environment files to the target platform. 

3. Instruct your users to set the ND_PATH environment variable to the 
directory that contains these files.

Note:  If users get error messages about ND_PATH, or if they cannot 
install the application, copy all the Elements Environment .dll 
and .dat libraries to the same directory as your project and try 
again.

4. If you are using other environment variables, provide a script or an 
installation program for the users to correctly set the environment.
130 Getting Started



Deploying a Script Application
5. After referring to the Installation Guide for the appropriate platform, 
specify other special platform settings for the target systems. 

For example, you have to set FILES=50 or more in CONFIG.SYS on 
DOS, and the correct memory size of the application on the Macintosh.

6. Modify the environment variables for the target system.

See the appropriate .pdf files for your platform in the Sys_conf directory 
of the documentation CD-ROM. 

Deploying a Script Application

This section assumes that you have already developed the application in the 
Open Interface Element and ported it to the target user system.

1. Make sure you have the following files to run your Elements 
Environment application on similar platforms:

– The Elements Environment executable program with option 
-ND_DYNCONFIG=runscrpt 

– The Elements Environment libraries for platforms using DLLs or 
shareable libraries

Note: Use nondebug and nonrestricted libraries.
– Any database client libraries if you based your application on the 

Data Access Element
– Your application’s .dat files
– The Elements Environment .dat files (taken from the 

/dat/$ND_LANG directory)
– Any additional files specific to your application, such as bitmaps, 

knowledge bases, and flat files

Note: Maintain the same directory structure when you copy the Elements 
Environment files to the target platform. 

2. Instruct your users to set the ND_PATH environment variable to the 
directory that contains these files. 

3. If you are using other environment variables, provide a script or an 
installation program for the users to correctly set the environment.

4. After referring to the Installation Guide for the appropriate platform, 
specify other special platform settings for the target systems. 

For example, you have to set FILES=50 or more in CONFIG.SYS on 
DOS, and the correct memory size of the application on the Macintosh.
Getting Started 131



Chapter Porting and Deploying Applications in the Elements Environment11
5. Modify the environment variables for the target system.

See the appropriate .pdf files for your platform in the Sys_conf directory 
of the documentation CD-ROM. 
132 Getting Started



Chapter
12 Localizing Applications in 
the Elements Environment 12

Localizing an application means converting an application from its original 
language to a target language by translating strings from one language to 
another. It includes changing alphabets to characters that are completely 
different from the characters in the original language. The Elements 
Environment provides the following features to help you localize your 
applications:

Support for Multibyte Characters

The Elements Environment supports multibyte characters, which can handle 
Asian and European characters as well as ASCII. The Elements Environment 
also provides a set of string functions designed for multibyte characters. 

These modules contain multibyte APIs:
■ Str
■ VStr
■ Char
■ Ct

Language-independent APIs

The Elements Environment provides language-independent application 
programming interfaces (APIs), which are designed specifically for multibyte 
characters. Also, the Elements Environment APIs can accommodate 
applications that accept characters from two or more alphabets at the same 
time. These interfaces take advantage of industry-standard character 
encoding. You can use the same set of APIs for all locales. Therefore, you do 
not need different versions of the Elements Environment, and switching 
from one language to another is simple. 

Input Methods

The Elements Environment offers an expanded set of input methods for 
multibyte characters:
■ The standard Canna input method for inputting Japanese Nihongo 

characters. Canna is a public-domain Kana-Kanji conversion library.
Getting Started 133



Chapter Localizing Applications in the Elements Environment12
■ The X input method (XIM) for UNIX/X Windows environments. XIM 
offers a broad range of support for multibyte characters, enabling you 
to input Japanese, Korean, Chinese, Taiwanese, and other character 
types. The X11 versions provide libraries that communicate with the 
XIM-compliant input servers. 

■ On-the-spot multibyte input for Microsoft Windows.

Processing Input and Output Strings

The Elements Environment APIs provide the functions you need to process 
and output strings. For example, string APIs enable you to: 
■ Create and destroy strings 
■ Search for characters in strings 
■ Extract numeric values 
■ Compare strings 

The Elements Environment also has interfaces for:
■ Characters
■ Code types
■ Code sets

Fonts

You can specify multiple native fonts for the strings displayed on the screen. 
For example, in JEUS or SJIS environments on UNIX, you can display a 
string containing a combination of Kanji, Kana, and ASCII characters. 

String-Resource Editor

The string-resource editor allows you to build tables of string resources. You 
can substitute these resources with resources from other 
languages—including multibyte languages—and then recompile. This is 
useful for internationalizing applications developed for different locales.

Translating Resources with the Resource Compiler

If you want to adapt your user interface for a different native language but 
do not want to change the underlying structure of your software, you can set 
the appropriate environment variables and then translate the static strings 
in your resource files into the target language. 

Rather than separately maintaining resource files for each language version 
of your application, you can create your application in one language, then 
translate the resources into other languages as required.
134 Getting Started



Translating Resources with the Resource Compiler
To translate your string and label resources, perform the following tasks.

Note: These steps are for UNIX systems, but you can adapt them for other 
environments through utilities such as MKS tools on the PC or 
streamedit with MPW on the Macintosh.

Task 1: Generating the Text Resource File for the .dat Libraries

Note:If you are starting with a .rc file, skip to the next task.

1. Run rescomp to generate the text form of the resources (the .rc file) for 
the .dat libraries. For example:

To generate the all.rc file for lib1.dat ... lib2.dat, enter:

rescomp -output lib1.dat ... lib2.dat > all.rc

To localize the Neuron Data .dat files so that you can change the built-in 
strings, generic windows, and Open Edit itself, enter:

cd $ND_HOME/lib
rescomp -output nd*.dat > nd_all.rc

2. Make sure that the all.rc file contains the text form of all the resources 
you want to localize, with data from all the libraries combined into a 
single file.

Task 2: Generating a Skeleton Dictionary

Use the text file you have just created to generate a skeleton dictionary 
containing your strings and labels in their original language.

 To do this, use the rescomp utility with this syntax:

rescomp -gendict mydict all.rc

The skeleton dictionary lists all the strings and labels in your application in 
the format required by the dictionary. 

Task 3: Editing the Dictionary
1. For each entry in the skeleton dictionary, place the original word in 

quotation marks, followed by a right arrow, followed by the translation 
in quotation marks:

“Original Word1"=>"Word1 Translation"
"Original Word2"=>"Word2 Translation"
...
"Original Wordn"=>"Wordn Translation"

For example, an English/French dictionary might contain these entries:

"Window"=>"Fenêtre"
"New Check Button"=>"Nouveau Bouton Marqué"
"Button"=>"Bouton"
Getting Started 135



Chapter Localizing Applications in the Elements Environment12
2. As you translate the dictionary entries, remove lines that do not need to 
be translated.

Task 4: Creating the Localized .dat Files
1. Rename your existing .dat files or move them to another directory.

2. In the .rc file that you generated, verify that the Lib.compile 
definitions do not contain a DirName field that points to the location of 
your existing .dat files. 

Tip:  You can empty the DirName fields or set them to a “.”, 
which points to the current directory.

3. Enter a command with this syntax to create a .dat file:

rescomp -t mydict filename.rc

This creates a .dat file in the current directory.

4. Use this command with the verbose (-v) option to display a message 
whenever a string is translated:

% rescomp -tv dict filename.rc

For example, using the French/English dictionary created above, this 
command:

% rescomp -tv dict filename.rc

produces output that might look like this:

Translating "Window" to "Fenêtre"
Translating "New Check Button" to "Nouveau Bouton 
Marqué"
Translating "Button" to "Bouton"

Task 5: Checking Your Application
1. After all the resources are translated, check the appearance of your 

strings and widgets. 

Depending on the translation, widgets could be too small or too large 
for the new text they contain. 

2. If necessary, adjust the size of buttons, text edits, and choice boxes. 

Note: Menu objects adjust automatically when the string-length 
changes, so you don’t have to change them manually. 

Task 6: Changing the Date and Time Formatting

If necessary, change the output formatting of the date and time fields in the 
application to match the format of these fields for the specific locale.
136 Getting Started



Enabling the Input Methods for Multibyte Characters
Enabling the Input Methods for Multibyte Characters

To set up your environment for multibyte input, you do not need special 
APIs or special code for handling input methods with the Elements 
Environment. All you have to do is:

1. Set the appropriate environment variables

2. Start the input method server

Note: You must first install either Canna or XIM on your system before you 
can input multibyte characters.

Enabling the Canna Input Method

To use Canna on a UNIX system running the Elements Environment:

1. Go to the directory containing the Canna software by entering:

 cd $ND_HOME/canna

2. To become the super user, enter:

su

3. Run the script to install Canna by entering: 

/canna_install

4. To start the Canna server on any machine on your network, enter: 

$ND_HOME/canna/bin/cannaserver

5. To set the OIT_CANNAHOST environment variable to the host name 
running the Canna server, enter:

setenv OIT_CANNAHOST myhost

where myhost is the name of the Canna-server host.

6. Start your application.

Enabling the XIM 

To use XIM on a UNIX system running X Windows and the Elements 
Environment:

1. Start your XIM-compliant input server. 

For example, in the Solaris 2.4J environment, enter:

htt
Getting Started 137



Chapter Localizing Applications in the Elements Environment12
2. Set the LANG environment variable.

For example, to set it to Japanese, enter in a C shell in the Solaris 2.3J 
environment:

setenv LANG ja

Note: On other systems, the name for the Japanese environment may 
be different.

3. Start your application.

These variables control the XIM environment:

Note: The XIMPreeditCallbacks and XIMStatusCallbacks 
styles are not supported in the current version of the Elements 
Environment.

Fonts and Font-Family Resources

A font is an object that defines how text appears on the screen. From the 
windowing system’s perspective, a font is an object that allows the drawing 
engine to measure and render pieces of text. 

The Elements Environment lets you specify a font family through the FFam 
resource, which is described in the ffampub.h file. This resource, instead of 
individual font resources, describes the mapping between the font family 
and native fonts. This new scheme simplifies the dynamic creation and 
modification of fonts.

Variable Value Description

ND_XIM TRUE Use XIM.

FALSE (the default) Do not use XIM.

ND_XIMPREEDIT NOTHING Preedit on the root window.

AREA Preedit on the bottom of the 
Elements Environment 
window.

POSITION (the 
default)

Preedit over the cursor position 
in the text edit.

ND_XIMSTATUS NOTHING Status is displayed on the root 
window.

AREA (the default) Status is displayed on the 
bottom of the Elements 
Environment window.
138 Getting Started



Fonts and Font-Family Resources
Note: The XxxFamily persistent fields are there for compatibility with 
earlier releases of the Open Interface Element. Convert your existing 
font resources to specify the font family through the FFam 
mechanism.

API sections that are bracketed with the FONT_COMPAT compilation 
flag in the fontpub.h file are there for compatibility with earlier 
releases. Avoid using these, and convert any code that uses them to 
the new APIs.   

Font-Family Resources

A font-family resource describes the mapping between a portable font family 
and the native fonts that implement the family and its variants on the 
various windowing systems. Font families enable you to:
■ Easily specify portable font resources
■ Build portable user interfaces for selecting font styles and sizes

The font-family resources:
■ Encapsulate the low-level X11 font names (XLFD)
■ Provide high-level management of X11 fonts

Instead of having to specify font names in the XLFD format, these resources 
allow you to use a simple user interface to change:
■ Font family
■ Font size
■ Font style

Font families also provide critical support for multibyte text. You can set up 
a font family to describe a set of fonts covering several code sets (for 
example, JIS-0201 and JIS-0208). Then, the font manager associates several 
system fonts with a given font resource. The drawing routines switch system 
fonts transparently when drawing multibyte text.

Specifying a font family is usually simple. However, it can become complex 
if:
■ You have to specify the family on different windowing systems.
■ You need to specify a set of fonts covering several code sets for 

multibyte text. 

A font family is expressed in a simple language that provides predefined 
operators to test various system parameters. This example shows how to use 
the specification language:

x_family "courier"; x_foundry = "adobe";
mac_family "Chicago";
Getting Started 139



Chapter Localizing Applications in the Elements Environment12
pm_family "System Proportional";
if is_x11 then (scaling_quality 80) else (scaling_quality 110)

The specification is a list of statements separated by semicolons (;). 

Note: The last statement should not be followed by a semicolon.

For more information about the Elements Environment font manager and 
font-family resource, see the Open Interface Element Users’ Guide. For 
additional information, see the ffampub.h file.

Key Concepts for Multibyte Characters and Strings

After translating an application’s resource strings, add these resource 
strings to your application code or rewrite the code to support one or more 
locales. To do this, you need to use the Elements Environment APIs directly. 

The Elements Environment APIs support multibyte characters needed for 
non-English languages. Multibyte characters require:
■ Code sets
■ Code mappings
■ Code types 

These represent the characters in an alphabet as numeric codes and 
determine how these codes are placed within a multibyte-character 
structure.

Code Sets

A code set is a numeric representation of each character in an alphabet. The 
numeric codes in each code set vary in their hexadecimal range. Most code 
sets are extensions to the ASCII character set. Code sets are combined with 
mappings to form a code type. Elements Environment supports these code 
sets:

Elements Environment 
Version

Supported Code Sets

Version 2.1 ASCII

ISO_LATIN1

JIS_0201

JIS_0208 

Korean ASCII 

KSC_5601
140 Getting Started



Key Concepts for Multibyte Characters and Strings
Code Mapping

Code mapping determines the representation of the encoded character within 
a multibyte character. A multibyte character is an unsigned 32-bit integer. 
Code mapping includes placing the bytes within the character and 
manipulating the bytes if necessary. 

Code mapping can be more complex than byte placement: The JIS code set 
defines codes in which the first and second bytes are in the 0x21–0x7e range. 
JIS bytes cannot be inserted into a string regardless of the byte order. This is 
because the JIS code would then be indistinguishable from the ASCII codes. 
These mappings address this problem:
■ The SJIS mapping is complex. The SJIS transposes the JIS_0208 code in 

these ranges:
– the first byte in 0x81–0x9f or 0xe0–0xfc
– the second byte in 0x40–0x7e or 0x80–0xfc

 It includes a transposition of JIS-0201 code in these ranges:
– the first byte in the 0xa1–0xdf range
– the second byte in the 0x21–0x7e range

■ The JEUC mapping transposes the first byte of a JIS_0201 code to 0x8e 
and the second byte in the 0xa1–0xfe range.

It transposes the first byte of a JIS_0208 code in the 0xa1–0xfe range and 
the second byte in the 0xa1–0xfe range.

■ The KSC 8-bit mapping code set transposes a code in the 0xa1–0xfe, 
0xa1–0xfe range.

■ The GB 8-bit mapping code set transposes a code in the 0xa1–0xfe,  
0xa1–0xfe range.

Simplified Chinese ASCII 

GB2312

Traditional Chinese ASCII 

BIG5

For Solaris and SunOs:

ASCII 

CNS11643-1

CNS11643-2 

CNS11643-3

Elements Environment 
Version

Supported Code Sets
Getting Started 141



Chapter Localizing Applications in the Elements Environment12
■ The BIG5 code set's first byte is in the 0xa1–0xfe range, and the second 
byte is in the 0x40–0x7e or 0xa1–0xfe range. This allows it to be used 
with ASCII as it is.

■ The CNS code set defines 16 planes of  2-byte characters in the 
0x21–0x7e and 0x21–0x7e ranges. In CNS code mapping, the first plane 
is transposed to the 0xa1–0xfe range, and the rest of the planes are 
mapped to 4-byte characters as follows:

0x8e, 0xa0+n, 0xa1-0xfe, 0xal-0xfe

where n is the number of CNS character planes. 

Note: CNS defines 16 planes of character mapping, but actual character 
codes are defined in only 7 planes. The Elements Environment 
supports only the first 3 planes.

Code Types

A code type, or coding scheme, combines one or more code sets with a code 
mapping.

For single-byte-ASCII or extended-ASCII characters, the byte value maps 
directly to the code value. For these alphabets, the code set and the code type 
are identical. 

For multibyte characters, different code types can be based on the same code 
set but on different code mappings. For example, the Japanese EUC code 
type offered by Sun and the SJIS code type offered by Sony are two different 
mappings of the JIS code set.

The Elements Environment provides two levels of support for code sets: 
■ Tested 
■ Untested

Fully Supported and Tested Code Types

Code types supported and tested under the current version of the Elements 
Environment include:

ASCII Code Type

The CT_ASCII code type contains the CS_ASCII code set.
142 Getting Started



Key Concepts for Multibyte Characters and Strings
CJK Code Types

In the CJK code-type group, the Elements Environment supports:
■ CT_SJIS, which combines CS_ASCII with CS_JIS_0201 and CS_JIS_0208 
■ CT_JEUC, which combines CS_ASCII with CS_JIS_0201, CS_JIS_0208, 

and CS_JIS_0212 
■ CT_KSC, which consists of CS_ASCII plus CS_KSC_5601
■ CT_GB, which is a combination of CS_ASCII and CS_GB_2312
■ CT_BIG5, which is a combination of CS_ASCII and CS_BIG5
■ CT_CNS, which consists of CS_ASCII, CS_CNS11643-1, 

CS_CNS11643-2, and CS_CNS11643-3

Untested Code Types

Code types that are supported by the current version of the Elements 
Environment but are not tested include:

ISO 8859_X Code Types

The CT_ISO... code types combine the CS_ASCII, CS_EMPTY_809f, and 
CS_ISO... code sets. The Elements Environment supports these ISO 8859_X 
code types: 
■ CT_ISO_LATIN1 
■ CT_ISO_LATIN2
■ CT_ISO_LATIN3
■ CT_ISO_LATIN4
■ CT_ISO_CYRILLIC
■ CT_ISO_ARABIC
■ CT_ISO_GREEK
■ CT_ISO_HEBREW
■ CT_ISO_LATIN9

Adobe Code Types

The Elements Environment supports CT_ADOBE_STD, which combines the 
CS_ASCII, CS_EMPTY_809f, and CS_ADOBE_STD code sets:
■ The CT_LATIN1 code type contains CS_ASCII, CS_ADOBE_LATIN1, 

and CS_ISO_LATIN1. 
■ The CT_AD0BE_SYMBOL code type contains CS_ASCII (00–f only), 

CS_EMPTY_809f, and CS_ADOBE_SYMBOL. 
■ The CT_ADOBE_ZAPFDB code type contains the 

CS_ADOBE_ZAPFDB code set only.
Getting Started 143



Chapter Localizing Applications in the Elements Environment12
Macintosh Code Types
■ The CT_MAC_ROMAN code type combines the CS_ASCII and 

CS_MAC_ROMAN code sets. 
■ The CT_MAC_ARABIC code type combines CS_ASCII with 

CS_ISO_ARABIC and CS_MAC_ARABIC. 
■ The CT_MAC_HEBREW code type combines the CS_ASCII, 

CS_ISO_HEBREW, and CS_MAC_HEBREW code sets.

Microsoft Windows Code Types

The Microsoft Windows code types have two forms: 
■ The 1252 code type contains the CS_ASCII, CS_MSW_ANSII, and 

CS_ISO_LATIN1 code sets. 
■ The 125X code type combines CS_ASCII and CS_MSW_125X. 

The Elements Environment supports these Microsoft Windows code types: 
■ CT_MSW_EASTEURO
■ CT_MSW_CYRILLIC
■ CT_MSW_ANSI
■ CT_MSW_GREEK
■ CT_MSW_TURK
■ CT_MSW_HEBREW
■ CT_MSW_ARABIC

PC Code Types

The PC code types combine CS_ASCII with the specific PC code sets. The 
Elements Environment offers these code types: 
■ CT_PC_437
■ CT_PC_850
■ CT_PC_852
■ CT_PC_855
■ CT_PC_857
■ CT_PC_860
■ CT_PC_861
■ CT_PC_863
■ CT_PC_864
■ CT_PC_865 
■ CT_PC_869
■ CT_PC_M4
144 Getting Started



Key Character and String Types
Unicode Code Type

The CT_UNICODE code type contains these code sets:
■ CS_ASCII
■ CS_EMPTY_809
■ CS_ISO_LATIN1
■ CS_UNICODE 

HP ROMAN8

The CT_HP_ROMAN8 code type contains the CS_HP_ROMAN8 code set.

Key Character and String Types

Two basic datatypes control how characters and strings are manipulated in 
the application code:
■ Native datatype supports applications operating in one language at a 

time.

Note: Systems dedicated to a specific locale already have a native code 
type specified.

■ UniCode type supports Unicode characters contained in Unicode 
strings. 

Character Type Definitions

The Elements Environment Char module defines Char and UniCode 
character types. 
■ The Char type is a 1-byte section of a global string. The ChCode type 

encodes a multibyte character in a 32-bit unsigned integer. 
■ The UniCode character type encodes a character in a 16-bit unsigned 

integer. UniCodePtr is a pointer to a UniCode character.

4-Byte Character Format

The ChCode type encodes characters in an unsigned 32 bit integer. ChCode 
characters contain four bytes: Byte1, Byte2, Byte3, and Byte4. Byte1 is the 
least significant byte, and Byte4 is the most significant.
Getting Started 145



Chapter Localizing Applications in the Elements Environment12
Multibyte-character encoding is shown in this table:

Note: Char and ChCode values are always identical for pure ASCII 
characters, but are not necessarily the same for multibyte characters.

Basic String types

The Elements Environment Str module defines native and Unicode string 
types.
■ A Str string is an array of Char and/or ChCode characters. There are 

also types to accommodate these cases:
– where the global string is constant 
– where the pointer to the string is constant 
– where both are constant

■ A UniStr string contains Unicode characters only. There are also 
pointers to UniStr pointers. The UniStr, the pointer to the UniStr, 
or both can be constants.

Environment Variables and Flags

The ND_LANG environment variable defines the native language for the 
application. When you want to change from one native language to another, 
you must reset this environment variable. This table shows the languages 
supported and the possible settings.

Byte Number Contents

Byte1 First byte of the multibyte character

Byte2 Second byte of the multibyte character, or NULL

Byte3 Third byte of the multibyte character, or NULL

Byte4 NULL

ND_LANG Language ND_CHARNATIVE

enusasc US English. No setting (the default)

jajpeuc Japanese EUC. CT_JEUC

jajpsjis Japanese ShiftJIS. CT_SJIS

kokrksc Korean KSC. CT_KSC

zhtwbig5 Taiwanese BIG5. CT_BIG5

zhtwcns Taiwanese CNS. CT_CNS

zhcngb Chinese GB. CT_GB
146 Getting Started



Character APIs in the Elements Environment
Note: The Macintosh and the Power Macintosh do not support Unicode.

If you are using an Asian language, set the ND_CHARNATIVE environment 
variable when running OLE-based applications under Windows 95 and 
Windows NT. The table in this section shows the settings.

If you are using a European language, set the ND_CHARNATIVE 
environment variable to support PostScript printing. This list shows the 
possible settings:
■ CT_ISO_LATIN1
■ CT_ISO_LATIN2
■ CT_ISO_LATIN3
■ CT_ISO_LATIN4
■ CT_ISO_CYRILLIC
■ CT_ISO_ARABIC
■ CT_ISO_GREEK
■ CT_ISO_HEBREW
■ CT_ISO_LATIN9

Character APIs in the Elements Environment

The APIs in the Elements Environment Char module enable you to 
manipulate characters and obtain information about them in these ways:
■ Get a character code
■ Obtain an ASCII character's classification
■ Convert ASCII characters
■ Convert characters between datatypes
■ Convert between ASCII and EBCDIC
■ Get a character length
■ Get a specified byte of a character 

enusutf8 For European 
Unicode/UTF8 version. 
The .dat file remains in 
English.

CT_UTF8

jajputf8 For global UTF8 version. CT_UTF8

kokrutf8 For global UTF8 version. CT_UTF8

zhtwutf8 For global UTF8 version. CT_UTF8

zhcnutf8 For global UTF8 version. CT_UTF8

ND_LANG Language ND_CHARNATIVE
Getting Started 147



Chapter Localizing Applications in the Elements Environment12
Note: APIs for basic character classification enable you to obtain 
information such as whether the character is alphanumeric, 
hexadecimal, a control character, or a space. The CHAR_AsciiIs 
APIs assume that the character is in the specified C Runtime library 
(C RTL) classification.

This table shows the Char operations and the corresponding APIs.

Character Operation API

Get a character code CHAR_GetByte
CHAR_GetByte1
CHAR_GetByte2
CHAR_GetByte3

Basic character classification CHAR_IsAscii
CHAR_IsAsciiAlpha
CHAR_IsAsciiUpper
CHAR_IsAsciiLower
CHAR_IsAsciiAlNum
CHAR_IsAsciiDigit
CHAR_IsAsciiHexDigit
CHAR_IsAsciiOctDigit
CHAR_IsAsciiSpace
CHAR_IsAsciiPunct
CHAR_IsAsciiControl
CHAR_IsAsciiPrint
CHAR_IsAsciiGraph

Basic character conversion CHAR_AsciiDigitGetInt
CHAR_AsciiHexDigitGetInt
CHAR_AsciiOctDigitGetInt

CHAR_AsciiAlphaGetBase

CHAR_AsciiGetLower
CHAR_AsciiGetUpper

CHAR_AsciiGetControl
CHAR_AsciiGetGraph

Conversions between ASCII and EBCDIC CHAR_AsciiGetEbcdic
CHAR_EbcdicGetAscii

CHAR_ToAscii
CHAR_FromAscii

Get length CHAR_GetLen
CHAR_CodeGetLen
CHAR_NatGetLen 
148 Getting Started



String APIs in the Elements Environment
String APIs in the Elements Environment 

The APIs in the Elements Environment Str module enable you to manipulate 
strings and obtain information about them in these ways:    
■ Extract characters and numeric values from strings
■ Create, copy, and dispose of strings
■ Set the contents of a string
■ Append to strings
■ Determine the string length
■ Iterate through stings
■ Write into strings
■ Compare and match strings
■ Search for characters in strings
■ Find word boundaries
■ Format numeric values
■ Convert strings between upper and lower cases

Note: The Elements Environment provides separate APIs for strings and 
substrings.

Get byte CHAR_GetByte

C RTL classification CHAR_IsAscii
CHAR_AsciiIsAlpha
CHAR_AsciiIsUpper
CHAR_AsciiIsLower
CHAR_AsciiIsAlNum
CHAR_AsciiIsDigit
CHAR_AsciiIsHexDigit
CHAR_AsciiIsOctDigit
CHAR_AsciiIsSpace
CHAR_AsciiIsPunct
CHAR_AsciiIsControl
CHAR_AsciiIsPrint
CHAR_AsciiIsGraph
CHAR_AsciiDigitGetInt
CHAR_AsciiOctDigitGetInt
CHAR_AsciiHexDigitGetInt
CHAR_AsciiAlphaGetBase
CHAR_AsciiGetLower
CHAR_AsciiGetUpper

Character Operation API
Getting Started 149



Chapter Localizing Applications in the Elements Environment12
This table shows the Str operations and the corresponding APIs:

String Operation API

Get characters from strings Native and Ct versions of these 
functions:

STR_GetCode
STR_GetFwrd
STR_GetBwrd

Get numeric values from strings STR_GetDec...
STR_GetHex...
STR_GetRadix...
STR_GetDouble
STR_SubGetDec...
STR_SubGetHex...
STR_SubGetRadix...
STR_SubGetDouble

Create, clone, and dispose of strings STR_NewSet
STR_NewSetSub
STR_Clone
STR_Dispose
STR_Dispose0

Set strings STR_Set
STR_SetSub

Append strings STR_Append
STR_AppendSub

Get string length STR_GetLen
STR_GetTruncLen

Iterate through strings Native and Ct versions of these 
functions:

STR_GetCode
STR_GetFwrd
STR_GetBwrd

Write into string buffers Native versions of these 
functions:

STR_Put
STR_PutSub
STR_PutAscii
STR_WriteAscii

STR_PutCode
STR_WriteCode

Basic string comparisons STR_Cmp
STR_CmpSub
STR_Equals
STR_EqualsSub
150 Getting Started



String APIs in the Elements Environment
Match strings STR_MatchesChar
STR_Matches
STR_MatchesPat
STR_MatchesSub
STR_MatchesPatSub

Search for character Substring versions of 
STR_Find...:

STR_FindFirstChar
STR_FindLastChar
STR_FindFirst
STR_FindLast
STR_IFindFirst
STR_IFindLast
STR_FindIFirst
STR_FindILast

Find word boundaries STR_FindWord
STR_FindWordSub

Format numeric values STR_PutDec...
STR_PutHex...
STR_PutRadix...
STR_PutDouble

Basic conversions STR_AsciiUpCase
STR_AsciiUpCaseSub
STR_AsciiDownCase
STR_AsciiDownCaseSub
STR_UpCase
STR_UpCaseSub
STR_DownCase
STR_DownCaseSub

STR_PutAsciiUpper
STR_PutAsciiLower
STR_PutAsciiUpperSub
STR_PutAsciiLowerSub
STR_PutUpper
STR_PutLower
STR_PutUpperSub
STR_PutLowerSub

String Operation API
Getting Started 151



Chapter Localizing Applications in the Elements Environment12
Variable-String APIs in the Elements Environment 

The APIs in the Elements Environment VStr module enable you to 
manipulate variable strings and obtain information in these ways: 
■ Allocate and deallocate memory for variable strings
■ Initialize and destroy variable strings
■ Change the contents of variable strings
■ Obtain the string length and string contents
■ Concatenate, insert, and delete strings and characters
■ Compare variable strings
■ Load resources into variable strings
■ Copy, initialize, and dispose of arrays

This table shows the VStr module’s operations and APIs:

Operation API

New and dispose Native and Ct versions of VSTR_New...:

VSTR_New
VSTR_NewSetStr
VSTR_NewSetStrSub
VSTR_NewSet
VSTR_Clone
VSTR_Dispose
VSTR_Dispose0

Initialization/destruction Native and Ct versions of 
VSTR_Init...:

VSTR_Init
VSTR_InitSetStr
VSTR_InitSetStrSub
VSTR_InitSet
VSTR_End

Changing contents Native and Ct versions of VSTR_Set...:

VSTR_SetStr
VSTR_SetStrSub
VSTR_Set
VSTR_Copy

Queries VSTR_GetLen
VSTR_GetStr
VSTR_QueryStrSub
152 Getting Started



Using Code Sets and Code Types
Using Code Sets and Code Types

Code sets and code types are used in the process of mapping alphabetic 
characters into a numeric code in a 4-byte word.

Code-Set Operations and APIs

A code set is a numeric representation for each character in an alphabet. The 
Elements Environment code-set APIs are not public. 

See "Code Sets" on page 140 for more information.

Code-Type Operations and APIs 

Code types identify a complete character-coding system, which associates a 
code set with a mapping. 

See "Code Types" on page 142 for more information.

The Ct module APIs use two types of data:
■ CtId for the code-type ID
■ ChCode for a code value within a code type

Code types are identified with a unique ID of the form CT_XXX. 

See the Ct module for a complete list of code-type IDs.

Concatenation, insertion, deletion VSTR_AppendStr
VSTR_AppendStrSub
VSTR_Append
VSTR_AppendChar
VSTR_TruncAt
VSTR_Truncate
VSTR_Clear

Comparisons VSTR_CmpStr
VSTR_Cmp

Loading resources VSTR_NewSetRes
VSTR_InitSetRes
VSTR_SetRes

Operations for arrays of strings VSTR_ArrayClone
VSTR_ArrayInit
VSTR_ArrayEnd
VSTR_ArrayReset
VSTR_ArrayDispose

Operation API
Getting Started 153



Chapter Localizing Applications in the Elements Environment12
The Ct module APIs allow you to:
■ Create and destroy a code type
■ Initialize a code type
■ Get code-type IDs
■ Iterate through a code type
■ Convert to and from code sets

This table describes the code-type operations and the corresponding APIs:

About Unicode

Unicode is a worldwide character-encoding standard that includes 
characters used in most language types, such as:
■ European
■ Indic 
■ Arabic 
■ Asian 

In addition, it includes various symbols, such as:
■ Mathematical
■ Technical 
■ Phonetic
■ Punctuation

Code-Type Operations API

Create/destroy code type CT_New
CT_Dispose
CT_Dispose0

Initialization CT_DefInit

General APIs CT_GetCtId
CT_GetCharLen
CT_GetFwrd
CT_GetBwrd
CT_GetInfo
CT_CvtChar
CT_CvtCtToCs
CT_CvtCsToCt
CT_GetMaxCharLen
CT_IsSingleOnly
CT_GetUpper
CT_GetLower
154 Getting Started



About Unicode
In the Unicode standard, a character is defined by 16 bits; therefore, there can 
be up to 65,536 characters. With Unicode, you can mix many languages in 
one application. You can also combine character and string processing for 
various languages.

Note: Windows NT uses Unicode internally, and some applications process 
Unicode internally.

Using Unicode

This section describes the problems with using Unicode and how the 
Elements Environment resolves those problems.

ASCII Compatibility

Since Unicode characters are coded in 16 bits, they are not compatible with 
ASCII characters. For example, ASCII “A” (0x41 in hexadecimal) is coded 
0x0041 in Unicode.

Unicode strings can include “0x00” in the string. Programs using 
C-language string handling regard “0x00” as a string terminator; thus, they 
cannot handle Unicode strings. This means that an ASCII-based application 
cannot even display Unicode-encoded English strings.

Most applications supporting Unicode, except Windows NT, use pure 
Unicode. To keep ASCII compatibility and enable Unicode, without 
modifying existing API calls that take strings as arguments, the Elements 
Environment uses Unicode Transformation Format (UTF8) as an internal code 
type. UTF8 allows you to convert any Unicode value to UTF8, and UTF8 to 
Unicode. In UTF8, ASCII code keeps ASCII values. Also, this format does 
not include “0x00” in the string. 

Note: UTF8 mode is available only if you set the ND_CHARNATIVE 
environment variable to CT_UTF8.

The following table shows the UTF8 encoding scheme. In UTF8, a character 
can be 1, 2, 3, 4, 5 or 6 bytes in length. The actual character value is the 
concatenation of the v bits. If the character is 1 byte in size, it is the same as 
ASCII. Code point 0 is allowed only in the 1-byte encoding.

Bytes Bits Hex Min Hex Max Byte Sequence in Binary
1  7 00000000 0000007F 0vvvvvvv

2  11 00000080 000007FF 110vvvvv 10vvvvvv

3  16 00000800 0000FFFF 1110vvvv 10vvvvvv 10vvvvvv

4  21 00010000 001FFFFF 11110vvv 10vvvvvv 10vvvvvv 10vvvvvv
Getting Started 155



Chapter Localizing Applications in the Elements Environment12
This specification supports up to 6-byte encoding. However, the Elements 
Environment supports only 1-, 2-, and 3-byte encoding.

Unicode characters whose code value is less than 0x80 are mapped to 1-byte 
encoding, which is the same as ASCII. Unicode characters whose value is 
equal to, or greater than, 0x80 and less than 0x800 are mapped to 2-byte 
encoding. Other Unicode characters are mapped to 3-byte encoding.

For more detailed information about UTF8, see this site on the World Wide 
Web:

http://www.stonehand.com/unicode/standard/utf8.html

Conversion with Existing Character Sets

Unicode includes many characters that are already defined in other 
standard code sets. Thus, it is possible to convert characters in existing code 
sets to Unicode.

However, there is no way to arithmetically convert Unicode to or from 
existing code sets except for ASCII, ISO8859-1 (used for Western European 
Latin characters), and a few other code sets.

Neuron Data provides functions to convert Unicode from and to existing 
character sets. This section gives an overview of the conversion functions. 
For a detailed description of these functions, see “Specifying Code Types for 
Unicode” on page 158. 

To convert Unicode strings to or from current code types defined by 
ND_CHARNATIVE, use:

STR_ToUni() and STR_FromUni()

To convert one Unicode character to or from a specific code type, use:

CT_ToUni() and CT_FromUni()

To convert Unicode characters to a specified code set, use:

CS_ToUni() and CS_FromUni()

If you use Unicode as an intermediate code, it is possible to convert one code 
type to another code type. For example, you can convert MacRoman code 
type to Unicode and then convert it again to Windows ANSI code type. For 
those code-type conversions, use:

STR_ToCt() and STR_FromCt()

5  26 00200000 03FFFFFF 111110vv 10vvvvvv 10vvvvvv 10vvvvvv 10vvvvvv

6  31 04000000 7FFFFFFF 1111110v 10vvvvvv 10vvvvvv 10vvvvvv 10vvvvvv 10vvvvvv

Bytes Bits Hex Min Hex Max Byte Sequence in Binary
156 Getting Started



About Unicode
The available code types or code sets for these conversion APIs are described 
in “Code Types for Unicode Conversion” on page 163.

You need the conversion tables to convert Unicode from or to existing 
character sets except for ASCII and ISO Latin1. These tables usually reside 
in the data file named unicvt.tab. They are loaded automatically, when they 
are needed, so that they do not occupy memory all the time.

Font for Drawing and Printing

There are almost no Unicode-compatible fonts. Only Windows NT provides 
a Unicode font, which covers some European characters but not Indic, 
Arabic, and Asian characters.

For PostScript printing, though some font vendors provide some Unicode 
fonts, these do not fully support Unicode.

When you set the ND_CHARNATIVE variable to CT_UTF8, the 
is_universal clause is available. You can put any number of the native 
fonts in the font-family description language by using the nextfont 
keyword. 

When the Elements Environment draws a UTF8 character, it tries to map the 
UTF8 code to a specified font code. If the UTF8 code successfully maps, the 
Elements Environment uses it for drawing. The order of mapping 
corresponds to the order of font descriptions.

Not all the fonts are available UTF8. For the available fonts for code 
mapping, see “Unicode Font Mapping” on page 164. This font-mapping 
function is available only on Windows 95, Windows NT, and UNIX/X 
Windows. Other platforms cannot draw UTF8 code.

The Elements Environment uses the same strategy for PostScript printing. It 
tries to map UTF8 code to the specified PostScript fonts. For the available 
PostScript fonts and their notation in the font-family description language, 
see “Unicode Font Mapping” on page 164.

Unicode Input

There is almost no Unicode-based input method. Windows NT provides a 
simple table-based Unicode input method, but it is difficult to use. The 
Elements Environment provides code-type conversions for these types of 
input:
■ Keyboard input
■ Clipboard input
Getting Started 157



Chapter Localizing Applications in the Elements Environment12
Keyboard Input

The Elements Environment provides the ND_KEYBOARDCODETYPE 
environment variable, which specifies the keyboard-input code type. The 
Elements Environment assumes that the keyboard-input code type is the 
specified code type, and it converts each keyboard input to the internal code 
type specified by the ND_CHARNATIVE environment variable.

For example, if you have the Japanese ShiftJIS-based input method on your 
system and your Elements Environment application runs in UTF8 mode, 
you can specify ND_KEYBOARDCODETYPE to be CT_SJIS. Your 
keyboard input will then convert to UTF8.

In addition, you can:
■ Dynamically change the keyboard code type by calling the 

EVENT_SetKbCt API
■ Get the current keyboard code type by calling EVENT_GetKbCt

Clipboard Input

You can dynamically change the Elements Environment Clipboard 
input/output (I/O). You can set the default Clipboard code type with the 
ND_CLIPCODETYPE environment variable. You can then dynamically set 
and get it using the CLIP_SetCt and CLIP_GetCt APIs.

The Elements Environment provides a simple table-based Unicode input 
method as a sample program. This shows all Unicode characters in a list box, 
and you can select any character with the mouse and copy it to the Elements 
Environment Clipboard. You can copy and paste it into any Elements 
Environment application. 

See “Examples” on page 162 for more information about this program. 

Specifying Code Types for Unicode 

ND_CHARNATIVE

ND_CHARNATIVE specifies the code type for the Elements Environment. If 
you specify CT_UTF8 for this variable, you can use UTF8-encoded code for 
all the Elements Environment APIs. If you do not set ND_CHARNATIVE, 
CT_ASCII is assumed, and it can only process ASCII codes.
158 Getting Started



About Unicode
These are other possible values for ND_CHARNATIVE:

CT_ISO_LATIN1 ISO8859-1 code type. Used for Western European 
languages for most of UNIX and X Windows.

CT_SJIS For ShiftJIS. Used for Japanese Macintosh, PC, and 
UNIX.

CT_JEUC For Japanese EUC. Used for most of Japanese 
UNIX.

CT_KSC For Korean. Used for Korean.

CT_GB For GB2312. Used for mainland China.

CT_BIG5 For BIG5. Used for Taiwan.

CT_CNS For CNS. Used for Sun in Taiwan.

You will need a license to use some of these settings.

ND_KEYBOARDCODETYPE

ND_KEYBOARDCODETYPE specifies the keyboard-input code type. The 
Elements Environment assumes that all the codes are in this code type, and 
it converts the code to the internal code type specified by 
ND_CHARNATIVE.

If ND_KEYBOARDCODETYPE is not set, no keyboard-input conversion 
occurs.

If the keyboard-input code cannot be converted to the internal code, it is just 
ignored. No error message is displayed.

You can change this keyboard code type dynamically by calling 
EVENT_SetKbCt(). You can obtain the current keyboard code type by 
calling EVENT_GetKbCt().

ND_CLIPCODETYPE

ND_CLIPCODETYPE specifies the Clipboard input code type. The 
Elements Environment assumes all Clipboard codes are in this code type, 
and it converts the code to the internal code type specified by 
ND_CHARNATIVE. In addition, it converts all Clipboard output from the 
internal code to the Clipboard code type.

If ND_CLIPCODETYPE is not set, no Clipboard I/O conversion occurs.

If the Clipboard I/O code cannot be converted, it is just ignored. No error 
message is displayed.
Getting Started 159



Chapter Localizing Applications in the Elements Environment12
You can change this Clipboard code type dynamically by calling 
CLIP_SetKbCt(). You can obtain the current Clipboard code type by calling 
CLIP_GetKbCt().

EVENT_SetKbCt, EVENT_GetKbCt

void EVENT_SetKbCt(CtIdEnum ctid);

CtIdEnum EVENT_GetKbCt(void);

EVENT_SetKbCt() sets the keyboard code type. The Elements Environment 
converts all keyboard input codes to the internal code type based on this 
information.

EVENT_GetKbCt() returns the current keyboard code type.

CLIP_SetClipCt, CLIP_GetClipCt

void CLIP_SetKbCt(CtIdEnum ctid)

CtIdEnum CLIP_GetKbCt(void)

CLIP_SetKbCt() sets the Clipboard code type. The Elements Environment 
converts all Clipboard I/O codes to/from the internal code type based on 
this information.

CLIP_GetKbCt() returns the current keyboard code type.

STR_ToUni, STR_FromUni

StrIVal STR_ToUni(UniStr buf, StrIVal unisize, CStr str, CharCvtSet flags, 
StrCvtCtxPtr ctx);

StrIVal STR_FromUni(Str buf, StrIVal size, UniCStr unistr, 
CharCvtSet flags, StrCvtCtxPtr ctx);

STR_ToUni() converts an internal string whose code type is defined by 
ND_CHARNATIVE to Unicode. It then puts the converted string into buf. 
The unisize is the size in 16-bit integers, not the size in bytes.

STR_FromUni() converts a Unicode string to an internal string. It then puts 
the converted string into buf. The size is the size of buf in 16-bit integers, not 
the size in bytes. 

These routines always terminate buf with NULL bytes and never write more 
than size bytes into buf, including the terminating NULL. They return the 
number of characters that have been written to buf without terminating 
NULL.

Note: The flags are for future use to convert various characters defined in 
charpub.h. You can specify 0 for now.
160 Getting Started



About Unicode
ctx may be NULL or a pointer to a StrCvtCtx, which will be filled with buf 
and str positions where the conversion can resume after the destination 
buffer has been reallocated.

STR_ToCt, STR_FromCt

StrIVal STR_ToCt(NatStr buf, StrIVal size, Cstr str, CtCPtr ct, 
StrCvtCtxPtr ctx)

StrIVal STR_FromCt(Str buf, StrIVal size, NatCStr str, CtCPtr ct, 
StrCvtCtxPtr ctx)

STR_ToCt() converts str to ct-encoded string and puts the result into buf. 
STR_FromCt() converts ct-encoded str to an internal string and puts the 
result into buf.

The size is size of buf. These routines always terminate buf with NULL bytes 
and never write more than size bytes into buf, including the terminating 
NULL. They return the number of characters that have been written to buf 
without the terminating NULL.

ctx may be NULL or a pointer to a StrCvtCtx, which will be filled with buf 
and str positions where the conversion can resume after the destination 
buffer has been reallocated.

CT_ToUni, CT_FromUni

BoolEnum CT_ToUni(CtCPtr ct, ChCode ch, UniCodePtr uni)

BoolEnum CT_FromUni(CtCPtr ct, UniCode uni, ChCodePtr ch)

CT_ToUni() converts a ct-encoded ch code to Unicode uni.

CT_FromUni() converts a Unicode uni to ct-encoded ch code.

If the conversion succeeds, these functions return BOOL_TRUE; otherwise, 
they return BOOL_FALSE.

CS_ToUni, CS_FromUni

BoolEnum CS_ToUni(CsCPtr cs, CsCode code, UniCodePtr uni)

BoolEnum CS_FromUni(CsCPtr cs, UniCode uni, CsCode code)

CS_ToUni() converts code in the cs codeset to Unicode uni.

CS_FromUni() converts Unicode uni to code of the cs code set.

If the conversion succeeds, these functions return BOOL_TRUE; otherwise, 
they return BOOL_FALSE.
Getting Started 161



Chapter Localizing Applications in the Elements Environment12
Limitations

The Elements Environment does not support these Unicode features:

Nonspacing Marks

For example, the Elements Environment does not treat these as the same:

Unicode 0x0061 LATIN_SMALL_LETTER_A + Unicode 0x0308 
NON_SPACING_DIAERESIS

Unicode 0x00E4 LATIN_SMALL_LETTER_A_DIARESIS

Right-to-Left Languages

You cannot use Arabic or Hebrew, for example, with the Elements 
Environment version of Unicode.

Language-specific Rendering Issues

The following, for example, are not supported:
■ Korean syllable composing
■ Thai characters’ tone marks
■ Arabic or Greek’s context-dependent shapes
■ Arabic ligatures

Platform-Specific Issues

On the Macintosh, OS/2 Presentation Manager, and Windows 3.1, UTF8 
cannot be used as an ND_CHARNATIVE to specify the internal code.

Examples

You can find these examples in these directories:
■ $ND_HOME/C/examples/unicode
■ $ND_HOME/CPP/examples/unicode

tedit

This is a simple text editor for editing UTF8 strings. Keyboard input and 
Clipboard input can also be changed dynamically through menu selections.

The code type of the I/O file also can be specified. For example, it can read 
a Japanese EUC file and convert it to a UTF8 file.
162 Getting Started



About Unicode
uniin

This is an example of a simple Unicode input method. Users should set the 
ND_CHARNATIVE environment variable to CT_UTF8 before starting this 
application.

This program displays all Unicode characters in the list box. Users can click 
any characters to select them and then click Copy to copy them to the 
Clipboard as a UTF8 string.

Any UTF8-based Elements Environment application can retrieve the copied 
strings with the Paste function text edit (CTRL-V).

Code Types for Unicode Conversion

You can convert these code types to/from Unicode:

CT_ASCII ASCII code
CT_ISO_LATIN1 ISO8859-1 for Western Europe
CT_ISO_LATIN2 ISO8859-2 for Eastern Europe
CT_ISO_LATIN3 ISO8859-3 for Southeast Europe
CT_ISO_LATIN4 ISO8859-4 for Scandinavian
CT_ISO_CYRILLIC ISO8859-5 for Russian
CT_ISO_ARABIC ISO8859-6 for Arabic
CT_ISO_GREEK ISO8859-7 for Greek
CT_ISO_HEBREW      ISO8859-8 for Hebrew
CT_ISO_LATIN9 ISO8859-9 for Turkish
CT_MAC_ROMAN Macintosh code type for Western Europe
CT_SJIS Japanese ShiftJIS Windows codepage 932
CT_JEUC Japanese EUC
CT_BIG5 Taiwanese Big5 encoding
CT_CNS Taiwanese CNS11643 EUC encoding
CT_KSC Korean KSC5601 8-bit encoding
CT_GB Mainland China’s 2312 8-bit encoding
CT_ADOBE_STD Adobe Systems standard encoding
CT_ADOBE_LATIN1 Adobe Systems ISOLatin1 encoding
CT_ADOBE_ZAPFDB Adobe Systems ZapfDingbats encoding
CT_ADOBE_SYMBOL Adobe Systems Symbol encoding
CT_MSW_ANSI MS Windows codepage 1252
CT_MSW_EASTEURO MS Windows codepage 1250
CT_MSW_CYRILLIC MS Windows codepage 1251
CT_MSW_GREEK MS Windows codepage 1253
CT_MSW_TURK MS Windows codepage 1254
CT_MSW_ARABIC MS Windows codepage 1256
CT_MSW_HEBREW MS Windows codepage 1255
Getting Started 163



Chapter Localizing Applications in the Elements Environment12
Unicode Font Mapping

X11

The following X11 fonts can be used for Unicode (UTF8) code drawing on 
X11. (X11 fonts are listed by the last two fields of the XLFD description.)

iso8859-1       ISO8859-1 for Western Europe, Latin America
iso8859-2       ISO8859-2 for Eastern Europe
iso8859-3       ISO8859-3 for Southeast Europe
iso8859-4       ISO8859-4 for Scandinavian
iso8859-5       ISO8859-5 for Russian
iso8859-6       ISO8859-6 for Arabic
iso8859-7       ISO8859-7 for Greek
iso8859-8       ISO8859-8 for Hebrew
iso8859-9       ISO8859-9 Latin5 for Turkish
jisx0201.1976-0 Japanese Half-width Kana
jisx0208.1983-0 Japanese Kanji, and so on
ksc5601.1987-0  Korean KSC5601
gb2312.1980-0   Mainland China’s GB2312
big5.et-0       Taiwanese Big5
big5.eten-0     Taiwanese Big5
cns11643-1      Taiwanese CNS11643-1
cns11643-2      Taiwanese CNS11643-2
cns11643-3      Taiwanese CNS11643-3
unicode1.1-0    Unicode font
-dingbats       Adobe Systems ZapfDingbats font

You can specify these fonts in the font-family description language 
(x_charset "iso8859-1").

Note: You can get most of these X11 fonts from these URLs:

ftp://cair-archive.kaist.ac.kr/pub/hangul/fonts/
ftp://etlport.etl.go.jp/pub/mule/fonts/
ftp://ftp.ifcss.org/pub/software/fonts/{big5,cns,gb,misc}/

bdf/
ftp://ftp.kuis.kyoto-u.ac.jp/misc/fonts/jisksp-fonts/
ftp://ftp.ora.com/pub/examples/nutshell/ujip/unix/
ftp://ftp.vszbr.cz/pub/X11-fonts

Windows 95 and Windows NT

You can use one of these methods to install Unicode fonts in Windows 95 
and Windows NT:
■ Install the “Lucida Sans Unicode” True Type font file included with 

Windows 95 and Windows NT. This font covers ASCII and most of the 
European code set, including Greek and Russian. Extract the file 
1_10646.tt from the Windows 95 or Windows NT CD-ROM, and install 
it on your system.

Note: If you cannot find this file, check other .tt files  in the Windows 
95 or Windows NT CD-ROM.
164 Getting Started



About Unicode
■ Use the Trial or Times New Roman fonts to support European, Greek, 
and Russian characters.

■ If you have third-party Unicode fonts, use them. 
■ Install code-page-specific True Type fonts from the International 

Windows 3.1 kit.

These CHARSET fonts can be mapped from UTF8. To use these fonts, install 
the font file from the Control Panel. Some double-byte fonts cannot be 
installed onto nonnative systems.

PostScript

These PostScript fonts can be mapped from UTF8. To use these fonts for 
UTF8 PostScript printing, put the font name into the font-family description 
language using the listed keyword (for example, ps_roman "Times"):

CHARSET Name CHARSET Value
ANSI_CHARSET 0 (including Unicode)

SHIFTJIS_CHARSET 128

HANGUL_CHARSET 129

GB2312_CHARGET 134

CHINESEBIG5_CHARSET 136

GREEK_CHARSET 161

TURKISH_CHARSET 162

HEBREW_CHARSET 177

ARABIC_CHARSET 178

RUSSIAN_CHASET 204

PostScript Encoding Keyword Sample Font Name
AdobeStandard ps_roman Times, Helvetica, Courier

Adobe Symbol ps_symbol Symbol

JISX0208 ps_j0208 GothicBBB-Medium-H

JISX0201 ps_j0201 GothicBBB-Medium.Hanka
ku

ZapfDingbats ps_zapfdb ZapfDingbats

KSC5601 ps_ksc5601 KSC5601 7-bit encoded fonts

JISX0212 ps_j0212 JISX0212 7-bit encoded fonts

BIG5 ps_big5 Big5 encoded fonts

GB2312 ps_gb2312 GB2312 7-bit encoded fonts

ISOLatin1 ps_isolatin1 ISO8859-1 encoded fonts

ISOCyrillic ps_isocyrllic ISO8859-5 encoded fonts
Getting Started 165



Chapter Localizing Applications in the Elements Environment12
Note: To enable UTF8 PostScript printing, the PostScript printer should 
have the font you specified.

For More Information about the APIs

■ For detailed information about the language-independent APIs, see the 
Char, Str, VStr, Cs, and Ct modules in the Elements Application Services 
C/C++ Programmer’s Guide.

■ For multibyte API information, see the Elements Application Services 
Programmer’s Guide.
166 Getting Started



Appendix
A PVCS Integration with the 
Elements Environment 2.1 A

The Elements Environment 2.1 and later versions support integration of the 
PVCS software configuration management (SCM) software. This software 
allows you to control the revision of source code in various ways, including:
■ Privilege/access
■ Login/logout
■ Archiving

Note: The Elements Environment does not include the PVCS software. You 
must purchase the PVCS software separately from Intersolv or a 
licensed vendor.

The integration of the Elements Environment with PVCS allows you to use 
many PVCS functions without exiting the Elements Environment and using 
the PVCS interface. Instead, you have access to PVCS Level 1 (basic) 
integration from the File menu within any Elements Environment interface.

The available PVCS functions include:
■ Configuring the Elements Environment so it can read necessary 

information, such as the location of archive files, from the PVCS 
configuration (.cfg) files

■ Checking out source-code files
■ Checking in source-code files
■ Generating basic software-control status reports
■ Managing revised source-code files located on your development 

platform

However, many other PVCS features are still controlled through the PVCS 
interface and not through the Elements Environment, including:
■ User-access control
■ Checkin authorization
■ Build authorization
■ Miscellaneous user privileges
■ File access

Note: The current version of Elements Environment only supports PVCS 
version 5.2.x.
C++ Programmer’s Guide 167



Appendix PVCS Integration with the Elements Environment 2.1A
Note: Consult the Intersolv PVCS User Guide and Reference for specific 
information on configuring and using the PVCS software.

The Elements Environment 2.1 currently provides basic (Level 1) integration 
with PVCS. Neuron Data plans to offer advanced (Levels 2 and 3) 
integration in future releases of the Elements Environment.

Requirements for Using Level 1 PVCS Integration with the Elements Environment

When purchasing the Elements Environment software, you must:
■ Obtain a license from Neuron Data to integrate PVCS with the Elements 

Environment
■ Install the PVCS software on your system before installing the Elements 

Environment
■ Have the Elements Environment 2.1 or a later version that includes the 

PVCS recognition module

To determine if PVCS integration is enabled:

1. Launch the Elements Environment.

2. Choose File from any Browser.

3. If PVCS is enabled, the PVCS option appears on the drop-down menu. 
If PVCS is not enabled, this option does not appear.

PVCS Features Supported in Level 1 Integration
■ Default configuration files
■ Checkout with locking and version labels
■ Checkin with change description, user ID, date/time stamp, and 

version labels
■ Access to project files and selection lists
■ Grouping of files using version labels
■ Generating basic reports
■ Capturing PVCS error alerts and displaying them

PVCS Features Not Supported in Level 1 Integration
■ Macintosh development platforms
■ Merging—combining two sets of revisions to create a new source-code 

file
■ Branching—developing alternate versions of source-code files 

simultaneously
■ Multiple locking of files
168 C++ Programmer’s Guide



Setting Up the PVCS Integration Environment
Neuron Data plans to support these features in future releases of the 
Elements Environment.

PVCS Integration Tests

Every time you launch the Elements Environment, it:

1. Determines whether you have configured it to use PVCS integration

2. Checks to see if the PVCS libraries and development environment are 
on your system

3. Determines if you have a Neuron Data Elements Environment license 
for PVCS integration

4. Checks to see that you have enabled PVCS integration by setting 
ND_PVCS to “on” in ee.cfg, oie.cfg, and runscrpt.cfg

If these requirements are met, PVCS integration is enabled for the current 
development session.

Setting Up the PVCS Integration Environment

To activate PVCS integration, you must turn the environment variable 
ND_PVCS “on.” During installation of the Elements Environment, the 
environment variable ND_PVCS is declared in the files ee.cfg, oie.cfg, and 
runscrpt.cfg, but is set to “off.” To enable PVCS integration, open these text 
files and set ND_PVCS to “on.”

Note: The files ee.cfg, oie.cfg, and runscrpt.cfg are located in the \ee21\dat 
subdirectory.

Note: Do not confuse the Elements Environment configuration files with 
the PVCS project configuration files.

Accessing Integrated PVCS Options

You can choose integrated PVCS options from the File menu anywhere 
within the Elements Environment:

1. Choose File - PVCS.

2. Choose a PVCS option.

Note: If you have not loaded a PVCS configuration (.cfg) file, all other 
options are disabled.
C++ Programmer’s Guide 169



Appendix PVCS Integration with the Elements Environment 2.1A
3. Go to the appropriate directory and select the file(s) you want.

Note: Depending on the option you choose, only some of the files may 
appear.

Tip: You can select multiple files by dragging or by Shift + click.

Configuring the Elements Environment for PVCS

You use the PVCS Configure option to tell the Elements Environment what 
PVCS configuration file (.cfg) to use. The Elements Environment uses the 
information from this file to determine:
■ Your access privileges (based on your login ID)
■ The location of your project archive files

Note: Before choosing any other PVCS option, you must first choose 
Configure so the Elements Environment knows which configuration 
file to use.

Tip: You do not have to enter your user ID. The Elements 
Environment gets your last login ID and uses that for 
comparison.

1. Choose File - PVCS - Select Config File.

2. Go to the appropriate directory and double-click the project’s 
configuration file.

Checking Out Files

Checking out a file gives you access to it for browsing or editing. When you 
check out one or more files, PVCS:
■ Allows you to select the file(s) to be checked out
■ Checks your login ID against data in the project’s PVCS configuration 

file to see if you are authorized to check out, write to, or lock the selected 
file(s)

■ Notifies you if you are not authorized to perform these actions
■ Allows you to lock files if you are authorized to do so

Note: A locked file cannot be checked out by anyone else until you 
unlock it.

■ Alerts you if another user has a requested file locked out
■ Allows you to add version labels to group source-code files
■ Allows you to check out files by revision level
170 C++ Programmer’s Guide



Checking Out Files
To check out files:

1. Choose File - PVCS - Check Out.

2. Go to the appropriate directory and select the file(s) you want.

3. Click OK.

Note that the default settings on the Check Out window are Read Only 
and Latest Revision, and that the by Version Label and by Revision # 
options are disabled.

4. If you are authorized, you can select Writable w/ Lock.

This allows you to make revisions to the file and prevents other users 
from accessing it until you unlock it. If you select this option, this 
enables the by Version Label and by Revision # options.

5. To add a new version label or select a current one, select by Version 
Label and enter the version label.
C++ Programmer’s Guide 171



Appendix PVCS Integration with the Elements Environment 2.1A
6. To check out a specific revision, select by Revision # and choose 
Revision.... Double-click the appropriate revision.

7. Click OK to check out the file.

8. If you selected multiple files in step 2, repeat steps 5–7 as appropriate.

Checking In Files

Checking in a file lets you log a file back into the project archives after you 
have made revisions. Each time you check in a file, PVCS creates a new 
revision level for it. When you check in one or more files, PVCS:
■ Lets you select file(s) to check in from the current working directory
■ Checks your login ID against data in the project’s PVCS configuration 

file to see if you are authorized to check in the selected file(s)
■ Notifies you if you are not authorized to check in the file(s)
■ Allows you to add a revision description that is saved in the project 

archives
■ Saves any unsaved work file(s)
■ Updates revision information in the project archives
■ Deletes the file(s) from your working directory if you selected that 

option
■ Automatically unlocks checked-in file(s) to give other authorized users 

access

To check in files:

1. Choose File - PVCS - Check In.

2. Go to the appropriate directory and select the file(s) you want.

3. Click OK.
172 C++ Programmer’s Guide



Checking In Files
Note that the default setting on the Check In window is Keep 
Read-Only Workfile.

4. If you wish, change the default setting to Delete Workfile or Keep 
Workfile Locked

If you select Keep Workfile Locked, the file will be checked in but other 
users will not have access to it until you check it in again with Keep 
Workfile Locked disabled.

5. If you want to add a description of your revisions, select Change 
Description and enter a description.

6. If you want to add a new version label, select Version Label and enter 
the version label.

If the file already has a version label that is different from the version 
label you enter, you will be asked if you want to overwrite the version 
label. Click OK or Cancel.

7. Click OK to check in the file

8. If you selected multiple files in step 2, repeat steps 5–7 as appropriate.
C++ Programmer’s Guide 173



Appendix PVCS Integration with the Elements Environment 2.1A
Generating Reports

The Report option allows you to create summaries about your project file(s) 
and/or revisions. When you use the Report option, PVCS:
■ Lets you select archive file(s) to include in the report from the archive 

directory and subdirectories
■ Checks your login ID against data in the project’s PVCS configuration 

file to see if you are authorized to generate reports
■ Notifies you if you are not authorized to generate reports
■ Retrieves the PVCS log(s) on the file(s) you have selected
■ Generates the report
■ Saves the report in your current working directory

To generate reports:

1. Choose File - PVCS - Archive Report.

2. Go to the archive directory and select the archive file(s).

3. Click OK.

Note that the default setting on the Report window is Full, meaning that 
all reporting information is printed.

4. If you wish, select the appropriate option for a report containing only 
the information you want.

5. Click OK to accept your selection.
174 C++ Programmer’s Guide



Deleting Revisions
6. Enter the directory path and filename for the report.

7. Click OK to generate the report.

Deleting Revisions

The Delete Revisions option allows you to delete revisions you have made 
from the project archive.

Warning: Make sure you want to delete your revisions before proceeding.

To delete revisions:

1. Choose File - PVCS - Delete Revisions.

2. Select the revision you want to delete.

3. Click OK to delete the revision and all associated files.

If you are unsure about deleting the revision, click Cancel.
C++ Programmer’s Guide 175



Appendix PVCS Integration with the Elements Environment 2.1A
176 C++ Programmer’s Guide



Index 2

Symbols
:= operator 19

A
Accept button 52
actions 31, 33

backward chaining 34–35
changing data values 35
forward chaining 35–36
immediate updating 47
initiating 33

by system 44, 45
when values change 45

viewing 61
adding objects and classes 55
adding rules 52
adding widgets 15, 107
Adobe Acrobat Reader 6
Adobe code types 143
alert dialogs 115
allocating memory 110
alternative actions 31
annotations 109
applets 83
application files 25

copying 128, 130
protecting 130

Application Programming Interface (API)
C/C++ language support 110, 111
character classification 147–149
character encoding 153, 154
Data Access Element 27, 29
Elements Environment 101
language-independent 133
multibyte characters 133, 140
string management 149–151
utility classes 96
variable strings 152–153

Application Services libraries 122

applications 1, 90
See also cross-platform applications
adding main window 10–16
adding menus 50–51
building 48–58, 117–125, 129
changing native languages 146
defining native languages 146
deploying 24, 127, 129–132
developing 1, 7, 9
distributing 86
language settings 118, 121
localizing 133–166
porting 24, 87, 127

C/C++ environments 128–129
script 129

processing 66–79
restarting session 74

redefining 24
running 23, 117
sample 123–125
startup scripts 17–19
testing layouts 16
upgrading 2

AppStartup procedure 18, 20
running 121

Archive Report command (PVCS) 174
ArNum class 106
arnumpub.h 106
ArPtr class 105
arptrpub.h 105
array classes 105, 106
array of numbers 106
array of objects 105
array of pointers 105
arrays 96, 153

defining 105–106
types 105

ArRec class 105
arrecpub.h 105
ARXXX_DEFCLASS macros 106
ASCII character sets 133, 140

coding schemes 142
conversions 148
Unicode characters and 155

Asian character sets 133
Asian language input methods 121, 134
assignment 19

object references 19
programming limitations 109
Getting Started 177



Index
assignment operator 19

B
backward chaining 34–35, 37

inference control 38
base class (persistent objects) 96
BIG5 character sets 141

mapping 142
binary files 7
binary mode 128
bitmap files 128
browser overview panel 16

See also Resource Browser window
browser panel 16

See also Resource Browser window
buffered I/O 96
building applications 48–58, 117–125, 129
building libraries 110
building localized dictionaries 135
built-in IRE functions 122
business rules See IRE
buttons

constructing/destructing 97
customizing 20
IRE editor windows 52
placing in windows 15

C++ code example 97, 98
redraw C++ code example 99

C
C language support 29, 110

subclassing 102
Unicode characters and 155

C++ language support 29, 95
building libraries 110
code regeneration 109
customizing object behavior 98–100
exception handling 110, 114–115
limitations 109–112

C/C++ applications
deploying 130–131
porting 128–129

C/C++ code templates 7
startup scripts and 18
structure defined 106

C/C++ interfaces 2
enhancements 4

callbacks 20–22
notifications and 99
overview 20
registering members as 99

Cancel button 52
Canna input method 133

enabling 137
catch mechanism 114
Char datatype 145
Char module 133, 147
character classification 148
character codes 140

getting 148
character conversions 148, 151

Unicode characters 156, 160, 161
character encoding 133, 140, 153

Unicode-supported procedures 154
character functions 148
character mode 121
character sets

See also specific
coding schemes 142, 153

UTF8 mode 155
international support 3
numeric representations 140

character translations 133, 134
messages 136

character types (international) 145
charpub.h 160
CHARSET fonts 165
ChCode datatype 145
check boxes 29
Check button 52
Check In command (PVCS) 172
Check In window (PVCS) 173
Check Out command (PVCS) 171
Check Out window (PVCS) 171
Check Script Syntax command 19, 23
checking in files 172–173
checking out files 170–172
choice boxes 29
CJK code types 143
178 Getting Started



Index
Class Editor 57
caution for editing classes 104
defining subclasses 103, 108

class pointers 43, 105
classes 40, 55, 95, 97

adding to tools palette 103
customizing specific 99
declarations 107
editing 57

caution 104
memory allocation/deallocation 110
private fields 98
protected fields 98
viewing hierarchies 63–66

client-server applications 86
See also applications

CLIP_GetKbCt 160
CLIP_SetKbCt 160
Clipboard code types 158, 159, 160
CNSxxx character sets 141

mapping 142
code 93

checking syntax 19, 23
controling revisions 167
customizing 20–22
debugging 23
editing 24, 109
generating 4, 106, 107
parsing 109
reusing 20
saving 107

code annotations 109
code mappings 142

See also character sets
defined 141

code regenerator 109
code sets 140, 153
code templates 7

copying 18
startup scripts 18
structure defined 106

code types 142, 153
tested 142–143
Unicode conversions 163
untested 143–145

coding schemes 142, 153
UTF8 mode 155

Collapse command 17
command buttons See pushbuttons

command-line syntax
building localized dictionaries 135
compiler options 121
localizing .dat files 135, 136
running Elements Environment 120
running sample applications 123, 124
running scripts 24

communication 85
comparisons 150, 153
compiler flags 118, 120

enabling/disabling 121
explicitly setting 120
listed 122

compiling options See compiler flags
compiling resource files

C/C++ applications 128
script applications 129

compression 96
concatenation 153
conditional statements 31

adding actions 33
backward chaining 34–35, 37
bidirectionality 37
forward chaining 35–36, 37
inference control mechanisms 38
revising 36
status 67
strategies 39
suggesting a hypothesis 74
suggesting an hypothesis 68
user-defined methods and 45
viewing elements 61
volunteering data 75–79

conditions
creating 53
defined 31
evaluating 32, 34, 37, 67
object lists and 43
unknown values and 44
values changing and 45
viewing 61

configuration files
loading 120

configuring Elements Environment 117–120
compiling options 120–122

configuring PVCS 170
connection classes 29
connection objects 28
connections 27
Getting Started 179



Index
constructors 97, 111
customizing 114
default 112
registering subclasses and 104
window classes 107

container classes 105–108
customizing 108

conversion tables 157
conversions 148, 151

Unicode characters 156, 160, 161
Unicode code types 163

Copy button 52
copying application files 128, 130
copying code templates 18
copying objects 57, 105

programming limitations 109
CORBA servers 81
CPP_EXCEPTION flag 115
creating applications 48–58, 117–125
creating menus 50–51
creating objects and classes 55
creating user interfaces 9
cross-platform applications 1, 7, 93

C++ language support 96
porting to 128–129

CS_ASCII code set 142
CS_FromUni 161
CS_ToUni 161
Ct module 133, 153
CT_AD0BE_SYMBOL code type 143
CT_ADOBE_STD code type 143
CT_ADOBE_ZAPFDB code type 143
CT_ASCII code type 142
CT_BIG5 code type 143
CT_CNS code type 143
CT_FromUni 161
CT_GB code type 143
CT_HP_ROMAN8 code type 145
CT_ISO... code types 143
CT_JEUC code type 143
CT_KSC code type 143
CT_MAC_xxx code types 144
CT_MSW_xxx code types 144
CT_PC_xxx code types 144
CT_SJIS code type 143
CT_ToUni 161

CT_UNICODE code type 145
Current condition or action icon 67
custom classes 108
customer assistance 6
customizing widgets 20–22

D
da.cfg 119
DAE (Data Access Element) 1, 27

control options 122
default configuration 119, 120
new features 3, 4
object accessibility 28
quick tour 28–29
sample application 123

DAE drivers 27
enabling 120, 122

dae.cfg 119
.dat files 25

deploying applications and 130
generating text resources for 135
initializing 127
localizing 135, 136

data 75
Data Access Element See DAE
data objects 88
data sources 1, 93

accessing multiple 27
data transfers 85
data-access objects 28
database connections See  connections
database drivers See DAE drivers
databases 122
datasource/views mechanism 28, 93
datatypes 27

internationalization 145–146
data-validation attributes 66
dataview application 124
date formats 136
DBView resource 28
deallocating memory 110
DEBUG libraries 127
debugging 23, 127
declarations 107
decompression 96
180 Getting Started



Index
deductive reasoning 34
default configuration 118
default constructors 112
define statements 120
DefNfy method 100
Delete button 52
delete operator 97, 110
Delete Revisions option (PVCS) 175
deleting rules 52
deleting widgets 97, 111
deploying applications 24, 127, 129–132

guidelines 127
Deployment kits 117, 127

restriction banner 129
destructors 97, 111
developing applications 1, 7, 9
Development kits 117, 127
dictionaries 28

locale-dependent 135
displaying class-object hierarchy 63–66
displaying property settings 63
displaying rules 60–62
Distributed Messaging Element See DME
distributed systems 85

DME vs. 86
distributing applications 86
DLLs 131
DME (Distributed Messaging Element) 1,
85–91

components of 85
control options 122
data processing 87
defaults 91
distributed systems vs. 86
event-handling mechanism 90
portability 87
process registering 89
resources 91
routers 88–89
sample application 125

documentation 4, 5
dynamic-link libraries (DLLs) 131

E
EAS (Elements Application Services) 1, 93–94

EAS libraries 122
EBCDIC character sets 148
Edit Application Script command 24
Edit button 52
editing classes 57

caution 104
editing code 24, 109
editing locale-dependent dictionaries 135
editing makefiles 128
editing rules 52
editor windows (IRE) 52–58
editors 9

loading 121
programming limitations 110

EE (Elements Environment) 1
accessing multiple data sources 27
building applications 117–125
building libraries 110
C language support 102, 110
C++ language support 95
compiling options 120–122
configuring 117–120
defining arrays 105–106
defining subclasses 103, 108
enabling software components 120
enhancements to 2.0 2–4
enhancements to 2.1 4–5
exception handling 114–115
installing elements 118
launching 10
loading libraries 121, 122, 125
programming limitations 109–112
starting 120
subclassing in 101–105, 112
unlicensed elements 118
version control 167

ee.cfg 118
Elements Application Services See EAS
Elements Environment See EE
enabling DAE drivers 120, 122
enabling software components 120
encapsulation 41, 98
encoding characters 133, 140, 153

Unicode-supported procedures 154
encryption 96
end-of-line characters 128
Getting Started 181



Index
environment variables 130, 131
character translations 134
multibyte characters 137
native language 146
Unicode code types 158
XIM-compliant applications 138

ERR_CATCH macro 115
ERR_RECOVER macro 115
ERR_RECOVERSILENT macro 115
ERR_RETRY macro 115
ERR_RETRYSILENT macro 115
ERR_Signal function 115
ErrFrame structure 115
error stack 115
errpub.h 115
European character sets 133
event handlers 20, 22
EVENT_GetKbCt 160
EVENT_SetKbCt 160
events 38, 82

GUIs 46–48
messaging element 90

Evoked hypothesis icon 67
exception handling 110, 114–115
executable files 7, 130
executing applications See running applications
Extend - Resources command 17
extended ASCII characters 142
external routines 38

F
False icon 67
FFam resource 138, 139
ffampub.h 138
file I/O 96
file management 96
files 7, 25

controling revisions 167
copying application 128, 130
protecting 130

FILES setting 131
Find button 52
firing 33
Focus Object Network command 64
Focus Rule Network command 62

font families 139
FONT_COMPAT flag 139
fonts 134, 138

mapping to native 139
Unicode-compatible 157, 164–166

forward chaining 35–36, 37
inference control 38

frame-stack pointer 115
FromCt function 161
FromUni function 160, 161
functions 122

character classification 148
string management 150

variable strings 152

G
GB2312 character sets 141
generating code 4, 106, 107
generating revision reports 174–175
GetKbCt function 160
GetNamedWgt function 108
global popup menus 51
graphical user interfaces See GUIs
gui.cfg 118
GUIs 7

compiling options 121
creating 9
event handling 46–48
linking objects with views 28

H
header files 107

copying 129
hello1 application 124
hierarchies 40

viewing 63–66
HP code types 145
HTML Editor 83
hypothesis

See also conditions
defined 32
status 67
suggesting 68–74
viewing 61
182 Getting Started



Index
I
I/O See input; output
icons (Rule Network window) 66
If Change methods 45
if...then...else statement 31

See also conditional statements
image files 25
include statements 106
inductive reasoning 33
inference control mechanism 38
inference priority 65
inferences 32, 66
inheritance 41
inheritance priority 65
inherited widgets 102
Init method 107
initializing EE libraries 125
initializing windows 107
initiating actions 33

system 44, 45
when values change 45

input 1, 96
buffered 96

input fields 29
input methods 133

compiler options 121
enabling 137
Unicode characters and 157, 158

input strings 134
installation 5–6

caution 10
EE elements 118

instantiation 97
array of objects classes 105
array of pointers classes 105
customizing given instances 99
maintaining instances manually 102

Intelligent Rules Element See IRE
internationalization 1, 3, 94

code mappings 141, 153
date/time formats 136
language settings 118, 121
languages supported 146
localizing applications 133–166
setting fonts 138–140
string types 145–146

Internet 83
Interoperable Objects Element See OLE automa-
tion
Intranet 1, 83
IRE (Intelligent Rules Element) 1, 31

adding actions 33
adding classes and objects 55–58
adding rules 52–55
application processing 66–79

restarting session 74
backward chaining 34–35, 37
building applications 48–58
built-in functions 122
conditions 31

evaluating 32, 34, 37, 67
unknown values and 44
values changing and 45

control options 122
default configuration 119
editing classes 57
editor windows 52–58
forward chaining 35–36, 37
GUI event handling 46–48
inference control mechanisms 38
list windows 58–66
main window 49
message processing 41, 45
new features 3
object-oriented reasoning 39–46
processing knowledge base 67
rule structure 31–39

components 32
revisions 36

sample application 124
starting 49
viewing class-object hierarchy 63–66
viewing rules 60–62

ire.cfg 119
ISO character sets 140, 143

J
Japanese language input method 121, 133
JEUC character mapping 141
JIS character sets 140, 141

K
keyboard-input code type (Unicode) 158
Knowcess command 67, 69, 76
Getting Started 183



Index
knowledge base 66
displaying rules 60
manipulating rules 53
printing 58
processing 67
variables in 39
viewing class hierarchy 63

Korean language input method 121, 134
KSC character sets 140

L
labels

names vs. 15
translating 135

language settings 118, 121
language-independent APIs 133

character classification 147–149
string management 149–151
variable strings 152–153

languages (international) 146
languages, programming (supported) 81
Large command 13
Large Tools mode 13
launching EE 10
launching Elements Environment 120
launching IRE 49
lboxex application 123
LHS (Left-Hand Side) 32

See also conditional statements
libraries 95

exception handling and 114
guidelines for building 110
initializing 125
installing 106, 107
listed 117
loading 121, 122, 125
messaging element 91
nondebug 130, 131
nonrestricted versions 127, 130, 131
shareable 131
viewing 17

linking 117, 121, 125
list boxes 29
List of Rules command 60
list windows (IRE) 58–66
Load keyword 120

loading configuration files 120
loading EE libraries 121, 122, 125
loading sample applications 123, 124
local popup menus 50
locale-dependent dictionaries 135
locale-dependent resources 134
localizing applications 133–166

See also internationalization
code mappings 141, 153
language-independent APIs 133
setting fonts 138–140
string management 134, 140, 149

variable strings 152
string types 145–146
supported languages 146
translating resources 134–136

locking files 171, 173
longjmp calls 114

M
Macintosh code types 144
macros

array classes 106
exception handling 115
registering members as callbacks 99
resource subclassing 102, 112

main function 107
makefiles 7, 25, 125

copying 129
editing 128

mapping encoded characters 141, 153
member functions 110

declarations 108
overloading 111
registering as callbacks 99
resource classes 96, 98
utility classes 96
widget classes 98

memory allocation 110
memory management 96, 97
memory pools 96
menus 50–51
message processing 41, 45
messages (string translation) 136
messaging element See DME
Meta-Slots Editor 65
184 Getting Started



Index
methods 41
system-triggered 44–45
user-defined 45

Microsoft Windows code types 144
Microsoft Windows-specific Unicode fonts 164
modems 85
Module Editor 107
modules 7, 107, 109

main 17
viewing 17

multibyte characters 3, 133
code mappings 141, 153
coding schemes 142
requirements 140
setting up environment 137

multilevel backward chaining 35

N
names (labels vs.) 15
native datatype 145
native fonts 134, 138

mappings 139
Unicode-compatible 157, 164–166

native language 146
See also internationalization

nd.dat 127
deploying applications and 130

nd.h 118, 125
ND_CHARNATIVE environment variable 146

limitations 162
settings 159
Unicode characters and 156, 158

ND_CLIPCODETYPE environment variable
158, 159
ND_DA compiler option 122
ND_DA_DB2 compiler option 122
ND_DA_ODBC compiler option 122
ND_DA_ORA7 compiler option 122
ND_DA_PDB compiler option 122
ND_DA_SYB compiler option 122
ND_DM compiler option 122
ND_DYNCONFIG compiler option 121
ND_EDITORS compiler option 121
ND_GUI compiler option 121, 122
ND_IM_JAPANESE compiler option 121
ND_IM_KOREAN compiler option 121

ND_IM_NATIVE compiler option 121
ND_IR compiler option 122
ND_IR_DA compiler option 122
ND_IR_DB compiler option 122
ND_IR_EXE compiler option 122
ND_KEYBOARDCODETYPE environment
 variable 158, 159
ND_LANG environment variable 146
ND_OI compiler option 122
ND_PATH environment variable 130, 131
ND_PVCS variable 169
ND_RUNSCRPT compiler option 121
ND_SCRIPT_SERVERS compiler option 121
ND_SCRIPTING compiler option 121
ND_WE compiler option 122
ND_XIM variable 138
ND_XIMPREEDIT variable 138
ND_XIMSTATUS variable 138
NDCnx class 29
NDDbVu class 29
NDDN Technical Support Web page 6
NDErrFrame class 115
NDExcept class 115
ndlm*.dat 130
NDQry class 29
NDRes class 96

accessing protected fields 98
customizing object behavior 98
memory allocation/deallocation 110
subclassing 96, 97, 102

C++ mechanism vs. 101
ndresed.dat 130
NDVTab class 29
NDWin class 101
network icons 66
networks 1

messaging system 85, 88–89
Neuron Data Gui Server command 22
New Application command 11
New button 52
new operator 97, 110
NEXPERT See IRE
nondebug library 130, 131
nonrelational databases 122
nonrestricted libraries 127, 130, 131
Getting Started 185



Index
Not Known icon 67
notifications 111

customizing class behavior 99
default actions 100
defining 106
registering 107

numbers 106

O
object arrays 105
Object Editor 55–58

starting 56
Object Editor command 56
object files 7
object interoperability 2
object libraries 91
object lists 43
Object Network window 63–66

displaying hierarchies 63
object references 19
object servers See servers
object sets 42, 43
object structures 39
objects 81

adding 55
copying 57, 105

programming limitations 109
customizing behavior 98–100
hierarchical representations 40
pointers to 105
sharing properties 40
subclassing at runtime 97
viewing hierarchies 63–66

ODBC driver 117
See also DAE drivers

OIE (Open Interface Element) 1
control options 122
default configuration 118, 119
new features 2
overview 7–9
quick tour 9–25
sample application 123
toolkit 122

oie.cfg 118
OLE automation 81–82, 83
OLE object model 81

OLE-to-CORBA bridges 81
online documentation 4

installing 5
OOScript 1, 81

See also scripts
DAE objects and 28
enhancements 3, 4
GUI interfaces and 47
startup scripts 17–19

Open Interface Element See OIE
Option keyword 120
Oracle driver 117

See also DAE drivers
Order of Sources methods 44
output 1, 96

buffered 96
output strings 134
overloaded member functions 111

P
parameters, viewing 22
parsing code 109
pattern matching (object lists) 43
PC code types 144
.pdf files 129
persistent fields 101

defining 102
persistent objects 8

base class 96
constructing 97

pointer arrays 105
pointers 105

See also class pointers
polymorphism 42
popup menus 50–51
portable user interfaces 1
porting applications 24, 87, 127

C/C++ environments 128–129
guidelines 127
script 129

PostScript fonts 165
predefined IRE functions 122
preprocessor compilation flags 118
private fields 98
186 Getting Started



Index
procedures 41
application startup 18, 20

running 121
reusing 20

programming languages (supported) 81
programming limitations 109–112
properties

duplicating 57
sharing 40
viewing 63

protected constructors 114
protected fields 98
protecting files 130
ProtoDB driver 117

See also DAE drivers
push buttons

customizing 20
pushbuttons

placing in windows 15
PVCS 167

checking in files 172–173
checking out files 170–172
configuring 170
defaults 171, 173
deleting revisions 175
enabling 169
generating reports 174–175
integration tests 169
loading files 170
locking files 171, 173
requirements 168
revision logs 173
setting up 169
supported features 168
testing accessibility 168

PVCS command 169

Q
query classes 29
query objects 28

R
.rc files 25
RCLAS_CPLUSFULL macro 112
RCLAS_CPlusRegister macro 102
RCLAS_CPPFULL macro 102, 104

custom classes 108

RCLAS_Register 102
RecordSet objects 28
redraw method 99
referential integrity 27
registering subclasses 102, 104–105
Registers function 104
registration (caution) 10
Report option (PVCS) 174–175
RES_SHAREDNFYVOIDHANDLER macro
 100
rescomp 104, 128, 129

translating resources 134–136
resizing windows 13
Resource Browser 11, 106, 127

enhancements 4
window, described 16

resource class definition 104
resource classes 96

accessing protected fields 98
changing definitions 104
customizing object behavior 98
subclassing 96, 97, 102

in EE 101
Resource command 11
resource compiler See rescomp
resource files 7, 91

compiling 128, 129
editing 104
viewing 17

resource manager
defining persistent fields 101, 102
registering subclasses 102, 104–105

resources 28
fonts 138, 139
generating text form 135
locale-dependent 134
messaging element 91
overview 7–9
saving 7
translating 134–136

respub.h 99
Restart Session command 74
restriction banner (Development kit) 129
return values, viewing 22
revision control 167
revision logs 173
revision reports 174–175
Getting Started 187



Index
RHS (Right-Hand Side) 32
See also conditional statements

routers 88–89
Rule Editor 52–55

main window 53
starting 53

Rule Editor command 53
rule graph 61
Rule Network window 60–62

displaying rules 61
knowledge processing 66–79
suggesting an hypothesis 68
volunteering data 75–79

rules (defined) 31
Rules Element See IRE
rules.cfg 119
Run Script command 23
running applications 23, 117
runscrpt option 24
runtime subclassing mechanism 98

S
sample applications 123–125
saving code 107
saving resources 7
script applications

deploying 131–132
porting 129

Script Browser 82
Script Editor 82

startup scripts 18
Script Events command 22
script servers 121
scripting language See OOScript
scripting libraries 121
scripts 47, 82

checking syntax 19, 23
copying 18
editing 24
getting information 22
responding to events 22
running 23, 24
testing 23
writing statements 20–22

searches 151
security 127

selecting widgets 14
Selection Tool icon 14
sending intra/interprocess messages 85
SendMessage operator 45
serial connections 85
server connections 28
servers 81
setjmp calls 114
SetKbCt function 160
shareable libraries 131
SJIS character mapping 141
slots

defined 31, 43
displaying attributes 65
unknown values 44
values changing 45

Small Tools mode 12
widget icons 14

sockets 85
software components 120
software-development process 7
source code See code
source files 25, 109

copying 129
saving code to 107

source platform (defined) 128
source-code management (SCM) software See
PVCS
spreadsheets 122
starting EE 10
starting Elements Environment 120
starting IRE 49
startup procedure See AppStartup procedure
startup scripts 17–19
static member functions 96
storage objects 96
stored procedures 27
Str constant 146
Str module 133, 146, 149
STR_FromCt 161
STR_FromUni 160
STR_ToCt 161
STR_ToUni 160
strategies 39
string buffers 150
188 Getting Started



Index
string functions 150
comparisons 150, 153
conversions 151

Unicode characters 160, 161
variable strings 152

string management 96
localized applications 134, 140, 149

variable strings 152
string resources 134
string translation messages 136
string types (international) 145–146
string-resource editor 134
strings, translating 133, 135
subclasses 103

customizing 108
defining persistent fields 102
manually maintaining instances 102
registering 102, 104–105
virtual members and 99

subclassing 101–105, 112
C language support 102
C++ mechanism vs. EE 101
objects at runtime 97
resource classes 96, 97, 102
widget classes 113
window classes 101

subclex.cpp 103
substrings 149
Suggest command 68
Sybase driver 117

See also DAE drivers
syntax checking 19, 23
system initiated actions 44, 45
system methods 44–45

T
target files 125
target platform (defined) 128
TCP/IP support 85
technical support 6
template classes 101
templates 7

copying 18
startup scripts 18
structure defined 106

Test Mode command 16
testing scripts 23

text files 7, 128
text mode 128
text-edit areas 29
third-party applications 5
throw mechanism 114
time formats 136
time management 96
ToCt function 161
toolkit (OIE) 122
tools palette, adding classes 103
ToUni function 160, 161
Trace window 23, 82
translating resources 134–136
translations (character) 133, 134
transmitting intra/interprocess messages 85
triggers 27, 33
True icon 67
try mechanism 114
types See datatypes

U
Unicode character sets 3, 154

Clipboard code type 158, 159, 160
code types 145, 158

conversions 163
specifying 158–161

conversions 156, 160, 161
examples 162
keyboard-input code types 158, 159, 160
limitations 155, 156, 157, 162
mapping characters 157
platforms not supporting 147

UniCode datatype 145
Unicode Transformation Format (UTF8) 155
Unicode-compatible fonts 157

platform-specific mappings 164–166
unicvt.tab 157
UniStr constant 146
UNIX sockets 85
Unknown icon 67
unknown values 44
unlicensed elements 118
upgrading applications 2
user interfaces See GUIs
user-defined methods 45
Getting Started 189



Index
UTF8 mode 155
code drawing 164

utf8.html 156
utility classes 96

V
-v option 136
variable strings 152–153

comparing 153
variables 108
verbose (-v) option 136
verbs 22
version control 167
version labels 171, 173
view classes 29
view objects 28
viewing class-object hierarchy 63–66
viewing property settings 63
viewing rules 60–62
views 93

linking with GUI objects 28
virtual member functions 96, 110

customizing object behavior 99
notifications vs. 111
overriding 99

virtual table classes 29
virtual table objects 28
visual editors 9
Volunteer command 75
volunteering data 75–79
VStr module 133, 152

W
WE (Web Element) 1, 83

control options 122
default configuration 119
sample application 124

we.cfg 119
Web browser 1, 83
Web Element See WE
web.cfg 119
Web-link navigation 1
webwex application 124
widget classes 98

subclassing 113

widget icons 14
widgets 13

adding 15, 107
customizing 20–22
defining in templates 101
deleting 97, 111
locked in Window Editor 102
names vs. labels 15
referencing 107, 108
responding to events 22
selecting 14
testing layouts 16

WIN_SETNFYHANDLER macro 107
Window Attributes button 14
Window Attributes dialog 14
window classes 101

constructors 107
declarations 107

Window Editor 12, 106
adding classes 103
inherited widgets and 102

window manager 97
windows

adding widgets 15, 107
creating 10–16, 106

C++ code example 97
defining defaults 14
destroying 97
initializing 107
redefining 24
resizing 13

Windows code types 144
windows popup menus 51
Windows-specific Unicode fonts 164
World Wide Web See Web

X
X input method 134
X Windows

X input method 134
X11 fonts 164
XIM environments 134

setting up 137
XIM-compliant input servers 134
XIMPreeditCallbacks 138
XIMStatusCallbacks 138
XxxFamily persistent fields 139
190 Getting Started


	Contents
	The Elements Environment
	About the Elements
	New Features and Enhancements in the Elements Envi...
	New Features and Enhancements to the Open Interfac...
	New Features for the Intelligent Rules Element (NE...
	New Features for the Data Access Element
	Unicode and Multibyte Support
	Improvements to the OOScript Language
	Improvements to the Development Environment
	Improvements to the C++ API

	New Features and Enhancements in the Elements Envi...
	Improvements to OOScript
	Improvements to Datasource/Views in the Data Acces...
	Integration with Third-Party Application-Developme...

	Installation
	For More Information about Installation

	Technical Support
	The NDDN Technical Support Web Page


	The Open Interface Element
	About the Software-Development Process
	About Resources
	Quick Tour
	Task1: Creating a User Interface
	To Design a New Window
	About the Window Editor
	To Place Widgets in Your Window

	About the Resource Browser Window
	Task 2: Creating an Application-Startup Module
	Task 3: Writing OOScript Application Logic
	Using Callbacks
	Using Event-Handler Scripts

	Task 4: Test and Run the Script-based Application
	Alternate Ways of Running a Script

	To Edit Existing Applications
	Task 5: Deploying and Porting Applications
	Application Components

	For More Information about the Open Interface Elem...

	The Data Access Element
	The Data Access Element and OOScript
	Quick Tour
	Generic Data-Access Objects
	DBVu Resource
	Object API

	For More Information about the Data Access Element...
	Related Subjects


	The Intelligent Rules Element
	Reasoning System
	Rule Dynamics
	Rule Evaluation
	Actions
	Backward Chaining
	Forward Chaining
	Revisions

	Integration
	Open Architecture

	Object-oriented System
	Object Structure
	Object
	Property
	Class
	Method

	Pattern Matching
	System Methods
	Order of Sources
	If Change Methods

	User-defined Methods

	Graphical User Interface Dynamics
	Interaction from the Intelligent Rules Element to ...
	Interaction from the GUI to the Intelligent Rules ...

	Building Applications
	Starting the Intelligent Rules Element
	IBM-compatible PC
	UNIX Workstations
	Macintosh

	The Main Window
	Displaying Popup Menus
	Entering Text
	Rule Editor
	Building Rules in the Rule Editor

	Object Editor
	Editing Object Structures in the Object Editor
	Editing Classes in the Class Editor


	Viewing Rules and Objects
	List Windows
	Viewing Previously Created Rules

	Rule Network
	Displaying Rules in the Rule Network Window

	Object Network
	Displaying Class-Object Hierarchies in the Object ...


	Processing the Application
	Using Hypotheses
	Suggesting an Hypothesis from the Rule Network Win...

	Using Data
	Volunteering Data from the Rule Network Window


	For More Information about the Intelligent Rules E...

	OLE Automation and OOScript
	Object-Model Interoperability
	OOScript
	For More Information about OLE Automation and OOSc...
	Related Subjects


	The Web Element
	For More Information about the Web Element

	The Distributed Messaging Element
	Components of the Distributed Messaging Element
	The Distributed Messaging Element and Other Distri...
	The Distributed Messaging Element Applications
	Concepts of the Distributed Messaging Element
	Portability
	Data-centered Processing
	Data Object and Structure
	Routers and Fully Connected Networks
	Data Distribution
	Event-driven Programming
	Interactions with Applications
	Resource Files
	Standard Object Library

	For More Information about the Distributed Messagi...

	The Elements Application Services
	Datasource/Views
	Internationalization

	For More Information about the Elements Applicatio...

	C++ Programming in the Elements Environment
	General Architecture
	Resource Classes
	Utility Classes
	Constructors and Destructors
	C++ Constructor new and Destructor delete
	The Elements Environment Constructor new

	Encapsulation

	Customization
	Class-Level Customization
	Instance-Level Customization

	Subclassing in C++
	Subclassing from NDRes Subclasses
	Light Subclassing
	Full Subclassing

	Defining a C++ Subclass in the Elements Environmen...
	Registering a C++ Subclass in the Resource Manager...

	Generic Container Classes
	Code Generation
	Laying Out Windows

	Separating Source Code and Header Files
	Creating Custom Classes

	Code Regeneration
	Limitations
	Copy and Assignment Operations
	Customizing Editors in C++
	Implementation Notes for Current C Users
	Member Functions
	Memory Allocation and Deallocation
	Constructors and Destructors
	Overloaded Members
	Notifications as Virtual Member Functions


	Using Custom Constructors and Destructors
	Defining Default Constructors with RCLAS_CPLUSFULL...
	Defining Custom Constructors

	C++ Exception Handling
	For More Information about the C++ API

	Building Applications in the Elements Environment
	Configuring the Elements Environment
	Default Configuration
	Starting the Elements Environment
	Including Additional Configuration Files

	Compiler-Flag Options
	Enabling and Disabling Options
	Common Options
	Options Controlling the Main Neuron Data Elements
	Element-specific Options

	Running the Elements Environment Examples
	Examples for the Open Interface Element
	Examples for the Data Access Element
	Examples for the Intelligent Rules Element
	Examples for the Web Element
	Examples for the Distributed Messaging Element

	Building Applications
	Using Makefiles


	Porting and Deploying Applications in the Elements...
	Porting a C or C++ Application across Platforms
	Porting a Script Application across Platforms
	Deploying Applications
	Deploying a C or C++ Application

	Deploying a Script Application

	Localizing Applications in the Elements Environmen...
	Support for Multibyte Characters
	Language-independent APIs
	Input Methods
	Processing Input and Output Strings
	Fonts
	String-Resource Editor
	Translating Resources with the Resource Compiler
	Task 1: Generating the Text Resource File for the ...
	Task 2: Generating a Skeleton Dictionary
	Task 3: Editing the Dictionary
	Task 4: Creating the Localized .dat Files
	Task 5: Checking Your Application
	Task 6: Changing the Date and Time Formatting

	Enabling the Input Methods for Multibyte Character...
	Enabling the Canna Input Method
	Enabling the XIM

	Fonts and Font-Family Resources
	Font-Family Resources

	Key Concepts for Multibyte Characters and Strings
	Code Sets
	Code Mapping
	Code Types
	Fully Supported and Tested Code Types
	ASCII Code Type
	CJK Code Types

	Untested Code Types
	ISO 8859_X Code Types
	Adobe Code Types
	Macintosh Code Types
	Microsoft Windows Code Types
	PC Code Types
	Unicode Code Type
	HP ROMAN8


	Key Character and String Types
	Character Type Definitions
	4-Byte Character Format
	Basic String types
	Environment Variables and Flags

	Character APIs in the Elements Environment
	String APIs in the Elements Environment
	Variable-String APIs in the Elements Environment
	Using Code Sets and Code Types
	Code-Set Operations and APIs
	Code-Type Operations and APIs

	About Unicode
	Using Unicode
	ASCII Compatibility
	Conversion with Existing Character Sets
	Font for Drawing and Printing
	Unicode Input

	Specifying Code Types for Unicode
	ND_CHARNATIVE
	ND_KEYBOARDCODETYPE
	ND_CLIPCODETYPE
	EVENT_SetKbCt, EVENT_GetKbCt
	CLIP_SetClipCt, CLIP_GetClipCt
	STR_ToUni, STR_FromUni
	STR_ToCt, STR_FromCt
	CT_ToUni, CT_FromUni
	CS_ToUni, CS_FromUni

	Limitations
	Nonspacing Marks
	Right-to-Left Languages
	Language-specific Rendering Issues
	Platform-Specific Issues

	Examples
	tedit
	uniin

	Code Types for Unicode Conversion
	Unicode Font Mapping
	X11
	Windows 95 and Windows NT
	PostScript


	For More Information about the APIs

	PVCS Integration with the Elements Environment 2.1...
	Requirements for Using Level 1 PVCS Integration wi...
	PVCS Features Supported in Level 1 Integration
	PVCS Features Not Supported in Level 1 Integration...
	PVCS Integration Tests
	Setting Up the PVCS Integration Environment
	Accessing Integrated PVCS Options
	Configuring the Elements Environment for PVCS
	Checking Out Files
	Checking In Files
	Generating Reports
	Deleting Revisions

	Index

