

Neuron Data Elements Environment
Intelligent Rules Element

V e r s i o n 4 . 1

Language Programmer’s Guide

© Copyright 1986–1997, Neuron Data, Inc. All Rights Reserved.

This software and documentation is subject to and made available only
pursuant to the terms of the Neuron Data License Agreement and may be
used or copied only in accordance with the terms of that agreement. It is
against the law to copy the software except as specifically allowed in the
agreement. This document may not, in whole or in part, be copied
photocopied, reproduced, translated, or reduced to any electronic medium
or machine-readable form without prior consent, in writing, from Neuron
Data, Inc.

Use, duplication, or disclosure by the U.S. Government is subject to
restrictions set forth in the Neuron Data License Agreement and in
subparagraph (c)(1) of the Commercial Computer Software-Restricted
Rights Clause at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013;
subparagraph (d) of the Commercial Computer Software—Licensing clause
at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does
not represent a commitment on the part of Neuron Data. THE SOFTWARE
AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION,
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. FURTHER, NEURON DATA DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS
REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE
SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Open Interface Element™, Data Access Element™, Intelligent Rules
Element™, and Web Element™ are trademarks of, and are developed and
licensed by Neuron Data, Inc., Mountain View, California. NEXPERT
OBJECT® and NEXPERT® are registered trademarks of, and are developed
and licensed by, Neuron Data, Inc., Mountain View, California.

Other brand or product names are the trademarks or registered trademarks
of their respective holders.

Contents 1

Preface
Purpose of this Manual ... v
Audience ... v
How to Use this Manual .. vi
Organization .. vi
Related Manuals... vii
Conventions ... viii

1. Representation
Introduction ... 1
Data Structures .. 2
Meta-Slot Attributes ... 9

Initial Value ..9
Private or Public Slot ...9
Prompt Line ..10
Data Validation ..10
Inference Priorities ...10
Inheritance Priorities ...11
Inheritability Setting ..12
Inheritance Strategy ...14

Methods.. 14
Structure ..15
Order Of Sources Method ...18
If Change Method ..21

Rules.. 22
Conditions ...23
Hypothesis ..25
Right-Hand Side Actions ..25

Inheritance.. 27
Property Inheritance ..29
Value Inheritance ...35
Method Inheritance ...39
Conflict Resolution ..42

Dynamic Structures .. 45
Dynamic Objects ..45
Dynamic Links ...46
Inheritance ..48

Interpretations ... 51
Interpreting Slots ..52
Interpreting Strings ..53
Language Programmer’s Guide i

Contents

Pattern Matching... 55
Lists Created By Pattern Matchings ..58
Multiple Pattern Matchings In One Rule ...59
Interpretations And Pattern Matching ...61
Pattern Matching With Data Validation ...62
Pattern Matching With Methods & External Routines ...62

Knowledge Islands ... 63
Knowledge Bases .. 63
Summary .. 64

2. Inference Engine Processing
Introduction ... 67
Evaluation Concepts... 68

Rule Evaluation ..69
Multiple Rules Evaluation ..70
Exhaustive Evaluation ...72
Conflict Resolution ..73
Inference Search Disabling ...74
Method Evaluation ..74

Inferencing Mechanisms .. 77
Backward ...77
Suggest ..79
Hypothesis Forward ..79
Gates ..80
Forward Action-Effects ...82
Volunteer ...84
Contexts ...85
Interpretations ..87
Pattern Matching ..91
Conflict Resolution ..98
Summary ...105

Controlling Inference Strategies ... 106
Rules ..107
Methods ...109

Application Programming Interface .. 114
Suggest ..114
Volunteer ...115
Restart Session ..115
Strategy ..116

Non-Monotonicity .. 117
Revisions ...118
Reset ...118
Interpretations ..119
Pattern Matching ..121
Conflict Resolution ..121
Control ...121
ii Language Programmer’s Guide

Contents

Multiple Knowledge Bases .. 121
Untitled.kb ..122
Temporary.kb ...122
Undefined.kb ..122
Current Knowledge Base ..123
Modular Knowledge Base Architecture ...123
Inferencing With Multiple Knowledge Bases ..125
Merging Multiple Knowledge Bases ...125
Effects When Loading ...126
Effects When Unloading ...128

Summary .. 128

3. Primer
Introduction ... 131
Knowledge Processing - Session 1.. 133
Knowledge Processing - Session 2.. 137
Knowledge Processing - Session 3.. 141

A. Primer Decomposition
About this Appendix .. 153
Rules as Building Blocks .. 153
Inferencing with Multiple Rules ... 155
Inferencing Flow Control... 158
Storing Data in Objects... 160
Reinitiating Inferencing.. 161

B. Primer KB Text Format
About this Appendix .. 163
Data Type Listing.. 163
Rule Listing .. 163
Class and Object Listing... 165
Meta-Slot Listing ... 169
Method Listing .. 170
Strategy Listing.. 173

C. Primer.dat Scripts
Application Script ... 175
Start.Win... 177
Start.Win2... 179
Start.Help ... 180
FormInput.Win.. 180
End.Win.. 182

Index .. 183
Language Programmer’s Guide iii

Contents

iv Language Programmer’s Guide

Preface 2

Purpose of this Manual
This manual explains the basic concepts of the Intelligent Rules Element and
demonstrates the concepts through a tutorial example. The Rules Element
is a general purpose knowledge-based application development tool. It
provides a friendly graphical user interface to help you create a
knowledge-based application, a rich set of data structures to represent the
domain knowledge, and a powerful inference engine to complete tasks in
the domain.

The Rules Element is also a hybrid tool, which means it integrates rules and
objects as well as many additional features:

This manual does not dwell on the syntax and all of the lowest level
features. Rather, it first explains the various application structures in detail,
and then it explains how the Rules Element inferencing mechanisms process
the application structures. This processing, which is the intersection of the
rule and object planes, represented by the figure above, is the heart of the
Rules Element.

Audience
This manual is for application developers who need to know how the Rules
Element works. The manual contains two major parts as follows:

■ Part One - provides an in-depth explanation of the various features of
the Rules Element using both conceptual drawings and graphics from
the development environment.

■ Part Two - provides hands-on exercises that demonstrate the concepts
described in Part One.

rules

objects
Language Programmer’s Guide v

Preface

This manual does not assume any knowledge of the Rules Element,
programming, or of AI terminology and techniques in general. A brief
introduction to Rules Element concepts can be obtained from the Elements
Environment Getting Started manual and familiarity with this material will
facilitate understanding of the more detailed discussion presented this
book.

How to Use this Manual
This manual can be used in one of two ways. The manual can be read from
beginning to end to learn how the Rules Element works. Each section
builds on the ideas from previous sections so this approach makes sense.

However, once you understand the fundamentals of how the Rules Element
works, it can be used as a reference manual. Specific points are explicitly
described to allow easy random look-ups at any time in the future.

The exercises in Part Two of this manual, while not exhaustive, should be
carefully read and understood to ground the understand of the concepts
presented in Part One. The appendices give important supplementally
information that applies to both Parts One and Two of this manual.

Organization
To locate specific subjects, refer to the general table of contents, the chapter
table of contents, or the index. This manual has three chapters and three
appendices:

Chapter One, “Representation,” describes each of the Rules Element’s
representation structures. It begins by explaining the Rules Element’s
object-oriented structures, including objects, classes, and methods. It then
describes how rules are used. The chapter concludes by describing more
advanced object-oriented features, such as inheritance and dynamic
structures, as well as knowledge islands and knowledge bases which are
macroscopic organization structures.

Chapter Two, “Inference Engine Processing,” explains how the Rules
Element inference engine processes the application representation
structures. It describes the basic elements of the agenda, a dynamic,
priority-based scheduling system. It then explains how some advanced
features affect the agenda including: interactions with the external
environment via the application programming interface, non-monotonic
reasoning, and working with multiple knowledge bases.

Chapter Three, “Knowledge Base Processing” takes you on a tour of the
Rules Element’s dynamic behavior while processing a small primer
application designed for this manual. The example provides step-by-step
actions to load and run the primer while accessing the facilities of the Rules
Element and its companion front-end development tool, Open Interface
Element.

Appendix A, “Primer Decomposition” explains the concepts that underlie
the knowledge structures found in a typical Rules Element application.
vi Language Programmer’s Guide

Related Manuals

Specific examples are drawn from the primer knowledge base used in
Chapter Three.

Appendix B, “PrimerKB Text Format” gives the text format listing of the
primer knowledge base used in Chapter Four. The listing includes
comments that help to clarify the knowledge base.

Appendix C, “Primer.Dat Scripts” gives a listing of the primer graphical
user interface scripts used in Chapter Four. The listing help clarify the role
of the script language in the development of knowledge-based applications.

Related Manuals
The following manuals contain information related to the Intelligent Rules
Element Language Programmer’s Guide. Read prerequisite manuals before
reading this manual. Read corequisite manuals for background information
as explained.

Prerequisite Manuals:

Getting Started

This manual is an overview of the entire Neuron Data Elements
Environment. It contains a chapter that describes the Rules Element shell,
including the development graphical user interface, the inference engine,
and application structures. Many of the concepts described in the
Language Programmer’s Guide are first introduced in this manual.

Corerequisite Manuals:

User’s Guide

This manual gives general procedures for using the development graphical
user interface. It explains how to use each of the editors, networks, menus,
etc. It also explains the application development process, from
implementation to editing to documenting to processing, and concluding
with testing. Many of the structures described in the Language
Programmer’s Guide can be created by referring to this manual.

This manual also explains how to integrate relational and flat file databases
with your application. Database interactions can have a profound impact
on the agenda since each retrieval corresponds to a multiple volunteer.

Language Reference Manual

This manual is the application developer’s reference guide to the Rules
Element tool. It explains the operators of the Rule Language and shows the
correct syntax to use. Look up topics in the Language Reference Manual
when you want to know more about individual structures.

C / C++ Programmer’s Guide

This manual describes how to integrate the Rules Element within an
application framework using either the C or C++ programming language.
It gives a complete description of the C or C++ application programming
interface which allows you to, among other things, investigate working
memory, volunteer values, and suggest hypotheses.
Language Programmer’s Guide vii

Preface

The Bibliography, located in the Getting Started manual, gives a complete list
of manuals.

Users who received the Intelligent Rules Element along with other Neuron
Data Elements, including the Open Interface Element and the Data Access
Element, will have other documents in addition to the Intelligent Rules
Element documents described above.

Conventions
When we speak of a particular data structure, such as “employee_1”, it
will appear in the Courier font. Reserved words, such as TRUE and FALSE,
will be written with all caps and also appear in Courier font. The
appropriate sections will introduce specific graphic representations for
knowledge structures.

Intelligent Rules Element and Rules Element are synonymous and we will
use them interchangeably.
viii Language Programmer’s Guide

Chapter

1 Representation 1

This chapter describes the Intelligent Rules Element structures you will use
to describe or “represent” the application domain. It also describes the
relationships you can create between these structures:

Figure 1-1 The Object Plane

Chapter Two, “Inference Engine Processing” will explain the focus of
attention which is the intersection of the object and rule planes.

Introduction
The Rules Element provides you with many representational structures.
There are objects and classes to describe the entities in the domain. There
are properties which are characteristics of objects and classes and slots
which store information about specific objects and classes. There are also
meta-slots which describe how the slots behave.

Properties can be inherited from a class or object to another class or object.
Values can also be inherited from a class or object to another class or object.
Certain meta-slots can be inherited from a class or object to another object.
Inheritance allows efficiency, as the particular attribute only needs to be
declared in one place, it provides consistency as everything which inherits
an attribute behaves in the same way, and it provides generality.

In addition, the Rules Element allows you to create objects dynamically
during a session. These dynamic objects allow you to model a world whose
exact structure isn’t known a priori (for instance how many records are in a
database). You can also create dynamic links between objects or classes and
other objects or classes to reflect changing relationships during processing.

rules

objects
Language Programmer’s Guide 1

Chapter

Representation

1

The Rules Element supports rules which contain all of the domain
knowledge. Rules manipulate the slots as well as the object and class
structures. Pattern matching and interpretations allow you to reference
objects which are determined at runtime. Thus you can write generic rules
which reason on a set of objects which are determined when the rule is
processed.

In conjunction with rules, the Rules Element supports methods and
message passing to provide heuristics that are object-oriented in nature.
Methods can be triggered explicitly after receiving a message from a rule or
other method, or they can be triggered automatically following a
determination made by the system. Method heuristics act like routines that
operate entirely in the object domain on specific slots, objects, or sets of
objects.

The Rules Element supports multiple inheritance. Properties, values,
methods, and some of the meta-slots can be inherited down the object
hierarchy. Inheritance up the object hierarchy is supported for properties
and values only. You can create dynamic objects as well as dynamically
modifying the relationships between objects and classes, thus allowing
objects and classes to inherit from different parents at different times.

Data Structures
This section focuses on a description of the basic object-oriented features of
the Rules Element. The Rules Element describes the world in terms of
objects, generalizations of those objects called classes, characteristics of
objects and classes called properties, and slots which store information
about particular objects and classes.

This section describes each main representational mechanism, introduces a
graphical representation of it, and gives examples of each where
appropriate. The subsequent sections detail how each of these mechanisms
interact with each other.

Object

An object is the smallest chunk of information in the knowledge-based
system. It represents any person, place, thing, or idea in the domain for this
particular application. You describe your application’s world in terms of
various objects. For instance, in a petroleum application, each particular
well is an object, as well as all the components needed to produce each well.

Objects are represented in this document by the triangular icon depicted in
Figure 1–2:

Figure 1–2 An Object
2 Language Programmer’s Guide

Data Structures

Class

You could describe the whole world in terms of objects, but before long you
would realize that many objects have common features, behaviors, etc. For
instance, in an insurance application, each client’s application for insurance
may be an object, but one begins to see lots of very similar objects (eg. each
of the other applications). Thus the Rules Element has the notion of a class
of objects, or, in this case, a class of insurance applications. A class is merely
a grouping or generalization of a set of objects. Objects are specific members
or instantiations of a class.

Classes are represented in this document by the circular icon depicted in
Figure 1–3:

Figure 1–3 A Class

Objects may belong to several classes, such as
car_insurance_application is both a member of the class
Documents as well as the class Insurance_applications:

Figure 1–4 An Object Belonging to Two Classes

The classes will be referred to as the parents, and the object will be referred
to as the child. We will also say that a link exists between the child object and
the parent classes.

Since classes may also have many objects, there is the possibility for many
to many relationships.

Subclass

A subclass is a class which represents a subset or specialization of another
class. It is a class in its own right and has all the characteristics of other
classes. For instance, Math could be one class with Algebra, Geometry,
and Calculus subclasses and a particular course, such as math_101, an

Documents

car_insurance_application

Insurance_applications
Language Programmer’s Guide 3

Chapter

Representation

1

object which belongs to both Algebra and the parent class Math. Since a
subclass is also a class, it will also be represented by the circular icon:

Figure 1–5 A Subclass

Classes can have any number of subclasses or parent classes or both. You
can create a class hierarchy with any number of levels.

Subobject

Classes and subclasses add to your ability to describe a particular domain,
but often you would like to express another type of distinct relationship
between objects which aren’t instantiations of each other but are neither
completely disjoint. Subobjects represent a relationship of the type “is a part
of.”

Since a subobject is also an object, we will represent it by the same triangular
icon:

Figure 1–6 A Subobject

A subobject (which is also an object in and of itself) represents a part of
another object, as modem is a part of computer_x, and computer_x is an
instantiation of the class computers:

Figure 1–7 An Object Hierarchy

Two objects linked by this type of relationship usually do not share many
characteristics. For instance, the characteristic of memory_capacity and
microprocessor are shared by the object computer_x and other
members of the class Computers, but these characteristic are irrelevant to

computer_x

Computers

modem
4 Language Programmer’s Guide

Data Structures
modem as a subobject of computer_x. Since subobjects are also objects,
they may belong to classes, as modem is both a part of computer_x and a
member of the class Communication_tool and the class
External_devices:

Figure 1–8 A Subobject with Parent Classes

Analogous to the other object and class relationships discussed previously,
an object may have any number of subobjects, and may be a subobject of any
number of other objects.

Property

Once again, it’s possible to represent the domain you wish to reason on with
objects and classes alone, but often you need to describe the objects and
classes. Properties describe these objects and classes.

Properties have a particular data type: they can be string, integer, .float,
boolean, date, or time. They can also be multi-valued. Some example
properties are: weight, color, value, time, and so on. You can use any
number of properties to describe an object or class. You may also have
objects and classes without properties.

Properties are represented in this document by the rectangular icon
depicted in Figure 1–9:

Figure 1–9 A Property

It is important to note that while objects and classes may have specific
properties, these properties are not limited to any one object or class. Thus
other objects and classes can have the same property. Furthermore, since
the property is independent of the object or class, it will always have the
same data type throughout the knowledge base. Thus if one object has a
property force which is of the data type float, then any other object or class

Communication_tools

computer_x

Computers

External_devices

modem
Language Programmer’s Guide 5

Chapter Representation1
which has the property force must also use it as a float. This helps ensure
consistency throughout the system.

Note: There is one notable exception to the way properties behave. The
special property “Value” can have (and usually does have) different
data types when it is attached to different objects or classes. Thus the
Value property of the stock object may have a float data type, while
the Value property of the magna_carta object may have a date value
type, and other objects using the value property can have any other
data type. See the next section for more details on the Value property.

Slot

Slots are used to store property values for objects and classes. Thus they
hold all of the information in the application. Any information which comes
into the knowledge-based application, whether it comes from a database,
from the user, from any external program, or is generated internally, is
stored in slots.

Slots are properties which are attached to objects. The simplest type of slot,
which uses the Value property, is generated automatically for you by the
Rules Element inference engine. For example, assume you have three
objects: assets, liabilities, and owners_equity. When you assign
a value to an object, the inference engine creates a special property of that
object, called “Value”, which stores that information. This information can
then be referenced at any time in the future.

Assume now that a value for liabilities and assets has been
determined (the value of liabilities and assets could have been
determined in any manner):

liabilities = 2000
owners_equity = ?
assets = 3500

If there is an expression which assigns the difference between assets and
liabilities to owners_equity (disregard the syntax for now),

Assign assets-liabilities owners_equity

The Rules Element inference engine creates a Value slot for
owners_equity as well and assigns it the difference between assets and
liabilities. A slot can also be any other property of an object. In
addition to the value slot, assets might also have a slot which is
average_turnover, another which is fixed and so on. When slots are
represented in the object hierarchy in this document, they will be
represented by the square icon depicted in Figure 1–10:

Figure 1–10 A Slot

In text, the Rules Element represents a slot as the object or class name, then
a period, and finally the property name. Thus the slots described above are
represented in the Rules Element as assets.value,
6 Language Programmer’s Guide

Data Structures
assets.average_turnover, assets.fixed, liabilities.value,
and owners_equity.value.

It is also important to note that in any expression, object and
object.value are completely equivalent. For example,

Assign assets.value - liabilities.value owners_equity.value

has the exact same effect as

Assign assets-liabilities owners_equity

An object or class can have any number of slots. The number of slots an
object or class has is precisely equal to the number of properties the object
or class has. A slot also has a set of characteristics that determine how it will
be used by the system, together these characteristics are know as meta-slot
attributes and will be described in the next section of this chapter. For now
it is useful to note that one of these meta-slot attributes controls the
accessibility of the slot’s data value. In this regard, slots that you create can
be one of two types: “private” when data protection is desired or “public”
when restricted data access is not required.

This document depicts the slots belonging to a particular object or class in a
similar manner to how it depicts the relationships between objects and
classes:

Figure 1–11 An Object/Property Slot

A slot, no matter what data type, initially has the value UNKNOWN. This
means that the inference engine has not tried to determine a value for the
slot. When the inference engine tries to determine the value for a slot, one
of two things can happen:

■ The inference engine finds a value ==> the slot takes whatever value
has been determined.

■ The inference engine does not find a value ==> the slot takes the value
NOTKNOWN.

Summary

Application builders represent their domain in terms of objects,
generalizations of objects called classes, parts of those objects called
subobjects, descriptions of the classes and objects called properties, and
finally properties of particular classes or objects called slots.

Objects do not have values. They have relationships to other objects, classes,
and properties. Properties also do not have values, but they do have a
particular data type, and this data type is constant throughout the

assets

fixed
Language Programmer’s Guide 7

Chapter Representation1
application regardless of which objects or classes are described by them.
Slots, which are a construction consisting of the particular property of an
object or class, have the properties data type and hold a particular value.
The data value may be protected in the case of private slots and and
accessible without restrictions in the case of public slots.

We will use the term object hierarchy to refer to a graphic representation of
the relationships between any combination of the above application
structures. Here is a representative object hierarchy:

Figure 1–12 Sample Object Hierarchy

In this example, we have a parent class People and two subclasses named
Physicians and Patients. The class Patients has three objects: A, B,
and c. The object c has two slots, temperature and blood_pressure
and two subobjects heart and kidney. Finally, the slot C.temperature
has a value of 101 and the slot C.blood_pressure has a value of 130,70.
Notice also that the generic properties temperature and
blood_pressure have data types float and a multi-value consisting of two
integers, respectively, but do not and cannot ever have a value. Particular
slots have values, but properties don’t have values. This hierarchy could be
greatly expanded, but it should give you the general idea of how the Rules
Element represents the world.

Physicians Patients

People

A

transplants

heart

C

kidneyblood_pressure=
130,70

B

temperature=
101

temperature=float

blood_pressure=multi-value

Generic
Properties
8 Language Programmer’s Guide

Meta-Slot Attributes
Meta-Slot Attributes
The meta-slot lets you customize certain characteristics of the individual
slot. Meta-slot attributes span a broad range including:

■ Whether the system will initialize a slot with a known value.

■ Whether the slot will be private or public.

■ How the system will ask the user for their value when it is needed.

■ What values the system will accept when it is needed.

■ What types of inheritance strategies to use (breadth versus depth-first,
class versus object-first).

■ What type of inheritability is used to obtain a property and value for the
slot.

■ What type of inference and inheritance priority it should have.

Most meta-slot attributes have default settings. Thus you can design a
complete application without creating a meta-slot for each existing slot in
your application. However, the default settings can be modified to
customize system attributes of the slot for your application.

Initial Value

The initial value attribute provides an initialization value for the slot to
begin knowledge processing with. A slot is initialized with the value
immediately after the knowledge base file is loaded or after restarting a
session. The initial value may be inherited down depending on the
inheritability strategy selection of the meta-slot. If inheritability of the initial
value is enabled, the system automatically propagates the value to the
children at the start of the session. This lets you make use of known values
that can be modified as required during knowledge processing.

Private or Public Slot

The slot that you create can be either public or private. The slot privacy
attribute determines how the slot value will be accessed during application
processing. When unrestricted access to the slot’s value is desired, you will
want to use a public slot. If you want your application to rely on
object-encapsulation, however, you will want to use a private slot to restrict
access to the slot’s data value. By definition private slot values are
accessible only by the specific method associated with the slot’s object
components (class, object, or property). This restriction means that private
slots are only useful in applications that employ message passing in order
to trigger object-associated methods. Using the object-encapsulation
approach with private slots allows you to be sure that no part of the
application will modify the private slot value other than the object’s
associated method. Public slots have no such restriction and can therefore
be accessed freely from rules that test the public slot’s value. Naturally
rules, in contrast to methods, do not provide object encapsulation since data
values may be modified throughout the rule-based application. In the Rules
Element, however, it is possible to use both rules and object/methods to
combine both approaches and provide as much encapsulation as desired.
For more information about methods, refer to the Methods section in this
chapter.
Language Programmer’s Guide 9

Chapter Representation1
Prompt Line

The prompt line attribute specifies what question the Rules Element should
ask the user when it needs to query the user for the value of the slot. The
default prompt the Rules Element uses is: “What is the property of
object_or_class ?” where the property of the current slot replaces property,
and the object or class in question replaces object_or_class. Thus if the Rules
Element needs to determine the value of the slot car.speed, it will prompt:
“What is the speed of car?”

The prompt line attribute is a text string which replaces this default
behavior. Thus you could specify a prompt line of “How fast does your car
go?” and this question would be used instead of the default, “What is the
speed of car?” As an option, you can also replace the standard window
used to display the prompt line in the Rules Element with one that you
create in the Open Editor facility of the Rules Element. To display the
prompt line in a custom window, you can retrieve the string through the
Rules Element Application Programming Interface (API) or the Rules
Element scripting language.

The prompt line may or may not contain interpretations (see the section on
interpretations for more details). Prompt Line meta-slot attributes are
automatically inherited down.

Data Validation

The data validation attribute determines whether or not the system will
accept the value of the slot once it is supplied. The data validation attribute
is triggered by the system whether the value is supplied by the user in
response to a query or the value is supplied by the system through an
internal calculation. Valid entries can be specified as a range of numeric
values, a list of strings, a complex boolean expression, or an external
function.

For example, the expression SELF.width > SELF.height tests whether
the value of the current object’s width is greater than its height. If the value
supplied, causes the expression to fail, the system can optionally reject,
accept, or ask for a retry. The data validation attribute may or may not
contain interpretations (see the Interpretations section for more details).
Data Validation meta-slot attributes are automatically inherited down.

Inference Priorities

The inference mechanism as well as how and why the inference engine
processes slots are explained in Chapter Two, “Inference Engine
Processing.” Briefly stated, when the Rules Element does need to process
slots to evaluate a hypothesis or perform pattern matching in a condition for
example, it will do so according to their inference priorities (highest first). By
default, all slots have an inference priority of 1. This value can be changed
to be any integer between -32000 and 32000. Inference priorities you choose
will determine the order of slot evaluation for pattern matching, conditions,
and hypotheses.

In addition, inference priorities can be dynamically changed. This allows
slots to be processed with different priorities at different times, which
allows the application to better adapt to changing conditions. This is done
10 Language Programmer’s Guide

Meta-Slot Attributes
by assigning an inference slot to a slot’s inference priority. The system
dynamically processes the inference slot (which is, in fact, an integer slot)
when it needs to obtain the inference priority.

If an inference slot has been declared and it currently has a value (the Rules
Element will not prompt for the value of an inference slot), then the slot in
question’s inference number will be the value of the inference slot. If an
inference slot hasn’t been declared or the declared slot’s value is UNKNOWN,
then the inference engine will use the value of the inference number. If the
inference number hasn’t been modified, then the default inference priority
is 1.

For example, assume there is a slot a.p which has the inference priority
depicted in Figure 1–13:

Figure 1–13 Inference Priorities

When the inference engine needs to process the slot a.p, it determines its
inference priority by the value of the inference slot obj1.prop1. If
obj1.prop1 has a value, then its value is used as the inference priority. If
it doesn’t have a value, then the inference number (-100) will be used.

In summary:

■ If the inference slot has a value ==> use the value as the inference
priority.

■ If the inference slot does not have a value (or hasn’t been declared) but
an inference number has been declared ==> use the number as the
inference priority.

■ If the inference slot does not have a value (or hasn’t been declared) and
the inference number has not been declared ==> use 1 as the default
value.

Inheritance Priorities

The Rules Element supports multiple inheritance (inheritance is explained
in the inheritance section). This means that the target of an inheritance
event (a slot) may have several different sources from which to inherit a
value or method. If there are two or more parents (or children) which are at
the same level in the inheritance space from which a particular slot can
inherit, then the inheritance priority will determine which parent (or child)
is used.

Slots with higher inheritance priorities are inherited from before slots with
lower priorities. By default, all slots have an inheritance priority of 1.
Similar to the inference priorities, you can change this priority to be any
integer between 32000 and -32000.
Language Programmer’s Guide 11

Chapter Representation1
In addition, there is also an inheritance slot which is completely analogous
to the inference slot. This slot is an integer slot. If an inheritance slot has
been declared and it currently has a value (the Rules Element will not
prompt for the value of an inheritance slot), then the inference engine will
use the value of the slot in question’s inheritance slot for conflict resolution.
If an inheritance slot hasn’t been declared or its value is UNKNOWN, then the
inference engine will use the value of the inheritance number. If this hasn’t
been modified, then the default inheritance priority is 1. The inheritance
priorities are set just below the inference settings in the Meta-Slot editor:

Figure 1–14 Inheritance Priorities

In summary:

■ If the inheritance slot has a value ==> use the value as the inheritance
priority.

■ If the inheritance slot does not have a value (or hasn’t been declared)
but an inheritance number has been declared ==> use the number as the
inheritance priority.

■ If the inheritance slot does not have a value (or hasn’t been declared)
and the inheritance number has not been declared ==> use 1 as the
default value.

Inheritability Setting

In addition to setting inheritance priorities which determine how the slot
will compete with other slots when children or parents want to inherit from
it, the inheritability meta-slot also determines whether or not a slot can be
inherited at all.

There are global inheritance defaults which are explained in the Inheritance
section. These defaults determine what can be inherited for the vast
majority of the slots. However, some slots may display a behavior which is
12 Language Programmer’s Guide

Meta-Slot Attributes
unique to that one particular slot. This behavior can be set through those
slots’ inheritability meta-slot attribute:

Figure 1–15 Object Inheritability

The darkened arrows show strategies which are enabled and the white
arrows show strategies which are disabled. Figure 1–15 shows the default
behavior for an object slot as follows:

■ Inherit a value down to a subobject (when the subobject has the same
property.

■ Do not inherit a value up to a parent object.

■ Do not inherit a property up to a parent.

■ Do not inherit a property down to a subobject .

By default, classes display the same settings except they inherit properties
down to their subclasses and objects. Thus the slot down arrow is darkened
as well:

Figure 1–16 Class Inheritability
Language Programmer’s Guide 13

Chapter Representation1
Inheritance Strategy

The inheritance strategy meta-slot determines the breadth-first depth-first
and class-first object-first types of conflict resolution. The default
inheritance strategy is class-first, breadth-first as depicted in Figure 1-17:

Figure 1–17 Inheritance Strategy

To change this merely click on the checkboxes of the Inheritance Strategy
component corresponding to a depth-first search or an object-first search.

Methods
Methods describe the behavior of individual slots, objects, or sets of objects.
Methods are composed primarily of a set of actions which when executed
modify the behavior of the object upon which they act. The type of behavior
specified by methods belongs to one of three categories:

■ Methods that are triggered from a rule or method by the SendMessage
operator (user-defined).

■ Methods that find the value of a slot (Order of Sources).

■ Methods that react if the value of a slot changes (If Change).

The first category lets you explicitly execute the method from a rule or other
method. This category is called the user-defined methods because they serve
whatever purpose is required by the objects upon which they act. Order of
Sources and If Change methods are often referred to together as system
methods because they both let you specify lists of actions to modify the
default behavior of the Rules Element inference engine. Unlike
user-defined methods, system methods are not executed explicitly; rather
they are executed by the system under the appropriate circumstances.

Note: All types of methods can be inherited. Inheritance allows you to
define methods at the class level and have subclasses or objects use
them or define them at the object level and have subobjects use them.
As with other forms of inheritance, this capability provides both
consistency and genericity (more about this in the Inheritance
section).
14 Language Programmer’s Guide

Methods
Structure

Methods have five basic parts:

■ Name of the method itself

■ Name of the object to which the method is attached

■ Actions list

■ Conditions list (optional)

■ Arguments template.

The method name and the object name allow the system to bind a message
sent by a rule (or method) with the specific method to be executed at
runtime. The conditions represent a series of tests to determine whether or
not to execute the actions. The actions specify the end-result of a method.
Actions can be executed without conditions by omitting the conditions list
within the rule. Unlike rules, methods are not required to have conditions.
The arguments template specifies the characteristics of arguments that may
be passed to the method for processing as local arguments in the list of
actions and conditions.

Note: Unlike public slots, private slots have restrictions on their usage in
method conditions and actions as described in the following sections.

Method Name

A name is a required part of any method. The system uses the method name
in part to determine which method will be triggered. For example, an object
in a mail order system, might have several methods attached: one that
calculates the mailing cost, one that adjusts the inventory, and one that
prints the customer’s invoice. In this case, the object receives a message to
trigger a method, but the message is not complete unless it includes the
name of the particular method.

One helpful aspect of methods is that their names do not need to be unique
within the system. In our mail order example, a variation of the method that
calculates mailing cost could be created in order to use a different cost
formula for each class and yet all of these methods can have the same name.
The system knows which method is which because it only considers a
method in the context of the object to which that method is attached.
Furthermore, two methods that share the same name, may be attached to
the same object, as long as one is specified as Private and the other as Public.
This allows you to choose a single, well understood name for a set of related
methods, rather than choose a name for each method that identifies its
particular variation.

Attached Object

The system tries to trigger a method after a message that includes a method
name is received by a specific object. This means that in order for the system
to successfully trigger a method, the objects of the system must know about
the methods. In the Rules Element the relationship between objects and
methods is established in the method’s “Attach To” field of the Method
editor. The field can be the name of a particular class, an individual object,
a specific slot, or even a property.
Language Programmer’s Guide 15

Chapter Representation1
Because methods can be inherited down from parent objects or classes, the
object named in the “Attach To” field serves another important function.
The named object literally attaches the method to a certain position in the
object hierarchy. Therefore, the object that receives a message to trigger a
method need not have the method attached directly to it if it can inherit a
method of the same name from an including class or parent object. This
mechanism is more fully described in the Inheritance section.

Actions

A method is primarily a list of actions that operates on the object hierarchy.
A method’s actions are triggered by a message sent to the object to which
the method is attached (or inherited). The triggered method’s list of actions
may be executed immediately or following the evaluation of test conditions.
If conditions are present, the actions can be divided into two separate lists
to be executed depending on the evaluation outcome of the conditions. The
entire list of actions is normally executed from top to bottom, although the
Order of Sources system method provides an exception to this behavior.

In its most pure form, a method might produce side-effects that change the
value of a slot somewhere in the system or it might only return a value. This
distinction is not absolute though since the actions of a single method might
perform both simultaneously, depending on the operators chosen. Table
1-A shows the operators which are available for use in methods (see the
Intelligent Rules Element Reference Manual for a precise definition and
usage of each of the actions).

Method Operator Conditions Actions

=,<>,>,<,>=,<= X

AskQuestion OS only

Assign X X

Backward OS only

CreateObject X X

DeleteObject X X

Execute X X

InhMethod X X

InhValueDown OS only

InhValueUp OS only

Interrupt X X

LoadKB X X

Member X

No X

NoInherit X X

NotMember X

Reset X X

Retrieve X X

RunTimeValue OS only

SendMessage X X
16 Language Programmer’s Guide

Methods
Table 1-1 Method Operator Usage

Table 1-1 shows which operators can be used in method conditions and
which ones can be used in method actions. It also shows that certain
method operators are not available for use by every category of method.
Since user-defined and If Change methods are not used to actually obtain a
value for the slot in question, some of the Order of Sources operators aren’t
necessary (including AskQuestion, Backward, InhValueDown,
InhValueUp, and RunTimeValue). Otherwise, user-defined methods and If
Change methods have the same list of operators.

Because the data of a private slot is not intended to be accessed by any
structure other than the method associated with the slot, private slot names
cannot appear as data to be acted on in the actions of other methods. Private
slots can however be used in their own method by the SELF variable as
described in the Method Inheritance section.

Conditions

Since a method is primarily a set of actions to be executed when an object
receives a message, the event that triggers the method usually presupposes
the need for the method. However, conditions can still be of use in a
method. For example, pattern matching on the conditions list might be used
to pass a set of values to the actions list to act on. If present in a method, the
conditions are always executed before the actions.

Method conditions permit the application developer to specify two separate
lists of actions: one to be executed if all the test conditions are found to be
TRUE, the other list to be executed if at least one condition evaluates to
FALSE. Conditions in methods are analogous to those used in rules, with
the exception that method conditions do not produce goal-generation. For
more information about conditions, refer to the Rules Conditions section.

When the inference engine evaluates the conditions in a method, it
evaluates the conditions in order from top to bottom. Unlike rule
conditions, changing the inference priority on the data of a method
condition does not effect the order of evaluation.

Because the data of a private slot is not intended to be accessed by any
structure other than the method associated with the slot, private slot names
cannot appear as data to be acted on in the conditions of other methods.
Private slots can however be used in their own method by the SELF variable
as described in the Method Inheritance section.

Local Arguments

The actions and conditions of methods can process arguments that are
passed to the method at runtime. The argument the method binds with may
be a slot value, an object, or a class, or a list. Because the actual value of the
local argument is usually determined at runtime, your list of actions and

Show X X

Strategy X X

UnloadKB X X

Write X X

Yes X

Method Operator Conditions Actions
Language Programmer’s Guide 17

Chapter Representation1
conditions must refer to each argument that it expects to receive by a
placeholder name. Argument templates stored with the method identify
the characteristics of each these placeholders. Arguments that get passed to
the method, must match the characteristics of one of the argument
templates or they will not be processed locally. The argument template has
the following syntax:

MethodName (@NAME=)
Argument1(@ARG1=;@NATURE=;@TYPE=;@DEFVALUE)
Argument2(@ARG1=;@NATURE=;@TYPE=;@DEFVALUE)
...

The @ARGx is the placeholder name which your list of actions and
conditions use to refer to the local argument (the name must start with an
underscore character “_”). @NATURE is how the argument is passed,
either by reference or by value. @TYPE is the data type when the argument
is a slot (as opposed to an object or a class). @DEFVALUE is a default value
that the inference engine will adopt in the event the argument is not passed
to the method.

Arguments can be passed to the method by reference or by value. If they
are passed by reference, the actions or conditions that process the local
argument can modify the value of the original slot. If they are passed by
value, the slot value is copied locally in the local argument and modifying
the local argument will not affect the original slot. The nature of the local
argument is determined by the argument template stored with the method
itself.

Because the data of a private slot is not intended to be accessed by any
structure other than the method associated with the slot, private slot names
cannot be passed to other methods by reference. Private slots can only be
passed from their own method by value and the private slot name must use
the SELF variable as described in the Method Inheritance section.

Order Of Sources Method

The Order of Sources method determines where a slot will get a value when
it is needed. The Order of Sources method contains a list of actions to
perform to determine the value of the slot. These actions are performed in
order, from top to bottom. If a value is found at any point in the list, then
the rest of the sources are disregarded. When the inference engine needs the
value of a slot, it will perform the following series of actions.

1. Check the Order of Sources (OS) method attached to the public slot.
If any OS is written for the slot, then the system executes the actions in
the OS sequentially, from top to bottom, until a value is determined. If
the slot’s own OS list fails to find a value, skip to step 4.

2. If the public slot has no OS attached, then check the parent’s OS.
If parent object.property or class.property has an OS
attached, the slot will inherit the method and execute it as its own. If
the slot’s inherited OS list fails to find a value, skip to step 4.

3. If the public slot’s parent has no OS attached, then use the default OS
strategy:
3a. If the slot is a hypothesis, use backward chaining to evaluate the
hypothesis. If this fails, go to step 3b.
3b. Inherit the value down from a parent or inherit the value up from a
child. If this fails, go to step 4.
18 Language Programmer’s Guide

Methods
4. If the public slot’s value is still not determined after completing steps 1,
2, or 3, then the system prompts the user to enter the value of the slot.

Generally, private slots will not need an Order of Sources method since the
system will not try to determine a value for a private slot through the course
of knowledge processing. An exception to this occurs if your application
explicitly triggers an Order of Sources method for a private slot.

Figure 1-18 depicts steps 1, 2, and 3 when the system tries to locate the value
“English” for the slot moby_dick.language.

Figure 1–18 How a Slot Value is Obtained

As seen above, when the inference engine needs the value of a slot which
doesn’t have a value (therefore its value is UNKNOWN), it will use an Order of
Sources method, which is a list of different possible sources, to try to get a
value. It first tries to use an Order of Sources method declared locally, then

language:
unknown

American_novels

language:
unknown

InhValueDown
Retrieve
RuntimeValue:
English

American_novels

language:
unknown

language:
English

language:
unknown

American_novels

chapter_1

language:
unknown

language:
English

Step 1. Check Source OS Step 2. Check Parent's OS

Step 3B. Use Default OS to
 Inherit Child's Value

Step 3A. Use Default OS to
 Inherit Parent's Value

language:
unknown

InhValueDown
Retrieve
RuntimeValue:
English

language:
unknown

American_novels

moby_dick moby_dick

moby_dick

moby_dick

OS

OS OS

OS

OS

OS

OS

OS
Language Programmer’s Guide 19

Chapter Representation1
one which can be inherited, and finally the default Order of Sources as
follows:

■ Backward chain

■ Inherit value down

■ Inherit value up.

The inference engine tries to execute one of the three possible lists of
sources. If the list of sources all fail, whether they are a local method, an
inherited method, or the default sources, then the inference engine will
prompt the user for the value of the slot.

As an example, assume the inference engine needs to know the value of the
slot moby_dick.language and no Order of Sources method has been
attached to the slot moby_dick.language or to one of its parents. This
means the slot will use the default sources list as follows:

1. The Rules Element inference engine first tries to backward chain on
moby_dick.language. Since it is not a hypothesis, this source will
fail (for more information about backward chaining, see Chapter Two,
“Inference Engine Processing”).

2. Then moby_dick.language will next try to inherit a value down
from a parent object or class. If a parent has a language value, then
moby_dick.language will use that language.

3. If not, then moby_dick.language will try to inherit a value up. If this
succeeds, then moby_dick.language will use it.

4. If not, then all of the default sources have failed, so the inference engine
prompts the user for the value.

As mentioned above, these are only the default Order of Sources. You can
define any other sources you want in any order. The important point to
remember is that as soon as the inference engine determines a value for the
slot, the inference engine will exit the method and the rest of the sources in
the list will be disregarded, although even this default behavior can be
controlled through the Strategy dialog window by selecting the
ON/CONTINUE option.

In addition to the default sources, some of the other possible sources
include:

Initial Value This meta-slot attribute initializes the slot to a
particular value when the knowledge base file is
first loaded and propagates the value to the
children as specified by the value inheritability
setting. This source is unlike any of the other
sources because the system executes it when a
session is restarted, rather than when it needs a
value.

RunTimeValue This operator sets the slot value when the inference
engine needs it to be determined – thus the slot will
remain UNKNOWN until the Order of Sources is
triggered. This serves as a default value.
20 Language Programmer’s Guide

Methods
Assign This operator makes a direct assignment to the slot
in a condition or action.

Retrieve This operator retrieves data from a database to
determine the value of a particular slot or multiple
slots.

Execute This operator executes an external program or
routine which can determine a value for the slot.

Using these sources combined with operators that deal specifically with
determining the value of a particular slot (see Table 1-1) it is possible, for
example, to:

■ Retrieve the value from a database. If it’s found there, then the Order
of Sources succeeds and the remaining items are ignored. If a value
isn’t found in the database, then the second item in the Order of Sources
may be to try to ...

■ Inherit the value from a parent object. If that doesn’t succeed, the next
item may call for an ...

■ Execute to an external routine to be executed and so on.

Order of Sources methods will be represented by the diamond with the OS
title displayed in Figure 1–19:

Figure 1–19 Order of Sources Method

If Change Method

The If Change method lists a series of actions to perform after the value of
either a public or private slot is changed. There are several very important
points about If Change actions:

■ If Change actions are performed immediately after the value changes.

■ When a series of If Change actions are defined, all of the actions are
executed from top to bottom after the public or private slot’s value is
changed.

■ By default, there are no If Change actions. Contrast this with the Order
of Sources method which has a series of default sources.

■ Similar to Order of Sources, If Change methods can be inherited down
the object hierarchy.

■ The If Change method will not be executed when a particular slot is
reset to UNKNOWN using the Reset operator, unless the default strategy
has been modified in the Strategy dialog window.

If Change methods will be represented by the diamond with the IC title
displayed in Figure 1–20:

Figure 1–20 If Change Method

The method operators are particularly useful as If Change methods because
they can maintain consistency throughout the system by modifying

OS

IC
Language Programmer’s Guide 21

Chapter Representation1
appropriate data structures whenever particular slot values change. For
example, if there is a closed system which contains a particular gas, and the
absolute temperature increases by 30%, then the pressure should increase
by 30% as well. Obviously some changes can have very wide ranging
effects. This accounts for the large number of operators as well as the
capability to have a whole list of possible actions.

Rules
The Rules Element’s capability of providing an intuitive way to represent
our domain is a tremendous asset, but we also need to have some way of
reasoning on it. Rules provide this reasoning capability. They reason over
the object hierarchy. Rules capture the knowledge necessary to solve
particular domain problems. Rules represent, among other things:
relations, heuristics, procedural knowledge, and the temporal structure of
knowledge.

Figure 1–21 The Rule Plane

Rules have three basic parts:

■ Left-hand side conditions

■ The hypothesis which is a boolean slot

■ The right-hand side actions.

Conditions, rules, and hypotheses are all boolean data structures. Similar to
boolean slots, they may have one of four basic values: UNKNOWN, TRUE,
FALSE, or NOTKNOWN. In this document a rule is represented by this icon:

Figure 1–22 Basic Rule Structure

rules

objects

left-hand side
conditions

Hypothesis

right-hand
side actions

Then Do:
 Actions

Else Do:
 Actions

Hypothesis
22 Language Programmer’s Guide

Rules
The conditions represent a series of tests to determine whether or not the
hypothesis is TRUE. If all of the conditions are TRUE, then the hypothesis is
set to TRUE and the right-hand side actions are all executed.

A rule’s value depends on the state of its conditions:

■ If no attempt has been made to evaluate the conditions, then the rule
will be UNKNOWN

■ If the Rules Element inference engine evaluates all of the conditions to
TRUE, then the rule is set to TRUE as well

■ If the inference engine has tried to evaluate the conditions, but could
not determine the value of at least one condition, then the rule will be
set to NOTKNOWN

■ If the inference engine evaluates the conditions and one of them is
FALSE, then the rule will be set to FALSE as well.

Rules Element rules are symmetric because they have no inherent
“direction” associated with them. This means that the rule can either be
processed in the forward direction by forward chaining events or in the
backward direction by backward chaining events. These types of events are
explained in Chapter Two, “Inference Engine Processing,” but the
important point to remember is that the rules are symmetric so you don’t
need to write one set of forward chaining rules and another set of backward
chaining rules.

All slots used explicitly in the conditions or the actions of a rule are called
data. A hypothesis, in and of itself is not a datum, but if it is used in the
conditions of another rule, then it is a datum as well as a hypothesis.
Hypotheses which are also data are referred to as subgoals. It is also possible
to manipulate slots which are not data by means of interpretations or
pattern matchings. These two concepts are explained in the corresponding
sections of this chapter.

Note: Data that belongs to a private slot cannot be used in any of the rule
structures described in this section. Unlike public slot data, the data
of a private slot is not intended to be accessed by any structure other
than a method associated with the slot. Refer to the Methods section
for information about accessing private slot data.

Conditions

The conditions on the left-hand side of the rule have three columns. The
first column contains the operator to be used in the test. The second column
contains some expression, and the third column, if not empty, contains a
series of constants or parameters. For example, one particular rule could
look like:

Figure 1–23 Condition in a Rule

> a.p 12
Language Programmer’s Guide 23

Chapter Representation1
This condition tests the value of the slot a.p against the constant 12, and if
it is larger, then the condition is evaluated as TRUE. All rules must contain
at least one condition. There is no limit to the number of conditions a rule
can have.

The conditions within a rule are “anded” together, so they must all be TRUE
for the rule to be TRUE . If you wish to express an “or” relationship within
a rule, you must separate the values in the third column by commas:

Figure 1–24 Or Condition

This condition means: “Is the car’s color red or blue?”. If the slot
car.color is red or blue, then the condition will be TRUE; otherwise, it will
be FALSE.

The operator can, among other things, test the value of an expression,
perform object or set manipulations, or interact with external programs or
databases.

The expression column can be any mathematical expression involving slots,
constants, and pre-defined functions as well as a variety of other
possibilities. In the case where the Rules Element is interacting with outside
files (whether they be databases, executable files, or handlers), the
expression column contains the name of the file.

The third column of the left-hand side conditions contains constants to test
the expression against or parameters for many of the actions. For example,
the Constant column of the Execute statement contains what information is
sent to the executable file, or the Constant column of the Retrieve statement
specifies exactly what information should be retrieved.

When the inference engine evaluates the conditions in a rule, it evaluates the
condition which has the data with the highest inference priority first. By
default, all data have inference priorities of 1, and when all the priorities are
equal, conditions will be evaluated from the top to the bottom.

For example, consider a rule which determines whether or not you should
buy a car:

Figure 1–25 Data Inference Priorities

= car.color "red", "blue"

< car.cost(1) + car.tax(5)

yes need_car(1)

10000

> salary (4)- fixed_costs(3) 7000

buy_car
24 Language Programmer’s Guide

Rules
The inference priorities are listed in parentheses after the slot’s name. Thus
the inference priority of the slot need_car.value (remember if only an
object is mentioned in any expression, then the inference engine uses the
value property of that object) is 1, the slot car.cost is 1, the slot car.tax
is 5, the slot salary.value is 4, and the slot fixed_costs is 3. The
inference engine will evaluate the second condition first, then the third
condition, and finally the first condition. The inference engine evaluates the
condition with the highest data inference priority first. The slot car.tax
has the highest priority so the second condition is evaluated first. After this
condition is evaluated, salary.value has the highest inference value (4)
of the unevaluated conditions, so the third condition is evaluated next.
Finally, the first condition is evaluated.

Hypothesis

All rules have one and only one hypothesis. However, a hypothesis can
have many different rules leading to it.

As previously stated, the hypothesis is a boolean slot. If all the conditions
on the left-hand side are evaluated to TRUE, then the hypothesis is set to
TRUE as well.

Figure 1–26 The Hypothesis

In the rule depicted in Figure 1–26, if the slot a.p is greater than 12, then the
hypothesis hypo.h will be set to TRUE.

The hypothesis is a central component of the Rule Element’s inferencing
mechanism. We will go into this in detail in Chapter Two, “Inference
Engine Processing.”

Right-Hand Side Actions

The right-hand side actions include two lists of actions. The first list is only
executed if the rule is evaluated to TRUE. Conversely, the second list is only
executed if the rule is evaluated to FALSE. In contrast to the other two parts
of a rule, actions are not required. They are a series of consequences of the
rule being fired which are executed as soon as the rule is verified. There
may be any number of actions.

> a.p 12 hypo.h
Language Programmer’s Guide 25

Chapter Representation1
Similar to the conditions, the right-hand side actions contain three columns:
an operator column, an expression column, and a constant column:

Figure 1–27 Right-Hand Side Actions

The actions which can be performed are quite similar to those of the
methods described in Table 1-1 and to those contained in the conditions.
Table 1–2 shows the complete list of operators for rules.

Table 1–2 Rule Operator Usage

Comparing the possible operators, one sees that all of the action operators
are available on both the left-hand side and the right-hand side of a rule.
Those operators which are available only on the left-hand side are specific
to testing a condition’s value, such as >, =, Member, NotMember, Yes, and
No.

Rule Operator Left-hand Side
Conditions

Left-hand Side
Actions

Right-hand Side
Actions

=,<>,>,<,>=,<= X

Assign X X

CreateObject X X

DeleteObject X X

Execute X X

LoadKB X X

Member X

No X

NotMember X

Reset X X

Retrieve X X

SendMessage X X

Show X X

Strategy X X

UnloadKB X X

Write X X

Yes X

> a.p 12
hypo.h

Assign b.p2 "red"
26 Language Programmer’s Guide

Inheritance
Inheritance
These representation mechanisms are quite useful in terms of structuring a
world, but inheritance is what gives the greatest utility to this form of
representation. There are three fundamental types of inheritance that are
under the control of the application developer:

■ Property inheritance

■ Value inheritance

■ Method inheritance.

Note: Inheritance of meta-slot attributes is not under the control of the
application developer and is therefore not covered in this section. See
the Meta-Slot Attributes section for details about inheritance of
prompt lines and data validation functions.

Property inheritance refers to the ability for an object to inherit the existence
of a particular property from a class (or a subclass from a parent class). This
means that an object, such as b, which belongs to a class Patients that has
the property temperature, will also inherit that property:

Figure 1–28 Property Inheritance

Property inheritance occurs immediately. This means that as soon as an
object is added to a class or a property is added to a class, inheritance occurs
before anything else.

For example, if there are one hundred patient objects attached to the class
Patients, and a new property temperature is attached to that class, each
of the objects will immediately inherit that property. Obviously inheritance
is a great utility as it saves adding the same property to each child, typing
errors, omitting a couple of patients, adding the property to objects which
aren’t patients, and so forth. As soon as a property is added at the parent
level, all of the children will inherit the particular property.

Patients

b b btemperature

temperature

Patients Patients

temperature

=> =>

Add the property
"temperature" to the
class "Patients."

"b" inherits the
property "temperature"
immediately.
Language Programmer’s Guide 27

Chapter Representation1
The second type of inheritance, value inheritance, is the ability for a slot to
assume the value of one of its parents (or children) if its own value is
UNKNOWN. For example, there may be a situation where the inference engine
doesn’t know which language the novel gone_with_the_wind is in, but
it does know the class American_novels has a value of English for its
languages slot, so gone_with_the_wind inherits this value.

Figure 1–29 Value Inheritance

The important difference between value inheritance and property
inheritance, in addition to the fact that a value is being inherited instead of
a property, is that the value is only inherited when the inference engine
needs the value. If the inference engine doesn’t need the value, it won’t
needlessly propagate values around the object hierarchy.

Once again, this leads to a great utility in terms of expression. Instead of
specifying each of the individual slot values, the generic value can be
specified at the class level and inherited by any of its objects when the value
is needed.

The third type of inheritance is inheritance of methods. Methods contribute
to the behavior of a slot by providing a set of relevant actions. General
behaviors can be specified at the parent object or class level, and they will
be inherited when they are needed.

Assume now that the inference engine once again needs the value of the slot
gone_with_the_wind.language, and there is no value declared at the

gone_with_the_wind

American_novels

=>

gone_with_the_wind

language:
English

American_novels

language:
unknown

language:
English

NEXPERT needs the
value of the slot for
this novel:
28 Language Programmer’s Guide

Inheritance
parent level since the slot American_novels.language is UNKNOWN.
There is, however, an Order of Sources method declared at the parent level:

Figure 1–30 Method Inheritance

gone_with_the_wind.language will inherit the Order of Sources
method. The system automatically executes the method’s list of actions for
the slot which in this case will try to:

■ Inherit a value down (which will fail since
American_novels.language is UNKNOWN),

■ Retrieve a value from a database. If this fails, then

■ gone_with_the_wind.language will use the runtime value of
English.

Similar to value inheritance but unlike property inheritance, methods are
only inherited when they are needed.

The next three sections describe each of these types of inheritance in detail.

Property Inheritance

Property inheritance refers to the ability for an object to inherit the existence
of a particular property from a class (or a subclass from a parent class).
Property inheritance occurs immediately. This means that as soon as an
object is added to a class or a property is added to a class, inheritance occurs
before anything else.

Default Behavior

The default strategy allows properties to be inherited down from classes to
subclasses and from classes to objects, but not from objects to subobjects.
Thus if there is a class Cars with a subclass Make_1 and a property

gone_with_the_wind

language:
unknown

American_novels

=>

gone_with_the_wind

language:
English

American_novels

language:
unknown

language:
unknown

NEXPERT needs the
value of the slot for
this novel:

InhValueDown
Retrieve
RuntimeValue:
English

InhValueDown
Retrieve
RuntimeValue:
English

InhValueDown
Retrieve
RuntimeValue:
English

OS

OS

OS
Language Programmer’s Guide 29

Chapter Representation1
top_speed is linked to the class Cars, the property will immediately
propagate down:

Figure 1–31 Class to Class Property Inheritance

If there is a class Cars which has an object her_make_1 and the property
top_speed is linked to Cars, then her_make_1 will inherit this property:

Figure 1–32 Class to Object Property Inheritance

Finally, if there is an object such as her_make_1 which has a subobject
her_make_1_trunk, then this subobject will not inherit any properties
which are linked to the parent object her_make_1:

Figure 1–33 Object to Object Property Inheritance

top_speed

Make_1

Cars Cars

Add the property
"top_speed" to the
class "Cars"

=>

top_speed

Make_1

top_speed

her_make_1

her_make_1

Add the property
"top_speed" to the
class "Cars"

=>

top_speed

Cars

Cars

her_make_1_trunk

her_make_1
her_make_1

Add the property
"top_speed" to the
object "her_make_1"

=>

top_speed

her_make_1_trunk
30 Language Programmer’s Guide

Inheritance
Property inheritance is recursive. This means that if we add a property to a
parent class with some arbitrary tree structure below it, then property
inheritance will propagate down the hierarchy immediately:

Figure 1–34 Recursive Property Inheritance

The property Top_speed propagated down to the child classes Make_1
and Make_2 as well as the objects her_make_1 and my_make_1.
However, it did not propagate down to the subobjects her_make_1_door
and her_make_1_trunk.

Since subclasses are specializations of parent classes, they usually have the
same properties. Objects are instantiations of classes so they also quite often
have the same properties (as well as individual properties of their own).
Finally subobjects are just parts of other objects and, as such, quite
frequently have entirely different properties.

Inheriting from classes to subclasses and from classes to objects but not from
objects to subobjects is the default strategy of property inheritance. By
default, properties are not inherited up for any type of class to class, class to
object, or object to object hierarchy. However, similar to most of the Rules
Element environment, this default strategy may be altered to disable
property inheritance from class to class or from class to object, or to enable
property inheritance from object to object or up the object hierarchy. See the
Inheritance Strategies section for more details on this subject.

The behavior of property inheritance when objects or classes are added to
parent objects or classes is analogous to the case of adding properties

top_speed my_make_1

Add the property
"top_speed" to the
class "Cars"

Cars

Make_1 Make_2

her_make_1

=>

her_make_
1_door

her_make_
1_trunk

top_speed top_speed

her_make_1

her_make_
1_door

her_make_
1_trunk

Cars

Make_1 Make_2

top_speed

top_speed

my_make_1
Language Programmer’s Guide 31

Chapter Representation1
described above. When a class is added to a class (or group of classes), it
will immediately inherit any properties linked to the parent class.

Figure 1–35 Inheriting Down After Creating a New Link

Similarly, as soon as an object is added to a class (or group of classes), it
inherits all of the properties linked to the parent class.

When an object is linked to a parent object, it will not inherit any of the
properties linked to the parent object.

Once again, these are the default strategies. See the section on Inheritance
Strategies for details on how to modify them.

In summary:

■ Whenever a property is added to an object or class, the inference engine
checks the current strategy to see if it should propagate the property to
any other objects or classes linked to the source object or class.

■ Whenever a new link is created, the inference engine checks to see if it
should propagate any properties between the two objects or classes
involved with the link.

Once again, the Value property is treated differently. It is NEVER inherited
down (or up) the object hierarchy. Thus if we add the Value property to a
class or object, none of the subclasses or objects will inherit this property.

Now assume there is a subclass which has a particular property, but neither
the parent class nor some objects which are members of the subclass have
the property. For example, the subclass Make_2 has the property

top_speed

Add the class "Make_2"
to the class "Cars"

Cars

Make_1

=>

Cars

Make_1 Make_2

top_speed

top_speed

top_speed

top_speed
32 Language Programmer’s Guide

Inheritance
top_speed, but neither the parent class Cars nor another subclass Make_1
have the property:

Figure 1–36 Subclass with a Unique Property

If the property top_speed is added to the parent class Cars, then the
property top_speed will propagate down to the subclass Make_1, but it
will not propagate down to the objects of the subclass Make_2:

Figure 1–37 Property Propagation Blocked by the Property’s Pre-existence at
a Lower Level

In our example above, the property top_speed does propagate down to
the class Make_1, but when it tries to propagate down to the class Make_2,
it sees that Make_2 already has that property. Therefore, it doesn’t try to
propagate the property down that particular branch of the tree. Since the
class Make_2 already has the property, it would have been propagated
down that branch of the hierarchy already if it were supposed to be
propagated there. To propagate down this branch is either a waste of time
(if it already exists), or it violates the reason the property wasn’t propagated
down in the first place.

Cars

Make_1 Make_2

top_speed my_make_1her_make_1

Cars

Make_1 Make_2

top_speed

top_speed

my_make_1her_make_1top_speed
Language Programmer’s Guide 33

Chapter Representation1
This is an important point. When a new property is added to a particular
class or object, it is immediately propagated down the object hierarchy. If at
any time an object or class is found to already contain the property in
question, then it will not be propagated further down that particular branch.
Of course, if an entirely new property is added to the parent class or object,
then it would be propagated to all the classes and objects in that particular
object hierarchy structure.

Inheritability Control

There are many situations where this default property inheritance strategy
may not be appropriate. You have several choices. First of all, if you wish
to change the default strategy for the whole application, you may do so by
choosing the appropriate selection from the Strategy dialog window from
the Expert Menu:

Figure 1–38 Strategy Dialog Window Inheritability Settings

The class and object inheritability settings determine whether or not
properties are inherited up or down from classes and objects. As one can
see, the default is to use the inheritance links down from classes but not
down from objects. You merely need to click on the white arrow under
Object to allow inheritance to proceed down from objects, click on the black
arrow under Class to prevent inheritance down from classes. Similarly, to
enable property inheritance up, click on the white arrow above Class or
Object.

Disabling Inheritability Down from Classes

Preventing inheritance down from classes would be useful in the type of
situation where classes are generalizations of objects but they don’t share
the same properties and thus there’s no reason to needlessly propagate
properties to all of the objects. The same case holds for the situation with
classes and subclasses.

Enabling Inheritability Down from Objects

Allowing inheritance from object to subobject may be useful where the parts
of an object share the same properties as the entire object itself. If there are
only general properties such as color and weight, then there may be a good
reason for the object to inherit these properties. Sometimes inheriting more
specialized properties to subobjects may be useful, for instance an
application may examine how to construct a house to minimize heat loss.
Then not only would the_house have a property such as
thermal_conductivity, but so would the subobjects such as walls,
34 Language Programmer’s Guide

Inheritance
and even subobjects of those subobjects such as sheet_rock,
insulation, and so on.

Figure 1–39 Inheriting Properties to Subobjects

This type of hierarchy can continue in this manner indefinitely.

Enabling Inheritability Up

There may be many situations where you want to enable the inheritability
up strategy. For example, if the class Transportation_vehicles
doesn’t have a speed property, a useful strategy may be to get the property
from the subclass cars.

Similar to inheriting down, if inheriting up is enabled, then inheritance of
properties will be done immediately. Also similar to inheriting down,
neither the existence of the “Value” property nor its current value is ever
inherited up.

Value Inheritance

There are three cases wherein the inference engine must find a value in
order to continue processing the knowledge base. The needed value is
always associated with the evaluation of a slot under one of the following
circumstances:

■ The slot is a hypothesis and it becomes the current evaluation

■ The slot is used in a condition

■ The slot is used in an assignment statement.

thermal_
conductivity

walls

insulationsheet_rock

the_house

thermal_
conductivity

thermal_
conductivity

thermal_
conductivity
Language Programmer’s Guide 35

Chapter Representation1
Default Behavior

The first case will be covered in Chapter Two, “Inference Engine
Processing.” The second case involves a situation like:

Figure 1–40 Evaluating a Slot in a Condition

When the inference engine evaluates this rule and comes to the condition
bearing on slot a.p, it will use the value of a.p if it has one. If it doesn’t
have a value (because the value is UNKNOWN), then the inference engine
processes an Order of Sources method (whether that be local, inherited, or
the default) for a.p. See the Order of Sources section and the Method
Inheritance section for more details. The third case involves a situation like:

Figure 1–41 Evaluating a Slot in an Action

In this case, the inference engine evaluates the value of the slots l and w in
order to assign the product to area. Once again, if l and w are UNKNOWN,
the inference engine will process their Order of Sources method in order to
determine their values. An interesting construction often used is:

Figure 1–42 Assign Slot-Slot Syntax

Similar to the above assignment statement, the inference engine will
evaluate the value of the slot area in order to assign it to the slot area. The
net effect of this is to evaluate the slot area. Thus you can force the
evaluation of any slot by using this construct.

If the inference engine needs to find the value for a slot for any of the reasons
outlined above, and the slot doesn’t have a value yet, then the slot may be
able to inherit a value from one of its parent classes. This type of inheritance
normally proceeds:

■ From parent class to subclass

■ From class to object

■ From object to subobject.

> a.p 12
hypo.h

Assign l*w area

hypo.h

Assign area area

hypo.h
36 Language Programmer’s Guide

Inheritance
However, unlike property inheritance, this inheritance is only triggered
when the inference engine needs the value for a particular slot. For
example, if there is a hierarchy where the value of the slot
Make_1.top_speed is known to be 120, we see that this value is not
propagated down the hierarchy to the slots her_make_1.top_speed and
my_make_1.top_speed (they remain UNKNOWN):

Figure 1–43 Value Inheritance

If the inference engine needs the value for the slot
her_make_1.top_speed, it will inherit this value from the parent class
Make_1. Thus a value of 120 would be used for her_make_1.top_speed:

Figure 1–44 Value Inheritance

Notice also that even though her_make_1.top_speed has inherited the
value of 120 from the parent class Make_1, the slot
my_make_1.top_speed remains UNKNOWN.

Make_1

my_make_1her_make_1

top_speed=
Unknown

top_speed=
Unknown

top_speed=
120

Make_1

my_make_1her_make_1

top_speed=
120

top_speed=
Unknown

top_speed=
120
Language Programmer’s Guide 37

Chapter Representation1
The inference engine will never try to determine the value of a parent class
so that one of its children can inherit it. If the parent class has a value, then
the child can inherit it. If not, then the child must look for a value from
another parent or from another source.

The Value property is once again an exception. If the parent class or object
and the child object or class have the Value property, and the parent’s slot
has a value (it is not UNKNOWN) then, unlike the case with other slots, there
will be no inheritance. The inference engine must get the value from some
other source.

Inheritability Control

There are many situations where the default value inheritance strategy may
not be appropriate. You have several choices. First of all, if you wish to
change the default strategy for the whole application, you may do so by
choosing the appropriate selection from the Strategy dialog window from
the Expert Menu:

Figure 1–45 Strategy Dialog Window Inheritability Settings

The value inheritability setting determines whether or not values are
inherited up or down. The Value arrow is also selected which means values
are inherited down by default. You merely need to click on the black arrow
under Value to prevent inheritance down of values or click on the arrow
above Value to permit inheritance up of values.

Disabling Inheritability Down

Value inheritance is allowed down as a default. There are many cases where
we wouldn’t want this to occur. For example, the slot attached to a class
stocks.net_value may be a certain value. We would certainly want the
objects of this class (individual stocks) to have the property net_value, but
we wouldn’t want to assume all the stocks in this particular class had the
same net value by inheriting down the class slot’s value.

Enabling Inheritability Up

There may be many situations where you want to enable the inheritability
up strategy. For example, if there is no value for a particular car’s color, a
good guess is to inherit up the color of the car’s door. Similarly, if the class
Cars has a number_of_wheels slot which hasn’t been determined yet, a
good strategy may be to inherit up the value from one of the objects of the
class Cars.
38 Language Programmer’s Guide

Inheritance
Similar to inheriting down, if inheriting up is enabled, then inheritance of
values will be done when a particular parent needs a value. Also similar to
inheriting down, neither the existence of the “Value” property nor its
current value is ever inherited up.

Method Inheritance

Methods can be inherited in a manner similar to properties and slot values.
Also analogous to slot values, they are inherited only when needed and
when there is no method attached at the current level.

Default Behavior

Methods are never inherited up. Inheritance of methods proceeds along the
same links as inheritance of properties and values, except for the fact that
they can only be inherited down, regardless of the current strategy.
Depending on the type of method, the inheritance behavior is as follows:

In the case of the user-defined method, when the SendMessage operator
(from a rule or method) sends a message to its list of addressees that
specifies the name of the method to trigger, the inference engine:

■ Looks to see if the addressee named in the message (can be a slot, object,
class, or property name) has a method declared locally with the same
name as the one specified in the message. If there is one, then it is
executed.

■ If no matching method is declared locally, then the inference engine
tries to inherit a method that has the same name as the one specified in
the message from a parent object or class.

■ If there is none to inherit (or if inheritance down is disabled) and the
method is attached to slot, then it tries the property.

■ If there is no method available, then no actions are performed.

In the case of the Order of Sources system method, when the inference
engine needs the value of a slot:

■ It looks to see if the slot has anything in its Order of Sources method. If
so, these are executed.

■ If not, then the inference engine tries to inherit an Order of Sources
down from one of its parents.

■ If none of them have anything declared (or if inheritance down is
disabled), then the inference engine resorts to the default Order of
Sources: Backward Chaining, InheritValueDown, InheritValueUp.

■ If all of these Order of Sources fail, the inference engine always asks a
question.

In the case of the If Change system method, when the inference engine
detects that the value of a slot changes:

■ It looks to see if the slot has an If Change method declared locally. If
there is one, then it is executed.

■ If no If Change method is declared locally, then the inference engine
tries to inherit one down.

■ If there is none to inherit (or if inheritance down is disabled), then no
actions are performed since there are no default If Change actions.
Language Programmer’s Guide 39

Chapter Representation1
Thus method inheritance proceeds down from parent class to subclass, from
class to object, and from object to subobject. This default strategy can be
modified so that individual methods are private and cannot be inherited by
the children of the parent to which the method is attached.

The Self Variable

The SELF variable is very important. It is used in methods of any kind and
within the @V syntax of the Prompt Line meta-slot attribute. It is used to
refer to the object which is being processed at the time.

The main reason this is so useful has to do with inheritance. For example,
consider the situation where we have a class Fasteners with a particular
object of that class a_bolt. The inference engine needs to determine the
total cost of all the one inch screws. The formula for total cost is price
multiplied by the number. Thus you could specify a method
Compute_Total_Cost for the object a_bolt that multiplies the cost and
number together:

Figure 1–46 Inheriting an Explicit Method

Fasteners

a-bolt total_cost=
Unknown

Assign a_bolt.price*a_bolt.number a_bolt.total_cost

Compute_Total_Cost
40 Language Programmer’s Guide

Inheritance
This approach works fine. However, most likely there are many different
types of fasteners. The total cost of each fastener is calculated the same way;
thus it makes sense to specify this behavior at the parent class level and have
each of the children inherit it:

Figure 1–47 Inheriting a General Method

Since each object which inherits the method will be calculating its total cost
based on its price and number, we cannot use explicit references to slots.
Each object (or class) that inherits this method will substitute its own name
for the SELF variable. This means that the explicit method for slot
a_bolt.total_cost in Figure 1–46 behaves exactly the same as the
inherited general method for a_bolt.total_cost displayed in
Figure 1–47. When a general method is used in place of an explicit method
it is known as specialization.

Mixing Explicit with Inherited Methods

It is also possible for a slot to use a series of actions defined locally, then try
to inherit additional sources or actions from a parent, and finally try any
additional actions defined at the slot level. This is accomplished by defining
a list like:

Series of actions

InhMethod (specify a explicit parent name or use default)

Series of additional actions

Once again, if these are defined in an Order of Sources method, depending
on the current strategy setting, the inference engine will stop executing the
list as soon as a value is found for the slot in question. If they are defined in
a user-defined method or an If Change method, then all actions will be
executed. Note that any method triggered by a SendMessage operator is
considered “user-defined” by definition.

NEXPERT needs the
value of the slot
"a_bolt.total_cost"

=>

Fasteners

a_bolt total_cost=
Unknown

Assign
self.price*self.number
self.total_cost

Fasteners

a_bolt total_cost=
Unknown

total_cost=
Unknown

total_cost=
Unknown

Assign SELF.price*SELF.number
self.total_cost

Assign a_bolt.price*a_bolt.number
a_bolt.total_cost

Compute_Total_Cost

Compute_Total_Cost

Compute_Total_Cost
Language Programmer’s Guide 41

Chapter Representation1
Non-Inheritable Methods

Although no inheritance strategy exists to disable method inheritance for
the entire system, it is possible to disable method inheritance on a case by
case basis. This is most likely the situation for an explicit method (the SELF
variable does not appear in any of the actions). In this case, the method’s
actions are intended for use only by the slot to which it is attached. The
Method editor provides this option when you create the method.

If you have a situation where some of the actions should be inheritable and
others not, the method actions list can be divided between two different
methods. Thus by specifying two methods with the same name, one can
contain only the private actions and the other the public actions. Any child
object or class inheriting the method from the parent will inherit only the
method with the public actions list. Or, if you want to have the parent and
the children execute the same actions (when there are private actions), you
can duplicate the exact same actions in a method for the child using the copy
Function In The Method Editor.

Conflict Resolution

A particular object or class may often have several parents or even an entire
hierarchy of possible parents from which to inherit a value or a method.
Each time an inheritance event occurs, there is the possibility for conflict
between alternate sources of information. You specify how to search for a
value and a method using general search strategies. The strategies can be
applied each time there is a conflict during an inheritance event.

Note that properties inherited by objects do not give rise to conflicts since
the same property of two parents will be inherited only once. In the case of
methods, the conflict arises when two methods of the same name exist at the
level of the parents. Downward inheritance of properties, values, and
methods is known as specialization. The following search strategies apply to
inheritance of values and methods.

Parent Search Strategies

There are several general strategies to choose from: one can either look at
parent objects or parent classes first, and one can either proceed in a
depth-first or a breadth-first type of search. This gives rise to four general
types of search strategies (Figure 1-48 will help explain each of them):

■ Class-first, breadth-first: This is the default strategy. This means if a
slot needs to inherit a value or method, it will look at all of its immediate
parent’s first. If none of them have one to inherit from, then it will look
at its parent’s parents, and so on.

■ Class-first, depth-first: This strategy means if a slot needs to inherit a
value or method, it will look at one of its parent classes first. If that class
doesn’t have one it can inherit, then it will look at one of that parent’s
parent classes and so on until that branch of the tree is completely
exhausted or until one is found. If a value or method isn’t found, then
the search back up until it reaches a sub-branch which hasn’t been
completely explored and then searches down it. It may even back all
the way up to the top level and then proceed down another parent class
branch. Finally, if all the classes have been searched without finding a
value or method, then the object hierarchy will be searched in the same
manner.
42 Language Programmer’s Guide

Inheritance
■ Object-first, breadth-first: This strategy is the same as the class-first,
breadth-first strategy except in this strategy the parent objects are
searched first instead of the parent classes at each level.

■ Object-first, depth-first: This strategy is the same as the class-first,
depth-first strategy except in this strategy the parent objects are
searched first instead of the parent classes.

If there is a tie because two or more parents exist at the same level, then the
parent whose slot has the higher inheritance priority will be inherited from.
In the case of methods, however, which may not be attached to a slot, an
additional way to break a tie is provided: if two methods exist at the same
level, the application developer can explicitly specify which parent to begin
the search from through the InhMethod operator.

The following diagram shows an object hierarchy and the following
paragraphs explain how the inheritance would proceed under the four
distinct strategies:

Figure 1–48 Conflict Resolution

Let’s assume the system needs the value of the slot object.property or
that a message to trigger a method for the slot or object is sent. Then, if the
current strategy is:

■ Class-first, breadth-first: Then the search will proceed in the following
order: Class_1, Class_2, object_1, object_2, Class_3, Class_4, Class_5,
object_3, object_4, Class_6, Class_7, object_5, object_6. The search will
stop as soon as a value or method is found. Notice the inference engine
searches the first level classes and objects until there are no more classes

object_5
Class_7

object.prop

Class_6

Class_3

Class_1

Class_4 Class_5

Class_2

object_6

object_3

object

object_1

object_4

object_2
Language Programmer’s Guide 43

Chapter Representation1
and objects at that level, then it searches the second level of classes and
objects, and so on.

■ Class-first, depth-first: Then the search will proceed in the following
order: Class_1, Class_3, Class_6, Class_7, Class_4, Class_2, Class_5,
object_1, object_3, object_5, object_6, object_2, object_4. Once again, the
search will stop as soon as the value or method is found. Now the
search picks one branch of the class tree and moves to deeper levels
until that branch is exhausted, and then it backs up just enough to find
an unexplored branch, at which point it searches to the end of the
branch again. After all the class branches are exhausted, the object
branches are searched in a completely analogous manner.

■ Object-first, breadth-first: Then the search will proceed in the following
order: object_1, object_2, Class_1, Class_2, object_3, object_4, Class_3,
Class_4, Class_5, object_5, object_6, Class_6, Class_7. This is the same
as the class-first, breadth-first search except the object branches are
searched first.

■ Object-first, depth-first: Then the search will proceed in the following
order: object_1, object_3, object_5, object_6, object_2, object_4, Class_1,
Class_3, Class_6, Class_7, Class_4, Class_2, Class_5. This is the same as
the class-first, depth-first search except the object branches are searched
first.

In summary, when the inference engine searches through the object
hierarchy, it uses one of the four general strategies and breaks ties using the
inheritance priority and the child node each parent was expanded from.
These strategies in the order of decreasing priority are breadth first (at each
level), then class versus object, then the child node that each parent was
expanded from, and finally the inheritance priority within each group of
nodes defined at the level below.

It is very important which areas are searched first, both because different
parents may have different values (or methods) so the child object will
inherit different values (or methods) depending on the setting, and even if
the same value is inherited, one may want to inherit from one parent rather
than another due to cost, CPU time, and so forth.

If a class instead of an object is inheriting the value or method from a parent,
the same principles apply for the depth-first versus breadth-first types of
searches. There is no distinction between object-first and class-first since the
value or method is being inherited down and objects cannot be parents of
classes.

Children Search Strategies

Similar to our situation with inheriting down, a particular object or class
may often have several children or even an entire hierarchy of possible
children from which to inherit. Unlike inheriting down, however, methods
cannot be inherited up, only the properties and the values are eligible to be
inherited by the parents of a child object. This type of upward inheritance
of properties and values is known as generalization.

In order to avoid inheritance conflicts when values are inherited up, you
may need to specify how to search for a value using the general search
strategies. The strategies are applied each time there is a conflict during an
inheritance event. The same strategies outlined for inheriting down apply
44 Language Programmer’s Guide

Dynamic Structures
here as well: one can either look at child objects or child classes first and one
can either proceed in a depth-first or a breadth-first type of search. This
gives rise to the same four general types of search strategies:

■ Class-first, breadth-first (the default)

■ Class-first, depth-first

■ Object-first, breadth-first

■ Object-first, depth-first.

For details on these strategies, see the previous section on Parent Search
Strategies.

If an object instead of a class is inheriting the value from a child, the same
principles apply for the depth-first versus breadth-first types of searches.
There is no distinction between object-first and class-first since the value is
being inherited up and classes cannot be children of objects.

Dynamic Structures
The representation mechanisms described above provide a rich
environment to describe a world in which all the relationships are clearly
defined when you create the knowledge-based application. But what
happens if there are objects and relationships whose existence isn’t known
a priori? This section will address this issue.

The inference engine is designed to be integrated into your computing
environment. Thus it needs to interact with databases, other programs, and
many other computational and mechanical devices whose exact
specifications will not and cannot be known when writing the application.
This presents a bit of a dilemma. To solve it, the inference engine allows
applications to create dynamic objects and dynamic links. The objects and
links are created at runtime rather than being compiled with the rest of the
application. As the system realizes the need for new objects and new
relationships, it can create them. Of course, both objects and links can also
be deleted at runtime as they are no longer needed.

This gives you tremendous flexibility as you only need to hard code those
objects and relationships which are always used, while the objects and
relationships whose existence depends on the current state of the system
and the external environment can be created as needed. This also saves both
memory and disk space as only the permanent objects and relationships
which are needed are created and stored in memory.

Dynamic Objects

Objects can be created with the CreateObject operator that appears in a rule
or a method. A newly created object will start with no properties, parent
classes or objects, or subobjects. Dynamic objects add to the Rules Element’s
representation of the domain, however since they have no slots or
relationships, they have no way of relating with the other structures in the
Rules Element. If dynamic objects were the only dynamic structures the
Rules Element allowed, this new means of representation wouldn’t be very
useful from the computing point of view since dynamic objects wouldn’t
Language Programmer’s Guide 45

Chapter Representation1
have slots, and if they didn’t have slots, then they couldn’t hold any
information.

It is important to note that dynamic objects are full-fledged objects. They
have almost all of the capabilities and characteristics of other objects. The
differences are as follows:

■ They are created at runtime rather than being compiled with the rest of
the application.

■ They are deleted when a new session is started.

■ Since these objects are defined during the processing of your
knowledge base, the only way they can have properties and methods is
by linking them to classes and relying on inheritance mechanisms.

Dynamic Links

A Rules Element application can create new links between both compiled
objects and classes as well as dynamic objects using the CreateObject
operator. Newly created objects can be linked to other objects or classes
(whether the other objects and classes are dynamic or not). This linking can
be done as soon as the object is created or at any time during the inference
process.

Links can also be created between compiled objects and other objects or
classes. Links can be deleted from any objects or classes, whether they are
compiled or dynamic. Thus the whole object hierarchy can be altered
dynamically while the inference engine is running: new objects can be
added to the network, objects can be made subobjects of other objects or
instantiations of classes, and the links can all be destroyed.

Thus in an insurance knowledge-based system, there could initially be just
a class network, such as:

Figure 1–49 Initial Class Network

Processed_
applications

Unprocessed_
applications

Accepted_
applications

Rejected_
applications

Applications_
needing_

further_review
46 Language Programmer’s Guide

Dynamic Structures
A dynamic object can be created for each client’s application for insurance
and linked to the class Unprocessed_applications. The information
for these objects can come from a database, from the user interface, or
anywhere else:

Figure 1–50 Adding Dynamic Objects

Notice that the name of dynamic objects is preceded by a plus sign “+”.

After processing each application, the link to the class
Unprocessed_applications can be deleted, and then a link between
the application and Processed_applications as well as either
Accepted_applications, Rejected_applications, or
Applications_needing_further_review can be created:

Figure 1–51 Attaching Dynamic Objects to Other Classes

Any number of dynamic links can be created and/or deleted between either
dynamic objects (as in the case above) or compiled objects. In the above
example, it made sense to switch the dynamic objects out of one class before
adding them to some more classes, but this is certainly not a prerequisite.

Dynamic links allow the internal representation to be dynamically modified
to accurately reflect the changing environment or state of the inference
session. Similar to the case with dynamic objects, dynamic links are deleted
when a new session is started.

Unprocessed_
applications

+ app_2+ app_1 + app_3

+ app_1

Processed_
applications

Unprocessed_
applications

Accepted_
applications

Rejected_
applications

Applications_
needing_

further_review

+ app_2

+ app_3
Language Programmer’s Guide 47

Chapter Representation1
In summary:

■ If you use the CreateObject operator with a compiled object and a set of
other objects or classes, then new links will be created between the
compiled object and the other objects.

■ If you use the CreateObject operator with an object name which doesn't
exist yet, then a dynamic object will be created.

■ If you use the CreateObject operator with an object name which doesn't
exist yet and a set of other objects or classes, then a dynamic object will
be created as well as dynamic links between the dynamic object and the
other objects or classes.

Inheritance

One of the tremendous benefits to this restructuring of the object hierarchy
is it allows for a dynamic alteration of the inheritance paths. In parallel to
what we described for regular objects, dynamic links allow both dynamic
objects and compiled objects and classes to inherit from parent or child
objects and classes. Dynamic links are a very important capability: they
allow one to change the inheritance patterns by changing which objects and
classes are associated with each other. This allows objects or classes to
inherit from whichever child or parent class or object is appropriate at that
particular point in time.

In the insurance system detailed above, when the + app_1 dynamic object
is linked to the Unprocessed_applications class, it inherits the
properties and any values it needs from that class. After it is processed and
linked to Accepted_applications, then it will inherit from this new
class (and possibly any others in that branch of the network, for example
Processed_applications) instead of the first class it was linked to.

Figure 1–52 Inheriting Along Dynamic Links

Once again, this capability allows the inheritance events to proceed along
the optimal path according to the current state of the inference engine.

+ app_1

Processed_
applications

Accepted_
applications

Unprocessed_
applications

+ app_1

Processed_
applications

Accepted_
applications

Unprocessed_
applications

t t + ∆ t
48 Language Programmer’s Guide

Dynamic Structures
It is also important to emphasize once again the notion of temporality.
When dynamic objects and links are created, inheritance will proceed
according to the strategy at the instant when the new object or link is created
in the case of property inheritance, and at the instant the inference engine
needs the value of a slot in the case of value and method inheritance.

Property Inheritance

Just as new properties are propagated up or down the object hierarchy as
soon as they are added (depending on the strategy settings of course!),
whenever a dynamic link is created between an object and either an object
or a class, the properties are propagated immediately (if allowed by the
current strategy). In our insurance system, if the class
Unprocessed_applications has the property processed then as soon
as the dynamic objects are created they will inherit this property:

Figure 1–53 Property Inheritance with Dynamic Objects

Property inheritance allows an object to immediately obtain the properties
of its parents (or children) so reasoning can be performed on its slots.

When links are deleted between objects and other objects or classes, the
properties remain with the object. Thus when the link between the dynamic
object + app_1 and the Unprocessed_applications class is deleted,
the slot + app_1.processed will still exist. It does not matter when or
how the link is destroyed – the properties will not be deleted from an object
or class. Of course, after a link is destroyed, the child objects or classes will
no longer be able to inherit new properties which are added to the parent
class.

Value Inheritance

Analogous to the case with regular links in the object hierarchy, values will
only be inherited down or up when the current strategy allows it and the
value is needed. Thus in our insurance system, if the value of the
Unprocessed_applications.processed slot is FALSE, and we need
the value of a slot of one particular object in that class, say

When the dynamic objects
"+ app_1" and "+ app_2" are
linked to the class
"Unprocessed_applications,
they immediately inherit the
property "processed."

=>

+ app_1

Unprocessed_
applications

+ app_2
processed

Unprocessed_
applications

processed

processed processed
Language Programmer’s Guide 49

Chapter Representation1
app_1.processed then this child slot will inherit the value FALSE from
its parent class:

Figure 1–54 Value Inheritance with Dynamic Objects

Once again, similar to the case for value inheritance along compiled links,
inheritance will only occur when the slot needs a value. Thus the
app_2.processed slot remains UNKNOWN until the inference engine needs
the value.

However, once the applications are processed they will be removed from
the Unprocessed_applications class and linked to their new classes.
Now when the inference engine needs the value of one of their slots, it will
inherit the value from a different parent, leading to a completely different
value. Inheritance will never be attempted on the class from which the link
was deleted.

Inheritance will follow whatever the current strategy is. The fact that the
link or object is dynamic has no influence on whether or not the value will
be inherited.

Method Inheritance

Dynamic objects cannot have any methods defined locally since they are
created at runtime rather than being compiled. This means that they must
either inherit their methods or use the default values. Thus inheritance
plays a very big role when determining the behavior of dynamic objects.

When the the slot
"+ app_1.processed" needs
a value, it inherits it
from the parent.

=>

+ app_1

Unprocessed_
applications

+ app_2processed=
FALSE

processed=
Unknown

+ app_1

Unprocessed_
applications

+ app_2processed=
FALSE

processed=
Unknown

processed=
FALSE

processed=
FALSE
50 Language Programmer’s Guide

Interpretations
For example, the inference engine may need to calculate the insurance
premium for each application. The method used to calculate it can be stored
in the parent class Unprocessed_applications and inherited by each
dynamic object which is linked to the class:

Figure 1–55 Dynamic Objects Inheriting Methods

Each dynamic object figures out what its associated risk factors are, and
then calculates the premium based on this value. The behavior for
inheritance of methods by dynamic objects or through dynamic links is
exactly the same as it is for the compiled case.

Interpretations
Often the exact slots you want to test in rule or method conditions, send to
a particular routine, or send to a particular function are not known before
the inferencing session. In this situation, it is necessary to generate the
objects, classes, and their properties at runtime rather than explicitly
naming them in the rules. The Rules Element allows you to use
interpretations to implement this strategy.

Interpretations can be made on either public or private slots, but in the case
of private slots certain restrictions apply. Because an interpretation will
cause the system to determine a value for a slot, private slots may only be
interpreted in the method attached to the private slot or its object
components (object, class, or property). When referencing the private slot
name in the interpretation, the SELF variable must be used.

Assign
self.risk_factors*100
self.premium

NEXPERT needs the value of
"+app_1.premium" so it
inherits down an Order of
Sources method.

=>

Unprocessed_
applications

premium

premium=
Unknown

+ app_1

Unprocessed_
applications

premium

premium=
Unknown

+ app_1

Assign
app_1.risk_factors*100
app_1.premium

Assign
SELF.risk_factors*100
SELF.premium

OS

OS

OS
Language Programmer’s Guide 51

Chapter Representation1
Interpreting Slots

An interpretation is a slot value which is interpreted to be the name of an
object, class, or property. Thus if the value of the slot car.type is
“porsche”, then the condition:

Figure 1–56 Simple Object Name Interpretation

would first determine the value of car.type, conclude that it is “porsche”,
and then test the value of porsche.speed to see if it is greater than 100.
This capability adds a great deal of flexibility as you only need to write one
rule to test this value rather than writing a different rule for every possible
value of the interpreted slot.

Object name interpretations yield one object from a group of objects that
probably share the property. The same technique can be applied to
properties when an object whose property is not known in advance needs
to be tested. Thus if the value of the slot part.name is “seal”, then the
condition:

Figure 1–57 Simple Property Name Interpretation

would first determine the value of part.name, conclude that it is “seal”,
and then test the value of valve.seal to see if it is “intact”. This capability
can be used to yield data that is specific to a particular object.

In addition to the interpreted part of an interpretation, there can also be a
root which is always included with that particular interpretation. In this
case, the interpretation acts as the dynamic part of the object or class
construction, and the root acts as a constant part. Thus if the value of the

> \car.type\.speed 100

Yes valve.\part.name\ "Intact"
52 Language Programmer’s Guide

Interpretations
slot d.name is “brand_x”, then the condition in Figure 1–58 means: “Is the
value of the slot disk_brand_x.space larger than 60?”.

Figure 1–58 Interpretation with Root

Whenever this rule is used, it will always use the prefix “disk_” in the
condition displayed above, and then it will add whatever the current value
of d.name is to the root to test in the condition. So if the value of the slot
d.name becomes “brand_y” and the rule is re-evaluated, then the condition
will test the value of the slot disk_brand_y.space against the constant
60.

Interpretations can also be used in the right-hand side actions. In this case,
the exact same behavior we have described for the conditions applies. For
instance, if the slot a.p evaluates to “acid”, then the action displayed in
Figure 1-59 would set the value of the slot nucleic_acid.type to
guanine:

Figure 1–59 Interpretation in Action

Interpreting Strings

Interpretations can also be used in several places within Write and Retrieve
statements, as well as in the Prompt Line meta-slot attribute, and the Data
Validation meta-slot attribute. In this case, we are evaluating the slot to be
a string rather than an object or class name. The syntax is slightly different
than the first type of interpretation: @V(slot).

> 'disk_'\d.name\.space 60

Assign 'nucleic_'\a.p\.type "guanine"
Language Programmer’s Guide 53

Chapter Representation1
The name of the data file which is retrieved from or written to can be an
interpretation as displayed in Figure 1–60:

Figure 1–60 Interpreting the Data File Name

When this condition is evaluated, the inference engine determines the value
of the slot file.name, and then it retrieves whatever information is
specified in “other args” from this file. This gives you the ability to retrieve
information from or write information to the particular database which is
appropriate given the current state of the inference process. This capability,
called a parameterized query or variablized query, adds a great deal of flexibility
as well as allowing you to code far fewer rules.

In addition, interpretations can be used within the arguments (third column
of the conditions) to the database Retrieve or Write statements. They can be
used in the Begin statement to determine dynamically where in a particular
database to begin retrieving or writing information then can be used in the
query statement or in the query arguments to build a dynamic query, and
they can be used in the End statement to tell the database what to do when
the interaction is complete. For more information on using interpretations
with databases, see the Rules Element Database Integration Guide.

The external file or routine named in the Execute operator can also be
interpreted. The syntax is exactly the same as it is for the Retrieve and Write
operators:

Figure 1–61 Interpreting the Execute File Name

Once again, the inference engine determines the value of the slot
file.name, and then it executes this function or routine.

Interpretations can also be used in the Prompt Line meta-slot attribute.
Recall that the Prompt Line meta-slot attribute specifies how to query the
user for the value for a particular slot. Interpretations allow you to build a
dynamic query for the user, giving him some information about the current
state of the session.

Retrieve @v(file.name) other args

Execute @v(file.name) other args
54 Language Programmer’s Guide

Pattern Matching
For example, in a network configuration example, there may be currently
twenty-five nodes on the network. Rather than just asking the user if he
wants to add another one, you can specify a prompt line such as:

There are currently @V(nodes.number) nodes on the network.
Would you like to add another?

Listing 1-1 Using Interpretations in the Prompt Line Meta-Slot Attribute

If the slot nodes.number currently has a value of 25, the inference engine
will query the user: “There are currently 25 nodes on the network. Would
you like to add another?”.

String interpretations can also be nested. If the value of the slot
component.value is “nodes”, then the above prompt line could also be:

There are currently @V(@V(component).number) @V(component).
Would you like to add another?

Listing 1-2 Nested Interpretations in a Prompt Line

The inference engine interprets the value of component.value to
“nodes”, and then the value of nodes.number to 25 or whatever the value
is. Note that if the value of component.value is servers, and the value of
servers.number is 3, then the prompt will be: “There are currently 3
servers. Would you like to add another?”.

The SELF variable can also be nested inside a prompt line with the @V()
interpretation.

The property of a slot can also be interpreted. The interpretation either
evaluates to a class or object to build a dynamic slot, or to some other string
to send to a database, an execute routine, or the screen.

In summary, interpretations give you the power to write concise, flexible,
generic rules, while the inference engine decides at runtime which slots to
process with the rules. This is an important point: the slots the rules process
are not known when the knowledge base is compiled. Only when the
inference engine processes the rule is the exact slot determined.

Pattern Matching
Another method of allowing you to test the values of slots without
mentioning them explicitly is through the use of pattern matching. Pattern
matching creates a list of objects which belong to a parent class or object.
There are two basic types of pattern matching:

1. The first type, called a universal qualifier, allows you to test conditions
like: do all members of this class (or do all subobjects of this object)
meet this condition, and

2. The second type, called an existential qualifier, allows the test: are there
any members of this class (or any subobjects of this object) which meet
this condition.
Language Programmer’s Guide 55

Chapter Representation1
An example of the first type (universal qualifier) is:

Figure 1–62 Universal Pattern Matching (are all)

A pattern matching of the first type is delimited with curly braces. This
example condition means: “Do all objects of the class Valves (or do all
subobjects of the object valves depending on whether valves is an object
or a class) have a slot p whose value is larger than 100?”.

Since all of the slots involved in a universal pattern matching must meet the
specified test for the condition to be TRUE, the inference engine will stop
evaluating the pattern matching as soon as one of them doesn’t meet the
specified test. The condition and the rule are set to FALSE.

Pattern matching always ignores private slots when determining the results
of the test or generating a list of objects.

The second type of pattern matching (existential) is delimited by the
following symbols: < >. An example of the second type of pattern matching
is:

Figure 1–63 Existential Pattern Matching (are any)

This condition means: “Are there any objects of the class Valves (or are
there any subobjects of the object valves) which have a slot p whose value
is larger than 100?”.

The inference engine will always exhaustively test all slots involved in an
existential pattern matching, since even if the first “n” don’t meet the
specified test, the “n+1st” might meet it. If a pattern match occurs on a set
of objects that contains only private slots (no public slots), the condition will
be set to FALSE.

A pattern matching always generates a list of objects to test or use, whether
it is a pattern matching on a class or an object. Furthermore, this list is
always the first level of objects reached on each branch of the object
hierarchy. When it reaches an object on one branch it doesn’t search down
that branch further. When it reaches classes, it continues to search down the

> {valves}.p 100

> <valves>.p 100
56 Language Programmer’s Guide

Pattern Matching
different branches until it reaches some objects. Thus if we have the
following object hierarchy:

Figure 1–64 Pattern Matching on a Class

A pattern matching on <|Colorless_Particles|> (vertical bars are
used in a pattern matching, and in conditions and actions in general, to
explicitly state that you are using a class) would test the values of slots
associated with the objects: electron, muon, antineutron, lambda, and
proton. The inference engine searches down the object hierarchy branches
associated with Mesons and Bayons, but it will not search down the
hierarchy branches associated with Colored_Particles or any of the
objects belonging to the class of Bayons.

A pattern matching on the object body would test the values of slots
associated with the objects heart and left_arm:

Figure 1–65 Pattern Matching on an Object

A pattern matching on
"Colorless_Particles"
produces this list.

u d

proton

Colorless_Particles

muon
Colored_Particles

antineutron lambda

s

electronBayonsMesons

A pattern matching
on "body" produces
this list.

left_elbow

left_arm

body

heart

left_hand
Language Programmer’s Guide 57

Chapter Representation1
Once again, since these are both objects, the inference engine will not search
further down the object hierarchy to test the values of slots associated with
subobjects of left_arm.

Lists Created By Pattern Matchings

An existential pattern matching has a very important function besides being
a test: it keeps the list of objects which meet the given criteria. So, in the
example below, the list of valves which have a slot pressure with a value
greater than 100 would be kept for use later within the same rule.

Figure 1–66 Pattern Matching in a Condition

This local list can be used in either subsequent conditions or on the
right-hand side actions list, but after the rule is completely evaluated then
the list will be lost (of course if you wish to save the list, the CreateObject
operator can be used to attach it to another class, and subsequent pattern
matchings can operate on this class).

If there is a rule which has more than one pattern matching, then subsequent
pattern matchings work on the result of the first pattern matching:

Figure 1–67 Pattern Matching Using Previous Result

These two conditions mean: “Are there any valves whose slot pressure
is greater than 100, and of those valves for which this condition is TRUE,
do all of them have a slot seal whose value is “intact”?”. The second
condition operates on the result of the first one. It is also important to note
that these two conditions (and universal and existential qualifiers in
general) are not commutative. For instance, in this example, if we reversed
the two conditions, it would mean: “Do all valves have a slot seal with
a value “intact”, and then, since the sub-list created by a universal qualifier
must contain all of the objects in the parent class or object (since everything
must match the condition for it to be evaluated as TRUE), the next condition
finds all valves which have a slot pressure with a value greater than 100?”.

> <valves>.pressure 100

> <valves>.pressure 100

= {valves}.seal "intact"
58 Language Programmer’s Guide

Pattern Matching
A series of pure existential qualifiers is commutative, and a series of pure
universal qualifiers is commutative, but a mix of the two is not
commutative. Evaluating universal qualifiers first is more restrictive than
using existential qualifiers first.

As mentioned above, pattern matching lists can also be used in the
right-hand side actions. This serves several general purposes: it can assign
a value to the slots of an entire list, it can create or delete links between the
list and other classes or objects, and it can send the list to a database or
external routine to be processed. An important point about processing lists
in the right-hand side actions is that only the objects which satisfied the
conditions are processed in the right-hand side actions. For example,
assume the class Valves has four objects, and two of these four objects have
pressure slot values which are greater than 100. Thus the rule condition
shown in Figure 1–70:

Figure 1–68 Action on Result of Pattern Matching

creates a list of the two objects whose pressure slot values are greater than
100. This sets the rule itself and its hypothesis to TRUE, and sends the two
objects in the sub-list specified by <valves> to the right-hand side actions
for further processing. Finally, the rule right-hand side action assigns the
value “trouble” to the status slots of the two objects specified by
<valves> sub-list.

There are several important things to note here. First of all, only the objects
which pass the left-hand side pattern matching conditions are processed in
further conditions or in the right-hand side actions. Secondly, since the
right-hand side actions do not test the values of any slots, the actions are
executed on all of the objects in the list. This means the universal ({ }) and
the existential (< >) qualifiers are identical in right-hand side actions.

Multiple Pattern Matchings In One Rule

Sometimes you may want to process several pattern matching conditions in
the same rule against the entire list of objects belonging to a parent object or
class rather than just the sub-lists which have fulfilled earlier conditions. To
do this, you need to use a different number of qualifying brackets around
the object or class name.

For instance, the first time you refer to the list, use one set of < > to enclose
the parent object or class, and the second time, use two sets of << >>. If two
sets of qualifiers are used in later conditions or actions of that particular
rule, it will refer to the second pattern matching list, and if one set is used,
it will refer to the first list. Any number of qualifying brackets may be used,
but they must be balanced on each side of the parent object or class. There

> <valves>.pressure 100

Assign "trouble" <valves>.status
Language Programmer’s Guide 59

Chapter Representation1
does not need to be any order to when the varying numbers of qualifying
brackets are used, for example, three can be used in the first condition, one
in the second and two possibly never. Thus the rule shown in Figure 1–71:

Figure 1–69 Varying Lists of Pattern Matching within one Rule

creates a list of all members of the class A (or all subobjects of the object A
depending on whether A is an object or class) whose slot p1 is larger than 11
and whose slot p3 is red, and creates another list of all members of the class
A whose p2 slot is TRUE. If both of these lists contain at least one object, then
the right-hand side actions link the first list to the class Class, and
increment the p5 slot of the second list by 5. Note that if these two sets
intersect, then some objects will be linked to Class and have their p5 slot
modified.

It is also important to remember that a pattern matching construction such
as <A> creates a temporary list of all objects meeting the specified criteria.
Once this list is created, it is completely independent of the parent class or
object A. Thus if we have a rule which creates a sub-list, then deletes an
object which belongs to the sub-list from the parent class or object, it will not
affect the pattern matching list.

Figure 1–70 Deleting Objects Using Pattern Matching

If obj1 is a member of A before any of the conditions in Figure 1–72 are
evaluated, and if obj1.p1 has a value of 34, then it will be a member of the
pattern matching list <|A|>. The second condition deletes the link between
obj1 and A, but obj1 will still be linked to <|A|>. Of course, pattern
matching lists are local to a rule, so at the end of the rule, the pattern
matching list will be lost unless a link is created between it and some other
object or class.

> <<A>>.p1 11

CreateObject {{A}} |Class|Yes <A>.p2

= <<A>>.p3 "red" Assign 5+<A>.p5 <A>.p5

obj1

A

p1=34

> <|A|>.p1 8

DeleteObject obj1 A
60 Language Programmer’s Guide

Pattern Matching
The dual case is completely analogous. If a pattern matching list is created,
and then a subsequent condition links another object to the parent class or
object, it will not be included in the pattern matching list even if its slots
meet previously evaluated conditions.

Interpretations And Pattern Matching

Interpretations can be combined with pattern matching, providing you with
even more flexibility. Interpretations are always nested within a pattern
matching – never the other way around. At runtime, the inference engine
first evaluates the interpretation, and then it evaluates the pattern matching
condition:

Figure 1–71 Interpretations with Pattern Matching

Thus in the rule above, the inference engine evaluates the slot a.p. If it
evaluates to 3, then the inference engine does a normal pattern matching on
the object or class n3, testing each of the objects p2 slots to see if they are
larger than 1. Combining both interpretations and pattern matching allow
you to test the objects of any class or object, with the parent class or object
being generated at runtime.

Thus we see that pattern matching provides several very important
capabilities. It allows you to perform the following tasks.

■ Manipulate lists of objects rather than manipulating each of the objects
one by one.

■ Test lists against conditions to see which slots pass certain criteria and
to save those lists.

■ Dynamically manipulate sets of objects which aren’t known at runtime.

These are very important capabilities for dynamic objects. Since dynamic
objects aren’t known until runtime, they are never explicitly named in rules
or methods. Thus the only way a rule or method can access them is through
either a pattern matching or through an interpretation. In addition, as new
links are created and destroyed, the same rule will manipulate different sets
of objects by using pattern matching conditions. Generic rules created in
this manner are more flexible and much easier to maintain.

Refer to the Rules Element Reference Manual for a complete guide to
pattern matching syntax.

> <'n'\a.p\>.p2 1
Language Programmer’s Guide 61

Chapter Representation1
Pattern Matching With Data Validation

Pattern matching lists can also be used in the Data Validation meta-slot
attribute. You can use either universal or existential pattern matching in
order to match acceptable values against the list. Thus a data validation
function with pattern matching that uses the existential qualifier:

SELF.Value = <Class>.prop

requires the current object to match at least one of the object.property
slots. A data validation function with pattern matching that uses the
universal qualifier:

SELF.Value > {Class}.prop

requires the current object to exceed every object.property slot in the
set. The SELF variable is useful when the child of a parent slot that has a
data validation function defined inherits the parent’s function. Data
validation inheritance is automatic and is not under the control of the
application developer.

Pattern matching lists generated in the data validation attribute cannot be
reused to “reduce the list” through further pattern matching. In other
words, the pattern matching is considered local to the data validation
expression.

Pattern Matching With Methods & External Routines

Pattern matching lists can also be used in the conditions and actions of
methods. If pattern matching is not begun in a conditions list or no
conditions are present in the method, pattern matching on the actions side
is always performed on the entire list. In this case, there is no difference
between universal and existential qualifiers, since there is no testing of slot
values. Thus a method action using the existential qualifier:

Assign “trouble” <|valves|>.status

is identical to one using a universal qualifier:

Assign “trouble” {|valves|}.status

Only when pattern matching occurs in method conditions does the type of
qualifier matter. When a reduced list is passed to the actions side to be
processed, the list refered to by the pattern match in the action must have
the same number of sets of brackets as the corresponding condition pattern
match. Refer to the early discussion of pattern matching in rule conditions
for more information about existential and universal qualifiers. The use of
pattern matching in method conditions is analogous to rule conditions, with
the exception that method pattern matching does not produce
goal-generation.

Pattern matching lists may also be passed to external routines and methods.
Once again, existential and universal pattern matching delimiters perform
the exact same operation.
62 Language Programmer’s Guide

Knowledge Islands
Knowledge Islands
A knowledge island is a group of related rules. Rules within a Knowledge
Island share hypotheses or left-hand side data with hypotheses, left-hand
side data, or right-hand side data from other rules. This definition is
transitive, ie. if one rule is in the same knowledge island as a second rule
(according to the above definition) and that second rule is in the same
knowledge island as yet a third rule, then the first and third rules are also in
the same knowledge island.

Two rules which are in different knowledge islands have nothing in
common except possibly the same right-hand side data. You don’t state
explicitly which rules you want to be in which knowledge island; it is
determined implicitly by shared data and hypotheses.

The importance of knowledge islands has to do with the inference engine’s
focus of attention. Basically, the inference engine will focus on one
knowledge island at a time. Only after everything relevant in one
knowledge island is processed will the inference engine move to the next
one.

This capability allows you to modularize your knowledge, separating
appropriate chunks into different knowledge islands and processing them
accordingly. For more information on how the inference engine processes
knowledge islands, see the Contexts section in Chapter Two, “Inference
Engine Processing.”

Knowledge Bases
A knowledge base consists of everything we have defined here: objects,
classes, properties, rules, and knowledge islands. A knowledge base may
contain any number of the above mentioned concepts. This allows you one
more level of structure in your application. Just as one entity in your
domain is an object, one heuristic a rule, and a set of related objects and rules
a knowledge island, a set of related knowledge islands is stored in a
knowledge base.

Unlike knowledge islands, you specify explicitly what you want to be in
each knowledge base. Of course, at any time, any or all of the data
structures can be moved from one knowledge base to another, but this is an
explicit action you take rather than a function of how the objects and rules
relate to each other.

Knowledge bases can be loaded and unloaded from memory as the system
desires using the LoadKB and UnloadKB operators from the conditions and
actions of a rule or method. This modularity provides both a structure to
the knowledge allowing for easier creation and debugging, as well as
freeing memory as only the pertinent objects, classes, and rules are stored in
memory.

An application may have just one knowledge base or there may be many
that are processed at the same or different times.
Language Programmer’s Guide 63

Chapter Representation1
Summary
There are two main representational paradigms in the Rules Element:
objects and rules. The knowledge base designer describes the world in
terms of physical symbols called objects, generalizations of those objects
called classes, parts of the objects called subobjects, properties which
describe the objects and classes, and slots which are specific properties of
objects or classes. Objects and classes do not have values, it is the slots of
those objects and classes which have values and thus store information:

Figure 1–72 Transferring Information

Meta-slot attributes lend more flexibility to slots by providing customizable
options for the individual slot. Meta-slot attributes that you can define for
a slot include whether the slot value will be accessible by a method only
(private slot) or by rules and methods (public slot), a Prompt Line to query
the user for a value, Inference and Inheritance Priorities and Settings to
determine how the slot will be used when objects want to inherit from it or
rules need to reason on it, Data Validation to specify an acceptable range of
values or more complex constraint, and an Initial Value option to specify an
initialization value. Customization of meta-slot attributes is optional since
a default is provided by the system where appropriate.

Methods describe the behavior of slots or modify the default behavior of the
system. They can be either user-defined and explicitly executed from a rule
or method, or they can be executed by the system. The system methods,
called the Order of Sources and If Change, execute a script when they are
triggered . The Order of Sources method modifies how the system normally
gets a value for the slot, and the If Change method details what should
happen whenever the slot’s value changes. They are called system methods
because, unlike user-defined methods, they do not require the SendMessage
operator to be triggered.

The Rules Element supports several important object-oriented features.
Objects (and classes) can inherit properties and values from parents or
children, and they can inherit methods from parents. The Rules Element
supports multiple inheritance, which means an object or class can have
many parents and inherit from any or all of them. The Rules Element also
supports dynamic objects and dynamic links between objects and classes.
Together these object-oriented features allow the representational
environment to change as the world they describe changes.

Information
64 Language Programmer’s Guide

Summary
There are three main types of inheritance:

■ Inheritance of properties

■ Inheritance of values

■ Inheritance of methods.

Properties are inherited down (or up) the object hierarchy as soon as a
change in the hierarchy is made, whether that is a new object, new property,
or a new link. Thus if an object is added to a class and inheritance down is
enabled, any properties which the object doesn’t have are added
immediately. If inheritance up is enabled, then any properties the class
doesn’t have are added immediately.

If a property is added to a parent class or object, then it will also be
propagated up or down the object hierarchy, according to the current
strategy and the current links, whether they are dynamic or static. This
propagation stops when a particular child class or object already has the
new property. Deleting a slot or link never affects property inheritance, ie.
a property which was inherited is not taken away.

Value inheritance is only performed when a particular slot needs a value.
When different slots change values, this value is not inherited by child or
parent objects and classes. When a slot does need a value, it looks at who its
current parents (or children depending on the strategy) are, and tries to
inherit from them. Once again, if the links are destroyed, the object or class
will not lose the value it inherited. Its value will remain unchanged.
However, if the Rules Element needs its value in the future, it will not be
able to inherit from the object or class from which the link was destroyed.

Finally, method inheritance allows you to specify methods at the parent
level and have child objects or classes inherit them. All types of methods
can be inherited down the object hierarchy but are never inherited up.
Similar to the inheritance of values, they are only inherited when they are
needed. The SELF variable allows you to refer to whichever object inherits
the method. The inheritance of methods is very important for dynamic
objects since they cannot have their own methods.

Rules allow you to describe all of the knowledge in the domain, including
the application logic and procedural information:

Figure 1–73 Transferring Knowledge

Rules have three basic components, the left-hand side conditions, the
hypothesis, and optional right-hand side actions. For the rule to be TRUE,
all of the conditions must be TRUE. If one condition is FALSE, then the rule
is FALSE. If the conditions are all TRUE, the hypothesis, which is a boolean

Knowledge
Language Programmer’s Guide 65

Chapter Representation1
slot, is set to TRUE as well. One of two sets of actions can be executed
depending on the outcome of the conditions. Actions are always executed
in order from top to bottom.

Slots which are mentioned explicitly in the conditions or actions of rules and
methods are called data. The Rules Element rules and methods operate on
data, but they can also operate on slots which are not mentioned implicitly
by using interpretations or pattern matching. Interpretations and pattern
matching allow the inference engine to reason on whichever objects, classes,
and slots are appropriate at the given time.

Interpretations are string slot values which are interpreted to be either the
name of another object or class, or the name of some file, database, or
external routine. Pattern matching allows one to manipulate all the objects
which belong to a parent class or object, whether it is to process the whole
list or test the list against the conditions of a rule or method. The lists
generated in pattern matching conditions are local data structures which are
lost when the rule or method finishes executing. However, within the rule
or method these lists can be manipulated in any way.

The application logic which is encoded in the rules then operates on the
objects, classes, and slots. Methods lend more object-oriented support by
allowing behaviors to be grouped together with the object definition and
stored for a particular slot, object, or set of objects (classes). Methods offer
an alternative to using multiple rules to perform similar actions on the same
set of objects.

Figure 1–74 Rule and Object Relations
66 Language Programmer’s Guide

Chapter
2 Inference Engine
Processing 2

This chapter describes how the Intelligent Rules Element inference engine
processes the representational structures described in the previous chapter.
The manner in which the inference engine processes all of this information
is just as important and unique if not more so than the representation
capabilities. The inference engine processes events according to an agenda.
We will first describe the basic agenda mechanism, and then we will
describe how events are prioritized and finally processed.

Introduction
The Agenda is the mechanism by which events are scheduled to happen in
the Rules Element during application processing.

One difference between classic programming and agenda-based
programming is that in classic programming the stack is executed with a
first-in/first-out or last-in/first-out algorithm while agenda-based
programming allows you to dynamically modify a list of events by the
insertion of new events with varying priorities.

Agenda-based programming also incorporates the notions of conflict
resolution, which is a decision between different possible inference paths,
and nonmonotonic reasoning, which allows one to change previous
conclusions which have been reached.

The Agenda is a dynamic mechanism. It is the engine of the Rules Element
that provides the central transformation between the perception of events
and the actions the system will take. It is modelled after the notion of focus
of attention. At any time, the complexity of the real world can be reduced to
a limited set of parameters and possible decisions. In turn they will affect
the world, and perhaps the very next events or actions that were planned.
The Agenda accounts for the adaptability of the system to real world, real
time situations.
Language Programmer’s Guide 67

Chapter Inference Engine Processing2
The focus of attention is the intersection of the rule and object planes:

Figure 2–1 Focus of Attention

The agenda determines how these planes move in relationship to each
other, in other words where the focus of attention is.

One has to view the Rules Element inference engine as an agent applying
knowledge to events of any type. Indeed, inference engine reasons upon
objects and slot values, but those objects and values can come from anywhere.
They can be injected into the system from either Rules Element operators or
from outside calls. Except in special cases, we will assume that we are
working in this general framework of any object/any value.

The Rules Element is built to provide a comprehensive, powerful set of
heuristics for scheduling events. The number of actual agenda operators is
a concise set rather than a bewildering group, but it is the large number of
arrangements possible that provides the wide-spectrum applicability of the
environment.

Finally, the simplicity of its design and basic heuristics accounts for its
power, usability, and learnability.

We will approach the Agenda’s description by using a priority criteria. In
order words we will define the placement of events in the agenda by their
relative priority (or importance, level of granularity, and so forth). We
begin by describing events at the rule-level, then the object-level, and finally
an integration of the two.

Evaluation Concepts
The Rules Element agenda contains a prioritized list of hypotheses, not
rules. It is important to realize the inference engine tries to evaluate the state
of a hypothesis, not that of a particular rule. In its quest to find the value of
a hypothesis, one or many rules are often executed, but they are evaluated
in order to find the state of the hypothesis.

In order for the inference engine to reason, there must be at least one
hypothesis on the agenda. You can explicitly place a hypothesis on the
agenda by suggesting it, or it can be put on the agenda as a relevant goal by

rules

objects
68 Language Programmer’s Guide

Evaluation Concepts
one of the inference search mechanisms. If knowcess is triggered while there
is at least one hypothesis on the agenda, the inference engine will begin
evaluating each of the hypotheses on the agenda as well as any other
relevant events. The application processing session ends when all relevant
events have been completely processed.

Rule Evaluation

The evaluation of a rule is in fact the most basic event in application
processing. The hypothesis of a rule corresponds to its name, topic, goal, or
whichever interpretation can be given. Evaluating a rule in the Rules
Element always consists, in the end, of attempting to find the state of its
hypothesis.

When evaluating a rule, the default strategy is to evaluate the conditions
from top to bottom. However, this default strategy can be modified by
using the slot’s inference priorities. The condition which has the slot with
the highest inference priority is processed first, then the condition which has
the second highest inference priority, and so on. Let’s assume we have a
rule with the following conditions:

Figure 2–2 Rule Evaluation

By default, the inference engine will evaluate the first condition bearing on
the slot a.p1 first, then the second condition bearing on the slot b.p2, and
finally the third condition bearing on the slot c.p3.

However, if we modify the inference priority of b.p2 to 10 and c.p3 to 5
while leaving a.p1 at the default value of 1, then the second condition will
be evaluated first, then the third condition, and finally the first condition.

If a condition has several slots in it, then the highest inference priority of any
slot is used for the conflict resolution. If the first condition has a slot with
the default priority of 1, the second condition has two slots with priorities of
15 and 20, and the third condition has two slots with priorities of 1 and 25,
then the third condition is evaluated first since the slot with the highest
inference priority in it is 25, followed by the second condition since it has a
slot with priority 20, and finally the first condition since its highest priority
slot has a value of 1.

As explained in the Inference Priority part of the Meta-Slot section,
inference priorities can also be dynamic. This means we can attach an
inference atom to any slot. When the inference engine evaluates the rule, the
inference atom’s current value becomes the slot’s inference priority.

A hypothesis is a boolean slot. As such, it must take one of the four possible
values for a boolean slot: UNKNOWN, TRUE, FALSE, or NOTKNOWN. The value

a.p1

b.p2

c.p3

> 1

Is "red"

Yes
Language Programmer’s Guide 69

Chapter Inference Engine Processing2
of a hypothesis depends upon the value of the conditions in the rule leading
to it as shown in Table 2-A.

Table 2-1 Determining the State of a Hypothesis

The evaluation of a rule as FALSE based on the lack of evidence that all
conditions are TRUE corresponds to a mode of reasoning with a
closed-world assumption, an important characteristic of our reasoning
capabilities. The closed-world assumption means that not knowing can
generate actions or decisions.

Multiple Rules Evaluation

Several rules leading to the same hypothesis generate an or graph using the
logical states of the rules described above:

■ All rules must be FALSE for the hypothesis to be FALSE

■ At least one rule must be TRUE in order for the hypothesis to be TRUE

■ At least one rule must be NOTKNOWN and no rules TRUE for the
hypothesis to be NOTKNOWN

As stated above, the inference engine reasons according to the closed-world
assumption. This means that if the rules leading to a particular hypothesis
are evaluated as FALSE, then the inference engine will conclude that
hypothesis is FALSE as well and will use that determination in further
reasonings. Thus in the diagram in Figure 2-3 where both rules leading to
Hypo.h are FALSE, Hypo.h is concluded as being FALSE as well, and this
information is available for further use:

Figure 2–3 FALSE Rules

While the conditions within a particular rule are “ANDed” together (so that
all of them must be TRUE for the rule to be TRUE), multiple rules pointing to

State of Rule Conditions State of Hypothesis
not investigated UNKNOWN

all verified TRUE

at least one rejected FALSE

at least one condition not determined (and the others
verified)

NOTKNOWN

Hypo.h
70 Language Programmer’s Guide

Evaluation Concepts
the same hypothesis are connected by “ORs”. Thus if any number of rules
pointing to a particular hypothesis are evaluated as FALSE, but one is
evaluated as NOTKNOWN then the hypothesis will be NOTKNOWN:

Figure 2–4 FALSE and NOTKNOWN Rules

If a rule pointing to a particular hypothesis is evaluated as TRUE, then the
hypothesis will be evaluated as TRUE regardless of the values of the other
rules leading to the hypothesis in question:

Figure 2–5 FALSE, NOTKNOWN, and TRUE Rules

In summary, we see rules are considered to be

■ UNKNOWN until the inference engine tries to evaluate them (or when
they are reset)

■ TRUE if the inference engine evaluates the all conditions of a rule to
TRUE

■ FALSE if any condition is FALSE, and

■ NOTKNOWN if one of more conditions are NOTKNOWN and all of the others
are TRUE

Hypo.h

NotKnown

NotKnown

Hypo.h

NotKnown
TRUE

TRUE
Language Programmer’s Guide 71

Chapter Inference Engine Processing2
Hypotheses are:

■ UNKNOWN until the inference engine tries to evaluate them (or when
they are reset)

■ TRUE if any rule leading to a hypothesis is evaluated as TRUE

■ NOTKNOWN if no rules leading to a hypothesis are TRUE, but at least one
is NOTKNOWN, and

■ FALSE if all rules leading to a hypothesis are FALSE

However, the actions list is actually linked to the conditions and not to the
hypothesis. If several rules lead to the same hypothesis and some of the
rules are TRUE and some are FALSE, it is possible that each rule can still
execute a list of actions. For example, assume we have three rules leading
to a hypothesis, with one of them evaluated TRUE, another NOTKNOWN, and
the third FALSE:

Figure 2–6 Multiple Rules Leading to One Hypothesis

As Figure 2-6 shows, Hypo.h is set to TRUE since one of the rules leading to
it is set to TRUE. In this case “Then Do Actions1” are executed, but we also
see that “Else Do Actions3” are executed. Since the conditions list of the
second rule is NOTKNOWN, neither of the actions lists for this rule is
evaluated. To distinquish between the two separate sets of actions that each
rule may have, we refer to the actions list as true or false actions because
they depend on the evaluation outcome of the rule conditions.

Thus we see that the agenda consists of a prioritized list of hypotheses
rather than rules to evaluate. When the inference engine needs to find the
value of these hypotheses, it uses the rules leading to them. The actions are
linked to the conditions list and one list of actions may be executed whether
the outcome is TRUE or FALSE.

Exhaustive Evaluation

The fact that multiple rules leading to the same hypothesis generate an “or
graph” brings up an interesting question. If there are several rules leading
to the same hypothesis and the first rule is evaluated as TRUE, then we know
the hypothesis will be TRUE independent of the state of the other rules. The

Hypo.h

NotKnown
TRUE

TRUE
Then Do:
 Actions1

Else Do:
 Actions3

Then Do:
 Actions2

Else Do:
 Actions2

Else Do:
 Actions1

Then Do:
 Actions3
72 Language Programmer’s Guide

Evaluation Concepts
question is, should we still evaluate the other rules? This is a question of
exhaustivity and the correct answer depends on both the application in
question as well as the particular section of the application.

The default strategy is to exhaustively evaluate all the rules leading to a
hypothesis. Thus if the first rule is evaluated as TRUE, the inference engine
will continue to evaluate the other rules. This strategy can be changed
globally for an application by unchecking the Exhaustive evaluation
checkbox in the Rules Element’s Strategy dialog box:

Figure 2–7 Selecting Exhaustive Evaluation

In this case, as soon as the inference engine found a rule TRUE, it would stop
evaluating the other rules leading to this hypothesis.

Exhaustive evaluation can also be turned off locally using the Strategy
operator from the conditions and actions of rules or methods.

No matter what the strategy is, rules will continue to be evaluated until at
least one is found to be TRUE or all enabled rules leading to a hypothesis
have been evaluated.

Conflict Resolution

In the above example, one may want to impose an order on the rules to be
evaluated. This can be done by assigning a rule priority to each one. Similar
to inference and inheritance priorities, when the inference engine evaluates
a hypothesis with multiple rules leading to it, the rule with the highest rule
priority will be evaluated first. Also similar to inference and inheritance
priorities, rule priorities can be either static or dynamic. Both types of rule
priorities can be set in the rule editor:

Figure 2–8 Rule Conflict Resolution

If a rule has an Inference Priority Slot declared and its value is KNOWN, then
the value of this integral slot (hypo2.priority in the above example) will
be used in conflict resolution to determine when this rule is evaluated. If a
Priority Slot hasn’t been declared, then the value of the Priority Number will
be used (50 in the above example). Finally, if neither have been declared,
then the default value of 1 is used.

If several rules leading to the same hypothesis have the same inference
priority, regardless of whether it is determined by a static or dynamic
Language Programmer’s Guide 73

Chapter Inference Engine Processing2
priority, then the rule which contains the condition with the highest
inference priority on one of its slots will be evaluated first.

The order in which rules are evaluated can be important in many situations,
since each rule can trigger lots of other events and the order in which they
happen can be very important. In addition, if a non-exhaustive search is
being used, then evaluation will stop as soon as one rule leading to a
particular hypothesis has been verified. This means that many of the rules
may not even be evaluated, hence their actions will never be used.

Inference Search Disabling

There are also several special categories of rule priorities. Any rule which
has a priority:

■ Less than -20,000 will be disabled from all forward and backward
processes

■ -20,001 < priority < -10,000 will be disabled from forward processes but
will function normally with backward processes

■ -10,001 < priority < -5,000 will be disabled from the gate mechanism

■ -5,001 < priority < -1,000 will be disabled from rule and method actions

■ Priority > -1,001 is enabled for all forward and backward processes

The exact meaning of what these categories disable will be explained in the
appropriate section.

Method Evaluation

The evaluation of a method is an application processing event analogous to
rule evaluation. When a method is triggered, like a rule, the conditions and
actions of the method are evaluated and executed. Unlike rule evaluations,
however, the evaluation of methods does not involve a hypothesis. In fact
methods should be more closely identified with objects than rules because
they serve as a procedure or routine that acts on a specific object.

Figure 2–9 Method Attached to Object Upon which It Acts

Message Passing

Although methods act in general upon the object for which they are
specifically designed, they do have the capability to trigger other methods
from their actions list. This mechanism is an important features of
object-oriented systems. Conventional systems always take all the data

methodSendMessage

action1
action2
...

prop1 prop2 prop3
74 Language Programmer’s Guide

Evaluation Concepts
available and then select a particular subset of the data based on the desired
operators. A method, on the other hand, in general deals with the data
associated with the object to which it is attached (or through inheritance, the
parent object’s data). If a method needs other data to be processed, it sends
a message to another object. Methods associated with the other object
actually manipulate any data associated with the other object and
arguments can be passed back to the calling method or not. Data passed by
reference act as global variables since the original arguments can be
modified by the actions on the local argument in the target method. Data
passed by value has no effect on the original arguments.

Figure 2–10 Message Passing Between Methods

The process which triggers a method attached to an object is called message
passing. More specifically, message passing is the process by which the
message name is bound to a specific method. A message is made up of three
parts: 1) the name of the object or objects to receive the message (called the
list of addressees), 2) the name of the method to be triggered, and 3) an
optional arguments list. In the Rules Element the application developer has
the choice to initiate message passing from a rule or method through a
single SendMessage operator.

Execution

The SendMessage operator allows the application developer to specify
which methods to trigger and when. When the developer determines the
circumstances to trigger a method and execute its actions list, it is called a
user-defined method. Another category of methods differentiated by the
way they are triggered is the system methods. There are two system methods,
which as the name implies, are triggered by the inference engine under
special circumstances:

■ The order of sources method is triggered automatically when the value of
the slot is needed in the course of inference processing and was found
to be UNKNOWN.

■ The if change method is triggered automatically when the value of the
slot is changed in the course of processing.

arg1, arg2, ...

method1

method2

action1
action2
...
SendMessage

action1
action2
...

prop1 prop2 prop3
Language Programmer’s Guide 75

Chapter Inference Engine Processing2
User-defined methods are not limited to slots; however, they must be
explicitly triggered through a SendMessage operator that appears in a
condition or action of a rule or method. Whenever a method is triggered by
the SendMessage operator, the system executes the complete list of
actions. For details about the SendMessage operator see the Intelligent
Rules Element Reference Manual.

The list of conditions is optional for all methods. If no conditions are
present, the system automatically executes the “Then Do” actions list when
the method itself is triggered. If method conditions are present, the system
executes one of two different lists of consequent actions (“Then Do” and
“Else Do”) depending on whether the method is satisfied or not.

Figure 2–11 Conditional Methods

For the list of Then Do actions to be executed, all of the method’s conditions
must evaluate to TRUE. The conditions are thus implicitly linked by the
logical “and” operator. If you want to achieve the effect of a logical “or,”
you can use the OR boolean operator within one condition.

If present, conditions within a method are always evaluated sequentially, in
the order they appear in the method definition; unlike rule conditions this
evaluation order is not altered by the inference priorities of the data
involved.

Information Hiding

The idea that an object should be a self-contained unit that includes data and
methods to process that data, supports another object-oriented feature
called information hiding. If the application is developed with this approach
enforced, it guarantees that, if the developer needs to change the object
hierarchy (including the objects, slots, and properties), then the methods
that access that data can be easily located within the application. In contrast
to modifying data acted upon by rules, or in the case of conventional
systems by procedural code, the consequences are typically widespread and
less easy to locate.

To help enforce the purely object-oriented approach to triggering functions,
the developer may want to enable the slot’s meta-slot attribute for privacy.
Unlike public slots, the Rules Element will not allow private slots to be used
in rule conditions and actions. Any attempt to develop rules with private
slots will generate an error message when the rule is compiled. The system
allows only one means of accessing the data of a private slot: through a
method associated with the slot or its object components (object, class, or
property). This requirement helps the developer be sure that no part of their
application will modify the stored value other than the slot’s associated
method.

method action1
action2
...
action1
action2

SendMessage

condition1
condition2
...

IF:

THEN:

ELSE:
76 Language Programmer’s Guide

Inferencing Mechanisms
Inferencing Mechanisms
There are seven types of inference search mechanisms:

■ Backward chaining

■ Suggesting

■ Hypothesis forward

■ Semantic gates (or simply gates)

■ Forward action-effects (from rule or method action lists)

■ Volunteering

■ Context links.

Each of these search mechanisms helps the inference engine expand the
search for relevant conclusions without exhaustively evaluating all of the
rules in the knowledge base. Each of these search mechanisms will be
described according to their priority in the inference engine.

Backward

Backward chaining is the highest priority event in the inference engine. It
is based solely on the evaluation of the hypotheses. If a condition (or an
action with the Assign operator) bears on an UNKNOWN boolean slot which
is in fact a hypothesis, then the rules pointing to that hypothesis will be
evaluated immediately. Thus the evaluation of these rules has been inserted
in the agenda, and they will be evaluated before finishing the evaluation of
the conditions or actions which caused the backward chaining to occur.

If we have the rules depicted in Figure 2-12, and are currently evaluating the
rule leading to the hypothesis Hypo2.h, then when the inference engine
comes to the condition “Yes Hypo.h”, the inference engine will evaluate
the two rules leading to Hypo.h before it finishes evaluating the rules
leading to Hypo2.h:

Figure 2–12 Backward Chaining

The determination of the value of the condition is done according to the
principles described previously in the cases of one or more rules.

From the program execution standpoint, we have inserted the evaluation of
those rules in the evaluation stack of the first rule. The conditions following
“Yes Hypo.h” in the first rule are conditions which will be evaluated after
the evaluation of the two rules leading to Hypo.h.

Hypo.h

Hypo.h

Yes Hypo.h

Hypo2.h
Language Programmer’s Guide 77

Chapter Inference Engine Processing2
Slots which are both a data and a hypothesis are called subgoals. Hypotheses
which are not subgoals are called terminal hypotheses.

The next illustration shows a deeper structure. The darkest conditions and
hypotheses are executed before the lighter conditions and hypotheses:

Figure 2–13 Multiple Level Backward Chaining

The same principles described above apply recursively to the evaluation of
the hypothesis hypo.h. Namely, when the inference engine begins
evaluating hypo.h, it comes to another hypothesis in the conditions whose
value is needed to continue processing the rule leading to hypo.h. So the
inference engine backward chains on this hypothesis, which has two rules
leading to it. While evaluating the first of these rules, the inference engine
needs to backward chain again, inserting yet another hypothesis onto the
agenda. All the rules leading to this hypothesis are evaluated (the rules
with solid black hypotheses), then the inference engine finishes evaluating
the rules leading to the second hypothesis (middle color shading), and
finally the inference engine finishes evaluating the rule leading to hypo.h.

As mentioned earlier, there are many different ways to cause a backward
chaining event to occur. The conditions:

Yes slot
No slot
Assign slot slot

where slot is an UNKNOWN hypothesis will backward chain on any rules
pointing to slot (subject to the control mechanisms). The state of the first
two types of backward chaining conditions depend on the value of the
hypothesis in question, whereas the result of the last condition is TRUE
regardless of the final value of the slot since the inference engine will always
be successful at assigning the value of slot to slot.

Backward chaining can be initiated from any rule or method action using
the “Assign slot slot” syntax where slot is an UNKNOWN boolean
hypothesis. Similar to the conditions list behavior noted above, when the
inference engine evaluates an action of this kind, it will insert this backward
chaining event into the agenda, and it will be evaluated immediately. Any
rules leading to this hypothesis will be evaluated before any further actions
(or their consequences) are executed.

hypo.h
78 Language Programmer’s Guide

Inferencing Mechanisms
Suggest

Suggesting a hypothesis from the development interface puts it on the
agenda for immediate evaluation. When you suggest a hypothesis, you are
in essence telling the inference engine that the hypothesis is an important
goal, and, as such, it should be investigated as soon as possible.

Suggested hypotheses have priority over hypotheses generated by any
other inference search mechanism except backward chaining:

Figure 2–14 Agenda Priorities

Thus the inference engine will evaluate all relevant backward chainings,
and then, as soon as it has evaluated these, the suggested hypothesis with
highest priority will be evaluated.

Unlike all of the other search mechanisms (except Volunteering), suggesting
hypotheses is always an explicit action taken by the user. Thus the user is
giving the inference engine a relevant goal to investigate, whereas the other
inference search mechanisms generate relevant hypotheses based on the
current state of the inference engine.

Hypothesis Forward

The next highest priority after backward chaining and suggested
hypotheses are hypotheses put on the agenda due to hypothesis forward
events. Hypothesis forward is a consequence of investigating subgoals as
opposed to a terminal hypothesis. It consists of not only exploring the
backward chaining associated with the subgoal, but immediately thereafter
placing on the agenda the hypotheses of the rules in which the subgoal is
involved as a data. Thus, it is a forward propagation from the hypothesis:

Figure 2–15 Hypothesis Forward

Figure 2-15 illustrates such a series of events. The lighter the pattern, the
later the event takes place in the evaluation.

Highest Priority

Lowest Priority

Backward

Suggest

backward
chaining

Subgoal being investigated

Hypothesis Forward
Language Programmer’s Guide 79

Chapter Inference Engine Processing2
When it occurs, hypothesis forward has the next level of priority in the
agenda after backward chaining and suggested hypotheses. Thus the order
of evaluation of the events we have discussed so far is:

Figure 2–16 Agenda Priorities

An important difference, though, is the fact that backward chainings are
evaluated immediately (even before the current rule or action proceeds
another step), while suggested and hypothesis forward events are queued
and evaluated as soon as the current rule has been completely evaluated.

While the standard backward chaining is performed to establish the value
of the hypothesis, the fact that it is a subgoal is then exploited by the
inference engine. The inference engine follows backward structure in both
directions.

Hypothesis forward does not depend upon the value of the subgoal
originally placed on the agenda. Propagation is recursive until one or more
terminal hypotheses are reached.

Gates

Gates are structure-based inference mechanisms which account for the
opportunistic insertion of hypotheses on the agenda. It is a mechanism
designed to expand the search space in a selective, relevant fashion while
always reducing the exhaustivity of the search. Gates are the basic
mechanism for the automated goal generation and opportunistic reasoning.

The effect of gates is to place new hypotheses on the agenda. Gates are
generated during the evaluation of the conditions list of rules. They are
based on a structural analysis of rules which identifies whether any two
rules share a public slot in their conditions. Private slots cannot generate
gates because they cannot appear in rule conditions. Also, the gates
mechanism is completely disabled for method conditions; so that a slot that
is shared between a rule and a method or between two methods has no
effect on the agenda. Gates depend upon a pre-testing of rule conditions
that share the public slot.

When any new slot is evaluated in the conditions of a rule, the inference
engine checks to see if any other rules also have this slot in their conditions.
If any target rules have this slot in their conditions, the inference engine tests
the value of the particular conditions which include this value. If the
condition is TRUE, the associated hypothesis is put on the agenda. If the
condition is FALSE, then the hypothesis is not put on the agenda. Notice the
hypothesis will remain UNKNOWN rather than being evaluated to FALSE, an
important difference.

Highest Priority

Lowest Priority

Backward

Suggest

Hypothesis Forward
80 Language Programmer’s Guide

Inferencing Mechanisms
The following diagram shows two rules with a common slot:

Figure 2–17 Gates

Both rules contain the slot a.p1 in their conditions. Sharing a particular slot
or pattern matching is a necessary condition for the gate mechanism to
occur.

The two rules in the above example are independent (different hypotheses).
Suppose hypo1.h is suggested (the source rule) and its rule is evaluated. A
value will be given for the slot a.p1.

If a.p1 has a value of “75”, then the condition bearing on a.p1 in the top
rule is TRUE. The condition bearing on a.p1 in the second rule is FALSE.
Thus hypo2.h will not be put on the agenda (the hypothesis will remain
UNKNOWN).

If a.p1 has a value of “200”, then the condition bearing on a.p1 in the first
rule is TRUE and the condition bearing on a.p1 in the second rule (the target
rule) is TRUE as well. In this case, hypo2.h will be put on the agenda for
later evaluation. What happened was the “passage of a gate” due to the
value of the condition on the target rule.

It is important to note that the value of the target condition is only computed
for the purpose of knowing whether to put the associated hypothesis on the
agenda. In other words, by the time this hypothesis and its rules are
evaluated, the value of a.p1 might have changed. However, making the
assumption that the target hypothesis is relevant was a valid action at the
time the gate is generated.

Gates-generated hypotheses have the next highest priority level after
backward chaining, suggested, and hypothesis forward generated
hypotheses. Thus they will be processed as soon as all of these higher
priority events have been evaluated:

Figure 2–18 Agenda Priorities

Gates place hypotheses on the agenda whose evaluation can in turn
generate any other type of agenda events, such as backward chainings and
other gates. The notions described above are applicable in such cases.

a.p1> 50 a.p1> 100
hypo2.hhypo1.h

Highest Priority

Lowest Priority

Backward

Suggest

Hypothesis Forward

Gates
Language Programmer’s Guide 81

Chapter Inference Engine Processing2
As stated above, for a gate to occur, the condition which involves the
associated gate must evaluate to TRUE. If the condition in question has an
expression involving several slots, a gate will only occur if all the slots in the
expression are KNOWN, and, with their current values, the condition is TRUE.
The inference engine does not ever “force” a gate by evaluating an UNKNOWN
slot. Gates put currently relevant hypotheses on the agenda.

Assume we have a condition bearing on the slot a.p1 in the source rule, and
a condition bearing on both a.p1 and b.p2 in the target rule:

Figure 2–19 Gates with Expressions

If the value of b.p2 is UNKNOWN, then a gate will not occur regardless of the
value of a.p1. If the value of b.p2 is KNOWN, and using the values of both
a.p1 and b.p2 the condition is TRUE, then a gate will occur.

Forward Action-Effects

The actions lists of rules and methods can be triggered in two possible
situations, depending upon the evaluation outcome of its conditions list. If
the conditions list has been found TRUE, one set of actions is triggered; if the
conditions list has been found FALSE, a separate list of actions is triggered.
These actions are maintained in the rule or method as two separate lists and
are known as TRUE actions and FALSE actions to signify their relationship
with the evaluation of the conditions list.

Figure 2–20 TRUE and FALSE Actions Lists

The actions lists of rules and methods are a forward propagation
mechanism, similar to gates (except gates allow conditional forwarding).
The ultimate result in terms of the agenda is to place new hypotheses on the
agenda and schedule new events. In the case of a rule, the hypothesis
becomes TRUE and then the actions are triggered in order from top to
bottom. In the case of a method, no hypothesis exists, so the actions are
triggered immediately in order from top to bottom.

Actions which may alter the agenda are triggered by three different
operators:

■ Assign

■ Execute (if the routine affects slot values and/or suggests hypotheses
through the Rules Element Application Programming Interface or
Rules Element Execute Library)

a.p1

Source rule Target Rule

a.p1 + b.p2

TRUE
Then Do:
 Actions1

Else Do:
 Actions3

Else Do:
 Actions1

Then Do:
 Actions3
82 Language Programmer’s Guide

Inferencing Mechanisms
■ Retrieve which consists of multiple volunteers from a database.

None of these actions, when performed on a private slot within a method,
may alter the agenda. Private slots cannot propagate data because they
must appear exclusively in the method associated with the private slot.

Figure 2-21 shows the basic mechanism underlying the action-based effects
on the agenda using rules (methods could be substituted). An initial rule
with the black hypothesis is triggered and verified.

Figure 2–21 Forward-Action Effects between Two Rules

As Figure 2-21 shows at least one of the actions that appears on the
right-hand side of a rule modifies the slot of an object which happens to be
involved in the conditions list of another rule pointing to Hypo2.h. The
latter hypothesis will be placed on the agenda. In the case of a method, the
action must still involve the conditions of a rule (not another method), since
the forward propagation mechanism only places hypotheses on the agenda
for evaluation.

There is an important difference between forward action-effects and gates.
Gates pre-evaluate the target condition, and only place the hypothesis on
the agenda if the condition is TRUE. Forward action-effects, on the other
hand, are non-selective. This means they place on the agenda any
hypothesis whose conditions have a slot that has been affected by the
actions list. Thus it may queue hypotheses even though the condition
involving the modified slot might be FALSE. This is an important
distinction.

The results of the actions list are evaluated regardless of whether these
actions lead to concluding rules and hypotheses that are TRUE or FALSE.
There is symmetry between TRUE and FALSE: if a hypothesis is FALSE, the
inference engine uses that information to further explore rules and methods.

Gates are a structure-based mechanism which expands the breadth of the
search based on rules with similar conditions. Thus it is only appropriate to
investigate hypotheses which have conditions which are similar to the ones
currently being evaluated. Hence the distinction between TRUE and FALSE
conditions with gates.

Like gates, hypotheses generated as goals due to forward action-effects will
be evaluated only after all necessary backward chainings, suggested, and
hypothesis forward events have been performed. Action-generated

Assign
Execute
Retrieve

Hypo2.h
Language Programmer’s Guide 83

Chapter Inference Engine Processing2
hypotheses are in competition with the gate-generated hypotheses by
means of the priorities.

Figure 2–22 Agenda Priority

Gates and Action-Effects are Forward Propagation Mechanisms.

Volunteer

Volunteering from the development interface sets certain slots in the
inference engine to particular values. Thus the effect it has on the inference
engine agenda is very similar to what happens with actions. Any
hypotheses which use this value in one or more of the conditions of its rules
will be queued on the agenda. Furthermore, these hypotheses will be in
competition with those generated by the gates and forward action-effects.

There are three differences between slots which are volunteered and slots
which are set by actions:

■ Similar to Suggesting hypotheses, Volunteering values is an explicit
action by the user. The user is in essence saying that he knows a
particular piece of information and the inference engine should use this
information to evaluate all relevant hypotheses.

■ There is no strategy setting to disable forwarding. Thus hypotheses
which use the volunteered slot will be queued no matter what the
current global strategy settings are. This topic will be fully explained in
the Controlling Inference Strategies section.

■ If the slot is used in pattern matchings in the conditions lists of some
hypotheses, the associated hypotheses will be queued for evaluation.
This is a different behavior than the other agenda mechanisms. Thus if
we have a situation like:

Figure 2–23 Volunteering to a Pattern Matching

and we volunteer the value of the slot a.p, the rule on the left which
contains a pattern matching involving a parent class of a.p will be

Highest Priority

Lowest Priority

Backward

Suggest

Hypothesis Forward

Gates & Action-Effects

Class

a.p

<class>.p
84 Language Programmer’s Guide

Inferencing Mechanisms
queued for evaluation. This topic will be fully dealt with in the Pattern
Matching section.

Contexts

Contexts are “weak” forward links. They are the lowest level event on the
agenda and are investigated only after all the hypotheses generated by the
other inference search mechanisms have been completely evaluated:

Figure 2–24 Agenda Priorities

Remember that a knowledge island is a group of rules and objects whose set
of conditions and hypotheses intersect each others set of conditions,
hypotheses, and actions. But now that we have investigated most of the
agenda events, we can draw another definition of a knowledge island.
Namely, a group of rules and objects which are linked at runtime by any of
the following events: backward chaining, hypothesis forward, gates, or
actions. Rules within one particular knowledge island are said to be
strongly linked.

Since there is no way to propagate control from one knowledge island to
another using backward chaining, hypothesis forward, gates, or actions,
another mechanism was devised to propagate control between knowledge
islands. This is called the context link. Context links are also called weak
links.

Context links connect one knowledge island to another knowledge island.
They are not defined at runtime as are the strong links, but in the knowledge
base architecture. They link two or more hypotheses together. It is important
to realize that in order for the context link to work properly, the two
knowledge islands connected by the link must indeed be separate. If any
data is shared between the rules of the two knowledge islands, forward
chaining may take place before the context link.

Contexts are a unidirectional forward propagation mechanism. There is no
backward chaining along context links.

Highest Priority

Lowest Priority

Backward

Suggest

Hypothesis Forward

Gates, Action-Effects, Volunteer

Contexts
Language Programmer’s Guide 85

Chapter Inference Engine Processing2
Figure 2-25 shows two hypotheses linked by a context link.

Figure 2–25 Context Link

The arrow indicates the flow of reasoning. After evaluating the rule
pointing to hypo1.h, the inference engine “jumps” to hypo2.h and
evaluates its rule. In the absence of any other relationship between these
hypotheses’ rules (backward chaining, hypothesis forward, gates, or
actions), this is the only way the context linked hypothesis could be placed
on the agenda.

It is important to remember that all of the possible backward chaining,
hypothesis forward, gates, and actions are performed before any context
links. Thus the inference engine evaluates all of the pertinent hypotheses
within a knowledge island before jumping to the next knowledge island.
This behavior reflects the notion of focus of attention. The inference engine
will focus on the current knowledge island and investigate everything
pertinent before moving on rather than haphazardly jumping all over the
place investigating one hypothesis from one island then another from a
different island.

Figure 2-26 shows an example knowledge island structure where all the
possible events have been laid out.

Figure 2–26 Knowledge Islands

The black hypothesis is supported by a single rule. Other rules are linked
to this one by means of various events. However, this set is independent
from the set of rules linked to the gray hypothesis. Both sets constitute

hypo1.h hypo2.h

gate

backward

action-effect

gate

hypothesis

CONTEXT

forward

Knowledge Island 1

Knowledge Island 2

action-effect

action-effect
86 Language Programmer’s Guide

Inferencing Mechanisms
knowledge islands. They can be linked by a weak link: the context. Before
the context link takes place, all of the other lower level events must be
explored.

A hypothesis can be in the context of any number of other hypotheses, and
it can have any number of hypotheses in the context of itself.

Two hypotheses within the same knowledge island can also be put in
context with each other. A hypothesis can even be put in context with itself.
Since the context is the lowest priority event, the meaning of this
construction is to investigate the target hypothesis when everything else
which is pertinent in the knowledge island has already been investigated.
One very important use of this is with the Reset operator to implement
nonmonotonic behavior. See the Non-Monotonicity section for more
information.

Interpretations

Interpretations are slot values which are interpreted to the name of an
object, class, or property in a condition or action. Interpretations are only
performed when the condition or action is evaluated.

The slot which is evaluated and whose value is the name of another object,
class, or property is called the interpreted slot. The new slot, which is formed
by the value of the interpreted slot, along with either an object or class name
or a property name, is called the resolved slot. Consider the rule displayed in
Figure 2-27 and assume the slot a.p has a value of “hypo”:

Figure 2–27 . Interpretation in a Condition

a.p is the interpreted slot while hypo.h is the resolved slot. There are two
important concepts to remember when considering how interpretations
affect the inference process:

■ The interpretation is resolved first and then the condition or action
works on the resolved slot. All forward and backward mechanisms
work exactly as explained in the appropriate section on the resolved
slot. There is never any forwarding from the interpreted slot.

■ There will never be any forwarding to an interpretation. This is because
the condition really bears on the resolved slot which is undetermined
until the condition is evaluated, and not on the interpreted slot itself.

With Backward Chaining

Interpretations can be used in the conditions or actions of rules or methods
to backward chain from any hypothesis. When the appropriate condition or
action is evaluated, the interpretation is evaluated first and then the
condition or action is processed exactly as it would be if an interpretation

Yes \a.p\.h

Hypo.h
Language Programmer’s Guide 87

Chapter Inference Engine Processing2
wasn’t involved. Let’s assume we have an interpretation in the conditions
list of the rule shown in Figure 2-28,

Figure 2–28 Interpretations with Backward Chaining

and we also have the following set of rules:

Figure 2–29 Interpretations with Backward Chaining

When evaluating the rule leading to the hypothesis hypo.h, the inference
engine comes to the interpretation: ’hypo’\a.p\.h. It evaluates the
value of the slot a.p. Let’s say it evaluates to the integer 2. The condition
in the original rule becomes “Yes hypo2.h” after the interpretation is
evaluated. To test this condition, the inference engine backward chains on
the hypothesis hypo2.h. After evaluating hypo2.h, the inference engine
finishes processing the rule leading to hypo.h.

Interpretations can also be used in the actions list of rules and methods. This
follows the same syntax outlined above and is similar to the situation
without interpretations. In other words, the interpretation is resolved first,
and if the action then bears on a hypothesis, then the appropriate rules will
be evaluated immediately.

The ability to have backward chaining based on interpretations allows a
great deal of flexibility to the knowledge-based system. The inference
engine can decide at runtime which hypotheses to backward chain on based
upon the current situation, various external events, or where it is in the
inference processing process.

With Suggest

Interpretations cannot be used with the Suggest command. The Suggest
command requires an explicit hypothesis to suggest.

Yes 'hypo'\a.p\.h

hypo.h

hypo2.h
88 Language Programmer’s Guide

Inferencing Mechanisms
With Hypothesis Forward

Interpretations also cannot be used with the hypothesis forward inference
search strategy. This is because:

■ The source hypothesis cannot be an interpretation since the hypothesis
of a rule is always an explicit slot.

■ There will never be any forwarding to an interpretation. Thus an
interpretation cannot be the target of the hypothesis forward inference
search mechanism.

With Gates

Interpretations with gates work in the standard manner outlined above.
Recall that a gate occurs when The inference engine evaluates a slot in a rule
condition, that slot is also in another rule condition, and the target condition
is TRUE given the evaluated slot’s value. There are two places where the
interpretation could occur:

■ The interpretation is in the source rule’s conditions list, and the target
rule has a regular, compiled slot. Then, there will be a gate on the
resolved slot but not the interpreted slot (assuming a TRUE evaluation
of the target condition).

■ The interpretation is in the target rule’s conditions while the source is
either another interpretation or a regular, compiled slot. A gate will
never occur in this situation.

In the following diagram, a gate will take place if the value of a.p1 is “c”
(and, of course, the rule condition involving c.p2 is TRUE):

Figure 2–30 Gates with Interpretations

The gate occurs here, because the inference engine interprets the value of
a.p1, and then it treats the expression as if it had the value of c.p2 without
considering the special fact that an interpretation was used in the condition.
Basically an interpretation is evaluated, and then the expression is treated
the same as any other expression.

\a.p1\.p2

c.p2
Language Programmer’s Guide 89

Chapter Inference Engine Processing2
With Action-Effects

The actions lists of rules and methods can contain interpretations. The same
principles we have seen previously will apply once the interpretation has
been resolved. Namely:

■ If the source rule or method has an interpretation in its actions list, the
interpretation is resolved, and then it is treated as any other action. It
will forward to the resolved slot but it will not forward to the slot
named in the interpretation:

Figure 2–31 Forward Action-Effects on Interpreted Slots

As Figure 2-31 shows, if the value of the slot a.p is “b”, then the
inference engine will put the hypothesis which has a condition on b.p2
on the agenda. If the value of the slot a.p is not “b”, then the
hypothesis which has a condition on b.p2 will NOT be put on the
agenda. The second target rule, which has a condition on the
interpreted slot a.p will NEVER be put on the agenda no matter what
the value of the interpretation is.

■ If the source rule has an action bearing on any slot, then the inference
engine will not forward chain to another rule which contains either the
same slot in an interpretation, or an interpretation which evaluates to
the same slot.

With Contexts

Context links are created by explicitly declaring a source hypothesis and
any relevant target hypotheses. Since these must be explicitly listed in the
context editor, interpretations are never used in conjunction with this
forward inference search mechanism.

Source rule

Target Rules

a.p

\a.p\.p2 b.p2
90 Language Programmer’s Guide

Inferencing Mechanisms
Pattern Matching

There are three general cases which involve pattern matching and the
inference process:

■ The source condition or action has a pattern matching but the target
condition does not have a pattern matching. In this case, the inference
engine treats the pattern matching as if the condition or action acted on
each slot which is a member of the pattern matching. Any of the
inference search mechanisms which would be triggered by explicitly
listing one of the members of the pattern matching would be triggered
in this case as well.

■ The source condition or action has a pattern matching and the target
condition has a pattern matching. In this case, the inference engine will
forward only to conditions which have the exact same pattern
matching.

■ The source condition or action has a regular compiled slot while the
target condition has a pattern matching. Forward chaining will only
occur in this case if the source slot has been volunteered.

Because private slots are ignored by pattern match conditions they have no
affect on inferencing, therefore, the following pattern matching discussions
apply only to public slots.

With Backward Chaining

The hypothesis of a rule can be a boolean slot of any object or class. There
are no restrictions on this object as far as the object hierarchy is concerned
just because it has a boolean slot which is a hypothesis. Thus the object can
have subobjects, any other slots, and any number of parent classes or
objects.

The ability to have parent classes (the case with parent objects is almost
completely analogous) of objects with hypothesis slots allows one to group
similar hypotheses within the same class. These hypotheses will then have
all the benefits of the class structure, including both inheritance and the
ability to use pattern matching with them.

For example, there could be a rule like:

Figure 2–32 Pattern Matching and Backward Chaining

Yes <a_class>.p
Language Programmer’s Guide 91

Chapter Inference Engine Processing2
Furthermore, the class a_class contains two objects, a and b. The p slots
of these two objects are, in fact, hypotheses of other rules:

Figure 2–33 Pattern Matching and Backward Chaining

When the inference engine processes the first rule containing the pattern
matching on the class a_class, it will look for the values of all of the object
slots of that class. To find those values, the inference engine will backward
chain on the appropriate hypotheses, inserting these rules on the agenda for
evaluation before it finishes processing the original rule.

Of course there could be many rules leading to these hypotheses, and if the
current strategy is exhaustive evaluation, many rules could be evaluated
before the original rule is finished being evaluated.

Pattern matchings from any rule or method action can trigger multiple rule
backward chaining as well. For example, the action “Assign
<a_class>.prop <a_class>.prop” would trigger the exact same
backward chaining illustrated above. It is important to remember that
backward chaining is a way of determining the value of a boolean slot. Thus
if the slot already has a value instead of being UNKNOWN, the inference
engine will not backward chain on it. Similar to how pattern matchings
work everywhere else, interpretations can be embedded inside pattern
matchings. Thus we could have a rule like:

Figure 2–34 Interpretations with Pattern Matching

a_clas

a.p b .p

a.p b .p

Yes
92 Language Programmer’s Guide

Inferencing Mechanisms
The inference engine will evaluate the interpretation \a.p\ first. If the
value of the slot a.p is a class (or object) whose child objects have a boolean
slot p which is a hypothesis, then the rules leading to these hypotheses
would be evaluated as described above for the case with regular conditions
and actions. The objects in the parent class (or object) can be either dynamic
objects or compiled objects, thus giving you a lot of flexibility over which
rules are queued for evaluation when.

With Hypothesis Forward

Since the source of the hypothesis forward search mechanism is a
hypothesis, and there can NEVER be a pattern matching as the hypothesis
of a rule, this search mechanism will never have a pattern as its source.

The only time the inference engine forwards to a pattern matching is when
the source pattern is exactly the same as the target pattern (volunteering is
an exception). Since this inference search mechanism cannot have a pattern
matching as its source, it will not forward to any pattern matchings.

With Gates

When the inference engine encounters a pattern in rule conditions (gates are
not allowed from methods), it does two things each time it evaluates one
particular slot in the pattern matching:

■ It tries to gate to any other rule condition which has the slot which was
just evaluated.

■ It tries to gate to any other rule condition which contains the exact same
pattern.

Both of these require a pre-evaluation of the rule’s conditions list and the
associated hypothesis will only be put on the agenda if the conditions are all
evaluated TRUE. Figure 2-35 shows the first case, where we have a pattern
matching in the source rule and explicit slots in the target rules; a gate will
occur on each slot as soon as the slot is evaluated (assuming, once again, that
the rule’s condition is evaluated to TRUE):

Figure 2–35 Gate on Pattern Matching Condition and Explicit Slots

When the inference engine evaluates the slot a.p in the pattern matching
condition leading to the hypothesis hypo.h (see Figure 2-35), it
immediately checks to see if a gate can occur, so that the condition involving
a.p in the rule leading to hypo2.h is TRUE. If so, hypo2.h is put on the
agenda.

a.p

<class1>.

Source rule

Target Rule

Class1

a.p

hypo2.h

hypo.h
Language Programmer’s Guide 93

Chapter Inference Engine Processing2
As Figure 2-36 shows, the second situation occurs when there are pattern
matching conditions in both the source rule and the target rule. In this case,
if the pattern matching is on the exact same parent class or object, then a gate
will occur:

Figure 2–36 Gate Occurs on Same Patterns

However, the target condition must have the exact same pattern matching
in its conditions list. As Figure 2-37 shows, a gate will not occur between
two conditions with different patterns, even if the two patterns share some
child objects:

Figure 2–37 No Gate Occurs on Dissimilar Patterns

The target rule must have an explicit reference to one or more slots which
are referenced in the source rule or have the exact same pattern matching for
a gate to occur.

<class1>.p

Source rule

Target Rule

<class1>.p

<class1>.p

Source rule

Target Rule

Class1

b
<class2>.p

Class2

a c
94 Language Programmer’s Guide

Inferencing Mechanisms
With Action-Effects

The principles to apply to forward action-effects are the same as those
described for the gates. When the inference engine encounters a pattern in
the actions list of rules or methods, it does two things each time it evaluates
one particular slot in the pattern matching:

■ It tries to forward to any other rule condition which has the slot which
was just set.

■ It tries to forward to any other rule condition which contains the exact
same pattern.

Remember that actions lists of rules or methods will put hypotheses on the
agenda without pre-evaluating the target rule conditions.

In the first case, the actions list of the source rule or method that contains a
pattern matching is applied to a list of explicit slots defined in the left-hand
side conditions of the rule. Such an action is equivalent to a set of individual
actions bearing on each slot affected. Figure 2-38 shows four objects which
are members of the class a_class:

Figure 2–38 Class/Object Structure

b

a_class

a c d
Language Programmer’s Guide 95

Chapter Inference Engine Processing2
Figure 2-39 shows a rule structure in which propagation will occur to all
four hypotheses whose conditions involve the slots of a_class:

Figure 2–39 Propagating Forward Actions from Class Patterns

In Figure 2-39, hypo2.h, hypo3.h, hypo4.h, and hypo5.h will all be put
on the agenda for evaluation as the system evaluates each object in the
pattern <a_class>.

Figure 2-40 shows that the action of the source rule is propagated to a rule
condition where a pattern matching exists on the same class. This is called
class-selectivity.

Figure 2–40 Forward Action-Effects and Class-Selectivity in Patterns

<a_class>.p

a.p

b.p

c.p

d.p

hypo2.h

hypo3.h

hypo4.h

hypo5.h

hypo.h

<a_class>.p

<a_class>.p

hypo.h

hypo2.h
96 Language Programmer’s Guide

Inferencing Mechanisms
However, as Figure 2-41 shows, if the exact same class names are not used
in the source action and target condition, then no propagation will take
place even if their sets of objects intersect. Notice also that the properties
must be the same for propagation to occur.

Figure 2–41 No Forward Action-Effects Between Dissimilar Class Patterns

With Volunteer

Volunteering is very similar to a forward actions-effect as it gives a slot a
particular value. Similar to forward action effects, if you volunteer a slot,
any hypotheses which contain this slot in their conditions list will be put on
the agenda for future evaluation.

However, volunteering with pattern matching displays two behaviors
which are quite different from those displayed with actions:

■ You must volunteer an explicit slot to a specific value – you cannot
volunteer a pattern matching (whereas forward action-effects can set a
number of values using a pattern).

■ If you volunteer a slot, then any condition which has a pattern matching
containing that slot will be put on the agenda. This is the only case
where an explicit slot can forward to a condition with a pattern
matching.

Thus, if you have the rule and object structure pictured in Figure 2-42, and
you volunteer the value of the slot a.p, then hypo.h will be put on the
agenda:

<class>.p1

Source rule Target Rule

<class2>.p1

obj2

Class1

obj1 obj3 obj4

Class2

No propagation
Language Programmer’s Guide 97

Chapter Inference Engine Processing2
Figure 2–42 Forwarding to a Pattern Matching Using Volunteer

Similar to forward action effects, volunteering does not require a
pre-evaluation of the target rule’s conditions.

With Context Links

The case for pattern matching is much the same as for interpretations. Since
both the source hypothesis and all of the target hypotheses must be
explicitly declared, pattern matching cannot be used in conjunction with
context links.

Conflict Resolution

There are usually many relevant hypotheses on the agenda at any one time.
Whenever the inference engine finishes evaluating one hypothesis, it needs
to determine which hypothesis to evaluate next. This process is called
conflict resolution.

As previously described, there are five basic categories of hypotheses to be
evaluated:

Figure 2–43 Agenda Priorities

Hypotheses within any higher priority category are evaluated before
hypotheses within a lower priority category. Within any particular
category, the hypotheses inference priority is the determining factor. Thus
if three hypotheses have been put on the agenda due to a Volunteer, a gate,

<class>.p

Class

atarget rule

hypo.h

Highest Priority

Lowest Priority

Backward

Suggest

Hypothesis Forward

Gates, Action-Effects, Volunteer

Contexts
98 Language Programmer’s Guide

Inferencing Mechanisms
and an forward action-effect, the hypothesis with the highest inference
priority will be evaluated first, then the hypothesis with the second highest
priority, and finally the hypothesis with the lowest priority.

All hypotheses which are relevant for a backward chaining are evaluated
immediately. If during the course of evaluation of one hypothesis another
backward chaining becomes relevant, then the inference engine suspends
processing of the original hypothesis to evaluate the new hypothesis. Once
the new hypothesis has been evaluated, the inference engine continues
processing the old hypothesis. Thus the inference engine exhibits a LIFO
queue with respect to several concurrent backward chaining events.

When the inference engine finishes evaluating the current hypothesis, it
looks for hypotheses from the list shown in Figure 2-44 and evaluates them
in the order shown.

Figure 2–44 Conflict Resolution

c.p

c.p

Gate

h8

Hypothesis Forward

h2

h2

d.p

Forward Action-Effects

d.p

h10

Context Link

d.p

h2

Volunteer Slot Value

Suggested Hypotheses
Complete First

Complete Second

Complete Third

Complete Fourth
Language Programmer’s Guide 99

Chapter Inference Engine Processing2
For example, assume the inference engine is evaluating the following rule
(the hypothesis inference priority is listed in parentheses after the
hypothesis' name):

Figure 2–45 Sample Rule

When the inference engine begins evaluating this rule, there is nothing else
waiting on the agenda. However, while evaluating the conditions list, the
slot a.prop produces two gates and the slot b.prop produces one gate (the
current hypothesis is black):

Figure 2–46 Gates Generated Hypotheses

The inference engine finishes evaluating the rule leading to h1. After
finishing evaluating the hypothesis, the inference engine begins evaluating
the hypothesis with the highest inference priority from the highest category.
There are three relevant hypotheses, h2, h7, and h8. Since all of them are
part of the Gates, Actions, Volunteer category, the inference priorities

b.p

a.p
h1 (20)

a.p

a.p

b.p

b.p

a.p

d.p
e.p

h7 (10)

h8 (5)

h2 (20)

h1 (20)

Gates
100 Language Programmer’s Guide

Inferencing Mechanisms
determine the order. Thus h2 is evaluated next (h1 is grayed out since it has
been completely evaluated):

Figure 2–47 Gates Generated Hypotheses

However, while evaluating the rule leading to h2, the inference engine
encounters a condition on h3. h3 is actually a hypothesis of another rule, so
the inference engine will immediately evaluate this rule:

Figure 2–48 Backward Generated Hypotheses

a.p

a.p

b.p

b.p

a.p

d.p
e.p

h7 (10)

h8 (5)

h2 (20)

h3

h1 (20)

Gates

a.p

a.p

b .p

b .p

a.p

d.p
e.p

Gates

backwardh3 (1)

h7 (10)

h8 (5)

h2 (20)

h3

h1 (20)
Language Programmer’s Guide 101

Chapter Inference Engine Processing2
While the inference engine evaluates h3, another gate makes the hypothesis
h5 relevant. h5 is put on the agenda in competition with the other gate,
action, and volunteer generated hypotheses (h7 and h8). the inference
engine finishes evaluating h3 then it returns to h2 and finishes evaluating
this rule:

Figure 2–49 Another Gates Generated Hypothesis

After evaluating the conditions list of h2 in Figure 2-50, h4 becomes
relevant because it has h2 in its conditions. The inference engine continues
to evaluate the rule leading to h2. Forward action-effects cause two other
hypotheses to become relevant due to the actions modifying data in the
target rule’s conditions. These two hypotheses, h6 and h9 are put on the

c.p

Gate

h5 (50)

a.p

a.p

b .p

b .p

a.p

Gates

backward
h3 (1)

h7 (10)

h8 (5)

h2 (20)

h3

h1 (20)

d.p
e.p
102 Language Programmer’s Guide

Inferencing Mechanisms
agenda in competition with the other gates, action, and volunteer generated
hypotheses:

Figure 2–50 Action and Hypo Forward Generated Hypotheses

When h2 and h3 are finished, there is nothing left in the current evaluation
queue, so the inference engine once again chooses the highest priority
hypothesis from the highest category of event. Currently we have:

Table 2–2 Current Hypotheses on the Agenda

Thus the inference engine evaluates the rule leading to h4 since it is in the
highest category. This hypothesis generates no further relevant hypotheses,

Suggest
Hypothesis
Forward

Gate, Action, and Vol-
unteer Context

none h4 (1) h5 (50) none

h6 (30)

h7 (10)

h8 (5)

h9 (1)

(current)

a.p

a.p

b.p

b.p

c.p

c.p

a.p

d.p
e.p

d.p

e.p

Gates

Action-
Effects

Hypothesis forward

backward

Gate

h3 (1)

h5 (50)

h7 (10)

h8 (5)

h4 (1)

h6 (30)

h9 (1)

h2 (20)
h3

h2

h1 (20)
Language Programmer’s Guide 103

Chapter Inference Engine Processing2
so the inference engine now chooses the hypothesis with the highest
inference priority from the Gate, Action, and Volunteer category:

Figure 2–51 Refocusing on the Highest Priority Hypothesis

After evaluating h5, the inference engine focuses on h6, h7, and then h8
since h6 has the highest inference priority and h8 has the lowest inference
priority. However, h8 generates a new type of event, namely a context:

Figure 2–52 Context Generated Hypothesis

(current)

a.p

a.p

b.p

b.p

c.p

c.p

a.p

d.p
e.p

d.p

e.p

Gates

Action-
Effects

Hypothesis forward

backward

Gate

h3 (1)

h5 (50)
h7 (10)

h8 (5)

h4 (1)

h6 (30)

h9 (1)

h2 (20)
h3

h2

h1 (20)

(current)

a.p

a.p

b.p

b.p

c.p

c.p

a.p

d.p
e.p

d.p

e.p

Gates

Action-
Effects

Hypothesis forward

backward

Gate

h3 (1)

h5 (50)

h7 (10)

h8 (5)

h4 (1)

h6 (30)

h9 (1)

h2 (20)
h3

h2

h1 (20)

h10 (15)
104 Language Programmer’s Guide

Inferencing Mechanisms
The inference engine finishes evaluating the rule leading to h8. Then it
evaluates h9 since action generated hypotheses have priority over context
generated hypotheses. Finally, the inference engine evaluates h10, after
which the session is over since there are no more hypotheses on the agenda.

In summary, the inference engine evaluates any possible backward
chainings immediately. When the inference engine has finished any
relevant backward chainings, it focuses on the hypothesis with the highest
inference priority from the highest category. While evaluating this
hypothesis, many more hypotheses may become relevant. If so, then they
are in competition according to how they were generated with any other
hypotheses generated in a similar manner.

Summary

This concludes our discussion of the Rules Element agenda. We have seen
that the agenda differs from classical FIFO or LIFO programming due to the
insertion of events in queues with different priorities rather than just
evaluating things based on when they became relevant. The
non-exhaustive nature of the Rules Element inference engine gives it
tremendous advantages over exhaustive paradigms which require absolute
knowledge about everything and are thus very information intensive.

We have now described the basic events in the agenda. The agenda keeps
several prioritized lists of hypotheses. As new hypotheses become relevant
they are inserted in the appropriate queue according to why they are
relevant, and they are put in the appropriate place in the queue according
to their inference priority.

We see that the queues on the agenda are evaluated in the following order:

■ Backward chaining is evaluated immediately

■ Suggested hypotheses are queued with the highest priority

■ Hypothesis forward have the next highest priority

■ Gates and actions compete for priority after the above events

■ Context links are the lowest priority event on the agenda.
Language Programmer’s Guide 105

Chapter Inference Engine Processing2
This structure is also reflected in the Agenda Monitor window:

Figure 2–53 Agenda Monitor

The inference engine processes everything in the Current Evaluation first.
The Current Evaluation contains a LIFO list: if the inference engine is
evaluating one rule, and then it needs to evaluate a backward chaining, the
backward chaining is inserted at the top of the Current Evaluation and it is
evaluated. When the inference engine finishes evaluating this new event, it
processes the rest of the Current Evaluation list.

When everything in the Current Evaluation has been evaluated, the
inference engine finds the highest priority list which has at least one
hypothesis in it. Then it finds the hypothesis with the highest inference
priority within that list and that hypothesis becomes the new Current
Evaluation which is evaluated as described above. The session ends when
all of the relevant hypotheses have been evaluated.

Controlling Inference Strategies
The Rules Element allows you to control how the inference search
mechanisms behave. Controlling an inference search mechanism refers to
the ability to either disable it or somehow limit it in its scope. Globally
disabling or limiting a particular inference strategy means that strategy is
disabled or limited when Rules Element loads the knowledge base and
remains that way until specifically changed (see below for details). These
inference search strategy settings are saved with the knowledge base.

Many inference search mechanisms can also be locally disabled or limited.
This means a particular inference search mechanism is changed from the
conditions or actions of a rule or method. While the term “local” is used, the
106 Language Programmer’s Guide

Controlling Inference Strategies
new strategy will be in effect until overridden by another strategy change or
the session is restarted.

The global strategy settings normally determine the general types of search
strategy used throughout the knowledge base, while the local strategy
settings are often executed in opposing pairs. For example, one could have
an action which disables a particular strategy, then an action which would
normally affect the agenda but whose consequences aren’t taken into
account due to the strategy change, and then a final action which re-enables
the strategy. Thus that particular type of search strategy is disabled only for
the one particular action or a small set of actions.

Note: Inference strategies are associated with how hypotheses are put on
the agenda and are not connected to any one hypothesis in particular.

Rules

All types of inferencing ultimately involve rule evaluation, and rule
evaluation can be disabled by unloading the appropriate knowledge base.
Thus if you have a knowledge base which has been disabled at a level of
“DisableStrong” using the UnloadKB operator, and the inference engine
needs to determine the value of a hypothesis in that KB, it will prompt for
the value rather than backward chaining. For more information on loading
and unloading knowledge bases, see the Multiple Knowledge Base section
of this chapter or the UnloadKB and LoadKB operator descriptions in the
Intelligent Rules Element Reference Manual.

Globally

Forwarding through gates and forwarding action effects can be globally
disabled by using the Strategy Monitoring window that you select from the
Expert menu:

Figure 2–54 Globally Controlling Gates and Action Effects

Similar to the Exhaustive Evaluation strategy we saw earlier, forwarding
through gates and forwarding action effects is enabled by default. If these
Language Programmer’s Guide 107

Chapter Inference Engine Processing2
checkboxes are unselected, then there will be no forwarding through gates
or actions under any conditions, unless forwarding through gates or action
effects are enabled using a local strategy change.

Context links can be made conditional upon the value of the source
hypothesis. In such cases, the propagation depends upon either the
verification or the rejection of the source hypothesis. Context links can be
globally disabled from any state of source hypothesis using the Strategy
Monitoring window:

Figure 2–55 Globally Controlling Context Links

By default, as can be seen above, the inference engine will forward along
TRUE, NOTKNOWN, and FALSE hypotheses. By unselecting any of these
checkboxes, the corresponding strategy will be disabled throughout the
knowledge base unless a local strategy change overrides this global default.

For example, if the Forward Rejected Hypothesis checkbox is unselected
while everything else is left as the default settings, then any context links
associated with hypotheses which are evaluated as TRUE or NOTKNOWN will
be queued on the agenda, while contexts associated with hypotheses which
are evaluated as FALSE will not be put on the agenda.

Locally

There are many different ways to control the inference search mechanisms
locally. First of all, there are five categories of rule priorities. Rules in
specific categories are protected from various inferencing mechanisms:

■ Less than -20,000 will be disabled from all forward and backward
processes

■ -20,000 < priority < -10,000 will be disabled from forward processes but
will function normally with backward processes

■ -10,000 < priority < -5,000 will be disabled from the gate mechanism

■ 5,000 < priority < -1,000 will be disabled from rule or method actions

■ Priority > -1,000 is enabled for all forward and backward processes

Remember that this rule priority can be either fixed or a priority atom. This
allows a rule to dynamically change how it can be used in the inference
process.

Backward chaining is a mechanism for obtaining the value of a hypothesis.
It consists of the evaluation of one or more rules. Thus, it is a default
mechanism to obtain the value of such slots. However, the inference engine
considers this as one option among others, and if the application requires it,
it is possible to override backward chaining by first proposing other sources
108 Language Programmer’s Guide

Controlling Inference Strategies
of information with the Order of Sources method. For more details, refer to
the Order of Sources method section.

Forwarding Action Effects and Forwarding Through Gates can be disabled
locally by using the strategy operator from the conditions or actions of a rule
or method:

Figure 2–56 Locally Controlling Forward Action Effects

If Forward Action Effects or Forwarding Through Gates is turned off with
this strategy operator, then they will remain disabled until another strategy
change turns them on or the session is restarted.

Forwarding through context links from any type of source hypothesis can
be disabled locally by using the strategy operator from the conditions or
actions of a rule or method:

Figure 2–57 Locally Controlling Context Links

If forwarding through any type of context link is turned off with this
strategy operator, then it will remain disabled until another strategy change
turns it on or the session is restarted.

Similar to backward chaining and unlike the other agenda mechanisms,
context links only involve hypotheses, not actions or conditions. Due to this
fact, there is no way a context link can be disabled for particular rules or
hypotheses. Of course, if the rule priority is less than -20,000, it will be
completely disabled. In this case, the inference engine would still use the
context link to propagate to the new hypothesis, but then, since the rule is
disabled, it would prompt for the value of the hypothesis (assuming there
are no other rules or sources).

Methods

As we have already discussed in the section on methods, the user-defined
method can trigger any actions the application developer needs, the Order
of Sources method is used to establish possible sources for finding the value
Language Programmer’s Guide 109

Chapter Inference Engine Processing2
of a slot, and the If Change method is used to trigger actions as soon as any
change occurs in the value of a slot. Each category of method can trigger
other actions since the menu of operators available entails all of the rule
action and test operators. From the point of view of the agenda, the
significant action operators are the:

■ Assign operator

■ Execute operator

■ Retrieve operator.

None of these actions, when performed on a private slot within a method,
may alter the agenda. Private slots cannot propagate data because they
must appear exclusively in the method associated with the private slot,
therefore, the following discussion applies only to public slots.

If a method is triggered during the inference process, it will be processed
immediately. Thus it is immediately inserted onto the top of the Current
Evaluation stack and everything else is suspended until it has been
evaluated.

Should these methods have any consequence on the agenda via the Assign,
Execute, or Retrieve operators, they will take place following the same
principles as for rule forward action-effects. Thus if any conditions’ data are
modified, the associated hypotheses will compete with the gates and
forward action-effects propagation strategies.

In addition, if any backward chainings become relevant due to a method
using a construction such as “Assign hypo.h hypo.h”, it will be
evaluated in the same manner as if it occurred in a rule, namely it will be put
on the top of the Current Evaluation list and executed immediately.

Controlling methods refers to the ability to either disable them or somehow
limit them in their scope. Globally disabling or limiting a particular
inference strategy means that strategy is disabled or limited when Rules
Element loads the knowledge base and remains that way until specifically
changed (see below for details). These inference search strategy settings are
saved with the knowledge base.

All global inference strategies can also be locally disabled or limited. This
means a particular inference search mechanism is changed from the
conditions and actions of a rule or method. While the term “local” is used,
the new strategy will be in effect until overridden by another strategy
change or the session is restarted.

There are three basic ways to control methods. The first is by disabling them
entirely. In the case of the Order of Sources system method, this means the
default sources are executed instead of whatever actions are declared in the
system methods. The second way is to execute the methods in their entirety,
but to disable or limit the effect of their actions. Thus values could be
changed, but they wouldn’t cause new hypotheses to be put on the agenda.
The third way is to limit their scope to the object to which the method is
directly attached by making individual methods private, thereby
preventing downward inheritance.

In addition to affecting the agenda by means of the Assign, Execute, and
Retrieve operators, methods can also change the strategy settings through
the Strategy operator. While this particular operator doesn’t affect the
agenda, it will affect how future hypotheses are put on the agenda. For
110 Language Programmer’s Guide

Controlling Inference Strategies
example, an If Change method can disable gates. This won’t affect any
gates-generated hypotheses currently on the agenda, but it will affect future
gates, so that no more gates-generated hypotheses will be put on the agenda
until the strategy has been re-enabled.

Note: Inference strategies are associated with how hypotheses are put on
the agenda and are not connected to any one hypothesis in particular.

Globally

Both the Order of Sources and the If Change methods can be globally
disabled from the Strategy Monitoring window that you select from the
Expert menu. By default, both methods are enabled:

Figure 2–58 Globally Controlling System Methods

Note: You can trigger individual methods using the SendMessage operator
from a rule or method even though system methods have been
disabled in the Strategy Monitor window.

Unselecting either of these checkboxes will disable the associated method
throughout the knowledge base unless it is overridden by a local strategy
change. This means that the default methods will execute instead of
whatever is declared in the object or classes methods.

If one wishes to execute the methods, but to disable the effects of their
actions, one would set Method Global to Off for the Forward Action Effects
strategy (see Figure 2-56). Note that this disables the effects of all actions,
whether the actions come from the actions lists of a rule or a method.

Locally

Once again, only the Order of Sources and If Change methods can be locally
disabled using the Strategy operator from the conditions and actions of
rules or methods. In this sense a local strategy takes effect only at runtime,
whereas global changes are done statically during development. Figure
2-59 shows the dialog window that lets you specify local strategy changes in
rules and methods.

Figure 2–59 Locally Controlling System Methods during Runtime
Language Programmer’s Guide 111

Chapter Inference Engine Processing2
Note: You can trigger individual methods using the SendMessage operator
from a rule or method even though the Strategy operator has been
used to disable system methods.

Disabling or enabling the system methods from the Strategy operator will
change whether or not the associated method is used until a new local
change occurs, the session is restarted (in which case the default is used
again), or a new knowledge base is loaded.

Similar to the above situation, globally changing the action-effects, one can
disable the method’s action-effects by setting Method Global to Off (see
Figure 2-56) . Once again, this disables all actions from putting hypotheses
on the agenda, whether the actions are in a rule or method. With Forward
Action Effects unselected, the methods will still be executed, but no
hypothesis will be brought on the agenda due to one of its rule conditions’
data being changed.

It is also possible to “wrap actions” using two Strategy operators. Let’s say
you wanted to change the value of a particular datum, but you didn’t want
the change to put any additional hypotheses on the agenda. Then one could
disable the Forward Action Effects, then modify the datum or several data,
and finally one could re-enable the Forward Action Effects. Thus the
strategy is the same as it was before the series of actions, the data were
changed, and no new hypotheses were put on the agenda.

For example, assume the default strategies are in effect:

Figure 2–60 Rules Element Default Strategies
112 Language Programmer’s Guide

Controlling Inference Strategies
In addition, assume that the following If Change method in Figure 2-61 has
been triggered and the Target Rules are currently loaded and enabled:

Figure 2–61 If Change Method Propagating to Target Rules

The following events occur:

■ The first If Change action puts the value 56 in the slot a.p. Since action
effects are enabled, the inference engine queues the hypothesis
hypo2.h on the agenda for future evaluation.

■ The inference engine then evaluates the second action, which disables
Forward Action Effects. This does not affect any hypotheses on the
agenda. It merely alters which hypotheses will be put on the agenda in
the future.

■ The third action modifies the value of the slot b.p2 to blue. However,
since Forward Action Effects are not enabled, the hypothesis hypo3.h
is not put on the agenda for evaluation.

■ The fourth action re-enables Forward Action Effects.

■ The fifth and final action puts the value TRUE into the slot c.p3. Since
Forward Action Effects are enabled, the hypothesis hypo4.h is put on
the agenda. Notice that even though the condition in the rule leading
to hypo4.h would be evaluated as FALSE due to the value of c.p3, the
hypothesis is still queued for evaluation since c.p3 was involved in an
action and not a gate.

Thus, after evaluating this If Change method, three slot values have
changed (a.p, b.p2, and c.p3), two hypotheses have been put on the
agenda (hypo2.h and hypo4.h) to compete with other gate- and
action-generated hypotheses, and the strategy settings are exactly the same
as before.

IC

Target Rules

Hypo2.h

Hypo3.h

Hypo4.h

> a.p 12

= b.p2 "red"

No c.p3

Assign 56 a.p
Strategy

@PFACTIONS=FALSE;
Assign "blue" b.p2

Strategy
Language Programmer’s Guide 113

Chapter Inference Engine Processing2
Note: The strategies for Forward Action Effects are the only strategies that
can be wrapped around an action.

The current strategy of the six inheritability settings can be changed with the
Strategy operator just like the other settings of the Strategy operator.
However, inheritance settings that have been specifically selected for the
meta-slot of individual slots always override those of the current strategy.

Application Programming Interface
The Rules Element has an Application Programming Interface (API)
through which it is possible to access all of the information in the system
while it runs. Calls in general will allow for the investigation of the working
memory, the setting of handlers and controls, the control of the reasoning
process, and the editing of knowledge. We focus here on those calls
affecting the inference mechanism.

The three calls from the C Library which can directly affect the agenda are:

■ NXP_Suggest

■ NXP_Volunteer and

■ NXP_Control (NXP_CTRL_RESTART)

In addition, one other call affects how hypotheses are put on the agenda in
the future:

■ NXP_Strategy

We will describe all of these calls below.

Suggest

Suggesting a hypothesis tells the inference engine to evaluate it. Of course,
we’ve seen that the inference engine has several lists of hypotheses to
evaluate, so just telling the inference engine to evaluate a hypothesis is not
enough. One must also state the priority to give it. These priorities
correspond with the lists described previously. So, the suggest call
determines which hypothesis to suggest and with what priority:

NXP_Suggest (theHypothesis, priority)

The possible priorities are:

■ NXP_SPRIO_UNSUG: unsuggests (removes) theHypothesis from the
Agenda. Thus, through the Application Programming Interface, it is
possible to remove as well as add hypotheses to the existing agenda
(unless the hypothesis is currently under evaluation)

■ NXP_SPRIO_SUG: places theHypothesis in competition with
hypotheses suggested from the development interface. These have the
highest priority on the agenda

■ NXP_SPRIO_HYPISL: places theHypothesis on the agenda in
competition with hypotheses generated from the hypothesis forward
search mechanism

■ NXP_SPRIO_DATAISL: places theHypothesis on the agenda in
competition with hypotheses generated by gates and actions

■ NXP_SPRIO_CNTX: places theHypothesis on the agenda in
competition with hypotheses generated by context links
114 Language Programmer’s Guide

Application Programming Interface
Thus it is possible to completely control which hypotheses are queued and
with what priority from an external program. There is no difference
between suggesting the hypothesis from an external program and
generating it by an internal inference search mechanism.

Volunteer

Volunteering a slot sets a slot to a particular value. As we have seen
elsewhere, when data change values, hypotheses which use those data
values can be put on the agenda. Thus volunteering a value not only
changes the value, but it also puts hypotheses on the agenda. The syntax for
the Volunteer call is:

NXP_Volunteer (theSlot, desc, thePtr, priority)

The priority argument in the Volunteer call tells the inference engine how to
forward the new slot value. For example, you may want to change the value
but have no forwarding, or possibly treat it as if it was volunteered from the
development interface. The possible priorities are:

■ NXP_VSTRAT_VOLFWRD: forwards the value in the strongest fashion.
This priority is the same as volunteering from the user interface, which
means that any hypothesis which uses the associated slot in its
conditions list will be queued for evaluation in competition with gates
and forward action-effects. Note that, as described earlier for
volunteering from the development interface, hypotheses whose
conditions have pattern matchings bearing on the volunteered slot will
also be queued for evaluation.

■ NXP_VSTRAT_RHSFWRD: forwards the value as if it were an forward
action-effect, regardless of the current forward strategy.

■ NXP_VSTRAT_CURFWRD: forwards the value as if it were an forward
action-effect. If forward action-effect are turned off, this will have no
influence on the inference process.

■ NXP_VSTRAT_QFWRD: forwards the value as if it were asked in the
session control panel of the main window.

■ NXP_VSTRAT_NOFWRD: pastes the value in the slot but will not
influence the inference process, so that the new value will not be
forwarded during inferencing.

■ NXP_VSTRAT_RESET: used for resetting a hypothesis and all of its
associated conditions and subgoals (by setting each of these to
UNKNOWN).

Once again, we see that values can be modified from an external program,
and you can completely control how the forwarding works on these
modified values.

Restart Session

The Restart Session command issued from the API is the same as if it was
issued from the development interface. Restarting a session sets all of the
slots to the value UNKNOWN. All hypotheses which are on the agenda will be
taken off. All dynamic links and dynamic objects will be cleared from
memory. All of the conclusions reached during the session will also be
purged.
Language Programmer’s Guide 115

Chapter Inference Engine Processing2
However, any knowledge bases which were loaded during the session will
remain loaded, and any effects that the session had on the outside world
(writing to databases, sounding alarms, and so on) will remain in effect.

The syntax of the Restart Session command is:

NXP_Control (NXP_CTRL_RESTART)

Strategy

In addition to Suggest, Volunteer, and Restart which directly affect the
agenda, one can also change the current strategy using the NXP_Strategy
call. Changing the strategy does not affect what’s currently on the agenda.
Nothing new will be put on the agenda due to a strategy change, nothing
will be taken off, and none of the priorities will change. However, changing
the strategy will have tremendous influence on what is put on the agenda in
the future.

All of the strategies described previously can be modified from any external
program. The syntax is:

NXP_Strategy(code, bool)

where code is one of the following:

■ NXP_AINFO_PWTRUE: this setting enables/disables context
propagation on TRUE hypotheses

■ NXP_AINFO_PWNOTKNOWN: this setting enables/disables context
propagation on NOTKNOWN hypotheses.

■ NXP_AINFO_PWFALSE: this setting enables/disables context
propagation on FALSE hypotheses.

■ NXP_AINFO_EXHBWRD: this setting enables/disables exhaustive
backward chaining.

■ NXP_AINFO_PFACTIONS: this setting enables/disables forwarding on
righthand-side “then” actions.

■ NXP_AINFO_PFELSEACTIONS: this setting enables/disables
forwarding on righthand-side “else” (false) actions.

■ NXP_AINFO_PFMETHODELSEACTIONS: this setting enables/disables
forwarding on righthand-side “else” (false) actions for methods.

■ NXP_AINFO_PTGATES: this setting enables/disables forwarding
through gates.

■ NXP_AINFO_INHOBJUP: this setting enables/disables upward
inheritability of object slots.

■ NXP_AINFO_INHOBJDOWN: this setting enables/disables downward
inheritability of object slots.

■ NXP_AINFO_INHCLASSUP: this setting enables/disables upward
inheritability of class slots.

■ NXP_AINFO_INHCLASSDOWN: this setting enables/disables
downward inheritability of class slots.

■ NXP_AINFO_INHVALUP: this setting enables/disables upward
inheritability of the value of a slot.

■ NXP_AINFO_INHVALDOWN: this setting enables/disables downward
inheritability of the value of a slot.
116 Language Programmer’s Guide

Non-Monotonicity
■ NXP_AINFO_PARENTFIRST: this setting determines whether the
inheritance search should proceed in a class-first versus object-first
manner.

■ NXP_AINFO_BREADTHFIRST: this setting determines whether the
inheritance search should proceed in a breadth first or depth first
direction

■ NXP_AINFO_SOURCESON: this setting enables/disables Order of
Sources methods.

■ NXP_AINFO_SOURCESCONTINUE: this setting enables/disables the
full execution of Order of Sources methods.

■ NXP_AINFO_CACTIONSON: this setting enables/disables If Change
methods.

■ NXP_AINFO_CACTIONSUNKNOWN: this setting enables/disables If
Change methods specifically when the slot is set to UNKNOWN.

■ NXP_AINFO_VALIDENGINE_ON: this setting enables/disables
validation of value set by the inference engine.

■ NXP_AINFO_VALIDUSER_ON: this setting enables/disables validation
of value entered by the end user.

Non-Monotonicity
The Rules Element reasons in a non-monotonic fashion. Non-monotonicity
adds several advantages to reasoning. It allows the inference engine to:

■ Make decisions and take actions based on incomplete information.

■ Make revisions as the environment changes and things it had assumed
were TRUE, FALSE, or NOTKNOWN no longer are.

The ability to make decisions and take actions based on incomplete
information is very important, as you don’t need to absolutely prove that
some condition is TRUE before taking an action (in other words, you don’t
need to prove that there’s a road from your home to your work every single
day before driving there).

This capability is handled by the fact that the inference engine reasons
according to the closed world principle. This principle allows the Rules
Element to draw conclusions based on a lack of evidence. If the inference
engine has investigated a particular hypothesis and couldn’t find anything
to show that it is TRUE (because all rules leading to it were FALSE), then the
inference engine concludes the hypothesis is FALSE.

The ability to make revisions as the environment changes and things it had
assumed were valid no longer are (an earthquake ripped a crevasse between
your house and work, therefore you can’t drive there) allows the Rules
Element to quickly adapt to the environment as it changes.

This capability is handled by the Rules Element’s revision mechanism.
There are two basic ways a hypothesis can be reinvestigated: either some of
the conditions leading to it have data that have been modified in such a way
that the conditions containing them change value (from TRUE to FALSE or
the reverse), or a hypothesis can be completely reevaluated by resetting it.
Language Programmer’s Guide 117

Chapter Inference Engine Processing2
Revisions

Revisions are caused by the slots in rules changing value. Whenever an
action or a Volunteer (from the user interface or an external program)
changes the value of a slot, the hypothesis of any rule which uses that slot
will come on the agenda (according to the strategies). Hypotheses
generated in this manner will compete with the gates and other action
generated hypotheses.

However, if the state of the modified slot’s condition does not change due
to the changed value of the slot, then the hypothesis will not be
re-evaluated. Thus if we have two rules such as:

Figure 2–62 Revisions

The top rule is evaluated first, and then, some time later the bottom rule is
evaluated. If the bottom rule is TRUE, then its actions list will fire. The
action on the slot a.prop will put all rules which have a.prop in their
conditions list onto the agenda to compete with other forward action-effects
generated hypotheses. However, if the condition involving a.prop in the
target rule has not changed state, then the rule will not be evaluated again.

Reset

The case may often arise when you wish to evaluate a hypothesis again
regardless of whether or not the state of its conditions have changed. This
will occur if one wants to implement loops to monitor an activity. The Rules
Element provides a special operator for this situation, namely the Reset
operator. The Reset operator will return the state of any slot to UNKNOWN.
In addition, if a hypothesis is Reset, it will not only set the state of the
hypothesis to UNKNOWN, but any rules and the conditions of those rules to
UNKNOWN as well.

If there are any hypothesis subgoals leading to a hypothesis which is Reset,
then they will be Reset as well along with their rules, conditions, and
subgoals. Thus resetting a hypothesis is a recursive action along the
backward links. Note that Resetting a hypothesis does NOT reset all the slot
values (or the data) used in the rules and methods. The only other slots
which will be set to UNKNOWN aside from the original hypothesis are
hypotheses which are subgoals of the original hypothesis. It merely sets the
conditions to UNKNOWN so that they can come on the agenda again without
having to modify the value of a condition.

a.prop

a.prop
118 Language Programmer’s Guide

Non-Monotonicity
The Reset operator allows some very complicated behavior. For instance,
one could have a network such as:

Figure 2–63 Multiple Level Reset

In this example, the inference engine is investigating the hypothesis labeled
current. This hypothesis causes a series of other rules to be put on the
agenda for evaluation. It also has a context link to itself. Since context links
are the lowest priority, everything else will be evaluated first. After all of
the rules are evaluated, the current hypothesis is reset by a right-hand side
action. This is recursive along the backward links, so all of the hypotheses
and rules are Reset as well (the other left-hand side data keep their values).
Since everything else in the knowledge island has been evaluated, the
original hypothesis is evaluated again due to the context link and the
process starts once again.

Once again, note that when you Reset a hypothesis, the hypothesis and all
of the conditions leading to the hypothesis are set to UNKNOWN, but all of
the data (aside from sub-goals) retain their original values. If you want to
Reset all of the left-hand side data as well, you can use the ResetFrame
operator.

Interpretations

Interpretations work with revisions in the same manner as they work with
the inference engine agenda in general. Namely, the interpretation is
resolved first, and after it is resolved, the action takes place on the
interpreted value. Revisions will occur on the slot which was modified by
the action, rather than the slot which was interpreted.

(current)

context

hypo

Reset hypo
Language Programmer’s Guide 119

Chapter Inference Engine Processing2
Figure 2–64 Interpretations with Revisions

In this example, the broadcast_alarm hypothesis has been evaluated as
FALSE. However, the rule with too_hot as hypothesis has been verified.
If the value of device is “sensor”, then the action “Assign “red”
\device\.alert” bears on the slot sensor.alert hence a revision in
the first rule is triggered:

Figure 2–65 Interpretations with Revisions
120 Language Programmer’s Guide

Multiple Knowledge Bases
Pattern Matching

For a revision to work with pattern matching, one of two conditions must
occur:

■ The exact same pattern matching must be included in the source action
as in the target rule’s condition list and the target rule must be Reset.

■ The target hypothesis’ conditions list must explicitly mention one of the
slots in the pattern matching. In this case, the rule does not need to be
Reset.

As we’ve seen elsewhere, if there is a different pattern matching which
contains the same objects in the conditions of a rule, no revision will occur.
Either the exact same pattern matching or an explicit mention of the slots
must occur for the target hypothesis to be put on the agenda for evaluation.

Conflict Resolution

Hypotheses brought on the agenda due to revisions are in competition with
other actions as well as gates. The sole determining factor is the hypotheses
inference priority.

Control

The two versions of revisions must be handled separately. Revisions which
are initiated by modified data in rule’s conditions can be controlled in the
same manner as the other actions. Namely, they can be disabled by turning
off action effects from either the Global Strategy window or from any
condition’s or action’s strategy operator.

Revisions which are caused by the Reset operator are not quite as easy to
control. If a hypothesis is reset, then it’s value is UNKNOWN. Thus it can be
put on the agenda by any of the agenda search mechanisms we have seen
previously. To control or disable the re-evaluation of hypotheses which
have been Reset, one needs to control or disable all of these other types of
inference search strategies.

Multiple Knowledge Bases
There can be any number of different knowledge bases (KBs) loaded in
Rules Element at the same time. Each particular structure, whether it is an
object, a rule, a method, or anything else, is associated with one particular
knowledge base. The Rules Element keeps track of which atom is associated
with which knowledge base, though unique identifiers must be assigned to
each atom across knowledge bases when loaded into memory. When you
modify or delete existing data structures, the changes affect the respective
knowledge base. You can change the knowledge base an atom belongs to
using the appropriate editor (see the Intelligent Rules Element User’s Guide
for more details).

There are three ways to load and unload Rules Element knowledge bases:

■ From the development interface

■ From the conditions and actions of a rule or method, or

■ From the Application Programming Interface (API).
Language Programmer’s Guide 121

Chapter Inference Engine Processing2
You can use any or all of these methods in any particular application,
though loading from the development interface is geared more for
development and loading from the application programming interface is
usually done with the runtime.

In addition to the many user-defined knowledge bases, there are three
knowledge base names reserved for the Rules Element:

■ untitled.kb

■ temporary.kb

■ undefined.kb

Untitled.kb

When the Rules Element is initially launched, it creates a default knowledge
base for the user with the name untitled.kb. All data structures which
are created are put in this knowledge base. When you eventually want to
save your work, you must choose another name for the knowledge base.

Temporary.kb

You can create dynamic objects as well as dynamic links between objects
and classes in the Rules Element. All of these new data structures are stored
in the special knowledge base temporary.kb. Everything in this
knowledge base is deleted when you restart a session or when you exit the
Rules Element.

Note: You cannot explicitly transfer any structures into temporary.kb.
However, you can transfer any structures to another knowledge base
using the ChangeKB command.

If you wish to save the dynamic structures, you can save them using the
Save Knowledge Base command from the Expert menu. However, you
must first rename the knowledge base.

Undefined.kb

If you reference an atom without explicitly defining it, then the implicit
definition will be stored here. For example, assume you have divided your
application into several knowledge bases. One of them contains all of the
object definitions, while the others contain rule definitions. This will work
fine as long as the object definitions are loaded before the rule definitions.
If you load a rule such as:

Figure 2–66 Loading a Rule Without Defining the Objects

and you have not defined the objects obj and Hypo and the properties p,
p2, and h, then the Rules Element will put their implicit definitions in the

> obj.p
Hypo.h

1

Yes obj.p2
122 Language Programmer’s Guide

Multiple Knowledge Bases
knowledge base “undefined.kb”. Thus undefined.kb would contain an
integer property p, and boolean properties p2 and h, and object obj with
two properties p and p2, and an object Hypo with a property h.

If some or all of the undefined objects and properties are then loaded, the
Rules Element will remove their respective definitions from the
undefined.kb knowledge base.

Note: You cannot explicitly transfer any structures into or out of the
undefined.kb knowledge base.

Current Knowledge Base

There is one and only one knowledge base which is considered the current
knowledge base. Whenever you explicitly create new data structures using
the Rules Element editors, they are added to this knowledge base. By
default, the most recently loaded knowledge base is the current knowledge
base. If you wish to change this, you can use the “Set Knowledge Base”
command from the Expert menu.

Modular Knowledge Base Architecture

Dividing your application into several knowledge bases allows you to
modularize your knowledge. This has several benefits:

■ Knowledge bases can be associated with particular functions.

■ Different people can work on different knowledge bases.

■ One method of inhibiting unwanted interactions between rules (there
may be rules that you want to separate but cannot be separated in one
knowledge base).

■ Better performance since only a subset of all the rules and objects are
stored in memory.

■ Better control over the inference process as only those rules and objects
which are pertinent are stored in memory.

■ Different knowledge base’s can represent different viewpoints or
methods of performing some functionality (kind of like having multiple
opinions of the same diagnosis).

■ Software engineering control.

The following paragraphs describe these benefits of the modular
architecture.

Knowledge Bases Associated with Particular Functions

Having knowledge bases associated with particular functions allows you to
load a knowledge base and inference on it only when it is appropriate. For
example, you could have an engine diagnostic application. If it seems
apparent that there is a problem with the air / gas mixture, then a
knowledge base devoted to Carburetors and Fuel Injection Systems could
be loaded, if initial indications point to a clutch problem, then another
knowledge base could be loaded and so on.
Language Programmer’s Guide 123

Chapter Inference Engine Processing2
Different Knowledge Bases for Different People

Multiple knowledge bases also allow different people to work on each
specific part. Thus in our example above, a Carburetor specialist could
write the first knowledge base, while a Clutch specialist could write the
second. Each of them can work completely independently of each other
without worrying about some of their rules interfering with each other’s
knowledge bases.

Dividing Rules from Objects

Rules and objects can also be separated into different knowledge bases.
Thus in the above example, there could be one knowledge base which
contains the entire object structure of the car. Then, each developer can
write rules which reason on these common data structures. The object
structure would always remain loaded, while the different rule KBs could
be loaded and unloaded as appropriate. This insures that all of the object
information is available to each of the reasoning knowledge bases while
preserving the modularity.

Performance

Another benefit of dividing your application into several knowledge bases
is the fact that performance will improve as every time the Rules Element
needs to search for an atom, whether it is an object, a slot, or a rule, there will
be many less atoms to search through, hence the search time will be shorter.

Enhancing Control of Inference Engine

Finally, and analogous to the previous discussion, creating several
knowledge bases will enhance your control over your application. It
restricts the search space thereby reducing the number of extraneous events.

Software Engineering Control

This final advantage combines some of the advantages described earlier.
Dividing your application into several knowledge bases allows you to:

1. Define in one central knowledge base all the classes, objects, and
properties which are common to all of the other knowledge bases

2. Turn off Auto-Creation of Atoms using the SetUp Environment
command.

3. All of the application developers receive the “globals” knowledge base
and create their applications bases around it. This insures that all of the
developers are working with common data structures rather than
having similar names for the same thing. If an application developer
creates a new atom whether intentionally or not, then he will be
prompted by the Rules Element whether or not he actually wants to
create it. If it’s a mistake, then creation can be cancelled. If not, then it
can be merged into the global knowledge base if other developers could
use it or kept local if it is specific to that one knowledge base. In all
cases, atoms must be assigned unique names.
124 Language Programmer’s Guide

Multiple Knowledge Bases
Inferencing With Multiple Knowledge Bases

For the purposes of inferencing, there is no distinction between currently
loaded and enabled knowledge bases. The Rules Element processes the
objects and rules from many knowledge bases just as if they were all part of
the same knowledge base.

Passing control from one knowledge base to another can proceed in one of
several different fashions. If both of them are loaded at the same time, then
propagation can proceed along any of the general inference search
strategies. If you have a general control knowledge base which dynamically
loads the appropriate knowledge base when needed, then unloads it when
it is finished and loads the next one, then context links work well. When a
hypothesis is evaluated which has other hypotheses in its context, then
these hypotheses are put on the agenda. It doesn’t matter that there aren’t
any rules supporting the hypothesis when it is put on the agenda.

Since context links have the lowest priority, the source knowledge base will
be evaluated first and then control will return to the control knowledge base
which will unload the source KB, load the new KB, and when the context
generated hypothesis is evaluated, the new rules will have been loaded.

Merging Multiple Knowledge Bases

There are several different levels of merging knowledge bases:

■ If you merely wish to transfer a couple of structures from one
knowledge base to another, the easiest route is to use the Change KB
command from any of the Rules Element’s editors. For example, if the
object obj belongs to KB2.tkb and you want to store it in KB1.tkb,
merely find obj in the Object Editor, choose “Change KB” from the
popup menu, and finally choose KB1.tkb as the new parent knowledge
base.

■ If you wish to completely merge two knowledge bases, then choose
Save Knowledge Base from the Expert menu. There is a checkmark or
“X” icon in the “Loaded As” column indicating whether the file will be
saved or not. Whenever the knowledge base filename appears with a
checkmark icon, the file will be saved to the knowledge base name
shown in the “Save As” column. For example, assume there are three
knowledge bases currently loaded, KB1.tkb, KB2.tkb, and KB3.tkb.
Assume also that we wish to save the contents of the first two into the
contents of the second one (thus completely disregarding KB3.tkb).
Display the checkmark icons for KB1.tkb and KB2.tkb to say you want
Language Programmer’s Guide 125

Chapter Inference Engine Processing2
the contents of those two knowledge bases, then edit the name of
KB1.tkb to match the name of the merge to file KB2.tkb:

Figure 2–67 Merging Knowledge Bases

■ If you wish to merge large portions of several knowledge bases but not
the entire contents, the easiest method is to save the knowledge bases in
text format, and then modify the knowledge bases with whichever text
editor you prefer.

Effects When Loading

When you load a knowledge base, everything defined in the knowledge
base is loaded into memory. Several things may happen when you load a
knowledge base:

■ If there is an atom in one of the currently loaded KBs which is also
defined in the newly loaded KB, then a warning will be issued in the
transcript, and the old definition of the atom will be replaced by the
definition from the new KB. Note that an error will not occur, just a
warning message.

■ If any global strategies are declared in the newly loaded knowledge
base, they will overwrite the existing strategies. Once again, a warning
message will be issued.

■ If there are some atoms which are referenced, but not defined in the
newly loaded knowledge base and they also are not defined in any of
the other knowledge bases which are loaded, then their implicit
definition will be contained in a special knowledge base entitled
“undefined.tkb”

Since new definitions will overwrite old definitions, the order in which
knowledge bases are loaded is important. Additionally, if some knowledge
bases contain the object definitions, while others contain only rules, the
object definitions should be loaded first so that all objects referenced by the
rules are defined.
126 Language Programmer’s Guide

Multiple Knowledge Bases
No hypotheses will be put on the agenda as a result of loading a knowledge
base. Hypotheses are put on the agenda due to changes in the value of
conditions’ data or when the inference engine needs to evaluate a particular
slot. Since loading a knowledge base doesn’t cause either of these two
events to occur, no hypotheses will be put on the agenda.

Even if all of the data in a newly loaded hypotheses’ conditions are KNOWN
because of a previously loaded KB and would cause the hypotheses
evaluation to be TRUE, the hypothesis will not be evaluated. One of the
inference search mechanisms must make the hypothesis relevant after it is
loaded.

For example, assume we know the values of the following slots:

car.color = “red”
car.cost = 3995

Now assume a knowledge base is loaded which contains the following rule:

Figure 2–68 Newly Loaded Rule

The buy_car hypothesis and the rule displayed in Figure 2-68 will not be
evaluated even though both of the conditions would evaluate to TRUE
(unless an independent event occurs, such as the evaluation of another rule
which contains car.color, car.cost, or buy_car).

There are several different levels at which a knowledge base can be loaded:

■ Enable: all definitions in the knowledge base are fully effective and
operational, including objects, classes, properties, rules, and methods.

■ DisableWeak: object, class, and property definitions in the knowledge
base are in effect. Rules and methods are defined, but are temporarily
disabled and unavailable for inference processing; they can later be
reenabled by specifying load level “Enable”. Any such disabled rules
or methods already on the agenda remain there and will be processed
normally.

■ DisableStrong: object, class, and property definitions in the knowledge
base are in effect. Rules and methods are defined, but are temporarily
disabled and unavailable for inference processing; they can later be
reenabled by specifying load level “Enable”. Any such disabled rules
or methods already on the agenda are removed from the agenda and
will not be processed.

When you load a knowledge base from the development interface, it is
always loaded at the “Enable” level.

The Initial Value meta-slot attribute is not evaluated when a knowledge
base is dynamically loaded. Initial values only take place when the
knowledge base is loaded from the development interface or a restart

Is car.color "red", "blue"

< car.cost 5000

buy_car
Language Programmer’s Guide 127

Chapter Inference Engine Processing2
session command is given. Hence always use RuntimeValue for
dynamically loaded KBs.

Effects When Unloading

There are several different levels at which to unload knowledge bases. The
effects depend upon what level the unloading is performed at:

■ Enable: all definitions in the knowledge base are fully effective and
operational, including objects, classes, properties, rules, and methods.

■ DisableWeak: object, class, and property definitions from the
knowledge base remain in effect. Rules and methods remain defined,
but become temporarily disabled and unavailable for inference
processing; they can later be reenabled with LoadKB. Any such
disabled rules or methods already on the agenda remain there and will
be processed normally.

■ DisableStrong: Object, class, and property definitions from the
knowledge base remain in effect. Rules and methods remain defined,
but become temporarily disabled and unavailable for inference
processing; they can later be reenabled with LoadKB. Any such
disabled rules or methods already on the agenda are removed from the
agenda and will not be processed.

■ Delete: Object, class, and property definitions from the knowledge base
remain in effect. Rules and methods are permanently deleted from
memory and no longer available for inference processing; they can be
reenabled only by reloading the knowledge base with LoadKB.

■ Wipeout: All definitions from the knowledge base are permanently
deleted from memory, including objects, classes, properties, rules, and
methods; they can be reenabled only by reloading the knowledge base
with LoadKB. If there are object definitions which are defined in the
unloaded knowledge base but referenced by other knowledge bases,
the definitions will be stored in the special KB “undefined.kb”.

When you unload a knowledge base from the development interface, it is
always unloaded at the “Wipeout” level.

Summary
This concludes our discussion of the Rules Element and the inference
engine. We have seen that the Rules Element represents the world in terms
of objects, generalizations of those objects called classes, and parts of those
objects called subobjects. Objects and classes are described by properties.
Specific properties of objects or classes are called slots. Slots store all of the
information in the Rules Element. Slots can be either public or private.

Methods describe how a slot should behave. They give information such as
how the slot should determine its value (Order of Sources), what it should
do if its value changes (If Change), or any custom-defined operation needed
for the application. Methods attached to private slots ensure data is
protected from change by the application. The private slot’s behavior is
considered encapsulated in the single method associated with the slot.
128 Language Programmer’s Guide

Summary
Inheritance allows for genericity. It allows you to define a value or behavior
at a parent level and have all of the child objects or classes inherit it. The
Rules Element also supports both upward inheritance (from object to class)
and multiple inheritance (a particular object or class may have many
different parents from which to inherit). Properties, values, and methods
can be inherited.

Dynamic objects and dynamic links between objects and classes allow the
representational paradigm to accurately model a changing world. It also
allows objects to inherit from one parent at one time and a different parent
at a later time. Dynamic objects allow the system to be more flexible as the
Rules Element can create new objects whenever it needs them.

Rules provide the heuristics and relations in the knowledge base. They
reason upon the object representation. Rules are symmetric so they can be
processed in either a forward or backward direction. There are three
fundamental parts to a rule: the conditions list, the hypothesis, and two
separate actions lists. If all of the conditions are TRUE, then the hypothesis
is set to TRUE and one of the actions lists is executed (if present). If any of
the conditions are FALSE, then the hypothesis will be FALSE and the other
actions list is executed (if present).

The Rules Element is an agenda-based system. This means that it processes
events according to how they were generated rather than merely in a LIFO
or FIFO algorithm. The Rules Element keeps a prioritized list of hypotheses
to evaluate. It is important to note that the Rules Element agenda lists
hypotheses and not rules.

The basic order of event evaluation is

■ Backward chainings, method actions are processed immediately

■ Suggested hypotheses have the highest queued priority

■ Hypothesis forward generated hypotheses have the next highest
priority

■ Gates and action (rules and methods) generated hypotheses are next

■ Contexts are last.

Within each of these categories, the hypotheses inference priorities
determine which hypothesis will be evaluated first. It is important to note
that method actions are evaluated immediately, however the hypotheses
they generate as relevant goals are in competition with gates and forward
action-effects generated hypotheses.

The Rules Element can be embedded within your application. It can be
controlled through the application programming interface. Slot values can
be volunteered, hypotheses can be suggested, knowledge bases loaded, and
sessions started and restarted. You also have access to working memory to
investigate the values of any slots, what’s being processed, and so on.

The Rules Element also supports nonmonotonic reasoning. There are two
basic forms of nonmonotonic reasoning:

■ Making inferences based on a lack of evidence

■ Making revisions on previous conclusions.

Both of these allow the Rules Element to better deal with a constantly
changing world.
Language Programmer’s Guide 129

Chapter Inference Engine Processing2
The Rules Element allows you to modularize your knowledge by breaking
it up into several different knowledge bases. This allows you to separate the
inferencing parts (rules) from the representation parts (objects), or allow
different knowledge bases to perform different functions.

Finally, the central idea to remember about the Rules Element is the notion
of temporality. The Rules Element performs actions according to the
current state of the environment and then proceeds accordingly. Thus if a
slot needs to inherit something, it looks at who its parents are when it needs
to inherit the property, value, or behavior. Previous or future parents or
children have no influence on this inheritance event.

Similarly, when Rules Element inference engine evaluates a slot in a
condition, it looks for possible gates as soon as the slot is evaluated if gates
are enabled. Hypotheses whose conditions would evaluate to TRUE are
considered relevant and put on the agenda. It doesn’t matter if the rules and
hypotheses are from the same or different knowledge bases. If at some
future time gates are disabled, any hypotheses already on the agenda will
still be evaluated since they were relevant at the time they were queued for
evaluation.
130 Language Programmer’s Guide

Chapter
3 Primer 3

In this chapter we explore several features by executing two small
knowledge bases developed especially for this purpose. This chapter
contains sessions for you to perform using the Intelligent Rules Element.

Introduction
Understanding the features of the Rules Element will help you develop
knowledge-based applications that operate efficiently. To assist you in this
process three sessions were developed around several small knowledge
bases that act as a getting started primer. You will use these simple nine rule
KBs to conduct inferencing sessions while using the Rules Element and GUI
builder facilities to investigate consequences.

In each of the three sessions presented in this chapter some knowledge of
the Rules Element facilities and operations is assumed. The graphics that
accompany each action description depict the appearance of the Network
windows following the completed operation.

Note: The knowledge processing sessions in this chapter require an
understanding of the Rules Element facilities and operations. Refer to
the Elements Environment Getting Started manual for an overview of
the facilities. Familiarity with the Intelligent Rules Element User’s
Guide is also recommended.

Loading the Primer Knowledge Base

The primer is composed of several small knowledge base files. The files are
as follows:

primer.tkb The file needed to run either primer1 or primer2.

primer1.tkb Completes primer.tkb for session one and two.

primer2.tkb Completes primer.tkb for session three (with a
script).

Note: When you want to load the primer files, do not load primer1 and
primer2 at the same time. Compilation errors will result since these
two KB files define structures differently. The primer file
primer.tkb must be loaded to run primer1 or primer2.

Start the Rules Element on your system. Use the following procedure to load
the primer knowledge base.

1. Launch the Rules Element application. The system displays the runtime
window, select OK. The system displays the Main Window.

2. Move your mouse cursor over the Expert menu and display the menu
options.

3. Select the Load Knowledge Base option from the list. The system
displays a dialog window that gives you access to system files.
Language Programmer’s Guide 131

Chapter Primer3
4. If your system requires a pathname to locate the file, type the pathname
with the filename in the text edit field and press Return. For example,
the complete pathname might be:

/ee/c/examples/rules/primer/primer.tkb

The IBM PC and Apple Macintosh computers let you browse the
directories to locate the file. Display the Examples directory and
double-click on the filename primer.tkb from the list.

5. The system loads the file into memory.

6. Repeat the procedure to load the second primer file needed for the first
session:

/ee/c/examples/rules/primer/primer1.tkb

Starting a Session Over

The actions in the session must be performed exactly as given in order for
knowledge processing to proceed in step with the graphics. If for example
you enter unspecified data, the order of the rule evaluation may change. If
at any point you get off track and want to start over you can perform the
following actions:

1. Select the Clear option from the global popup menus of the Rule
Network window and the Object Network window. The system will
remove any previously displayed rules and objects.

2. Select the Restart option from the Expert menu. This action returns all
previously entered data to its initial state thus enabling knowledge
processing to start over.

Note: If a Resource Browser window has the focus, the Restart command
from the keyboard will be ignored. You must first click on any Rules
Element window in order to restart the inference engine.

Exiting the Session

Whenever you wish to terminate the session and close all the Rules Element
windows select the Quit option from the File menu. The system will display
a dialog box asking whether you want to quit; select the OK button. If the
knowledge base was altered during a session another dialog box asks
whether you want to save the changes to the file; always select the NO
button. If you want to practice editing the primer knowledge base, be sure
to use a renamed copy of the original file for your own editing sessions.

Conducting Your Own Sessions

The three sessions presented here demonstrate only a few of the valid
reasoning pathways for inferencing to proceed. The exact path is
determined by how you begin knowledge processing (suggesting
hypotheses, volunteering data, or a combination of the two) and also on the
data you provide during the session. You may want to vary these
parameters to conduct your own sessions after completing the ones in this
chapter. For more information about the windowing environment, refer to
the User’s Guide
132 Language Programmer’s Guide

Knowledge Processing - Session 1
Knowledge Processing - Session 1
You will conduct your first session using two primer knowledge bases,
primer.tkb and primer1.tkb to gain familiarity with several important
features of the Rules Element. Furthermore, session one demonstrates that
even with the addition of the Resource Browser interface builder, the Rules
Element shell lets you process your knowledge base without the GUI
engine. To accomplish this, the session control panel of the Main Window
displays the question to solicit data for processing.

Additional, important points of session one include the following.

■ Visualizing the rule structure (IF-THEN-ELSE) in the rule network.

■ Visualizing important operators that you can use in rules
(SendMessage and Assign).

■ Using data validation parameters (from a meta-slot) to validate
end-user input.

Use the following procedure to conduct session one:

1. Select the Rule option from the Browsers menu in the menu bar. The
system displays the empty Rule Network window. Click inside the
Rule Network window and display the local popup menu, select the
Focus on Hypothesis option from the list.

2. The system displays a selection window that lists every knowledge
base hypothesis available for display in the rule network. Double click
on the hypothesis pump_breakdown. This hypothesis shows a context
link to another hypothesis which we will use to initialize the knowledge
base.

3. Scroll the network window to view the initialization hypothesis.
Scrolling of the network diagram can be accomplished by positioning
the mouse cursor inside the window (not on top of the network
diagram) and then clicking and dragging.

4. Position the mouse cursor over the initialization hypothesis and
extend the network to the left. This rule shows two actions which we
use to set-up the environment. The SendMessage operator is
particularly useful since it can initiate actions directly on the desired list
of knowledge base objects.

5. Now let’s place a hypothesis on the Rules Element agenda for
evaluation.

6. Display the local popup menu for the initialization hypothesis.

7. Select the Suggest option from the list.

8. To begin knowledge processing with the suggested hypothesis:

9. Position the mouse cursor over an inactive area of the Rule Network
window and display the windows popup menu.
Language Programmer’s Guide 133

Chapter Primer3
Note: Single-button mouse users must press the Command key
and mouse button together to display the windows
popup menu.

Double-button mouse users must press the CTRL key and right
mouse button together to display the windows popup menu.

Triple-button mouse users must press middle mouse button to
display the windows popup menu.

Select the Knowcess option from the list.

10. The system displays the question in the session control panel of the
Rules Element main window to solicit data for the single condition of
the initialization rule.

11. Click on the option “True” and then select the Ok button or press the
Return key to make the single condition TRUE.

12. Return to the Rule Network and you will see that both the actions of the
rule were triggered, including the Strategy operator that activates the
data validation function. If desired, you can display the Rule Editor
from the network to visualize the Strategy operator in the editor by
selecting the Edit... option from the local popup menu you display on
the rule name node.

13. Return to the Rules Element main window; the system expects a value
for current_task. Display the list of options by clicking on the choice box
arrow button next to the right of the highlighted field. Select the
“Defueling” option for the current task and press Return to make the
first condition of the pump_breakdown hypothesis TRUE. Notice that
in the rule network, the equal sign (=) syntax is used to test data in a
condition.

14. Next the system asks for the value of tank_1. Enter a value of “3000”
into the highlighted input field and press Return. The system displays
a message window demonstrating data validation, because in this case
a data validation meta-slot for tank_1 will only accept a value between
0 and 2000.

15. Click on the alert window OK button.

16. Instead of typing an acceptable value for tank_1, let’s identify the data
validation expression in the Meta-Slot Editor. First return to the rule
network and expand the diagram to the left of the tank_2.problem
134 Language Programmer’s Guide

Knowledge Processing - Session 1
hypothesis. The “target” icon identifies the current condition in the rule
network:

17. Now display the local popup menu for the current condition and select
the Focus Object Network option. The system displays the Object
Network with the object tank_1 and its two classes regular_tanks
and tanks. To view the meta-slot, expand the object network diagram
for the class regular_tanks. You will see that tank_1 inherits the
meta-slot on the property level (solid square) from this class.

18. Now display the local popup menu for the property level and select
the Edit Meta-Slot option. The system displays the meta-slot for
Regular_tanks.level. Notice that it is here that data validation is
defined. This shows that objects of a class can inherit this important
feature like other meta-slot fields.

19. To display the data validation definition, place the Meta-Slot Editor in
edit mode by selecting the “pencil and paper” icon, then click on the
data validation field to view the string in the text edit line of the editor.
The field has the following user-defined validation expression:

SELF.level > 0 AND SELF.level < 2000

Notice that we have used the SELF and AND keywords
to simplify the definition and make it generic for each
object that inherits the meta-slot. See the Intelligent
Rules Element Language Reference for a description of
these and other keywords.

Select the “stop sign” icon to cancel edit mode in the
Meta-Slot Editor, then close the editor to return to the
object network.

20. Let’s visualize the data validation function in the object network by
using the display filter window. Display the Object menu from the
Object Network window menu bar and select Options.... The system
displays a dialog window that lets you filter what appears in the Object
Language Programmer’s Guide 135

Chapter Primer3
Network. Select the “All” check box to include “Validation functions”
and click on the Ok button to return to the Object Network.

21. Expand the object network diagram to the right by clicking on the
property level. The system expands the diagram to show the
validation function which appears with an inverted triangle:

22. Close the Object Network and return to the Rules Element main
window. The system is still waiting for you to supply a value for
tank_1.

23. Enter a value finally for tank_1 of “150”. Notice the system accepts the
value because it is in range.

24. To complete the session, enter a value of “10”. The system displays the
engine status “Done” in the Engine Status field.

25. Proceed to the next section without making further changes.

By reusing the currently displayed rule network diagram the next
knowledge processing session can be completed in twenty minutes or less.
You can also conclude the current knowledge processing session and exit
the application.
136 Language Programmer’s Guide

Knowledge Processing - Session 2
Knowledge Processing - Session 2
You will conduct your second session in a similar fashion to the first session.
You should still have primer.tkb and primer1.tkb loaded in memory.
Both sessions use the same rules for knowledge processing. In this session,
however, you will see how to pause the inference engine by placing a
breakpoint filter on a method.

Additional, important points of Session Two include the following.

■ Examining the way a method and its actions are triggered.

■ How to define a method filter (breakpoint) in the Object Network
window.

Use the following procedure to conduct session two:

1. Before beginning a new session, you must select the Restart option on
the Expert menu.

2. If the Rule Network window does not currently show the final rule
network diagram from session one, display the global popup menu and
select the Focus on Hypothesis option from the list. Double-click on the
pump_breakdown hypothesis from the selection window. Display the
local popup menu for the initialization hypothesis and select the
Full Left Extent option from the list.

3. Scroll the network window to view rule initialization . In the first
session we saw that the initialization rule contains a SendMessage
operator in the list of actions. We can see from the rule displayed that
the method being triggered is named Init, but it would help to have a
View Line to see the entire definition.

4. Display the local popup menu for the Rule Network window and select
the View Line option. The system displays the View Line window.
Position your mouse cursor over the SendMessage action in the rule
network diagram to see the full line of text. (Macintosh users must first
click on the View Line window.)

Notice that the Init method actions will be sent to the members of the
class tanks since the pattern-matching syntax (<|tanks|>) is used.

5. Before we proceed let’s view the method action in the Method Editor by
selecting the Method option from the Edit menu on the main menu bar.
The system displays the Method Editor.

6. Browse the Method Editor by selecting the “I-J” index to view the Init
method.
Language Programmer’s Guide 137

Chapter Primer3
7. Since this method’s action is not triggered conditionally, only the
THEN portion of the IF-THEN-ELSE template is completed. You will
need to scroll the template to bring the THEN section into view. The
action that appears in this example is an “Execute” statement that
assigns a name to the target atom (members of the class tanks). See the
Language Reference manual for complete information about the
Execute library routines.

8. Select the Edit mode and click on the third field to view the Execute
properties of the AtomNameValue routine. Click on Cancel to return to
the editor. Close the Method Editor.

9. Let’s return to the Rule Network to visualize the method in the Object
Network. Since we already know from the View Line that Init acts on
the class tanks, we could focus the Object Network on that class:

10. Select “Object” from the Browsers menu on the main menu bar. The
system displays the empty Object Network window.

11. Before we can display methods, you may need to choose display
options in the Options window for the Object Network. Display the
window-specific “Object” menu from the main menu bar and select the
menu item “Options...”. The system displays a small window that lets
you filter what appears in the Object Network. Select the “All” check
box to include “Methods”. Close the Object Options window.

12. Click inside the Object Network window and display the global popup
menu, select the Focus on Class option from the list. A selection
window lists every knowledge base class available for display in the
object network. Double click on the class tanks.
138 Language Programmer’s Guide

Knowledge Processing - Session 2
13. Scroll the object network to view the tanks class. The diagram displays
the method Init which appears with a diamond.

14. In the first session we processed the knowledge base by suggesting the
Initialization hypothesis. This time, let’s first place a breakpoint
on the method “Init” to see how the system behaves during processing.

15. To view the method in the Object Network expand the diagram to the
right of the Init name. The system shows the “Execute” statement that
we previously displayed in the “THEN” template section of the Method
Editor.

16. To place the filter on the method, display the local popup menu for the
Init method in the Object Network window. Select the “Method
Filter...” option. The system displays the Filter dialog window.

17. Since the “Init” method is already selected and it is already attached to
the class “tanks”, you need only specify where to place the filter. Select
the tanks class member tank_1 in the righthand list. The system places
a small stop sign icon with an “F” inside beside tank_1.

18. To validate your filter selection click on the Close button.

19. Return to the Object Network and select the “stop sign” icon from the
window icon bar, then click directly on the method action “Execute...”.
The system places a small breakpoint icon in the object network
diagram with an “F” inside to indicate that it is a selective breakpoint
Language Programmer’s Guide 139

Chapter Primer3
that you have defined in the Filter dialog window (as opposed to a
regular breakpoint that acts on all members of “tanks”).

20. With the filter in place, let’s place the initialization hypothesis on
the Rules Element agenda. Suggest and then Knowcess.

21. Click on the option “True” and then select the Ok button to make the
condition TRUE. The system pauses immediately as the method action
is triggered and displays the reason in the Message field at the bottom
of the Main Window.

22. Return to the Rule Network window before selecting the Continue
button. The system displays the status of the initialization rule. Notice
that the system has not completed rule evaluation and that the
SendMessage action has been triggered.

23. Return to the Object Network window to visualize the effect of the
method action (from the Execute statement). Expand the object
network diagram to the right from tank_1 and tank_2.

24. Select the Change Settings option from the Options menu. Select the
Show Values option to reveal the current values of data in the Object
Network. Click on the Ok button to return to the Object Network.
Notice that slot tank_1.name has been defined, but tank_2.name is
still UNKNOWN. This is the result of the method filter which has
temporarily halted the inference engine after sending the action to
tank_1, but before tank_2.

25. Return to the Main Window and finally select the Continue button. The
inference engine resumes processing and the next condition is
evaluated in the already familiar pump_breakdown hypothesis (see
session one).
140 Language Programmer’s Guide

Knowledge Processing - Session 3
26. Return to the Object Network window to see the status of the slot
tank_2.name. It has been defined by the action of the “Init” method
as we would expect.

27. Close the Object Network and return to the Main Window. The system
is still waiting for you to supply a value for current_task.

28. Double click on the option “defueling” to make the single condition
TRUE.

29. To complete the session, enter a value now for tank_1 of “35”. The
system accepts the value without complaint because it is in range (see
session one for more information about data validation). The system
display “Done” in the Engine Status field of the Main Window session
control panel.

30. Examine the final evaluation status of the Rule Network diagram.
Notice that the pump_breakdown hypothesis is now FALSE indicating
that it failed. The Object Network diagram also shows a similar result.

Warning: Proceed to the next section after unloading primer1.tkb.

This concludes the demonstration of knowledge processing using methods,
data validation, filters, and other features available to you for knowledge
base design. You may want to experiment with these two knowledge bases
by restarting the data and placing additional filters on the members of the
tanks class before processing again.

Session Three begins with an all new knowledge base in order to
demonstrate how the Resource Browser and the GUI engine can be used to
replace the standard session control panel provided by the Main Window.

Knowledge Processing - Session 3
Conduct your third session after unloading primer1.tkb. This session
requires that you load primer.tkb and primer2.tkb into memory.
Language Programmer’s Guide 141

Chapter Primer3
Note: Before loading the primer files, we recommend that you first unload
both files from the previous session (primer1.tkb and
primer.tkb). Compilation errors may result if changes were made
during the last session.

This session demonstrates how scripts can initiate actions in the Rules
Element. These scripts allow two-way communication between Rules
Element atoms and graphical user interface (GUI) elements. Scripts are not
only responsible for receiving and sending GUI output, they also receive
and display input from the Rules Element. This capability of the Rules
Element provides a convenient way for you to design your own
knowledge-based application front-end.

In this session, we will put many scripts to use, process knowledge bases,
and even view the Script Editor that you can use to create/modify these
scripts on the fly (during knowledge processing).

Additional, important points of Session Three include the following.

■ Using check box element scripts to initialize knowledge processing by
triggering a Suggest hypothesis action from a method (the method is
defined in the Rules Element knowledge base).

■ Using input field scripts to display Rules Element prompt lines.

■ Using several input field scripts to accept “forms-type” input and
output, thus combining several questions into one window.

■ Note the distinction between “immediate validation” and “deferred
validation” (immediate validation can trigger actions immediately,
while deferred validation requires the end user to initiate validation to
execute runtime actions).

■ Observe the effect the GUI engine has on the Rules Element inference
engine (Main Window shows engine status is “STOPPED” while the
GUI engine handles processing).

■ Observe how the links to GUI objects can be inherited down from an
application class to each of its objects through an Order of Sources
method.

Use the following procedure to conduct Session Three:

1. We want to load the compiled resource file (.dat) into system memory
and visualize the already built GUI windows.

2. Click on the main window and display the local popup menu in the
scrollable area labeled GUI Libraries. Select the Open Application
option from the menu. The system displays the file selection dialog
window.

3. In the EE/c/examples/rules/primer or
EE/cpp/examples/rules/primer directory double-click on the
primer.dat file that defines the GUI windows. The system loads the
resources and displays the Resource Browser.

4. To view the Primer library’s modules display the local popup menu for
the Library node and select Extend... Modules.
142 Language Programmer’s Guide

Knowledge Processing - Session 3
5. Move the mouse cursor over the browser node “End” until the
righthand arrow appears, then click the mouse button. The system
expands the node to the right to show the components of the resource
module called “End”. Repeat this procedure for the remaining two
nodes: “Form” and “Start”.

6. Before we begin the actual knowledge processing session, let’s take a
diversion to examine several primer.dat elements in the Resource
Browser. Scroll the resource browser until the “Start” module appears.
Position the mouse cursor over the Start module node and display the
local popup menu. Select the Edit Application Script option from the
menu. The system displays the Script Editor with the script that tells the
system how to begin a session with a GUI. The session in this exercise
uses this application script currently displayed.

7. Return to the Resource Browser and scroll until the last node of the
“Start” module appears, it is labeled “Win2”. Double click on the
“Win2” node. The system displays the Window Editor of the Resource
Browser. This special editor lets you layout and edit the contents of an
Language Programmer’s Guide 143

Chapter Primer3
entire window. In this case, we see the already created window that
contains check boxes corresponding to the familiar primer.tkb
hypotheses.

8. Let’s view the script that defines the check boxes’ behavior during a
knowledge processing session. Inside the Hypos window click on the
window element labeled “Done” so this item appears selected. Then go
to the Window Editor menu bar and choose the “Edit Script ” option
from the Edit menu. The system displays the Script Editor.

9. To try out the script template, we’ll recreate the line which suggests the
pump_breakdown hypothesis. In this exercise, we won’t save the
changes so don’t be too concerned about correctness.

objsvr.pump_breakdown.Value.Suggest();

To write a script you can either type directly into the
script editor text area, or you can assemble the script
from the already defined system objects which appear in
the scrollable list of Categories on the left side of
the Script Editor. In this example we will combine these
approaches. Begin by creating an empty line below the
script text objsvr.pump_breakdown.Value.Suggest();. To
do so, insert your text cursor at the end of the script
line and press the Return key.

With your cursor at the beginning of the empty line,
press the tab key twice so the text to be inserted has
144 Language Programmer’s Guide

Knowledge Processing - Session 3
the proper indentation. Type the variable name objsvr to
identify the server needed to process a method. In this
case, a variable name substitutes for the object server
used to process the method Suggest. Type a period (.)
after the word objsvr to indicate the end of this script
element.

10. To get the hypothesis we want for this line we could type
pump_breakdown but lets use the Script Editor instead. Select the IRE
Slots item from the Category drop-down menu. The left hand side of
the Script Editor displays all the slots that belong to the currently
loaded knowledge base files. You can also view other types of
information in this list by changing the selection on the Category menu.

11. Highlight the pump_breakdown.Value hypothesis slot in the list on
the left of the Script Editor. To add the item into the script text area at
the current text insertion point, select the Paste button on the toolbar
along the top of the Script Editor (it is the forth button from the left). It
is also possible to drag items from the scrollable list into the script text
area by moving the mouse cursor to the right of the highlighted item
until the arrow cursor changes to the “drag” cursor. If you want to try
drag and drop, with the drag cursor displayed hold the left mouse
button down and drag the highlighted pump_breakdown item into the
script text area where you want the item to appear. Release the mouse
button when you have positioned the text cursor at the desired
insertion point. Remember to type a period (.) after
pump_breakdown.Value to indicate the end of this script element.

12. To insert the method used to act on the pump_breakdown hypothesis
lets use the Script Editor again. This time select the Repositories item
from the Category drop-down menu. The left hand side of the Script
Editor displays the list of registered script servers. On PC platforms you
will see Microsoft applications that are registered OLE servers
alongside Neuron Data Elements servers. These servers allow you to
incorporate the script commands from any registered application into
our own script. In this case, you need to double-click on the Neuron
Data Rules Server item from the list to complete our script line.

13. The scrollable list changes to display the components of the Rules
Server. Notice the convention of ending the “meta-classes” in “s” for a
given class. Object-oriented languages define the meta-class as those
methods and constants that apply to all instances of the class. In this
example, we are using the slot class functions and not its meta-class.
Double-click on the Slot item in the list.

14. Scroll the list of displayed Slot instance methods and highlight
integer Suggest(). The Suggest method can be added to our script
line using the same techniques described above. Finally, terminate the
line with a semi-colon (;) and you will have duplicated the script line:

objsvr.pump_breakdown.Value.Suggest();

15. Now let’s return to the Rules Element main window, but first close
these last two editor windows. Select the Close option on the Script
Editor File menu without saving your changes. Select the Cancel button
on the Window Editor.

16. From the Rules Element main window be sure to unload
primer1.tkb and primer.tkb if not previously done. Display the
Language Programmer’s Guide 145

Chapter Primer3
local popup menu inside the lefthand side of the Main Window and
choose the “Clear KB...” option from the menu. The system displays the
dialog window for you to make the Clear All selection.

17. Redisplay the local popup menu and this time select the “Load KB...”
option from the menu. You want to load the files primer.tkb and
primer2.tkb into system memory in that order. (Loading file
primer2.tkb before primer.tkb will result in compilation errors; if
necessary unload and start again.)

18. Let’s begin a Rules processing session this time using the elements of
the graphical user interface and scripting language that we’ve just
finished exploring. Move your mouse cursor to the Expert menu of the
Rules Element main menu bar and select the Run with Application
Script option. This option tells the system that you want to execute the
script attached to the Start module that we displayed in the Script
Editor. It is unnecessary to specify the name of the script since only one
“application script” may be defined for the application.

19. The application script displays the Start window which contains
several GUI resources, including a prompt line, a choice box, and two
push buttons.
146 Language Programmer’s Guide

Knowledge Processing - Session 3
20. Select the Help push button to view a sample help window. The script
attached to the Help button triggered a script method that opens the
Help window. To close the Help window click on the Return button.

21. Return to the Start window and select the Start button. The system now
displays the hypothesis selection window we viewed previously in the
Window Editor. At this time do not make a hypothesis selection.

22. Before selecting a hypothesis to suggest, let’s set-up debugging tools
that we can use to track the rules and GUI-script processing.

23. Select the Object option from the Browsers menu in the Rules Element
menu bar. The system displays the empty Object Network window.
Select the Focus on Class option and choose Tanks from the list of
classes. The system displays the Tanks class in the Object Network.

24. To view the method defined at the Tanks class level, open the Options
dialog and select methods from the list. When you expand the diagram
to the right of the level property for the class Tanks, the system
shows the OrderOfSources system method used to define the value of
tank_1.level and tank_2.level.

25. We want to place filter on the method to halt the rules processing when
this method is triggered. Select the Method Filter... option from the local
popup menu on the OrderofSources method. The system displays the
Filter dialog window. Select the slot tank_1.level from the list on
Language Programmer’s Guide 147

Chapter Primer3
the right side of the dialog. The system places the Filter stop sign beside
the selection. Close the Filter dialog window to validate the selection.

26. Return to the Object Network and select the “stop sign” icon from the
window icon bar, then click directly on the OrderOfSources method.
The system places a small breakpoint icon in the object network
diagram with an “F” inside to indicate that it is a selective breakpoint
that you have defined in the Filter dialog window (as opposed to a
regular breakpoint that acts on all members of “Tanks”).

27. To view script processing, select the Script option from the Edit menu
of the Rules Element menu bar. When the Script Editor appears select
the Script Trace button on the toolbar along the top of the Script Editor
(it is the last button on the right). The system displays the empty Trace
window.

28. You can close the Object Network window and the Script Editor to clear
your screen, but keep the Trace window open. Return to the Hypos
selection window and click on the Pump Breakdown hypothesis check
box; the GUI engine will trigger the script actions for this atom in the
Rules Element, but as you might suspect it requires you to press the
Done button to validate the entry. This demonstrates the use of
“deferred validation” to hold information without processing it
immediately.
148 Language Programmer’s Guide

Knowledge Processing - Session 3
29. To visualize the effect of the just suggested hypothesis, we can use the
Rule Network or the Agenda Monitor. Here’s what it looks like when
you focus the network on the Current Rule.

30. After suggesting the hypothesis and triggering a knowledge processing
session, the script engine immediately displays the first request for data
from the inference engine in the GUI Start window. Return to the GUI
Start window (only a portion is shown below) and click on the drop
down menu to select the “Defueling” option. You will need to click on
the Validate button to process the selection.

31. Since we are interested in visualizing the effect the GUI engine has on
Rules Element processing, observe the status of the inference engine
after this last action. The Main Window shows the engine is “Stopped”
and states that the breakpoint on the method was triggered.

32. Because the inference engine has stopped we might wish to locate the
current evaluation. This time focusing on the current rule in the Rule
Network does not reveal the current evaluation.

33. As we already know, the OrderOfSources method is responsible for
determining the value of tank_1.level. To confirm that it was
Language Programmer’s Guide 149

Chapter Primer3
inherited from the Tanks class, we can return to the Script Trace
window and view the results.

34. Return to the Rules Element main window and click on the Continue
button. The system continues processing. This time we have a very
interesting new window that uses an input table to accept the values of
the child object of class tanks. This GUI List of Tanks window is
particularly useful for combining several question panels into one. To
enter a value into one of the input fields, click on the field and press the
Ctrl+E keys on your keyboard. Entries must be validated by pressing
the Return key.

35. Enter a value of “20” for auxiliary_tank_1, press Return.
Enter a value of “20” for auxiliary_tank_2, press Return.
Enter a value of “140” for tank_1, and press Return.
Leave tank_2 Unknown as shown below.

36. After you have entered three of the four tank values, return to the Main
Window and select the Transcript button. The Transcript window will
appear on your screen but must be enabled to display a detailed
150 Language Programmer’s Guide

Knowledge Processing - Session 3
transcript of the processing events. Select the Pencil icon button to write
enable the Transcript.

37. Now return to the GUI List of Tanks window and position it so that the
Transcript window remains visible. You are now ready to send the
form-input to the system for processing. Click on the Validate button.

38. The first thing we will observe after sending the data to the system for
processing is that the same window appears to solicit data for the
intentionally withheld tank_2.level. Examining the previously
enabled Transcript reveals the system triggered a series of events
resulting from the just processed data. Scroll down to the end of the text
displayed in your Transcript window; it will contain the messages
shown below if you have entered the data correctly.

39. Let’s return to the Rule Network to visualize the effect of the just
processed data on the system. Here’s what it looks like when you focus
the network on the previously displayed rule.

40. Notice the target symbol has moved from the first to the second
condition of the rule. Because we intentionally withheld the data for
tank_2.level in the GUI List of Tanks window, the system was not
able to complete the evaluation of this rule.

41. The reason the same List of Tanks window appeared to request the data
for tank_2.level demonstrates that a single GUI input window can
be defined at the class level for use by multiple child objects. Examine
the Transcript window and verify for yourself that FormInput.Win
resource was inherited by Tank_2.level from the class tanks.

42. Return to the GUI List of Tanks window and enter a value of “35” for
tank_2, press Return key (to validate the data), and press the Validate
button. This time the system displays the End window with the
conclusion about the hypothesis Pump_breakdown which was
“suggested” when this session began. This last action concludes our
Language Programmer’s Guide 151

Chapter Primer3
tour of a knowledge-based application with a graphical user interface
as a front-end.

This concludes our demonstration of important features offered by the
Rules Element. We also investigated how the script language works across
Neuron Data Elements to increase the power of your applications. The
Neuron Data Elements Environment provides full intra-operability across
the Elements with its own object-oriented script language, as well as C and
C++ programming languages.

For additional information about the Primer components, refer to the
appendices found in this manual.
152 Language Programmer’s Guide

Appendix
A Primer Decomposition A

About this Appendix
Chapter Three, “Primer” demonstrated how the Intelligent Rules Element
behaves when it processes the rules and objects of the primer
knowledge-base. This appendix uses the same knowledge base to explain
how the Rules Element’s unique processing behavior can more closely
simulate the expert’s way of solving problems.

The rules in the following sections describe a system diagnosis problem.
The diagnosis is made using data supplied by the end user. Once the
diagnosis is complete and the appropriate conditions are met, the system
performs some calculations useful to the end user. Please follow the
discussion closely to benefit from rule and object structure diagrams of this
appendix.

Rules as Building Blocks
Chapter One, “Representation” described the structure of rules in general
terms. Now we will see how these IF/THEN/DO statements let you define
many useful structures. The entire rule includes one or more conditions and
a single hypothesis that the conditions prove. Figure A–1 shows these rule
elements in a typical rule graph diagram as described in Chapter Three,
“Facilities.” In the diagram the left side (with two branches) are the rule
conditions and the right side (with a single branch) the hypothesis.

Figure A–1 One Rule Describes a Specific Situation

The rule shown in Figure A–1 comes from our knowledge base. The single
rule stands on its own as a complete thought or “situation.” If we want to
describe the situation represented by this single rule, we would say:

A pump breakdown exists when:

■ Current task is defueling and a problem in tank two exists.

In this case we see that the hypothesis pump_breakdown is a consequence
of two conditions. The hypothesis will only be true when both conditions
are proven true because conditions in a single rule are always logically
“added.” Proving the rule’s conditions enhances the concept of the rule as
a situation with a single consequence. It means that the conditions you
assign to a specific rule must all contribute to the same outcome when actual
data is applied.

Data can come from within the knowledge base or from an outside source
such as a database or end user. Data lets the Rules Element evaluate the
condition and assign the condition one of three values: TRUE, FALSE, or
Language Programmer’s Guide 153

Appendix Primer DecompositionA
NOTKNOWN. The evaluation of conditions in turn determines the value of the
hypothesis which can be TRUE, FALSE, or NOTKNOWN. Table A–1
summarizes the evaluation relationship between a single rule’s conditions
and its hypothesis.

Table A–1 Single Rule Evaluation

The single rule is the building-block of the knowledge base. Let’s say we
want to create another rule with the hypothesis used in Figure A–1 to
describe another situation of a pump breakdown. In this case the
hypothesis pump_breakdown will be a consequence of two rules, one with
two conditions and the other with three conditions (and one action
statement) as shown in Figure A–2.

Figure A–2 Typical And/Or Rule Diagram

The structure shown in Figure A–2 represents a typical rule graph diagram
wherein multiple rules share the same hypothesis. This arrangement of
rules is expandable and appears repeatedly in Rules Element applications.
The first ply from the hypothesis is always an “or” decision while the
second ply is an “and” decision. Putting it another way, the hypothesis
pump_breakdown is validated by the conditions in either rule r.5 OR r.6
when at least one rules’ conditions are ALL proven true. If we want to
describe the situation represented by these two rules, we would say:

A pump breakdown exists when:

■ Current task is defueling, and a problem in tank two exists.

or

■ Current task is defueling, and level of tank one is less than 50, and level
of any of the auxiliary tanks is less than 20.

Table A–2 summarizes the evaluation relationships between multiple rules
leading to the same hypothesis.

Table A–2 Multiple Rule Evaluation

Conditions Hypothesis Status

All are TRUE TRUE

Any one is FALSE FALSE

Any one is NOTKNOWN and none are
FALSE

NOTKNOWN

Rules Hypothesis Status

Any are TRUE TRUE

All are FALSE FALSE

Any one is NOTKNOWN and none are
TRUE

NOTKNOWN
154 Language Programmer’s Guide

Inferencing with Multiple Rules
The rules r.5 and r.6 thus far address the diagnostic task of our small
knowledge base. Now let’s add a rule to collect data that identifies a
problem in tank two. So let’s assume that a rule must be created for the
following situation.

A problem in tank two exists when:

■ Level in tank two is less than 20.

■ Level in tank one multiplied by 2/3 is greater than 85.

Figure A–3 shows the new rule and its relationship to the original rule r.6.

Figure A–3 Rules Linked by Subgoal Hypotheses

The new rule has conditions which test diagnostic parameters. This rule’s
hypothesis appears as part of the condition of rule r.6 as follows:

Yes tank_2.problem (condition in rule r.6)

This special condition uses the Rules Element “Yes” operator to test the
value of the hypothesis tank_2.problem which is itself the consequence
of the conditions in the new rule r.7. A hypothesis test condition translates
into, “Is the value of the hypothesis, as determined by its conditions,
TRUE?”

Hypothesis test conditions are termed subgoal hypotheses to distinguish
them from a hypothesis that is a final outcome. Hypotheses that are
themselves evaluated are considered subgoals of the system because they
always contribute to the outcome of a terminal hypothesis (such as
pump_breakdown).

Inferencing with Multiple Rules
Inferencing is the process the Rules Element uses to reach conclusions in a
knowledge base. To begin inferencing on the rule base shown in Figure A–3
we might start with known data to force the evaluate of conditions, or we
might suggest a hypothesis for evaluation. Either way the system will try to
establish a value for the relevant hypotheses and will cease inferencing only
after one or more terminal hypotheses have a value.

Suggesting a terminal hypothesis forces the system to use deductive
reasoning. This means in our example, that suggesting the terminal
hypothesis pump_breakdown would cause evaluation of the rule base to
proceed in the following order: r.6, r.7, and then r.5. This type of processing
is specifically known as backward chaining due to the direction of rule
evaluation and the fact that the rules form a chain of reasoning. The rule
Language Programmer’s Guide 155

Appendix Primer DecompositionA
diagram in Figure A–4 depicts this backward chaining path from the
terminal hypothesis pump_breakdown .

Figure A–4 Deductive Reasoning (Backward Chaining)

If the rule set has only one terminal hypothesis, as shown in Figure A–4,
then inferencing can go no further once its value has been established. But
what happens in the case where the knowledge base includes more than one
terminal hypothesis? For example, our primer knowledge base still requires
rules to handle the calculations once the diagnostic task is completed. This
could involve another set of rules that seems independent from the first. So
let’s assume that a rule must be created for the following situation.

Rotation can occur when:

■ The current task is refueling and the device orientation is outward.

This situation forms the single rule shown in Figure A–5, and it shares no
hypotheses with the rules shown in Figure A–4. Therefore, initiating
backward chaining on this rule would seem very simple indeed.

Figure A–5 Terminal Hypothesis

Although the rule in Figure A–5 has a terminal hypothesis with no subgoal
hypotheses, it does have something in common with the first set of rules:
conditions or, to be more exact, conditions which test the same data. Notice
that current_task is found also in rules r.5 and r.6. This relationship is
called inductive because the data which the system obtains forces the
evaluation of all hypotheses whose conditions can test the data.

Figure A–6 Rules Linked by Data

Figure A–6 shows how the graphical interface represents the inductive
reasoning path between hypotheses. In this example, the first condition of
rule r.4 uses data shared by the subgoal hypotheses valve_problem and
pump_breakdown. This means that suggesting the terminal hypothesis
execute_rotation would cause evaluation of the rule base to proceed in
the following order: r.4, r.6, r.7, r.5 and then r.8. This type of processing is
specifically known as forward chaining due to the direction of rule
evaluation (across rules). The rule diagram in Figure A–7 depicts this
forward chaining path from the terminal hypothesis execute_rotation.
156 Language Programmer’s Guide

Inferencing with Multiple Rules
Note: In the Rules Element, data that conditions share act as gates for more
efficient inductive reasoning. The “gate” permits rule evaluation to
proceed only when the data makes the condition TRUE. If the data
makes the condition FALSE or NOTKNOWN, the rule’s hypothesis
is bypassed for evaluation.

Figure A–7 Inductive Reasoning from Conditions (Forward Chaining)

In order to finish designing the knowledge base, we have to create the rules
that perform the calculations. Let’s assume this means adding two new
rules r.3 and r.1 as shown in Figure A–8. Rule r.1 brings out another aspect
of inductive reasoning since we see that rule actions, as well as conditions,
can produce forwarding chaining of data. Figure A–8 shows how the
graphical interface represents the inductive reasoning path starting from
rule actions.

Figure A–8 Inductive Reasoning from Actions (Forward Chaining)

To the inference engine there is a difference between inductive reasoning
from rule actions and inductive reasoning from conditions. Forwarding
data from rule actions proceeds to other conditions only, while conditions
forward only to other conditions through “gates.” This means that rule
actions that share data with conditions can cause other hypotheses to be
evaluated, but conditions that share data with actions cannot. Figure A–8
Language Programmer’s Guide 157

Appendix Primer DecompositionA
shows the slot current_task is found in the condition of rule
execute_rotation and the action of rule check_reference (as well as
rules pump_breakdown and valve_problem). Accordingly, the system
will forward the slot current_task from rule check_reference to rule
execute_rotation but not the reverse.

Inferencing Flow Control
The two methods of reasoning, inductive and deductive, described in the
previous section demonstrate the versatility of Rules Element rules. Rules
Element rules can operate in either mode. Whether inferencing proceeds
along the rules in a backward or a forward chaining fashion depends merely
on whether you start knowledge processing by suggesting a terminal
hypothesis or volunteering known data.

But what would happen if you started knowledge processing with known
data and an unknown hypothesis simultaneously? How would the system
proceed to use the rules first, inductively or deductively? This is where the
inference engine, acting as the master of the game, becomes important. The
Rules Element inference engine has guidelines that establish reasoning
priorities as the next paragraphs show.

Let’s examine another type of inferencing mechanism that will let us
connect the two sets of rules shown in Figure A–8 in the desired direction of
evaluation. Recall that our knowledge base is to perform calculations only
after the diagnostic is complete and the conditions of rule
execute_rotation are satisfied. The situation could be summarized as
follows.

Device rotation calculations can occur when:

■ The current task is refueling and the device orientation is outward and
no valve or pump problems are detected.

We need an inferencing link between the hypothesis execute_rotation
and the hypothesis device_rotation that is neither forward or backward
chaining. In effect the link should allow device_rotation to occur only
after the terminal hypothesis execute_rotation evaluates to TRUE.
This type of link is available through the Rules Element and is termed a
context link. In effect the context link is an inferencing flow control
mechanism because it lets you establish relationships between rules that
would otherwise have no logical connection.

Figure A–9 Context Link Between Hypotheses

Figure A–9 shows how the graphical interface represents the context link
between hypotheses. In our example, this dashed line means suggesting the
terminal hypothesis execute_rotation will not immediately cause the
evaluation of the hypothesis device_rotation.

The evaluation of the terminal hypothesis device_rotation proceeds
only after the evaluation of all hypotheses related to execute_rotation
concludes. This means that suggesting the terminal hypothesis
158 Language Programmer’s Guide

Inferencing Flow Control
execute_rotation in our now complete knowledge base would cause
evaluation of the rule base to proceed in two rule groups or “knowledge
islands.” The rule diagram in Figure A–10 depicts these two knowledge
islands connected by a context link.

Figure A–10 Knowledge Islands Connected by Context Link

The context link is also known as a weak link to distinguish it from the
“stronger” links formed by backward and forward chaining. It is a weaker
link because it imparts a lower rule evaluation priority during inferencing.
Table A–3 summarizes the rule evaluation priorities each of the various
inferencing mechanisms receive from the Rules Element inference engine.

Note: In actual practice the priority the inference engine assigns each
mechanism is more complex. For a more complete description of
these mechanisms and their priorities, refer to the Functional
Description Manual.

Table A–3 Rules Element Inferencing Mechanism Priorities

Type of Inferencing Evaluation Priority

Backward Chaining:

 from suggested hypos First

 from sub-goal hypos Second

Forward Chaining:

from conditions Third

from actions Fourth

Context Links Fifth
Language Programmer’s Guide 159

Appendix Primer DecompositionA
Storing Data in Objects
Thus far our discussion of rule evaluation has centered on finding data to
complete the condition. Once the inference engine begins evaluating a rule,
the system must obtain the value of relevant data to conclude whether the
rule’s conditions are TRUE, FALSE, or NOTKNOWN (in the case where the
specific value is “notknown”). In this discussion it has not become apparent
that our data are actually objects that may belong to larger classes which
may in turn store values.

The rule side of the application hides the object structure because the two
integrate so easily. This is due in part to the ease with which the rule syntax
handles data. To actually view the application’s object structure we can use
the counterpart to the rule diagrams created with the help of the Rules
Element graphical interface. The following figures are examples of object
structure diagrams that reveal the class/object relationships in our sample
knowledge base.

Figure A–11 Declared and Undeclared Object Structures

Figure A–11 depicts a range of declared and undeclared object structures
that can be found in our rules. The structure at the bottom reveals that the
slot current_task is actually an object (graphically represented by a
triangle) and possesses the property (represented by a box) Value. In this
case the rule used data that was not defined to be an object with a specific
property, and the system automatically created an object and property to
store the value. Figure A–11 also shows two declared objects that were
created with specific properties attached such as tank_1.level or
device.orientation, where level and orientation are the
properties of tank_1 and device. The structure at the top reveals another
aspect of the object structure, since the object tank_1 actually belongs to the
class (represented by a circle) regular_tanks. In this case, tank_1 (and
tank_2) automatically inherit the properties level and problem from their
parent class.

Figure A–12 depicts the inheritance of properties by the objects
auxiliary_tank_1 and auxiliary_tank_2 down from two classes:
tanks and aux_tanks. Notice how the classes aux_tanks and
160 Language Programmer’s Guide

Reinitiating Inferencing
regular_tanks are actually sub-classes of the comprehensive class
tanks.

Figure A–12 Inheritance of Properties from Class to Objects

Inheritance in Rules Element applications is not limited to properties. It is
also possible for objects to inherit user-defined methods called meta-slots.
The designer of an application can use methods when they want to attach
procedural information to the object structure. For instance, Figure A–13
shows the only instance in our application where meta-slots are used.

Figure A–13 Methods and Meta-Slots

Reinitiating Inferencing
To complete our understanding of the primer knowledge base let’s examine
the Rules Element’s ability to reuse previously evaluated rules. Let’s
assume the diagnostic task must be performed once before the calculations
and then once after the calculations. This implies reusing the same rules
that already established a value for the terminal hypotheses
valve_problem and pump_breakdown, but the Rules Element will in fact
permit these rules to fire again if it finds reason to do so. For instance, if new
data arrives, the Rules Element applies it to the rules’ conditions to
determine whether it changes the evaluation outcome of their hypotheses.
The action statement in the check_reference rule shown in Figure A–14
demonstrates this situation by assigning the value “defueling” to
current_task through the Rules Element “Let” operator. This action
statement translates into, “After the conditions in the rule are all found to be
Language Programmer’s Guide 161

Appendix Primer DecompositionA
TRUE, let the specified slot (current_task) equal the value given
(defueling).”

Figure A–14 Forwarding Data Can Cause Revisions

As Figure A–14 shows, the slot current_task in the check_reference
rule is also shared with the rules leading to three other hypotheses.
Therefore, if the action of rule r.1 fires (when the two conditions are TRUE),
the Rules Element will forward the value of current_task to those rules
which share that slot. In this case it is shared by rules r.8, r.6, r.5 and r.4, but
notice that only the hypothesis pump_breakdown has a chance to evaluate
to TRUE. The hypotheses valve_problem and execute_rotation will
automatically evaluate to FALSE because their first conditions require the
slot current_task to equal “refueling.”

This concludes our discussion of the primer knowledge base. For more
information about the order of rule evaluation in this application, refer to
Chapter Two, “Inference Engine Processing.” Chapter Three, “Primer” uses
the primer knowledge base to demonstrate how processing occurs in the
Rules Element. Refer also to Appendix B, “Primer Text File” for a
commented file listing of the knowledge base as it appears in the Rules
Element’s own text file format. Appendix C, “Primer.Dat Scripts” gives a
listing of the scripts created for the graphical user interface portion of the
primer knowledge base.
162 Language Programmer’s Guide

Appendix
B Primer KB Text Format B

About this Appendix
This appendix gives the listing of the three primer knowledge base files
designed for use with this manual. The listing is the Intelligent Rules
Element code generated by the system when a knowledge base file is saved
in the Rules Element text format. The Rules Element can also save files in a
compiled format that is compatible with the development platform only.
The developer specifies the file format in the Save Knowledge Base dialog
window.

The text format is compatible with the Rules Element running on all
platforms. Saving a knowledge base in this format also lets the developer
familiar with the format make modifications directly to the file using any
text editor. For details about the text format itself, refer to Appendix E,
“Text KB Syntax” in the User’s Guide.

Data Type Listing
The following definitions of data types used in the primer knowledge base
appear at the beginning of the text format file. Data types are defined in the
Object Editor window for individual properties of objects or classes.

From Primer.tkb

(@VERSION=040)
(@COMMENTS="@(#)primer.tkb6.6")
(@PROPERTY=control @TYPE=String;)
(@PROPERTY=definition @TYPE=String;)
(@PROPERTY=function_status @TYPE=String;)
(@PROPERTY=hypo @TYPE=Boolean;)
(@PROPERTY=level @TYPE=Float;)
(@PROPERTY=Name @TYPE=String;)
(@PROPERTY=orientation @TYPE=String;)
(@PROPERTY=position @TYPE=String;)
(@PROPERTY=pressure @TYPE=Float;)
(@PROPERTY=problem @TYPE=Boolean;)
(@PROPERTY=prompt @TYPE=String;)
(@PROPERTY=time_init @TYPE=Date;)
(@PROPERTY=x @TYPE=String;)
(@PROPERTY=x_detection @TYPE=String;)
(@PROPERTY=y @TYPE=String;)
(@PROPERTY=z @TYPE=String;)

Rule Listing
The following rule definitions show the eight rules that make up the entire
primer knowledge base. Rules are comprised of left-hand side (LHS)
conditions, a hypothesis (HYPO), and an optional right-hand side (RHS)
actions list that may comprise else actions (ELS). Rules are defined in the
Rule Editor window.
Language Programmer’s Guide 163

Appendix Primer KB Text FormatB
From Primer.tkb

(@RULE=R1
(@LHS=

(SendMessage("GetGyroTimeInit")(@TO=gyro;\
@ARG1=InitTime.Value;))

(>= (InitTime)(0))
(= (device.x_detection)("low"))

)
(@HYPO=check_reference)
(@RHS=

(Assign("defueling")(current_task))
)
(@EHS=

(Assign("refueling")(current_task))
)

)

(@RULE=R2
(@LHS=

(Yes (valve_problem))
(> (time_elapsed_since_problem)(45.0))

)
(@HYPO=contact_control_center)

)

(@RULE=R3
(@LHS=

(= (device.position)("nominal"))
(= (gyro.control)("set"))

)
(@HYPO=device_rotation)
(@RHS=

(SendMessage("GetGyroXYZ")
(@TO=gyro;@ARG1=xyz.Value;))

(Assign(xyz) (gyro.definition))
(Assign(NOW())(theTime))
(SendMessage("SetGyroTimeInit")(@TO=gyro;\

@ARG1=theTime.Value;))
)

)

(@RULE=R4
(@LHS=

(= (current_task)("refueling"))
(= (device.orientation)("outward"))

)
(@HYPO=execute_rotation)

)

(@RULE=R5
@INFCAT=2;
(@LHS=

(= (current_task)("defueling"))
(Yes (tank_2.problem))

)
(@HYPO=pump_breakdown)

)

(@RULE=R6
(@LHS=

(= (current_task)("defueling"))
(< (tank_1.level)(50.0))
(SendMessage("CheckAuxTanksLevelLessThan20")

(@TO=<|aux_tanks|>;\
164 Language Programmer’s Guide

Class and Object Listing
@ARG1=auxTanksLevel.Value;))
(Yes (auxTanksLevel))

)
(@HYPO=pump_breakdown)
(@RHS=

(Assign("on") (<|aux_tanks|>.function_status))
)

)

(@RULE=R7
(@LHS=

(> (tank_1.level*2.0/3.0)(85.0))
(< (tank_2.level)(20.0))

)
(@HYPO=tank_2.problem)

)

(@RULE=R8
(@LHS=

(= (current_task)("refueling"))
(> (tank_1.pressure)(300.0))
(= (device.orientation)("inward"))

)
(@HYPO=valve_problem)
(@RHS=

(Show ("valve_pb.nbm"))
)

)

From Primer1.tkb

(@RULE=initialization
(@LHS=

(Yes (start))
)
(@HYPO=initialization)
(@RHS=

(SendMessage("Init")(@TO=<|tanks|>;))
(Strategy(@VALIDUSER=ACCEPT;))

)
)

Class and Object Listing
The following class and object definitions show the three classes and
various objects of the primer knowledge base. Classes have properties
which their component objects automatically inherit. Objects can have
unique properties and may or may not belong to a particular class. Classes
and Objects are defined in their respective editor windows.

Note: Hypotheses are automatically compiled by the system as objects with
the default property Value.

From Primer.tkb

(@CLASS=aux_tanks
(@PUBLICPROPS=

function_status
level
Name
problem
Language Programmer’s Guide 165

Appendix Primer KB Text FormatB
)
)

(@CLASS=navigational_devices
(@PUBLICPROPS=

x
y
z

)
)

(@CLASS=regular_tanks
(@PUBLICPROPS=

level
Name
problem

)
)

(@CLASS=tanks
(@SUBCLASSES=

aux_tanks
regular_tanks

)
(@PUBLICPROPS=

level
Name
problem

)
)

(@OBJECT=auxiliary_tank_1
(@CLASSES=

aux_tanks
tanks

)
(@PUBLICPROPS=

function_status
level
Name
problem

)
)

(@OBJECT=auxiliary_tank_2
(@CLASSES=

tanks
aux_tanks

)
(@PUBLICPROPS=

function_status
level
Name
problem

)
)

(@OBJECT=auxTanksLevel
(@PUBLICPROPS=

Value @TYPE=Boolean;
)

)

166 Language Programmer’s Guide

Class and Object Listing
(@OBJECT=check_reference
(@PUBLICPROPS=

Value @TYPE=Boolean;
)

)

(@OBJECT=contact_control_center
(@PUBLICPROPS=

Value @TYPE=Boolean;
)

)

(@OBJECT=current_task
(@PUBLICPROPS=

prompt
Value @TYPE=String;

)
)

(@OBJECT=device
(@PUBLICPROPS=

orientation
position
x_detection

)
)

(@OBJECT=device_rotation
(@PUBLICPROPS=

Value @TYPE=Boolean;
)

)

(@OBJECT=execute_rotation
(@PUBLICPROPS=

Value @TYPE=Boolean;
)

)

(@OBJECT=gyro
(@PUBLICPROPS=

control
definition

)
(@PRIVATEPROPS=

time_init
x
y
z

)
)

(@OBJECT=InitTime
(@PUBLICPROPS=

Value @TYPE=Float;
)

)

(@OBJECT=pump_breakdown
(@PUBLICPROPS=

Value @TYPE=Boolean;
)

)

Language Programmer’s Guide 167

Appendix Primer KB Text FormatB
(@OBJECT=tank_1
(@CLASSES=

tanks
regular_tanks

)
(@PUBLICPROPS=

level
Name
pressure
problem

)
)

(@OBJECT=tank_2
(@CLASSES=

tanks
regular_tanks

)
(@PUBLICPROPS=

level
Name
problem

)
)

(@OBJECT=theTime
(@PUBLICPROPS=

Value @TYPE=Date;
)

)

(@OBJECT=time_elapsed_since_problem
(@PUBLICPROPS=

Value @TYPE=Float;
)

)

(@OBJECT=valve_problem
(@PUBLICPROPS=

Value @TYPE=Boolean;
)

)

(@OBJECT=xyz
(@PUBLICPROPS=

Value @TYPE=String;
)

)

From Primer1.tkb

(@OBJECT=initialization
(@PUBLICPROPS=

Value @TYPE=Boolean;
)

)

(@OBJECT=start
(@PUBLICPROPS=

Value @TYPE=Boolean;
)

)

168 Language Programmer’s Guide

Meta-Slot Listing
Meta-Slot Listing
The following listing shows the slots of the primer knowledge base which
have meta-slots defined. In this case, the meta-slots include initial values
(both inheritable and private values), a question window to display, context
links, a data entry format, and a data validation function. Meta-slots for
particular slots are defined in the Meta-Slot Editor window.

From Primer.tkb

(@META=time_init
@FORMAT="hh:mm:ss";

)

(@META=|aux_tanks|.level
@COMMENTS="private since maybe needs to be deduced from

other values and this technique might change";
)

(@META=|navigational_devices|.y
(@INITVAL="y4")

)

(@META=|tanks|.level
@COMMENTS="private but one of its subclass

(regular_tanks) has this slot public";
)

(@META=auxTanksLevel.Value
(@INITVAL=FALSE)

)

(@META=execute_rotation.Value
(@CONTEXTS=

device_rotation
)

)

(@META=gyro.x
@COMMENTS="private since units might change";
(@INITVAL="0")

)

(@META=gyro.y
@COMMENTS="private since units might change";
(@INITVAL="0")

)

(@META=gyro.z
@COMMENTS="private since units might change";
(@INITVAL="0")

)

From Primer1.tkb

(@META=|regular_tanks|.level
@FUNC=(SELF.level>0 AND SELF.level<2000);
@HELP="The level of tanks should be greater than 0 and

less than 2000";
)

(@META=initialization.Value
(@CONTEXTS=
Language Programmer’s Guide 169

Appendix Primer KB Text FormatB
pump_breakdown
)

)

From Primer2.tkb

(@META=auxiliary_tank_1.Name
(@PRIVINITVAL="auxiliary tank 1")

)

(@META=auxiliary_tank_2.Name
(@PRIVINITVAL="auxiliary tank 2")

)

(@META=current_task.prompt
(@PRIVINITVAL="What is the value of current task

(defueling/refueling)?")
)

(@META=current_task.Value
@QUESTWIN="Start.Win";

)

(@META=device.orientation
@QUESTWIN="Start.Win";

)

(@META=tank_1.Name
(@PRIVINITVAL="tank 1")

)
(@META=tank_2.Name

(@PRIVINITVAL="tank 2")
)

Method Listing
The following listing shows the slots of the primer knowledge base which
have methods defined. In this case, the methods are Order of Sources
actions, If Change actions, Initialization actions, and Hypothesis Suggest
actions. Methods for particular slots, objects, or classes are defined in the
Method Editor window.

From Primer.tkb

(@METHOD=CheckAuxTankLevelLessThan20
(@ATOMID=aux_tanks;@TYPE=CLASS;)
(@ARG1=_result;@NATURE=SlotRef;@TYPE=Boolean;)
(@FLAGS=PUBLIC;)
(@LHS=

(< (SELF.level)(20))
)
(@RHS=

(Assign(TRUE) (_result))
)

)
(@METHOD=GetGyroTimeInit

(@ATOMID=gyro;@TYPE=OBJECT;)

(@ARG1=_resultInSec;@NATURE=SlotRef;@TYPE=Float;@DEFVAL=0;)
(@FLAGS=PUBLIC;)
(@RHS=
170 Language Programmer’s Guide

Method Listing
(Assign(SECOND(SELF.time_init))(_resultInSec))
)

)
(@METHOD=GetGyroXYZ

(@ATOMID=gyro;@TYPE=OBJECT;)

(@ARG1=_resultCombo;@NATURE=SlotRef;@TYPE=String;@DEFVAL="";)
(@FLAGS=PUBLIC;)
(@RHS=

(Assign(STRCAT(SELF.x,(STRCAT(SELF.y,SELF.z))))
(_resultCombo))

)
)
(@METHOD=OrderOfSources

(@ATOMID=gyro.time_init;@TYPE=SLOT;)
(@FLAGS=PUBLIC;)
(@RHS=

(Assign(NOW())(SELF.time_init))
)

)
(@METHOD=OrderOfSources

(@ATOMID=navigational_devices.z;@TYPE=SLOT;)
(@FLAGS=PUBLIC;)
@COMMENTS="comments...";
@WHY="why...";
(@RHS=

(AskQuestion(SELF.z)(NOTKNOWN))
(RunTimeValue("FALSE"))

)
)
(@METHOD=OrderOfSources

(@ATOMID=navigational_devices.x;@TYPE=SLOT;)
(@FLAGS=PRIVATE;)
(@RHS=

(Assign("x1") (SELF.x))
)

)
(@METHOD=SetGyroTimeInit

(@ATOMID=gyro;@TYPE=OBJECT;)
(@ARG1=_timeInit;@NATURE=Slot;@TYPE=Date;)
(@FLAGS=PUBLIC;)
(@RHS=

(Assign(_timeInit)(SELF.time_init))
)

)
(@METHOD=SetGyroXYZ

(@ATOMID=gyro;@TYPE=OBJECT;)
(@ARG1=_x;@NATURE=Slot;@TYPE=String;@DEFVAL="";)
(@ARG2=_y;@NATURE=Slot;@TYPE=String;@DEFVAL="";)
(@ARG3=_z;@NATURE=Slot;@TYPE=String;@DEFVAL="";)
(@FLAGS=PUBLIC;)
(@RHS=

(Assign(_x) (SELF.x))
(Assign(_y) (SELF.y))
(Assign(_z) (SELF.z))

)
)

From Primer1.tkb

(@METHOD=Init
(@ATOMID=tanks;@TYPE=CLASS;)
(@FLAGS=PUBLIC;)
(@RHS=
Language Programmer’s Guide 171

Appendix Primer KB Text FormatB
(Execute("AtomNameValue")
(@ATOMID=SELF;@STRING="@RETURN=@self.Name,\
@NAMES,@STRAT=SET";))

)
)

From Primer2.tkb

(@METHOD=IfChange
(@ATOMID=pump_breakdown;@TYPE=SLOT;)
(@FLAGS=PUBLIC;)
(@RHS=

(Execute("FormInput")
(@WAIT=TRUE;@STRING="End";))

)
)
(@METHOD=Init

(@ATOMID=tanks;@TYPE=CLASS;)
(@FLAGS=PUBLIC;)
(@RHS=

(Execute("AtomNameValue")(@WAIT=TRUE;\
@ATOMID=SELF;@STRING="@RETURN=@self.Name,\
@NAMES,@STRAT=SET";))

)
)
(@METHOD=OrderOfSources

(@ATOMID=pump_breakdown;@TYPE=SLOT;)
(@FLAGS=PUBLIC;)
(@RHS=

(SendMessage("Init")(@TO=<|tanks|>;))
(Strategy(@VALIDUSER=ACCEPT;))
(Backward(TRUE))

)
)
(@METHOD=OrderOfSources

(@ATOMID=pump_breakdown;@TYPE=OBJECT;)
(@FLAGS=PUBLIC;)
(@RHS=

(SendMessage("Init")(@TO=<|tanks|>;))
)

)
(@METHOD=OrderOfSources

(@ATOMID=tanks.level;@TYPE=SLOT;)
(@FLAGS=PUBLIC;)
(@RHS=

(Execute("FormInput")
(@WAIT=TRUE;@STRING="Form";))

)
)
(@METHOD=Suggest

(@ATOMID=contact_control_center;@TYPE=OBJECT;)
(@FLAGS=PUBLIC;)
(@RHS=

(Execute("ControlSession")(@WAIT=TRUE;\
@ATOMID=SELF;@STRING="@SUGGEST";))

)
)
(@METHOD=Suggest

(@ATOMID=check_reference;@TYPE=OBJECT;)
(@FLAGS=PUBLIC;)
(@RHS=

(Execute("ControlSession")(@WAIT=TRUE;\
@ATOMID=SELF;@STRING="@SUGGEST";))

)

172 Language Programmer’s Guide

Strategy Listing
)
(@METHOD=Suggest

(@ATOMID=pump_breakdown;@TYPE=OBJECT;)
(@FLAGS=PUBLIC;)
(@RHS=

(Execute("ControlSession")(@WAIT=TRUE;\
@ATOMID=SELF;@STRING="@SUGGEST";))

)
)
(@METHOD=Suggest

(@ATOMID=device_rotation;@TYPE=OBJECT;)
(@FLAGS=PUBLIC;)
(@RHS=

(Execute("ControlSession")(@WAIT=TRUE;\
@ATOMID=SELF;@STRING="@SUGGEST";))

)
)
(@METHOD=Suggest

(@ATOMID=execute_rotation;@TYPE=OBJECT;)
(@FLAGS=PUBLIC;)
(@RHS=

(Execute("ControlSession")(@WAIT=TRUE;\
@ATOMID=SELF;@STRING="@SUGGEST";))

)
)

Strategy Listing
The final listing of the text format identifies the global inferencing and
inheritance strategies specified for the primer knowledge base. In this case
the strategies are the default ones provided with the system. It is possible
to modify and save global strategies in the Rule Editor, Meta-Slot Editor,
and Strategy dialog window.

From Primer.tkb

(@GLOBALS=
@INHVALUP=FALSE;
@INHVALDOWN=TRUE;
@INHOBJUP=FALSE;
@INHOBJDOWN=FALSE;
@INHCLASSUP=FALSE;
@INHCLASSDOWN=TRUE;
@INHBREADTH=TRUE;
@INHPARENT=FALSE;
@PWTRUE=TRUE;
@PWFALSE=FALSE;
@PWNOTKNOWN=FALSE;
@EXHBWRD=TRUE;
@PTGATES=TRUE;
@PFACTIONS=TRUE;
@SOURCESON=TRUE;
@CACTIONSON=TRUE;
@VALIDUSER=FALSE;
@VALIDENGINE=FALSE;
@PFEACTIONS=FALSE;
@PFMACTIONS=GLOBAL;
@PFMEACTIONS=FALSE;

)

Language Programmer’s Guide 173

Appendix Primer KB Text FormatB
174 Language Programmer’s Guide

Appendix
C Primer.dat Scripts C

This appendix supplements the last session described in Chapter Four that
let you examine graphical user interface resources created with the Open
Editor component. Each window of the primer.dat file that you loaded
in the Resource Browser before conducting that primer session appears
below with a description of various graphical elements used and the scripts
attached through the Script Editor.

After loading the primer.dat file in the Resource Browser (as instructed
in Session Three), the following diagram appears.

With righthand expansion of each module node in the resource browser
network, we see the individual components that the modules contain:

Application Script
A scripted application is initiated with a startup script that appears in the
main module of the application library. The following shows how the
primer application is initialized when starting with the Application Script:

// Startup Module. It can be used either within the
// development environment or Runtime. It defines which are the
// files to be loaded at startup and which windows to be
opened.

// Global variables to keep ND servers, main window,
// question slot references
global object guisvr;
global object rulesvr;
Language Programmer’s Guide 175

Appendix Primer.dat ScriptsC
global object coresvr;
global object engsvr;
global object questionSlot;
global object mainWin;

proc AppStartup

//Get the Neuron Data servers
coresvr := getserver(\"ND.Core\");
rulesvr := getserver(\"ND.Nx\");
guisvr := getserver(\"ND.Gui\");
KBsvr := rulesvr.KBs;
engsvr := rulesvr.Engine;

// Set the Rules Handlers
engsvr.SetLocalHandler(engsvr.PROC_QUESTION,

\"Start::NXPQuestionProc\");
 engsvr.SetLocalExecuteHandler(\"FormInput\",

\"Start::NXPFormInputProc\");

// Load knowledge bases
KBsvr.Load(\"primer.tkb\");
KBsvr.Load(\"primer2.tkb\");

// Display the main window
mainWin := guisvr.Windows.Load (\"Start\",\"Win\");
mainWin.Init();
mainWin.ValidateBut.Enabled =0;

 mainWin.CBox.Enabled = 0;
mainWin.Show();

end proc

// Question handler for the application
// integer proc NXPQuestionProc (object atom, string qstr)
// this question handler is only for the atom
current_task.Value

if (atom.Name != \"current_task.Value\")
return 0;

// Non modal question: the inference engine should be
stopped

engsvr.Stop();
theCBox := mainWin.CBox;
// Clear up the atom choices of previous questions
num = theCBox.ItemCount;
for (i=0; i<num; i++) {

theCBox.Item(0).Dispose();
}
// Set the new list of atom choices for the current

question
num = atom.ChoiceCount;
for (i=0;i<num; i++) {

theCBox.AddItem(i);
theCBox.Item(i).Label = atom.Choice(i);

}
// Enable the controls of the question panel
theCBox.Enabled = 1;

 mainWin.PromptLineField.String = qstr;
mainWin.ValidateBut.Enabled = 1;
questionSlot := atom;
// Return the hand to the inference engine to
// suspend the inference process
return 1;

end proc
176 Language Programmer’s Guide

Start.Win
// Executes Handlers for the application
integer proc NXPFormInputProc (string execStr, integer nAtoms,

object atom[])
// Interrupt inference engine
engsvr.Stop();

 win := guisvr.Windows.Load(execStr, \"Win\");
win.Init();
// The End Execute is a modal Window while
// the FormInput one is non modal
if (execStr == \"End\")

theStr = win.ModalProcess();
else
 win.Show();
// Return the hand to the inference engine
// to suspend the inference process
return 1;

end proc

Start.Win
Lets begin by examining the Start.Win window itself. This window is
used for several different tasks and serves as the application interface “main
window”

Start.Win has the following script definitions:

Script for Start.Window: Just before window appears restart session.

// When the window is opened the session
// is restarted to get ready for a new session.

on event WIN_OPENED
mbar := SELF.MenuBar;
mbar.Item(0).SubMenu.Item(0).Enabled = 0;
mbar.Item(0).SubMenu.Item(2).Enabled = 0;

Script for AnswerBox
(choice box widget)

Script for PromptLineField
(text edit widget)

Iconic Area and Icon
(Tank picture file)

Script for StartBut
(push button widget)

Script for ValBut
(push button widget)

Script for HelpBut
(push button widget)
Language Programmer’s Guide 177

Appendix Primer.dat ScriptsC
engsvr.Restart();
end event

Script for File menu: Exits application when Quit menu item is selected.

// Quit menu option of File menu has been selected.

on event WIN_MITEMSELECTED itemid 105
// NOIR_Exit();\

Script for File menu: Closes window when Close menu item is selected.

// Quit menu option of File menu has been selected.

on event WIN_MITEMSELECTED itemid 102
SELF.Terminate();

end event

Script for HelpBut: Open window Start.Help (also in the “Start” module).

// Open a window (ModuleName.WindowName) on click.

on event TBUT_HIT
theWin := guisvr.Windows.Load(\"Start\", \"Help\");
theWin.Init();
theWin.Show();

end event

Script for StartBut: Open window Start.Win2 to receive the suggested
hypothesis.

// Start the application by offering the
// user with a set of potential faults.

on event TBUT_HIT
rulesvr.Engine.Restart();
theWin := guisvr.Windows.Load(\"Start\", \"Win2\");
theWin.Init();
theWin.Show();

end event

Script for ValidateBut: Process window as form and continue session
when pushed.

// Continue the session when the user
// has answered the question.

on event TBUT_HIT
// Clean-up the Question panel
win := SELF.Win;
theCBox := win.CBox;
theCBox.Enabled = 0;
theTed := win.PromptLineField;
theTed.String = \"\";
theTed.Enabled = 0;
win.CBox.Enabled = 0;
win.ValidateBut.Enabled = 0;
SELF.Win.CBox.Unselect();
// Resume the pending question
engsvr.Continue();

end event

Script for AnswerBox: Use slot of question, and volunteer the slot with
choice box selected choice.

// When IRE needs to ask a question the choice box is
// initialized with the current slot value options.
// When the user selects an option, the current slot is set.
178 Language Programmer’s Guide

Start.Win2
// The choice box is disabled when the question ends since
// the question panel is part of the application main window.

on event CBOX_ITEMSELECTED
questionSlot = SELF.ChosenItem.Label;

end event

Start.Win2
Now let’s examine the Start.Win2 window (appears in the “Start”
module displayed in the Resource Browser) that lets you place the
pump_breakdown hypothesis on the agenda:

Start.Win2 has the following script definition:

Script for DoneBut: process window as form, close the window and start
session.

// When the user clicks on this button, the selected check
// buttons suggest the corresponding hypothesis.
// The window is closed and the KNOWCESS is then processed.
// WARNING: in this primer only one hypothesis is selectable

on event TBUT_HIT

win := SELF.Win;
objsvr := rulesvr.Objects;
// Device rotation, Execute Rotation, Check Reference,
// Contact Control Center hypotheses
if (win.Hypo1.Selected == 1 || win.Hypo3.Selected == 1

||
win.Hypo4.Selected == 1 || win.Hypo5.Selected ==

1) {
guisvr.AlertDialogs.ShowInfo(\"Only Pump Breakdown is

supported\");
}
// pump_breakdown hypothesis
if (win.Hypo2.Selected == 1) {

objsvr.pump_breakdown.Value.Suggest();
rulesvr.Engine.Start();
win.Terminate();

}

end event

script for DoneBut
(push button widget)

script for Hypo1

(All of the above
are check button
widgets.)

script for Hypo5

script for Hypo4

script for Hypo3

script for Hypo2
Language Programmer’s Guide 179

Appendix Primer.dat ScriptsC
Start.Help
The “Start” module also includes the Start.Help window attached to the
“Help” button in Start.Win (see Script for HelpBut above). This help
window is used to demonstrate a type of end user help:

Start.Help has a single script definition:

Script for OkBut: Close window when done.

// Close the window when the user clicks on the button

on event TBUT_HIT
SELF.Win.Terminate();

end event

FormInput.Win
The “FormInput” module contains a single window labeled
FormInput.Win.

Script for OkBut

Script for ValBut

Script for
TankListBox
180 Language Programmer’s Guide

FormInput.Win
FormInput.Win has the following script definitions:

When opened:

on event WIN_OPENED
mbar := SELF.MenuBar;
mbar.Item(0).SubMenu.Item(0).Enabled = 0;
mbar.Item(0).SubMenu.Item(2).Enabled = 0;

end event

Script for TankListBox: Initialize with tank_XX.level value and
volunteer the value back to the Rules Element.

// This is an example of an input table.
// You should first link it to a class
// then initialize the columns.
use Start; // to use the Start module global variables

on event WGTSINITIALIZED
tanks := rulesvr.Classes.tanks;
rProps := rulesvr.Properties;
// Use a table data source to link the listbox
// to the class Tanks
ds := rulesvr.NxTableDataSources.Create();
ds.RowColumnCount(0,3);// set the size of the data

source
ds.Atom = tanks;
ds.RegisterView(SELF);
//set the column mapping with field and column labels
ds.ColumnProperty(0) = rProps.Name;
ds.Columns(0).Title = \"Tanks\";
ds.ColumnProperty(1) = rProps.level;
ds.Columns(1).Title = \"Level\";
ds.ColumnProperty(2)= rProps.problem;
ds.Columns(2).Title = \"Has Problem\";
// set the view non editable for columns 0 and 2
ds.ViewOption(SELF, \"noeditcols\") =

\"[0...0][2...2]\";
end event

Script for ValBut: Process window and Continue session when pushed.

// When the user clicks on the button
// the information entered in the table
// are processed
use Start;
// to access Start module global variables

on event TBUT_HIT
engsvr.Continue();

end event
Language Programmer’s Guide 181

Appendix Primer.dat ScriptsC
End.Win
Now let’s examine the End.Win window contained in the “End” module.
This window is used to conclude the session and display the user the
results:

End.Win has the following script definitions:

Script for ConclusionField: Use specified value: “The pump_breakdown
has been certified: @V(pump_breakdown.value).”

// Initialize the text output field with
// the results of the session, i.e. pump breakdown
use Start;

// to access the Start module global variables

on event WGTSINITIALIZED
theSlot= rulesvr.Objects.pump_breakdown.Value;
// setting the conclusion into the ConclusionField
if (theSlot == 0)

theString = \"False\";
else

theString = \"True\";
SELF.String = \"The pump breakdown has been certified \"

+ theString;
end event

Script for ContinueBut: Close window and Continue session when
pushed.

// The IRE engine is suspended at that moment
// and requires a CONTINUE to end the session.
use Start;

on event TBUT_HIT
 engsvr.Continue();
 SELF.Win.ModalReturn(\"Done\");
end event

Script for ConclField
(Text Edit widget)

Script for ContBut
(Push button widget)
182 Language Programmer’s Guide

Index 4

Symbols
@V 55
| | 57

A
actions

forward action-effects 82
forwarding data 157
globally disabling and enabling 107
If Change 21
interpretations 53
locally disabling and enabling 109
methods 15, 16
Order of Sources 18
rules 25

adaptability 67
addressee 74
agenda

backward chaining priority 77
contexts 85
gates 80
hypothesis forward priority 79
purpose 67
suggest priority 79
volunteering data 84

agenda search mechanisms
disabling 74

application programming interface 114
arguments

methods 17
Assign operator 82, 109
automatic goal generation (see gates)

B
backward chaining 77

example 155
interpretation 87
locally disabling 108
pattern matching 91

best first search 44
boolean 5
breath-first 42

C
children objects 3
class hierarchy 4
class selectivity 96

classes
definition 3
interpreting 52

class-first 42
closed world assumption 70
conditions

evaluation of 154
forwarding data 157
interpretations 52, 54
methods 17
pattern matching 56
rules 23

conflict resolution 98
example 100
inheritance down 42
inheritance priority 11
inheritance up 44
nonmonotonic reasoning 121
rules 73

conflict resolution cycle 100
context link 158
context links

agenda priority 85
globally disabling and enabling 108
interpretations 90
locally disabling and enabling 109

control
inference mechanisms 106
nonmonotonic reasoning 121

D
data 23

affect on inferencing 161
in rule evaluation 153

data structures 2
data types 5
data validation attribute

inheritance 27, 62
pattern matching 62
usage 10

date 5
Delete level 128
depth-first 42
DisableStrong level 127, 128
DisableWeak level 127, 128
disabling

agenda search mechanisms 74
rules 74

dynamic links 122
dynamic objects 122
dynamic structures

inheritance of 48–51
links between objects 46
objects 45
usage 45–51
Language Programmer’s Guide 183

Index
E
Enable level 127
evaluation

exhaustive 72
methods 74–76
rules 69–73
slot 35

example
inference conflict resolution 100

Execute operator 82, 109
exhaustive evaluation 72
existential qualifier 55
external routines

pattern matching 62

F
false status 153
file name

interpretation 53
float 5
focus of attention 67
forward action-effects

agenda priority 82
globally disabling and enabling 107
interpretations 90
locally disabling and enabling 109
pattern matching 95

forward chaining
context 85
example 156
forward action-effects 82
gates 80
hypothesis forward 79
volunteering data 84

G
gates

agenda priority 80
globally disabling and enabling 107
interpretations 89
locally disabling and enabling 109
pattern matching 93

generalization 3, 44
goal generation

explicit vs implicit 79

H
heuristics 22, 68
hypotheses

context links 85
evaluation 69
explicit vs implicit investigation 79
hypo forward mechanism 79
purpose 25
subgoal 78
terminal 78

hypothesis
as consequence 153
evaluation status 153
subgoal 155
terminal 155

hypothesis forward
description 79
interpretations 89
locally disabling 108
pattern matching 93

I
IC (see If Change methods)
If Change methods

default 21
inheritance 39
pattern matching 62
purpose 21

inference
example 100
globally disabling and enabling 107
locally disabling and enabling 108

inference number 10
inference priority 10, 24
inference slot 10
inferencing

behavior 155–159
inferencing mechanisms

action-effects 82
backward chaining 77
context 85
control 106
gates 80
hypo forward 79
multiple knowledge bases 125
suggest 79
volunteer 84

information hiding 76
inheritability setting 12
inheritance

conflict resolution
from children 44
from parents 42

data validation attributes 10
default behavior

method 39–41
properties 29–34
values 35–38

disabling
methods 42
properties down 34
values down 38

dynamic
methods 50
properties 49
values 49

enabling
properties up 34
values up 38

initial value attribute 9
of meta-slots 161
184 Language Programmer’s Guide

Index
inheritance (continued)
of properties 160
overview 27–29
prompt line attribute 10
usage 27–45

inheritance number 11
inheritance priority 11
inheritance slot 11
inheritance strategy 14
initial value attribute 9
instantiation 3
integer 5
interpretations

actions 53
backward chaining 87
conditions 52, 54
context link 90
database operations 54
file name 54
forward action-effects 90
gates 89
hypothesis forward 89
nonmonotonic reasoning 119
pattern matching usage 61
prompt line 54
properties 87
root 52
slots 52, 87
strings 53
suggest 88
usage 51–55

interpreted slot 87
investigating hypotheses 79

K
knowledge base

current 123
description 63
inferencing with more than one 125
loading 126
merging 125
modular architecture 123
multiple 121
text format 163–173
unloading 128

knowledge island 63, 86
knowledge processing

conducting a session 132

L
links

context 85
dynamic 46
static 3
strong 85
weak 85

list usage 58
loading knowledge bases 126
LoadKB operator 107

M
merging knowledge bases 125
message passing 74
meta-slot attributes

data validation 10
inference priority 10
inheritability setting 12
inheritance priority 11
inheritance strategy 14
initial value 9
prompt line 10

meta-slots 161
methods

actions 15, 16
agenda control 109
attaching 15
condition 17
default inheritance 39–41
dynamic inheritance 50
evaluation 74–76
forward action-effects 82
globally disabling and enabling 111
If Change 21
local arguments 17
locally disabling and enabling 111
message passing 74
naming 15
non-inheritable 42
operators 16
Order of Sources 18
pattern matching 62, 95
SELF variable 40
specialization 41
system methods 14
usage 14–22
user-defined inheritance 39
user-defined methods 14

multi-value 5

N
nonmonotonic reasoning

conflict resolution 121
description 117
interpretations 119
pattern matching 121

NOTKNOWN 7
notknown status 153
NXP_AINFO_BREADTHFIRST 117
NXP_AINFO_CACTIONSUNKNOWN 117
NXP_AINFO_EXHBWRD 116
NXP_AINFO_INHCLASSUP 116
NXP_AINFO_INHOBJDOWN 116
NXP_AINFO_PARENTFIRST 117
NXP_AINFO_PWFALSE 116
NXP_AINFO_PWNOTKNOWN 116
NXP_AINFO_PWTRUE 116
NXP_AINFO_SOURCESCONTINUE 117
NXP_SPRIO_CNTX 114
Language Programmer’s Guide 185

Index
NXP_SPRIO_SUG 114
NXP_SPRIO_UNSUG 114
NXP_VSTRAT_CURFWRD 115
NXP_VSTRAT_QFWRD 115
NXP_VSTRAT_VOLFWRD 115

O
object network 8
object-first 42
object-oriented systems

information hiding 76
message passing 74

objects
definition 2
dynamic 45
interpreting 52
links between 3
subobjects 4

operators
methods 16
rules 26

opportunistic reasoning (see gates)
or graph 70
Order of Sources methods

inheritance 39
pattern matching 62
purpose 18

OS (see Order of Sources methods)

P
parameterized query 54
parent class 3
part of 4
pattern matching

backward chaining 91
class 57
data validation 62
existential 56
external routines 62
forward action-effects 95
gates 93
hypothesis forward 93
interpretations usage 61
list 58
methods 62
multiple 59
nonmonotonic reasoning 121
object 58
universal 56
usage 55–62
volunteer 97

primer knowledge base 163
priorities 74
private methods 42
procedural knowledge 22

prompt line attribute
interpretations 54
purpose 10

properties
default inheritance 29–34
definition 5
dynamic inheritance 49
inheritability control 34
interpreting 52

public methods 42

R
reasoning path 156
reasoning, nonmonotonic 117
relations 22
Reset operator 118
resolved slot 87
restart

programatically 115
Retrieve operator 82, 109
revisions 118
rule

as situation 153
evaluation 154

rule evaluation
behavior 154
globally disabling and enabling 107
locally disabling and enabling 108

rule priorities 73, 74
rules

basic structure 22
condition 23
conflict resolution 73
context links 85
determining its value 23
disabling 74
evaluation 69–73
forward action-effects 82
gates mechanism 80
hypothesis 25
hypothesis forward 79
investigating hypotheses 79
multiple rules evaluation 70
operators 26
right-hand side actions 25
symmetry 23
usage 22–26
volunteering data 84

S
SELF variable

data validation usage 62
method usage 40
prompt line usage 55

semantic gates (see gates)
SendMessage operator 74
186 Language Programmer’s Guide

Index
slots
behavior

meta-slot attributes 9
methods 14

definition 6
evaluation 35
interpretations 52
private versus public 9

specialization 3, 42
strategy

programatic control 116
strings

data type 5
interpretation of 53

strong link 159
strong links 85
subclass 3
subgoal hypothesis 155
subgoals 23, 78
subobjects 4
suggest

interpretations 88
programatically 114
purpose 68

suggesting hypotheses 79
symmetry 23
system methods 75

definition 14
inheritance 39
pattern matching 62

T
temporary.kb 122
terminal hypotheses 78
terminal hypothesis 155
text format 163–173
time 5
true status 153

U
undefined.kb 122
universal qualifier 55
UNKNOWN 7
unloading knowledge bases 128
UnloadKB operator 107
untitled.kb 122
user-defined methods 75

definition 14
inheritance 39
pattern matching 62

V
Value property 6
values

default inheritance 35–38
dynamic inheritance 49
inheritability control 38

variablized query 54
volunteer

pattern matching 97
programatically 115

volunteering data 84

W
weak link 85, 159
Wipeout level 128
Language Programmer’s Guide 187

PostScript error (--nostringval--, --nostringval--)

	Contents
	Preface
	Purpose of this Manual
	Audience
	How to Use this Manual
	Organization
	Related Manuals
	Conventions

	Representation
	Introduction
	Data Structures
	Meta-Slot Attributes
	Initial Value
	Private or Public Slot
	Prompt Line
	Data Validation
	Inference Priorities
	Inheritance Priorities
	Inheritability Setting
	Inheritance Strategy

	Methods
	Structure
	Order Of Sources Method
	If Change Method

	Rules
	Conditions
	Hypothesis
	Right-Hand Side Actions

	Inheritance
	Property Inheritance
	Value Inheritance
	Method Inheritance
	Conflict Resolution

	Dynamic Structures
	Dynamic Objects
	Dynamic Links
	Inheritance

	Interpretations
	Interpreting Slots
	Interpreting Strings

	Pattern Matching
	Lists Created By Pattern Matchings
	Multiple Pattern Matchings In One Rule
	Interpretations And Pattern Matching
	Pattern Matching With Data Validation
	Pattern Matching With Methods & External Routines

	Knowledge Islands
	Knowledge Bases
	Summary

	Inference Engine Processing
	Introduction
	Evaluation Concepts
	Rule Evaluation
	Multiple Rules Evaluation
	Exhaustive Evaluation
	Conflict Resolution
	Inference Search Disabling
	Method Evaluation

	Inferencing Mechanisms
	Backward
	Suggest
	Hypothesis Forward
	Gates
	Forward Action-Effects
	Volunteer
	Contexts
	Interpretations
	Pattern Matching
	Conflict Resolution
	Summary

	Controlling Inference Strategies
	Rules
	Methods

	Application Programming Interface
	Suggest
	Volunteer
	Restart Session
	Strategy

	Non-Monotonicity
	Revisions
	Reset
	Interpretations
	Pattern Matching
	Conflict Resolution
	Control

	Multiple Knowledge Bases
	Untitled.kb
	Temporary.kb
	Undefined.kb
	Current Knowledge Base
	Modular Knowledge Base Architecture
	Inferencing With Multiple Knowledge Bases
	Merging Multiple Knowledge Bases
	Effects When Loading
	Effects When Unloading

	Summary

	Primer
	Introduction
	Knowledge Processing - Session 1
	Knowledge Processing - Session 2
	Knowledge Processing - Session 3

	Primer Decomposition
	About this Appendix
	Rules as Building Blocks
	Inferencing with Multiple Rules
	Inferencing Flow Control
	Storing Data in Objects
	Reinitiating Inferencing

	Primer KB Text Format
	About this Appendix
	Data Type Listing
	Rule Listing
	Class and Object Listing
	Meta-Slot Listing
	Method Listing
	Strategy Listing

	Primer.dat Scripts
	Application Script
	Start.Win
	Start.Win2
	Start.Help
	FormInput.Win
	End.Win

	Index

