
   
Neuron Data Elements Environment
Intelligent Rules Element

V e r s i o n  4 . 1

Language Reference



 

© Copyright 1986–1997, Neuron Data, Inc.  All Rights Reserved.

This software and documentation is subject to and made available only 
pursuant to the terms of the Neuron Data License Agreement and may be 
used or copied only in accordance with the terms of that agreement.  It is 
against the law to copy the software except as specifically allowed in the 
agreement.  This document may not, in whole or in part, be copied 
photocopied, reproduced, translated, or reduced to any electronic medium 
or machine-readable form without prior consent, in writing, from Neuron 
Data, Inc.

Use, duplication, or disclosure by the U.S. Government is subject to 
restrictions set forth in the Neuron Data License Agreement and in 
subparagraph (c)(1) of the Commercial Computer Software-Restricted 
Rights Clause at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in 
Technical Data and Computer Software clause at DFARS 252.227-7013; 
subparagraph (d) of the Commercial Computer Software—Licensing clause 
at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does 
not represent a commitment on the part of Neuron Data.  THE SOFTWARE 
AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT 
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, 
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A 
PARTICULAR PURPOSE.  FURTHER, NEURON DATA DOES NOT 
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS 
REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE 
SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, 
ACCURACY, RELIABILITY, OR OTHERWISE.

Open Interface Element™, Data Access Element™, Intelligent Rules 
Element™, and Web Element™ are trademarks of, and are developed and 
licensed by Neuron Data, Inc., Mountain View, California.  NEXPERT 
OBJECT® and NEXPERT® are registered trademarks of, and are developed 
and licensed by, Neuron Data, Inc., Mountain View, California.

Other brand or product names are the trademarks or registered trademarks 
of their respective holders.



        
Contents 1

Preface
Purpose of this Manual ........................................................................................................ vii
Description............................................................................................................................. vii
Audience ................................................................................................................................ vii
How to Use this Manual .....................................................................................................viii
Organization .............................................................................................................................x
Related Manuals.......................................................................................................................x

1. Application Development Features
ABS Function ............................................................................................................................1
ACOS Function.........................................................................................................................2
Actions .......................................................................................................................................2
Agenda.......................................................................................................................................5
ASIN Function..........................................................................................................................6
AskQuestion Operator ............................................................................................................7
Assign Operator .......................................................................................................................8
ATAN Function......................................................................................................................10
AVERAGE Function ..............................................................................................................11
Backward Chaining ...............................................................................................................12
Backward Operator................................................................................................................13
BOOL2STR Function .............................................................................................................14
Boolean Constants..................................................................................................................15
Boolean Expressions ..............................................................................................................16
Boolean Formats.....................................................................................................................17
CEIL Function.........................................................................................................................19
CHARFIND Function............................................................................................................19
Classes......................................................................................................................................20
Comment Attribute................................................................................................................22
COMPARE Function .............................................................................................................23
Comparison Operators..........................................................................................................24
Conditions...............................................................................................................................26
Context Links..........................................................................................................................28
COS Function..........................................................................................................................29
COSH Function ......................................................................................................................30
CreateObject Operator...........................................................................................................30
Data Types ..............................................................................................................................32
Data Validation Attribute .....................................................................................................33
Date Formats...........................................................................................................................35
DATE Function.......................................................................................................................38
DATE2FLOAT Function .......................................................................................................39
DATE2STR Function..............................................................................................................40
DAY Function.........................................................................................................................41
DeleteObject Operator...........................................................................................................42
Dynamic Data Exchange.......................................................................................................43
Dynamic Objects ....................................................................................................................47
Execute Operator....................................................................................................................48
Execute Routines ....................................................................................................................50
Language Reference i



 

Contents

   
EXP Function ..........................................................................................................................53
Expressions .............................................................................................................................54
FLOAT2DATE Function .......................................................................................................56
FLOAT2INT Function ...........................................................................................................56
FLOAT2STR Function ...........................................................................................................57
FLOAT2TIME Function ........................................................................................................58
Floating Point Constants.......................................................................................................59
Floating Point Formats ..........................................................................................................60
FLOOR Function ....................................................................................................................63
Format Attribute ....................................................................................................................64
Formats ....................................................................................................................................64
Forward Chaining..................................................................................................................66
HOUR Function......................................................................................................................68
Hypotheses..............................................................................................................................69
Identifiers ................................................................................................................................70
If Change Method ..................................................................................................................71
Inference ..................................................................................................................................73
Inference Priority Attribute ..................................................................................................74
Inference Slot Attribute .........................................................................................................75
Inference Strategy ..................................................................................................................76
Inheritability Strategy............................................................................................................79
Inheritance...............................................................................................................................81
Inheritance Priority Attribute...............................................................................................82
Inheritance Slot Attribute......................................................................................................83
Inheritance Strategy...............................................................................................................84
InhMethod Operator .............................................................................................................86
InhValueDown Operator ......................................................................................................87
InhValueUp Operator............................................................................................................88
Init Value Attribute................................................................................................................89
INT2STR Function .................................................................................................................90
Integer Constants ...................................................................................................................91
Integer Formats ......................................................................................................................91
Interpretations ........................................................................................................................94
Interrupt Operator .................................................................................................................95
LENGTH Function.................................................................................................................96
LN Function ............................................................................................................................97
LoadKB Operator ...................................................................................................................98
LOG Function .......................................................................................................................100
MAX Function ......................................................................................................................101
Member Operator ................................................................................................................102
Meta-Slots..............................................................................................................................103
Methods.................................................................................................................................104
MIN Function .......................................................................................................................107
MINUTE Function ...............................................................................................................109
MOD Function......................................................................................................................109
MONTH Function................................................................................................................110
Multi-Values .........................................................................................................................111
No Operator ..........................................................................................................................112
NoInherit Operator ..............................................................................................................113
NotMember Operator..........................................................................................................113
NOW Function .....................................................................................................................114
Objects....................................................................................................................................115
Order of Sources Method....................................................................................................117
Patterns ..................................................................................................................................120
ii Language Reference



   

Contents

 

POW Function ......................................................................................................................123
PROD Function ....................................................................................................................124
Prompt Line Attribute .........................................................................................................125
Properties ..............................................................................................................................126
Question Window Attribute...............................................................................................127
RAND Function....................................................................................................................128
RANDOM Function.............................................................................................................129
RANDOMMAX Function ...................................................................................................130
RANDOMSEED Function...................................................................................................130
Reserved Words ...................................................................................................................131
Reset Operator ......................................................................................................................132
Retrieve Operator.................................................................................................................133
ROUND Function ................................................................................................................135
Rules.......................................................................................................................................136
RunTimeValue Operator.....................................................................................................137
SECOND Function...............................................................................................................138
SELF .......................................................................................................................................139
Semantic Gates .....................................................................................................................140
SendMessage Operator .......................................................................................................141
Show Operator .....................................................................................................................145
SIGN Function ......................................................................................................................148
SIN Function .........................................................................................................................148
SINH Function......................................................................................................................149
Slots ........................................................................................................................................150
SQRT Function .....................................................................................................................152
STDEV Function...................................................................................................................153
Strategy..................................................................................................................................154
Strategy Operator.................................................................................................................155
STRCAT Function ................................................................................................................157
STRFIND Function...............................................................................................................158
String Constants ...................................................................................................................159
String Formats ......................................................................................................................160
STRLEN Function ................................................................................................................162
STRLOWER Function..........................................................................................................162
STRUPPER Function............................................................................................................163
STR2BOOL Function ...........................................................................................................164
STR2DATE Function............................................................................................................165
STR2FLOAT Function .........................................................................................................166
STR2INT Function ...............................................................................................................167
STR2TIME Function.............................................................................................................168
SUBSTRING Function .........................................................................................................169
SUM Function.......................................................................................................................170
TAN Function.......................................................................................................................171
TANH Function....................................................................................................................172
Time Formats ........................................................................................................................173
TIME Function......................................................................................................................174
TIME2FLOAT Function ......................................................................................................175
TIME2STR Function.............................................................................................................176
UnloadKB Operator.............................................................................................................177
Value Property......................................................................................................................179
VAR Function .......................................................................................................................180
WEEKDAY Function ...........................................................................................................181
Why Attribute.......................................................................................................................182
Write Operator .....................................................................................................................183
Language Reference iii



 

Contents

       
YEAR Function.....................................................................................................................184
YEARDAY Function ............................................................................................................185
Yes Operator .........................................................................................................................186

2. Execute Library Routines
Execute Library Overview..................................................................................................187
Using The Execute Library .................................................................................................190
AtomExist Routine...............................................................................................................197
AtomNameValue Routine ..................................................................................................198
ComputeMultiValue Routine.............................................................................................200
ControlSession Routine.......................................................................................................202
CopyFrame Routine.............................................................................................................204
CreateObjects Routine .........................................................................................................205
CreateReport Routine ..........................................................................................................207

Formatting Commands ...............................................................................................209
Conditional Statements ...............................................................................................211
Include Command .......................................................................................................212

FileExist Routine ..................................................................................................................213
FindListElem Routine..........................................................................................................214
GetListElem Routine............................................................................................................216
GetMultiValue Routine .......................................................................................................218
GetRelatives Routine ...........................................................................................................220
Journal Routine.....................................................................................................................222
LinkMultiValue Routine .....................................................................................................223
Message Routine ..................................................................................................................225
Parse Routine ........................................................................................................................227
PatternMatcher Routine ......................................................................................................230
PropagateValue Routine .....................................................................................................233
RankList Routine..................................................................................................................235
ResetFrame Routine.............................................................................................................236
SetMultiValue Routine ........................................................................................................238
SetValue Routine..................................................................................................................240
TestMultiValue Routine ......................................................................................................241
Unify Routine .......................................................................................................................248
WriteTo Routine ...................................................................................................................251

3. Database Integration Topics
Access String.........................................................................................................................253
Access String Specification .................................................................................................254
Arguments Overview..........................................................................................................256
Atomic Retrieve....................................................................................................................259
Atomic Write.........................................................................................................................261
Begin - (@BEGIN).................................................................................................................263
Beginning Database Operations ........................................................................................264
Create New Record - (@FILL) ............................................................................................265
Create Object - (@FILL) .......................................................................................................266
Cursor Slot Specification.....................................................................................................266
Cursor - (@CURSOR)...........................................................................................................268
Database Interface Concepts ..............................................................................................268
Database Editor Windows ..................................................................................................273
Database Type - (@TYPE) ...................................................................................................275
DBF3.......................................................................................................................................277
Debugging Operations ........................................................................................................278
iv Language Reference



   

Contents

 

Dynamic Values ...................................................................................................................281
End - (@END) .......................................................................................................................282
Ending Database Operations..............................................................................................283
Existence Filtering Operations ...........................................................................................284
Field Name Specification ....................................................................................................287
Fields List - (@FIELDS)........................................................................................................287
File Retrieves - @F(...) ..........................................................................................................288
Formats ..................................................................................................................................289
Forwarding Strategy - (@FWRD).......................................................................................290
Grouped Retrieve.................................................................................................................291
Grouped Write......................................................................................................................292
If Change Retrieves..............................................................................................................294
If Change Writes...................................................................................................................295
In List - (@ATOMS)..............................................................................................................296
INFORMIX ............................................................................................................................298
INGRES..................................................................................................................................304
Insert Only - (@FILL) ...........................................................................................................310
Interpretations - @V(...) .......................................................................................................311
Left-Hand Side Retrieves ....................................................................................................312
Left-Hand Side Writes.........................................................................................................313
Link To - (@CREATE)..........................................................................................................313
Name - (@NAME) ................................................................................................................314
New File - (@FILL) ...............................................................................................................315
NEXPERT Flat-File Formats ...............................................................................................316
Object Names In Retrieve Operations...............................................................................319
ORACLE................................................................................................................................321
Order of Sources Retrieves .................................................................................................326
Order of Sources Writes ......................................................................................................327
Properties List - (@PROPS) .................................................................................................328
Query (@QUERY).................................................................................................................328
Query Language...................................................................................................................329
Query Field in Retrieve Operations ..................................................................................335
Query Field in Write Operations .......................................................................................337
Record Specification for Writes..........................................................................................340
Records Filtering ..................................................................................................................345
Retrieve Operator.................................................................................................................346
Retrieve Unknown - (@UNKNOWN)...............................................................................347
Retrieving from Databases .................................................................................................348
Return Errors ........................................................................................................................350
Right-Hand Side Retrieves .................................................................................................351
Right-Hand Side Writes ......................................................................................................351
Sequential Retrieve ..............................................................................................................352
Sequential Write ...................................................................................................................354
Slot Specification for Retrieves...........................................................................................356
Slot Specification for Writes ...............................................................................................358
Slots List - (@SLOTS) ...........................................................................................................360
Spreadsheets .........................................................................................................................361
SqlError - (@ERROR) ...........................................................................................................361
String to Numeric Conversion {x} .....................................................................................362
SYBASE..................................................................................................................................363
SYLK ......................................................................................................................................369
WKS........................................................................................................................................370
Write Operator .....................................................................................................................371
Language Reference v



 

Contents

       
Write Unknown - (@UNKNOWN)....................................................................................372
Writing to Databases ...........................................................................................................373

A. Database Integration Examples
Example 1 - Grouped Write................................................................................................375
Example 2 - Grouped Write with a Complex Name.......................................................378
Example 3 - Atomic Write...................................................................................................381
Example 4 - Grouped Retrieve ...........................................................................................383
Example 5 - Grouped Retrieve with a Complex Name..................................................387
Example 6 - Grouped Retrieve with Existence Filtering ................................................390
Example 7 - Grouped Retrieve with Content Filtering...................................................393
Example 8 - Atomic Retrieve..............................................................................................396
Example 9 - Sequential Retrieve ........................................................................................399
Example 10 - Sequential Retrieve with a Parameterized Query ...................................402
Example 11 - Grouped Retrieve with a SQL Join ............................................................407

Index .............................................................................................................................................409
vi Language Reference



          
Preface 2

Purpose of this Manual
This manual describes the application representation features available for 
use in your application development effort.  Specifically, it addresses the 
implementation of these features in the Intelligent Rules Element shell, 
including their correct usage and syntax, where appropriate. 

It also describes the Intelligent Rules Element Database Bridge.  The 
database bridge is a link between your database and the Rules Element.  
Through this link, you can do two things: retrieve and write.  You can 
retrieve data from your database and create objects in the Rules Element, 
and you can write Rules Element objects to your database.

Description
A wide variety of application representation features exist for use in the 
application development effort.  These features include specific operators, 
functions, and execute routines, as well as conceptual features such as 
inference control, pattern matching, and dynamic objects.  The application 
development environment of the Rules Element shell gives the developer 
easy access to these representation features through its use of popup menus 
and template-based editors.

Additionally, the Intelligent Rules Element database bridge lets you transfer 
data between external data sources and Rules Element’s object 
representation.  In many knowledge-based applications, the data is stored 
in an external file or database, where its format is very different from Rules 
Element’s object representation.  The object representation that includes 
classes, objects, properties, and slots provides a structure for data which the 
Rules Element reasons over.  The database bridge transforms and translates 
the data between its external format (a file or database) and the Rules 
Element object representation.

Audience
This manual is the application developer’s reference to locate specific topics 
during the application development effort.  For example, developers can 
look-up the purpose of specific topics before implementing a feature in the 
application development environment of the Rules Element shell.  Then 
during the implementation phase of the application, developers can locate 
examples in this manual to learn about syntax options.

Developers who want to embed Rules Element functionality directly into 
the code of another application should also refer to the API Reference.  This 
alternative approach to applications design completely bypasses the 
graphical user interface and is therefore not addressed in the Language 
Reference.
Language Reference vii



 

Preface

    
How to Use this Manual
Developers can use this manual for reference purposes since the features 
appear in alphabetical order.  Each feature has standard subtopics that give 
detailed information in the following categories: definition, syntax, 
arguments (if any), results, and examples.  Additionally, each feature 
includes a listing of “related topics” that identify relevant information.  The 
developer should always look-up the related topics in this manual before 
implementing the feature.  The organization of this manual leaves the 
reading order up to the developer, but the related topics lists help to keep 
the topic investigation focused.

Chapter One “Application Development Features” describes the features 
that the developer uses to implement rule and object structures. A 
cross-section of the general representation features includes the following.

Test Operators Determine the value of data or the logical state of 
subgoal hypotheses.  Tests are used in the left-hand 
side (LHS) of rules.

Assignment Operators
Let you manipulate the value of slots in the 
application.  Assignments can be made in the 
left-hand side or right-hand side of rules and 
methods.

Dynamic Objects Ops.
Let you manipulate objects and their links created 
during application processing (dynamically).

Interface Operators Let you specify interactions with the outside 
world, including human operators, databases, 
user-written routines, or programs.

Inheritance Operators
Let you control both the strategy and the triggering 
of inheritance mechanisms.

Patterns Let you perform queries on the object base.  You 
can extract the list of objects that verify one or 
several conditions and then perform actions on the 
objects.

Formats Let you specify how values should be output to the 
display, database, or data files.  Also specifies how 
incoming text strings from the session control 
window, databases, data files, or the application 
programming interface (API) should be converted 
into the internal data types of the Rules Element.

Functions Let you control both the strategy and the triggering 
of inheritance mechanisms.

Execute Routines This category includes a full-range of pre-defined 
procedures for performing common or useful 
tasks. These routines are built into the system for 
use with the Execute operator.
viii Language Reference



   

How to Use this Manual

 

Chapter Two, “Execute Library Routines” describes the functions in the 
execute library. They can be used like any user-defined execute routine in 
either conditions or actions of rules and methods. They can be divided up 
into several functional groups:

Frame Operations This set of routines performs “crunching” 
operations on frames such as setting values, 
copying values, etc.  

Multi-Value Operations
This set of routines performs operations on 
multi-values.  

Sorting and Comparison
This set of routines performs operations on pattern 
matching lists.  

Session Control This set of routines controls the session and 
perform I/O.  

Utility Operations This set of routines performs useful tasks that 
extend application development.

Chapter Three, “Database Integration Topics” describes the key concepts, 
fundamental procedures, and general principles of the Intelligent Rules 
Element Database Bridge.  This chapter includes topics from the following 
categories:

Core Database Topics
New users should read these first for more detailed 
information about the different ways the database 
bridge can be used and for detailed information 
about specific database types.

Database Bridge Features
Identifies features of the Rules Element Database 
Bridge that you can use to extend the database 
retrieve and write capabilities of your 
knowledge-base application.

Rule Editor / Meta-Slot Editor Windows
Lists topics specific to setting up database retrieve 
and write operations in a rule or method.

Database Editor Windows
Lets you find descriptions of the database editor 
windows’ various fields.

Database Bridge Operations
The topics in this list identify optional as well as 
required tasks of the retrieve and write operations.  
This information supplements the Database Editor 
Windows topics list.

This manual is a member of the document set.  See “Related Manuals” for a 
complete list of prerequisite and corequisite manuals.
Language Reference ix



 

Preface

                      
Organization
To locate specific features, look-up the features from one of the two 
chapters.  All features appear in alphabetical order.  The general table of 
contents identifies the complete features list and the index identifies more 
specific topics.  This manual contains the following three chapters and one 
appendix:

Chapter One, “Application Development Features” describes the features 
that the developer uses to implement rule and object structures in the 
Intelligent Rules Element environment.  All features appear in alphabetical 
order.

Chapter Two, “Execute Library Routines” explains how to use the special 
library of built-in routines the developer can invoke through the Execute 
operator.  All routines appear in alphabetical order.

Chapter Three, “Database Integration Topics” gives information for key 
concepts, fundamental procedures, and general principles specific to 
building retrieve and write operations for a wide range of database types.

Appendix A, “Database Integration Examples” demonstrates the 
principles and operations of the Rules Element Database Bridge through 
specific examples.

Related Manuals
The following manuals contain information related to this Language 
Reference.  Read prerequisite manuals before using this manual.  Read 
corequisite manuals for background information as explained.

Prerequisite Manuals:

Getting Started

This manual gives an overview of the entire Rules Element shell, including 
the graphical user interface, the inference engine, and application 
representation features.  Many of the design features described in the 
Reference Manual are first introduced in this manual.

User’s Guide

This manual gives general procedures for using the graphical user interface. 
Chapter Eight, “Application Data” of the User’s Guide shows how to 
perform Retrieve and Write operations.  Additionally, Chapter Two, 
“Application Structure Implementation” of the User’s Guide gives useful 
information about rules and objects.

Corequisite Manuals:

Language Programmer’s Reference

This manual is required reading for developers who need an overview of 
the types of knowledge representation features available.  The chapters 
describe the rule and object structures and control mechanisms that form 
x Language Reference



   

Related Manuals

 

the basis of all Rules Element application development efforts.  It also 
addresses the behavior of the inference engine.

The Bibliography, located in the Getting Started Manual, gives a complete 
list of manuals.

Users who received the Intelligent Rules Element packaged with other 
Neuron Data Elements, including the Open Interface Element and the Data 
Access Element, will have other documents in addition to the Intelligent 
Rules Element documents described above.
Language Reference xi



 

Preface

  
xii Language Reference



 

Chapter

                                   
1 Application Development 
Features 1

This chapter describes the various application features of the Intelligent 
Rules Element.

ABS Function
Definition

The ABS function is used in expressions to find the absolute value of a 
floating point number. The expression can appear on the left-hand side or 
right-hand side of rules and methods.

Syntax

The function consists of the word ABS followed by a single argument in 
parentheses: 

ABS(x)

Argument

The argument may be any expression yielding a numerical result. The 
expression may include patterns or interpretations.  

Result

The function returns a floating point or integer result equal to the absolute 
value of the argument.  

If the argument expression does not produce a numerical value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the ABS function:  

ABS(98.6)    =  98.6
ABS(-273.18) = 273.18
ABS(28)      =  28.0
ABS(0.0)     =   0.0

Related Topics

Expressions Patterns

Floating Point Constants Interpretations

Integer Constants
Language Reference 1



 

Chapter

 

Application Development Features

   

1

                              
ACOS Function
Definition

The ACOS function is used in expressions to find the arc-cosine of a floating 
point number.  The expression can appear on the left-hand side or 
right-hand side of rules and methods.

Syntax

The function consists of the word ACOS followed by a single argument in 
parentheses:  

ACOS(x)

Argument

The argument may be any expression yielding a numerical result between 
-1.0 and 1.0.  The expression may include patterns or interpretations.  

If the value of the argument expression is an integer, it will be converted to 
an equivalent floating point value.  

Result

The function returns a floating point result equal to the arc-cosine of the 
argument.  The result is expressed in radians.  

If the argument expression does not produce a numerical value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the ACOS function:  

ACOS( 1.0) = 0.0
ACOS( 0.5) = 1.04 (= 3.14 / 3)
ACOS( 0.0) = 1.57 (= 3.14 / 2) 
ACOS(-1.0) = 3.14

Related Topics

Expressions Interpretations
Floating Point Constants COS Function
Integer Constants ASIN Function
Patterns ATAN Function

Actions
Definition

An action expresses a unique operation to be performed by the system in a 
rule or method.  Actions are normally considered consequences of a list of 
test conditions and would therefore appear on the right-hand side.  
However, actions can also appear in the conditions list on the left-hand side.  
Actions that appear on the right-hand side can be divided into two sets: 
actions to be performed when the conditions on the left-hand side are 
2 Language Reference



   

Actions

                 
satisfied or actions to be performed when any single condition on the 
left-hand side fails to be satisfied.

Syntax

An action consists of an operator followed by one or two operands.  The 
following operators can occur in both rules and methods:  

Assign Reset
CreateObject Strategy
DeleteObject Show
Retrieve Execute
Write LoadKB
SendMessage UnloadKB

The following operators are valid in methods only:  

InhMethod
Interrupt
NoInherit

The following operators are valid only in the right-hand side actions of 
Order of Sources methods:  

AskQuestion InhValueUp
Backward RunTimeValue
InhValueDown

The exact number and form of the operands varies from one operator to 
another; see the sections on individual operators for details.

Execution

Actions can appear on either the left-hand side (the “IF” section) or the 
right-hand side (the “ACTIONS” section) of rules and methods.  On the 
right-hand side, actions can belong to one of two lists (the “Then” or “Else” 
lists).  Which of these two actions list the system executes depends on the 
evaluation outcome of the rule or method.  The execution of actions in rules 
and methods is as follows:

IF actions Actions that appear in the left-hand side conditions 
list are executed sequentially in the order they 
appear.  The “evaluation” result of an action is 
always set to TRUE.

Then actions Actions that appear in the “Then” list are executed 
sequentially in the order they appear, but the 
system must first determine that each left-hand 
side condition is TRUE.  This is known as a positive 
rule or method evaluation.

Note: The system automatically executes the Then 
actions defined for the method lacking a list of 
left-hand side conditions.

Else actions Actions that appear in the “Else” list are executed 
sequentially in the order they appear, but the 
system must first determine that one of the 
left-hand side conditions is FALSE.  This is known 
as a negative rule or method evaluation.

The two part structure of the right-hand side allows actions to be executed 
whether or not the rule or method conditions succeed.  This is equivalent to 
using two rules each with a different actions list to contend with the two 
Language Reference 3



 

Chapter

 

Application Development Features

   

1

        
possible evaluation outcomes.  The following two rules demonstrate how 
Else actions would be represented using only Then actions:

Rule1 IF Yes A  => Hypo1
THEN: Perform “true” actions list

Rule2 IF No Hypo1  = Hypo2
THEN: Perform “false” actions list

Let’s assume the system evaluates Rule1 first.  After the evaluation of Rule1, 
the system forward chains to Rule2 due to the hypothesis test condition “No 
Hypo1” (called Hypothesis Forward).  If Rule1’s condition fails, then Hypo1 
will be FALSE and Rule2’s condition will evaluate to TRUE.  Therefore, the 
failure of Rule1 ensures that the only actions list of Rule2 will be triggered.  
Or if Rule1 succeeds and its actions triggered, Rule2 will always fail.  Thus 
only one set of actions can be triggered between these two rules.  What took 
two rules can be accomplished more easily by including the Else actions list 
in a single rule as follows:

Rule1 IF Yes A  => Hypo1
Then Do: Perform “true” actions list
Else Do: Perform “false” actions list

Forward Chaining

Depending on the inference strategy options currently in effect, the results 
of right-hand side actions may be forward-chained to the conditions of 
other rules that share the same data.  If another rule shares the same data, 
its hypothesis is automatically placed on the agenda for consideration.  This 
form of forward chaining is known as Forward Action-Effects.  Methods are 
not affected by the results of actions because they do not have hypotheses to 
be considered for evaluation.  However, actions in a method may 
forward-chain data to relevant rules.  Action operators that will produce 
forward chaining include:  Assign, Retrieve (from a database), and 
Execute (using an external routine).

Data that belongs to a private slot can not trigger action-effects since private 
slot data cannot appear in the conditions or actions of rules.  Only data that 
belongs to public slots can trigger action-effects.

Depending on the inference strategy options currently in effect, only the 
results of the Retrieve and Execute actions triggered from rule or 
method conditions may be forward-chained.  The Assign operator has no 
effect on forward chaining from the left-hand side.  See the Retrieve 
Operator and Execute Operator topics for details.

Examples

The following example depicts the IF, THEN, ELSE construction that can be 
used in rules and methods.

IF Retrieve “data.nxp”
THEN Get information
ELSE Execute  “Message” @TEXT=“Error”

Related Topics
Rules Agenda
Methods Inference Strategy
Hypotheses Inference Priority Attribute
Conditions Forward Chaining
Slots

Also see the sections on individual operators by name, as listed above.  
4 Language Reference



Agenda
Agenda
Definition

The agenda is the Rules Element’s central control mechanism, which directs 
the course of its inference processing.

Form

The agenda is an ordered list of hypotheses pending investigation via 
inference processing.  Notice that it is the hypotheses themselves that are 
placed on the agenda, not the rules that lead to them.

Operation

When the Knowcess command is issued to begin inference processing, the 
first hypothesis with the highest inference priority from the highest list on 
the agenda becomes the focus of attention, the object of active investigation 
by the Rules Element system.  All rules leading to this hypothesis are 
investigated until its value is determined to be either TRUE, FALSE, or 
NOTKNOWN.  Other hypotheses may be added to the agenda in the course of 
this inference process, as described under “Insertion,” below.  

As the value of each hypothesis is determined, it is removed from the 
agenda and the next hypothesis following it becomes the focus of attention.  
This process continues until all hypotheses have been processed and the 
agenda is empty, at which point the message End of Session is displayed in 
the session control panel of the Rules Element’s main window.  

Insertion

Although the user can explicitly place hypotheses on the agenda by 
selecting Suggest or related commands, the contents of the agenda are 
maintained automatically by the Rules Element and are not under the user’s 
direct control.  Hypotheses can be added to the agenda in any of the 
following ways:  

1. Via an explicit suggestion by the user.

2. By backward chaining from the conditions of a rule already under 
investigation.

3. By forward chaining:

a.  from the value of a hypothesis determined in the course of  
     inference processing.

b.  from a data value set in a rule by an action of some other rule.

c.  from a data value set in a rule by an action of some method.

d.  from a data value explicitly volunteered by the user.

4. Via a semantic gate from a rule previously investigated.

5. Via a context link from a hypothesis previously investigated.

Precedence

New hypotheses may be inserted in the agenda at any point, not just at the 
beginning or end.  The list above shows the order of precedence:  for 
example, hypotheses added to the agenda via semantic gates are placed 
after those reached via backward or forward chaining, but before those 
Language Reference 5



Chapter Application Development Features1
reached via context links.  Hypotheses added in the same way (for example, 
via semantic gates) are ordered according to their respective inference 
priorities or those of the rules leading to them.

Strategy

The ways in which hypotheses can be placed on the agenda are subject to 
the inference strategy currently in effect.  The following strategy options 
apply:

■ Forward confirmed hypotheses

■ Forward rejected hypotheses

■ Forward notknown hypotheses

■ Forward Action-Effects (rules and methods)

■ Forward through gates (rules only)

All of these options are normally enabled by default, but can be disabled if 
necessary.  See the section “Inference Strategy” for more information.

Related Topics

For a thorough understanding of the Rules Element agenda mechanism, 
please refer to the Functional Description manual.

ASIN Function
Definition

The ASIN function is used in expressions to find the arc-sine of a floating 
point number.  The expression can appear on the left-hand side or 
right-hand side of rules and methods.

Syntax

The function consists of the word ASIN followed by a single argument in 
parentheses:  

ASIN(x)

Argument

The argument may be any expression yielding a numerical result 
between--1.0 and 1.0.  The expression may include patterns or 
interpretations.  

If the value of the argument expression is an integer, it will be converted to 
an equivalent floating point value.  

Actions Inference Slot Attribute

Conditions Inference Strategy

Context Links Rules

Hypotheses Forward Chaining

Methods Backward Chaining

Inference Semantic Gates

Inference Priority Attribute
6 Language Reference



AskQuestion Operator
Result

The function returns a floating point result equal to the arc-sine of the 
argument.  The result is expressed in radians.  

If the argument expression does not produce a numerical value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the ASIN function:  

ASIN( 0.0) =  0.0
ASIN( 0.5) =  0.52 (=  3.14 / 6)
ASIN( 1.0) =  1.57 (=  3.14 / 2) 
ASIN(-1.0) = -1.57 (= -3.14 / 2)

Related Topics

AskQuestion Operator
Definition

The AskQuestion operator is used in the right-hand side actions of an 
Order of Sources method to prompt the user interactively for the value of a 
desired slot and test the answer.  

Operand

The AskQuestion operator takes two operands:  

■ The first operand is a slot, commonly (but not necessarily) the one in 
whose Order of Sources method the AskQuestion operator appears 
(named in the Attach To field of the Method editor).  

■ The second operand is either a constant of the right type for the slot 
named as the first operand, or the special value NOTKNOWN.  

Effect

The user is prompted, via the session control panel of the Rules Element 
main window, to supply a value for the slot to which this Order of Sources 
method belongs.  If a prompt line attribute is defined for the slot, it is 
displayed in the window in place of the standard text.  

After the value has been supplied, the slot named as the operator’s first 
operand is tested for the value given by the second.  If the two are unequal, 
the value supplied by the user is accepted and the method terminates; if 
they are equal, the value is rejected and execution continues with the next 
action in the Order of Sources method.  

Expressions Interpretations

Floating Point Constants SIN Function

Integer Constants ACOS Function

Patterns ATAN Function
Language Reference 7



Chapter Application Development Features1
Example

The following actions, appearing in the Order of Sources method for an 
object’s cost property, prompt the user to supply a value for that slot.  Any 
known value is accepted; if the response is NOTKNOWN, the slot’s value is 
instead inherited downward from a class or parent object:  

AskQuestion SELF.cost NOTKNOWN
InhValueDown DEFAULT

Related Topics

Assign Operator
Definition

The Assign operator is used in the conditions and actions of rules and 
methods to assign a value to a variable.  

Operands

The Assign operator takes two operands:  

■ The first operand can be a numeric constant, an arbitrary expression, a 
string, the special values NOTKNOWN or UNKNOWN, or a boolean constant 
(TRUE or FALSE) in the case where the second operand is a boolean 
variable.  

■ The second operand can be a slot, a list of slots specified by a pattern, or 
a boolean variable.  

The operands may be of any type, but must both be of the same or 
compatible type.  Any type of slot may be set to NOTKNOWN or UNKNOWN.  
Both operands may include patterns and interpretations.  Note that a 
private slot used in the second operand is ignored unless the Assign 
operator appears in a method specifically triggered for the slot.  See the 
description of Slots for more information about using private slots.

Effect

The value of the first operand is assigned to the slot named as the second.  If 
both operands are identical, the effect is simply to force evaluation of the 
specified slot.  For example, the following condition initiates backward 
chaining on the hypothesis “assigned” to itself.

Assign Hypo Hypo

If either or both operands include a pattern on the same class or object, the 
assignment is performed once for each object in the corresponding list.  For 
example, the following condition assigns the product of the first operand to 
each object in the Rect class.

Assign <Rect>.length * <Rect>.width <Rect>.area

Objects Methods

Properties Order of Sources Method

Actions Prompt Line Attribute
8 Language Reference



Assign Operator
The condition with a pattern shown above, is equivalent to the following 
two conditions, assuming the Rect class contains two objects, Rect1 and 
Rect2.

Assign Rect1.length * Rect1.width Rect1.area
Assign Rect2.length * Rect2.width Rect2.area

Depending on the strategy options currently in effect, the new value of the 
slot assigned in an action of a rule or method may be forward-chained to 
other rules in which the slot appears in a condition (causing the hypotheses 
of those rules to be placed on the agenda for consideration).  See the 
Forward Chaining section below for details.  Also, the new value 
assignment may trigger the execution of the slot’s If Change method, if one 
has been defined at the slot or parent slot level.  

Forward Chaining

Right-hand side actions in rules and methods involving the Assign 
operator can forward chain the new value of the slot to other rules in which 
the slot appears in a condition (causing the hypotheses of those rules to be 
placed on the agenda for consideration).  This form of forward chaining, 
known as Forward Action-Effects, is controlled first by a local strategy 
specific to the right-hand side Then and Else components of rules and 
methods.  By default the local strategy is set to ON.  If the local strategy is 
set to GLOBAL, the Rules Element defaults to the Rule Global forward 
action effects strategy in the Strategy Monitor window (from the Expert 
menu) until a Strategy operator overrides the global strategy at the local 
level.

Conditions of rules and methods involving the Assign operator are not 
able to initiate forward chaining.  Values assigned by such a condition are 
never propagated forward to other rules, nor can such a condition be 
triggered by forward chaining from another rule or method.

Data that belongs to a private slot cannot trigger action-effects since private 
slot data cannot appear in the conditions or actions of rules.  Only data that 
belongs to public slots can trigger action-effects.

Result

The result produced by the Assign operator is always TRUE unless the 
operands include a pattern with no matching values, in which case the 
result is NOTKNOWN.  

Examples

The following are examples of conditions using the Assign operator:  

Assign 3.14159 pi
Assign "Grumpy" dwarf.name
Assign TRUE Credit_approved
Assign FALSE Credit_approved
Assign UNKNOWN item.cost
Assign NOTKNOWN switch_number
Assign DATE(1904,6,16) bloomsday
Assign item.count + 1 item.count
Assign rect_1.length * rect_1.width rect_1.area
Language Reference 9



Chapter Application Development Features1
Related Topics

ATAN Function
Definition

The ATAN function is used in expressions to find the arc-tangent of a floating 
point number.  The expression can appear on the left-hand side or 
right-hand side of rules and methods.

Syntax

The function consists of the word ATAN followed by a single argument in 
parentheses:  

ATAN(x)

Argument

The argument may be any expression yielding a numerical result.  The 
expression may include patterns or interpretations.  

If the value of the argument expression is an integer, it will be converted to 
an equivalent floating point value.  

Result

The function returns a floating point result equal to the arc-tangent of the 
argument.  The result is expressed in radians.  

If the argument expression does not produce a numerical value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the ATAN function:  

ATAN( 0.0)   =  0.0
ATAN( 1.0)   =  0.78 (=  3.14 / 4) 
ATAN(999999) =  1.57 (=  3.14 / 2)
ATAN(-1.0)   = -0.78 (= -3.14 / 4)

Related Topics

Objects String Constants

Rules Boolean Constants

Methods Patterns

If Change Method Forward Chaining

Conditions Inference Strategy

Actions Strategy Operator

Data Types Agenda

Expressions Reserved Words

Slots

Expressions Interpretations

Floating Point Constants TAN Function

Integer Constants ASIN Function

Patterns ACOS Function
10 Language Reference



AVERAGE Function
AVERAGE Function
Definition

The AVERAGE function is used in expressions to find the average of a set of 
numerical values.  The expression can appear on the left-hand side or 
right-hand side of rules and methods.

Syntax

The function consists of the word AVERAGE followed by any number of 
arguments in parentheses:  

AVERAGE(x1,x2,...,xn)

Arguments

Each argument may be any expression yielding a numerical or time-valued 
result.  There may be either a list of arguments or a pattern matching list.  

If some of the argument values are integers and some floating point, the 
integers will be converted to equivalent floating point values before 
computation.  

Result

The function averages all the argument values and returns their arithmetic 
mean.  For arguments that include patterns, it averages all values in the 
corresponding list.  

Integer and floating point values may be mixed in the same average, but 
time values can be averaged only with each other.  If numeric and time 
arguments are mixed, or if any argument is of another type, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the AVERAGE function:  

AVERAGE(365,240,577)  = 394
AVERAGE(98.6,37.0,-273.18) = -29.85
AVERAGE(obj1.p,obj2.p,obj3.p)   = 11.85
AVERAGE(TIME(8,4,23),TIME(3,6,11)) = TIME(5,35,17)
AVERAGE(123,"456") = NOTKNOWN

If class Tank has four instances with capacity values of 6.3, 14.5, 12.9, 
and 9.0, then 

AVERAGE(<Tank>.capacity) = 10.67

Related Topics

Expressions Patterns DATE Function

Data Types Interpretations VAR Function

TIME Function STDEV Function
Language Reference 11



Chapter Application Development Features1
Backward Chaining
Definition

Backward chaining is the process of determining the truth or falsity of a 
hypothesis by evaluating the rules that lead to it.  

Invocation

Backward chaining is initiated by suggesting a hypothesis via any of the 
following commands:

■ The Suggest command on the Expert menu.

■ The Suggest/Volunteer... command on the Expert menu.

■ The Suggest... command on the windows pop-up menu.

■ The Suggest Hypothesis command on the Rule editor or List of 
Rules pop-up menu.

■ The Suggest command on the Rule Network, Object Network, or List 
of Hypotheses pop-up menu.

■ The Suggest command from the Agenda Monitor.

Backward chaining can also be initiated during runtime from the 
knowledge base itself:

■ The Assign Hypo Hypo construct from a rule or method forces the 
evaluation of the hypothesis “assigned” to itself.

■ The Backward operator may appear in an Order of Sources method as 
an action that backward chains to evaluate a hypothesis.

Each of these approaches places a hypothesis on the agenda for 
consideration.  When the Knowcess command is issued to begin inference 
processing, the Rules Element will look for any inference rules leading to the 
designated hypothesis and begin evaluating them to determine whether the 
hypothesis is TRUE or FALSE.  

Operation

Rules are considered one at a time in order of priority, as defined by their 
inference priorities.  The results determine the value of the hypothesis, as 
follows:   

■ If any rule is found whose conditions are all TRUE, the hypothesis is set 
to TRUE and all of the rule’s actions are executed.  

■ Otherwise, if at least one rule has a condition that is NOTKNOWN, the 
hypothesis is set to NOTKNOWN.  

■ Otherwise, the hypothesis is set to FALSE.  

The process terminates as soon as the value of the suggested hypothesis is 
determined, unless the strategy option Exhaustive evaluation is in 
effect; this option forces all rules leading to the suggested hypothesis to be 
evaluated, even after the value of the hypothesis has already been found.  

In the course of evaluating a rule, hypotheses occurring in its conditions 
may in turn be placed on the agenda as subgoals, invoking the same 
reasoning process recursively to investigate all rules leading to those 
12 Language Reference



Backward Operator
hypotheses.  Such backward chaining can continue recursively to any 
required depth.  

Propagation

Depending on the global strategy options currently in effect, the results of 
the inference process described above may be propagated forward to other 
parts of the knowledge base, causing additional hypotheses to be placed on 
the agenda and additional rules to be evaluated.  Strategy options relevant 
to this process include the following:  

■ Forward confirmed hypotheses

■ Forward rejected hypotheses

■ Forward notknown hypotheses

■ Forward Action-Effects (rules and methods)

■ Forward through gates (rules only)

See the section “Inference Strategy” for further details.  

Related Topics

Backward Operator
Definition

The Backward operator is used in the actions list of an Order of Sources 
method to seek the value of a boolean slot by backward chaining to the 
inference rules in which it appears as a hypothesis.  

Operand

The Backward operator is valid only in the THEN actions list on the 
right-hand side of an Order of Sources.  The Backward operator takes one 
operand, which must be the boolean constant TRUE.  The following is the 
only valid form for an action using the Backward operator:  

Backward TRUE

The Attach To field of the Method editor specifies the hypothesis to which 
the Backward operator applies.  

The Backward operator cannot be used as an Order of Sources action for a 
private slot since private slot data cannot be a hypothesis.  Only public slots 
can be hypotheses.

Agenda Inference Priority Attribute

Boolean Constants Inference Slot Attribute

Hypotheses Inference Strategy

Rules Forward Chaining

Inference Exhaustive Evaluation

Backward operator Assign operator
Language Reference 13



Chapter Application Development Features1
Effect

The Backward operator is meaningful only as an Order of Sources action 
for a boolean slot.  If the slot appears as the hypothesis of one or more 
inference rules, it is placed on the agenda as a subgoal, causing its value to 
be sought by backward chaining on those rules.  If there are two or more 
rules with the same hypothesis, they will be evaluated in the order specified 
by their inference priorities or inference slots.  

Example

In the case of the boolean slot that is a hypothesis, the system triggers an 
available user-defined Order of Sources before it initiates backward 
chaining to obtain the value of the slot.  To reincorporate the default 
behavior as part of a user-defined Order of Sources method, include the 
equivalent sequence of operators explicitly within the method:  

InhMethod DEFAULT
Backward TRUE
InhValueDown DEFAULT
InhValueUp DEFAULT
AskQuestion SELF        TRUE

Related Topics

Actions Order of Sources Method
Agenda Slot
Backward Chaining Rules
Boolean Constants Methods

Inference Priority Attribute
Inference Slot Attribute
Hypotheses

BOOL2STR Function
Definition

The BOOL2STR function is used in expressions to convert a boolean value to 
an equivalent character string.  The expression can appear on the left-hand 
side or right-hand side of rules and methods.

Syntax

The function consists of the word BOOL2STR followed by one or two 
arguments in parentheses:  

BOOL2STR(b)
BOOL2STR(b,f)

Argument

Each argument may be any expression yielding a result of the appropriate 
type:  

■ The first argument (b) is the boolean value to be converted.  

■ The optional second argument (f) is a string specifying the format 
under which the first argument is to be converted.  See “Boolean 
Formats” for the syntax and meaning of this string.  
14 Language Reference



Boolean Constants
The argument expressions may include patterns or interpretations.  

Result

The function returns a string result representing the boolean value of 
argument b, converted according to format f.  If no format argument is 
given, the default system format for booleans (defined in the 
ckbres.format module in the file nxrun.dat) is used.  

Examples

The following examples illustrate the results of the BOOL2STR function:  

BOOL2STR(FALSE) = "FALSE"
BOOL2STR(obj.p) = "FALSE"
BOOL2STR(FALSE,"Yup;Nope") = "Nope"

Related Topics

Expressions Patterns
String Constants Interpretations
Boolean Constants STR2BOOL Function
Boolean Formats

Boolean Constants
Definition

A boolean constant is a sequence of characters that stand directly for a 
boolean (logical) value, representing the truth value of a condition or 
hypothesis or other boolean variables.  

Values

There are two states that describe hypotheses and conditions:  evaluated or 
unevaluated.  Once the evaluation of a hypothesis or condition is complete, 
it resolves to one of the following boolean values.

TRUE
FALSE
NOTKNOWN

If a value has not yet been determined, the condition or hypothesis has the 
following boolean value.

UNKNOWN

An UNKNOWN value for a condition or hypothesis can be resolved to TRUE, 
FALSE, or NOTKNOWN as a result of further inference.  A NOTKNOWN value 
can never be so resolved; its indeterminacy is an intrinsic condition of the 
problem itself and is usually volunteered by the user through the 
application interface.  Both UNKNOWN and NOTKNOWN may be modified with 
the Assign operator.
Language Reference 15



Chapter Application Development Features1
Data Types

Although NOTKNOWN and UNKNOWN are applicable to boolean variables, 
slots of any data type may take these values.  The values TRUE and FALSE 
are reserved for slots defined as type boolean.  A fifth constant KNOWN is the 
counterpart of UNKNOWN, and may be assigned to slots of any data type.  

All boolean constants are built into the Rules Element as reserved words

Related Topics

Data Types Boolean Expressions
Identifiers Reserved Words
Boolean Formats Assign Operator

Boolean Expressions
Definition

A boolean expression represents a statement that when resolved returns a 
boolean result.  It can make use of AND, OR, NOT, and embedded 
comparison operators.

Usage

The boolean expression is always used as an operand in a condition that 
returns a boolean result, such as a comparison or value test condition.  There 
are two value test operators that return a boolean result:  

Yes
No

There are six comparison operators that return a boolean result:

= Equal

<> Not equal

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

Note:  Comparison operators can also be embedded in the boolean 
expression itself.  

Boolean Operators

Numeric or string values can be combined using the standard boolean 
operators when the result of the expression is a boolean value.

AND   OR   NOT

The Rules Element permits you to use these operators to combine values 
that individually evaluate to TRUE, FALSE, or NOTKNOWN.  The result 
produced by the boolean expression depends on the evaluation of these 
values as described below.
16 Language Reference



Boolean Formats
Result

The result produced by a boolean expression is either TRUE, FALSE, or 
NOTKNOWN.  The boolean operators provide the following results: 

Boolean operator And provides the following results: 

NOT:

NOT T == FALSE
NOT F == TRUE
NOT N == NOTKNOWN

Examples

The following is an example of a condition which tests a boolean expression:  

Yes (a AND b) OR (NOT (c=1))

Related Topics

Conditions Comparison Operators
Boolean Constants No Operator
Expressions Yes Operator

Boolean Formats
Definition

A boolean format specifies the representation of a boolean value in text form 
for input and output purposes.  

Syntax

This section defines the syntax of format elements for boolean-valued 
properties only.  See the section titled “Formats” for the syntax of formats in 
general.  

Like all formats, those for booleans may include strings of literal characters 
enclosed in double quotation marks (" . . . "), and may also include the 
wild-card character (*).  Format elements beginning with an exclamation 
point (!) are ignored in database transactions; they are meaningful only for 
direct interaction with the user via the screen and keyboard.  

OR TRUE FALSE NOTKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE NOTKNOWN

NOTKNOWN TRUE NOTKNOWN NOTKNOWN

AND TRUE FALSE NOTKNOWN

TRUE TRUE FALSE NOTKNOWN

FALSE FALSE FALSE NOTKNOWN

NOTKNOWN NOTKNOWN NOTKNOWN NOTKNOWN
Language Reference 17



Chapter Application Development Features1
Input

On input, each element in the format list is tried in order until one of them 
matches the input text.  If no match is found, the input is rejected and an 
error message is displayed on the screen.  The following conventions apply:  

■ Odd-numbered elements in the format list (the first, third, and so on) 
produce a TRUE result, even-numbered elements (the second, fourth, 
and so on) produce a FALSE result.  

■ Strings of literal characters enclosed in double quotation marks must 
match exactly, except that no distinction is made between upper- and 
lowercase letters.  

■ The wild-card character (*) matches any sequence of zero or more 
characters.  

Output

On output, only the first two elements in the format list are used:  

■ The first format element is used for TRUE values, the second for FALSE 
values; any further elements in the list are ignored.  

■ Strings of literal characters enclosed in double quotation marks are 
reproduced exactly in the output.  

■ The wild-card character (*) is ignored on output.  

Default

The default system format for booleans is defined in the ckbres.format 
module in the file nxrun.dat.  The standard default format is 

True;False

Example

The following example illustrates the use of boolean formats:  

Format:  Yes;No;Y*;N*;@N=Maybe

Related Topics

Formats
Format Attribute
Boolean Constants

Value Output Comments
TRUE Yes Uses first element
FALSE No Uses second element
NOTKNOWN Maybe Uses last (@N=) element

Input Value Comments
Yes TRUE Matches first element
no FALSE Case is irrelevant
Yup TRUE Matches third element
Nope FALSE Matches fourth element
NotKnown NOTKNOWN Reserved word
Maybe NOTKNOWN Matches last (@N=) element
Tru NOTKNOWN No match
18 Language Reference



CEIL Function
CEIL Function
Definition

The CEIL function is used in expressions to find the smallest whole number 
greater than a given floating point number.  The expression can appear on 
the left-hand side or right-hand side of rules and methods.

Syntax

The function consists of the word CEIL followed by a single argument in 
parentheses:  

CEIL(x)

Argument

The argument may be any expression yielding a floating point result.  The 
expression may include patterns or interpretations.  

Result

The function returns a floating point result equal to the smallest whole 
number greater than the argument.  Notice that although the result is 
always a whole number, it is of type FLOAT rather than INTEGER.  For 
negative arguments, the rounding is toward zero, rather than toward minus 
infinity.  

If the argument expression does not produce a numerical value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the CEIL function:  

CEIL(3.1416) = 4.0
CEIL(98.6) = 99.0
CEIL(-273.18) = -273.0
CEIL(-9.9) = -9.0

Related Topics

Expressions Interpretations
Floating Point Constants FLOOR Function
Integer Constants ROUND Function
Patterns

CHARFIND Function
Definition

The CHARFIND function is used in expressions to search a character string for 
a specified character or characters.  The expression can appear on the 
left-hand side or right-hand side of rules and methods.
Language Reference 19



Chapter Application Development Features1
Syntax

The function consists of the word CHARFIND followed by two arguments in 
parentheses:  

CHARFIND(s1,s2)

Arguments

Each argument may be any expression yielding a string result:  

■ The first argument (s1) is the string to be searched.  

■ The second argument (s2) specifies the characters to search for.  

The argument expressions may include patterns or interpretations.  

Result

The function returns an integer result equal to the offset from the beginning 
of the first argument string (s1) to the first occurrence of any character from 
the second string (s2).  The search is case sensitive, thus corresponding 
upper- and lowercase letters (such as A and a) are considered different for 
purposes of the search.  

A result of 0 denotes the first character in string s1 (no offset at all from the 
start of the string).  If s1 does not contain any of the characters in s2, the 
function result is equal to the length of string s1.  

If either argument expression does not produce a string value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the CHARFIND function:  

CHARFIND("SHAZAM!","AEIOU") = 2
CHARFIND("SHAZAM!","WXYZ")  = 3
CHARFIND("SHAZAM!","SPQR")  = 0
CHARFIND("SHAZAM!","LMNOP") = 5
CHARFIND("SHAZAM!","aeiou") = 7
CHARFIND("SHAZAM!","")   = 7
CHARFIND("","SHAZAM!")  = 0

Related Topics

Expressions SUBSTRING Function STRUPPER Function
String Constants STRLEN Function STRLOWER Function
Patterns STRCAT Function STRFIND Function
Interpretations

Classes
Definition

A class defines the common characteristics shared by a family of related 
objects.  
20 Language Reference



Classes
Structure

Every class has a name, which must comply with the Rules Element’s 
standard rules for a well-formed identifier.  The class definition may include 
any number of properties to be inherited by the objects belonging to the class 
(called its instances).  The class may also have any number of subclasses, 
which will likewise inherit its properties and pass them on in turn to their 
own instances.   A given class may be a subclass of more than one other class 
(called its superclasses), just as a given object may be an instance of more than 
one class (called its including classes).  

The class itself may associate a value with each property, independent of the 
property’s value for any individual instance.  Depending on the global and 
local inheritability settings currently in effect, the specific value of the 
property at the class level may or may not be inherited by instances or 
subclasses along with the property definition itself.  

Inheritance

The default inheritability strategy allows both property definitions 
themselves and the specific values associated with them to be inherited 
downward from a class to its instances or subclasses.  If necessary, these 
standard strategy settings can be changed from the Strategy Monitor 
window (from the Expert menu), the Strategy operator in a condition or 
action, or the Rules Elements application programming interface call 
NXP_Strategy to disable the inheritance of properties or their values or to 
permit upward as well as downward inheritance, from child to parent or 
parent to child.  In addition, a class can override the global strategy settings 
by using the Meta-Slot editor to specify local inheritability attributes for 
individual slots associated with the class.  

Creation

Classes can be created by several means:  

■ Interactively, via the New or Copy command in the Class editor.

■ Implicitly, by using a previously undefined class name in a condition  
or action of a rule or method, or as a subclass of another class.

■ Dynamically, through the Rules Element application programming 
interface (API).

Note: The system might display the class name enclosed between vertical 
bars (| . . . |) to distinguish it from an object name.

Deletion

Classes can be destroyed in either of two ways, depending on how they 
were originally created:

■ Classes created interactively by the application developer, via the 
Delete command in the Class editor.

■ Dynamically, through the Rules Element application programming 
interface.
Language Reference 21



Chapter Application Development Features1
Methods

Although a method is by definition triggered through a message sent 
directly to the object to which the method is attached, methods can be 
attached at the level of the class to govern the behavior of class instances.  In 
the case where the object has no method attached, the system will try to use 
downward inheritance to obtain one.  In a situation where the object belongs 
to multiple classes, each with its own method defined, then an InhMethod 
operator can be used to resolve the conflict by explicitly naming the parent 
class.

Related Topics

Objects Methods
Properties Dynamic Objects
Identifiers Inheritability Strategy
Rules Strategy Operator
Meta-Slots InhMethod Operator
Inheritance Retrieve Operator
Slots

Comment Attribute
Definition

The comment attribute is an arbitrary piece of text associated with a rule, 
method, or slot (a property of a class or object) to document its meaning or 
usage for the benefit of the application developer.  

Syntax

The comment attribute may consist of any sequence of text characters, 
without restriction.  

Effect

Comment attributes have no effect whatever on the operation of the system; 
their sole purpose is to help the application developer understand the 
structure and design of the knowledge base.  

Creation

Comment attributes are specified or edited by typing into the box labeled 
Comments in the Meta-Slot editor (for an individual slot), the Rule editor 
(for a rule), or the Method editor (for a method).  

Saving

Comment attributes are saved along with the knowledge base if the Save 
Comments and Whys option is chosen in the Save Knowledge Base... 
command.  

Related Topics

Meta-Slots Rules
Methods Why Attribute
22 Language Reference



COMPARE Function
COMPARE Function
Definition

The COMPARE function is used in expressions to compare data values for 
equality or inequality.  The expression can appear on the left-hand side or 
right-hand side of rules and methods.

Syntax

The function consists of the word COMPARE followed by two arguments in 
parentheses:  

COMPARE(x,y)

Arguments

Each argument may be any arbitrary expression.  The expressions may 
include patterns or interpretations.  

The argument values may be of any type, but the types must be comparable 
(either both the same or both numeric).  If one is an integer and the other 
floating point, the integer will be converted to an equivalent floating point 
value before comparison.  

Result

The function returns an integer result expressing the relation between the 
two argument values:  

■ If the first argument (x) is less than the second (y), the function result is 
-1.  

■ If the arguments are equal, the function result is 0.  

■ If x is greater than y, the function result is 1.  

Integers and floating point values are compared numerically, strings 
lexically, and dates and times chronologically.  In string comparisons, 
equivalent upper- and lowercase letters (such as A and a) are considered 
identical.  In boolean comparisons, TRUE is considered greater than FALSE.  

If the argument values are not of comparable types, the function result is 
NOTKNOWN.  

Examples

The following examples illustrate the results of the COMPARE function:  

COMPARE(365,240) = 1
COMPARE(98.6,98.6) = 0
COMPARE(12,12.0) = 0
COMPARE(12,12.3) = -1
COMPARE("Humpty","dumpty")   =  1
COMPARE("boo","boojum")      = -1
COMPARE("ABC","xyz")         = -1
COMPARE("abc","XYZ")         = -1
COMPARE("shazam!","SHAZAM!") = 0
COMPARE("","SHAZAM!")  = -1
COMPARE(DATE(1776,7,4),DATE(1789,7,14)) = 1
COMPARE(TIME(8,4,23),TIME(3,6,11)) = 1
COMPARE(TRUE,FALSE) = 1
COMPARE(123,"456") = NOTKNOWN
Language Reference 23



Chapter Application Development Features1
Related Topics

Expressions Patterns
Data Types Interpretations

Comparison Operators
Definition

The comparison operators are used in a rule’s conditions to compare 
numerical values, dates, and times, as well as non-numeric values in the 
form of slots, strings, and booleans.

Operators

There are six comparison operators:  

= Equal

<> Not equal

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

Note: For the operators = (equal) and <> (not equal) only, comparisons may 
be numeric or non-numeric as described below.  

Numeric Operands

All comparison operators provide the means to compare two numeric 
values of the same or compatible type.  To perform this type of comparison, 
the operators take the following two operands:  

■ The first operand may be any numeric constant, expression, or slot 
yielding an integer, floating point, date, or time value, and may include 
patterns.  

■ The second operand may be any numeric constant, expression, or slot 
yielding an integer, floating point, date, or time value, and may include 
patterns.  It can also include KNOWN, NOTKNOWN, and 
UNKNOWN.

For the operators = (equal) and <> (not equal) only, the second operand may 
be a list of numbers separated by commas.  Comparisons involving dates 
and times, must use the Date or Time function to yield a constant value.  

Note that a private slot used in the second operand is ignored unless the 
comparison operator appears in a method specifically triggered for the slot.  
See the description of Slots for more information about using private slots.
24 Language Reference



Comparison Operators
Non-Numeric Operands

The operators = (equal) and <> (not equal) also allow comparison for 
equality between non-numeric values of the same or compatible type.  To 
perform this type of comparison, the = and <> operators take the following 
two operands:  

■ The first operand can be either the name of a slot or a list of slots 
specified by a pattern.  

■ The second operand can be a list of one or more string or boolean 
constants separated by commas, or a single slot (patterns are not 
allowed).  It can also include KNOWN, NOTKNOWN, and 
UNKNOWN.  

Note: If the second operand is a slot, it must be of the same type defined for 
the first operand.  

Result

The result produced by a comparison operator is TRUE, FALSE, or 
NOTKNOWN depending on whether the stated relation exists between the 
two operands.  If the first operand includes a pattern, the condition tests 
whether at least one of the values in the corresponding list (for an existential 
pattern) or all of them (for a universal pattern) satisfy the given relation.  

In the case of the operators = (equal) and <> (not equal), string constants 
listed in the second operand are recorded as possible values of the given 
slot, and will be presented as suggested options when requesting a value 
from the user for that slot.  

Numeric Examples

The following are examples of conditions using the comparison operators to 
test numeric equality that involves variables, constants, and expressions:  

> temperature 98.6
<= item_1.quantity * item_1.cost10000
<= <Item>.quantity * <Item>.cost10000
<= {Item}.quantity * {Item}.cost10000
= switch.number 8,14,22
> item_1.quantity * item_1.costmax_cost

Non-Numeric Examples

The following are examples of conditions using the = (equal) and <> (not 
equal) comparison operators to test strings and boolean constants:  

= valve_1.pressure "increasing"
= valve_1.pressure "increasing","stable"
= <Valve>.pressure KNOWN
= {Valve}.pressure UNKNOWN,NOTKNOWN
<> valve_1.pressure "increasing"
<> valve_1.pressure "increasing","stable"
<> <Valve>.pressure KNOWN
<> {Valve}.pressure UNKNOWN,NOTKNOWN

Notice that the special values KNOWN, UNKNOWN, and NOTKNOWN 
are  not written with string quotes (" . . . ").  
Language Reference 25



Chapter Application Development Features1
The following are examples of conditions using the = (equal) and <> (not 
equal) comparison operators to test the equality between two slots:  

= item_1.quantity max_quantity
= max_quantity item_1.quantity
= <Item>.quantity max_quantity
= {Item}.quantity max_quantity
<> item_1.quantity max_quantity
<> max_quantity item_1.quantity
<> <Item>.quantity max_quantity
<> {Item}.quantity max_quantity

The following pattern matching statements are not valid comparisons and 
are illegal constructions due to the use of two dissimilar classes:  

= <itemA>.quantity <itemB>.quantity
= <itemA>.quantit <itemB>.available_amount

Related Topics

Rules Floating Point Constants
Conditions Patterns
Slots Expressions
Data Types Boolean Expressions
Integer Constants DATE Function
Boolean Constants TIME Function
String Constants

Conditions
Definition

A condition expresses a test to be performed on the left-hand side of a rule or 
method, helping to determine whether the rule or method is satisfied.  
Conditions in methods are optional.

Syntax

A condition consists of an operator followed by one or two operands.  The 
possible operators are:

Yes Write
No CreateObject
= DeleteObject
<> Member
< NotMember
<= LoadKB
> UnloadKB
>= Reset
Assign Show
Execute Strategy
Retrieve endMessage

The exact number and form of the operands varies from one operator to 
another; see the sections on individual operators for details.  
26 Language Reference



Conditions
Rule Evaluation

The list of conditions within a rule is normally evaluated sequentially, in the 
order they appear in the rule definition; this evaluation order may be altered 
by the inference priorities of the data involved.  

For the rule to be satisfied, all of its conditions must evaluate to TRUE.  The 
conditions are thus implicitly linked by the logical “and” operator.  To 
achieve the effect of a logical “or,” use separate rules leading to the same 
hypothesis.  

The system executes one of two different lists of consequent actions (Then 
and Else) for the same rule depending on whether the rule is satisfied or not.  

Method Evaluation

The list of conditions is optional for methods.  If no conditions are present, 
the system automatically executes the Then actions list when the method 
itself is triggered.  If method conditions are present, the system executes one 
of two different lists of consequent actions (Then and Else) depending on 
whether the method is satisfied or not.  

For the method to be satisfied, all of its conditions must evaluate to TRUE.  
The conditions are thus implicitly linked by the logical “and” operator.  To 
achieve the effect of a logical “or,” use backward chaining on separate rules.  

If present, conditions within a method are always evaluated sequentially, in 
the order they appear in the method definition; unlike rule conditions this 
evaluation order is not altered by the inference priorities of the data 
involved.  

Forward Chaining

Depending on the inference strategy options currently in effect, the 
evaluated data item or pattern in a condition may be forward-chained to the 
conditions of other rules that share the same data.  In order for the 
hypothesis of another rule to be placed on the agenda for consideration, the 
forwarded data must make the condition of the target rule TRUE.  This form 
of forward chaining is known as semantic gates.  Methods are not affected 
by shared data because they do not have hypotheses to be considered for 
evaluation, nor can a condition in a method trigger forward chaining to 
another rule or method through a gate.

The system does not forward-chain the results of the Assign action triggered 
from the rule or method conditions list.  However, depending on the 
inference strategy options currently in effect, the Retrieve and Execute 
actions triggered from the rule or method’s conditions list may be 
forward-chained.  See the Retrieve Operator and Execute Operator topics 
for details.

Data that belongs to a private slot cannot trigger forward chaining since 
private slot data cannot appear in the conditions or actions of rules.  Only 
data that belongs to public slots can trigger forward chaining.
Language Reference 27



Chapter Application Development Features1
Examples

The following examples illustrate conditions that can appear in a rule or 
method:  

=    car.color     “blue”, “red”, “yellow”
Yes  Question_Answered OR Info_Retrieved

Related Topics

Rules Comparison Operators
Methods Boolean Constants
Hypotheses Inference Priority Attribute
Actions Semantic Gates
Slots Inference Strategy
Forward Chaining

Also see the sections on individual operators by name, as listed above.  

Context Links
Definition

A context link (also called a weak link) is an explicit connection defined 
between two hypotheses to direct the course of the inference process.  It is 
the only possible link between two knowledge islands.

Creation

Context links are always created interactively, via the New and Copy 
commands in the Context editor.  

Deletion

Context links are always deleted interactively, via the Delete command in 
the Context editor.  

Operation

Each time a hypothesis is investigated in the course of inference processing 
and its value (TRUE, FALSE, or NOTKNOWN) is determined, the Rules 
Element finds any other hypotheses that are connected to it via context links 
and places them on the agenda for later consideration.  When these 
hypotheses come to the top of the agenda, their values in turn will be sought 
by backward chaining.  

Asymmetry

Context links are one-directional:  that is, a link from hypothesis A to 
hypothesis B does not also imply a link from B to A.  For the connection to 
operate in both directions, two separate context links must be explicitly 
defined.   

Precedence

Hypotheses generated as a result of context links have lower precedence 
(and consequently are placed lower on the agenda) than those generated 
either by backward chaining or via semantic gates.  When several 
28 Language Reference



COS Function
hypotheses are placed on the agenda via context links, their precedence is 
determined according to their respective inference priorities.  

Related Topics

Hypotheses Backward Chaining
Rules Forward Chaining
Boolean Constants Inference Priority Attribute
Inference Semantic Gates
Agenda

COS Function
Definition

The COS function is used in expressions to find the cosine of a floating point 
number.  The expression can appear on the left-hand side or right-hand side 
of rules and methods.

Syntax

The function consists of the word COS followed by a single argument in 
parentheses:  

COS(x)

Argument

The argument may be any expression yielding a numerical result.  The 
expression may include patterns or interpretations.  

If the value of the argument expression is an integer, it will be converted to 
an equivalent floating point value.  

Result

The function returns a floating point result equal to the cosine of the 
argument.  The argument is assumed to be expressed in radians.  

If the argument expression does not produce a numerical value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the COS function:  

COS(0.0) = 1.0
COS(3.14 / 3) = 0.5
COS(3.14 / 2) = 0.0 
COS(3.14) = -1.0

Related Topics

Expressions SIN Function
Floating Point Constants TAN Function
Integer Constants ACOS Function
Patterns COSH Function
Interpretations
Language Reference 29



Chapter Application Development Features1
COSH Function
Definition

The COSH function is used in expressions to find the hyperbolic cosine of a 
floating point number.  The expression can appear on the left-hand side or 
right-hand side of rules and methods.

Syntax

The function consists of the word COSH followed by a single argument in 
parentheses:  

COSH(x)

Argument

The argument may be any expression yielding a numerical result.  The 
expression may include patterns or interpretations.  

If the value of the argument expression is an integer, it will be converted to 
an equivalent floating point value.  

Result

The function returns a floating point result equal to the hyperbolic cosine of 
the argument.  

If the argument expression does not produce a numerical value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the COSH function:  

COSH( 0.0) = 1.0
COSH( 0.5) = 1.12
COSH(-0.5) = 1.12
COSH( 1.0) = 1.54 
COSH(-1.0) = 1.54

Related Topics

Expressions Interpretations
Floating Point Constants SINH Function
Integer Constants TANH Function
Patterns COS Function

CreateObject Operator
Definition

The CreateObject operator is used in the conditions and actions of a rule 
or method to create dynamic objects in the course of inference processing, 
or to link existing objects to new including classes or parent objects.  

The operator has an equivalent Rules Element application programming 
interface routine (NXP_CreateObject) and Rules Element Execute 
Library routine (CreateObjects).
30 Language Reference



CreateObject Operator
Operands

The CreateObject operator takes one or two operands:  

■ The first operand is the name of an object or class and is usually 
specified as an interpretation of a slot.

■ The optional second operand is a list of one or more class or object 
names separated by commas.  Classes and objects may be mixed in the 
same list.  

Either or both operands may include patterns or interpretations.  

Effect

The object designated by the first operand is made an instance of each class 
and a component (subobject) of each object named in the second operand.  
If no object exists with the given name, a new one is created belonging to the 
given classes and parent objects.  

If the first operand is a class rather than an object, it is made a subclass of 
each class named in the second operand.  

If either operand includes a pattern, the operation applies separately to each 
object in the corresponding list.  

Dynamic objects can have either public or private slots as determined by the 
parent object’s slot attribute.

Any unknown name occurring in either operand will be created implicitly 
at compile time.  Names enclosed within vertical bars (| . . . |) will 
automatically be created as classes; otherwise, the application developer 
will be prompted to identify the name as either a class or an object.  

Dynamic objects and links created with the CreateObject operator can be 
deleted by the DeleteObject operator in the course of evaluating a rule or 
method.  Additionally, dynamic objects and links exist only for the duration 
of the session in which they are created, and are automatically destroyed by 
the Quit or Restart Session commands.  

Examples

If whats_his_name is a string slot whose value is Rover then the action 

CreateObject \whats_his_name\

creates a new object named Rover, belonging to no particular class or 
parent object.  

If Dog is the name of a class and my_pets is an object, then 

CreateObject Rover Dog,my_pets

makes the object Rover an instance of Dog and a component of my_pets.  

CreateObject |Poodle| Dog

makes the class Poodle a subclass of Dog.  

If whats_his_name is a string slot whose value is Rover then 

CreateObject 'Good_Old_'\whats_his_name\ Dog

creates an object named Good_Old_Rover belonging to class Dog.  

CreateObject< my_pets>| Animal|
Language Reference 31



Chapter Application Development Features1
makes every component of object my_pets an instance of a new class 
named Animal.  

If my_family is an object, 

CreateObject my_house< my_family>

links the existing object named my_house to every component of 
my_family.  

CreateObject <my_pets> <Dog>

links every component of object my_pets to every instance of class Dog.  

Related Topics

Objects Actions
Dynamic Objects Conditions
Classes Slots
Rules Patterns
Methods Interpretations
DeleteObject Operator

Data Types
Definition

Data types are the most basic units of information with which the Rules 
Element can work.  There are six such types:  

■ Integer (32 bit whole numbers)

■ Float (64 bit floating point numerical values)

■ Boolean (logical values)

■ String (sequences of text characters)

■ Date (calendar dates and times of day)

■ Time (intervals of duration)

There is also a seventh type named Special, representing the union of the 
other six:  that is, a property of this type can take on values belonging to any 
of the other six elementary types.  The use of this type is limited to the 
special property Value, used to carry the data value associated directly 
with an object itself.  No other property can ever be defined to be of type 
Special. 

Special values

All slots of a newly created object are initialized to the special value 
UNKNOWN, denoting a value that has not yet been determined.  Another 
special value, NOTKNOWN, denotes a value that is definitively stated to be 
unspecified as one of the givens of the problem.  An UNKNOWN value can be 
resolved to a specific data value as a result of further inference or 
computation.  A NOTKNOWN value can never be so resolved; its 
indeterminacy is an intrinsic condition of the problem itself.  Both UNKNOWN 
and NOTKNOWN may be modified with the Assign operator.
32 Language Reference



Data Validation Attribute
Related Topics

Objects String Constants
Properties DATE Function 
Integer Constants TIME Function
Floating Point Constants Value Property
Boolean Constants Assign Operator

Data Validation Attribute
Definition

Data Validation is used to predetermine an acceptable numeric range, list of 
strings, or more complex constraint for a slot or property whose value is 
determined at runtime.

Syntax

Data validation has three attributes.  You can specify all or none as required 
for an individual slot.  The attributes have the following syntax 
requirements:

Function You can specify a boolean expression to check the 
validity of the value entered for the slot.  The slot 
must be referenced by SELF.  Operators such as 
AND, OR, and NOT can be used, as well as any 
standard functions such as RANDOM.  The functions 
DATE and TIME should be used to specify data and 
time values.

Note:  A compilation error will occur if you specify 
the slot by name; SELF must be used when 
referencing the slot displayed by the Meta-Slot 
editor.  

Execute You can specify an external routine installed 
through the Rules Element application 
programming interface call NXP_SetHandler to 
specify more complex constraints.  The routine 
must return TRUE or FALSE.

Error Help You can customize the alert dialog help string.  It 
can be made dynamic by using the @V() and 
@SELF syntax.  If no help string is specified, the 
system displays a default alert window with the 
options ABORT, ALLOW, and RETRY.

Data validation expressions can include pattern matching in order to match 
values against a list.  Examples of such a validation function include:

SELF.VALUE = <Class>.prop
SELF.item = <items>.name

This example requires SELF.VALUE to match at least one of the objects in 
the class specified with the property given.  The SELF variable is useful 
when the data validation attribute is inherited by the children of the object 
whose slot includes the validation function.  The system replaces the SELF 
variable with the name of the object which inherits the validation function.  
Language Reference 33



Chapter Application Development Features1
The list generated by the existential or universal pattern used in a validation 
function cannot be reduced by further patterns since it is local to the data 
validation expression.  

If you specify an external routine in the “Execute field,” the system will 
automatically pass the slot name, the proposed value, and the result if any 
of the evaluation of the “Function field” expression to the routine.  In turn 
the routine will return its decision to accept or reject the proposed value for 
the slot.

Private slots can be the subject of a data validation test, but cannot be used 
in the validation of another slot.  Public slots have no such restriction.

Creation

Data validation is specified via the Data Validation fields in the 
Meta-Slot editor in the case of the individual slot.  Data validation can also 
be specified via the Property editor in the case of an individual property.  
Both editors provide the same attributes.  

Default

By default data validation is disabled by a strategy at the global level.  The 
strategy must be enabled in order for the system to process data validation 
expressions defined in the Meta-Slot or Property editors.  

Strategy

You can enable or disable all data validation functions at two separate 
levels:

End User Validation When the value of the slot for which a data 
validation function exists is solicited from the end 
user through a question window.

Engine Validation When the value of the slot for which a data 
validation function exists is provided during the 
inferencing session by one of the assignment 
operators (Assign, Execute, and Retrieve).

Both types of data validation are normally disabled by default, but can be 
modified if necessary globally through the Strategy Monitor window (from 
the Expert menu) or locally through the Strategy operator in a rule or 
method.  Both provide the following options:

OFF (default) No data validation checking of the values entered.

ON/ACCEPT Accept the value entered when the data validation 
expression contains a slot not yet evaluated.

OFF/REJECT Reject the value entered when the data validation 
expression contains a slot not yet evaluated.

Operation

Data validation is either enabled or disabled as determined by the strategy 
currently in effect.  If it is enabled and the system receives a value from the 
end user or determines a value through an Order of Sources for example, 
the inference engine processes the data validation attributes for the slot in 
question.  If no data validation expression has been defined for the slot, the 
system will first try to inherit the data validation attributes of the slot’s 
34 Language Reference



Date Formats
parent class or object and then try the property of the slot.  Finally, if the 
system determines that an incorrect value has been supplied, an alert dialog 
with the default help string appears:

New value <value> for slot <slot> doesn’t satisfy <test>.

You can customize the text of the alert dialog by using the @V() and @SELF 
syntax.

Inheritance

Inheritability of data validation attributes is controlled by the inference 
engine.  The search for inheritable data validation attributes occurs from the 
more specific to the more general.  If no data validation expression or 
execute routine has been defined for the slot, the system will try to inherit 
the data validation attributes of the slot’s parent class or object.  If none is 
available at the parent level; it will check at the property level.  

Examples

The following example illustrates the data validation function:

SELF.quantity*Department.factor ≤ Department.threshold

Related Topics

Meta-Slots Strategy operator
Properties DATE Function
Patterns TIME Function
Slots SELF

Date Formats
Definition

A date format specifies the representation of a date value in text form for 
input and output purposes.  

Syntax

This section defines the syntax of format elements for dates only.  See the 
section titled “Formats” for the syntax of formats in general.  

The following special characters are meaningful in date formats:  

Y,y Year field

M,m Month or minute field

D,d Day field

H,h Hour field

S,s Second field

Note: It is important to use spaces between the format characters.  For 
example, “dd mm yy” is a valid format, whereas, “ddmmyy” is not.
Language Reference 35



Chapter Application Development Features1
The meaning and usage of these fields are discussed in the relevant sections 
below.  Only the first element in the format list is used for output; any 
further elements are meaningful for input only.  

Like all formats, those for dates may include strings of literal characters 
enclosed in double quotation marks (" . . . "), and may also include the 
wild-card character (*).  Format elements beginning with an exclamation 
point (!) are ignored in database transactions; they are meaningful only for 
direct interaction with the user via the screen and keyboard.  

Year

A series of Ys or ys denotes a year field.  Upper- and lowercase letters may 
be used interchangeably; the distinction is irrelevant.  The following forms 
are recognized:  

Uppercase Y and lowercase y may be used interchangeably.  

The abbreviated, two-digit form applies to twentieth-century years 
(1900–1999) only.  On input, only one or two digits are accepted and are 
considered to be prefixed implicitly by 19:  for example, the input value 84 
is interpreted as the year 1984, and 4 as 1904.  On output, 
twentieth-century years are automatically abbreviated to their last two 
digits, but years in other centuries are represented in full:  for example, 
1990 is represented as 90, but 1492 as 1492.  A year field of any length 
other than two always denotes a full four-digit year number.  

Month

A series of Ms or ms denotes a month field unless immediately preceded by 
an hour field, in which case it is interpreted as a minute instead (see 
“Minute,” below).  The following forms are recognized:  

Uppercase M and lowercase m may be used interchangeably in the last two 
cases.  In the last case, the month number is represented in the shortest form 
possible, one or two digits depending on the month.  

Format Example Meaning
yy 84 Abbreviated year (2 digits)
yyyy 1984 Full year (4 digits)

Format Example Meaning
MMMM JANUARY Full month name, all caps
Mmmm January Full month name, initial cap
mmmm january Full month name, all lowercase
MMM JAN Three-letter abbreviation, all caps
Mmm Jan Three-letter abbreviation, initial cap
mmm jan Three-letter abbreviation, all lowercase
mm 01 Two-digit month number
m 1 One- or two-digit month number
36 Language Reference



Date Formats
Day

A series of Ds or ds denotes a day field.  The following forms are recognized:  

The three- and four-letter forms represent the day of the week.  These forms 
are invalid for input; on output, the weekday for a given date is computed 
automatically and formatted in the specified form.  

The one- and two-letter forms represent the day of the month, and do not 
distinguish between uppercase D and lowercase d.  In the one-letter case, the 
day number is represented in the shortest form possible, one or two digits 
as the case may be.  

Hour

A series of Hs or hs denotes an hour field.  The following forms are 
recognized:  

The distinction between uppercase H and lowercase h is irrelevant.  In the 
one-letter case, the hour number is represented in the shortest form 
possible, one or two digits as the case may be.  

Minute

A series of Ms or ms, immediately preceded by an hour field, denotes a 
minute field.  (If not preceded by an hour field, it is interpreted as a month 
instead; see “Month,” above.)  The following forms are recognized:  

The distinction between uppercase M and lowercase m is irrelevant.  nn the 
one-letter case, the minute number is represented in the shortest form 
possible, one or two digits as the case may be.  

Second

A series of Ss or ss denotes a second field.  The following forms are 
recognized:  

Format Example Meaning
DDDD MONDAY Full weekday name, all caps
Dddd Monday Full weekday name, initial cap
dddd monday Full weekday name, all lowercase
DDD MON Three-letter abbreviation, all caps
Ddd Mon Three-letter abbreviation, initial cap
ddd mon Three-letter abbreviation, all lowercase
dd 01 Two-digit day of month
d 1 One- or two-digit day of month

Format Example Meaning
hh 01 Two-digit hour number
h 1 One- or two-digit hour number

Format Example Meaning
mm 01 Two-digit minute number
m 1 One- or two-digit minute number

Format Example Meaning
ss 01 Two-digit second number
s 1 One- or two-digit second number
Language Reference 37



Chapter Application Development Features1
The distinction between uppercase S and lowercase s is irrelevant.  In the 
one-letter case, the second number is represented in the shortest form 
possible, one or two digits as the case may be.  

Examples

The format

Dddd, Mmmm d, yyyy " at " hh:mm:ss;mm-dd-yy hh:mm:ss

will output dates in the form 

Thursday, December 18, 1984 at 13:43:07

and will accept them as input in the form 

12-18-84 13:43:07

The format 

DDD D MMM YY;mm/dd/yy

will output dates in the form 

THU 18 DEC 84

and will accept them as input in the form 

12/18/84

Default

The default system format for dates is defined in the ckbres.format 
module in the file nxrun.dat.  The standard default format is 

Mmm dd yyyy hh:mm:ss;mm dd yy hh:mm:ss;Mmm dd yyyy; mm dd yy

This format will output dates in the form 

Dec 18 1984 13:43:07

and will accept them as input in any of the forms 

Dec 18 1984 13:43:07
12 18 84 13:43:07
Dec 18 1984
12 18 84

Related Topics

Formats TIME Function
Format Attribute Time Formats
DATE Function

DATE Function
Definition

A date is a Rules Element data value representing a calendar date, optionally 
also including a time of day.  See also the TIME Function topic.
38 Language Reference



DATE2FLOAT Function
Syntax

A date constant can be specified in either of two formats, similar to those for 
times (see the TIME Function topic):  

DATE(year, month, day)
DATE(year, month, day, hour, minute, second)

The parameters year, month, day, hour, minute, and second are integer 
values falling within the following ranges:  

0 ≤ year ≤  32767
1 ≤ month ≤  12
1 ≤ day ≤  31
1 ≤ hour ≤  24
1 ≤ minute ≤  60
1 ≤ second ≤  60

For example, 

DATE(1904,6,16)

denotes the date 16 June 1904, and 

DATE(1981,6,8,21,8,46)

denotes 8 June 1981 at 9:08:46 p.m.  

Expressions

Dates and times can be combined arithmetically in various ways.  You can 
add or subtract two time intervals to produce a third interval representing 
their sum or difference, subtract two dates to find the interval between 
them, or add or subtract a date and a time to produce another date.  You can 
also multiply or divide a time by a number (integer or floating point).  In 
summary, here are the valid arithmetic operations on dates and times:  

time + time yields time
time - time yields time
date - date yields time
date + time yields date
date - time yields date
number * time yields time
time * number yields time
time / number yields time

Related Topics

TIME Function MONTH Function
Data Types DAY Function
Expressions WEEKDAY Function
Date Formats YEARDAY Function
YEAR Function NOW Function

DATE2FLOAT Function
Definition

The DATE2FLOAT function is used in expressions to convert a date to an 
equivalent floating point value.  The expression can appear on the left-hand 
side or right-hand side of rules and methods.
Language Reference 39



Chapter Application Development Features1
Syntax

The function consists of the word DATE2FLOAT followed by a single 
argument in parentheses:  

DATE2FLOAT(d)

Argument

The argument may be any expression yielding a date result.  The expression 
may include patterns or interpretations.  

Result

The function returns a floating point result representing the number of 
seconds from midnight, 1 January 1970, to the given date d.  If the date is 
earlier than 1970, the result will be negative.  

Examples

The following examples illustrate the results of the DATE2FLOAT function:  

DATE2FLOAT(DATE(1981,6,8,21,8,46)) = 360882526.0
DATE2FLOAT(DATE(1904,6,16))  = -2068416000.0
DATE2FLOAT("16 June 1904") = NOTKNOWN

Related Topics

Expressions Interpretations
DATE Function FLOAT2DATE Function
TIME Function TIME2FLOAT Function
Patterns DATE2STR Function

DATE2STR Function
Definition

The DATE2STR function is used in expressions to convert a date value to an 
equivalent character string.  The expression can appear on the left-hand side 
or right-hand side of rules and methods.

Syntax

The function consists of the word DATE2STR followed by one or two 
arguments in parentheses:  

DATE2STR(d)
DATE2STR(d,f)

Argument

Each argument may be any expression yielding a result of the appropriate 
type:  

■ The first argument (d) is the date to be converted.  

■ The optional second argument (f) is a string specifying the format 
under which the first argument is to be converted.  See the Date Formats 
topic for the syntax and meaning of this string.  

The argument expressions may include patterns or interpretations.  
40 Language Reference



DAY Function
Result

The function returns a string result representing the date value of argument 
d, converted according to format f.  If no format argument is given, the 
default system format for dates (defined in the ckbres.format module in 
the file nxrun.dat) is used.  

Examples

The following examples illustrate the results of the DATE2STR function:  

DATE2STR(DATE(1904,6,16)) = "Jun 16 1904 00:00:00"
DATE2STR(DATE(1904,6,16),"m/d/yy") = "6/16/04"
DATE2STR(DATE(1904,6,16),"Dddd, Mmmm dd, yyyy") = 
                          "Thursday, June 16, 1904"

Related Topics

Expressions Patterns
String Constants Interpretations
DATE Function DATE2FLOAT Function
TIME Function STR2DATE Function
Date Formats

DAY Function
Definition

The DAY function is used in expressions to extract the day field of a date or 
time.  The expression can appear on the left-hand side or right-hand side of 
rules and methods.

Syntax

The function consists of the word DAY followed by a single argument in 
parentheses:  

DAY(d)

Argument

The argument may be any expression yielding a date or time result.  The 
expression may include patterns or interpretations.  

Result

The function returns an integer result equal to the day field of the argument.  
For date arguments, the result ranges from 1 to 31.  

If the argument expression does not produce a date or time value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the DAY function:  

DAY(DATE(1492,10,12))  = 12
DAY(DATE(1981,6,8,21,8,46)) = 8
DAY(TIME(8,4,23)) = 0
DAY(TIME(3,6,11,22,34,17))  = 11
DAY("October 12, 1492") = NOTKNOWN
Language Reference 41



Chapter Application Development Features1
Related Topics

Expressions HOUR Function
DATE Function MINUTE Function
TIME Function SECOND Function
Patterns WEEKDAY Function
Interpretations YEARDAY Function
YEAR Function NOW Function
MONTH Function

DeleteObject Operator
Definition

The DeleteObject operator is used in a condition or action of a rule or 
method to remove instances from a class or components from a parent 
object.  

Operands

The DeleteObject operator takes one or two operands:  

■ The first operand is the name of an object or class.  

■ The second operand is a list of one or more class or object names 
separated by commas.  Classes and objects may be mixed in the same 
list.  

Either or both operands may include patterns or interpretations.  

Effect

If there is one argument and the object is a dynamic object, then the object is 
deleted.  Otherwise, the link is destroyed between the object designated by 
the first operand and each class or parent object named in the second 
operand.  The object itself is not destroyed, only the link between it and the 
designated classes or parents.  

If the first operand is a class rather than an object, it is removed as a subclass 
of each class named in the second operand.  

If either operand includes a pattern, the operation applies separately to each 
object in the corresponding list.  

Any unknown name occurring in either operand will be created implicitly 
when the rule is compiled.  Names enclosed within vertical bars 
(| . . . |) will automatically be created as classes; otherwise, the 
application developer will be prompted to identify the name as either a class 
or an object.  

Instance and component links destroyed with the DeleteObject operator 
are eliminated only for the duration of the session in which they are deleted.  
If the underlying object was created dynamically (with the CreateObject 
operator), it will automatically be destroyed by the Quit or Restart Session 
commands; if it was created explicitly (for example, via the Object editor), it 
will continue to exist and its original instance and component relationships 
will be restored by those commands.  
42 Language Reference



Dynamic Data Exchange
Examples

If Dog is the name of a class and Fido and my_pets are objects, then 

DeleteObject Fido Dog,my_pets

removes Fido as an instance of Dog and as a component of my_pets.  

If Poodle is a subclass of Dog, 

DeleteObject Poodle Dog

eliminates the subclass relationship.  

If whats_his_name is a string slot whose value is Rover, then 

DeleteObject' Good_Old_'\whats_his_name\ Dog

removes the object named Good_Old_Rover from class Dog.  

DeleteObject <my_pets> Animal

removes every component of my_pets from class Animal.  

If my_family is an object, 

DeleteObject my_house <my_family>

destroys the links between the object my_house and every component of 
my_family.  

DeleteObject< my_pets> <Dog>

destroys all links between the components of object my_pets and the 
instances of class Dog.  

Related Topics

Objects Actions
Dynamic Objects Conditions
Classes Patterns
Rules Interpretations
Methods CreateObject Operator

Dynamic Data Exchange
This topic addresses DDE calls. The Rules Element is shown both as a client 
and as a server for DDE conversations.  It contains the following topics.

Introduction

Dynamic Data Exchange (DDE) is a Microsoft Windows communication 
protocol. Using DDE, a Windows application (the client) starts up a second 
Windows application (the server), passes data, uses the functions of the 
server, and calls for results.  An application can be engaged in several DDE 
“conversations” at the same time, acting as the client in some and as the 
server in others.

DDE Conversations

The syntax of a DDE message is based on the following pattern:

Operation Topic Arguments 
Language Reference 43



Chapter Application Development Features1
where:

Operation is either Request, Poke, or Execute.

Topic (of the conversation) depends on the application.  

Example: it can be the name of a spreadsheet file if Excel is the server.

Arguments depends on the operation.

Rules Element-Based Application as a DDE Client

A Rules Element application is the client and initiates a DDE conversation 
with the server application.  The Rules Element kernel currently supports 
three DDE calls in the Execute library: DDE_Poke, DDE_Request and 
DDE_Execute.  The arguments to the DDE_ execute call (@STRING and 
@ATOMID which are edited in the Execute Dialog) depend on the type of 
the call and are documented below.

Note: to copy the names, you can use the central column “Select Execute” 
pop-up menu in the Rule or Method editor of the Rules Element 
development environment.

Execute “DDE_Poke”

DDE_Poke copies a value from the Rules Element memory into the 
designed remote reference of the server application.  The Atoms argument 
contains the data to be passed to the server.  The String argument contains 
the names of the DDE Application, the Topic, and the remote reference, 
separated by spaces.  The data to be passed can also be passed as a fourth 
argument in the string line.

Note: In the case of Excel, remote references should be indicated using the 
format R1C1 rather than A1.

Execute “DDE_Request”

DDE_Request copies a value from a designed remote reference into a Rules 
Element slot.  The Atoms argument contains the slot where the value will be 
pasted.  The String argument follows the same syntax as DDE_Poke.  The 
remote reference argument can also be passed in the Atoms argument as the 
value of a second slot.

Execute “DDE_Execute”

DDE_Execute passes commands from a Rules Element application to the 
remote application.  The Atoms argument does not carry information. The 
String argument contains the names of the DDE Application, the Topic, and 
the command string to be execute by the server, separated by spaces.  The 
syntax of the command string depends on the server and is usually 
documented in the server manuals.

Rules Element-Based Application as a DDE server

When a Rules Element application is used as a server in a DDE conversation, 
the Rules Element will respond to Execute, Poke and Request messages 
from other client applications using the DDE protocol as published by 
Microsoft.  The topic of the conversation must be “DDE”.  How to generate 
those DDE messages will be described in your client application manuals.  
44 Language Reference



Dynamic Data Exchange
In the case of an Execute message, the Rules Element will recognize the 
following commands (not case sensitive):

When running the Rules Element as a DDE server, you might want to 
prevent the Rules Element from coming in front of your client window and 
getting the Windows input focus.  This can be achieved by adding the 
following lines to the WIN.INI file in your Windows root directory

[Smartelt]
banner=off

Note: DDE initialization messages should be sent to the application called 
by the Rules Element.  You might need to rename your Rules 
Element-based application to Intelligent Rules Element, if you want 
the client to start up the Rules Element-based application.

Excel Examples

Excel™ is a popular spreadsheet application (similar to Lotus 1-2-3) from 
Microsoft.  Both the Rules Element applications and Excel support DDE.  
Two Excel examples, DATA and WEATHER, are included with the 
development kit which use DDE features.  The examples are contained in 
the directory EXAMPLES\EXCEL

Excel version 5 Notes

Starting in Excel version 5, the REQUEST(B5, “advice.str”) macro 
cannot be used to retrieve the string.  Use instead DDESpy.exe to show that 
the value is correctly sent to Excel.

Also, with Excel 5, in order to execute an Excel macro remotely from within 
the Rules Element, you must name the macro in Excel using the option: 
Name Define from the Insert menu of Excel.

Rules Element as an Excel DDE client

In the example called Data, the Rules Element plays the client role in a DDE 
conversation.  The Rules Element uses the functionality of Excel to place 
data in a cell, get data from another cell after an Excel calculation is remotely 
performed, and finally has Excel display a graph showing results of the 
previous operations.

To run the Data demonstration:

■ Start Excel, close Sheet 1, and open DATA.XLW.

■ Start the Rules Element, load DATA.TKB, and open the list of DATA.

Command Action Syntax
EXE_clear Clear All KB EXE_clear()

EXE_load Load KB EXE_load( KBName )

EXE_restart Restart EXE_restart()

EXE_run Knowcess EXE_run()

EXE_suggest Suggest EXE_suggest (hypoName)

EXE_volunteer Volunteer EXE_volunteer (atomName, value)
Language Reference 45



Chapter Application Development Features1
■ Minimize the Program Manager and arrange the windows so they can 
all be seen as on the next figure.  Please note that the value in cell R3C3 
is 1 and that the total of column y is 5.

■ With the window focus on the Rules Element, do a Restart, Suggest, and 
Knowcess to see the Rules Element put value 5 in cell R3C3, get the new 
total of 12 in the slot total.num from cell R6C3, and display a graph with 
the updated value.

Note: It happens that a "DDE Execute failed" message appears and that the 
Excel icon or title bar blinks after doing the execute.  With the current 
version of Excel 4.0, we are not getting an acknowledgment to the DDE 
Execute Operation from Excel, even though the command is correctly 
executed.  

The Rules Element commands used in this example are described as 
follows:

Execute (“DDE_Poke”) (@WAIT=TRUE;@ATOMID=content.num;@STRING=
“Excel DATA.XLS R3C3”;)  

puts the string content.num (previously set to “8”) into the cell designated 
in the STRING.

Execute (“DDE_Request”) (@WAIT=TRUE;@ATOMID=total.num;@STRING
=”Excel DATA.XLS R6C3";)  

asks Excel for the content on cell R6C3 and places it in the slot total.num.

Execute (“DDE_Execute”) (@WAIT=TRUE;@STRING=”Excel DATA.XLM 
[RUN("R1C1")][BEEP()]”;)  

tells Excel to run the macro contained in DATA.XLM.

Rules Element as an Excel DDE server

In the example called WEATHER, the Rules Element plays the server role in 
a DDE conversation.  Excel volunteers data in the Rules Element, runs the 
inference engine (Knowcess), and writes the value of a Rules Element slot in 
a cell.

■ Start the Rules Element.

■ Start Excel, close Sheet 1, and open WEATHER.XLW.  Then select cell 
B1 (or R1C2) in WEATHER.XLM to run the macro (select the option 
Run from the Macro Menu).

SMART ELEMENTS

File      Edit     App   Expert    Network   Report    Windows
46 Language Reference



Dynamic Objects
■ The Excel sheet prompts you for several answers to questions.  
Successively answer:
OK to the Run window,
Rainy or Sunny to the weather condition and RETURN,

As a result of the DDE conversation, the cell R10C2 now displays the 
appropriate advice given by the Rules Element.  You can see the data being 
displayed both in the Rules Element and in Excel by arranging the windows 
such as in the next figure.  Check the option Display Formula of the Options 
menu in Excel on WEATHER.XLM macro sheet to see some of the 
commands that activate the Rules Element functions.  Some of these 
commands are as follows:

=INITIATE(“Intelligent Rules Element”,”DDE”) 

is the Excel macro to initiate a DDE conversation.  Following DDE calls will 
refer to this conversation by its cell address, which is B5 in this case.  The 
program the Rules Element needs to be already running. Note that the name 
is Intelligent Rules Element so that if your runtime is Rules Element-based 
only you will not need to change the Excel sheet.

= EXECUTE(B5, “EXE_clear()”) 

passes the command EXE_clear to be executed by the Rules Element.  
Consequently, the Rules Element will clear all databases that might be 
loaded at the time.

=REQUEST(B5,”advice.str”)

 is a DDE Excel Macro to request data from the Rules Element advice.str slot.

=TERMINATE(B5) 

ends the DDE conversation.

The following figure shows the Rules Element as a server with Excel.

Dynamic Objects
Definition

A dynamic object is one that is created by a condition or action of a rule or 
method in the course of inference processing, rather than explicitly by the 
application developer.  

SMART ELEMENTS
File     Edit    App   Expert   Network   Report   Windows
Language Reference 47



Chapter Application Development Features1
Creation

Dynamic objects are created by executing the CreateObject operator in a 
condition or action of a rule or method.  It also has an equivalent Rules 
Element application programming interface routine (NXP_CreateObject) 
and Rules Element Execute Library routine (CreateObjects).

The name of such an object need not be fixed in advance, but may be 
constructed dynamically from the value of a slot, using an interpretation:  
for example, if whats_his_name is a string slot whose value is Rover, 
then 

CreateObject  'Good_Old_'\whats_his_name\   |Dog|

creates a dynamic object named Good_Old_Rover belonging to class Dog.  

Dynamic objects can have either public or private slots as determined by the 
parent object’s slot attribute.

Lifetime

Dynamic objects are temporary, existing only for the duration of the session 
in which they are created.  

Display

When displayed on the screen (for example, in the Object editor, Object 
Network, or List of Objects), the name of a dynamic object is preceded by a 
plus sign in parentheses to indicate its dynamic nature:  

(+)Good_Old_Rover

Deletion

The DeleteObject operator deletes dynamic objects.  They are 
automatically deleted by the Quit or Restart Session command ending the 
session in which they are created.  

Related Topics

Objects Actions
Classes Slots
Rules CreateObject Operator
Methods DeleteObject Operator
Conditions Interpretations

Execute Operator
Definition

The Execute operator is used in rules and methods to invoke 
externally-written procedures or routines from the Rules Element library.  
See Chapter Two, “Execute Library Routines” for details about individual 
routines.
48 Language Reference



Execute Operator
Operands

The Execute operator takes one or two operands:  

■ The first operand is a string constant or an interpretation which 
evaluates to a string constant (using the @V(object.prop) syntax) 
specifying the name of the external procedure to be invoked.  

■ The optional second operand consists of a series of execution 
parameters controlling the invocation of the procedure.  

Parameters

The second operand may include the following parameters:  

@STRING A string constant to be passed to the external 
procedure as an argument.

@ATOMID A list of objects, slots, or classes to be passed to the 
external procedure as an argument.

@TYPE=EXE External procedure is an executable file.

@TYPE=FRM External procedure is a form.

See the Intelligent Rules Element API Reference for further details on the 
meaning and use of these parameters.  Note that a private slot passed in the 
argument @ATOMID is ignored unless the Execute operator appears in a 
method specifically triggered for the slot.  See the description of Slots for 
more information about using private slots.

Execute Dialog

When entering an Execute condition or action in the Rule editor or Method 
editor, clicking in the space for the second operand displays a special dialog 
box for specifying the execution parameters interactively, rather than by 
explicitly typing in the keywords listed above: 

Effect

The external procedure named as the first operand is executed, using the 
argument values specified by the second operand.  
Language Reference 49



Chapter Application Development Features1
Unless the parameter @TYPE=EXE is specified, the external procedure must 
previously have been installed as an execute handler via the Rules Element 
application programming interface routine NXP_SetHandler (described 
in the Intelligent Rules Element API Reference).  

Result

When the Execute operator is used in a condition on the left-hand side of 
a rule, the return code of the executed procedure is checked; if it indicates 
success, the operator’s result is set to TRUE, otherwise to FALSE.  

Forward Chaining

Actions and conditions in rules and methods involving the Execute 
operator can forward-chain the new value of the slot to other rules in which 
the slot appears in a condition (causing the hypotheses of those rules to be 
placed on the agenda for consideration).  In the case of the Execute operator, 
forward chaining is controlled by the global inference strategy setting from 
the Strategy Monitor window (from the Expert menu) and the local strategy 
which is always set to CURRENT.

Data that belongs to a private slot cannot trigger forward chaining since 
private slot data cannot appear in the conditions or actions of rules.  Only 
data that belongs to public slots can trigger forward chaining.

Examples

The following are examples of conditions or actions using the Execute 
operator:  

Execute "flapdoodle"
Execute "flapdoodle"@ TYPE=EXE;@STRING="mumble";
Execute" @v(object.prop)"@ ATOMID=fee,|fie|,fo.fum;

Related Topics

Rules Properties
Methods Slots
Conditions String Constants
Actions Forward Chaining
Objects Inference Strategy
Classes Execute Routines

Also see the Intelligent Rules Element API Reference for more information 
on user-defined external procedures.

Refer to Chapter Two, “Execute Library Routines” for the complete list of 
available Rules Element routines.

Execute Routines
Definition

Rules Element execute routines are predefined external procedures for 
performing common or useful tasks, supplied with the system for use with 
the Execute operator.  
50 Language Reference



Execute Routines
Routines

The Rules Element run-time library includes the following routines:  

Frame Operations

SetValue GetRelatives
ResetFrame PropagateValue
CopyFrame CreateObjects

Multi-Value Operations

AtomNameValue TestMultiValue
SetMultiValue ComputeMultiValue
GetMultiValue LinkMultiValue

Sorting and Comparison

RankList PatternMatcher
GetListElem Unify
FindListElem

Session Control

ControlSession Message
Journal WriteTo

Utility Operations

AtomExist FileExist
Parse CreateReport

Each of these routines is fully described in its own section of this manual.  
Refer to Chapter Two, “Execute Library Routines.”

Invocation

Execute routines are invoked by using the Execute operator in a condition  
or action of a rule or method.  The first operand to this operator is a string 
constant giving the name of the desired library routine; the second operand 
is a string consisting of a series of execution parameters to control the 
routine’s operation.  

Parameters

Two standard execution parameters are used to specify the arguments of a 
library routine:  

■ The @STRING parameter passes a single string argument.  If two or 
more such arguments are needed, they can be combined to form a 
multi-value and passed as a single argument; see the section 
“Multi-values” for more information.  

■ The @ATOMID parameter passes a list of objects, properties, or classes 
(typically specified via a pattern) for the library routine to operate on.  

The specific usage of these parameters varies from one library routine to 
another, and is described in the section on each individual routine.  

Note private slots must not be passed in the @ATOMID and @STRING 
parameter of the Execute routines.  See the description of Slots for more 
information about using private slots.

Result

All execute routines return a result of TRUE if the call is successful, FALSE if 
an error occurs.  
Language Reference 51



Chapter Application Development Features1
Dynamic Values

Individual atoms (objects and object properties) can be evaluated 
dynamically within the @STRING parameter by enclosing them within 
parentheses, preceded by the characters @V (for “value”).  The atom’s 
current value will then be substituted into the @STRING parameter before 
execution.  

For example, if Ducks.start contains the multi-value string Donald, 
Daisy and Ducks.more contains Huey, Dewey, Louie, then a 
condition or action of the form 

Execute "ComputeMultiValue" @ATOMID=Ducks.start;
STRING="@VALUE=
@V(Ducks.more),@UNION,
@RETURN=Ducks.all";

is equivalent to 

Execute "ComputeMultiValue" @ATOMID=Ducks.start;
@STRING="@VALUE=Huey,
Dewey,Louie,@UNION,
@RETURN=Ducks.all";

and will set the value of Ducks.all to the string Donald, 
Daisy,Huey,Dewey,Louie (the union of @Ducks.start and 
@Ducks.more).  

Strategy Options

Many execute routines include an optional parameter named @STRAT as 
part of their @STRING parameter.  This parameter is used to control the 
volunteering strategy for any value assignments made during the routine’s 
execution.  It can be set to any of the following options:  

SET Store value immediately, but do not forward.

FWRD Queue value for later forwarding if global strategy 
Forward Action-Effects is currently enabled.

SETFWRD Combines both SET and FWRD options.

If no explicit @STRAT parameter is specified, the SET option is assumed by 
default.  

Error Handling

Certain global flags can be used to control the handling of errors and tracing 
information by the built-in execute routines.  All of these are boolean-valued 
objects whose Value properties contain the relevant flags:  

SYS_ALERTFLAG Report errors with alert handler
SYS_TRANSFLAG Report errors in transcript
SYS_TRACEFLAG Report trace messages in transcript
SYS_BEEPFLAG Beep on error
SYS_STOPFLAGS top session on error

These objects should be defined in a separate knowledge base so that they 
can be loaded in any session.  
52 Language Reference



EXP Function
Related Topics

Conditions Execute Operator
Actions Patterns
Rules Value Property
Methods Multi-Values
Slots Inference Strategy
String Constants

Also see Chapter Two, “Execute Library Routines” for a detailed 
description of the routines.  

EXP Function
Definition

The EXP function is used in expressions to find the natural (Napierian) 
exponential of a floating point number.  The expression can appear on the 
left-hand side or right-hand side of rules and methods.

Syntax

The function consists of the word EXP followed by a single argument in 
parentheses:  

EXP(x)

Argument

The argument may be any expression yielding a numerical result.  The 
expression may include patterns or interpretations.  

If the value of the argument expression is an integer, it will be converted to 
an equivalent floating point value.  

Result

The function returns a floating point result equal to ex, the exponential of 
the argument to the Napierian base e (= 2.71828).  

If the argument expression does not produce a numerical value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the EXP function:  

EXP( 0.0) = 1.0
EXP( 0.5) = 1.64 (= SQRT(2.71))
EXP( 1.0) = 2.71
EXP(-1.0) = 0.36 (= 1 / 2.71)

Related Topics

Expressions Patterns
Floating Point Constants Interpretations
Integer Constants LN Function
Language Reference 53



Chapter Application Development Features1
Expressions
Definition

An expression represents a computation to be performed on one or more 
elementary data values.  Expressions can appear on the left-hand side or 
right-hand side of rules and methods.  The system uses the expression result 
to complete the condition or action in which the expression appears.

Binary operators

Numerical (integer and floating point) values can be combined using the 
standard arithmetic operators:  

+  -  *  /

The result of integer division is truncated toward zero.  For example:  

 19 /  5 =  3
-19 /  5 = -3
 19 / -5 = -3
-19 / -5 =  3

The arithmetic operators can also be applied in certain limited ways to date 
and time values; see the DATE Function and the TIME Function topics for 
details.  

Boolean Operators

Numeric or string comparisons can be combined using the standard 
boolean operators when the result of the expression is a boolean value.

AND   OR   NOT

For example, the following expression has two requirements:

(x<10)   AND   (x>0)

Type conversion

If both operands to a binary operator are of the same type (integer or 
floating point), then the result is also of that type.  If the operands are of 
different types, the integer operand is converted to floating point and the 
operation produces a floating point result.  For example:  

1   / 2   + 8    =  0   + 8    =  8
1   / 2   + 8.0  =  0   + 8.0  =  8.0
1.0 / 2   + 8    =  0.5 + 8    =  8.5
1   / 2.0 + 8    =  0.5 + 8    =  8.5

If an operand or function argument is not of the proper type or has the 
special value NOTKNOWN (denoting a value definitively stated to be 
unspecified), then the result of the expression is NOTKNOWN.  

Precedence

The multiplication and division operators (* and /) take precedence over 
addition and subtraction (+ and -).  Thus the expression 

2 + 3 * 4

is evaluated as 

2 + (3 * 4) = 14
54 Language Reference



Expressions
rather than as 

(2 + 3) * 4 = 20

Operators of the same precedence associate to the left:  for example, the 
expression 

3 * 7 / 9

is evaluated as 

(3 * 7) / 9 = 21 / 9 = 2

rather than as 

3 * (7 / 9) = 3 * 0 = 0

Functions

The following functions are built into the Rules Element and can be used 
freely in expressions:  

Mathematical

ABS ROUND COMPARE
SIGN CEIL MAX
FLOOR MOD MIN
SIN ASIN SINH
COS ACOS COSH
TAN ATAN TANH
SQRT EXP RAND
POW LN RANDOM
LOG RANDOMSEED RANDOMMAX

Statistical

SUM AVERAGE
PROD VAR
STDEV

Dates and Times

DATE TIME NOW
YEAR HOUR WEEKDAY
MONTH MINUTE YEARDAY
DAY SECOND

Strings and Lists

LENGTH STRFIND STRUPPER
STRLEN SUBSTRING STRLOWER
STRCAT CHARFIND

Conversion

STR2INT STR2DATE FLOAT2DATE
INT2STR DATE2STR DATE2FLOAT
STR2FLOAT STR2TIME FLOAT2TIME
FLOAT2STR TIME2STR TIME2FLOAT
STR2BOOL FLOAT2INT
BOOL2STR

Related Topics

Data Types TIME Function
DATE Function Boolean Expressions

Also see the sections on individual functions by name, as listed above.  
Language Reference 55



Chapter Application Development Features1
FLOAT2DATE Function
Definition

The FLOAT2DATE function is used in expressions to convert a floating point 
to an equivalent date value.  The expression can appear on the left-hand side 
or right-hand side of rules and methods.

Syntax

The function consists of the word FLOAT2DATE followed by a single 
argument in parentheses:  

FLOAT2DATE(x)

Argument

The argument may be any expression yielding a numerical result.  The 
expression may include patterns or interpretations.  

If the value of the argument expression is an integer, it will be converted to 
an equivalent floating point value.  

Result

The function returns a date result equivalent to the specified number of 
seconds (x) past midnight, 1 January 1970, rounded to the nearest second.  
If the argument value is negative, the result will be a date earlier than 1970.  

Examples

The following examples illustrate the results of the FLOAT2DATE function:  

FLOAT2DATE(250000000)    = DATE(1977,12,3,12,26,40)
FLOAT2DATE(-777777777.7) = DATE(1945,5,9,22,37,2)
FLOAT2DATE("1234567.89") = NOTKNOWN

Related Topics

Expressions Interpretations
DATE Function DATE2FLOAT Function
TIME Function FLOAT2TIME Function
Patterns

FLOAT2INT Function
Definition

The FLOAT2INT function is used in expressions to convert a floating point 
number to an equivalent integer value.  The expression can appear on the 
left-hand side or right-hand side of rules and methods.

Syntax

The function consists of the word FLOAT2INT followed by a single 
argument in parentheses:  

FLOAT2INT(x)
56 Language Reference



FLOAT2STR Function
Argument

The argument may be any expression yielding a numerical result.  The 
expression may include patterns or interpretations.  

Result

The function returns an integer result which is equal to the integral portion 
of the argument.  Thus if the argument is positive, it returns the Floor of 
the argument (as an integer), and if the argument is negative, it returns the 
Ceil of the argument (as an integer).

Examples

The following examples illustrate the results of the FLOAT2INT function:  

FLOAT2INT(3.0)   = 3
FLOAT2INT(5.68)   = 5
FLOAT2INT(-4.54)  = -4

Related Topics

Expressions Interpretations
Patterns Floor Function
Ceil Function

FLOAT2STR Function
Definition

The FLOAT2STR function is used in expressions to convert a floating point 
value to an equivalent character string.  The expression can appear on the 
left-hand side or right-hand side of rules and methods.

Syntax

The function consists of the word FLOAT2STR followed by one or two 
arguments in parentheses:  

FLOAT2STR(x)
FLOAT2STR(x,f)

Argument

Each argument may be any expression yielding a result of the appropriate 
type:  

■ The first argument (x) is the floating point number to be converted.  

■ The optional second argument (f) is a string specifying the format 
under which the first argument is to be converted.  See “Floating Point 
Formats” for the syntax and meaning of this string.  

Argument x may also yield an integer value, which will first be converted 
to floating point and then to a string.  The argument expressions may 
include patterns or interpretations.  
Language Reference 57



Chapter Application Development Features1
Result

The function returns a string result representing the numeric value of 
argument x, converted according to format f.  If no format argument is 
given, the default system format for floating point numbers (defined in the 
ckbres.format module in the file nxrun.dat) is used.  

Examples

The following examples illustrate the results of the FLOAT2STR function:  

FLOAT2STR(98.6) = "98.6"
FLOAT2STR(-273)                = "-273.0"
FLOAT2STR(1234.5,"k,u.0")     = "1,234.5"
FLOAT2STR(0.9944,"%u.00\"%\"") = "99.44%"

Related Topics

Expressions Floating Point Formats
String Constants Patterns
Integer Constants Interpretations
Floating Point Constants STR2FLOAT Function

FLOAT2TIME Function
Definition

The FLOAT2TIME function is used in expressions to convert a floating point 
value to an equivalent time.  The expression can appear on the left-hand side 
or right-hand side of rules and methods.

Syntax

The function consists of the word FLOAT2TIME followed by a single 
argument in parentheses:  

FLOAT2TIME(x)

Argument

The argument may be any expression yielding a numerical result.  The 
expression may include patterns or interpretations.  

If the value of the argument expression is an integer, it will be converted to 
an equivalent floating point value.  

Result

The function returns a time result equivalent to the specified number of 
seconds (x), rounded to the nearest second.  

Examples

The following examples illustrate the results of the FLOAT2TIME function:  

FLOAT2TIME(1234567.89)   = TIME(0,0,14,6,56,7)
FLOAT2TIME(-1234567.89)  = TIME(0,0,-14,-6,-56,-7)
FLOAT2TIME("1234567.89")  = NOTKNOWN
58 Language Reference



Floating Point Constants
Related Topics

Expressions Interpretations
DATE Function TIME2FLOAT Function
TIME Function FLOAT2DATE Function
Patterns

Floating Point Constants
Definition

A floating point constant is a sequence of characters that stand directly for a 
floating point (real number) value.  

Syntax

A floating point constant consists of one or more decimal digits (0–9), 
including a decimal point (.).  It may optionally be preceded by a sign (+ or 
-) and/or followed by a decimal exponent.  It may not include embedded 
spaces or commas.  The decimal point is required in order to distinguish 
floating point from integer constants.  The exponent, if present, is 
introduced by the letter E or e and may have an optional sign of its own, 
which is independent of the sign of the number itself.  

The number after the letter E or e must be a constant (a slot is not allowed) 
and if used within a complex arithmetic expression, parentheses should be 
used:

3.09E-3*POW(DensityConvrtr.DensityIn,2)

is ambiguous and should be written instead as:

(3.09E-3)*(POW(DensityConvrtr.DensityIn,2))

Examples

The following are valid floating point constants:  

2.718281828 38.0
-273.18 38.
+98.6 0.38
6.02e23 .38
+125e3 -125E+3 125e-5 -125E-5
1.25e+5 -1.25E5 +1.25E-3 -1.25e-3
125000.0 -125000. .00125 -0.00125

The following are not:  

Related Topics

Data Types Integer Constants
Floating Point Formats Expressions

xyz Not a number
38 Integer, not floating point
62.5% Contains an invalid character
$1.98 Contains an invalid character
125 000. Contains an embedded space
125,000. Contains an embedded comma
125e2.5 Exponent not an integer
Language Reference 59



Chapter Application Development Features1
Floating Point Formats
Definition

A floating point format specifies the representation of a floating point value 
in text form for input and output purposes.  

Syntax

This section defines the syntax of format elements for floating point 
properties only.  See the section titled “Formats” for the syntax of formats in 
general.  

The following special characters are meaningful in floating point formats:  

k Use next character as thousands separator

u Suppress leading zeros

0 Placeholder for required digits

d Placeholder for significant digits

% Convert to percentage

The integral part of the number is represented by a series of zeros (0) 
specifying the minimum number of places preceding the decimal separator.  
The first nonzero character following this series defines the character to be 
used for the decimal separator itself, separating the integral and fractional 
parts.  (This would normally be a period (.) in American or English usage, 
a comma (,) in some other countries.)  The letter u in place of the zeros limits 
the integral part to the smallest number of digits actually needed to 
represent the given numerical value.  

Following the decimal separator, the fractional part of the number is 
represented by a series of 0s followed by a series of ds, either or both of 
which may be empty.  (Notice that all 0s must precede all ds.)  The 0s denote 
required digits that must always be present; the ds denote optional 
additional digits to be included only if significant.  

The letter k specifies that the next character following it is to be used as a 
thousands separator, dividing the integral part of the number into groups of 
three digits.  (This would be a comma (,) in American or English usage, a 
period (.) or space in some other countries.)  If the k is omitted, the integral 
part will be set as a solid series of digits, with no separators.  

The percent sign (%) causes the number to be formatted in percentage form 
(for example, 0.25 as 25%).  

Like all formats, those for floating point may include strings of literal 
characters enclosed in double quotation marks (" . . . "), and may also 
include the wild-card character (*).  Format elements beginning with an 
exclamation point (!) are ignored in database transactions; they are 
meaningful only for direct interaction with the user via the screen and 
keyboard.  
60 Language Reference



Floating Point Formats
Input

On input, each element in the format list is tried in order until one of them 
matches the input text.  If no match is found, the input is rejected and an 
error message is displayed on the screen.  The following conventions apply:  

■ Odd-numbered elements in the format list (the first, third, and so on) 
produce a positive result, even-numbered elements (the second, fourth, 
and so on) produce a negative result.  

■ Input values of any length are recognized; placeholders (0 and d) used 
in the format to specify the number of digits before and after the 
decimal separator are ignored.  

■ The specified decimal separator is recognized as separating the integral 
and fractional parts of the input value.  

■ The thousands separator, if any, is optional on input.  

■ Strings of literal characters enclosed in double quotation marks must 
match exactly, except that no distinction is made between upper- and 
lowercase letters.  

■ The wild-card character (*) matches any sequence of zero or more 
characters.  

■ If the format includes a percent sign (%), the input supplied is 
interpreted as a percentage and is divided by 100 to arrive at the actual 
data value.  (For example, an input value of 37.5 produces an actual 
data value of 0.375.)  

Output

On output, only the first one or two elements in the format list are used:  

■ The first format element is used for positive and zero values, the second 
for negative values; any further elements in the list are ignored.  If there 
is no second element, the first is used for all output values.  

■ A series of zeros (0) preceding the decimal separator in a format 
element specifies the minimum number of digits representing the 
integral part of the number.  Numbers with integral parts shorter than 
this are padded with leading zeros; longer numbers are represented in 
full, using more than the specified number of digits.  

■ If the letter u precedes the decimal separator instead of a series of zeros, 
the integral part is represented in the minimum number of digits 
needed, with no leading zeros.  

■ A series of zeros (0) following the decimal separator in a format element 
specifies the minimum number of digits representing the fractional part 
of the number.  Numbers with fractional parts shorter than this are 
padded with trailing zeros.  Decimal places represented in the format 
by the letter d are included in the output only if they contain significant 
digits; trailing zeros in these positions are suppressed.  

■ If the fractional part exceeds the maximum length specified by the 
series of 0s and ds, it is truncated (not rounded) to the indicated 
number of digits.  

■ If a thousands separator is specified (introduced by the letter k), it is 
used to separate groups of three digits in the integral part of the 
number.  No separator is used in the fractional part.  
Language Reference 61



Chapter Application Development Features1
■ Strings of literal characters enclosed in double quotation marks are 
reproduced exactly in the output.  

■ If the format includes a percent sign (%), the data value is interpreted as 
a percentage and is multiplied by 100 before being output.  (For 
example, an actual data value of 0.375 produces an output value of 
37.5.)  

■ The wild-card character (*) is ignored on output.  

Default

The default system format for floating point is defined in the 
ckbres.format module in the file nxrun.dat. The standard default 
format is 

0.0d

denoting at least one digit before and after the decimal point and no 
thousands separator. 

Examples

The following examples illustrate the use of floating point formats:  

Format:  "$"k,0.00;"($"k,0.00")";u.d

Format:  %00.00d"%";;u.d*

Value Output Comments
1234.5 $1,234.50 Positive uses first element
-1234.5 ($1,234.50) Negative uses second element
12.347 $12.34 Truncated, not rounded

Input Value Comments
$1,234.5 1234.5 Matches first element
$1234.5 1234.5 Thousands separator optional
($1234.5) -1234.5 Matches second element
1234.5 1234.5 Matches third element
-1234.5 -1234.5 Matches third element
1,234.5 NOTKNOWN No match: first element has a dollar sign, 

third has no thousands separator
$ 1234.5 NOTKNOWN No match; space is significant

Value Output Comments
0.062 06.20% Converted to percentage
0.2533333 25.333% Third decimal place is significant
-1.23 -123.00% Exceeds integral length
62 Language Reference



FLOOR Function
Related Topics

Formats Floating Point Constants
Format Attribute Integer Formats

FLOOR Function
Definition

The FLOOR function is used in expressions to find the largest whole number 
less than a given floating point number.  The expression can appear on the 
left-hand side or right-hand side of rules and methods.

Syntax

The function consists of the word FLOOR followed by a single argument in 
parentheses:  

FLOOR(x)

Argument

The argument may be any expression yielding a floating point result.  The 
expression may include patterns or interpretations.  

Result

The function returns a floating point result equal to the largest whole 
number less than the argument.  Notice that although the result is always a 
whole number, it is of type FLOAT rather than INTEGER.  For negative 
arguments, the rounding is toward minus infinity, rather than toward zero.  

If the argument expression does not produce a numerical value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the FLOOR function:  

FLOOR(3.1416)  = 3.0
FLOOR(98.6)    = 98.0
FLOOR(-273.18) = -274.0
FLOOR(-9.9)    = -10.0

Related Topics

Expressions Patterns
Floating Point Constants Interpretations
Integer Constants CEIL Function
Round Function

Input Value Comments
6.20% 0.062 Matches first element
-123% -1.23 Matches first element
6.20 6.2 Matches third element; no percentage 

conversion
Language Reference 63



Chapter Application Development Features1
Format Attribute
Definition

The format attribute associated with a property of a class or object specifies 
the representation of its value in text form for input and output purposes.  

Syntax

The syntax for format attributes is described under “Formats” and in the 
sections on individual format types (such as “Integer Formats”).  

Creation

The format attribute for a specific property of an individual class or object 
(public or private slot) is specified or edited by typing into the box labeled 
Format in the Meta-Slot editor.  When specified, such an attribute overrides 
the format (if any) associated with the corresponding general, system-wide 
property that might have been specified in the Property editor.  

Inheritance

Format attributes cannot be inherited.  

Related Topics

Objects Time Formats
Classes Integer Formats
Properties Floating Point Formats
Meta-Slots Boolean Formats
Slots String Formats
Formats Date Formats

Formats
Definition

A format specifies the representation of a data value in text form for input 
and output purposes.  

Creation

Formats can be specified either for a general, system-wide property or for a 
specific property of a given class or object (public or private slot).  They are 
specified or edited by typing into the box labeled Format in the Property 
editor or the Meta-Slot editor, respectively.  

Precedence

The applicable format for a given data item is determined according to the 
following order of precedence:  

1. The format attribute (if any) associated with the specific data item (slot)

2. The format (if any) associated with the corresponding general property

3. The default system format for this data type (defined in the 
ckbres.format module in the file nxrun.dat).
64 Language Reference



Formats
Syntax

A format consists of one or more individual format elements separated by 
semicolons (;):  

element_1; element_2; element_3; . . .

The syntax for individual elements depends on the specific data type with 
which they are associated; see the sections on individual format types (such 
as “Integer Formats”) for details.  

All format elements may include strings of literal characters enclosed in 
double quotation marks (" . . . ").  Such quoted strings will be 
reproduced exactly on output and must be matched exactly on input.  The 
quotes may be omitted if the literal characters do not form a meaningful 
combination within the format itself; this practice is discouraged, however, 
since the syntax of meaningful format elements may be subject to change in 
the future.  

On input, an asterisk (*) in any format element  acts as a “wild card” that 
will match any sequence of zero or more input characters.  On output, it is 
simply ignored.  

Format elements beginning with an exclamation point (!) are ignored in 
database transactions; they are meaningful only for direct interaction with 
the user via the screen and keyboard.  

Special forms

In addition to those for specific data types, format elements may be defined 
for the special values UNKNOWN and NOTKNOWN.  The syntax is as follows:  

@U=format_string for UNKNOWN values
@N=format_string for NOTKNOWN values

For example, the format 

@U="Who knows?";@N="¿Quién sabe?"

defines the strings Who knows? and ¿Quién sabe? to stand for UNKNOWN 
and NOTKNOWN values, respectively.  These strings will be used to represent 
the corresponding values on output and will be recognized as denoting 
them on input.  

To avoid disturbing the sequence of odd and even format elements (see 
“Input,” below), such special UNKNOWN and NOTKNOWN format elements 
should always be placed at the end of the format list.  

Input

On input, each element in the format list is tried in order until one of them 
matches the input text.  If no match is found, the input is rejected and an 
error message is displayed on the screen.  

For some data types, the identity of the matching format element may affect 
the resulting input value:  

■ For numerical (integer and floating point) data, odd-numbered 
elements (element_1, element_3, . . . ) produce a positive result, 
even-numbered elements (element_2, element_4, . . . ) produce a 
negative result.  
Language Reference 65



Chapter Application Development Features1
■ For boolean data, odd-numbered elements produce a TRUE result, 
even-numbered elements produce a FALSE result.  

■ For strings, dates, and times, the identity of the matching element does 
not affect the resulting value.  

No distinction is made between upper- and lowercase letters in the input 
text:  for example, the following are all considered identical:  

february
February
FEBRUARY
fEbRuArY

If the user presses the space bar while entering input interactively from the 
keyboard, the Rules Element will attempt to complete the text automatically 
if it can be determined without ambiguity.  For example, in entering the 
month field of a date, the letters fe will be expanded automatically to 
February; the letters ju will bring up a dialog window to choose between 
June and July.  

Output

On output, only the first one or two elements in the format list are used:  

■ For numerical (integer and floating point) data, elemenT_1 is used for 
positive and zero values, element_2 for negative.  If element_2(is 
not present, element_1 is used for all values.  

■ For boolean data, element_1 is used for TRUE values, element_2 for 
FALSE.  

■ or strings, dates, and times, element_1 is used for all values.  

Any remaining elements in the format list are ignored.  

Related Topics

Objects Integer Formats
Classes Floating Point Formats
Properties Boolean Formats
Meta-Slots String Formats
Slots Date Formats
Time Formats

Forward Chaining
Definition

Forward chaining is the process of propagating the values of public slots 
(objects and their properties) to the rules that refer to them, generating new 
hypotheses to be placed on the agenda for investigation.  Methods are 
unable to be the target of forward chaining, but they have the ability to place 
the hypotheses of relevant rules on the agenda when public slots are 
involved.  Private slots cannot initiate forward chaining since their value is 
accessible only by a method specifically triggered for the slot and will 
therefore not appear in any rule.
66 Language Reference



Forward Chaining
Invocation

Forward chaining is initiated explicitly by volunteering the value of a public 
slot via any of the following commands:  

■ The Volunteer command on the Expert menu.

■ The Suggest/Volunteer... command on the Expert menu.

■ The Volunteer... command on the windows pop-up menu.

■ The Volunteer command on the Rule Network, Object Network, or 
List of Data pop-up menu.

■ The Volunteer/Modify command on the List of Objects or List of 
Classes pop-up menu.

Each of these commands assigns new values to one or more slots, which can 
then forward-chain to any rules whose conditions refer to these slots.

Depending on the strategy options in effect, forward chaining can also occur 
implicitly, when values are assigned to hypotheses as a result of inference 
processing or to variables by the actions of rules and methods.  The list of 
forward chaining inferencing processes includes:

■ Hypothesis Forward occurs after the evaluation of a subgoal hypothesis 
(one that is tested in the condition of another hypothesis).

■ Forward Action-Effects occurs after a rule or method action is executed 
and the result is shared with another rule condition.

■ Semantic Gates occurs after data in a rule condition is evaluated that 
makes the condition of another rule TRUE upon propagation.

Operation

After assigning a new value to a public slot, the Rules Element searches for 
any existing rules whose conditions refer to that slot.  The hypotheses of 
these rules are then placed on the agenda for consideration.  When the 
Knowcess command is issued to begin inference processing, the values of 
these hypotheses will be sought by backward chaining.  Notice that this can 
trigger the evaluation of all rules leading to the given hypotheses, not only 
those that refer to the originally volunteered slot.  

Data that belongs to a private slot cannot trigger forward chaining since 
private slot data cannot appear in the conditions or actions of rules.  Only 
data that belongs to public slots can trigger forward chaining.

Strategy

Forward chaining during the course of inference processing is subject to the 
global and local strategy options currently in effect.  Options relevant to this 
process include the following:  

■ Forward confirmed hypotheses

■ Forward rejected hypotheses

■ Forward notknown hypotheses

■ Forward through gates (rules only)

■ Forward Action-Effects (rules and methods)

See the Inference Strategy topic for further details.  
Language Reference 67



Chapter Application Development Features1
In addition to these global (system-wide) and local strategy options, 
forward chaining may be further restricted for individual rules by the 
values of their inference priorities; see the Inference Priority Attribute topic 
for more information.  

Related Topics

Hypotheses Agenda
Rules Inference Strategy
Actions Inference Priority Attribute
Slots Assign Operator
Boolean Constants Execute Operator
Inference Retrieve Operator

HOUR Function
Definition

The HOUR function is used in expressions to extract the hour field of a date or 
time.  The expression can appear on the left-hand side or right-hand side of 
rules and methods.

Syntax

The function consists of the word HOUR followed by a single argument in 
parentheses:  

HOUR(d)

Argument

The argument may be any expression yielding a date or time result.  The 
expression may include patterns or interpretations.  

Result

The function returns an integer result equal to the hour field of the 
argument.  For date arguments, the result ranges from 0 to 23.  

If the argument expression does not produce a date or time value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the HOUR function:  

HOUR(DATE(1492,10,12))  = 0
HOUR(DATE(1981,6,8,21,8,46)) = 21
HOUR(TIME(8,4,23)) = 8
HOUR(TIME(3,6,11,22,34,17))  = 22
HOUR("October 12, 1492") = NOTKNOWN

Related Topics

Expressions DAY Function
DATE Function MINUTE Function
TIME Function SECOND Function
Patterns WEEKDAY Function
68 Language Reference



Hypotheses
Interpretations YEARDAY Function
YEAR Function NOW Function
MONTH Function

Hypotheses
Definition

A hypothesis is a slot with a boolean value, named on the right-hand side of 
a rule to specify the inference to be drawn from the rule’s conditions.  

Creation

New hypotheses may be created implicitly, by using a previously undefined 
name as the hypothesis of a rule in the Rule editor.  On creation, such 
hypotheses are initialized to the special value UNKNOWN, meaning that their 
value is not yet determined; this setting may be resolved to TRUE or FALSE 
as a result of later processing.  An existing boolean-valued object can also be 
made into a hypothesis by naming it as such in the hypothesis box of a rule.  

Deletion

Hypotheses exist as objects in the Rules Element and can therefore be 
removed with the Delete command in the Object editor.  Deleting a 
hypothesis also automatically deletes all rules leading to it if deletion is 
confirmed in the “Dependencies Warning Dialog Box.”  

Access

The current value of a hypothesis is denoted simply by the name of the 
hypothesis itself 

hypo_name

(omitting the default Value property) or by an object or class name and a 
property name separated by a period 

object_name.prop_name
class_name.prop_name

(if it is a property of some other object or class).  

The value of the hypothesis may be set interactively via the Object editor, 
but it is normally computed by the Rules Element as a result of evaluating 
one or more rules.  This can take place either through backward chaining 
(when the hypothesis itself is suggested as a goal to be inferred) or through 
forward chaining (when a data value in one of the rule’s conditions is 
volunteered).  

Related Topics

Objects Boolean Constants
Properties Backward Chaining
Rules Forward Chaining
Conditions Value Property
Language Reference 69



Chapter Application Development Features1
Identifiers
Definition

An identifier is a sequence of characters used as the name of a Rules Element 
atom, such as a rule, method, object, class, or property.  

Syntax

An identifier consists of one or more letters (A–Z, a–z), digits (0–9), and 
underscores (_), beginning with a letter.  It may be up to 255 characters; all 
characters are significant.  Corresponding uppercase and lowercase letters 
are considered identical.  

The underscore is a meaningful character and not just a null separator, 
which must be typed by the application developer during the editing 
session.

In some cases, the class name must be enclosed between vertical bars 
(| . . . |) to distinguish it from an object name.  

Certain words, notably the names of Rules Element types, operators, 
functions, and special values, are reserved by the system and should not be 
used as ordinary identifiers.  See the Reserved Words topic for a complete 
list.  

Examples

The following are valid identifiers:  

width TOTAL
Finished Btfsplk
taxRate H2SO4
a_very_long_name_but_still_only_one_identifier

The following are not:  

4to10 Doesn’t begin with a letter.
_width Doesn’t begin with a letter.
Finished? Contains an invalid character.
tax.rate Contains an invalid character.
tax rate More than one word.
Name Reserved Word.

The following are all considered the same identifier:  

taxrate TAXRATE
taxRate tAxRaTe
TaxRate

The following are different identifiers:  

taxrate tax_rate

Related Topics

Objects PropertiesReserved Words
Classes Expressions
70 Language Reference



If Change Method
If Change Method
Definition

An If Change method is an optional method that can be attached to a public 
or private slot (property associated with a class or object), defining the 
actions to be taken whenever the slot’s value changes during the course of 
evaluating a rule or other method.

Structure

The method consists of most importantly a sequential list of actions, similar 
to those on the right-hand side of a rule.  If desired, the If Change method 
can be structured exactly like a rule including a list of conditions on the 
left-hand side and two separate consequent lists of actions on the right-hand 
side.  The conditions list is optional.  Like all methods, the If Change method 
has no hypothesis component.

Creation

The If Change system method is specified via the Method editor.  Creation 
begins by selecting the Method field and displaying the local popup menu 
for the edit line.  Choose the Select Method option to view the selection 
dialog.  Select the option *IfChange from the list (the asterisk in front of the 
name distinguishes it from user-defined methods).  Or you can also type the 
name “IfChange” (one word) in the edit line for the Method field.  The 
structure to which the method is attached is specified in the Attach To 
field.  The structure you specify can be a slot, a class, or an object.  

Invocation

In the case of public and private slots with an If Change method attached, 
the system automatically triggers the method whenever the value of the slot 
is changed during the inference process.  A strategy option also permits 
slots that are reset to UNKNOWN to trigger the method.  The If Change method 
actions list is executed in sequential order as soon as the value changes.  

Optionally the method can be explicitly triggered by a SendMessage 
operator during the course of evaluating a rule or other method.  This allows 
the application developer to trigger If Change actions instead of the 
inference engine.  In the case of a class or object with an If Change attached, 
the SendMessage operator must be used in order to trigger the method, but 
it will no longer be dependent on the If Change strategy (and will actually 
be treated as a user-defined method by the inference engine).

If no explicit If Change method is specified at the level of the slot, a 
substitute method will be sought by downward inheritance from an 
including class, superclass, or parent object as directed by the inheritance 
strategy currently in effect.  See the “Inheritance” section for details.

Operators

The following operators are valid in the conditions and actions of an If 
Change method:  

Assign Execute
SendMessage LoadKB
CreateObject UnloadKB
DeleteObject Strategy
Language Reference 71



Chapter Application Development Features1
Retrieve InhMethod
Write NoInherit
Reset Interrupt
Show

Inheritance

If Change methods can only be inherited downward (from a class to its 
instances or subclasses, or from an object to its components), never upward.  
The search through the parent tree hierarchy is directed by the global 
inheritance strategy and can be class or object-first and depth or 
breadth-first.  Any explicit If Change method defined at the level of the slot 
overrides this inheritance behavior; to reincorporate inheritance as part of 
such a method, include an explicit call to the InhMethod operator.  To 
prevent the method from being inherited, change the Public option to 
Private in the Method editor.  

When an inheritance conflict exists between two parent objects or classes at 
the same level, the application developer can use the InhMethod operator 
to override the default inheritance strategy by specifying the parent object 
to begin the search.  When the inheritance conflict occurs between two slots 
at the same level, the application developer can set the inheritance priority 
of the slots to override the default inheritance strategy.  If neither approach 
is used, by default the system chooses the method attached to the parent 
whose name appears first in alphabetic order.  However, if the order is 
important, it is recommended that you force the method evaluation rather 
than rely on the default behavior.

Strategy

Automatic execution of If Change methods is normally enabled by default, 
but can be modified if necessary by changing the global inference strategy:  

■ Interactively through the Strategy Monitor window (from the Expert 
menu), by turning off the If Change Actions option (OFF).

■ Dynamically during the course of inference processing itself, via the 
Strategy operator in a condition or action of a rule or method, using 
the @CACTIONSON=OFF setting. 

■ In addition to ON and OFF, a third option ON/UNKNOWN allows the 
system to trigger the If Change method not only when the value of the 
associated slot changes but also when it is reset to UNKNOWN.  Unless this 
option is selected, values set to UNKNOWN will not trigger the If Change 
method.

Note: The SendMessage operator can be used to explicitly trigger an If 
Change method.  The method triggered by the SendMessage 
operator is not affected by any of the strategy settings and will 
actually be treated as a user-defined method by the inference engine.

During the inferencing process the system first uses the Strategy operator 
setting to determine the global strategy, however, it is possible to invoke the 
Strategy Monitor window’s If Change setting from the Strategy operator.  
This option is provided by the CURRENT setting in the Strategy operator 
argument dialog box.  
72 Language Reference



Inference
Related Topics

Objects Inheritance
Classes Inheritance Strategy
Propertie Inference
Actions Inference Strategy
Rules Strategy Operator
Methods SendMessage Operator
Order of Sources Method InhMethod Operator
Slots

Also see the sections on individual operators by name, as listed above.  

Inference
Definition

Inference is the process of reasoning by which the Rules Element determines 
the truth or falsity of hypotheses.  

Techniques

The Rules Element uses two main inference techniques:  

■ Backward chaining begins with a hypothesis whose truth or falsity is to 
be determined and works backward to all rules leading to that 
hypothesis.  

■ Forward chaining begins with the value of a public slot and works 
forward to all rules whose conditions refer to that slot.  

Either technique may generate further hypotheses or data values, 
continuing the inference process recursively to greater depths.  

Invocation

Inference is initiated by suggesting one or more hypotheses to be 
investigated and/or volunteering one or more public slot values to be 
propagated.  (See the Backward Chaining and Forward Chaining topics for 
more information.)  These actions determine the agenda that will direct the 
course of the inference process; the contents of the agenda may be further 
modified dynamically in the course of processing.  The Start With... 
Knowledge Base command on the Expert menu begins the inference process 
itself.  

Private slots cannot initiate inferencing since their value is accessible only 
by a method specifically triggered for the slot and will therefore not appear 
in any rule.

Strategy

Various aspects of the inference process can be controlled or modified 
according to the global and local strategy options currently in effect; see the 
Inference Strategy topic for details.  
Language Reference 73



Chapter Application Development Features1
Related Topics

Hypotheses Slots
Rules Backward Chaining
Boolean Constants Forward Chaining
Object Agenda
Properties Inference Strategy

Inference Priority Attribute
Definition

An inference priority is a number that defines the priority and behavior of a 
hypothesis, rule, or data item during inference processing.  

Value

The value of the inference priority must be an integer in the range ±32000.  

Default

If no inference priority is explicitly defined, its value is 1 by default.  

Effects

Inference priorities control the sequence of inference processing in the 
following ways:  

■ When two or more rules lead to the same suggested hypothesis, they 
are evaluated in the order of their inference priorities.  

■ For rules with equal inference priorities, the order of evaluation is 
determined by the highest inference priority among the data items 
referred to in each rule’s conditions.  

■ Within a single rule, conditions are evaluated according to the highest 
inference priority among each condition’s data items.  

■ When the Rules Element focuses on a new hypothesis within a 
particular inference agenda queue, it focuses on the hypothesis with the 
highest inference priority.

In each case, the order of evaluation is from highest inference priority to 
lowest.  

Strategy Control

Certain specific ranges of inference priorities control the strategic behavior 
of a rule during inference processing.  The effects of these special inference 
priorities are similar to disabling various strategy options (such as Forward 
Action-Effects or Forward through gates), but only for a single 
rule, rather than globally for the entire system.  The following inference 
priorities apply to rules only; the negative values have no effect on 
hypotheses and data:  

■ -32000 to -20001:  The rule is completely disabled and can never be 
reached during inference processing, either through forward or 
backward chaining.  
74 Language Reference



Inference Slot Attribute
■ -20000 to -10001:  The rule cannot be reached by any form of forward 
chaining, whether from the hypothesis of another rule, an action of a 
rule or method, a semantic gate, or a data value explicitly volunteered 
by the user.  Such a rule can be reached only through backward 
chaining, when its hypothesis is suggested either explicitly (by the user) 
or implicitly (as a subgoal in the investigation of some other 
hypothesis).  

■ -10000 to -5001:  The rule cannot be reached by forward chaining 
through a semantic gate.  

■ -5000 to -1001:  The rule cannot be reached by forward chaining from an 
action in another rule or method.  

■ -1000 to 32000:  The rule’s inference behavior is unrestricted, subject 
only to the global strategy options currently in effect.  

Creation

A rule’s inference priority is specified via the Inference Priority 
Number box in the Rule editor; that of a slot (data item or hypothesis) is set 
by the Inf Number box in the Meta-Slot editor.  The inference priority 
ranges described above are meaningful only when assigned to a rule 
through the Rule editor.  Negative values assigned in the Meta-Slot editor 
have no effect on inferencing behavior resulting from the evaluation of data 
or hypotheses.  The Meta-Slot editor in this case is used primarily to control 
the order of condition evaluation in a rule or the order of hypothesis 
evaluation.

Instead of a single fixed value, the inference priority can be calculated 
dynamically by designating an inference slot in the box labeled Inf 
Priority Slot in the Rule editor or Inf Slot in the Meta-Slot editor.  If 
present, the value of the inference slot overrides that of the explicit inference 
priority.  

Related Topics

Rules Inference
Objects Backward Chaining
Properties Forward Chaining
Integer Constants Inference Strategy
Hypotheses Inference Slot Attribute
Conditions Semantic Gates
Actions Methods
Meta-Slots

Inference Slot Attribute
Definition

An inference slot is a public slot whose value determines the priority and 
behavior of a hypothesis, rule, or data item during inference processing.  
Language Reference 75



Chapter Application Development Features1
Value

The inference slot must be an integer public slot (a property of an object or 
class) with a value in the range ±32000.  The negative range of values are 
useful on rules and otherwise have no effect on data or hypotheses.  If it is 
the name of an object itself, its value is taken from the special Value 
property associated with the object.  

Default

If no inference slot is defined or the defined slot’s value is UNKNOWN or 
NOTKNOWN, the data or rule’s explicit inference priority is used instead.  

Operation

If an inference slot is specified, the value of the designated variable will be 
used in place of the explicit inference priority in determining the rule’s or 
data item’s inference priority and strategic behavior.  This allows these 
attributes to be calculated dynamically at run time, rather than fixed 
unalterably in advance.  See the Inference Priority Attribute topic for the 
specific meaning and effects of these numbers on rules.  If the inference slot 
is UNKNOWN, the Rules Element will not try to determine its value (the Rules 
Element will use the inference priority or the default value).

Creation

The inference slot is specified via the box labeled Inf Priority Slot in 
the Rule editor or Inf Slot in the Meta-Slot editor.  The slot name 
specified must be a public slot; a private slot cannot be used for this 
purpose.

Related Topics

Rules Inference
Objects Inference Priority Attribute
Propertie Inference Strategy
Slot Meta-Slots
Integer Constants Value Property
Floating Point Constants

Inference Strategy
Definition

Inference strategy controls the operation of the Rules Element’s inference 
processing and the propagation of results from one inference rule to 
another.  

Options

The following option selections are available for controlling the system’s 
inference strategy.  The keyword (preceded by an @ sign) following each 
strategy name is the abbreviation recorded in the text knowledge base:

■ Forward confirmed hypotheses (@PWTRUE):  Any hypothesis 
which is in the context of a TRUE hypothesis will be put on the agenda 
for evaluation.  
76 Language Reference



Inference Strategy
■ Forward rejected hypotheses (@PWFALSE):  Any hypothesis 
which is in the context of a FALSE hypothesis will be put on the agenda 
for evaluation.  

■ Forward notknown hypotheses (@PWNOTKNOWN):  Any 
hypothesis which is in the context of a NOTKNOWN hypothesis will be 
put on the agenda for evaluation.  

■ Rule Global: Forward action-effects (@PFACTIONS):  Any 
public slots whose values are changed by an Assign, Retrieve, or 
Execute operator involved in conditions or Then actions of a rule will 
be propagated forward to all rules that refer to them in their conditions.  
Note:  The Assign operator never forwards actions from a condition, 
and the Retrieve and Execute operators only forward actions from a 
condition depending on the forwarding option selected.  See each 
operator topic for details.

■ Rule Else: Forward action-effects (@PFEACTIONS):  Any 
public slots whose values are changed by an Assign, Retrieve, or 
Execute operator involved in the Else actions of a rule will be 
propagated forward to all rules that refer to them in their conditions.  

■ Method Global: Forward action-effects (@PFMACTIONS):  
Any public slots whose values are changed by an Assign, Retrieve, or 
Execute operator involved in conditions or Then actions of a method 
will be propagated forward to all rules that refer to them in their 
conditions.  Note:  The Assign operator never forwards actions from a 
condition, and the Retrieve and Execute operators only forward actions 
from a condition depending on the forwarding option selected.  See 
each operator topic for details.

■ Method Else: Forward action-effects (@PFMEACTIONS):  
Any public slots whose values are changed by an Assign, Retrieve, or 
Execute operator involved in the Else actions of a method will be 
propagated forward to all rules that refer to them in their conditions.  

■ Forward through gates (@PTGATES):  After evaluating a rule, the 
inference process will propagate via semantic gates to any other rules 
with which it shares one or more public slots.  The shared data item 
must make the condition of the target rule TRUE to be propagated.

■ Exhaustive evaluation (@EXHBWRD):  All rules leading to a 
suggested hypothesis will always be evaluated, even after the value of 
the hypothesis has already been determined by a previous rule.  

■ Enable order of sources (@SOURCESON):  Order of Sources 
methods are in effect and will be executed when appropriate.  Actions 
in Order of Sources methods may result in further inference processing 
depending on the current Forward Action-Effects strategy.

■ Enable if change (@CACTIONSON):  If Change methods are in 
effect and will be executed when appropriate.  Actions in If Change 
methods may result in further inference processing depending on the 
current Forward Action-Effects strategy.

■ User validation (@VALIDUSER):  Enable validation of input 
solicited from the user before input is accepted for inferencing.  

■ Engine validation (@VALIDENGINE):  Enable validation of input 
given by the system before input is accepted for inferencing (for 
example, from an Assign, Execute, or Retrieve).  
Language Reference 77



Chapter Application Development Features1
Default

All inference strategy options listed above are normally enabled by default.  
The default settings can be modified interactively through the Strategy 
Monitor window (from the Expert menu) or during the course of evaluating 
a rule or method through the Strategy operator.  See Global Control and 
Local Control below for details.

Global Control

The inference strategies listed above can be individually controlled through 
the Strategy Monitor window (from the Expert menu).  The window has a 
list of checkboxes and menu buttons which determine whether a strategy is 
enabled or disabled.  Clicking the mouse in any of the checkboxes toggles 
the corresponding strategy setting on or off.  The darkened checkboxes 
show which inference options are currently enabled; unselected checkboxes 
are disabled.  In the case of menu button controls, other options in addition 
to enabled and disabled are available from a menu that you display by 
clicking on the button.  The currently displayed setting can be changed by 
selecting a new option from the list.  During inferencing the settings may be 
changed interactively and placed into effect immediately.  

Local Control

The system’s inference strategy can be controlled locally during the course 
of inference processing via the Strategy operator in a condition or action 
of a rule or method.  The Strategy operator selections override their 
corresponding global inference strategy, although the operator can default 
to the global strategy.  The Strategy operator uses an arguments dialog 
box to control the inference strategies listed above with the following 
options:

ON Enables the strategy until the next local strategy 
changes the setting.

OFF Disables the strategy until the next local strategy 
changes the setting.

CURRENT Invokes the corresponding Strategy Monitor 
window setting (from the Expert menu) until the 
next local strategy changes the setting.  

GLOBAL This option is used to synchronize control of the 
individual Forward Action Effects strategies 
(@PFEACTIONS, @PFMACTIONS, and 
@PFMEACTIONS). with the setting of “Rule Global 
Forward Action-Effects” (@PFACTIONS) that 
appears in the Strategy Monitor window.  For 
instance, you can selectively enable or disable Else 
actions from a rule, or you can select the GLOBAL 
option so the strategy behaves exactly as the rule 
Then actions setting.  

In addition to the local strategy options described here, the strategic 
behavior of individual rules and hypotheses can be controlled by using 
certain special values for their inference priorities:  see the Inference Priority 
Attribute topic for details.  
78 Language Reference



Inheritability Strategy
Related Topics

Hypotheses Semantic Gates
Rules Methods
Strategy Order of Sources Method
Inference If Change Method
Backward Chaining Inference Priority
Forward Chaining Strategy Operator

Inheritability Strategy
Definition

Inheritability strategy controls the inheritance of properties and their values 
from one object or class to another.  

Variations

The following forms of inheritance can be controlled:  

■ Inheritance of property definitions between a class and its subclasses or 
instances.

■ Inheritance of property definitions between an object and its 
components (subobjects).

■ Inheritance of property values.

In each of these cases independently, inheritance may be permitted or 
forbidden in any direction or combination of directions:  

■ Downward (from class to subclass, class to instance, or parent object to 
component).

■ Upward (from subclass to class, instance to class, or component to 
parent object).

■ Both downward and upward.

■ Neither downward nor upward.

■ Private and public slots observe the same inheritability strategies.  The 
private slot attribute controls the accessibility of the slot value and has 
nothing to do with inheritability.

Default

The system’s default inheritability strategy permits downward inheritance 
only, and only in the first and third cases listed above (property definitions 
from class to subclasses or instances, property values).  Upward inheritance 
and inheritance between objects are disabled.

The default settings can be modified interactively through the Strategy 
Monitor window, during the course of evaluating a rule or method through 
the Strategy operator, or at the level of the individual slot.  See Global 
Control and Local Control below for details.
Language Reference 79



Chapter Application Development Features1
Global Control

The global inheritability strategy in effect for the entire system can be set 
either with the Strategy Monitor window (from the Expert menu) or 
through the Strategy operator in a rule or method, using the options 
@INHCLASSDOWN, @INHCLASSUP, @INHOBJDOWN, @INHOBJUP, 
@INHVALDOWN, and @INHVALUP.  In the Strategy Monitor window (from 
the Expert menu) the inheritability strategy is controlled by a diagram of the 
following form: 

Clicking the mouse in any of the various arrows toggles the inheritability 
setting for the corresponding form of inheritance.  Highlighted arrows show 
which inheritability options are currently enabled; those shown in the figure 
are for the standard default settings.  

Local Control

The global inheritability strategy can be overridden in the case of individual 
slots through the Meta-Slot editor.  In the Meta-Slot editor the inheritability 
strategy of the slot is controlled by a diagram of the following form: 

In this case there are only two sets of arrows, controlling the inheritability 
of the slot itself and of its value, respectively.  Clicking inside Default button 
sets the local inheritability strategy equal to the corresponding global 
strategy currently in effect.

The box labeled Init Value in the Meta-Slot editor lets you predetermine 
the value of the slot and specify whether or not it will be inheritable 
(Public) or not inheritable (Private).  If an initial value is defined for the 
slot, it overrides the inheritability strategy currently in effect.

Related Topics

Objects Meta-Slots
Classes Inheritance
Properties Inheritance Strategy
Rules Strategy
Methods Strategy Operator
80 Language Reference



Inheritance
Slots InhMethod Operator
Init Value Attribute

Inheritance
Definition

Inheritance is a process by which characteristics of an object or class are 
propagated automatically to other, related objects or classes.  

Variations

The following kinds of characteristics can be inherited:  

■ Property definitions

■ Property values

■ Slot accessible by rules (public slot) or method only (private slot)

■ Data validation expression meta-slot or property attribute

■ Prompt line meta-slot attribute

■ Order of Sources and If Change methods

■ Other user-defined methods.

Any of these characteristics can be inherited in the following ways:  

■ Between a class and its subclasses

■ Between a class and its instances

■ Between an object and its components (subobjects).

Direction

Inheritance can proceed in either of two directions (except methods and 
meta-slots):  

■ Downward (from class to subclass, class to instance, or parent object to 
component)

■ Upward (from subclass to class, instance to class, or component to 
parent object)

Inheritance normally proceeds in the downward direction; upward 
inheritance is less common, but can be useful in some situations.  Methods 
and meta-slot attributes can only be inherited downward, never upward. 

Control

Inheritance takes place under the control of the global strategy settings 
currently in effect; see the sections “Inheritance Strategy” and 
“Inheritability Strategy” for details.  The effects of these global settings are 
further modified by the local attributes (inheritance priority, inheritance 
slot, inheritance and inheritability attributes) associated with individual 
slots. 

Additionally, specific inheritance behavior for individual slots can be 
defined via the following operators available through methods (the first two 
are valid only in Order of Sources methods):  
Language Reference 81



Chapter Application Development Features1
InhValueUp
InhValueDown
InhMethod
NoInherit

The meta-slot attributes, Data Validation and Prompt Line, are not under 
the control of the user; they are always inheritable in the downward 
direction.  All other meta-slot attributes cannot be inherited including 
Format, Priorities, Question Window, and Why.

Related Topics

Objects Inheritance Priority Attribute
Classes Inheritance Slot Attribute
Properties Inheritance Strategy
Meta-Slot Inheritability Strategy
Methods InhValueDown Operator
Order of Sources Method InhValueUp Operator
If Change Method InhMethod Operator
Strategy NoInherit Operator

Inheritance Priority Attribute
Definition

An inheritance priority is a number that defines the inheritance priority of a 
slot.  

Value

The value of the inheritance priority must be an integer in the range 
±32000.  

Default

If no inheritance priority is explicitly defined, its value is 1 by default.  

Operation

In seeking an inherited value for a given slot, the Rules Element will give 
precedence to the candidate with the highest inheritance priority, subject to 
its global and local inheritability attributes.  This principle applies at each 
ply of the search tree, under both depth-first and breadth-first inheritance 
strategies.  The inheritance priority can therefore be used to resolve 
inheritance conflicts when a value is sought from multiple slots.  Conflicts 
between methods attached to slots can also be resolved this way.  (Note:  
Conflicts between methods attached to classes, objects, or properties must 
be resolved through the InhMethod operator.)

Creation

The inheritance priority is specified via the Inh Number box in the 
Meta-Slot editor.  Instead of a single fixed value, the inheritance priority can 
be calculated dynamically by designating an inheritance slot in the box 
labeled Inh Slot.  If present, the value of the inheritance slot overrides that 
of the explicit inheritance priority.  
82 Language Reference



Inheritance Slot Attribute
Related Topics

Objects Inheritance
Classes Inheritance Slot Attribute
Properties Inheritance Strategy
Integer Constants Inheritability Strategy
Meta-Slots Methods

Inheritance Slot Attribute
Definition

An inheritance slot is a public slot whose value determines the inheritance 
priority of a slot.  

Value

The inheritance slot must be an integer public slot (a property associated 
with an object or class) with a value in the range ±32000.  If it is the name 
of an object itself, its value is taken from the special Value property 
associated with the object.  

Default

If no inheritance slot is defined, the system will use the explicit inheritance 
priority of the slot whose value is being sought.  See the Inheritance Priority 
Attribute topic for details.

Operation

If an inheritance slot is specified, the value of the designated variable will be 
used in place of the explicit inheritance priority in determining the priority 
with which the slot’s value can be inherited by other objects or classes.  This 
allows the inheritance priority to be calculated dynamically at run time, 
rather than fixed unalterably in advance.  If the inheritance slot is UNKNOWN, 
the Rules Element will not try to determine its value (the Rules Element will 
use the inheritance priority or the default value).

In seeking an inherited value for a given slot, the Rules Element will give 
precedence to the candidate with the highest inheritance priority, subject to 
its local inheritability attributes and the global inheritability strategy 
currently in effect.  This principle applies at each ply of the search tree, 
under both depth-first and breadth-first inheritance strategies.  The 
inheritance slot can therefore be used to resolve inheritance conflicts when 
a value is sought from multiple slots.  Conflicts between methods attached 
to slots can also be resolved this way.  (Note:  Conflicts between methods 
attached to classes, objects, or properties must be resolved through the 
InhMethod operator.)

Creation

The inheritance slot is specified by typing the name of the slot into the Inh 
Slot box in the Meta-Slot editor.  The slot name specified must be a public 
slot; a private slot cannot be used for this purpose.
Language Reference 83



Chapter Application Development Features1
Related Topics

Objects Floating Point Constants
Classes Inheritance
Properties Inheritance Strategy
Slots Inheritability Strategy
Meta-Slots Inheritance Priority Attribute
Integer Constants Value Property

Inheritance Strategy
Definition

Inheritance strategy controls the order in which a slot value or method is 
inherited from its including classes and parent objects.  If the same property 
can be inherited from more than one source, the strategy determines which 
source will actually be used.  

Variations

The search for an inherited value of a given property can be conducted in 
either of two ways:  

■ Class-first, examining the classes to which the object belongs before the 
parent objects of which it is a component.

■ Object-first, examining parent objects before classes.

In either case, the search can proceed in either of two orders:  

■ Breadth-first, examining all of the object’s immediate classes or parent 
objects before any of their own more remote ancestors.

■ Depth-first, examining each complete chain of superclasses or 
superobjects to its full depth before moving on to the next.

In both breadth-first and depth-first search, the order in which classes or 
objects are examined at each ply of the search tree is determined by their 
individual inheritance priorities or inheritance slots.  In addition, the search 
may be constrained by the global inheritability settings in effect or by the 
local inheritability attributes of a given slot.  

Private and public slots observe the same inheritance strategies.  The private 
slot attribute controls the accessibility of the slot value and has nothing to 
do with inheritance.

Default

The system’s default inheritance strategy is class-first and breadth-first.  The 
default settings can be modified interactively through the Strategy Monitor 
window (from the Expert menu), during the course of evaluating a rule or 
method through the Strategy operator, or at the level of the individual 
84 Language Reference



Inheritance Strategy
slot.  In both the global Strategy Monitor window and the Meta-Slot editor, 
the inheritance strategy is controlled by the following radio buttons: 

Global Control

The global inheritance strategy in effect for the entire system can be set 
either with the Strategy Monitor window (from the Expert menu) or via the 
Strategy operator in a rule or method, using the options @INHBREADTH 
and @INHPARENT.  Clicking on the class-first or the object-first checkbox 
sets the inheritance strategy as follows, The global inheritance strategy in 
effect for the entire system can be set either with the Strategy Monitor 
window (from the Expert menu) or via the Strategy operator in a rule or 
method, using the options @INHBREADTH and @INHPARENT.  Clicking on 
the class-first or the object-first checkbox sets the inheritance strategy as 
follows, where the diagram on the left represents breadth-first and the 
diagram on the right represents depth-first: 

Breath-FirstDepth-First

Local Control

The global inheritance strategy can be overridden in the case of individual 
slots through the Meta-Slot editor.  

Related Topics

Objects Strategy
Classes Inheritability Strategy
Properties Inheritance
Rules Inheritance Priority Attribute
Methods Inheritance Slot Attribute
Slot Strategy Operator
Meta-Slots

5

6

7

8
4

2
obj

3

1

2

3

6

7
5

1
obj

8

4

Language Reference 85



Chapter Application Development Features1
InhMethod Operator
Definition

The InhMethod operator is used in the conditions or actions of methods to 
specify downward inheritance of the corresponding method from an 
including class, superclass, or parent object.  Method inheritability allows 
an entire class of objects to share a single method, which is defined once for 
the class and automatically inherited by all instances.

Operand

The InhMethod operator takes one operand, which can be either the special 
reserved word DEFAULT or an explicitly named parent object from which to 
inherit the corresponding method.  

InhMethod DEFAULT
InhMethod ParentObjectName

The operand can be an interpretation of the type \slot_name\ that 
resolves to the desired slot ParentObjectName.

Effect

Execution of the method in which the InhMethod operator appears is 
suspended and an inherited method of the same name is executed.  The 
method to be executed is sought by downward inheritance only (from class 
to instance, class to subclass, or parent object to component), subject to the 
global and local inheritance and inheritability strategies currently in effect.  
Methods can never be inherited upward.  Once the inherited method 
finishes executing, the execution of the original, calling method resumes.

This operator also allows the developer to resolve inheritance conflicts by 
explicitly naming a parent object in the InhMethod operand.  If no method 
can be triggered from the named parent object, the search for a 
corresponding method begins on the branch to which the object belongs.  
When the operand is DEFAULT and no parent object is explicitly named, 
inheritance conflicts are resolved based on the alphabetic order of the parent 
object names or inheritance priorities in the case of slots.  However, if the 
order is important, it is recommended that you specify the method 
evaluation, rather than rely on the default behavior.

Result

When the InhMethod operator is used in a condition on the left-hand side 
of a method, the result produced by the operator is TRUE if the method is 
inherited, FALSE if a corresponding method does not exist or the parent 
object named through the operand has been deleted during the course of the 
session.

Example

Let’s assume the following actions appear in a method attached to a 
subclass Triangles that belongs to a class Figures.  The method is 
defined as a public one (inheritance enabled) and has the name Init:

InhMethod Figures
Assign SELF.width         SELF.height
86 Language Reference



InhValueDown Operator
The first action in this method demonstrates the use of the InhMethod 
operator to force the evaluation of another method of the same name before 
assigning the values.  Let’s assume it triggers inheritance from the class 
Figures of a public method (also named Init) with the following actions 
list:

Assign SELF.originx   SELF.originx
Assign SELF.originy  SELF.originy

Because the action in the first method triggers the method of the same name 
at the class level (Figures), the subclass Triangles inherits the new 
method down from its parent class before completing its own method 
actions list.  In this case, the class Figures and the subclass Triangles 
share the same list of properties:  originx, originy, width, and height 
and the definition of the method Init at the parent class avoids duplication 
of the initialization actions for its subclasses (or objects) whose properties it 
shares.

Related Topics

Objects If Change Method
Classes Inheritance
Conditions Inheritance Strategy
Actions Inheritability Strategy
Methods Inheritance
Order of Sources Method Inheritance Slot Attribute

InhValueDown Operator
Definition

The InhValueDown operator is used in the right-hand side actions of an 
Order of Sources method to specify downward inheritance of a public or 
private slot’s value from that of a parent class or object.  

Operand

The InhValueDown operator is valid only in the THEN actions list on the 
right-hand side of an Order of Sources.  The InhValueDown operator takes 
one operand, which must be the special reserved word DEFAULT.  

Effect

The value of the slot to which this Order of Sources method belongs is 
sought by downward inheritance (from class to instance, class to subclass, 
or parent object to component), subject to the global and local inheritance 
and inheritability strategies currently in effect.  

Private and public slots both may obtain a value by downward inheritance.  
The private slot attribute controls the accessibility of the slot value and has 
nothing to do with inheritance.
Language Reference 87



Chapter Application Development Features1
Example

The following is the only valid form for an action using the InhValueDown 
operator:  

InhValueDown DEFAULT

Related Topics

Objects Inheritance
Classes Inheritance Strategy
Properties Inheritability Strategy
Slots Inheritance Priority Attribute
Action Inheritance Slot Attribute
Methods InhValueUp Operator
Order of Sources Method

InhValueUp Operator
Definition

The InhValueUp operator is used in the right-hand side actions of an Order 
of Sources method to specify upward inheritance of a public or private slot’s 
value from that of an instance, subclass, or component (subobject).  

Operand

The InhValueUp operator is valid only in the THEN actions list on the 
right-hand side of an Order of Sources.  The InhValueUp operator takes 
one operand, which must be the special reserved word DEFAULT.  

Effect

The value of the slot to which this Order of Sources method belongs is 
sought by upward inheritance (from instance to class, subclass to class, or 
component to parent object), subject to the global and local inheritance and 
inheritability strategies currently in effect.  

Private and public slots both may obtain a value by upward inheritance.  
The private slot attribute controls the accessibility of the slot value and has 
nothing to do with inheritance.

Example

The following is the only valid form for an action using the InhValueUp 
operator:  

InhValueUp DEFAULT

Related Topics

Object Inheritance
Classes Inheritance Strategy
Properties Inheritability Strategy
Slots Inheritance Priority Attribute
Actions Inheritance Slot Attribute
Methods InhValueDown Operator
Order of Sources Method
88 Language Reference



Init Value Attribute
Init Value Attribute
Definition

An Init Value Attribute can be used to declare an initialization value for 
individual public and private slots.  

Effect

A slot that has an initial value declared will automatically be initialized to 
that value either when the knowledge base file containing the initial value 
declaration is loaded or when the state of the system is reinitialized with the 
Restart Session command.  If the inheritability strategy of the initialized slot 
permits, the system automatically propagates the value to the children slots 
according to the inheritability strategy defined for the initialized slot.  
Whether the slot is public or private has no effect on slot value initialization.

Notice the difference between an initial value and the assignment made 
through the RunTimeValue operator.  The initial value specifies a value to 
be set and propagated at system initialization time; RunTimeValue 
specifies a default value to be set dynamically during inference processing 
when processed in the Order of Sources method.  Also, no If Change 
method is triggered when a slot’s value is determined by an initial value, 
whereas RunTimeValue will trigger the corresponding If Change method.  

Creation

The initial value is specified or edited by typing into the box labeled Init 
Value Public or Init Value Private in the Meta-Slot editor.  The 
supplied value can be a string, integer, or boolean value (including the 
keyword NOTKNOWN).  String values must appear between double quotes 
(“a_string”).  

If you want to specify an initial value for a slot that is different from its 
parent’s initial value declaration, you can modify the meta-slot attribute 
local to the slot.  Initial values that are declared locally override any 
potentially inheritable initial value declarations.

Inheritance

The value of the slot can be made uninheritable by typing the value into the 
Private box, otherwise type the value in the Public box.  The 
inheritability of a slot’s initial value when declared overrides either local or 
global inheritability strategies currently in effect.  An initial value declared 
locally also overrides any potentially inheritable initial value declarations.

Related Topics

Boolean Value Methods
Objects Order of Sources Method
Properties RunTimeValue Operator
Slots Inheritability Strategy
Data Types Meta-Slots
Language Reference 89



Chapter Application Development Features1
INT2STR Function
Definition

The INT2STR function is used in expressions to convert an integer value to 
an equivalent character string.  The expression can appear on the left-hand 
side or right-hand side of rules and methods.

Syntax

The function consists of the word INT2STR followed by one or two 
arguments in parentheses:  

INT2STR(n)
INT2STR(n,f)

Argument

Each argument may be any expression yielding a result of the appropriate 
type:  

■ The first argument (n) is the integer to be converted.  

■ The optional second argument (f) is a string specifying the format 
under which the first argument is to be converted.  See “Integer 
Formats” for the syntax and meaning of this string.  

Argument n may also yield a floating point value, which will be truncated 
to the next lower integer (toward zero) before being converted.  The 
argument expressions may include patterns or interpretations.  

Result

The function returns a string result representing the numeric value of 
argument n, converted according to format f.  If no format argument is 
given, the default system format for integers (defined in the 
ckbres.format module in the file nxrun.dat) is used.  

Examples

The following examples illustrate the results of the INT2STR function:  

INT2STR(98)     = "98"
INT2STR(98.6)   = "98"
INT2STR(-98.6)  = "-98"
INT2STR(79,"x") = "4f"

Related Topics

Expressions Integer Formats
String Constants Patterns
Integer Constants Interpretations
Floating Point Constants STR2INT Function
90 Language Reference



Integer Constants
Integer Constants
Definition

An integer constant is a sequence of characters that stand directly for an 
integer (whole number) value.  

Syntax

An integer constant consists of one or more decimal digits (0–9), optionally 
preceded by a sign (+ or -).  It must not include embedded spaces, commas, 
a decimal point, or an exponent.  

Examples

The following are valid integer constants:  

6
-27
+441
0
16777216

The following are not:  

abc Not a number

6+5 Expression, not a constant

23a Contains an invalid character

16 777 216 Contains embedded spaces

16,777,216 Contains embedded commas

98.6 Contains a decimal point

125e3 Contains an exponent

Related Topics

Data Types Floating Point Constants
Integer Formats Expressions

Integer Formats
Definition

An integer format specifies the representation of an integer value in text form 
for input and output purposes.  

Syntax

This section defines the syntax of format elements for integer-valued 
properties only.  See the section titled “Formats” for the syntax of formats in 
general.  
Language Reference 91



Chapter Application Development Features1
The following special characters are meaningful in integer formats:  

d Decimal representation

X Hexadecimal representation with capital letters 
A–F for digit values 10–15

x Hexadecimal representation with lowercase letters 
a–f for digit values 10–15

0 significant digits only

Any of these may optionally be followed by a series of zeros (0) defining the 
minimum number of digits to be used in representing the number.  For 
example, the format d000 denotes a decimal number at least three digits 
long.  

Like all formats, those for integers may include strings of literal characters 
enclosed in double quotation marks (" . . . "), and may also include the 
wild-card character (*).  Format elements beginning with an exclamation 
point (!) are ignored in database transactions; they are meaningful only for 
direct interaction with the user via the screen and keyboard.  

Input

On input, each element in the format list is tried in order until one of them 
matches the input text.  If no match is found, the input is rejected and an 
error message is displayed on the screen.  The following conventions apply:  

■ Odd-numbered elements in the format list (the first, third, and so on) 
produce a positive result, even-numbered elements (the second, fourth, 
and so on) produce a negative result.  

■ Input values of any length are recognized; zeros (0) used in the format 
to specify the number of digits in the data value are ignored.  

■ In hexadecimal representation, no distinction is made between 
uppercase digits A–F and lowercase a–f.  Both forms are recognized, 
and may even be mixed in the same number; the case explicitly 
specified by the format itself (X or x) is ignored.  

■ Strings of literal characters enclosed in double quotation marks must 
match exactly, except that no distinction is made between upper- and 
lowercase letters.  

■ The wild-card character (*) matches any sequence of zero or more 
characters.  

Output

On output, only the first one or two elements in the format list are used:  

■ The first format element is used for positive and zero values, the second 
for negative values; any further elements in the list are ignored.  If there 
is no second element, the first is used for all output values.  

■ A series of zeros (0) within a format element specifies the minimum 
number of digits to be used in the output representation.  Numbers 
shorter than this will be padded with leading zeros; longer numbers 
will be represented in full, using more than the specified number of 
digits.  
92 Language Reference



Integer Formats
■ Strings of literal characters enclosed in double quotation marks are 
reproduced exactly in the output.  

■ The wild-card character (*) is ignored on output.  

Default

The default system format for integers is defined in the ckbres.format 
module in the file nxrun.dat.  The standard default format is 

d

denoting decimal representation in the minimum required number of 
digits.  

Examples

The following examples illustrate the use of integer formats:  

Format:  d000;;"+"d000;"-"d000

Format:  "0x"X0000;;d

Format:  d000*;"minus "d000*

In the last example, notice that both input values (0xfe and 254) will be 
displayed on output as 0x00FE.  

Value Output Comments
23 023 Leading zero to fill
1234 1234 Exceeds specified length
-23 -023 No second element; uses first

Input Value Comments
23 23 Matches first element
-23 23 Matches first element
+23 23 Matches third element
23.0 NOTKNOWN No match; use d000*

Value Output Comments
254 0x00FE Leading zeros to fill
-1 0xFFFFFFFF Exceeds specified length

Input Value Comments
0xfe 254 Case is irrelevant
254 254 Matches third element

Value Output Comments
23 023 Leading zero to fill
1234 1234 Exceeds specified length
-23 minus 023 Negative uses second element

Input Value Comments
23 23 Matches first element
-23 -23 Matches first element
minus 23 -23 Matches second element
plus 23 NOTKNOWN No match
23.7 23 No rounding; wild card discards 

fractional part
Language Reference 93



Chapter Application Development Features1
Related Topics

Formats Integer Constants
Format Attribute Floating Point Formats

Interpretations
Definition

An interpretation is used in an expression to refer to an object, class, or 
property indirectly, via the value of a slot calculated at runtime.  

Syntax

Typically, an interpretation can be used wherever an object, class, or 
property name would be valid in an expression, although it is specifically 
not allowed in the SendMessage operator expression.  It consists of the name 
of a slot enclosed between backslashes (\ . . . \).  It may optionally be 
preceded by a string of characters, called the root string, enclosed in single 
quotation marks (' . . . ').  The root string or the variable name (but 
not both) may be empty.  

If the slot used in the interpretation is a private slot, the interpretation can 
only appear in the method attached to the slot and the SELF keyword must 
be used to refer to the private slot name.  Interpretations that appear in rule 
conditions and actions must be made on public slots.

Meaning

The slot named within the backslashes is evaluated and the resulting string 
is substituted in its place in the expression.  If the interpretation includes a 
root string, it is concatenated together with the value of the slot to form the 
required object, class, or property name.  

If the slot named between the backslashes is not of type STRING, its value is 
converted into an equivalent string of characters before being used.  In 
particular, floating point values are truncated to their integer part only, 
since the decimal point (.) is not a valid character in an object, class, or 
property name.  

An interpretation may be embedded within a pattern, but a pattern may not 
be embedded within an interpretation.  

Examples

The following are valid class, object, or property interpretations:  

\which_client\
\whic__client.name\
''\which_client\
'tank_'\n\
'tank_'\tank.number\
<|\component_class\|>
{\warehouse.inventory\}
regular_tank_1.\tank.level\
auxiliary_tank_1.'aux_'\tank.level\
'regular_tank_'\tank.number\.\tank.level\
\which_company.name\.\which_client\
94 Language Reference



Interrupt Operator
The following are not valid interpretations:  

\which_client Backslashes not balanced.

tank_\n\ No quotes around root.

'_tank'\n\ Invalid form for identifier.

'tank_'\m+n\ Expression inside backslashes.

'part_'\<Part>.number\

Pattern inside backslashes.

If the value of empty_tank is the string tank_3, then the expressions 

\empty_tank\.capacity

and 

''\empty_tank\.capacity

are both equivalent to 

tank_3.capacity

Similarly, if both n and tank.number are equal to 3, then 

'tank_'\n\.capacity

and 

'tank_'\tank.number\.capacity

are again equivalent to 

tank_3.capacity

If the value of component_class is the string Switch, then the existential 
pattern 

<|\component_class\|>

refers to all existing instances of class Switch.  If the value of 
warehouse.inventory is parts_in_stock, then the universal pattern 

{\warehouse.inventory\}

denotes all components (subobjects) of the object parts_in_stock.  

Related Topics

Objects Data Types
Classes Identifiers
Properties Expressions
Slots Patterns

Interrupt Operator
Definition

The Interrupt operator is used in the conditions or actions of methods to 
interrupt the execution of the method and return control of the system to the 
user.  
Language Reference 95



Chapter Application Development Features1
Operand

The Interrupt operator takes one operand, which must be the boolean 
constant TRUE.  The following is the only valid form for an action using the 
Interrupt operator:  

Interrupt TRUE

Effect

Execution of the method containing the Interrupt operator is interrupted, 
displaying an alert box with a message. For example, for an Order of 
Sources method:

Interrupt in Sources slot of Flap.doodle.

or, for an If Change method:

Interrupt in Action slot of Flap.doodle.

During the interruption, the user is free to activate other windows, edit the 
knowledge base, invoke commands, or take any other desired action.  
Clicking the Continue button in the session control panel of the Rules 
Element main window resumes execution of the suspended method from 
the point of the interruption.  

Result

When the Interrupt operator is used in a condition on the left-hand side 
of a method, the result produced by the operator is always TRUE.

Related Topics

Properties Order of Sources Method
Actions If Change Method
Methods

LENGTH Function
Definition

The LENGTH function is used in expressions to find the number of objects 
matching a given pattern.  The expression can appear on the left-hand side 
or right-hand side of rules and methods.

Syntax

The function consists of the word LENGTH followed by a single argument in 
parentheses:  

LENGTH(p)

Argument

The argument may be any existential pattern with a property name 
specified.  Universal patterns are not allowed.  

Note: The pattern must include a property name or unexpected side-effects 
in gating may result.  If desired, you can execute your own C routine 
to get the number of objects attached to a class.
96 Language Reference



LN Function
Result

The function returns an integer result equal to the number of objects in the 
list corresponding to the given pattern.  

Examples

The following examples illustrate the results of the LENGTH function.  If 
class Client has 22 instances, object job_queue has 12 components, and 
object orders_pending has none, then 

LENGTH(<Client>.name)  = 22
LENGTH(<job_queue>.value)  = 2
LENGTH(<orders_pending>) = 0

The following expressions are invalid:  

LENGTH(<Client>) = 22
LENGTH(Client) Not a pattern
LENGTH(Client.name) Not a pattern
LENGTH({Client}) Universal patterns not allowed

Related Topics

Expressions Patterns
Objects Integer Constants
Classes

LN Function
Definition

The LN function is used in expressions to find the natural (Napierian) 
logarithm of a floating point number.  The expression can appear on the 
left-hand side or right-hand side of rules and methods.

Syntax

The function consists of the word LN followed by a single argument in 
parentheses:  

LN(x)

Argument

The argument may be any expression yielding a numerical result greater 
than 0.0.  The expression may include patterns or interpretations.  

If the value of the argument expression is an integer, it will be converted to 
an equivalent floating point value.  

Result

The function returns a floating point result equal to the logarithm of the 
argument to the Napierian base e (= 2.71828).  

If the argument expression does not produce a numerical value, an error 
message is posted and the function result is NOTKNOWN.  
Language Reference 97



Chapter Application Development Features1
Examples

The following examples illustrate the results of the LN function:  

LN(0.0001)        = -9.21
LN(1 / 2.71828)   = -1.0
LN(SQRT(2.71828)) =  0.5
LN(2.71828)       =  1.0
LN(10000)         =  9.21

Related Topics

Expressions Interpretations
Floating Point Constants LOG Function
Integer Constants EXP Function
Patterns

LoadKB Operator
Definition

The LoadKB operator is used in the conditions or actions of a rule or method 
to load or enable a knowledge base.  

Operands

The LoadKB operator takes one or two operands:  

■ The first operand is a string constant or an interpretation which 
evaluates to a string constant (using the @v(object.prop) syntax) 
specifying the name of the file containing the knowledge base to be 
loaded.  It must be between double quotes.

■ The optional second operand specifies the knowledge base’s load level, 
and must be one of the following:  

@LEVEL=ENABLE;
@LEVEL=DISABLEWEAK;
@LEVEL=DISABLESTRONG;

(Note that the closing semicolon is required.)  If the second operand is 
omitted, a load level of ENABLE is assumed by default.  
98 Language Reference



LoadKB Operator
LoadKB Dialog

When entering a LoadKB action in the Rule editor or Method editor, clicking 
in the space for the second operand displays a special dialog box for 
specifying the load level interactively, rather than by explicitly typing in the 
keywords listed above: 

Effect

The knowledge base named as the first operand is loaded into memory from 
a file and given the load level specified by the second operand.  Definitions 
loaded from the knowledge base are added to those already present in 
memory.  If the designated knowledge base is already loaded, its load level 
is simply changed to that specified by the second operand.  

Load Levels

The effects of the various load levels are as follows: 

ENABLE:  All definitions in the knowledge base are fully 
effective and operational, including objects, 
classes, properties, rules, and methods.  

DISABLEWEAK: Object, class, and property definitions in the 
knowledge base are in effect.  Rules and methods 
are defined, but are temporarily disabled and 
unavailable for inference processing; they can later 
be reenabled by specifying load level ENABLE.  
Any such disabled rules or methods already on the 
agenda remain there and will be processed 
normally.  

DISABLESTRONG: Object, class, and property definitions in the 
knowledge base are in effect.  Rules and methods 
are defined, but are temporarily disabled and 
unavailable for inference processing; they can later 
be reenabled by specifying load level ENABLE.  
Any such disabled rules or methods already on the 
agenda are removed from the agenda and will not 
be processed.  
Language Reference 99



Chapter Application Development Features1
Examples

The following are examples of actions using the LoadKB operator:  

LoadKB     "Inventory.tkb"
LoadKB     "Inventory.ckb"      @LEVEL=ENABLE
LoadKB     "Inventory.ckb"      @LEVEL=DISABLEWEAK
LoadKB     "@v(object.prop)"    @LEVEL=DISABLESTRONG

Related Topics

Rules Properties
Methods Agenda
Actions String Constants
Objects UnloadKB Operator
Classes

LOG Function
Definition

The LOG function is used in expressions to find the common (decimal) 
logarithm of a floating point number.  The expression can appear on the 
left-hand side or right-hand side of rules and methods.

Syntax

The function consists of the word LOG followed by a single argument in 
parentheses:  

LOG(x)

Argument

The argument may be any expression yielding a numerical result greater 
than 0.0.  The expression may include patterns or interpretations.  

If the value of the argument expression is an integer, it will be converted to 
an equivalent floating point value.  

Result

The function returns a floating point result equal to the logarithm of the 
argument to the base 10.  

If the argument expression does not produce a numerical value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the LOG function:  

LOG(0.0001)   = -4.0
LOG(0.1)      = -1.0
LOG(SQRT(10)) =  0.5
LOG(10)       =  1.0
LOG(10000)    =  4.0
100 Language Reference



MAX Function
Related Topics

Expressions Patterns
Floating Point Constants Interpretations
Integer Constants LN Function

MAX Function
Definition

The MAX function is used in expressions to find the largest of a set of values.  
The expression can appear on the left-hand side or right-hand side of rules 
and methods.

Syntax

The function consists of the word MAX followed by any number of 
arguments in parentheses:  

MAX(x1,x2,...,xn)

Arguments

Each argument may be any arbitrary expression.  The expressions may 
include existential patterns or interpretations; universal patterns are not 
allowed.  

Argument values may be of any type, but the types must be comparable 
(either all the same or all numeric).  If some are integers and some floating 
point, the integers will be converted to equivalent floating point values 
before comparison.  

Result

The function returns the largest of the argument values it receives.  For 
arguments that include patterns, it finds the largest value in the 
corresponding list.  

Integers and floating point values are compared numerically, strings 
lexically, and dates and times chronologically.  In string comparisons, 
equivalent uppercase and lowercase letters (such as A and a) are considered 
identical.  In boolean comparisons, TRUE is considered greater than FALSE.  

If the argument values are not of comparable types, the function result is 
NOTKNOWN.  

Examples

The following examples illustrate the results of the MAX function:  

MAX(365,240,577)       = 577
MAX(98.6,37.0,-273.18) =  98.6
MAX(12,12.0)           =  12.0
MAX(12,12.3)           =  12.3
MAX(12,11.7)           =  12.0
MAX("Hickory","Dickory","Dock") = "Hickory"
MAX("boo","ooojum")             = "boojum"
MAX("ABC","xyz")                = "xyz"
MAX("abc","XYZ")                = "XYZ"
MAX("","SHAZAM!")               = "SHAZAM!"
Language Reference 101



Chapter Application Development Features1
MAX(DATE(1776,7,4),DATE(1789,7,14)) = DATE(1789,7,14)
MAX(TIME(8,4,23),TIME(3,6,11))      = TIME(8,4,23)
MAX(TRUE,FALSE) = TRUE
MAX(123,"456") = NOTKNOWN

If class Tank has four instances with capacity values of 6.3, 14.5, 12.9, 
and 9.0, then 

MAX(<Tank>.capacity) = 14.5

Related Topics

Expressions Interpretations
Data Types MIN Function
Patterns

Member Operator
Definition

The Member operator is used in the conditions of a rule or method to test 
whether an object belongs to a given class or list.  

Operands

The Member operator takes two operands:  

■ The first operand is either a single object or a list of objects specified by 
a pattern.  

■ The second operand is a list of objects specified by a pattern.  This 
operand must use the pattern matching syntax.

The second operand is commonly a list of objects satisfying some 
qualification or relation, as determined by a prior condition within the same 
rule or method.  

Result

The result produced by the Member operator is TRUE if the first operand is 
a member of the class or list designated by the second, FALSE if it isn’t.  If 
the first operand is a pattern, the condition tests whether at least one of the 
objects in the corresponding list (for an existential pattern) or all of them (for 
a universal pattern) also belong to the second class or list.  The contents of 
the first list are then reduced to the intersection of the two.  

Examples

The following are examples of conditions using the Member operator:  

Member the_stock     <Portfolio>
Member <Portfolio>   <Common_Stock>
Member {Portfolio}   <Common_Stock>

Related Topics

Rules Objects
Methods Patterns
Conditions NotMember Operator
102 Language Reference



Meta-Slots
Meta-Slots
Definition

Meta-slots are attributes associated with a slot (a property associated with a 
class or object), governing its inheritability and relationships with the user 
interface.  

Variations

The following meta-slots can be associated with an individual slot:  

■ The public/private option controls whether the slot value will be 
accessible by rules and methods (public slot) or by methods only 
(private slot).

■ The inheritance strategy controls the inheritance of the slot’s value from 
including classes and parent objects.  

■ The inheritability strategy controls the inheritance of the slot and its value 
by subclasses, instances, and components.  

■ The inheritance priority defines the priority with which the slot or its 
value can be inherited.  

■ The inheritance slot allows the inheritance priority to be determined 
dynamically at run time, rather than fixed unalterably in advance.  

■ The inference priority defines the slot’s priority and behavior during 
inference processing.  

■ The inference slot allows the inference priority to be determined 
dynamically at run time, rather than fixed unalterably in advance.  

■ The format attribute defines the way in which the slot’s value is 
displayed on the screen.  

■ The prompt line attribute defines the text to be displayed on the screen 
when requesting the slot’s value from the user.  This meta-slot can be 
inherited downward.  

■ The why attribute allows you to customize the Why information for a 
particular slot.  

■ The comment attribute helps document the slot’s meaning or usage for 
the benefit of the application developer.  

■ The init value field specifies an initialization value for the individual slot 
to be used when the knowledge base is loaded.  The inheritability 
strategy of this meta-slot is specified for each value.  

■ The question window attribute lets you associate the component of your 
application interface that the system will use to solicit the slot’s value 
from the end-user.

■ The data validation  attribute lets you predetermine the range of input or 
list of strings that the system will accept from the end-user when the 
value of the slot is sought.  This meta-slot can be inherited downward.  

Creation

Meta-slots are specified by editing the contents of the relevant boxes in the 
Meta-Slot editor.  
Language Reference 103



Chapter Application Development Features1
Indication

The presence of one or more meta-slot definitions for an individual slot is 
indicated by a solid-colored box at the right end of the property’s value in 
the Class or Object editor.  If no meta-slots are defined, the box is displayed 
in outline only.  Clicking on the box with the mouse brings up the Meta-Slot 
editor, allowing the meta-slots to be defined or modified.  

Related Topics

Objects Format Attribute
Classes Question Window
Properties Data Validation
Slots Init Value Attribute
Inheritance Strategy Why Attribute
Inheritability Strategy Comment Attribute
Inheritance Priority Attribute Inference Priority Attribute
Inheritance Slot Attribute Inference Slot Attribute
Prompt Line Attribute

Methods
Definition

A method is an attribute attached to an object, class, property, public slot or 
private slot, consisting of a sequence of actions to be executed under certain 
conditions during inference processing.  There are two general categories of 
methods.  User-defined methods that may be triggered through the use of the 
SendMessage operator during the course of evaluating rules and other 
methods.  System methods are automatically triggered by the inference 
engine under predefined circumstances.  Unlike public slots, private slots 
must have their attached method triggered explicitly by a SendMessage 
operator.

Structure

The method consists of most importantly a sequential list of actions, similar 
to those on the right-hand side of a rule.  If desired, the method can be 
structured exactly like a rule including a list of conditions and two separate 
consequent lists of actions.  Unlike rules, methods have no hypothesis 
component.  Methods can also accept local arguments which you use in the 
method actions and conditions.  Generic methods can use the SELF variable 
to represent the current class or object.

Creation

Creation begins by typing the name of the method in the Method field of the 
Method editor.  Or you can display the local popup menu for the edit line 
and choose the Select Method option to make a selection from the list of 
existing methods.  System methods are usually attached at the level of the 
individual slot (optionally to a class or object, see the Order of Sources 
Method and If Change Method topics for further details).  User-defined 
methods can be attached to a property, a class, or an object, as well as a 
104 Language Reference



Methods
public or private slot.  The atom name to which the method is attached is 
specified in the Attach To field.

If local arguments will be passed to the method by the SendMessage 
operator, the method itself defines the characteristics of the arguments 
locally.  The Local Arguments component of the Method editor lets you 
specify the argument name for use in the method’s conditions and actions.  
The name you specify must be preceded by an underscore (_).  Other fields 
determine the local argument’s usage for that particular method. 

Invocation

User-defined methods are not limited to slots, but must be explicitly 
triggered through a SendMessage operator that appears in a condition or 
action of a rule or method.  The application developer has the choice to send 
the message at startup or from the interface using either the scripting 
language or using the Rules Element application programming interface.  
Whenever a method is triggered by the SendMessage operator, the system 
executes the complete list of actions.

There are two types of system methods that are available at the level of the 
individual public slot:  

■ The order of sources method is triggered automatically when the value of 
a public slot is needed in the course of inference processing and was 
found to be UNKNOWN. 

Note: In the case of a private slot an Order of Sources method can be 
attached, but the system is unable to trigger the method automatically.  
The application developer is required to use the  SendMessage 
operator to explicitly trigger the system method of a private slot.

■ The if change method is triggered automatically when the value of a 
public or private slot is changed in the course of inference processing.  

The list of conditions is optional for all methods.  If no conditions are 
present, the system automatically executes the Then actions list when the 
method itself is triggered.  If method conditions are present, the system 
executes one of two different lists of consequent actions (Then or Else) 
depending on whether the method is satisfied or not.  

For the method to be satisfied, all of its conditions must evaluate to TRUE.  
The conditions are thus implicitly linked by the logical “and” operator.  To 
achieve the effect of a logical “or,” use the boolean OR operator within a 
single condition.  

If present, conditions within a method are always evaluated sequentially, in 
the order they appear in the method definition; unlike rule conditions this 
evaluation order is not altered by the inference priorities of the data 
involved.  

If the system tries to trigger a method for a property name, it first tries the 
slot to which the property belongs (object.prop or class.prop).  When no slot 
has been defined, the system will try the property definition itself.  

If no method is specified at the level of the addressee (in the case of a 
user-defined method) or at the level of the slot (in the case of a system 
method), a substitute method of the same name will be sought by 
downward inheritance.  See the section on “Inheritance” for more details.
Language Reference 105



Chapter Application Development Features1
Strategy

Execution of system methods that are under the control of the inference 
engine (If Change and Order of Sources) is normally enabled by default, but 
can be disabled if necessary by changing the global inference strategy.  This 
can be done in either of two ways:  

■ Interactively through the Strategy Monitor window (from the Expert 
menu), by turning off the If Change Actions option or the Order 
of Sources Actions option.

■ Dynamically in the course of inference processing itself, via the 
Strategy operator in a condition or action of a rule or method.

Note: The SendMessage operator can be used to explicitly trigger any 
method.  The method triggered by the SendMessage operator is not 
affected by any of the strategy settings and will actually be treated as 
a user-defined method by the inference engine.

Forward Chaining

Actions that appear in the conditions list or actions list of a method may 
forward-chain data from public slots to relevant rules depending on the 
inferencing strategies currently in effect.  The method actions include:  
Assign, Retrieve (from a database), and Execute (using an external 
routine).  From the method conditions list only the results of the Retrieve 
and Execute actions may be forward-chained.  The Assign operator has 
no effect on forward chaining from the conditions list.  See the individual 
operator topics for details.  

Data that belongs to a private slot that appears in a method condition or 
action cannot trigger forward chaining since private slot data cannot appear 
in the conditions or actions of rules.  Only data that belongs to public slots 
can trigger forward chaining.

Methods are not affected by the results of actions or gates because they do 
not have hypotheses to be considered for evaluation.  

Inheritance

Methods can only be inherited downward (from a class to its instances or 
subclasses, or from an object to its components), never upward.  The search 
through the parent tree hierarchy is directed by the global inheritance 
strategy and can be class or object-first and depth or breadth-first.  If the 
method should not be inherited, change the Public option to Private in 
the Method editor. 

When an inheritance conflict exists between two parent objects or classes at 
the same level, the application developer can use the InhMethod operator 
to override the default inheritance strategy by specifying the parent object 
upon which to begin the search.  When the inheritance conflict occurs 
between two slots at the same level, the application developer can set the 
inheritance priority of the slots to override the default inheritance strategy.  
If neither approach is used, by default the system chooses the method 
attached to the parent whose name appears first in alphabetic order.

Private and public slots observe the same inheritance strategies.  The private 
slot attribute controls the accessibility of the slot value and has nothing to 
do with inheritance.
106 Language Reference



MIN Function
Example

Let’s assume the following actions appear in two methods attached to the 
subclasses Triangles and Rectangles that belong to a class Figures.  
The method attached to Triangles is defined as a public one (inheritance 
enabled) and has the name ComputeArea:

Assign     (SELF.width*SELF.height)/2     SELF.area

The second method attached to Rectangles is also defined as a public one 
and has the same name ComputeArea:

Assign     SELF.width*SELF.height        SELF.area

To trigger these methods, let’s assume we have a rule with the following 
SendMessage action:

SendMessage      “ComputeArea”      @TO:<Figures>

Because the SendMessage operator in this rule specifies a pattern match on 
the class Figures as its addressee, the message is received by each object 
that belongs to the class.  Let’s assume the following objects exist:  Rect_1, 
Rect_2, Tri_1, and Tri_2 and that no method is attached at their level.  
In case, each object will automatically inherit the method ComputeArea 
defined at the level of its parent class and the specific values for the 
properties width and height may be supplied by the objects themselves 
or may be obtained from a question or some other means.

In this example, definition of the method ComputeArea at the level of the 
parent classes (Triangles and Rectangles) avoids duplication of the 
area computation action for each object whose properties they share.

Related Topics

Objects Inheritance
Classes Inheritance Strategy
Properties Inheritance Priority
Conditions Strategy
Actions If Change Method
Rules Order of Sources Method
Slots InhMethod Operator
Inference SendMessage Operator
Forward Chaining

MIN Function
Definition

The MIN function is used in expressions to find the smallest of a set of values.  
The expression can appear on the left-hand side or right-hand side of rules 
and methods.

Syntax

The function consists of the word MIN followed by any number of 
arguments in parentheses:  

MIN(x1,x2,...,xn)
Language Reference 107



Chapter Application Development Features1
Arguments

Each argument may be any arbitrary expression.  The expressions may 
include existential patterns or interpretations; universal patterns are not 
allowed.  

Argument values may be of any type, but the types must be comparable 
(either all the same or all numeric).  If some are integers and some floating 
point, the integers will be converted to equivalent floating point values 
before comparison.  

Result

The function returns the smallest of the argument values it receives.  For 
arguments that include patterns, it finds the smallest value in the 
corresponding list.  

Integers and floating point values are compared numerically, strings 
lexically, and dates and times chronologically.  In string comparisons, 
equivalent uppercase and lowercase letters (such as A and a) are considered 
identical.  In boolean comparisons, TRUE is considered greater than FALSE.  

If the argument values are not of comparable types, the function result is 
NOTKNOWN.  

Examples

The following examples illustrate the results of the MIN function:  

MIN(365,240,577)       =  240
MIN(98.6,37.0,-273.18) = -273.18
MIN(12,12.0)           =   12.0
MIN(12,12.3)           =   12.0
MIN(12,11.7)           =   11.7
MIN("Hickory","Dickory","Dock") = "Dickory"
MIN("boo","boojum")             = "boo"
MIN("ABC","xyz")                = "ABC"
MIN("abc","XYZ")                = "abc"
MIN("","SHAZAM!")               = ""
MIN(DATE(1776,7,4),DATE(1789,7,14)) = DATE(1776,7,4)
MIN(TIME(8,4,23),TIME(3,6,11))      = TIME(3,6,11)
MIN(TRUE,FALSE) = FALSE
MIN(123,"456") = NOTKNOWN

If class Tank has four instances with capacity values of 6.3, 14.5, 12.9, 
and 9.0, then 

MIN(<Tank>.capacity) = 6.3

Related Topics

Expressions Interpretations
Data Types MAX Function
Patterns
108 Language Reference



MINUTE Function
MINUTE Function
Definition

The MINUTE function is used in expressions to extract the minute field of a 
date or time.  The expression can appear on the left-hand side or right-hand 
side of rules and methods.

Syntax

The function consists of the word MINUTE followed by a single argument in 
parentheses:  

MINUTE(d)

Argument

The argument may be any expression yielding a date or time result.  The 
expression may include patterns or interpretations.  

Result

The function returns an integer result equal to the minute field of the 
argument.  For date arguments, the result ranges from 0 to 59.  

If the argument expression does not produce a date or time value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the MINUTE function:  

MINUTE(DATE(1492,10,12))       =  0
MINUTE(DATE(1981,6,8,21,8,46)) =  8
MINUTE(TIME(8,4,23))           =  4
MINUTE(TIME(3,6,11,22,34,17))  = 34
MINUTE("October 12, 1492")     = NOTKNOWN

Related Topics

Expressions DAY Function
DATE Function HOUR Function
TIME Function SECOND Function
Patterns WEEKDAY Function
Interpretations YEARDAY Function
YEAR Function NOW Function
MONTH Function

MOD Function
Definition

The MOD function is used in expressions to find the remainder of one floating 
point or integer number modulo of another.  The expression can appear on 
the left-hand side or right-hand side of rules and methods.
Language Reference 109



Chapter Application Development Features1
Syntax

The function consists of the word MOD followed by two arguments in 
parentheses:  

MOD(x,y)

Arguments

Each argument may be any expression yielding a numerical result.  The 
expressions may include patterns or interpretations. 

Result

The function returns a floating point result equal to the remainder of the 
first argument modulo the second (x mod y) if one or both arguments are 
floats.  If both arguments are integers, the function will also return an 
integer.  This value is defined as the difference between y and the next 
smaller whole multiple of x.  Truncation is always toward zero, yielding a 
result of the same sign as x.  

If either argument expression does not produce a numerical value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the MOD function:  

MOD( 8,  3)   =  2
MOD( 8, -3.0) =  2.0
MOD(-8,  3.0) = -2.0
MOD(-8, -3)   = -2
MOD(8.5, 3.1) =  2.3 (= 8.5 - 2 * 3.1)

Related Topics

Expressions Patterns
Floating Point Constants Interpretations
Integer Constants

MONTH Function
Definition

The MONTH function is used in expressions to extract the month field of a date 
or time.  The expression can appear on the left-hand side or right-hand side 
of rules and methods.

Syntax

The function consists of the word MONTH followed by a single argument in 
parentheses:  

MONTH(d)

Argument

The argument may be any expression yielding a date or time result.  The 
expression may include patterns or interpretations.  
110 Language Reference



Multi-Values
Result

The function returns an integer result equal to the month field of the 
argument.  For date arguments, the result ranges from 1 (January) to 12 
(December).  

If the argument expression does not produce a date or time value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the MONTH function:  

MONTH(DATE(1492,10,12))       = 10
MONTH(DATE(1981,6,8,21,8,46)) =  6
MONTH(TIME(8,4,23))           =  0
MONTH(TIME(3,6,11,22,34,17))  =  6
MONTH("October 12, 1492")     = NOTKNOWN

Related Topics

Expressions HOUR Function
DATE Function MINUTE Function
TIME Function SECOND Function
Patterns WEEKDAY Function
Interpretations YEARDAY Function
YEAR Function NOW Function
DAY Function

Multi-Values
Definition

A multi-value is a string value representing a series of individual items that 
can be extracted or manipulated separately.  

Syntax

A multi-value consists of one or more string-valued items separated by 
commas.  (If there is just one item, the multi-value is indistinguishable from 
a simple string value representing the item.)  Leading and trailing spaces 
around each item are ignored, but internal spaces within an item are 
significant.  

The length of a multi-value string is limited by default to no more than 2,048 
characters, but may be extended by setting NXP_BUFSIZE.  

Operations

The following execute routines perform various operations on multi-values:  

GetMultiValue ComputeMultiValue
SetMultiValue LinkMultiValue
TestMultiValue AtomName
Language Reference 111



Chapter Application Development Features1
Example

The string 

"London  , Paris,   New York ,   Tokyo  "

is a legal multi-value consisting of the four items 

London
Paris
New York
Tokyo

Notice that the spaces before and after each item are ignored, but the 
internal space in New York is significant.  

Related Topics

String Constants TestMultiValue Routine
Execute Routines ComputeMultiValue Routine
GetMultiValue Routine LinkMultiValue Routine
SetMultiValue Routine AtomName Routine

Refer to Chapter Two, “Execute Library Routines” for a description of 
specific routines.

No Operator
Definition

The No operator is used in the conditions of a rule or method to test whether 
a boolean value or boolean expression is FALSE.  

Operands

The No operator takes a single operand, which must be either a 
boolean-valued slot, a list of such slots specified by a pattern, or a boolean 
expression.  

Result

The result produced by the No operator is the logical inverse of its boolean 
operand:  TRUE if the operand is FALSE, FALSE if the operand is TRUE.  If 
the operand includes a pattern, the condition tests whether the overall result 
of the pattern match is FALSE.  Thus for an existential pattern, the result is 
TRUE if all values in the corresponding list are FALSE; for a universal 
pattern, it is TRUE if at least one value in the list is FALSE.  If the operand is 
a boolean expression, the result is the logical inverse of the value of the 
resolved expression (either TRUE or FALSE). 

Examples

The following are examples of conditions using the No operator:  

No    credit_approved
No    switch_1.on
No    <Switch>.on
No    {Switch}.on
112 Language Reference



NoInherit Operator
Related Topics

Rules Boolean Constants
Methods Patterns
Conditions Yes Operator
Boolean Expressions

NoInherit Operator
Definition

The NoInherit operator is used in the conditions or actions of methods to 
prevent inheritance of the standard default behavior for the given method.  

Operand

The NoInherit operator takes one operand, which must be the boolean 
constant TRUE.  The following is the only valid form for an action using the 
NoInherit operator:  

NoInherit TRUE

Effect

The NoInherit operator is meaningful only when used alone, as the only 
action in a method.  The standard default behavior for the given method is 
disabled, preventing any inheritance of methods or values from other 
classes and objects.  In the case of an Order of Sources method, the user will 
always be prompted interactively for the value of the slot to which the 
method is attached.  

Result

When the NoInherit operator is used in a condition on the left-hand side 
of a method, the result produced by the operator is always TRUE.

Related Topics

Objects Methods
Classes Order of Sources Method
Properties If Change Method
Actions Inheritance

NotMember Operator
Definition

The NotMember operator is used in the conditions of a rule or method to test 
whether an object is absent from a given class or list.  

Operands

The NotMember operator takes two operands:  

■ The first operand is either a single object or a list of objects specified by 
a pattern.  
Language Reference 113



Chapter Application Development Features1
■ The second operand is either a class or a list of objects specified by a 
pattern.  

The second operand is commonly a list of objects satisfying some 
qualification or relation, as determined by a prior condition within the same 
rule or method.  

Result

The result produced by the NotMember operator is TRUE if the first operand 
is not a member of the class or list designated by the second operand, FALSE 
if it is.  If the first operand is a pattern, the condition tests whether at least 
one of the objects in the corresponding list (for an existential pattern) or all 
of them (for a universal pattern) are excluded from the second class or list.  
The contents of the first list are then reduced to the difference of the two (the 
set of all members of the first that do not belong to the second).  

Examples

The following are examples of conditions using the NotMember operator:  

NotMember    the_stock    Common_Stock
NotMember    the_stock    <Portfolio>
NotMember   <Portfolio>    <Common_Stock>

Related Topics

Rules Objects
Methods Patterns
Conditions Member Operator

NOW Function
Definition

The NOW function is used in expressions to find the current date and time.  
The expression can appear on the left-hand side or right-hand side of rules 
and methods.

Syntax

The function consists of the word NOW followed by an empty pair of 
parentheses:  

NOW()

Argument

The function takes no arguments.  

Result

The function returns a date result equal to the current calendar date and 
clock time at the time of call.  

Example

The following is an example using the NOW() operator:  

NOW() = Jul 17 1990 15:22:24
114 Language Reference



Objects
Related Topics

Expressions DAY Function
DATE Function HOUR Function
TIME Function MINUTE Function
Patterns SECOND Function
Interpretations WEEKDAY Function
YEAR Function YEARDAY Function
MONTH Function

Objects
Definition

An object is the fundamental representation unit in the Rules Element which 
can have associated with it one elementary data value or a list value 
expressed as a string (multi-value).

Structure

Every object has a name, which must comply with the Rules Element’s 
standard rules for a well-formed identifier.  The object’s information content 
consists of its properties and its components.  The object may be defined to 
belong to one or more classes, which determine the names and types of its 
properties.  

Properties

The property is always a simple data value belonging to one of the six 
elementary data types (integer, floating point, boolean, string, date, or time), 
and is identified by name.  Its current value is denoted by appending the 
name of the property to the name of the object, separated by a period (.).  
This construction is known as a slot:  

object_name.property_name

In addition, one elementary data value or a list value expressed as a string 
(multi-value) may be associated directly with the object itself.  This value is 
assigned to a special property named Value, which usually need not be 
named explicitly when referring to the value.  For example, the name 
object_name by itself, without any qualifying property, is equivalent to 
the expression object_name.Value when used in places where a slot is 
expected.  If the object is specified in an @V() interpretation or in the case 
where the property name is ambiguous, you will need to use the full 
construction object_name.Value.

Components

Unlike a property, a component (also called a subobject) is in turn a 
full-fledged object with properties and components of its own.  
Components need not be (and in general aren’t) of the same class as the 
parent object to which they belong.  
Language Reference 115



Chapter Application Development Features1
Methods

A method is by definition triggered through a message sent directly to the 
object to which the method is attached.  In the case where the system tries to 
bind a message with a method but the object has no method attached, the 
system will try to use downward inheritance to obtain one.  In a situation 
where the object belongs to multiple classes, each with its own method 
defined, then an InhMethod operator can be used to resolve the conflict by 
explicitly naming the parent class.

Creation

Objects can be created by several means:  

■ Explicitly, via the New or Copy command in the Object editor.

■ Implicitly, by using a previously undefined object name in a condition  
or action of a rule or method, or as a component of another object.

■ Dynamically, by executing the Retrieve operator to bring in database 
information in the course of evaluating a rule or method.

■ Dynamically, by executing the CreateObject operator in the course 
of evaluating a rule or method.  It also has an equivalent Rules Element 
application programming interface routine (NXP_CreateObject) and 
Rules Element Execute Library routine (CreateObjects).

Objects created dynamically are called dynamic objects.  Such objects are 
temporary, existing only for the duration of the session in which they are 
created.  

Deletion

Objects can be destroyed in either of two ways, depending on how they 
were originally created:  

■ Objects created interactively by the application developer, either 
explicitly or implicitly, are destroyed with the Delete command in the 
Object editor.

■ Dynamic objects can be deleted by executing the DeleteObject 
operator in the course of evaluating a rule or method.

Dynamic objects are destroyed automatically by the Quit or Restart Session 
command ending the session in which they are created.  

Related Topics

Classes CreateObject Operator
Properties DeleteObject Operator
Identifiers Value Property
Data Types Patterns
Rules Methods
Dynamic Objects Slots

Refer to the Intelligent Rules Element Database Integration Guide for 
information about creating objects using database retrieve operations.  
116 Language Reference



Order of Sources Method
Order of Sources Method
Definition

The Order of Sources is an optional system method that can be attached to a 
slot (property associated with a class or object), defining the procedure for 
determining the slot’s value when needed in the course of evaluating a rule 
or method.  If no Order of Sources method exists, the inference engine uses 
the system default procedure instead, except in the case of private slots, 
whose Order of Sources method must be explicitly triggered.

Structure

The method consists most importantly of a sequential list of actions, similar 
to those on the right-hand side of a rule.  If desired, the Order of Sources 
method can be structured exactly like a rule including a list of conditions on 
the left-hand side and two separate consequent lists of actions on the 
right-hand side.  The conditions list is optional.  Like all methods, the Order 
of Sources method has no hypothesis component.

Creation

The Order of Sources system method is specified via the Method editor.  
Creation begins by selecting the Method field and displaying the local 
popup menu for the edit line.  Choose the Select Method option to view the 
selection dialog.  Select the option *OrderOfSources from the list (the 
asterisk in front of the name distinguishes it from user-defined methods).  
Or you can also type the name “OrderOfSources” (one word) in the edit line 
for the Method field.  The structure to which the method is attached is 
specified in the Attach To field.  The structure you specify can be a slot, a 
class, or an object.  

Deleting a user-defined Order of Sources method, causes the system to use 
the default behavior described under “Default” below.  

Invocation

In the case of a public slot with an Order of Sources attached, the inference 
engine automatically triggers the method when the value of a slot is needed 
and is set to UNKNOWN.  Optionally the method can be explicitly triggered by 
a SendMessage operator during the course of evaluating a rule or other 
method.  This allows the application developer to trigger initialization 
instead of the inference engine.  In the case of a class or object with an Order 
of Sources attached, the SendMessage operator must be used in order to 
trigger the method, but it will no longer be dependent on the Order of 
Sources strategy (and will actually be treated as a user-defined method by 
the inference engine).  

If the Order of Sources is triggered automatically, and depending on the 
current strategy, the system executes each action in sequential order until 
the value of the slot is found and then stops.  In the case of an Order of 
Sources that is triggered explicitly by a SendMessage operator, the system 
will first determine whether the value of slot has already been determined.  
If the slot value needs to be determined, and depending on the current 
strategy, the system executes the Order of Sources actions list in sequential 
order until the value of the slot is found and then stops.  The actions 
execution behavior can be altered for both types of Order of Sources 
Language Reference 117



Chapter Application Development Features1
(triggered automatically or by a SendMessage operator) by setting the 
global or local Order of Sources strategy to ON/CONTINUE.  If the Order 
of Sources is triggered automatically, however, arguments that might have 
been passed by the SendMessage operator are ignored.

In the case of a private slot with an Order of Sources method attached, the 
system is unable to trigger the method automatically.  The application 
developer is required to use the  SendMessage operator to explicitly 
trigger the Order of Sources method of a private slot. The SendMessage 
operator must appear in a method and cannot used in a rule condition or 
action.

If no explicit Order of Sources method is specified at the level of the slot, a 
substitute method will be sought by downward inheritance from an 
including class, superclass, or parent object as directed by the inheritance 
strategy currently in effect.  See the “Inheritance” section for details.

Inheritance

Order of Sources methods can only be inherited downward (from a class to 
its instances or subclasses, or from an object to its components), never 
upward.  The search through the parent tree hierarchy is directed by the 
global inheritance strategy and can be class or object-first and depth or 
breadth-first.  Any explicit Order of Sources method defined at the level of 
the slot overrides this inheritance behavior; to reincorporate the inheritance 
behavior as part of such a method, include an explicit call to the InhMethod 
operator as described in the “Default” section below.  To prevent the 
method from being inherited, change the Public option to Private in the 
Method editor.  

When an inheritance conflict exists between two parent objects or classes at 
the same level, the application developer can use the InhMethod operator 
to override the default inheritance behavior by specifying the parent object 
to begin the search.  When the inheritance conflict occurs between two slots 
at the same level, the application developer can also set the inheritance 
priority of the slots to resolve the conflict.  If neither approach is used, by 
default the system chooses the method attached to the parent whose name 
appears first in alphabetic order.

Default

If no explicit Order of Sources is specified, the value of an unknown slot is 
determined by the following sequence of steps:  

1. An applicable Order of Sources method is sought by downward 
inheritance from an including class or parent object.  If such an 
inherited method is found, it is used in place of this default method.  
(Note that methods can only be inherited downward, never upward.)  

2. If the desired value is a boolean and appears as the hypothesis of one or 
more inference rules, the value is sought by backward chaining to those 
rules.  

3. The needed value itself is sought by downward inheritance from an 
including class or parent object.  

4. The value is sought by upward inheritance from a component object.  

5. The user is prompted for the value interactively.  
118 Language Reference



Order of Sources Method
Unless the Order of Sources strategy setting is ON/CONTINUE, this 
process terminates as soon as any step yields a value for the desired 
property; any remaining steps are skipped.  

Any explicit Order of Sources defined for a slot overrides the default 
method described above.  To reincorporate the default behavior as part of 
such a method, include the equivalent sequence of operators explicitly 
within the method:  

InhMethod
Backward
InhValueDown
InhValueUp
AskQuestion

To disable downward inheritability of a particular method, select the 
Private option in the Method editor for the method definition.  

Operators

The following operators can occur in an Order of Sources method defined 
for a slot:  

Assign Strategy
SendMessage UnloadKB
CreateObject RunTimeValue*
DeleteObject InhValueDown*
Retrieve† InhValueUp*
Write† InhMethod
Reset NoInherit
Show† Backward*†
Execute AskQuestion*†
LoadKB Interrupt

Operators marked by an asterisk (*) may be used to obtain a value, with the 
exception that AskQuestion, Backward, RunTimeValue, InhValueUp 
and InhValueDown are available only on the right-hand side of the Order 
of Sources method.  

Operators marked by a cross (†) may not be used in the case of a private slot 
whose value is being sought by the Order of Sources method attached to the 
slot.

Strategy

Execution of Order of Sources system methods by the inference engine is 
normally enabled by default, but can be modified if necessary by changing 
the global inference strategy:  

■ Interactively through the Strategy Monitor window (from the Expert 
menu), by turning off the Order of Sources option.

■ Dynamically during the course of inference processing itself, via the 
Strategy operator in a condition or action of a rule or method, using 
the @SOURCESON=OFF setting.  

■ In addition to ON and OFF, a third option ON/CONTINUE forces the 
system to execute every action in the actions list, even after the value of 
the slot is found.  Unless this option is selected, the system will stop 
executing the Order of Sources actions once the value is found.
Language Reference 119



Chapter Application Development Features1
Note: The SendMessage operator can be used to explicitly trigger an 
Order of Sources method.  The method triggered by the 
SendMessage operator is not affected by any of the strategy settings 
and will actually be treated as a user-defined method by the inference 
engine.

During the inferencing process the system first uses the Strategy operator 
setting to determine the current strategy, however, it is possible to invoke 
the Strategy Monitor window Order of Sources setting from the Strategy 
operator.  This option is provided by the CURRENT setting in the Strategy 
operator argument dialog box.  

Related Topics

Objects Inheritance
Classes Inheritance Strategy
Properties Inference
Actions Inference Strategy
Rules Backward Chaining
Slots Strategy Operator
Methods InhMethod Operator
If Change Method SendMessage Operator

Also see the sections on individual operators by name, as listed above.  

Patterns
Definition

A pattern is used in the conditions or actions of a rule or method to refer 
collectively to all existing instances of a class (including those of subclasses) 
or all components (subobjects) of an object.

Syntax

A pattern consists of the name of a class or object enclosed between angle 
brackets (< . . . >) or curly braces ({ . . . }), optionally qualified 
by a dot (.) and a property name.  The brackets or braces may be doubled 
(<< . . . >>), tripled (<<< . . . >>>), etc., provided that they are 
evenly balanced on left and right.  

The class name may appear between vertical bars inside the brackets or 
braces (<| . . . |>) to distinguish it from an object name.

Interpretations of the class or object name are valid within patterns.  The 
string that appears in the interpretation is the name of a slot that resolves to 
a class or object name to which the pattern applies.

Scope

The scope of a pattern is limited to the conditions and actions of the single 
rule or method in which it appears.  Occurrences of the same pattern in 
other rules or methods are separate and unrelated to the one in question.  
Objects with private slots are not included in the list resulting from a pattern 
matching statement.  When establishing a pattern the system considers only 
public slots and ignores any objects whose private slots belong to the same 
class.
120 Language Reference



Patterns
Meaning

A pattern represents a list which is defined at runtime and contains an 
indefinite number of objects.  Any condition or action in which the pattern 
appears is understood to apply separately to each object in the list.  For 
example, the action 

Assign <Rect>.length * <Rect>.width   <Rect>.area

independently sets the pubic slot values for each object that belongs to class 
Rect and has the property area equal to length times width.  

Note: You cannot do tests on a pattern without specifying a property or 
using the property Value.  Objects whose properties comprise a 
private slot (specified as a Meta-Slot attribute of the slot) are not 
included in the list of objects generated by the pattern.

Initially, the list consists of all existing instances of the specified class or all 
components (subobjects) of the specified object.  Each time the pattern 
appears in a condition, the list is reduced to only that subset of its previous 
contents that satisfy the given condition.  Later occurrences of the pattern 
within the same rule refer only to this reduced list of objects, and may in 
turn reduce its contents still further.  To begin a new list based on the same 
class or object, use a different number of brackets or braces:  for example, the 
patterns 

<Rect>

and 

<<Rect>>

refer to two independent lists of objects belonging to class Rect.  Action 
side lists generated by patterns cannot be reduced further because no tests 
are performed on the list.

The angle brackets < . . . > form an existential pattern, meaning “There 
exists an object in the list such that . . . ”  Any condition including such a 
pattern is TRUE if there is at least one instance of the given class or 
component of the given object that satisfies the condition.  For example, the 
condition 

< <Item>.quantity * <Item>.cost      10000

is TRUE if there is at least one instance of class Item for which the product 
of the properties quantity and cost is less than 10000.  

The curly braces { . . . } form a universal pattern, whose meaning is 
“For all objects in the list, . . . ”  In this case, the condition is TRUE only if it 
is satisfied by every instance or component in the list.  For example, the 
condition 

< {Item}.quantity * {Item}.cost       10000

is TRUE if quantity times cost is less than 10000 for every object 
belonging to class Item.  Universal patterns can be used in either condition 
or action lists, but unlike the existential pattern they cannot generate 
reduced lists.

Because the action side of a rule or method cannot perform tests, only the 
universal pattern is meaningful.  If angle brackets (existential pattern) are 
used on the actions side of a rule or method, they will be read by the system 
Language Reference 121



Chapter Application Development Features1
as curly braces (universal pattern) and the list will contain all of the objects 
of the parent on which the pattern is done.

Evaluation

The system completes the evaluation of the entire pattern before it produces 
a consequence effect on the rule or method condition.  This means each 
public slot specified by a pattern is evaluated before returning the value of 
the condition.  In the case of existential patterns, the evaluation continues 
even after the system finds one slot that satisfies the condition.  In the case 
of universal patterns, the evaluation stops after one slot fails to satisfy the 
condition.  However, you can assign inference priorities to individual object 
slots and force the evaluation order of the object slots in the pattern.  If no 
priorities are specified, the default is to process the object slots in alphabetic 
order.

If the pattern is performed on a set of objects whose properties comprise 
only private slots, the pattern is not evaluated and the condition is 
automatically set to FALSE.  The occurrence of a private slot in the class 
specified by a pattern will send a message to the Rules Element Transcript.

Implicit Definition

If the name appearing between brackets or braces is not yet known to the 
system, it will be defined implicitly as a result of its use in a pattern.  By 
default, the name is assumed to refer to a single object rather than a class; to 
define a new class implicitly, enclose the name between vertical bars inside 
the brackets or braces.  For example, if the name Item is not yet defined, the 
pattern 

<Item>

will prompt you as to whether you want to create an object or class named 
Item, while 

<|Item|>

will create a new class by that name.  

Examples

The following are examples of valid patterns:  

The following are not legal:  

<Switch> Existential pattern.

<|Switch|> Existential pattern with explicit class name.

{Switch} Universal pattern.

{\SwitchClassName\}.o
n

Universal pattern with interpretation to get class 
name.

<Switch>.on Existential pattern on class members with prop “on”.

<<Switch>>.on Produces new existential pattern list for class 
members with prop “on”.

<Switch Unbalanced brackets.

<<Switch> Unbalanced brackets.

<Switch} Mismatched brackets.

<|Switch Mismatched brackets.
122 Language Reference



POW Function
Some additional illegal comparisons using patterns are:  

Related Topics

Objects Methods
Classes Conditions
Properties Actions
Rules Data Validation Attribute
Slots

POW Function
Definition

The POW function is used in expressions to raise a floating point number to 
any required power.  The expression can appear on the left-hand side or 
right-hand side of rules and methods.

Syntax

The function consists of the word POW followed by two arguments in 
parentheses:  

POW(x,y)

Arguments

Each argument may be any expression yielding a numerical result.  The 
expressions may include patterns or interpretations.  If the value of the 
second argument is not a whole number, the first argument must be greater 
than or equal to 0.0.  

If the value of either argument expression is an integer, it will be converted 
to an equivalent floating point value.  

Result

The function returns a floating point result equal to the first argument raised 

to the power specified by the second (xy).  The function is equivalent to the 
expression 

EXP(y * LN(x))

If either argument expression does not produce a numerical value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the POW function:  

POW( 3,   5)   =  243.0
POW(-3,   5)   = -243.0
POW( 3.1, 5.4) =  450.14
POW( 3,  -2)   =    0.11
POW( 3,   0.5) =    1.73 

=   <Switch>.on <RefSwitch>.off Comparison on different classes.
=   <Switch>.on   {Switch}.status Comparison on different pattern types.
=   {Switch}.on   <Switch>.status Comparison on different pattern types.
Language Reference 123



Chapter Application Development Features1
POW( 3,   0)   =    1.00
POW( 0,   3)   =    0.00

Related Topics

Expressions Interpretations
Floating Point Constants EXP Function
Integer Constants LN Function
Patterns

PROD Function
Definition

The PROD function is used in expressions to find the product of a set of 
numerical values.  The expression can appear on the left-hand side or 
right-hand side of rules and methods.

Syntax

The function consists of the word PROD followed by any number of 
arguments in parentheses:  

PROD(x1,x2,...,xn)

Arguments

Each argument may be any expression yielding a numerical or time-valued 
result.  There may be either a list of arguments or a pattern matching list.  

If some of the argument values are integers and some floating point, the 
integers will be converted to equivalent floating point values before 
computation.  

Result

The function multiplies together all the argument values and returns their 
product.  For arguments that include patterns, it multiplies all values in the 
corresponding list.  

If any argument is of a non-numeric type, an error message is posted and 
the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the PROD function:  

PROD(365,240,577)               = 50545200
PROD(98.6,37.0,-273.18)         = -996615.27
PROD(12,11.7)                   =      140.4
PROD(TIME(8,4,23),TIME(3,6,11)) = NOTKNOWN
PROD(123,"456")                 = NOTKNOWN

If class Tank has four instances with capacity values of 6.3, 14.5, 12.9, 
and 9.0, then 

PROD(<Tank>.capacity) = 10605.73
124 Language Reference



Prompt Line Attribute
Related Topics

Expressions Interpretations
Data Types SUM Function
Patterns

Prompt Line Attribute
Definition

The prompt line attribute associated with a public slot specifies the text (up to 
2,048 characters, extendable via NXP_BUFSIZE) to be displayed on the 
screen when requesting the slot’s value interactively from the end user.  

Usage

The text of the prompt line is displayed either in the Rules Element main 
window or a custom window that you provide, whenever the value of the 
given public slot must be requested from the user.  There are several ways 
this can happen:  

■ The user explicitly volunteers the value with the Volunteer or 
Suggest/Volunteer... command.

■ An AskQuestion operator is executed in an Order of Sources method.

■ The value is needed in the course of evaluating a rule’s conditions 
during inference processing.

The prompt line can only be used in the case of a public slot.  Private slots 
cannot be updated directly and must use a method to determine the slot 
value.  

Creation

The prompt line attribute is specified or edited by typing into the box 
labeled Prompt Line in the Meta-Slot editor.  You can also use the @V() 
and @SELF constructions in the Prompt Line.

Default

If no prompt line is explicitly specified, one of the following messages will 
be used by default, depending on the situation:  

What is the capacity of tank_3?
Volunteer the capacity of tank_3
Modify the capacity of tank_3

(where, in this case, the data item being requested is named 
tank_3.capacity).  

Inheritance

Inheritability of the prompt line attribute is controlled by the inference 
engine.  If no prompt line has been specified for the slot, the system will try 
to inherit the prompt line attribute of the slot’s parent class or object.  
Language Reference 125



Chapter Application Development Features1
Related Topics

Objects Order of Sources Method
Classes Inference
Properties Meta-Slots
Rules AskQuestion Operator
Conditions Question Window Attribute
Methods SELF
Slots

Properties
Definition

A property is an attribute which can be associated with an object or class.  

Form

Every property has a name, which must comply with the Rules Element’s 
standard rules for a well-formed identifier.  Its value is always a simple data 
value belonging to one of the six elementary data types (integer, floating 
point, boolean, string, date, or time).  

Scope

The definition of a given property is not local to a particular object or class, 
but global throughout the entire system.  This means that two objects may 
not have properties with the same name but different types:  a given 
property name always designates a value of the same type, wherever it may 
occur.  (The specific value of the property may, of course, vary from one 
object to another.)  The one exception to this rule is the special, predefined 
property named Value; see “Value Property” for more information.  

Creation

Properties can be created in either of two ways:  

■ Implicitly, by using a previously undefined property name in a 
condition or action of a rule or method in the Rule, Object, Class or 
Method editor.

■ Interactively, via the New or Copy command in the Property editor.

Deletion

Properties are destroyed with the Delete command in the Property editor. 

Access

The current value of a property when associated with a given object or class 
is denoted by appending the name of the property to the name of the object, 
separated by a period (.).  This construction is known as a slot:  

object_name.property_name
126 Language Reference



Question Window Attribute
Slots can be defined by a meta-slot attribute to be either public or private.  A 
public slot’s current value can be changed in either of two ways:  

■ Explicitly, by executing the Assign operator in a condition or action of 
a rule or method.

■ Interactively, via the Volunteer command.

A private slot’s current value can be changed only by triggering a method 
attached to the slot.  Private slots let you use object-encapsulation and 
therefore are accessible only by methods.

Related Topics

Objects ConditionsRules
Classes Value PropertyData ValidationAttribute
Slots Assign OperatorMethods
Data Types

Question Window Attribute
Definition

The question window attribute associated with a public slot specifies the 
window to be displayed on the screen when requesting the slot’s value 
interactively from the end user.  The window is a custom resource created 
using the GUI builder, provided with the Open Interface Element.

Usage

The window you specify in the question window attribute lets you use a 
question window of your own design instead of the session control panel of 
the Rules Element main window.  The custom window is opened during 
application processing by the question handler:

■ For a public slot with a window specified in the slot’s meta-slot.

■ For a public slot with a window specified in the meta-slot of one of the 
slot’s parents.

The question window can only be used in the case of a public slot.  Private 
slots cannot be updated directly and must use a method to determine the 
slot value.  

Creation

The question window attribute is specified by typing the name of the 
window into the box labeled Question Win in the Meta-Slot editor.  The 
name must include the window’s full resource name:

ModuleName.WindowName

The window resource itself is created through the Resource Browser 
window as described in the Open Interface Element User’s Guide.  
Language Reference 127



Chapter Application Development Features1
Default

If you are running your application from the Rules Element development 
version and no question window is explicitly specified, the system displays 
the question in the session control panel of the Rules Element main window 
that uses the meta-slot prompt line attribute or default question to solicit the 
value of the slot with a list of choices for string slots.

If, however, you want to run your application using the Rules Element 
standalone and no question window is explicitly specified, the system does 
not have the option to display the session control panel (since there will be 
no main window).  Consequently, the user prompt will never be displayed 
and the system automatically assigns the value NOTKNOWN to the slot value.  
Before running a standalone application, assign a simple window to the 
question window attribute for every slot that you anticipate may become 
evaluated.

Inheritance

Inheritability of the question window attribute is controlled by the inference 
engine.  If no question window has been specified for the slot, the system 
will try to inherit the question window attribute of the slot’s parent class or 
object.  

Related Topics

Methods
Prompt Line Attribute
Meta-Slots
Slots

For complete details about building graphical user interfaces for your Rules 
Element application, refer to the Open Interface Element User’s Guide.

RAND Function
Definition

The RAND function is used in expressions to generate a random floating point 
number.  The expression can appear on the left-hand side or right-hand side 
of rules and methods.

Syntax

The function consists of the word RAND followed by an empty pair of 
parentheses:  

RAND()

Arguments

The function takes no arguments.  

Result

The function returns a random floating point result generated from a 
uniform distribution on the range 0 <= x <= 32767.  The floating point 
number will never have a decimal part.
128 Language Reference



RANDOM Function
Examples

The following examples illustrate the results of the RAND function:

RAND() = 17515.0
RAND() = 542.0
RAND() = 26874.0

Related Topics

Expressions RANDOM Function
Floating Point Constants RANDOMMAX Function
RANDOMSEED Function

RANDOM Function
Definition

The RANDOM function is an alternate way to generate a random floating point 
number in expressions.  On some platforms (usually UNIX) it is better than 
RAND due to the specific machine implementation, while on others it is 
exactly the same as RAND.  The expression can appear on the left-hand side 
or right-hand side of rules and methods.

Syntax

The function consists of the word RANDOM followed by an empty pair of 
parentheses:  

RANDOM()

Arguments

The function takes no arguments.  

Result

The function returns a random floating point result which does not include 
a decimal part.  Note that this result is more random than the RAND function 
on many platforms.  If an argument is given to RANDOMSEED, then the 
argument is used as the seed for the random number generator.  
RANDOMMAX is the maximum value over which the uniform distribution is 
distributed.  Note that RANDOMMAX is machine dependent which means that 
the range of the RANDOM function is machine dependent and thus 
applications using it may not behave exactly the same from one hardware 
platform to the next.  However, the ratio RANDOM() / RANDOMMAX() 
provides you with a random generator that is portable across platforms.  It 
returns a floating point value between 0 and 1.

Examples

The following examples illustrate the results of the RANDOM function:

RANDOM() = 5758.0
RANDOM() = 247512.0
Language Reference 129



Chapter Application Development Features1
Related Topics

Expressions RAND Function
Floating Point Constants RANDOMMAX Function
RANDOMSEED Function

RANDOMMAX Function
Definition

The RANDOMMAX function is used to get the upper bound of the RANDOM 
function.  The function can appear on the left-hand side or right-hand side 
of rules and methods.

Syntax

The function consists of the word RANDOMMAX without any arguments:  

RANDOMMAX()

Arguments

This function takes no arguments.

Result

This function returns the upper bound over which the RANDOM function will 
generate uniform random numbers.   The upper bound is machine 

dependent (231-2 on the Macintosh, 231-1 on the UNIX platforms, and 215-1 
on the DOS machines).

Examples

The following examples illustrate the results of the RANDOMMAX function 

when used on the Macintosh (it returns the value of 231-2):

RANDOMMAX () = 2147483646

Related Topics

Expressions RAND Function
Floating Point Constants RANDOM Function
RANDOMSEED Function

RANDOMSEED Function
Definition

The RANDOMSEED function is used to give a specific seed to the RANDOM 
random number generator.  On machines where RANDOM and RAND are 
identical (typically non-UNIX), RANDOMSEED will also seed the RAND 
function.  The function can appear on the left-hand side or right-hand side 
of rules and methods.
130 Language Reference



Reserved Words
Syntax

The function consists of the word RANDOMSEED followed by the seed within 
a pair of parentheses:  

RANDOMSEED(x)

Arguments

The function takes an integral argument.  The argument can be any slot or 
interpreted value which evaluates to an integer.

Result

Giving the RANDOMSEED function a particular value within an application is 
useful for generating the same sequence of random numbers for each run of 
the application.  The function returns the integer argument.

Examples

The following example illustrates the results of the RANDOMSEED function:

RANDOMSEED(12345) = 12345

Related Topics

Expressions RAND Function
Floating Point Constants RANDOM Function
RANDOMMAX Function

Reserved Words
Definition

A reserved word is a word that is used by the Rules Element for a special 
purpose (such as the name of a type, operator, or special value) and is not 
available for use as an ordinary identifier.  Some reserved words are case 
sensitive, others are case insensitive.

The following words are reserved:  

AND* InhMethod Retrieve
AskQuestion InhValueDown RunTimeValue
Assign InhValueUp SELF*
Backward INTEGER* SendMessage
BOOLEAN Interrupt Show
CreateObject KNOWN* Strategy
DATE LoadKB STRING
DEFAULT* Member Time
DeleteObject No TRUE*
Execute NoInherit UNKNOWN*
FALSE* NOTKNOWN* UnloadKB
FLOAT NotMember Value*
IfChange* Null* Write

OR Yes

* denotes case insensitive reserved word.
Language Reference 131



Chapter Application Development Features1
Examples

The following examples show the difference between case sensitive and 
case insensitive reserved words:

UNKNOWN     reserved (case insensitive)
uNknoWn     reserved (case insensitive)
Yes         reserved (case sensitive)
YES         not reserved (case sensitive)

Related Topics

Identifiers
Expressions
Data Types

Also see the sections on individual operators and functions by name, as 
listed above.  

Reset Operator
Definition

The Reset operator is used in rules and methods to reset a variable to 
UNKNOWN.  

Operands

The Reset operator takes one operand, which may be either a slot or a list 
of slots specified by a pattern.  

Effects

The designated slot is set to the special value UNKNOWN, denoting a value 
that has not yet been determined.   If the operand includes a pattern, all slots 
in the corresponding list are set to UNKNOWN.  

If the slot to be reset is a hypothesis, all rules and the rules left-hand side 
conditions pointing to it are reset to the UNKNOWN state as well.  The Reset 
operator is then applied in turn to any hypotheses occurring in the 
conditions of these rules, propagating backward recursively to unlimited 
depth.  Only hypotheses are affected, however; no other data occurring in 
the conditions of any rule are reset.  

If the designated slot is of any type other than boolean, or does not occur as 
the hypothesis of any rule, then only that one slot is reset to UNKNOWN.  

The effects of the Reset operator are never propagated forward to other 
rules and have no effect on the state of the agenda.  If there are any If Change 
actions, they will not be fired.

Result

When used in a condition on the left-hand side of a rule, the Reset operator 
always produces a TRUE result unless the operand includes a pattern with 
no matching values, in which case the result is NOTKNOWN.  
132 Language Reference



Retrieve Operator
Examples

The following are examples of conditions or actions using the Reset 
operator:  

Reset total
Reset customer.name
Reset all_tanks_full
Reset tank_9.full
Reset <Tank>.full

Related Topics

Rules Data TypesAgenda
Methods HypothesesObjects
Conditions PatternsProperties
Actions Forward Chaining

Retrieve Operator
Definition

The Retrieve operator is used in the conditions or actions of rules and 
methods to read information from a database or spreadsheet.  

Operands

The Retrieve operator takes two operands:  

■ The first operand is either a string constant or an interpretation to a 
string constant specifying the name of the file containing the database 
to be queried or the login name/password for a DBMS.  

■ The second operand consists of a series of parameters defining the 
specific retrieval operation to be performed.  

Parameters

The second operand may include the following parameters:  

@TYPE Type of database (creator software and file format)

@BEGIN Command string for opening transaction

@END Command string for closing transaction

@QUERY Command string for querying database

@ARGS Argument list for query command

@ATOMS List of objects or properties affected

@NAME Correspondence between records and objects

@FIELDS List of field names to retrieve from

@PROPS List of properties to retrieve to

@SLOTS List of slots to retrieve to

@FILL Create new objects
Language Reference 133



Chapter Application Development Features1
@CREATE Classes or parents to link new objects to

@UNKNOWN Retrieve UNKNOWN values

@FWRD Forward retrieved values

@CURSOR Current position for sequential retrieval

See the Database Integration Guide for further details on the meaning and 
use of these parameters.  

When entering a Retrieve action in the Rule editor or Method editor, 
clicking in the space for the second operand displays the Database editor 
dialog box for specifying the retrieval parameters interactively, rather than 
by explicitly typing them in as listed above.  

Note that data retrieved for a private slot named in @SLOTS is ignored 
unless the Retrieve operator appears in a method specifically triggered for 
the slot.  See the description of Slots for more information about using 
private slots.

Effect

The requested information is retrieved from the specified database to the 
Rules Element knowledge base for further processing.  

Result

When used in a condition on the left-hand side of a rule, the Retrieve 
operator always produces a TRUE result, even if no records are retrieved 
satisfying the given query.  The only exception is if an error occurs while 
attempting to open the database or transmit the query, in which case the 
result is FALSE.  

Forward Chaining

Actions and conditions in rules and methods involving the Retrieve 
operator can forward chain the new value of the slot to other rules in which 
the slot appears in a condition (causing the hypotheses of those rules to be 
placed on the agenda for consideration).  This form of forward chaining, 
known as Forward Action-Effects, is controlled first by a strategy setting in 
the Database editor.  If the Current option is checked, the system uses the 
local strategy currently in effect (determined by the Strategy operator), 
unless the Retrieve operator appears in a left-hand side condition, in 
which case the Rule Global strategy setting in the Strategy Monitor window 
is used.  

Data that belongs to a private slot cannot trigger forward chaining since 
private slot data cannot appear in the conditions or actions of rules.  Only 
data that belongs to public slots can trigger forward chaining.

Examples

See the Database Integration Guide for examples of the use of the Retrieve 
operator.  
134 Language Reference



ROUND Function
Related Topics

Rules Properties
Methods Slots
Actions String Constants
Conditions Write Operator
Objects Inference Strategy
Classes Forward Chaining

Also see the Database Integration Guide for more information on database 
operations.  

ROUND Function
Definition

The ROUND function is used in expressions to find the nearest whole number 
to a given floating point number.  The expression can appear on the 
left-hand side or right-hand side of rules and methods.

Syntax

The function consists of the word ROUND followed by a single argument in 
parentheses:  

ROUND(x)

Argument

The argument may be any expression yielding a floating point result.  The 
expression may include patterns or interpretations.  

Result

The function returns a floating point result equal to the nearest whole 
number to the argument.  Notice that although the result is always a whole 
number, it is of type FLOAT rather than INTEGER.  

If the argument expression does not produce a numerical value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the ROUND function:  

ROUND(3.1416)  = 3.0
ROUND(98.6)    = 99.0
ROUND(-273.18) = -273.0
ROUND(-9.9)    = -10.0

Related Topics

Expressions Patterns
Floating Point Constants Interpretations
Integer Constants CEIL Function
FLOOR Function
Language Reference 135



Chapter Application Development Features1
Rules
Definition

A rule is the Rules Element’s basic unit of inference and reasoning.  

Structure

Every rule consists of the following parts:  

■ One or more conditions under which the rule is to be invoked, or fired.

■ Exactly one hypothesis, which is inferred to be true if all of the 
conditions are satisfied.

■ Zero or more Then actions to be taken when the conditions are satisfied.

■ Zero or more Else actions to be taken when any condition is not 
satisfied.

Collectively, the conditions constitute the left-hand side of the rule and the 
hypothesis and actions together constitute the right-hand side.  

In addition, a rule may optionally have an inference priority or inference 
slot to control its order of evaluation relative to other rules leading to the 
same hypothesis, and a comment attribute and why attribute to help 
document its meaning or purpose for the benefit of the application 
developer.  

Evaluation

The evaluation of a rule may be triggered in either of two ways:  

■ By backward chaining, when its hypothesis is suggested as a goal to be 
investigated.

■ By forward chaining, when a data value named in one of its conditions is 
volunteered.

Evaluation proceeds by evaluating each of the conditions on the rule’s 
left-hand side:  

■ If all the conditions are TRUE, the rule’s hypothesis is set to TRUE and 
all actions specified on its right-hand side are executed.  

■ If any condition is NOTKNOWN, the hypothesis is set to NOTKNOWN.  

■ Otherwise, if any condition is FALSE, the hypothesis is set to FALSE.  

Conditions and actions are normally executed sequentially, in the order 
they appear in the rule definition, but this order may be altered by the 
inference priorities or inference slots of the data involved.  Rule evaluation 
stops as soon as one condition is evaluated as FALSE.  Depending on the 
strategy options currently in effect, the inferred value of the hypothesis and 
the results of any actions taken may be forward-chained, resulting in other 
hypotheses being placed on the agenda for consideration.  Actions may be 
executed whether or not the rule’s conditions are satisfied by specifying 
separate lists of actions using the Then and Else lists.  If all the conditions 
are met, the system executes the Then actions list; otherwise, the system 
executes the Else actions list.
136 Language Reference



RunTimeValue Operator
Creation

Rules are created interactively via the New and Copy commands in the Rule 
editor (you can also create rules by editing the text knowledge base 
directly).  Rules cannot include tests on private data.  Only public slot values 
may be tested in rule conditions.  Private slots are accessible by methods 
only.

Deletion

Rules are always deleted interactively, via the Delete command in the 
Rule editor.  

Related Topics

Hypotheses Agenda
Conditions Strategy
Actions Forward Chaining
Slots Backward Chaining
Inference Priority Attribute Semantic Gates
Inference Slot Attribute Comment Attribute
Why Attribute

RunTimeValue Operator
Definition

The RunTimeValue operator is used in Order of Sources methods to define 
a default value for a property.  

Operand

The RunTimeValue operator takes one operand, which must be one of the 
following:  

■ A constant of the proper type for the property being initialized.

■ The special value NOTKNOWN.

Effect

The value of the operand is assigned as the value of the property to which 
this Order of Sources method belongs.  This operator is typically used as the 
last line of the method, to specify a default value for the property in case all 
preceding actions fail to yield a usable value.  

Notice the difference between RunTimeValue and the related Initial Value 
attribute from the Meta-Slot editor.  RunTimeValue specifies a default 
value to be set dynamically during inference processing; the Init Value 
attribute specifies an initial value to be set at system initialization time.  In 
the case of multiple KBs, always use RunTimeValue instead of the Init 
Value attribute because the Init Value attribute won’t be used when a 
knowledge base is dynamically loaded.
Language Reference 137



Chapter Application Development Features1
Examples

The following are examples of actions using the RunTimeValue operator:  

RunTimeValue 28
RunTimeValue -273.18
RunTimeValue "SHAZAM!" 
RunTimeValue TRUE
RunTimeValue DATE(1981,6,8,21,8,46)
RunTimeValue TIME(8,4,23)
RunTimeValue NOTKNOWN

Related Topics

Objects Methods
Properties Actions
Data Types Init Attribute
Value Order of Sources Method

SECOND Function
Definition

The SECOND function is used in expressions to extract the seconds field of a 
date or time.  The expression can appear on the left-hand side or right-hand 
side of rules and methods.

Syntax

The function consists of the word SECOND followed by a single argument in 
parentheses:  

SECOND(d)

Argument

The argument may be any expression yielding a date or time result.  The 
expression may include patterns or interpretations.  

Result

The function returns an integer result equal to the seconds field of the 
argument.  For date arguments, the result ranges from 0 to 59.  

If the argument expression does not produce a date or time value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the SECOND function:  

SECOND(DATE(1492,10,12))       =  0
SECOND(DATE(1981,6,8,21,8,46)) = 46
SECOND(TIME(8,4,23))           = 23
SECOND(TIME(3,6,11,22,34,17))  = 17
SECOND("October 12, 1492")     = NOTKNOWN
138 Language Reference



SELF
Related Topics

Expressions DAY Function
DATE Function HOUR Function
TIME Function MINUTE Function
Patterns WEEKDAY Function
Interpretations YEARDAY Function
YEAR Function NOW Function
MONTH Function

SELF
Definition

The special name SELF is used to refer to the current class or object 
executing a method, data validation function, or prompt line attribute.  

Syntax

The name SELF is case-insensitive.  Typically, it is qualified by a dot (.) and 
a property name to refer to a specific slot.  All of the following forms are 
equivalent:  

SELF.property_name
Self.property_name
self.property_name
sElF.property_name

It is important to realize that SELF is not usually used to designate an object 
slot without a corresponding property name.  The only exception is in the 
case of a hypothesis slot since the property name VALUE need not be 
explicitly stated for hypotheses.

Usage

The name SELF may be used in a Data Validation function, any action 
occurring in a method (but not in a rule), or within the @V syntax of the 
Prompt Line attribute.  In a method associated with a property of a class, it 
refers to the particular object (instance) of the class for which the method is 
being executed.  

SELF is instantiated by the value of the current object under evaluation.  
Since Prompt Lines, Data Validation attributes, and methods can be 
inherited down, the child object inheriting the item instantiates the SELF 
variable.

If the dynamic quality of the SELF is desired in the @STRING parameter of 
an execute routine, the syntax is @SELF.

The SELF keyword must be used when referring to private slots in a method 
associated with the slot.

Example

A class named Rectangle might include the following action in an If 
Change method associated with property width:  

Assign   SELF.width * SELF.height SELF.area
Language Reference 139



Chapter Application Development Features1
If theBox is an instance of class Rectangle whose width property is 
changed in the course of inference processing, the If Change method will be 
executed with SELF referring to object theBox.  The action shown above 
will then set theBox.area to the product of theBox.width and 
theBox.height.  

The method action:

Assign 10 <self>.prop

will set the value of the slot <self>.prop of all children of the current 
object or class with the property prop to 10.

Related Topics

Objects Methods
Classes Order of Sources Method
Properties If Change Method
Actions Prompt Line Attribute
Rules Data Validation Attribute
Slots

Semantic Gates
Definition

A semantic gate (also called a strong link) is a connection between the 
left-hand side conditions of two inference rules that share the same data.  

Creation

Semantic gates are created implicitly by defining rules that share data in the 
relevant ways; no special action is required to establish them.  

Deletion

Just as semantic gates are not explicitly created, they cannot be explicitly 
destroyed except by deleting the rules involved, or by redefining them so as 
to remove the relevant data dependencies.  

Operation

Each time a data item or pattern is evaluated in the course of inference 
processing, the Rules Element searches the knowledge base for other rules 
whose conditions refer to that same data.  For each such rule, it evaluates the 
relevant condition and, if TRUE, places the rule’s hypothesis on the agenda 
for later consideration.  When this hypothesis comes to the top of the 
agenda, its value will be sought by backward chaining.  Notice that this can 
trigger the evaluation of all rules leading to the given hypothesis, not only 
those that refer to the original data item.  

Data associated with private slots cannot form semantic gates because 
private slots cannot appear in rule conditions.  Only public slots that appear 
in rule conditions can form semantic gates. 
140 Language Reference



SendMessage Operator
Precedence

Hypotheses generated as a result of semantic gates have lower precedence 
(and consequently are placed lower on the agenda) than those generated by 
backward chaining, but higher than those generated via context (weak) 
links.  When several hypotheses are placed on the agenda via gates, their 
precedence is determined according to the inference priorities of the rules 
involved.  

Strategy

The use of semantic gates is normally enabled by default, but can be 
disabled if necessary by changing the global inference strategy.  This can be 
done in either of two ways:  

■ Interactively through the Strategy Monitor window (from the Expert 
menu), by turning off the Forward through Gates option.

■ Dynamically during the course of inference processing itself, via the 
Strategy operator in the conditions or actions of a rule, using the 
@PTGATES=OFF setting.

During the inferencing process the system first uses the Strategy operator 
setting to determine the current strategy, however, it is possible to invoke 
the Strategy Monitor window’s Forward through Gates setting from the 
Strategy operator.  This option is provided by the CURRENT setting in 
the Strategy operator argument dialog box.  

Related Topics

Objects Inference
Properties Agenda
Classes Backward Chaining
Rules Forward Chaining
Conditions Inference Priority Attribute
Actions Inference Slot Attribute
Hypotheses Inference Strategy
Patterns Strategy Operator
Slots Context Links

SendMessage Operator
Definition

The SendMessage operator is used in the conditions and actions of rules 
and methods to explicitly trigger user-defined methods and pass arguments 
that the method uses in its conditions and actions.  

Operands

The SendMessage operator takes two operands:  

■ The first operand is a quoted string specifying the name of the method 
to be triggered.

■ The second operand requires the name of one or more addressees 
which will receive the message to trigger a method.  It can be a class, 
Language Reference 141



Chapter Application Development Features1
object, slot, or property name.  As an alternative it can also be a pattern 
match when a list of addresses belongs to the same class.  (The method 
to trigger need not be attached directly to the target object since 
methods can be inherited.) 

Interpretations cannot be specified for the addressee using either the 
@V or \obj.prop\ notation.

■ Optionally, the second operand can include a series of message passing 
parameters specifying the arguments to pass to the method.  

Parameters

The second operand may include the following message parameters:  

@TO=; Name of addressee(s) to send the message to.  Can 
be a class, object, slot, or property name.  List of 
addressees must be separated by commas or the 
list can be specified by the desired pattern 
matching syntax.  Or, can be a pattern match on a 
class (i.e., <Figures>).

@ARG1=; Corresponds to the first argument to pass to the 
addressees, can be a value you supply or a slot 
name.  (Optional)

. . .

@ARGx=; Corresponds to the last argument to pass to the 
addressees, can be a value you supply or a slot 
name.   (Optional)

The order of the arguments list determines which variable it corresponds to 
in the Method’s local argument definition template.  The first argument 
corresponds to the first row of the Method editor’s Local Arguments 
component, the second argument corresponds to the second row of the 
Method editor’s Local Arguments component, and so on.  See the 
Message dialog window below for more details about specifying local 
arguments.

If a slot name is used an argument to pass, it is usually a public slot.  Private 
slots can also be used as arguments but have the particular restrictions that 
they can appear only in the method attached to the private slot and they can 
only be passed by value (not by reference).  The SELF keyword must be used 
to refer to the private slot.

Message Dialog

When entering a SendMessage condition or action in the Rule editor or 
Method editor, clicking in the space for the second operand displays a 
special dialog box for specifying the addressee(s) and optional message 
passing parameters interactively, rather than by explicitly typing in the 
keywords listed above.  The SendMessage dialog window has the following 
fields:

Send To This field holds the names of one or more 
addressees.  A list can be specified by pattern 
matching syntax or individual atoms separated by 
commas.  No quotes are needed; the system inserts 
them automatically.
142 Language Reference



SendMessage Operator
Template Atom This menu button is used with the Args table (see 
below). It lets you choose a prototype for your 
arguments (argument prototypes are defined in 
the Method editor Local Arguments area).  The 
displayed list of possible prototypes is limited to 
object structures that have the method named as 
the first operand attached.

Args Each row of this table corresponds to a single 
argument to pass to the method.  The Template 
Atom selection helps you to identify the order that 
the defining atom expects the arguments.  Click in 
a row and the system displays the argument 
parameters (Name, Type, and Nature) from the 
Method editor’s argument template in the Help 
box. .

Send To list must be able to use the same argument prototype (specified by 
the Template Atom field).  Sending messages to addressees with local 
arguments that are defined differently requires separate SendMessage 
operators.  If arguments that are passed during application processing do 
not match types, the system writes an error message to the Transcript 
window and automatically sets a condition with the SendMessage 
operator to FALSE.  If more arguments are passed to the method’s local 
variables than needed, the extra arguments are ignored.  If desired, passing 
arguments to local variables can be avoided by defining an initial value in 
the Method editor for each local variable used by that method.  

Effect

The method named as the first operand is triggered for the list of addressees 
specified by the second operand.  If no method is specified at the level of an 
addressee, a substitute method of the same name will be sought by 
downward inheritance from an including class or parent object as directed 
by the inheritance strategy currently in effect.  If the message is sent to a slot, 
the system can also try to trigger the method attached to the property of the 
Language Reference 143



Chapter Application Development Features1
slot, or to the property of the same name (a property that exists independent 
of an object or class)

The application developer can resolve inheritance conflicts between two 
parent slots by assigning inheritance priorities to the slots or through the 
InhMethod operator to explicitly name an inheritance path.  If no conflict 
resolution is specified, the method is chosen by default based on the 
alphabetic order of the parent names.

The method that is successfully triggered is treated by the system as a 
“user-defined” method whether it was originally created as a user-defined 
method or as a system method (Order of Sources or If Change).  In the 
default strategy case, the system executes the list of Then or Else actions, 
depending on the evaluation status of the method left-hand side, from top 
to bottom until the value of the slot is found.  Changing the local or global 
Order of Sources strategy to ON/CONTINUE will force the system to 
execute all the actions in the list even after the value of the slot is found.  

The triggered method may receive data to be used as local arguments in its 
list of conditions and actions.  The SendMessage operator specifies the 
data, and the triggered method processes the data according to a template 
that defines its usage.  Data passed to the object receiving the message can 
be passed by reference or by value as defined in the Local Arguments 
component of the Method editor.  

When the data is a slot value “passed by reference,” the method’s actions list 
can alter the value of the slot that contains the data and may produce 
forward chaining action effects and trigger any If Change method attached 
to the slot.  Public slots can be passed by reference but private slots cannot 
(private slots value are accessible only locally by the method).  When data is 
“passed by value,” the value is used by the method locally and has no 
side-effects on processing.  Both private and public slots can be passed by 
value.  If a slot name is specified as an argument but no initial value appears 
in the Meta-Slot editor, the system will use the default value specified in the 
Method editor arguments template.

The Nature field of the Local Arguments component in the Method 
editor lets you specify how the argument is passed to the named method:  
select the SlotRef popup menu option when you want the slot value to be 
passed to the method by reference (thus allowing the method to modify the 
named slot), or select the Slot popup menu option when you want the slot 
value to be passed to the method by value (thus preventing named slot from 
being modified outside of the method).  Note:  If the argument passed is an 
object or class name, it is always passed by Reference (never by Value).  For 
more information about the Method editor, refer to the User’s Guide. 

Result

When the SendMessage operator is used in a condition on the left-hand 
side of a rule or method, the result produced by the operator is TRUE if the 
message is successfully bound to the method, FALSE if the named method 
does not exist at the level of the addressee or at its parent object level or if 
arguments passed during application processing do not match the types 
specified for the method’s local variables.  
144 Language Reference



Show Operator
Examples

The following are examples of actions using the SendMessage operator:  

SendMessage “Init” @To=<|Figures|>
SendMessage “Rotate” @To=<|Figures|>, @Arg1=90
SendMessage “ComputeArea” @To=Circle
SendMessage  “ComputeArea”   @To=circle1, @Arg1=circle1.radius
SendMessage“ Close” @To=valve1, valve2, valve3

It is not legal to use interpretations in the arguments list of the 
SendMessage operator.

Refer to the User’s Guide for information about implementing the method 
and its local arguments.

Related Topics

Objects Methods
Properties InhMethod Operator
Conditions Inheritance Priority
Actions Inheritance Strategy
Rules Pattern Matching
Slots

Show Operator
Definition

The Show operator is used in rules and methods to display the contents of an 
information file on the screen for the benefit of the user.  It has the same 
functionality as the Apropos command from the Rules Element’s pop-up 
menus.

Operands

The Show operator takes one or two operands:  

■ The first operand is a string constant or an interpretation evaluating to 
a string constant (using the @v(object.prop) syntax) specifying the 
name of the file containing the information to be displayed.  It must be 
between double quotes.

■ The optional second operand consists of a series of display parameters 
controlling the display of the information.  
Language Reference 145



Chapter Application Development Features1
File formats

The file-name extension indicates the type of information the file contains 
and the form in which it is encoded.  You are not required to specify the 
extension since the Rules Element recognizes the type by reading the file.  
The following file formats are recognized:  

.nbm Rules Element bitmap file on Unix or VMS (was 
.bmap)

.bm X Windows bitmap file (was .x)

.bmp PC bitmap file

.gif Giff format file

.mcp MacPaint file

.txt ASCII text file

Additional formats supported on the Macintosh include PICT (drawing, eg. 
MacDraw) and PICT2.

Of these file types, all but the PC bitmap file (.bmp) are portable across 
platforms.  You can use the Rules Element-provided converter utility when 
porting to another platform, as described in your Installation Guide.  

If the file name has no extension, the Rules Element will try all possible 
extensions.  This allows the same knowledge base to run easily on different 
platforms. To convert to a non-graphic terminal, for example, you can 
simply replace your graphics files with text files (.txt) without modifying 
the knowledge base itself.  

You can specify a list of directory names which will be searched 
automatically for the designated information files if the full pathname is not 
given by:

■ Using the SearchPaths string resource on the Macintosh

■ Setting the ND_DATA environment variable under Unix, VMS, and 
PCs.

Parameters

The second operand may include the following display parameters:  

@KEEP=TRUE; Display information in a new window and keep it 
until the next show or the user explicitly closes it.

@KEEP=FALSE; Use same window as previous Show operation

@WAIT=TRUE; Display Continue and Close buttons; wait for 
mouse click before continuing

@WAIT=FALSE; No Continue button; just display information and 
continue processing

@RECT=left,top; Specify window’s location

@RECT=left,top,width,height;
Specify window’s location and size 
146 Language Reference



Show Operator
Show Dialog

When entering a Show condition or action in the Rule editor or Method 
editor, clicking in the space for the second operand displays a special dialog 
box for specifying the display parameters interactively, rather than by 
explicitly typing in the keywords listed above: 

Effect

The information contained in the file named as the first operand is 
displayed in a window on the screen, subject to the display options specified 
by the second operand.  

Result

When used in a condition on the left-hand side of a rule or method, the Show 
operator always produces a TRUE result, even if no information file exists 
with the specified name.  

Note: The Show operator can be customized by installing an APROPOS 
handler with the Rules Element application programming interface.  
The Rules Element will use the user-defined function instead of the 
default behavior described above.

Examples

The following are examples of actions using the Show operator:  

Show "Diagnostic1"
Show "Diagnostic1.mcp"
Show "Diagnostic1.txt"
Show "Diagnostic1" @KEEP=FALSE;@WAIT=TRUE;
Show "Diagnostic1"@KEEP=TRUE;@WAIT=TRUE;@RECT=100,150;
Show "@v(obj.prop)"
@KEEP=TRUE;@WAIT=FALSE;@RECT=100,150,275,140;

Related Topics

Rules Actions
Methods Apropos handler of API
Conditions
Language Reference 147



Chapter Application Development Features1
SIGN Function
Definition

The SIGN function is used in expressions to find the sign of a number.  The 
expression can appear on the left-hand side or right-hand side of rules and 
methods.

Syntax

The function consists of the word SIGN followed by a single argument in 
parentheses:  

SIGN(x)

Argument

The argument may be any expression yielding a numerical result.  The 
expression may include patterns or interpretations.  

Result

The function returns an integer result equal to the sign of the argument:  

■ If the argument is positive, the function result is 1.  

■ If the argument is zero, the function result is 0.  

■ If the argument is negative, the function result is -1.  

If the argument expression does not produce a numerical value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the SIGN function:  

SIGN(28)      =  1
SIGN(-5)      = -1
SIGN(98.6)    =  1
SIGN(-273.18) = -1
SIGN(0)       =  0

Related Topics

Expressions Patterns
Floating Point Constants Interpretations
Integer Constants

SIN Function
Definition

The SIN function is used in expressions to find the sine of a floating point 
number.  The expression can appear on the left-hand side or right-hand side 
of rules and methods.
148 Language Reference



SINH Function
Syntax

The function consists of the word SIN followed by a single argument in 
parentheses:  

SIN(x)

Argument

The argument may be any expression yielding a numerical result.  The 
expression may include patterns or interpretations.  

If the value of the argument expression is an integer, it will be converted to 
an equivalent floating point value.  

Result

The function returns a floating point result equal to the sine of the argument.  
The argument is assumed to be expressed in radians.  

If the argument expression does not produce a numerical value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the SIN function:  

SIN( 0.0)      =  0.0
SIN( 3.14 / 6) =  0.5
SIN( 3.14 / 2) =  1.0 
SIN( 3.14)     =  0.0
SIN(-3.14 / 2) = -1.0

Related Topics

Expressions Interpretations
Floating Point Constants COS Function
Integer Constants TAN Function
Patterns ASIN Function

SINH Function
Definition

The SINH function is used in expressions to find the hyperbolic sine of a 
floating point number.  The expression can appear on the left-hand side or 
right-hand side of rules and methods.

Syntax

The function consists of the word SINH followed by a single argument in 
parentheses:  

SINH(x)

Argument

The argument may be any expression yielding a numerical result.  The 
expression may include patterns or interpretations.  
Language Reference 149



Chapter Application Development Features1
If the value of the argument expression is an integer, it will be converted to 
an equivalent floating point value.  

Result

The function returns a floating point result equal to the hyperbolic sine of 
the argument.  

If the argument expression does not produce a numerical value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the SINH function:  

SINH( 0.0) =  0.0
SINH( 0.5) =  0.52
SINH(-0.5) = -0.52
SINH( 1.0) =  1.17 
SINH(-1.0) = -1.17

Related Topics

Expressions Interpretations
Floating Point Constants COSH Function
Integer Constants TANH Function
Patterns

Slots
Definition

A slot is the constructed unit in the Rules Element which stores a data value 
for objects or classes.  It is the fundamental unit upon which rules and 
methods act to evaluate conditions or perform actions.  The usage of slots 
depends upon whether the slot is defined as public or private.

Structure

For each property associated with a particular object or class name, the 
Rules Element constructs a slot.  This construction is denoted by appending 
the name of the property to the name of the object or class, separated by a 
period (.):

object_name.property_name or class_name.property_name

Because the property associated with the object or class defines the data 
type, the slot data value belongs to one of the six elementary data type 
(integer, floating point, boolean, string, date, or time).  If data encapsulation 
is required, the slot can be defined to be private to the object.  Unless 
specified, slots are created as public and data protection is not provided.  
Property names associated with a particular object or class must be unique 
whether the slot is defined as public or private.
150 Language Reference



Slots
Scope

Unlike properties, the slot is local to a particular object or class.  Initially all 
slots, regardless of its data type, have the value UNKNOWN.  During 
knowledge processing the Rules Element tries to determine the data value 
of a slot when it is needed to evaluate a rule or method condition.  In most 
cases the slot will be public.  If data protection is desired, the application 
developer may decide to use a private slot to store the data value.  While 
public slot values are accessible globally by any rule or method, private slot 
values are accessible only locally through a method associated with the 
class, object, or property named by the slot.

Private slots, together with methods, let application developers enforce 
object encapsulation when particular functionality and objects should be 
hidden.  The developer can be sure that no part of their application will 
modify the stored value other than the object’s associated method.  On the 
other hand, a private slot value set by the action of a method has no 
consequence on rule processing.  The resulting data value will not produce 
forward chaining of any kind (either through semantic gates or forward 
action effects) because the private slot cannot be used in rules.  To ensure 
data protection is maintained for private slots the following behavior is 
enforced:

■ Private slots cannot appear in the conditions and actions or rules.

■ Private slots are ignored in pattern matching conditions.

■ Methods attached to a private slot can only be triggered from another 
method.

■ Interpretations on a private slot are only valid in the method associated 
with the object, class, or property named by the slot and the SELF 
keyword must be used.

Public slots, in contrast to private slots, are the fundamental unit upon 
which rule test conditions act. The Rules Element tries to determine a value 
for a public slot through a variety of means defined by the system default 
Order of Sources strategy.  Also, public slots can be used without restriction 
in method conditions and actions where they can have consequences on rule 
processing (through semantic gates and forward action affects).

Private and public slots have the same value and property inheritance 
behavior.  It is legal to inherit up and down from a private slot.  It is also 
legal to inherit into a private slot.  Inheritance of slots is controlled by 
inheritability strategies.

Creation

Slots can be created in either of two ways:

■ Implicitly, by using a previously undefined slot name in a condition or 
action in the Rule, Object, Class or Method editor.

■ Interactively, by adding previously created property names to the list 
that appears in the Class or Object editor.

By default slots are created as globally accessible (public) and data 
protection is not provided.  A private slot is created by setting the Private 
attribute in the Meta-Slot editor.  Slots created from properties inherited 
from a parent class or object which are private will also be private in the 
child.
Language Reference 151



Chapter Application Development Features1
Deletion

Slots are destroyed by removing property names from the Class or Object 
editor list of associated properties.

Access

How a slot’s current value is obtained depends upon whether the slot is 
private or public.  

A private slot’s data value is always obtained by a method associated with 
the slot (or its class, object, or property).  The method is triggered through 
the use of the SendMessage operator in the conditions or actions of another 
method.  The method used to determine a private slot’s value can never be 
triggered from a rule since it is not legal to specify private slot names in rule 
conditions and actions. Also, the private slot name cannot appear directly in 
the conditions or actions of a method.  It is only legal to refer to the private 
slot name using the SELF operator in the conditions or actions of the 
method associated with the slot.  The construction SELF.property_name 
allows an inherited method to properly access a private slot used in the 
method’s conditions or actions.  Use of the actual private slot name is not 
legal even in the method and will produce an error message during 
compilation.

A public slot’s data value is obtained by the standard Order of Sources 
method defined by the Rules Element (see Order of Sources Method).

Related Topics

Patterns Methods
Forward Chaining Meta-Slots
Interpretations SELF
Inference SendMessage Operator
Inheritance If Change Method
Rules Order of Sources Method

SQRT Function
Definition

The SQRT function is used in expressions to find the square root of a floating 
point number.  The expression can appear on the left-hand side or 
right-hand side of rules and methods.

Syntax

The function consists of the word SQRT followed by a single argument in 
parentheses:  

SQRT(x)

Argument

The argument may be any expression yielding a numerical result greater 
than or equal to 0.0.  The expression may include patterns or 
interpretations.  
152 Language Reference



STDEV Function
If the value of the argument expression is an integer, it will be converted to 
an equivalent floating point value.  

Result

The function returns a floating point result equal to the square root of the 
argument.  

If the argument expression does not produce a numerical value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the SQRT function:  

SQRT(0.0) = 0.0
SQRT(0.5) = 0.71
SQRT(1.0) = 1.0
SQRT(2)   = 1.41 
SQRT(2.0) = 1.41 
SQRT(4)   = 2.0

Related Topics

Expressions Patterns
Floating Point Constants Interpretations
Integer Constants

STDEV Function
Definition

The STDEV function is used in expressions to find the standard deviation of 
a set of numerical values.  The expression can appear on the left-hand side 
or right-hand side of rules and methods.

Syntax

The function consists of the word STDEV followed by any number of 
arguments in parentheses:  

STDEV(x1,x2,...,xn)

Arguments

Each argument may be any expression yielding a numerical or time-valued 
result.  There may be either a list of arguments or a pattern matching list. 

If some of the argument values are integers and some floating point, the 
integers will be converted to equivalent floating point values before 
computation.  

Result

The function returns a floating point result equal to the standard deviation 
of all the argument values (the square root of the sum of the squares of the 
differences of the values from the mean divided by the number of values).  
For arguments that include patterns, it uses all values in the corresponding 
list.  
Language Reference 153



Chapter Application Development Features1
If any argument is of a non-numeric type, an error message is posted and 
the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the STDEV function:  

STDEV(365,240,577)               = 139.09
STDEV(98.6,37.0,-273.18)         = 162.69
STDEV(12,11.7)                   =   0.15
STDEV(TIME(8,4,23),TIME(3,6,11)) = NOTKNOWN
STDEV(123,"456")                 = NOTKNOWN

If class Tank has four instances with capacity values of 6.3, 14.5, 12.9, 
and 9.0, then 

STDEV(<Tank>.capacity) = 3.22

Related Topics

Expressions Interpretations
Data Types AVERAGE Function
Patterns VAR Function

Strategy
Definition

Strategy options determine various aspects of the Rules Element’s behavior 
under the control of the application developer or of the inference process 
itself.  

Variations

Strategy options include three general varieties:  

■ Inference strategy controls the operation of the Rules Element’s 
inference processing and the propagation of results from one inference 
rule or method to another rule.  

■ Inheritability strategy controls the inheritability of properties and their 
values from one object or class to another.  

■ Inheritance strategy controls the order in which an object’s classes and 
parent objects are searched for the inherited values of its properties.  If 
the same property can be inherited from more than one source, the 
strategy determines which source will actually be used.  

See the sections “Inference Strategy,” “Inheritability Strategy,” and 
“Inheritance Strategy” for further information.  

Control

Strategy options can be set either interactively, with the Strategy Monitor 
window (from the Expert menu), or dynamically in the course of inference 
processing itself, via the Strategy operator in the conditions or actions of 
a rule or method.  
154 Language Reference



Strategy Operator
Related Topics

Rules Inference Strategy
Methods Inheritance Strategy
Actions Inheritability Strategy
Inference Strategy Operator
Inheritance

Strategy Operator
Definition

The Strategy operator is used in the conditions or actions of a rule or 
method to control or modify the system’s global strategy settings.  

Operands

The Strategy operator takes a single operand, which consists of a series of 
individual strategy options of the forms 

@option=TRUE;
@option=FALSE;

Notice that the closing semicolon (;) is required, even for the last option in 
the list.  

Parameters

The following strategy options are recognized:  

Inference

@PWTRUE Forward confirmed hypotheses (“Propagate when 
TRUE”).

@PWFALSE Forward rejected hypotheses (“Propagate when 
FALSE”).

@PWNOTKNOWN Forward NOTKNOWN hypotheses (“Propagate when 
NOTKNOWN”).

@PFACTIONS Forward Action-Effects for rules (“Propagate 
forward actions”).  Specifically controls the rule 
left-hand side and right-hand side Then part.

@PFEACTIONS Forward Action-Effects for rules (“Propagate 
forward actions”).  Controls only the rule 
right-hand side Else part.

@PFMACTIONS Forward Action-Effects for methods (“Propagate 
forward actions”).  Specifically controls the 
method left-hand side and right-hand side Then 
part.

@PFMEACTIONS Forward Action-Effects for methods (“Propagate 
forward actions”).  Controls only the method 
right-hand side Else part.

@PTGATES Forward through gates (“Propagate through 
gates”).
Language Reference 155



Chapter Application Development Features1
@EXHBWRD Exhaustive evaluation (“Exhaustive backward”).

@SOURCESON Automatically trigger Order of Sources methods 
when value is needed.

@CACTIONSON Automatically trigger If Change methods when 
value changes.

@VALIDUSER Enable validation of input solicited from the user 
before input is accepted for inferencing.  

@VALIDENGINE Enable validation of input given by the system 
before input is accepted for inferencing (for 
example, from an Assign, Execute, or Retrieve).  

Inheritability

@INHCLASSDOWN Inherit class properties downward

@INHCLASSUP Inherit class properties upward

@INHOBJDOWN Inherit object properties downward

@INHOBJUP Inherit object properties upward

@INHVALDOWN Inherit property values downward

@INHVALUP Inherit property values upward

Inheritance

@INHPARENT Inherit object-first

@INHBREADTH Inherit breadth-first

See the Inference Strategy, Inheritance Strategy, and Inheritability Strategy 
topics for further details on the meanings and effects of individual options.  

Strategy Arguments Dialog

When entering a Strategy action in the Rule editor or Method editor, 
clicking in the space for the first operand displays an arguments dialog box 
for specifying the strategy arguments interactively, rather than by explicitly 
typing in the keywords listed above.  The inference strategies shown in the 
dialog box have the following options that you can select:

ON Enables the strategy until the next local strategy 
changes the setting.

OFF Disables the strategy until the next local strategy 
changes the setting.

CURRENT Invokes the corresponding Strategy Monitor 
window setting (on the Expert menu) until the next 
local strategy changes the setting.

GLOBAL This option is used to synchronize control of the 
individual Forward Action Effects strategies 
(@PFEACTIONS, @PFMACTIONS, and 
@PFMEACTIONS) with the setting of “Rule Global 
Forward Action-Effects” (@PFACTIONS) that 
appears in the Strategy Monitor window.  For 
instance, you can selectively enable or disable Else 
actions from a rule, or you can select the GLOBAL 
option so the strategy behaves exactly as the rule 
Then actions setting.  
156 Language Reference



STRCAT Function
In addition to the local strategy options described here, the strategic 
behavior of individual rules can be controlled by using certain special 
values for their inference priorities.  See the Inference Priority Attribute 
topic for details.  

Effect

The designated global strategy settings are enabled or disabled, as specified.  
Options not explicitly modified by changing the setting CURRENT, remain 
unchanged from their previous global settings.  

Examples

The following are examples of actions using the Strategy operator:  

Strategy  @PWTRUE=TRUE;@PWFALSE=TRUE;@PWNOTKNOWN=FALSE;
Strategy  @INHPARENT=FALSE;@INHBREADTH=TRUE;
Strategy  @INHOBJDOWN=TRUE;

Related Topics

Rules Inference Strategy
Methods Inheritance Strategy
Actions Inheritability Strategy
Inference NXP_Strategy call from API
Inheritance

STRCAT Function
Definition

The STRCAT function is used in expressions to concatenate two character 
strings.  The expression can appear on the left-hand side or right-hand side 
of rules and methods.

Syntax

The function consists of the word STRCAT followed by two arguments in 
parentheses:  

STRCAT(s1,s2)

Arguments

Each argument may be any expression yielding a string result.  The 
expressions may include patterns or interpretations.  

Result

The function returns a string result equal to the concatenation of the two 
argument strings.  

If either argument expression does not produce a string value, an error 
message is posted and the function result is NOTKNOWN.  
Language Reference 157



Chapter Application Development Features1
Examples

The following examples illustrate the results of the STRCAT function:  

STRCAT("flap","doodle") = "flapdoodle"
STRCAT("flap","")       = "flap"
STRCAT("","doodle")     = "doodle"
STRCAT("","")           = ""
STRCAT("flap",s)        = "flapdoodle" if s="doodle"
STRCAT("red_",STRCAT("flap","doodle") = "red_flapdoodle"

Related Topics

Expressions STRLEN Function
String Constants SUBSTRING Function
Patterns STRFIND Function
Interpretations STRUPPER Function
STRLOWER Function

STRFIND Function
Definition

The STRFIND function is used in expressions to search a character string for 
another character string.  The expression can appear on the left-hand side or 
right-hand side of rules and methods.

Syntax

The function consists of the word STRFIND followed by two arguments in 
parentheses:  

STRFIND(s1,s2)

Arguments

Each argument may be any expression yielding a string result:  

■ The first argument (s1) is the string to be searched.  

■ The second argument (s2) specifies the string to search for.  

The argument expressions may include patterns or interpretations.  

Result

The function returns an integer result equal to the offset from the beginning 
of the first argument string (s1) to the first occurrence of the second string 
(s2).  The search is case sensitive, therefore corresponding uppercase and 
lowercase letters (such as A and a) are considered different for purposes of 
the search. An offset of 0 denotes the first character in string s1 (no offset at 
all from the start of the string).  If s1 does not contain s2, the function result 
is -1. If either argument expression does not produce a string value, an error 
message is posted and the function result is NOTKNOWN.  
158 Language Reference



String Constants
Examples

The following examples illustrate the results of the STRFIND function:  

STRFIND("SHAZAM!","SHA")  = 0
STRFIND("SHAZAM!","A")    = 2
STRFIND("SHAZAM!","ZAM")  = 3
STRFIND("SHAZAM!","ZAMS") = -1
STRFIND("SHAZAM!","ZaM")  = -1
STRFIND("SHAZAM!","")     = 0
STRFIND("","SHAZAM!")     = -1

Related Topics

Expressions SUBSTRING FunctionSTRUPPER 
Function
String Constants STRLEN FunctionSTRLOWER Function
Patterns STRCAT FunctionInterpretations
CHARFIND Function

String Constants
Definition

A string constant is a sequence of text characters used directly as a data 
value in a Rules Element rule or method, or as a property of an object.  

Syntax

A string constant consists of any sequence of characters enclosed in double 
quotation marks (" . . . ").  To include the double quote character itself 
within a string, precede it with a backslash (\).  The backslash is merely a 
syntactic marker, and will not be included in the string; any backslash not 
followed immediately by a quote character is considered to stand for itself 
and will be included in the string.  

Note:  in many places where arguments must be string constants, you can 
include an interpreted slot with the syntax @v(slot).

Examples

The following are valid string constants:  

"e"
"SHAZAM!"
"Jack and Jill went up the hill"
"Press \"Return\" to continue"
"Either\Or"
"%?*!!*"
"1789"
""

The last example denotes the empty string, which contains no characters at 
all.  Notice that the string 1789 is merely a sequence of characters, and is not 
the same as the integer 1789.  
Language Reference 159



Chapter Application Development Features1
The following are not valid string constants:  

Related Topics

Objects STRLEN Function
Properties STRCAT Function
Rules SUBSTRING Function
Data Types STRFIND Function
Integer Constants STRUPPER Function
String Formats STRLOWER Function

String Formats
Definition

A string format specifies the representation of a string value for input and 
output purposes.  

Syntax

This section defines the syntax of format elements for string-valued 
properties only.  See the section titled “Formats” for the syntax of formats in 
general.  

The following special character is meaningful in string formats:  

s Placeholder for value of string

Like all formats, those for string values may include strings of literal 
characters enclosed in double quotation marks (" . . . "), and may also 
include the wild-card character (*).  Format elements beginning with an 
exclamation point (!) are ignored in database transactions; they are 
meaningful only for direct interaction with the user via the screen and 
keyboard.  

Input

On input, each element in the format list is tried in order until one of them 
matches the input text.  If no match is found, the input is rejected and an 
error message is displayed on the screen.  The following conventions apply:  

■ Strings of literal characters enclosed in double quotation marks must 
match exactly, except that no distinction is made between uppercase 
and lowercase letters.  

■ The wild-card character (*) matches any sequence of zero or more 
characters.  

■ The letter s in the format specification also matches any sequence of 
zero or more characters, and in addition assigns these characters as the 
value of the string slot being read.  

SHAZAM! Not enclosed in quotes.
"Either\Or Quotes not balanced.
" Quotes not balanced.
"Press "Return" to continue" Quotes not backslashed.
160 Language Reference



String Formats
Output

On output, only the first element in the format list is used (except if 
preceded by an !):  

■ Strings of literal characters enclosed in double quotation marks are 
reproduced exactly in the output.  

■ The letter s in the format specification is replaced in the output by the 
value of the string slot being written.  

■ The wild-card character (*) is ignored on output.  

Default

The default system format for strings is defined in the ckbres.format 
module in the file nxrun.dat.  The standard default format is simply:

s

If necessary, the ckbres.format module in the file nxrun.dat can be 
modified to substitute another default format instead.  

Example

The following example illustrates the use of string formats:  

Example 1 Format:  "Color is "s;s;@N="Color is undefined"

Example 2 Format:  !"Color is "s;s

Example 3 Format:  *" is "s;s

Related Topics

Formats
Format Attribute
String Constants

Value Output Comments
"red" Color is red Uses first element
NOTKNOWN Color is undefined Uses last (@N=) element

Input Value Comments
Color is 
blue

"blue" Matches first element

Color Is 
Blue

"Blue" Match is case-insensitive

green "green" Matches second element
NOTKNOWN NOTKNOWN Reserved word
Color is 
undefined

 NOTKNOWN Matches last (@N=) element 

undefined "undefined" Matches second element

Value Output on Screen Output in Database
"red" Color is red red

Value Input Comments
red "The color of this car is red" "The color of this car" is 

matched by *
Language Reference 161



Chapter Application Development Features1
STRLEN Function
Definition

The STRLEN function is used in expressions to find the length of a character 
string.  The expression can appear on the left-hand side or right-hand side 
of rules and methods.

Syntax

The function consists of the word STRLEN followed by a single argument in 
parentheses:  

STRLEN(s)

Argument

The argument may be any expression yielding a string result.  The 
expression may include patterns or interpretations.  

Result

The function returns an integer result equal to the number of characters in 
the argument string.  

If the argument expression do not produce a string value, an error message 
is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the STRLEN function:  

STRLEN("a")       = 1
STRLEN("SHAZAM!") = 7
STRLEN("1492")    = 4
STRLEN("")        = 0

Related Topics

Expressions STRCAT Function
String Constants SUBSTRING Function
Patterns STRFIND Function
Interpretations STRUPPER Function
STRLOWER Function

STRLOWER Function
Definition

The STRLOWER function is used in expressions to convert a character string 
to lowercase.  The expression can appear on the left-hand side or right-hand 
side of rules and methods.

Syntax

The function consists of the word STRLOWER followed by a single argument 
in parentheses:  

STRLOWER(s)
162 Language Reference



STRUPPER Function
Argument

The argument may be any expression yielding a string result.  The 
expression may include patterns or interpretations.  

Result

The function returns a string result equivalent to the argument string with 
all letters converted to lowercase.  Nonalphabetic characters are unaffected.  

If the argument expression does not produce a string value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the STRLOWER function:  

STRLOWER("SHAZAM!")   = "shazam!"
STRLOWER("ShaZam!")   = "shazam!"
STRLOWER("shazam!")   = "shazam!"
STRLOWER("23 SKIDOO") = "23 skiooo"
STRLOWER("")          = ""

Related Topics

Expressions STRUPPER Function
String Constants STRLEN Function
Patterns STRCAT Function
Interpretations SUBSTRING Function
STRFIND Function

STRUPPER Function
Definition

The STRUPPER function is used in expressions to convert a character string 
to uppercase.  The expression can appear on the left-hand side or right-hand 
side of rules and methods.

Syntax

The function consists of the word STRUPPER followed by a single argument 
in parentheses:  

STRUPPER(s)

Argument

The argument may be any expression yielding a string result.  The 
expression may include patterns or interpretations.  

Result

The function returns a string result equivalent to the argument string with 
all letters converted to uppercase.  Nonalphabetic characters are unaffected.  

If the argument expression does not produce a string value, an error 
message is posted and the function result is NOTKNOWN.  
Language Reference 163



Chapter Application Development Features1
Examples

The following examples illustrate the results of the STRUPPER function:  

STRUPPER("shazam!")   = "SHAZAM!"
STRUPPER("ShaZam!")   = "SHAZAM!"
STRUPPER("SHAZAM!")   = "SHAZAM!"
STRUPPER("23 skidoo") = "23 SKIDOO"
STRUPPER("")          = ""

Related Topics

Expressions STRLOWER Function
String Constants STRLEN Function
Patterns STRCAT Function
Interpretations SUBSTRING Function
STRFIND Function

STR2BOOL Function
Definition

The STR2BOOL function is used in expressions to convert a character string 
to the boolean value it represents.  The expression can appear on the 
left-hand side or right-hand side of rules and methods.

Syntax

The function consists of the word STR2BOOL followed by one or two 
arguments in parentheses:  

STR2BOOL(s)
STR2BOOL(s,f)

Argument

Each argument may be any expression yielding a string result:  

■ The first argument (s) is the string to be converted.  

■ The optional second argument (f) is a string specifying the format by 
which the first argument is to be interpreted.  See “Boolean Formats” 
for the syntax and meaning of this string.  

The argument expressions may include patterns or interpretations.  

Result

The function returns a boolean result equal to the boolean value represented 
by string s, interpreted according to format f.  If no format argument is 
given, the default system format for booleans (defined in the 
ckbres.format module in the file nxrun.dat) is used.  

If the string s cannot be interpreted as a boolean value under the given 
format, the function result is NOTKNOWN.  
164 Language Reference



STR2DATE Function
Examples

The following examples illustrate the results of the STR2BOOL function:  

STR2BOOL("FALSE")            = FALSE
STR2BOOL("Nope","Yup;Nope")  = FALSE
STR2BOOL("FALSE","Yup;Nope") = NOTKNOWN
STR2BOOL("MAYBE")            = NOTKNOWN
STR2BOOL("")                 = NOTKNOWN

Related Topics

Expressions Patterns
String Constants Interpretations
Boolean Constants BOOL2STR Function
Boolean Formats

STR2DATE Function
Definition

The STR2DATE function is used in expressions to convert a character string 
to the date value it represents.  The expression can appear on the left-hand 
side or right-hand side of rules and methods.

Syntax

The function consists of the word STR2DATE followed by one or two 
arguments in parentheses:  

STR2DATE(s)
STR2DATE(s,f)

Argument

Each argument may be any expression yielding a string result:  

■ The first argument (s) is the string to be converted.  

■ The optional second argument (f) is a string specifying the format by 
which the first argument is to be interpreted.  See “Date Formats” for 
the syntax and meaning of this string.  

The argument expressions may include patterns or interpretations.  

Result

The function returns a date result equal to the date represented by string s, 
interpreted according to formatff.  If no format argument is given, the 
default system format for dates (defined in the ckbres.format module in 
the file nxrun.dat) is used.  

If the string s cannot be interpreted as a date under the given format, the 
function result is NOTKNOWN.  
Language Reference 165



Chapter Application Development Features1
Examples

The following examples illustrate the results of the STR2DATE function:  

STR2DATE("jun 16 1904")      = DATE(1904,6,16)
STR2DATE("6/16/04","m/d/yy") = DATE(1904,6,16)
STR2DATE("Bloomsday")        = NOTKNOWN
STR2DATE("")                 = NOTKNOWN

Related Topics

Expressions Date Formats
String Constants Patterns
DATE Function Interpretations
TIME Function DATE2STR Function

STR2FLOAT Function
Definition

The STR2FLOAT function is used in expressions to convert a character string 
to the floating point value it represents.  The expression can appear on the 
left-hand side or right-hand side of rules and methods.

Syntax

The function consists of the word STR2FLOAT followed by one or two 
arguments in parentheses:  

STR2FLOAT(s)
STR2FLOAT(s,f)

Argument

Each argument may be any expression yielding a string result:  

■ The first argument (s) is the string to be converted.  

■ The optional second argument (f) is a string specifying the format by 
which the first argument is to be interpreted.  See “Floating Point 
Formats” for the syntax and meaning of this string.  

The argument expressions may include patterns or interpretations.  

Result

The function returns a floating point result equal to the numeric value 
represented by string s, interpreted according to format f.  If no format 
argument is given, the default system format for floating point numbers 
(defined in the ckbres.format module in the file nxrun.dat) is used.  

If the string s cannot be interpreted as a floating point value under the given 
format, the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the STR2FLOAT function:  

STR2FLOAT("98.6")                =  98.6
STR2FLOAT("-273.18")             = -273.18
STR2FLOAT("98.6 degrees","0.0*") =  98.6
STR2FLOAT("1,234.5","k,u.0")     =  1234.5
166 Language Reference



STR2INT Function
STR2FLOAT("degrees","0.0*")      =  NOTKNOWN
STR2FLOAT("")                    =  NOTKNOWN

Related Topics

Expressions Patterns
String Constants Interpretations
Floating Point Constants FLOAT2STR Function
Floating Point Formats

STR2INT Function
Definition

The STR2INT function is used in expressions to convert a character string to 
the integer value it represents.  The expression can appear on the left-hand 
side or right-hand side of rules and methods.

Syntax

The function consists of the word STR2INT followed by one or two 
arguments in parentheses:  

STR2INT(s)
STR2INT(s,f)

Argument

Each argument may be any expression yielding a string result:  

■ The first argument (s) is the string to be converted.  

■ The optional second argument (f) is a string specifying the format by 
which the first argument is to be interpreted.  See “Integer Formats” for 
the syntax and meaning of this string.  

The argument expressions may include patterns or interpretations.  

Result

The function returns an integer result equal to the numeric value 
represented by string s, interpreted according to format f.  If no format 
argument is given, the default system format for integers (defined in the 
ckbres.format module in the file nxrun.dat) is used.  

If the string s cannot be interpreted as an integer value under the given 
format, the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the STR2INT function:  

STR2INT("23")             = 23
STR2INT("23 skidoo","d*") = 23
STR2INT("4F","x")         = 79
STR2INT("skidoo","d*")    = NOTKNOWN
STR2INT("")               = NOTKNOWN
Language Reference 167



Chapter Application Development Features1
Related Topics

Expressions Patterns
String Constants Interpretations
Integer Constants INT2STR Function
Integer Formats

STR2TIME Function
Definition

The STR2TIME function is used in expressions to convert a character string 
to the time value it represents.  The expression can appear on the left-hand 
side or right-hand side of rules and methods.

Syntax

The function consists of the word STR2TIME followed by one or two 
arguments in parentheses:  

STR2TIME(s)
STR2TIME(s,f)

Argument

Each argument may be any expression yielding a string result:  

■ The first argument (s) is the string to be converted.  

■ The optional second argument (f) is a string specifying the format by 
which the first argument is to be interpreted.  See “Time Formats” for 
the syntax and meaning of this string.  

The argument expressions may include patterns or interpretations.  

Result

The function returns a time result equal to the time interval represented by 
string s, interpreted according to format f.  If no format argument is given, 
the default system format for times (defined in the ckbres.format module in 
the file nxrun.dat) is used.  

If the string s cannot be interpreted as a time under the given format, the 
function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the STR2TIME function:  

STR2TIME("0 years 29 days 12:44:03") = TIME(0,0,29,12,44,3)
STR2TIME("29 days 12:44:03") = NOTKNOWN
STR2TIME("29 days 12:44:03", "dd*hh:mm:ss") = 
TIME(0,0,29,12,44,3)
STR2TIME("12:44:03")         = TIME(0,0,0,12,44,3)
STR2TIME("")                 = NOTKNOWN
168 Language Reference



SUBSTRING Function
Related Topics

Expressions Time Formats
String Constants Patterns
DATE Function Interpretations
TIME Function TIME2STR Function

SUBSTRING Function
Definition

The SUBSTRING function is used in expressions to extract a substring of a 
given character string.  The expression can appear on the left-hand side or 
right-hand side of rules and methods.

Syntax

The function consists of the word SUBSTRING followed by three arguments 
in parentheses:  

SUBSTRING(s,m,n)

Arguments

Each argument may be any expression yielding a result of the appropriate 
type:  

■ The first argument (s) is the string from which the substring is to be 
extracted.  

■ The second argument (m) is an integer giving the offset in characters 
from the beginning of the string to the beginning of the substring.  

■ The third argument (n) is an integer giving the length of the substring 
in characters.  

The second and third arguments may be given as floating point values, 
which will be converted to equivalent integers.  The argument expressions 
may include patterns or interpretations.  

Result

The function returns the substring of n characters taken from string s 
beginning at offset m.  

An offset of 0 denotes the first character in string s (no offset at all from the 
start of the string).  If the end of the string is encountered prematurely, the 
resulting substring will be shorter than the requested length n.  If the offset 
m lies beyond the end of string s, the function will return the empty string.  

If any of the argument expressions does not produce a value of the 
appropriate type, an error message is posted and the function result is 
NOTKNOWN.  
Language Reference 169



Chapter Application Development Features1
Examples

The following examples illustrate the results of the SUBSTRING function:  

SUBSTRING("SHAZAM!",0,2)  = "SH"
SUBSTRING("SHAZAM!",3,3)  = "ZAM"
SUBSTRING("SHAZAM!",3,10) = "ZAM!"
SUBSTRING("SHAZAM!",0,7)  = "SHAZAM!"
SUBSTRING("SHAZAM!",0,10) = "SHAZAM!"
SUBSTRING("SHAZAM!",3,0)  = ""
SUBSTRING("SHAZAM!",10,3) = ""
SUBSTRING("SHAZAM!",-3,2) = ""
SUBSTRING("SHAZAM!",-3,5) = "SH"
SUBSTRING("",0,3)         = ""

Related Topics

Expressions SUBSTRING Function
String Constants STRLEN Function
Patterns STRCAT Function
Interpretations STRUPPER Function
STRLOWER Function

SUM Function
Definition

The SUM function is used in expressions to find the sum of a set of numerical 
values.  The expression can appear on the left-hand side or right-hand side 
of rules and methods.

Syntax

The function consists of the word SUM followed by any number of 
arguments in parentheses:  

SUM(x1,x2,...,xn)

Arguments

Each argument may be any expression yielding a numerical or time-valued 
result.  There may be either a list of arguments or a pattern matching list.  

If some of the argument values are integers and some floating point, the 
integers will be converted to equivalent floating point values before 
computation.  

Result

The function adds together all the argument values and returns their sum.  
For arguments that include patterns, it adds all values in the corresponding 
list.  

Integer and floating point values may be mixed in the same sum, but time 
values can be added only to each other.  If numeric and time arguments are 
mixed, or if any argument is of another type, an error message is posted and 
the function result is NOTKNOWN.  
170 Language Reference



TAN Function
Examples

The following examples illustrate the results of the SUM function:  

SUM(365,240,577)               = 1182
SUM(98.6,37.0,-273.18)         = -137.58
SUM(12,11.7)                   =   23.7
SUM(TIME(8,4,23),TIME(3,6,11)) = TIME(11,10,34)
SUM(123,"456")                 = NOTKNOWN

If class Tank has four instances with capacity values of 6.3, 14.5, 12.9, 
and 9.0, then 

SUM(<Tank>.capacity) = 42.7

Related Topics

Expressions Patterns
Data Types Interpretations
DATE Function PROD Function
TIME Function

TAN Function
Definition

The TAN function is used in expressions to find the tangent of a floating point 
number.  The expression can appear on the left-hand side or right-hand side 
of rules and methods.

Syntax

The function consists of the word TAN followed by a single argument in 
parentheses:  

TAN(x)

Argument

The argument may be any expression yielding a numerical result.  The 
expression may include patterns or interpretations.  

If the value of the argument expression is an integer, it will be converted to 
an equivalent floating point value.  

Result

The function returns a floating point result equal to the tangent of the 
argument.  The argument is assumed to be expressed in radians.  

If the argument expression does not produce a numerical value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the TAN function:  

TAN( 0.0)      =  0.0
TAN( 3.14 / 4) =  1.0 
TAN( 3.14 / 3) =  1.73 
TAN( 3.14)     =  0.0
TAN(-3.14 / 3) = -1.73
Language Reference 171



Chapter Application Development Features1
Related Topics

Expressions Interpretations
Floating Point Constants SIN Function
Integer Constants COS Function
Patterns ATAN Function

TANH Function
Definition

The TANH function is used in expressions to find the hyperbolic tangent of a 
floating point number.  The expression can appear on the left-hand side or 
right-hand side of rules and methods.

Syntax

The function consists of the word TANH followed by a single argument in 
parentheses:  

TANH(x)

Argument

The argument may be any expression yielding a numerical result.  The 
expression may include patterns or interpretations.  

If the value of the argument expression is an integer, it will be converted to 
an equivalent floating point value.  

Result

The function returns a floating point result equal to the hyperbolic tangent 
of the argument.  

If the argument expression does not produce a numerical value, an error 
message is posted and the function result isNNOTKNOWN.  

Examples

The following examples illustrate the results of the TANH function:  

TANH( 0.0) =  0.0
TANH( 0.5) =  0.46
TANH(-0.5) = -0.46
TANH( 1.0) =  0.76 
TANH(-1.0) = -0.76

Related Topics

Expressions Interpretations
Floating Point Constants SINH Function
Integer Constants COSH Function
Patterns
172 Language Reference



Time Formats
Time Formats
Definition

A time format specifies the representation of a time value in text form for 
input and output purposes.  

Syntax

This section defines the syntax of format elements for times only.  See the 
section titled “Formats” for the syntax of formats in general.  

The following special characters are meaningful in time formats:  

Y,y Years field

M,m Months or minutes field

D,d Days field

H,h Hours field

S,s Seconds field

Time formats are case insensitive.  A series of Ms or ms immediately 
preceded by an hours field denotes a minutes field; otherwise it is 
interpreted as months instead.  

Like all formats, those for times may include strings of literal characters 
enclosed in double quotation marks (" . . . "), and may also include the 
wild-card character (*).  Format elements beginning with an exclamation 
point (!) are ignored in database transactions; they are meaningful only for 
direct interaction with the user via the screen and keyboard.  

Input

On input, each element in the format list is tried in order until one of them 
matches the input text.  If no match is found, the input is rejected and an 
error message is displayed on the screen.  The following conventions apply:  

■ Input values of any length are recognized; the number of letters used to 
specify a field in the format is ignored.  

■ Strings of literal characters enclosed in double quotation marks must 
match exactly, except that no distinction is made between uppercase 
and lowercase letters.  

■ The wild-card character (*) matches any sequence of zero or more 
characters.  

Output

On output, only the first element in the format list is used:  

■ Strings of literal characters enclosed in double quotation marks are 
reproduced exactly in the output.  

■ The wild-card character (*) is ignored on output. 

■ The number of letters used to define a field within a format element 
specifies the minimum number of digits to be used in that field’s output 
representation.  Values shorter than this will be padded with leading 
zeros; longer values will be represented in full, using more than the 
specified number of digits.  
Language Reference 173



Chapter Application Development Features1
Example

The format

hh:mm:ss;*h*m*s*

will format times on output in the form 

02:06:50

and will accept them on input in such forms as  

02:06:50
2:06:50
2:6:50

(matching the first format element) or 

The elapsed time is 2 hours, 6 minutes, and 50 seconds.

(matching the second).  

Default

The default system format for times is defined in the ckbres.format 
module in the file nxrun.dat.  The standard default format is 

y" years "d" days "hh:mm:ss;yy dd hh:mm:ss;hh:mm:ss

This format will output times in the form 

3 years 193 days 22:34:17

and will accept them as input in any of the forms 

3 years 193 days 22:34:17
3 193 22:34:17
22:34:17

If necessary, the ckbres.format module in the file nxrun.dat can be 
modified to substitute another default format instead.  

Related Topics

Formats TIME Function
Format Attribute Date Formats
DATE Function

TIME Function
Definition

A time is a data value representing an interval of duration or elapsed time.  
See also the DATE Function topic.

Time Syntax

A time constant can be specified in either of two formats, similar to those for 
dates (see the DATE Function topic):  

TIME(hours, minutes, seconds)
TIME(years, months, days, hours, minutes, seconds)
174 Language Reference



TIME2FLOAT Function
In this case, however, the ranges of the parameters are different:  

0 ≤ years ≤ 32767
0 ≤ months ≤  255
0 ≤ days ≤ 32767
0 ≤ hours ≤  255
0 ≤ minutes ≤   255
0 ≤ seconds ≤  255

For example, 

TIME(8,4,23)

denotes a time interval of 8 hours, 4 minutes, and 23 seconds, while 

TIME(3,6,11,22,34,17)

denotes an interval of 3 years, 6 months, 11 days, 22 hours, 34 minutes, and 
17 seconds.  

Expressions

Dates and times can be combined arithmetically in various ways.  You can 
add or subtract two time intervals to produce a third interval representing 
their sum or difference, subtract two dates to find the interval between 
them, or add or subtract a date and a time to produce another date.  You can 
also multiply or divide a time by a number (integer or floating point).  In 
summary, here are the valid arithmetic operations on dates and times:  

time + time yields time
time - time yields time
date - date yields time
date + time yields date
date - time yields date
number * time yields time
time * number yields time
time / number yields time

Note: When you edit a rule, the Time function converts the values of its data 
to the next possible higher unit. For example, if you add 32 days to a 
date by using Time(0, 0, 32, 0, 0, 0) + date, the Time function converts 
it to Time(0, 1, 2, 0, 0, 0). These conversions are not always correct for 
conversions from days to months or years. Therefore, set the number 
of days to equal to or less than 30.

Related Topics

Date HOUR Function
Data Types MINUTE Function
Expressions SECOND Function
Time Formats NOW Function

TIME2FLOAT Function
Definition

The TIME2FLOAT function is used in expressions to convert a time to an 
equivalent floating point value.  The expression can appear on the left-hand 
side or right-hand side of rules and methods.
Language Reference 175



Chapter Application Development Features1
Syntax

The function consists of the word TIME2FLOAT followed by a single 
argument in parentheses:  

TIME2FLOAT(t)

Argument

The argument may be any expression yielding a time result.  The expression 
may include patterns or interpretations.  

Result

The function returns a floating point result representing the number of 
seconds equivalent to the given time t.  

Examples

The following examples illustrate the results of the TIME2FLOAT function:  

TIME2FLOAT(TIME(3,6,11,22,34,17)) = 111515657.0
TIME2FLOAT(TIME(8,4,23))          = 29063.0
TIME2FLOAT("8:4:23")              =  NOTKNOWN

Related Topics

Expressions Interpretations
DATE Function FLOAT2TIME Function
TIME Function DATE2FLOAT Function
Patterns

TIME2STR Function
Definition

The TIME2STR function is used in expressions to convert a time value to an 
equivalent character string.  The expression can appear on the left-hand side 
or right-hand side of rules and methods.

Syntax

The function consists of the word TIME2STR followed by one or two 
arguments in parentheses:  

TIME2STR(t)
TIME2STR(t,f)

Argument

Each argument may be any expression yielding a result of the appropriate 
type:  

■ The first argument (t) is the time to be converted.  

■ The optional second argument (f) is a string specifying the format 
under which the first argument is to be converted.  See “Time Formats” 
for the syntax and meaning of this string.  

The argument expressions may include patterns or interpretations.  
176 Language Reference



UnloadKB Operator
Result

The function returns a string result representing the time value of argument 
t, converted according to format f.  If no format argument is given, the 
default system format for times (defined in the ckbres.format module in 
the file nxrun.dat) is used.  

Examples

The following examples illustrate the results of the TIME2STR function:  

TIME2STR(TIME(0,0,29,12,44,03)) = "0 years 29 days 12:44:03"
TIME2STR(TIME(0,0,29,12,44,03), "dd\" days \"hh:mm:ss") = 

       "29 days 12:44:03"
TIME2STR(TIME(0,0,0,12,44,03))  = "12:44:03"

Related Topics

Expressions Time Formats
String Constants Patterns
DATE Function Interpretations
TIME Function STR2TIME Function

UnloadKB Operator
Definition

The UnloadKB operator is used in the conditions or actions of a rule or 
method to unload or disable a knowledge base.  

Operands

The UnloadKB operator takes one or two operands:  

■ The first operand is a string constant or interpretation which evaluates 
to a string constant (using the @V(object.prop) syntax) specifying 
the name of the file containing the knowledge base to be unloaded.  It 
must be between double quotes.

■ The optional second operand specifies the knowledge base’s load level, 
and must be one of the following:  

@LEVEL=ENABLE;
@LEVEL=DISABLEWEAK;
@LEVEL=DISABLESTRONG;
@LEVEL=DELETE;
@LEVEL=WIPEOUT;

(Note that the closing semicolon is required.)  If the second operand is 
omitted, a load level of DELETE is assumed by default.  
Language Reference 177



Chapter Application Development Features1
UnloadKB Dialog

When entering an UnloadKB action in the Rule editor or Method editor, 
clicking in the space for the second operand displays a special dialog box for 
specifying the load level interactively, rather than by explicitly typing in the 
keywords listed above: 

Effect

The knowledge base named as the first operand is unloaded from memory 
or changed to the load level specified by the second operand.  Definitions 
not belonging to the given knowledge base remain in effect.  

Load levels

The effects of the various load levels are as follows:  

ENABLE: All definitions in the knowledge base are fully 
effective and operational, including objects, 
classes, properties, rules, and methods.  

DISABLEWEAK: Object, class, and property definitions from the 
knowledge base remain in effect.  Rules and 
methods remain defined, but become temporarily 
disabled and unavailable for inference processing; 
they can later be reenabled with LoadKB.  Any 
disabled rules or methods already on the agenda 
remain there and will be processed normally.  

DISABLESTRONG: Object, class, and property definitions from the 
knowledge base remain in effect.  Rules and 
methods remain defined, but become temporarily 
disabled and unavailable for inference processing; 
they can later be reenabled with LoadKB.  Any 
such disabled rules or methods already on the 
agenda are removed from the agenda and will not 
be processed.  

DELETE: Object, class, and property definitions from the 
knowledge base remain in effect.  Rules and 
methods are permanently deleted from memory 
178 Language Reference



Value Property
and no longer available for inference processing; 
they can be reenabled only by reloading the 
knowledge base with LoadKB.  

WIPEOUT: All definitions from the knowledge base are 
permanently deleted from memory, including 
objects, classes, properties, rules, and methods; 
they can be reenabled only by reloading the 
knowledge base with LoadKB.  

Examples

The following are examples of actions using the LoadKB operator:  

UnloadKB" Inventory.kb"
UnloadKB" Inventory.kb" @LEVEL=DISABLEWEAK
UnloadKB "Inventory.kb" @LEVEL=DISABLESTRONG
UnloadKB Inventory.kb" @LEVEL=DELETE
UnloadKB" Inventory.kb" @LEVEL=WIPEOUT

Related Topics

Rules ClassesString Constants
Methods PropertiesActions
LoadKB Operator Agenda
Objects NXP_UnloadKB function of API

Value Property
Definition

The special property named Value holds the data value (if any) associated 
directly with an object or class itself.  Together the object and special 
property form a slot of any data type.

Type

The Value property is defined to be of type Special, allowing it to take on 
values of different data types for different objects.  For any given object, 
however, its value is restricted to exactly one of the six elementary data 
types.  

Access

The current value of an object’s Value property is ordinarily denoted 
simply by the name of the object itself, with no qualifying property name.  
If the_object is the name of an object, the expressions 

the_object

and 

the_object.Value

are equivalent.  

Restrictions

You cannot perform a pattern matching over a list of objects’ Value 
property.  The value property will never inherit a value nor a method.
Language Reference 179



Chapter Application Development Features1
Modifying

The Value property associated with a particular object can be changed by 
assigning a new value directly to the name of the object itself in either of two 
ways:  

■ Explicitly, by executing the Assign operator in a condition or an 
action.

■ Interactively, via the Volunteer command.

Related Topics

Objects Conditions
Properties Actions
Data Types Assign Operator

VAR Function
Definition

The VAR function is used in expressions to find the variance of a set of 
numerical values.  The expression can appear on the left-hand side or 
right-hand side of rules and methods.

Syntax

The function consists of the word VAR followed by any number of 
arguments in parentheses:  

VAR(x1,x2,...,xn)

Arguments

Each argument may be any expression yielding a numerical result.  The 
expressions may include existential patterns or interpretations; universal 
patterns are not allowed.  

If some of the argument values are integers and some floating point, the 
integers will be converted to equivalent floating point values before 
computation.  

Result

The function returns a floating point result equal to the statistical variance 
of all the argument values (the sum of the squares of the differences of the 
values from the mean divided by the number of values).  For arguments that 
include patterns, it uses all values in the corresponding list.  

If any argument is of a non-numeric type, an error message is posted and 
the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the VAR function:  

VAR(365,240,577)               = 19348.66
VAR(98.6,37.0,-273.18)         = 26469.61
VAR(12,11.7)                   =     0.02
180 Language Reference



WEEKDAY Function
VAR(TIME(8,4,23),TIME(3,6,11)) = NOTKNOWN
VAR(123,"456")                 = NOTKNOWN

If class Tank has four instances with capacity values of 6.3, 14.5, 12.9, 
and 9.0, then 

VAR(<Tank>.capacity) = 10.38

Related Topics

Expressions Interpretations
Data Types AVERAGE Function
Patterns STDEV Function

WEEKDAY Function
Definition

The WEEKDAY function is used in expressions to find the day of the week 
corresponding to a given date.  The expression can appear on the left-hand 
side or right-hand side of rules and methods.

Syntax

The function consists of the word WEEKDAY followed by a single argument 
in parentheses:  

WEEKDAY(d)

Argument

The argument may be any expression yielding a date result.  The expression 
may include patterns or interpretations.  

Result

The function returns an integer result representing the day of the week 
corresponding to the given date argument.  The result ranges from 1 
(Monday) to 7 (Sunday).  

If the argument expression does not produce a date value, an error message 
is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the WEEKDAY function:  

WEEKDAY(DATE(1492,10,12))       = 4
WEEKDAY(DATE(1981,6,8,21,8,46)) = 1
WEEKDAY(TIME(8,4,23))           = NOTKNOWN
WEEKDAY(TIME(3,6,11,22,34,17))  = NOTKNOWN
WEEKDAY("October 12, 1492")     = NOTKNOWN

Related Topics

Expressions YEAR Function
DATE Function MONTH Function
TIME Function DAY Function
Patterns HOUR Function
Language Reference 181



Chapter Application Development Features1
Interpretations MINUTE Function
YEARDAY Function SECOND Function
NOW Function

Why Attribute
Definition

The why attribute associated with a slot, rule, or method specifies the text to 
be displayed on the screen when the end user requests an explanation for 
the system’s current focus of attention.  

Usage

The text of the why attribute is displayed in a dialog window whenever the 
end user selects the Why option from the session control panel of the Rules 
Element main window.  The text describes the inferencing links leading to 
the slot displayed in the session control panel.  The dialog window displays 
two buttons that let the end user traverse the backward chaining links 
starting from the current focus of attention:

■ The Why button displays the why text associated with the next rule in 
the backward chaining links.

■ The How button displays the why text associated with the previous rule 
in the backward chaining links.

Creation

The why text is specified or edited by typing into the box labeled Why in the 
Rule editor, Method editor, or Meta-Slot editor.  The supplied text has the 
following effect on the explanation dialog window:

Rule Editor Why text appears in the bottom box that normally 
gives information about left-hand side conditions.

Method Editor Why text appears in the bottom box that normally 
gives information about left-hand side conditions.

Meta-Slot Editor Why text appears in the top box that normally 
gives information about the hypothesis.

You can also use the @V(object.prop) and @F(filename) 
constructions in the why attribute of all three editors.  If a file is specified, it 
can contain @V variables that the system interprets.

Default

If no why text is explicitly specified, the system follows syntactic rules to 
derive the text displayed by the explanation dialog window.  

Inheritance

The Why attribute cannot be inherited.  

Related Topics

Rules Meta-SlotsForward Chaining
Methods Backward ChainingInference
182 Language Reference



Write Operator
Write Operator
Definition

The Write operator is used in conditions or actions of rules and methods to 
write information to a database.  

Operands

The Write operator takes two operands:  

■ The first operand is either a string constant or an interpretation 
evaluating to a string constant specifying the name of the file containing 
the database to be updated or the login name/password for a DBMS.  

■ The second operand consists of a series of parameters defining the 
specific update operation to be performed.  

Parameters

The second operand may include the following parameters:  

@TYPE Type of database (creator software and file format)

@BEGIN Command string for opening transaction

@END Command string for closing transaction

@QUERY Command string for updating database

@ARGS Argument list for update command

@ATOMS List of objects or properties affected

@NAME Correspondence between objects and records

@FIELDS List of field names to update

@PROPS List of properties to update from

@SLOTS List of slots to update from

@FILL Create new records or files

@UNKNOWN Write UNKNOWN values

@CURSOR Current position for sequential update

See the Database Integration Guide for further details on the meaning and 
use of these parameters.  

When entering a Write action in the Rule editor or Method editor, clicking 
in the space for the second operand displays the Database editor dialog box 
for specifying the update parameters interactively, rather than by explicitly 
typing them in as listed above.  

Note that private slots passed in the argument @Slots are ignored unless 
the Write operator appears in a method specifically triggered for the slot.  
See the description of Slots for more information about using private slots.

Effect

The designated information is written to the specified database from the 
Rules Element knowledge base.  
Language Reference 183



Chapter Application Development Features1
Examples

See the Database Integration Guide for examples of the use of the Write 
operator.  

Related Topics

Rules PropertiesClasses
Methods Slots
Actions String Constants
Objects Retrieve Operator

Also see the Database Integration Guide for more information on database 
operations. 

YEAR Function
Definition

The YEAR function is used in expressions to extract the year field of a date or 
time.  The expression can appear on the left-hand side or right-hand side of 
rules and methods.

Syntax

The function consists of the word YEAR followed by a single argument in 
parentheses:  

YEAR(d)

Argument

The argument may be any expression yielding a date or time result.  The 
expression may include patterns or interpretations.  

Result

The function returns an integer result equal to the year field of the 
argument.  

If the argument expression does not produce a date or time value, an error 
message is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the YEAR function:  

YEAR(DATE(1492,10,12))       = 1492
YEAR(DATE(1981,6,8,21,8,46)) = 1981
YEAR(TIME(8,4,23))           =    0
YEAR(TIME(3,6,11,22,34,17))  =    3
YEAR("October 12, 1492")     = NOTKNOWN

Related Topics

Expressions HOUR Function
DATE Function MINUTE Function
TIME Function SECOND Function
Patterns WEEKDAY Function
184 Language Reference



YEARDAY Function
Interpretations YEARDAY Function
MONTH Function NOW Function
DAY Function

YEARDAY Function
Definition

The YEARDAY function is used in expressions to find the ordinal day of the 
year corresponding to a given date.  The expression can appear on the 
left-hand side or right-hand side of rules and methods.

Syntax

The function consists of the word YEARDAY followed by a single argument 
in parentheses:  

YEARDAY(d)

Argument

The argument may be any expression yielding a date result.  The expression 
may include patterns or interpretations.  

Result

The function returns an integer result equal to the ordinal day of the year 
corresponding to the given date argument.  The result ranges from 1 to 366.  

If the argument expression does not produce a date value, an error message 
is posted and the function result is NOTKNOWN.  

Examples

The following examples illustrate the results of the YEARDAY function:  

YEARDAY(DATE(1492,10,12))       = 286
YEARDAY(DATE(1981,6,8,21,8,46)) = 159
YEARDAY(TIME(8,4,23))           = NOTKNOWN
YEARDAY(TIME(3,6,11,22,34,17))  = NOTKNOWN
YEARDAY("October 12, 1492")     = NOTKNOWN

Related Topics

Expressions YEAR Function
DATE Function MONTH Function
TIME Function DAY Function
Patterns HOUR Function
Interpretations MINUTE Function
WEEKDAY Function SECOND Function
NOW Function
Language Reference 185



Chapter Application Development Features1
Yes Operator
Definition

The Yes operator is used in the conditions of a rule or method to test whether 
a boolean value or boolean expression is TRUE.  

Operands

The Yes operator takes a single operand, which must be either a 
boolean-valued slot, a list of such slots specified by a pattern, or a boolean 
expression.  

Result

The result produced by the Yes operator is simply the value of its boolean 
operand, TRUE or FALSE as the case may be.  If the operand includes a 
pattern, the condition tests whether at least one of the values in the 
corresponding list (for an existential pattern) or all of them (for a universal 
pattern) are TRUE.  If the operand is a boolean expression, the result is the 
same as the value of the resolved expression (either TRUE or FALSE). 

Examples

The following are examples of conditions using the Yes operator:  

Yes credit_approved
Yes switch_1.on
Yes <Switch>.on
Yes {Switch}.on

Related Topics

Rules Boolean Constants
Methods Patterns
Conditions No Operator
Boolean Expressions
186 Language Reference



Chapter
2 Execute Library Routines 2

This chapter describes the various Execute routines you can use as 
application design features.

Execute Library Overview
Definition

The Rules Element library of Execute routines has predefined procedures 
for performing common or useful tasks, built into the system for use with 
the Execute operator.

Routines

The Rules Element run-time library includes the following routines:  

Frame Operations

SetValue CreateObjects
ResetFrame GetRelatives
CopyFrame PropagateValue

Multi-Value Operations

AtomNameValue TestMultiValue
SetMultiValue ComputeMultiValue
GetMultiValue LinkMultiValue

Sorting and Comparison

RankList PatternMatcher
GetListElem Unify
FindListElem

Session Control

ControlSession Message
Journal WriteTo

Utility Operations

AtomExist FileExist
CreateReport Parse

Each of these routines is fully described in its own section of this manual.  

Multi-Values

A multi-value slot is defined as a string slot containing a list of values 
separated by commas.  Leading and trailing blanks around each value are 
ignored, but internal blanks are not.  For example, the following is a legal 
multi-value string:

apple, banana,     two words,   hello

This contains four values:  apple, banana, two words, and hello.  Notice 
that the blanks before and after each value are ignored, but the internal 
blank in two words is retained.  Also notice that when a multi-value 
appears in an expression, it does not have to be enclosed in quotes.
Language Reference 187



Chapter Execute Library Routines2
The values are always maintained as strings, but they can be compared as 
floats, ints, dates, etc. with the TestMultiValue Execute.  But since the values 
are actually maintained as strings, it is still up to the application developer 
to make sure the values make sense.  In other words, if the application 
developer wants to do integer comparisons, it is up to him or her to make 
sure the values really are integers.  As far as the Rules Element is concerned, 
a multi-value slot is just a string slot.  See also the section on Using 
Multi-Values.

Error Handling

Certain global flags can be used to control the handling of errors and tracing 
information by the built-in Execute routines.  Currently, the application 
developer can define “System Objects” to set the error handling and tracing 
status.  At present, the following system objects are implemented:

SYS_ALERTFLAG Boolean - if true, errors are reported with alert 
handler.

SYS_TRACEFLAG Boolean - if true, report trace messages in 
transcript.

SYS_TRANSFLAG Boolean - if true, errors are reported in transcript

SYS_BEEPFLAG Boolean - if true, errors just beep

SYS_STOPFLAG Boolean - if true, stops session on error.

All of these are boolean-valued objects whose Value properties contain the 
relevant flag.  These objects are defined in a separate knowledge base so that 
they can be loaded in any session.  Be sure to use them when developing the 
application.

Other Notes

■ The executes all evaluate to TRUE if successful, and FALSE if there were 
any errors.

■ Throughout this chapter, the word “frame” is used for “object or class” 
to describe the Execute routines.

■ If a slot is expected in a parameter, and you are using a slot with 
.Value, you must explicitly add the .Value.  Otherwise, the Execute 
routine will assume you are referring to a frame.

■ When typing text parameters into the execute dialogs, quotes are never 
used.

Note: The total length of a multi-value is limited only by the available 
memory.

Invocation

Execute routines are invoked by using the Execute operator in a condition 
or action of a rule or method.  The first operand to this operator is a string 
constant giving the name of the desired Execute routine; the second 
operand is a string consisting of a series of parameters to control the 
routine’s operation.  
188 Language Reference



Execute Library Overview
Parameters

Two standard parameters are used to specify the arguments of an Execute 
routine (both parameters may be given as dynamic interpretations):

■ The @STRING parameter passes a single string argument.  If two or 
more such arguments are needed, they can be combined to form a 
multivalue and passed as a single argument; see the section 
“Multivalues” for more information.

Atom names you specify for the @STRING parameter must be compiled 
in the corresponding Rules Element editor before the system will 
recognize it.  Merely typing atom names into the execute dialogs’ 
@STRING fields will produce error messages during application 
processing.  

■ The @ATOMID parameter passes a list of objects, properties, or classes 
(typically specified via a pattern) for the Execute routine to operate on.

Note: Private slots must not be passed in the @ATOMID and 
@STRING parameter of the Execute routines. Also, class 
name atoms you specify in the execute dialogs must not 
include vertical bars.

The specific usage of these parameters varies from one Execute routine to 
another, and is described in the sections on each individual routine.  

Result

All Execute routines return a result of TRUE if the call is successful, FALSE 
if an error occurs.  

Dynamic Values

Individual atoms (objects and object properties) can be evaluated 
dynamically within the @STRING and @ATOMID parameters.  Each 
parameter uses its own syntax as follows:  @STRING interpretations must be 
in the form of @V(theAtom.property) - the atom name enclosed within 
parentheses and preceded by the characters @V.  @ATOMID interpretations 
must be in the form of \theAtom.property\ - the atom name enclosed 
within backslashes.  The slot’s current value will then be substituted into the 
corresponding parameter before execution.  

For example, if Ducks.start contains the multi-value string 
Donald,Daisy and Ducks.more contains Huey,Dewey, Louie, then a 
condition or action of the form 

Execute  "ComputeMultiValue"  @ATOMID=Ducks.start;
  @STRING="@VALUE=@V(Ducks.more),

 @UNION,@RETURN=Ducks.all";

is equivalent to 

Execute  "ComputeMultiValue"  @ATOMID=Ducks.start;
@STRING="@VALUE=Huey,DeweyLouie,
@UNION,@RETURN=Ducks.all";

and will set the value of Ducks.all to the string Donald, 
Daisy,Huey,Dewey,Louie (the union of @Ducks.start and 
@Ducks.more).  
Language Reference 189



Chapter Execute Library Routines2
When an Execute routine is invoked from a method, atoms can also be 
evaluated dynamically within the @STRING parameter using the @SELF 
operator.  For example, suppose there is a class Birds with a subclass 
Ducks.  In addition, suppose Birds has a property Parents which is a 
multivalue string and it has an Order of Sources method with the following 
Execute routine:

Execute  "GetRelatives" @ATOMID=SELF; @STRING="@PARENTS, 
@RETURN=@SELF.Parents"

If a rule dynamically creates an object called Donald of class Ducks, and 
then tries to get the value of Donald.Parents, the Order of Sources 
method inherited from Birds will be triggered, and GetRelatives will 
evaluate SELF as Donald.  So, Donald.Parents will get the multivalue 
Ducks, Birds since these are the parents of Donald.

Strategy Options

Many Execute routines include an optional parameter named @STRAT as 
part of their @STRING parameter.  This parameter is used to control the 
volunteering strategy for any value assignments made during the routine’s 
execution.  It can be set to any of the following options:  

SET Store value immediately, but do not forward

FWRD Queue value for later forwarding if global strategy 
Forward action effects is currently enabled

SETFWRD Combines both SET and FWRD options

If no explicit @STRAT parameter is specified, the SET option is assumed by 
default.

Note: See Chapter One, “Application Development Features” for details on 
the Strategy operator.

Related Topics

Conditions Execute Operator
Actions Patterns
Rules Value Property
Methods Multi-Values
String Constants Inference Strategy

Also see the sections on individual Execute routines by name, as listed 
above. 

Using The Execute Library
The functions in the execute library can be used like any user-defined 
Execute routine in either conditions or actions of rules and methods.  They 
normally return TRUE unless there was some sort of error.  They can be 
divided up into several functional groups:

Frame Operations This set of routines performs “crunching” 
operations on frames such as setting values, 
copying values, etc.  
190 Language Reference



Using The Execute Library
Multi-Value Operations
This set of routines performs operations on 
multi-values.  

Sorting and Comparison
This set of routines performs operations on pattern 
matching lists.  

Session Control This set of routines controls the session and 
perform I/O.  

Utility Operations This set of routines performs useful tasks that 
extend application development.

The following sections explain each of the categories of executes with 
examples on how you might want to use them.

Frame Operations

The Frame Operations perform “crunching” operations on frames (objects 
or classes) such as setting values, copying values, etc.  They include the 
following:

CopyFrame, CreateObjects, ResetFrame, SetValue, GetRelatives, 
PropagateValue

These operations do things which could be done frame by frame in other 
ways, but it is more convenient to use these executes.  For example, 
CopyFrame copies the values in all properties of a frame (except Value) to 
a list of frames.  Without this function, you could copy the values one by 
one, but it would be very inconvenient.

Also, the Reset operator could be used to reset individual slots, but the 
ResetFrame execute can reset all the slots in a list of frames all at once.

CreateObjects eliminates the need to have a rule which loops around 
itself creating objects one by one.

SetValue sets all slots in a list of slots or frames to a given value, which 
again, would be very inconvenient otherwise.

GetRelatives gets the names of the parents or children of a frame and 
returns the answer as a multi-value.

PropagateValue propagates a value up or down through the inheritance 
paths from a given frame.

Multi-Value Operations

Multi-values can be used in many ways.  The executes that deal with 
multi-values are as follows:

ComputeMultiValue, GetMultiValue, LinkMultiValue, 
SetMultiValue, TestMultiValue, AtomNameValue

One way you might want to use multi-values is to keep track of properties 
which have an unspecified number of “sub-properties”.  For example, you 
might have a class of <Restaurants> with a property serves which 
contains the types of food served at a certain restaurant.  The serves 
property for a given restaurant might contain something like chicken, 
fish, pasta.  The SetMultiValue execute can be used for adding and 
deleting values from these multi-values.  This is an ideal way of maintaining 
Language Reference 191



Chapter Execute Library Routines2
this information because each restaurant may serve a different number of 
foods.

The following diagram shows an example of how this sort of example might 
be set up:

Now, suppose you wanted to ask something like, “Who serves fish?”  You 
could use the TestMultiValue execute to find all the restaurants that 
serve fish and attach them to a class like this:

TestMultiValue  (@STRING="@TEST=fish, @SUPERSET, 
@RETURN=Fishy"; 

@ATOMID=<Restaurants>.serves;)

After that execute, the restaurants Chez_Bob, Pasta_Pete, and 
See_Food will be attached to the class Fishy.  You could then do further 
pattern matching or testing on that list.  Notice we are using @SUPERSET 
because we are finding the restaurants that serve a superset of fish.  A 
restaurant which serves only  fish would qualify.

Now let’s ask the question, “What do Chez_Bob and Pasta_Pete have in 
common?”  We would do that like this:

ComputeMultiValue (@STRING="@VALUE=@V(Chez_Bob.serves),
@INTERSECT, @RETURN=common.mulval";
@ATOMID=Pasta_Pete.serves;)

After that execute, the multi-value common.mulval will contain the 
intersection of the two restaurants, i.e. chicken, fish, pasta.  Notice 
we are using the @V(...) notation to evaluate Chez_Bob.serves 
dynamically.

Now let’s say that Pasta_Pete is purchased by Chez_Bob, so they decide 
to combine the menus.  We could add the foods served by Pasta_Pete to the 
foods served by Chez_Bob like this:

SetMultiValue (@STRING="@ADD=@V(Pasta_Pete.serves)";
@ATOMID=Chez_Bob.serves;)

Since @NODUPLICATE is the default, Chez_Bob.serves will now contain 
chicken, fish, pasta, beef, salads.  Again, notice the @V(...) 
notation.

Restaurants serves

Chez_Bob Edna's Pasta_Pete See_Food

serves =
"chicken,
fish, pasta,
beef"

serves =
"pizza,
hamburgers,
subs"

serves =
"pasta, fish,
chicken,
salads"

serves =
"fish,
chicken"
192 Language Reference



Using The Execute Library
Another way you might want to use multi-values is to maintain 
relationships between objects.  The values within a multi-value could 
actually be object names.  So, for example, you might have a class of 
<Desks> with a property on_top_of, and another class of 
<Desk_accessories>.  The on_top_of slot for a given desk might 
contain the names of <Desk_accessories> objects which are on top of 
the desk.  So, a given desk may have an on_top_of slot containing 
something like stapler, tape, phone.  Each of the values in that 
multi-value are actually the names of objects in the class 
<Desk_accessories>.

The following figure shows a possible configuration with multi-values 
being used for relationships between objects:

Desks

Desk
Accessories

on_top_of

near

MyDesk

on_top_of = "phone, rolodex, stapler, 
tape, stack_o_papers, phone_book"

near = "trash_can, lamp"

near

weight

phone rolodex

stapler

tape
phone
book

stack o' 
papers

trash
can lamp

near = "rolodex,
phone_book"

near = "phone,
phone_book"

near = "phone,
rolodex"

near = "stapler"

near = "tape" near = NULL near = "lamp" near = "trash_can"

weight = 4 weight = 2 weight = 5 weight = 1

weight = 1 weight = 7 weight = 8 weight = 15
Language Reference 193



Chapter Execute Library Routines2
With this sort of set up, there are all sorts of questions we might want to ask.  
For example, “What’s on top of my desk?”  This may seem trivial, but it 
could be that the multi-value was constructed by other rules, and you may 
now want to use that list as a pattern matching list in another condition of a 
rule or method.  So, to get the objects in a multi-value and attach them to a 
class, we would do this:

LinkMultiValue (@STRING="@LINKTO=DeskStuff";@ATOMID=MyDesk.on_top_of;)

After this execute, the class DeskStuff would have as objects phone, 
rolodex, stapler, tape, stack_o_papers, and phone_book.

Another thing you might want to do is construct a multi-value containing 
the names of all the desk accessories.  That multi-value could then be used 
with TestMultiValue or ComputeMultiValue.  This would be done 
like this:

AtomNameValue 
(@STRING="@RETURN=DeskStuff.mulval";@ATOMID=<Desk_Accessories>;)

After this execute, DeskStuff.mulval will contain the multi-value 
phone, rolodex, phone_book, tape, stapler, 
stack_o_papers, trash_can, lamp.

You might also want to ask more complicated questions like, “What objects 
on my desk are heavy?”  Let’s assume that “heavy” is greater than or equal 
to five pounds.  To do this, we would first need to create a list of objects on 
the desk by using LinkMultiValue as above.  Then, we would use the list 
<DeskStuff> in a pattern matching statement like this:

>=  <DeskStuff>.weight  5

Directly after this statement, the pattern matching list will contain only the 
objects on the desk whose weight is greater than or equal to 5.

Another possible question would be, “Is the trash can on top of my desk?”  
To do this, you would use the following execute:

TestMultiValue (@STRING="@TEST=trash_can, @SUPERSET, 
@RETURN=answer.bool"; @ATOMID=MyDesk.on_top_of;)

After this execute, the boolean slot answer.bool will contain FALSE 
because the multi-value MyDesk.on_top_of is not a superset of 
trash_can.  Or, to put it another way, MyDesk.on_top_of does not 
contain trash_can.

Now, suppose there is an earthquake and the phone falls off the desk.  How 
would we update our objects to reflect this?  First, we want to remove the 
phone from the desk, and then we want to update the objects that the phone 
is near, and the objects that are near the phone.  There is probably more than 
one way to do this, but here is one possibility:

Step 1:  Remove phone from the desk:

SetMultiValue (@STRING="@DELETE=phone"; 
@ATOMID=MyDesk.on_top_of;)

Step 2:  Link the objects that were near the phone to a temporary class:

LinkMultiValue (@STRING="@LINKTO=NearStuff"; 
@ATOMID=phone.near;)

Step 3:  Make sure none of those objects is near the phone:

SetMultiValue (@STRING="@DELETE=phone"; 
@ATOMID=<NearStuff>.near;)
194 Language Reference



Using The Execute Library
Step 4:  Delete all the things that were near the phone:

SetMultiValue (@STRING="@DELETE=@V(phone.near)"; @ATOMID=phone.near;)

Okay, so how does this work?  Step 1 simply deletes phone from the 
multi-value MyDesk.on_top_of.

Step 2 takes the object names in the multi-value phone.near and links 
them to a temporary class NearStuff.  In this case, that would link the 
objects rolodex and phone_book to NearStuff like this:

Step 3 deletes phone from each of the multi-values in the list 
<NearStuff>.near.  In other words, since the phone is not near any of the 
objects in <NearStuff> anymore, we want to make sure that those objects 
do not list phone as a nearby thing.  So, in this case, phone is deleted from 
rolodex.near and phone_book.near.

Finally, step 4 deletes everything that was near the phone because it is not 
near anything anymore.  Notice we are using the @V(...) notation to 
insure that everything in the current multi-value is deleted from itself.  For 
this step, you could also simply set the value of phone.near to an empty 
string using the Assign operator.  Notice that this is not the same as setting 
it to UNKNOWN.  Notice also that if you use the Assign operator, you may 
cause side effects like forwarding through gates unless you set the strategies 
appropriately.

Sort and Compare

The Sorting and Comparison executes perform operations on pattern 
matching lists.  This category includes the following executes:

FindListElem, GetListElem, RankList,  PatternMatcher, Unify

These are used for ranking lists and getting individual elements, ranges of 
elements, or finding the MIN and MAX in a list.  Also, PatternMatcher 
performs a more general purpose pattern matching, and Unify performs a 
two-way pattern match.

For example, suppose we have a class of <Cars> with properties mileage, 
engine_size and rank.  In a database, we have the latest information on 

phone

near = "rolodex, phone_book"

rolodex
phone
book

NearStuff
LinkMultiValue attaches 

these objects to this class.
Language Reference 195



Chapter Execute Library Routines2
current cars.  So, we create an object for each car and get the mileage and 
engine_size from the database.  Now, suppose we want to find the ten 
highest mileage cars available.  To do this, we would first use the RankList 
execute to rank the list using mileage as the RANKBY property, and rank 
as the RANKSET property.  Then, we would use GetListElem to get 
elements 1 through 10 by rank.  We could then use the returned list of ten 
cars to do some other pattern matching like finding the cars whose engines 
are greater than or equal to 1500 cc.

The following diagram shows the steps involved in this example:

Session Control

The Session Control operations control the session and perform I/O.  They 
include the following:

ControlSession, Message, Journal, WriteTo

A very useful thing that you can do is send messages to the environment.  
For example, you can put results into the transcript, or issue alert messages 
to the user.  You can also put up question boxes in which the user must 
respond with Yes, No, OK, or Cancel.  You can then use the response to 
control the application.  If you are writing your own environment in C or 
some other language, these executes will call your own transcript handler 
or alert handler.  The Session Control operations also control the session, 
suggest hypotheses, perform journaling, and so on.

Cars

mileage

engine_size

rank

...Car1 Car2 Car3 Carn
Retrieve 
from 

database

Execute "RankList" (@STRING="@RANKBY=mileage, @RANKSET=rank, 
@DECREASING"; @ATOMID=<Cars>;)

Step 1:

Step 2:

Step 3:

Execute "GetListElem" (@STRING="@FROM=1, @TO=10, @RANKSET=rank, 
@LINKTO=High_Mileages"; @ATOMID=<Cars>;)

Step 4:

>=  <|High_Mileages|>.engine_size  1500
196 Language Reference



AtomExist Routine
Utilities

The Utilities are Execute routines that perform useful tasks that extend your 
application development capabilities.  They include the following:

AtomExist, CreateReport, FileExist, Parse

Generally, these functions are used for testing the existence of certain 
things, and sending messages to the environment.  For example, suppose 
you have a Retrieve in your rule, but the file does not exist.  Normally, 
you would get an error, and the rule would simply fail at that point.  But, by 
using FileExist before the Retrieve, you could check if the file exists 
and then act accordingly.  For example, if the file doesn’t exist, you might 
want to try another file, or a different search path.  Another particularly 
useful routine is CreateReport.  This routine lets you generate a 
formatted file to report the results of an application processing session.

AtomExist Routine
Definition

The Execute routine AtomExist tests whether a designated atom (a class, 
object, property, slot, rule, or method) currently exists.  

Interactive Dialog

AtomExist is chosen with the Select Execute popup menu command in the 
Rule editor or Method editor, which automatically displays a special dialog 
box for specifying the execute parameters interactively, rather than by 
explicitly typing them in as listed below: 

Parameters

The @ATOMID parameter is ignored.  

The @STRING parameter must include the following:  

@NAME=atom_name Name of desired atom.

@RETURN=answer_slot Name of slot in which to return result of test.

Both parameters are required.  The destination specified by @RETURN must 
be a boolean-valued slot.  
Language Reference 197



Chapter Execute Library Routines2
Effect

The destination slot designated by the @RETURN parameter is set to TRUE or 
FALSE, depending on whether the requested atom currently exists.  

Result

The result returned by AtomExist is TRUE if the call is successful, FALSE if 
an error occurs.  

Examples

A condition or action of the form 

Execute  "AtomExist" @STRING="@NAME=Flapdoodle, 
@RETURN=TheAnswer.Value";

will set TheAnswer.Value to TRUE if the object Flapdoodle currently 
exists, FALSE if it does not.  

AtomNameValue Routine
Definition

The Execute routine AtomNameValue stores the names or values of one or 
more atoms (objects, classes, or slots) into a string-valued variable as a 
multivalue.  

Interactive Dialog

AtomNameValue is chosen with the Select Execute popup menu command 
in the Rule editor or Method editor, which automatically displays a special 
dialog box for specifying the execute parameters interactively, rather than 
by explicitly typing them in as listed below: 

Parameters

The @ATOMID parameter is a pattern specifying a list of atoms (objects, 
classes, or slots) whose names or values are to be listed.  
198 Language Reference



AtomNameValue Routine
The @STRING parameter may include the following:  

@RETURN=destination String slot into which the requested atom names or 
values are to be stored.

@ADD (Optional) If present, append new atom names or 
values to existing contents of destination variable 
instead of assigning outright (no duplicates are 
added).

@STRAT=options (Optional) Strategy options governing the 
assignment (see Execute Library Overview for 
details).

@NAMES (Optional) The names of the atoms are listed in the 
destination.  This is the default.

@VALUES (Optional)  The values of the atoms are listed in the 
destination.  In this case, the atoms must be slots.

The @RETURN parameter must designate a slot (property associated with an 
object) as the destination, and not simply the name of an object itself:  for 
example, a destination of @RETURN=theResult is invalid, and must be 
specified as @RETURN=theResult.Value instead.  

Effect

The names or values of the atoms satisfying the pattern given by @ATOMID 
are concatenated together, separated by commas, to form a multi-value.  
(Notice that if there is only one such atom, its name alone is equivalent to a 
one-element multi-value.)  This multi-value is then assigned as the new 
value of the string variable designated by @RETURN (unless @ADD is 
specified, in which case it is instead appended to the end of the variable’s 
existing value without duplicates.  Duplicates can be requested explicitly 
with the SetMultiValue routine).  

Result

The result returned by AtomNameValue is TRUE if the call is successful, 
FALSE if an error occurs.  

Examples

If class Duck has a single instance named Donald, a condition or action of 
the form 

Execute  "AtomNameValue" @ATOMID=<Duck>; 

@STRING="@RETURN=Duckburg.residents";

will assign the string Donald as the value of Duckburg.residents.  If 
there are two instances of Duck named Donald and Daisy, 
Duckburg.residents will be set to the multi-value string 
Donald,Daisy.  If the previous value of Duckburg.residents was 
Daffy, then 

Execute "AtomNameValue"  @ATOMID=<Duck>;
@STRING="@RETURN= 

Duckburg.residents, 
@ADD";
Language Reference 199



Chapter Execute Library Routines2
will set it to Daffy,Donald,Daisy.  If the object Nephews has three 
components (subobjects) named Huey, Dewey, and Louie, then 

Execute  "AtomNameValue" @ATOMID=<Nephews>.uncle; 
@STRING= 

"@RETURN=Cartoon.relatives";

will set Huey.uncle,Dewey.uncle,Louie.uncle as the new value of 
Cartoon.relatives.  

If class Duck has two instances, Donald and Daisy, and a property 
bill_size, and Donald.bill_size is 5 and Daisy.bill_size is 4, 
then:

Execute "AtomNameValue" @ATOMID=<Duck>.bill_size;
@STRING="@RETURN=Duckbill.sizes, 
@Values";

will set the string slot Duckbill.sizes to the multivalue string 5,4.  The 
value type of the slots in @ATOMID can be anything (string, integer, time, 
date, etc.)

Related Topics

Execute Operator
Multi-Values
Patterns

ComputeMultiValue Routine
Definition

The Execute routine ComputeMultiValue combines multi-values in 
various ways to form new multi-values.  

Interactive Dialog

ComputeMultiValue is chosen with the Select Execute popup menu 
command in the Rule editor or Method editor, which automatically displays 
a special dialog box for specifying the execute parameters interactively, 
rather than by explicitly typing them in as listed below: 
200 Language Reference



ComputeMultiValue Routine
Parameters

The @ATOMID parameter is the name of a slot (a property associated with a 
given object) containing a multi-value string to be operated on.  

The @STRING parameter may include the following:  

@VALUE=multi_val (Required for some operations--see Operations 
below) Second multi-value operand.

@operation Operation to be performed (see Operations below).

@RETURN=answer Destination slot in which to return result of 
operation.

@COMP=value-type (Optional)  Specifies the way in which the 
individual values in the multivalues are to be 
compared (see Value Types below).

@VALUETYPE=type The valuetype specifier can be used for indicating 
how the individual values in a multivalue are to be 
compared.  If it is absent, STRING is the default.  

Operations

The operation specifier included in the @STRING parameter identifies the 
operation to be performed on the pair of multi-values designated by 
@ATOMID and @VALUE.  It must consist of exactly one of the following:  

@UNION All elements in either @ATOMID or @VALUE or both

@INTERSECT All elements in both @ATOMID and @VALUE

@COMPLEMENT All elements in @ATOMID or @VALUE but not both

@DIFFERENCE All elements in @ATOMID but not @VALUE

@MIN Smallest element in @ATOMID

@MAX Largest element in @ATOMID

Notice that the operations @MIN and @MAX take only one operand 
(@ATOMID); the second operand (@VALUE) is ignored and may be omitted.  

Value Types

The @COMP specifier can be used for indicating how the individual values 
in a multivalue are to be compared.  If it is absent, STRING is the default.  
The following types are valid: STRING, INT, FLOAT, DATE, and TIME.

For example, if one multivalue contains the element 1.0 and another 
multivalue contains the element 1.00, these will be regarded as the same 
value if @COMP=FLOAT is specified.  However, if @COMP=STRING is 
specified (the default), they are regarded as two different strings.

Effect

The two multi-values specified by the @ATOMID and @VALUE parameters 
are combined according to the requested operation, and the result is stored 
into the destination slot designated by @RETURN.  
Language Reference 201



Chapter Execute Library Routines2
Result

The result returned by ComputeMultiValue is TRUE if the call is 
successful, FALSE if an error occurs.  

Examples

If Ducks.start contains the multi-value Donald,Daisy, Dewey, a 
condition or action of the form 

Execute "ComputeMultiValue"@ATOMID=Ducks.start;
@STRING="@VALUE=Huey,Dewey,Louie,
@UNION,@RETURN=Ducks.union";

will assign the string Donald,Daisy,Dewey,Huey,Louie (the union of 
@ATOMID and @VALUE) as the new value of Ducks.union; notice that the 
element Dewey is not duplicated.  

Execute "ComputeMultiValue"@ATOMID=Ducks.start;
@STRING="@VALUE=Huey,Dewey,Louie,

@INTERSECT,@RETURN=Ducks.intersect";

will set Ducks.intersect to Dewey (the intersection of @ATOMID and 
@VALUE).  

Execute "ComputeMultiValue"@ATOMID=Ducks.start;

@STRING="@MIN,@RETURN=Ducks.first";

will set Ducks.first to Daisy (the smallest element alphabetically in 
@ATOMID).  

Related Topics

Execute Operator
Multi-Values

ControlSession Routine
Definition

The Execute routine ControlSession performs various control 
operations affecting the operation of the current Rules Element session.  

Interactive Dialog

ControlSession is chosen with the Select Execute popup menu 
command in the Rule editor or Method editor, which automatically displays 
a special dialog box for specifying the execute parameters interactively, 
rather than by explicitly typing them in as listed below: 
202 Language Reference



ControlSession Routine
Parameters

The @ATOMID parameter is an (optional) list of hypotheses to be suggested 
or unsuggested.  

The @STRING parameter may include the following:  

@STOP (Optional) Stop session.

@RESTART (Optional) Stop session and reinitialize all values.

@SUGLIST (Optional) Suggest hypotheses on knowledge 
base’s suggest list.

@SUGGEST (Optional) Suggest hypotheses specified by 
@ATOMID.

@UNSUGGEST (Optional) Unsuggest hypotheses specified by 
@ATOMID.

@KNOWCESS (Optional) Initiate inference processing.

The parameters @SUGGEST and @UNSUGGEST are mutually exclusive, and 
may not both be specified.  If neither is present, the @ATOMID parameter is 
ignored.  

Effect

The control operations specified by the @STRING parameter are executed.  
Operations are always performed in the order shown under “Parameters” 
above, regardless of the order in which they actually appear in the @STRING 
parameter.  

All parameters in ControlSession are performed even if one of them is 
StopSession.  ControlSession can be regarded as a single atomic 
function.

The operations @SUGGEST and @UNSUGGEST apply to the list of hypotheses 
specified by the @ATOMID parameter; @SUGLIST applies to the hypotheses 
in the suggest list saved with the knowledge base itself.  

The operations @RESTART and @KNOWCESS are equivalent to the Expert 
menu commands Restart Session and Knowcess, respectively.  

Result

The result returned by ControlSession is TRUE if the call is successful, 
FALSE if an error occurs.  

Examples

A condition or action of the form 

Execute  "ControlSession"  @STRING="@STOP";

will stop the current session.  

Execute  "ControlSession"  @STRING="@RESTART, @SUGLIST, 
@KNOWCESS";

will stop the session, reinitialize all values, suggest all hypotheses on the 
knowledge base’s suggest list, and restart inference processing.  
Language Reference 203



Chapter Execute Library Routines2
Execute  "ControlSession"  @STRING="@SUGGEST"; 
@ATOMID=hypo1,hypo2;

will suggest the hypotheses hypo1 and hypo2.  

Related Topics

Multi-Values
Patterns
Execute Operator

CopyFrame Routine
Definition

The Execute routine CopyFrame copies property values from one frame 
(object or class) to another.  

Interactive Dialog

CopyFrame is chosen with the Select Execute popup menu command in the 
Rule editor or Method editor, which automatically displays a special dialog 
box for specifying the execute parameters interactively, rather than by 
explicitly typing them in as listed below: 

Parameters

The @ATOMID parameter consists of two items:  

■ The name of a source frame (object or class) whose property values are 
to be copied

■ The name of the destination frame to which they are to be copied, or a 
pattern specifying a list of such frames
204 Language Reference



CreateObjects Routine
The @STRING parameter is optional, and consists entirely of the following:  

@STRAT=options (Optional) Strategy options governing the 
assignment (see Execute Library Overview for 
details).

Effect

The values of all of the source frame’s properties are copied to the 
corresponding properties of each destination frame, with the following 
exceptions:

■ The destination frame must already possess a property with the given 
name.  If it does not, the property is not automatically associated with 
the destination frame and its value is not copied.  

■ The source frame’s Value property is never copied.

Result

The result returned by CopyFrame is TRUE if the call is successful, FALSE if 
an error occurs.  

Examples

Suppose class Box has two instances named box1 and box2 and two 
properties named width and height, and that cube1 is an instance of 
class Cube with properties width, height, and depth.  Then a condition 
or action of the form 

Execute  "CopyFrame"  @ATOMID=cube1,box1;

will copy the values of cube1.width and cube1.height to box1.width 
and box1.height, respectively.  The value of cube1.depth is not copied, 
since the destination frame box1 has no property named depth.  

Execute  "CopyFrame"  @ATOMID=cube1,<Box>;

will set both box1.width and box2.width equal to cube1.width, and 
both box1.height and box2.height equal to cube1.height.  

Related Topics

Execute Operator
Data Types
Value Property
Patterns

CreateObjects Routine
Definition

The Execute routine CreateObjects creates dynamic objects and attaches 
them to one or more frames (classes or objects) as specified.  
Language Reference 205



Chapter Execute Library Routines2
Interactive Dialog

CreateObjects is chosen with the Select Execute popup menu command 
in the Rule editor or Method editor, which automatically displays a special 
dialog box for specifying the execute parameters interactively, rather than 
by explicitly typing them in as listed below: 

Parameters

The @ATOMID parameter is the list of frames (objects or classes) whose 
properties the dynamic objects may inherit.

The @STRING parameter may include the following:  

@ROOT=obj_name Root part of name assigned to all created objects, 
full name includes start_num.

@FROM=start_num (Optional) System increments this starting number 
for each new dynamic object and adds to root part 
of name to create unique object name.

@NUMOBJS=total Number of dynamic objects the system is to create.

The full object name consists of the concatenated values of @ROOT and 
@FROM.  If @FROM is omitted, the system automatically increments the 
number part of the object name starting from the default value 1.

Effect

The parameters @ROOT and @FROM (if present) determine the name of 
objects the system creates dynamically by attaching them to the parent 
objects or classes specified in @ATOMID.  The system keeps track of the total 
number of objects created by incrementing the number part of the full object 
name and stops when the number reaches the specified number @NUMOBJS.  
Dynamic objects automatically inherit properties from their parents if the 
inheritance strategy is unmodified. 

Result

The result returned by CreateObjects is TRUE if the call is successful, 
FALSE if an error occurs.  
206 Language Reference



CreateReport Routine
Examples

A condition or action of the form

Execute “CreateObjects” @STRING="@ROOT=myObj, @NUMOBJS=10";
@ATOMID=ClassA,ClassB;)

will create ten objects called myObj1 through myObj10.  Each of them will 
be attached to the classes ClassA and ClassB.  If any of these objects already 
exist, they will just be attached to the classes.  If the @FROM parameter is 
added to the previous example, then

Execute “CreateObjects” @STRING="@ROOT=myObj, @FROM=21, 
@NUMOBJS=10"; @ATOMID=ClassA;)

will create ten objects called myObj21 through myObj30 and attach them 
each to ClassA.

Related Topics

Properties Execute Operator
Inheritance Strategy Dynamic Objects
Inheritance

CreateReport Routine
Definition

The Execute routine CreateReport processes a text file containing 
formatting commands and interpretations on slot variables and then 
displays the processed file.

Interactive Dialog

CreateReport is chosen with the Select Execute popup menu command 
in the Rule editor or Method editor, which automatically displays a special 
dialog box for specifying the execute parameters interactively, rather than 
by explicitly typing them in as listed below:

Parameters

The @ATOMID parameter is ignored.  
Language Reference 207



Chapter Execute Library Routines2
The @STRING parameter can include the following:  

@FILE=file_name Name of file to convert.

@ORX=horizontal origin Horizontal origin of the window displayed.

@ORY=vertical origin Vertical origin of the window displayed.

@EXTX=width Width of the window displayed.

@EXTY=height Height of the window displayed.

@WAIT Display Continue and Close buttons; Wait for 
mouse click before continuing.

@KEEP Display Information in a new window and keep it 
until the next show or the user explicitly closes it.

Only the FILE parameter is required.

Effect

The text file designated by the @FILE parameter is processed line by line.  It 
can contain commands and slot variable names as described below.  You 
assemble the commands of the text formatting language in the text file using 
any text editor.

Formatting commands specify alignment, page length, inclusion of other 
files, and sections which are included or not depending on variable values 
from the Rules Element. (See Formatting Commands for more information 
on the available commands.) Slot variables names are interpreted and are 
substituted with their current values.

The processed file will not be displayed if it contains a #noDisplay# 
formatting command and if it is saved on disk (#NewFile# or #AddFile# 
commands).

Interpreting Slot Variables

When CreateReport processes a text file, the contents of the text file are 
preprocessed.  It considers any string between “\” (back slashes) or between 
the parentheses of @V() an interpretation (dynamic value) and replaces it 
with the current value of the interpreted variable, provided it is a valid slot 
of the knowledge base.  For example:

...\passenger.fullname\...

or

...@V(passenger.fullname)

is displayed as ...Mark Johnson... if the current value of the property 
fullname of the object passenger is Mark Johnson.

After this preprocessing, the system searches for global commands and 
executes the corresponding instructions.  Afterwards, the system scans the 
text one character at a time; it then interprets and executes the local 
commands.

Important:
■ All the formatting commands and their arguments can be interpreted.  

This means that the system can interpret a dynamic Rules Element 
variable to obtain the command keyword and its arguments.
208 Language Reference



CreateReport Routine
■ If your final text must contain a backslash (\), write “\\” so that the 
parser does not mistake it for an interpretation.

Because the dynamic values are interpreted before the rest, you should 
beware of using dynamic values containing “#”:  when the system scans the 
content of the file, it understands these symbols as the beginning or the end 
of a command. 

Formatting Commands

The text formatting language contains commands that describe the way the 
text following the command needs to appear on the screen.  Each command 
starts and finishes with a # on its own line.  Do not use this symbol in the 
text itself.  The following list identifies these commands that belong to one 
of three categories: screen layout commands, text commands, and file 
commands.

Screen Layout Commands

The following commands control how much of the screen the text window 
uses.  A text window can consist of several screen pages and is scrollable by 
the end user.

Specify a Header#OpenHeader#
...(text)
#CloseHeader#

These two commands specify a header for the text window using text you 
supply.  The text must not exceed five lines.  The text between these two 
commands can contain interpretations of Rules Element variables.

Specify a Footer#OpenFooter#
...(text)
#CloseFooter#

These two commands specify a footer for the text window using text you 
supply.  The text must not exceed five lines.  The text in between these two 
commands can contain interpretations of Rules Element variables.

Set Page Length#PageLength=XXX#

This command sets the length of the page (number of lines between the top 
two consecutive headers) to XXX.  The system adds a page break every XXX 
lines.  The default page length is 50 lines.  Page breaks appear as lines of “-”.  
To change this default character, see the #SetPageBreak=char# below.

Set Page Width#PageWidth=XXX#

This command sets the width of the page (in number of columns) to XXX.  
Lines wrap around every XXX characters.  The default page width is 80 
columns.

Set Left Margin#LeftMargin=XXX#

This command sets the left margin to XXX characters.  The default left 
margin is 0.

Set Right Margin#RightMargin=XXX#

This command sets the right margin to XXX characters.  The default right 
margin is 0.
Language Reference 209



Chapter Execute Library Routines2
Specify Page Break Character#SetPageBreak=char#

This command changes the character used for displaying page breaks to the 
one you specify.

Insert Page Break#PageBreak#

This command forces a page break on the line.

Text Commands

The following commands control aspects of the text itself, including color, 
alignment, and exact position:

Set Tabs#Tabs=X#

This command lets you tab at every X number of spaces or multiple of the 
number.  Be careful using tabs with dynamic text variables since the 
formatted text position depends on the slot value not the slot name.

Center Text#Center#

This command centers the text following it.  Text remains centered until the 
Rules Element finds a #LeftAlign# or #RightAlign# command.

Left Align Text#LeftAlign#

This command makes the text following it left aligned.  Text stays left 
aligned until the Rules Element finds a #Center# or #RightAlign# 
command.

Right Align Text#RightAlign#

This command makes the text following it right aligned.  Text stays right 
aligned until the Rules Element finds a #Center# or #LeftAlign# 
command.

Set Text Column#LXXX#

This command begins the text following it on column XXX.  This command 
can appear embedded inside the text.

Align Text Column#RXXX#

This command begins the text following it on column XXX and makes it 
right aligned.  This command can appear embedded inside the text.

Set Word Wrap#WordWrap#

This command allows word wrap.  Text you display does not exceed 
#PageWidth=XXX#.  Word wrap is the default condition.

Set Character Wrap#CharWrap#

This command allows character wrap.  This disables the word wrap 
condition.

Set Precision#Precision=X#

This command lets you change the precision used to display the fractional 
part of a floating point number.  The default is 0, so fractions are ignored.

Set Date#date=YYYYY#
210 Language Reference



CreateReport Routine
This command displays the current system date in the format specified by 
YYYYY, where Y can be any of the following characters:

Blank spaces and ’/’ are valid separators.  As an example, 
#date=D_m/d/y# is replaced by Wed_01/03/90 (the underscore denotes 
a blank space).

File Commands

The following commands access files or external devices:

Override Form Feed#NoFormFeed#

This command overrides the default form feed that normally occurs when 
you print a text file, create a new file (#NewFile#), or append the file to an 
existing file (#AddFile#).

Include a File#Include a filename [,<class>] {{[+,-] index] } #

This command causes the file you specify (filename) to appear in the current 
text file.  For complete details about including files, refer to the Include 
Command section below.

Copy Text to File#NewFile=filename#

This command creates a new text file (filename) and stores all the text 
preceding this command in the newly created file.  The text is stored exactly 
as it appears on the screen, without commands.

Store Text Only in File#AddFile=filename#

This command stores all the text preceding this command in the file you 
specify (filename), without commands.  If the file you specify already exists, 
the text is appended to the end of the file.

Do not display the Text#NoDisplay#

This command will cause the text not to be displayed once it has been 
processed (the default is to display the text).  However, this commands will 
only be effective if the text was saved with a #NewFile# or #AddFile# 
command.

Conditional Statements

The following command structure lets you display text or execute 
commands only if the conditions you specify are met.

#if( condition )#
... commands and text
#elseif( condition )#
... commands and text
#else#
... commands and text
#endif#

d Uses the current date.

h Uses the current hour.

m Uses the month number.

y Uses the current year.

D Uses the first three letters of the day.

M Uses the first three letters of the month.
Language Reference 211



Chapter Execute Library Routines2
The condition compares one or more variables of the knowledge base to the 
value you specify as follows:

(\ObjectName.Property\==Value) 

This command structure uses the following operators to make comparisons:

Additionally, logical operators let you chain variables together or negate the 
variable, as follows:

Note: Use parentheses to limit operators if needed.

Include Command

This command tells CreateReport to find the file you specify and include it 
in the current text file.  The full possible syntax of an include command is 
the following:

#include=filename[,<class>[.prop]]{[,[+,-]index]}#

The filename can be followed with a class (or object) name between <> 
characters.  In this case, the file will be included once for each of the 
subobjects of the class (or object) and each occurrence of !SELF! in the 
included file will be substituted with that subobject name.  Additionally, if 
the class (or object) name is followed with a property name, occurrences of 
!PROP! in the included file will be substituted with that property name.

Any property specified after <class>[.prop] is used for determining 
how the different subobjects should be sorted.  Several of these properties 
can be used in which case the subobjects are first sorted on the first index, 
using the second index in case of a tie and so on.  If the index is prefixed with 
a '-' (minus) character, the sorting is done is descending order.  By default 
the order is ascending.

Result

The result returned by CreateReport is TRUE if the call is successful, 
FALSE if an error occurs.  

Examples

A condition or action of the form 

Execute  "CreateReport"   @STRING="@FILE=myfile";

will convert the file myfile and display the converted file.

!= Variable is not equal to the value.

== Variable is equal to the value.

< Variable is less than value.

> Variable is greater than value.

<= Variable is less than or equal to value.

>= Variable is greater than or equal to value.

&& Logical and

|| Logical or

! Logical not.
212 Language Reference



FileExist Routine
If myfile contains the following lines:

#center#
Example of CreateReport file
#leftalign#
#if(\displayall\==TRUE)#
#include=myfile2.txt,<class>#
#endif#
End of CreateReport file

and myfile2 contains:

Object of class: !SELF! with value @V(!SELF!.Info)

and displayall is TRUE and class has two subobjects obj1 and obj2 
with their property Info being Info1 and Info2, the converted file will be 
displayed as:

Example of CreateReport file
Object of class: obj1 with value Info1
Object of class: obj2 with value Info2
End of CreateReport file

FileExist Routine
Definition

The Execute routine FileExist tests whether a designated file currently 
exists.  

Interactive Dialog

FileExist is chosen with the Select Execute popup menu command in the 
Rule editor or Method editor, which automatically displays a special dialog 
box for specifying the execute parameters interactively, rather than by 
explicitly typing them in as listed below: 

Parameters

The @ATOMID parameter is ignored.  

The @STRING parameter must include the following:  

@FILE=file_name Name of desired file.

@RETURN=answer_slot Name of slot in which to return result of test.

Both parameters are required.  The destination specified by @RETURN must 
be a boolean-valued slot.  
Language Reference 213



Chapter Execute Library Routines2
Effect

The destination slot designated by the @RETURN parameter is set to TRUE or 
FALSE, depending on whether the requested file currently exists.  If the 
@FILE parameter does not specify a full path name, the file is sought in the 
current search path.  

Result

The result returned by FileExist is TRUE if the call is successful, FALSE if 
an error occurs.  

Examples

A condition or action of the form 

Execute  "FileExist"@STRING="@FILE=Flapdoo.dle, 
@RETURN=TheAnswer.Value";

will set TheAnswer.Value to TRUE if file Flapdoo.dle exists in the 
current search path, FALSE if it does not.  

FindListElem Routine
Definition

The Execute routine FindListElem finds the largest or smallest object in a 
list according to the value of a designated property, and attaches it to a 
specified frame (object or class).  

Interactive Dialog

FindListElem is chosen with the Select Execute popup menu command 
in the Rule editor or Method editor, which automatically displays a special 
dialog box for specifying the execute parameters interactively, rather than 
by explicitly typing them in as listed below: 

Parameters

The @ATOMID parameter is a pattern specifying a list of slots (object 
properties) whose values are to be searched.  
214 Language Reference



FindListElem Routine
The @STRING parameter may include the following:  

@LINKTO=destination Destination frame to which retrieved element is to 
be attached.

@MIN (Optional) Find smallest value in list.

@MAX (Optional) Find largest value in list.

@REMOVE=parent_frame (Optional) Parent frame from which element is to 
be detached.

Exactly one of the parameters @MIN and @MAX must be specified.  The 
@REMOVE parameter, if present, must explicitly name a parent frame 
because the elements may have more than one parent.  

Effect

The list of slots specified by @ATOMID is searched for the minimum or 
maximum value, as requested.  The corresponding object is then attached to 
the frame named by the @LINKTO parameter as an instance or component 
(subobject).  If a @REMOVE parameter is specified, the object is detached from 
the designated frame after being attached to the @LINKTO frame.  

Result

The result returned by FindListElem is TRUE if the call is successful, 
FALSE if an error occurs.  

Examples

Suppose the object Nephews has three components (subobjects) with the 
following properties:  

nephew1.name = "Huey" nephew1.capColor = "red"
nephew2.name = "Dewey" nephew2.capColor = "green"
nephew3.name = "Louie" nephew3.capColor = "blue"

Then a condition or action of the form 

Execute    "FindListElem" @ATOMID=<Nephews>.name;
@STRING="MIN,@LINKTO=SomeDucks";

will attach nephew2 (the object with the smallest value for property name) 
as a component of the object SomeDucks, while

Execute   "FindListElem" @ATOMID=<Nephews>.capColor;
@STRING="MAX,@LINKTO=SomeDucks,
@REMOVE=Nephew";

will instead attach nephew1 (the object with the largest value for property 
capColor) as a component of SomeDucks, and will also remove it as an 
instance of class Nephew.  

Note: The value types of the slots can be anything (STRING, INTEGER, 
TIME, DATE, etc.)  and they will be compared accordingly.  You don’t 
need to specify the value types, however all the slots in the @ATOMID 
pattern must be the same type.

Related Topics

Execute Operator
Patterns
Language Reference 215



Chapter Execute Library Routines2
GetListElem Routine
Definition

The Execute routine GetListElem retrieves elements from a list of frames 
(objects or classes) and attaches them to another frame.  

Interactive Dialog

GetListElem is chosen with the Select Execute popup menu command in 
the Rule editor or Method editor, which automatically displays a special 
dialog box for specifying the execute parameters interactively, rather than 
by explicitly typing them in as listed below:

Parameters

The @ATOMID parameter is a pattern specifying a list of frames (objects or 
classes) whose elements are to be retrieved.  

The @STRING parameter may include the following:  

@LINKTO=destination Destination frame to which retrieved elements are 
to be attached.

@FROM=start_index Index of first element to be retrieved.  If start_index 
is negative, then counting starts from the end of the 
list.

@TO=end_index (Optional) Index of last element to be retrieved.  If 
end_index is negative, then counting starts from 
the end of the list.

@RANKSET=rank_prop (Optional) Property by which elements are to be 
ranked.  Property must be the type INT.

@REMOVE=parent_frame
(Optional) Parent frame from which elements are 
to be detached.

The @REMOVE parameter, if present, must explicitly name a parent frame 
because the elements may have more than one parent.  
216 Language Reference



GetListElem Routine
Effect

The elements found at the given indices in the list specified by @ATOMID 
are attached as instances or components (subobjects) of the destination 
frame designated by @LINKTO.  If no @TO index is given, only the single 
element at index @FROM is retrieved.  

If either the @FROM or @TO parameters is negative, the counting starts 
from the end of the list.  For example, @FROM = -1, @TO = -3 will get the 
last element through the third-from-last.

If a @RANKSET parameter is present, it identifies an integer property 
giving each list element’s ordinal rank according to some ranking criterion 
(presumably assigned via an earlier call to the Execute routine RankList).  
The @FROM and @TO indices then refer to this logical rank rather than to 
the element’s physical position within the list.  

If a @REMOVE parameter is specified, the list elements are detached from 
the designated frame after being attached to the @LINKTO frame.  

Result

The result returned by GetListElem is TRUE if the call is successful, FALSE 
if an error occurs.  

Examples

Suppose class Duck has five instances whose name properties are equal to 
Donald, Daisy, Huey, Dewey, and Louie.  Then a condition or action of the 
form 

Execute  "GetListElem"
@ATOMID=<Duck>;@STRING="@FROM=2,@TO=4,

 @LINKTO=SomeDucks";

will attach Daisy, Huey, and Dewey (the second through fourth elements 
of the list) as components of the object SomeDucks.  

If a previous call to RankList has ranked the instances of Duck 
alphabetically according to their name properties, setting 

Daisy.name_rank = 1
Dewey.name_rank = 2
Donald.name_rank = 3
Huey.name_rank = 4
Louie.name_rank = 5

then 

Execute  "GetListElem"
@ATOMID=<Duck>;@STRING="@FROM=2,@TO=4,

@LINKTO=SomeDucks,@RANKSET=name_rank,
@REMOVE=Duck";

will instead attach Dewey, Donald, and Huey (the second- through 
fourth-ranked elements according to property name_rank) as components 
of SomeDucks, and will also remove them as instances of class Duck.  

If you used the parameters in the above example, @FROM=-1, @TO=-2, the 
last through second to last elements, namely HUEY and LOUIE, are attached 
to SomeDucks since the indices are negative.
Language Reference 217



Chapter Execute Library Routines2
Related Topics

Execute Operator
Patterns
RankList Routine

GetMultiValue Routine
Definition

The Execute routine GetMultiValue extracts one or more elements from 
a multi-value.  

Interactive Dialog

GetMultiValue is chosen with the Select Execute popup menu command 
in the Rule editor or Method editor, which automatically displays a special 
dialog box for specifying the execute parameters interactively, rather than 
by explicitly typing them in as listed below: 

Parameters

The @ATOMID parameter consists of one or two items:  

■ The name of a slot (object property), multi_val, containing a multi-value 
string whose elements are to be extracted

■ (Optional) A slot name, return_slot, or a pattern, return_pat, specifying 
a list of slots to receive the extracted elements

The @STRING parameter may include the following:  

@INDEX=index_number (Optional) Index of desired element.

@LENGTH (Optional) Requests number of elements in 
multi-value.

@RETURN=length_slot (Optional) Slot in which to return number of 
elements.
218 Language Reference



GetMultiValue Routine
@STRAT=options (Optional) Strategy options governing the 
assignment (see Execute Library Overview for 
details).

If @LENGTH is specified, then @RETURN must be included as well.  

Effect

If an @INDEX parameter is given, the element at that index in multi_val is 
returned as the value of return_slot.  If the specified index exceeds the 
number of elements in the multi-value, a warning will be posted to the 
transcript, but the Execute routine itself will not fail.  

If no @INDEX parameter is given, all elements of multi_val are extracted and 
assigned individually to the slots designated by return_pat.  

If @LENGTH is specified, the length of multi_val (the number of elements it 
contains) is assigned as the value of length_slot.  

Result

The result returned by GetMultiValue is TRUE if the call is successful, 
FALSE if an error occurs.  

Examples

Suppose the object Nephews has three components (subobjects) named 
Huey, Dewey, and Louie, each of which has a property named capColor.  
If TheColors.Value contains the multi-value red,green,blue, then 

Execute   "GetMultiValue" @ATOMID=TheColors.Value,
<Nephews>.capColor;

will assign red, green, and blue to Huey.capColor, Dewey.capColor, 
and Louie.capColor, respectively.  

Execute   "GetMultiValue"
@ATOMID=TheColors.Value,Dewey.capColor;

 @STRING="@INDEX=2";

will set Dewey.capColor to green, the second element of 
TheColors.Value, and

Execute   "GetMultiValue" @ATOMID=TheColors.Value;
@STRING="@LENGTH,

 @RETURN=TheColors.len";

will set TheColors.len to 3, the number of elements in 
TheColors.Value.  

Note: If the number of elements in the multivalue does not match the 
number of slots in the return_pat, a warning will be posted in the 
transcript, but the Execute routine itself will not fail.

Related Topics

Execute Operator
Multi-Values
Patterns
Language Reference 219



Chapter Execute Library Routines2
GetRelatives Routine
Definition

The Execute routine GetRelatives stores the inheritance pathway class 
and/or object names of a given frame in a string slot as a multi-value.

Interactive Dialog

GetRelatives is chosen with the Select Execute popup menu command 
in the Rule editor or Method editor, which automatically displays a special 
dialog box for specifying the execute parameters interactively, rather than 
by explicitly typing them in as listed below: 

Parameters

The @ATOMID parameter is the name of a frame whose inheritance pathway 
is to be tested.

The @STRING parameter may include the following:  

@ONELEVEL (Optional) Get only immediate parents or children.

@EVERYLEVEL (Optional) Get all parents or children up or down 
from every level of inheritance.

@CHILDREN (Optional) Get descendants for class or object.

@PARENTS (Optional) Get ancestors for class or object.

@CLASSES (Optional) Report relatives that are classes.

@OBJECTS (Optional) Report relatives that are objects.

@RETURN=multi_val  Name of slot in which to report results.

The parameters @CHILDREN and @PARENTS are mutually exclusive, and 
may not both be specified, as are @ONELEVEL and @EVERYLEVEL.  If 
@CLASSES and @OBJECTS are omitted then both classes and objects are 
reported.
220 Language Reference



GetRelatives Routine
Effect

The target slot @RETURN contains the names of the relatives of the specified 
atom as a multi-value.  Relatives are the objects and classes that form the 
inheritance pathways of the specified atom (@ATOMID).  The relatives can 
be the parents or children, classes and/or objects, immediate or all inclusive 
depending on the @STRING options specified.

Result

The result returned by GetRelative is TRUE if the call is successful, FALSE 
if an error occurs.  

Example

ClassA and ClassB both have children Classc and ClassD.  Classc has 
a child ObjE and ClassD has a child ObjF like this:

GetRelatives (@STRING="@ONELEVEL, @CHILDREN,
@RETURN=answer.mulVal"; @ATOMID=ClassA;)

This will return the multi-value ClassC,ClassD in answer.mulVal.

GetRelatives (@STRING="@EVERYLEVEL, @CHILDREN,
@RETURN=answer.mulVal";@ATOMID=ClassB;)

This will return the multi-value ClassC,ClassD,ObjE,ObjF in 
answer.mulVal.

GetRelatives (@STRING="@EVERYLEVEL, @CHILDREN, @CLASSES, 
@RETURN=answer.mulVal"; @ATOMID=ClassB;)

This will return the multi-value ClassC,ClassD in answer.mulVal.  
Notice that ObjE and ObjF are not included because we specified 
@CLASSES only.

GetRelatives (@STRING="@EVERYLEVEL, 
@PARENTS,@RETURN=answer.multiVal"; 
@ATOMID=ObjE;)

This will return the multi-value ClassC,ClassA,ClassB in slot 
answer.multiVal.

ClassA ClassB

ClassC ClassD

ObjE ObjF
Language Reference 221



Chapter Execute Library Routines2
Journal Routine
Definition

The Execute routine Journal performs all of the Rules Element’s standard 
journaling operations.  

Interactive Dialog

Journal is chosen with the Select Execute popup menu command in the 
Rule editor or Method editor, which automatically displays a special dialog 
box for specifying the execute parameters interactively, rather than by 
explicitly typing them in as listed below:

Parameters

The @ATOMID parameter is ignored.  

The @STRING parameter may include the following:  

@operation Journaling operation to be performed (see 
Operations below).

@FILE=file_name (Optional) Name of journal file.

@PLAYSTEP (Optional) Replay step by step.

@PLAYSKIPSHOW (Optional) Skip Show operators.

@PLAYNOSCAN (Optional) Don’t scan file.

The @FILE parameter is not needed with the journaling operations 
@RECORDSTOP and @PLAYSTOP (see “Operations,” below), but is required 
with all other operations.  The last three parameters are meaningful only in 
connection with the @PLAYSTART operation.  

Operations

The operation specifier included in the @STRING parameter identifies the 
journaling operation to be performed.  It must consist of exactly one of the 
following:  

@RECORDSTART Start Recording

@RECORDSTOP Stop recording

@PLAYSTART Start playback
222 Language Reference



LinkMultiValue Routine
All operations except @RECORDSTOP and @PLAYSTOP require a @FILE 
parameter to identify the journal file to be used.  The @PLAYSTART 
operation may optionally be modified by including the additional 
parameters @PLAYSTEP, @PLAYNOSCAN, or @PLAYSKIPSHOW.  

Effect

The journaling operation specified in the @STRING parameter is executed.  

Result

The result returned by Journal is TRUE if the call is successful, FALSE if an 
error occurs.  

Examples

A condition or action of the form 

Execute  "Journal" @STRING="@STATESAVE,@FILE=Session.jou";

will save the current state of the session in the journal file Session.jou; 
thereafter, 

Execute  "Journal"
@STRING="@STATERESTORE,@FILE=Session.jou";

will restore the session to the state previously saved.  

Related Topics

Execute Operator
Journaling

LinkMultiValue Routine
Definition

The Execute routine LinkMultiValue creates links from objects listed by 
name in a list of multi-values to a specified class or object.

@PLAYSTOP Stop playback

@VALUESSAVE Save slot values only

@STATESAVE Save complete state

@STATERESTORE Restore complete state
Language Reference 223



Chapter Execute Library Routines2
Interactive Dialog

LinkMultiValue is chosen with the Select Execute popup menu 
command in the Rule editor or Method editor, which automatically displays 
a special dialog box for specifying the execute parameters interactively, 
rather than by explicitly typing them in as listed below: 

Parameters

The @ATOMID parameter is a list of multivalue slots which contain the 
names of objects to be linked.

The @STRING parameter may include the following:  

@LINKTO=atom_name Objects named in the multi-values are linked to 
this frame (object or class).

@CREATEOBJECTS (Optional) Ensures all objects named in the 
multi-values are linked whether they already exist 
or not.

If you omit the @CREATEOBJECTS parameter, you must ensure the names 
in the multivalues are legitimate object names.

Effect

The values in the multivalue lists become objects linked to the specified 
object or class.  If the @CREATEOBJECTS parameter is specified, new objects 
are created; otherwise, the names in the multivalue lists must already exist 
in the system as object names.

Result

The result returned by LinkMultiValue is TRUE if the call is successful, 
FALSE if an error occurs.  

Examples

Assume <MClass> contains three objects Obj1, Obj2, and Obj3 with a 
string property mval for holding a multi-value.  The current values are as 
follows:

Obj1.mval = "alpha,beta,charlie"
Obj2.mval = "delta,echo,fox"
Obj3.mval = "gulf,hotel,india"
224 Language Reference



Message Routine
Assume that the objects alpha, beta, charlie, delta, and echo already 
exist.

LinkMultiValue (@STRING="@LINKTO=myFrame"; @ATOMID=Obj1.mval;)

This will link all of the objects whose names are in Obj1.mval to the frame 
myFrame.  So, alpha, beta, and charlie will all be linked to myFrame.

LinkMultiValue (@STRING="@LINKTO=myFrame";
@ATOMID=Obj1.mval,Obj2.mval;)

This will link the objects in Obj1.mval and Obj2.mval to myFrame.  
However, since fox does not exist, it will not be created or linked.

LinkMultiValue (@STRING="@LINKTO=myFrame, @CREATEOBJECTS"; 
@ATOMID=<MClass>.mval;)

This will link all objects whose names are in all of the multi-values that are 
in the class MClass to the frame myFrame.  Since @CREATEOBJECTS is 
specified, the objects that don’t exist yet (fox, gulf, hotel and india) will 
be created.

Related Topics

Inheritance
Multi-Values
Execute Operator
AtomName Routine

Message Routine
Definition

The Execute routine Message posts a message on the screen or sends one to 
the banner or transcript handler.  

Interactive Dialog

Message is chosen with the Select Execute popup menu command in the 
Rule editor or Method editor, which automatically displays a special dialog 
box for specifying the execute parameters interactively, rather than by 
explicitly typing them in as listed below: 
Language Reference 225



Chapter Execute Library Routines2
Parameters

The @ATOMID parameter is ignored.  

The @STRING parameter may include the following:  

@TEXT=text_string Text of message to be posted.

@RETURN=reply_slot (Optional) Name of slot in which to return user’s 
reply.

@OK (Optional) If present, use dialog box with one 
button labeled OK.

@OKCANCEL (Optional) If present, use dialog box with two 
buttons labeled OK and Cancel.

@YESNOCANCEL (Optional) If present, use dialog box with three 
buttons labeled Yes, No, and Cancel.

@BANNER (Optional) If present, send message to banner 
handler.

@TRANSCRIPT (Optional) If present, send message to transcript 
handler.

@STRAT=options (Optional) Strategy options governing assignment 
to reply slot (see Execute Library Overview for 
details).

The parameters @OK, @OKCANCEL, @YESNOCANCEL, @BANNER, and 
@TRANSCRIPT are mutually exclusive; at most one may be specified.  If 
none is present, @OK is assumed by default.  

The @RETURN parameter is needed only with @OKCANCEL or 
@YESNOCANCEL, and will be ignored if @OK, @BANNER, or @TRANSCRIPT is 
specified.  

Effect

If @OK, @OKCANCEL, or @YESNOCANCEL is specified, the message given by 
the @TEXT parameter is displayed in a dialog box with the requested 
number of buttons using the Alert Handler.  The value returned in the 
@RETURN parameter identifies the button the user used to dismiss the 
dialog: 

1 OK or Yes
0 Cancel
-1 No

If @BANNER or @TRANSCRIPT is specified, the message is sent to the banner 
or transcript handler instead of an on-screen dialog box; no result value is 
returned.  

Result

The result returned by Message is TRUE if the call is successful, FALSE if an 
error occurs.  
226 Language Reference



Parse Routine
Examples

A condition or action of the form 

Execute  "Message" @STRING="@TEXT=Do you want to continue?, 
@OKCANCEL,@RETURN=answer.Value";

will post the message Do you want to continue? in a dialog box with 
two buttons labeled OK and Cancel.  The contents of answer.Value will 
be set to 1 or 0 to indicate whether the user clicked OK or Cancel.  

A condition or action of the form 

Execute  "Message" @STRING="@TEXT=Now entering rule 5,
@TRANSCRIPT";

will post the message Now entering rule 5 to the transcript.  

Related Topics

Execute Operator Multi-Values

Parse Routine
Definition

The Execute routine Parse separates a larger string into its component 
parts and stores the next string token into a slot.

Interactive Dialog

Parse is chosen with the Select Execute popup menu command in the Rule 
editor or Method editor, which automatically displays a special dialog box 
for specifying the execute parameters interactively, rather than by explicitly 
typing them in as listed below: 
Language Reference 227



Chapter Execute Library Routines2
Parameters

The @ATOMID parameter consists of two parts:

■ CharPosSlot:  The character position from which to begin parsing is an 
integer slot.

■ CharStringSlot:  The slot that contains the string to be parsed into 
component strings.

The @STRING parameter may include the following:  

@WORDS (Optional) Search for string tokens separated by 
spaces.

@LIST (Optional) Search for string tokens separated by 
commas.

@RETURN=string_slot Name of slot in which to return the next token after 
the current character position.

If @WORDS and @LIST are omitted, the system uses the default @WORDS 
mode.  The destination specified by @RETURN must be a string slot.

Effect

This execute parses the @ATOMID string slot for either words or list 
elements.  In either @WORDS or @LIST mode, the ParseStringSlot will be 
parsed starting from the character position in the integer slot CharPosSlot.  
The next string token found will be returned in the StringSlot.  If no token is 
found, an empty string will be returned, and the CharPosSlot will be set to 
-1.  If a token is found, CharPosSlot will be advanced to the next character 
position after the token.  This enables you to set up a looping rule which 
parses out each token one by one.  (See examples.)

In @WORDS mode, a token is defined as a string of visible (non-blank) 
characters separated by spaces.  In this mode, a comma or an equals sign can 
also separate two tokens.  In that case, the comma or equals sign would be 
considered as a separate token.  For example, the following shows how a 
string would be parsed in @WORDS mode:

The string:  "hello there a=b 1,2"
Token 1:  "hello"
Token 2:  "there"
Token 3:  "a"
Token 4:  "="
Token 5:  "b"
Token 6:  "1"
Token 7:  ","
Token 8:  "2"

In @LIST mode, a token is defined as a string of characters separated by 
commas.  In this case, the commas are not considered tokens, just 
separators.  The leading and trailing blanks in a token are eliminated, but 
embedded blanks are retained.  Here is an example of parsing in @LIST 
mode:

The string:  "item1,  item2,    two words"
Token 1:  "item1"
Token 2:  "item2"
Token 3:  "two words"
228 Language Reference



Parse Routine
Result

The result returned by Parse is TRUE if the call is successful, FALSE if an 
error occurs.  

Examples

The following example shows how to set up 2 rules which parse the words 
out of a sentence:

Example 1

Rule 1:

If  there is evidence of something
And  "This is a sentence" is assigned to 

ParseString.strVal
And  0 is assigned to CharPos.intVal
And  there is no evidence of ParseLoop

Then  Hypo 
is confirmed.

Rule 2:

If  CharPos.intVal is greater than or equal to 0
And  Execute "Parse" (@ATOMID=CharPos.intVal,

ParseString.strVal"; @STRING="@WORDS,
@RETURN=Token.strVal";)

And  <...do something with Token.strVal here...>
Then  ParseLoop 

is confirmed.
And  Reset ParseLoop

When Hypo is suggested, the string This is a sentence is assigned to 
ParseString.strVal, and CharPos.intVal is set to zero.  Then, the 
next condition forces backward chaining to rule 2.  That rule checks to see if 
CharPos.intVal is greater than or equal to zero.  Since it is, it then 
executes Parse.  Parse will return the first token in 
ParseString.strVal by setting Token.strVal to This.  You can then 
do whatever you want with that token.  Parse also sets CharPos.intVal 
to the character position right after the token, which in this case would be 4 
(since the count starts at 0).  On the right hand side of the rule, the 
hypothesis ParseLoop is reset which causes it to be executed again.

The next time Rule 2 is executed, CharPos.intVal will be 4, so the token 
returned by Parse will be is.  The loop continues in this manner until no 
more tokens are found.  At that point, CharPos.intVal is set to -1, and the 
hypothesis ParseLoop is rejected which then causes Hypo to be confirmed.

Examples 2 and 3

The following two examples show the difference between parsing in 
@WORDS mode and @LIST mode.  For both examples, CharPos.intVal 
contains 0 and ParseString.strVal contains the following string:

"Hello there, Bob"
@PARSE (@STRING="@WORDS, @RETURN=Token.strVal"; 

@ATOMID=CharPos.intVal, ParseString.strVal;)

After executing this, Token.strVal will contain Hello, and 
CharPos.intVal will contain 5 since the token ends on character 4 
(starting the count with 0).  If this were executed again, the next time 
Token.strVal would contain there and CharPos.intVal would 
contain 11.  The next time, Token.strVal would contain "," and 
Language Reference 229



Chapter Execute Library Routines2
CharPos.intVal would contain 12.  Then, Bob and 16.  Finally, on the 
fifth try, the token would be empty, and CharPos.intVal would be set to 
-1 to indicate that there are no more tokens in the string.

@PARSE (@STRING="@LIST, @RETURN=Token.strVal"; 
@ATOMID=CharPos.intVal, ParseString.strVal;)

After executing this, Token.strVal will contain Hello there and 
CharPos.intVal will contain 11.  Since we are in @LIST mode, 
everything up to the comma is considered part of the token except for 
leading and trailing blanks.  If we execute this again, Token.strVal will 
contain Bob and CharPos.intVal will contain 16.  Finally, a third 
execution will cause the token to be empty and CharPos.intVal will be 
-1.  Notice in @LIST mode, the comma was never returned as a token.  
@LIST mode is useful for parsing lists such as multi-values.

Related Topics

Execute Operator

PatternMatcher Routine
Definition

The Execute routine PatternMatcher compares a slot against a list of slots 
and links a specified number of matches to a specified class.

Interactive Dialog

PatternMatcher is chosen with the Select Execute popup menu 
command in the Rule editor or Method editor, which automatically displays 
a special dialog box for specifying the execute parameters interactively, 
rather than by explicitly typing them in as listed below: 
230 Language Reference



PatternMatcher Routine
Parameters

The @ATOMID parameter consists of two parts:

■ The test slot that you want to compare to the list of slots.

■ The list of slots that you perform the test on.

The @STRING parameter may include the following:

@LINKTO=destination Destination frame to which successfully tested 
elements are attached.

@LINKTESTED=testedFrame
(Optional) Frame to which tested but failed 
elements are attached.

@LINKUNTESTED=untestedFrame
(Optional) Frame to which not yet tested elements 
are attached.

@NUMMATCH=number (Optional) Continue test until specified number of 
matches are found.

@operation (Optional) Test operation to be performed (see 
Operations below).

If @NUMMATCH is omitted, the system uses the default 1.  Also if no test 
operator keyword is supplied, the default is @EQUAL.

Operations

The operation specifier included in the @STRING parameter identifies the 
operation to be performed on the pair of multi-values designated by 
@ATOMID and @VALUE.  It must consist of exactly one of the following:  

@EQUAL All elements in ListOfSlots that have values equal 
to the value of testSlot

@NOT_EQUAL All elements in ListOfSlots that have values that 
are not equal to the value of testSlot

@LESS All elements in ListOfSlots that have values less 
than the value of testSlot

@LESS_EQUAL All elements in ListOfSlots that have values less 
than or equal to the value of testSlot

@GREATER All elements in ListOfSlots that have values greater 
than the value of testSlot

@GREATER_EQUAL All elements in ListOfSlots that have values greater 
than or equal to the value of testSlot

Effect

The PatternMatcher tests each of the slots in the ListOfSlots against 
the testSlot according to one of the test operators.  As soon as the 
specified number of matches is found, PatternMatcher stops checking.  
For example, if the ListOfSlots has five slots that pass the test, but 
@NUMMATCH was set to 3, only the first three successful tests will be linked 
to the linkFrame.
Language Reference 231



Chapter Execute Library Routines2
Optionally, you can also have all slots which were tested but don’t pass the 
test condition attached to the testedFrame, and all slots which have yet to 
be tested linked to the untestedFrame.  If the actual number of matches is 
less than the number specified in @NUMMATCH, then the whole list will be 
searched and nothing will be linked to the untestedFrame.

Result

The result returned by PatternMatcher is TRUE if the call is successful, 
FALSE if an error occurs.  

Examples

Assume <Class1> has two properties weight and color and five objects 
Obj1 through Obj5.  The current values are as follows:

Obj1.weight = 10 Obj1.color = blue
Obj2.weight = 20 Obj2.color = green
Obj3.weight = 30 Obj3.color = orange
Obj4.weight = 40 Obj4.color = red
Obj5.weight = 50 Obj5.color = yellow

Another object tester also has two properties pounds and finish with 
values as follows:

tester.pounds = 25 tester.finish = "orange"

Also, we have three classes for attaching results:  linkClass, 
testedClass, and untestedClass.

PatternMatcher (@STRING="@LINKTO=linkClass, @GREATER, 
@NUMMATCH=2"; 

@ATOMID=tester.pounds,<Class1>.weight;)

This will match the first two objects in Class1 whose weight is greater than 
tester.pounds.  So, in this case, Obj3 and Obj4 will be linked to 
linkClass.

PatternMatcher (@STRING="@LINKTO=linkClass, 
@LINKTESTED=testedClass,
@LINKUNTESTED=untestedClass, 
@GREATER, @NUMMATCH=2";
@ATOMID=tester.pounds,<Class1> weight;)

This is basically the same as the previous example, except that we are 
linking the tested and untested objects to frames.  So, in this case, Obj1 and 
Obj2 will be linked to testedClass, Obj3 and Obj4 will be linked to 
linkClass, and Obj5 will be linked to untestedClass.

PatternMatcher (@STRING="@LINKTO=linkClass, @EQUAL";
@ATOMID=tester.finish,<Class1>.color;)

This will find the first object in Class1 whose color is equal to the finish in 
tester.  So, in this case, Obj3 will be linked to linkClass.

Related Topics

Patterns
Execute Operator
232 Language Reference



PropagateValue Routine
PropagateValue Routine
Definition

The Execute routine PropagateValue assigns the value of a specified 
atom to atoms in the inheritance pathway that contain the same property.

Interactive Dialog

PropagateValue is chosen with the Select Execute popup menu 
command in the Rule editor or Method editor, which automatically displays 
a special dialog box for specifying the execute parameters interactively, 
rather than by explicitly typing them in as listed below:

Parameters

The @ATOMID parameter is the name of a slot whose properties you wish to 
propagate.

The @STRING parameter may include the following:  

@ONELEVEL (Optional) Propagate only to immediate parents or 
children.

@EVERYLEVEL (Optional) Propagate to all parents or children up 
or down from @ATOMID.

@CHILDREN (Optional) Propagate down to descendants.

@PARENTS (Optional) Propagate up to ancestors.

@CLASSES (Optional) Propagate to relatives that are classes.

@OBJECTS (Optional) Propagate to relatives that are objects.

The parameters @CHILDREN and @PARENTS are mutually exclusive, and 
may not both be specified, as are @ONELEVEL and @EVERYLEVEL.  If 
@CLASSES and @OBJECTS are omitted then both classes and objects are 
used.
Language Reference 233



Chapter Execute Library Routines2
Effect

The relatives that share the same property as the specified atom receive the 
value of that atom.  Relatives are the objects and classes that form the 
inheritance pathways of the specified atom.  The relatives can be the parents 
or children, classes and/or objects, immediate or all inclusive depending on 
the @STRING options specified. 

Result

The result returned by PropagateValue is TRUE if the call is successful, 
FALSE if an error occurs.  

Examples

A <ClassA> and <ClassB> both have subclasses <ClassC> and 
<ClassD>.  <ClassC> has a subobject ObjE.  <ClassD> has a subobject 
ObjF:

PropagateValue (@STRING="@EVERYLEVEL, @CHILDREN"; @ATOMID=ClassA.intval;)

This will propagate the current value in ClassA.intval to all of the 
children which have a property intval on all levels.  So, whatever the 
current value is ClassA.intval is, that value will be propagated to 
ClassC.intval, ClassD.intval, ObjE.intval and ObjF.intval.

PropagateValue (@STRING="@ONELEVEL, @PARENTS"; @ATOMID=ClassC.intval;)

This will propagate the current value of ClassC.intval to its parents, 
ClassA.intval and ClassB.intval.  If those objects do not have the 
property intval, it will not be created and the value will not be 
propagated.

PropagateValue (@STRING="@EVERYLEVEL, @CHILDREN, @CLASSES"; 
@ATOMID=ClassA.intval;)

This will propagate the current value of ClassA.intval to all of the 
children classes (not objects).  So, the value will be propagated to 
ClassC.intval and ClassD.intval.

Related Topics

Patterns
Execute Operator

ClassA ClassB

ClassC ClassD

ObjE ObjF
234 Language Reference



RankList Routine
RankList Routine
Definition

The Execute routine RankList ranks a list of objects or classes according to 
the value of a designated property.  

Interactive Dialog

RankList is chosen with the Select Execute popup menu command in the 
Rule editor or Method editor, which automatically displays a special dialog 
box for specifying the execute parameters interactively, rather than by 
explicitly typing them in as listed below: 

Parameters

The @ATOMID parameter is a pattern specifying a list of objects or classes to 
be ranked.  

The @STRING parameter may include the following:  

@RANKBY=rank_prop Property determining ranking.

@RANKSET=set_prop Property into which rank is to be stored.

@INCREASING (Optional) If present, rank in increasing order.

@DECREASING (Optional) If present, rank in decreasing order.

@STRAT=options (Optional) Strategy options governing the 
assignment (see Execute Library Overview for 
details).

At most one of the parameters @INCREASING and @DECREASING may be 
specified; if neither is present, @INCREASING is assumed by default.  
Language Reference 235



Chapter Execute Library Routines2
Effect

The objects or classes specified by @ATOMID are ranked according to the 
value of the property designated by @RANKBY.  The property designated by 
@RANKSET is then set to the corresponding numerical rank, from 1 to the 
length of the list.  

If the @INCREASING parameter is specified, a rank of 1 denotes the object 
or class with the smallest value for the designated property; if 
@DECREASING, the one with the greatest value.  

The rank_prop can be any type (STRING, INTEGER, TIME, DATE, etc.) but 
all of the objects or classes in the pattern must have this property.  Also, the 
set_prop must be INTEGER type and all of the objects or properties in the 
pattern must have this property.

Result

The result returned by RankList is TRUE if the call is successful, FALSE if 
an error occurs.  

Examples

If class Duck has five instances whose name properties are equal to Donald, 
Daisy, Huey, Dewey, and Louie, then 

Execute "RankList" @ATOMID=<Duck>;@STRING= "@RANKBY=name,
@RANKSET=name_rank,@INCREASING";

will rank the instances alphabetically by their name fields, setting 
Daisy.name_rank equal to 1, Dewey.name_rank to 2, 
Donald.name_rank to 3, Huey.name_rank to 4, and 
Louie.name_rank to 5, while  

Execute "RankList" @ATOMID=<Nephews>;@STRING= "@RANKBY=name,
@RANKSET=name_rank, @DECREASING";

will set Daisy.name_rank to 5, Dewey.name_rank to 4, 
Donald.name_rank to 3, Huey.name_rank to 2, and 
Louie.name_rank to 1.  

Related Topics

Patterns
Execute Operator

ResetFrame Routine
Definition

The Execute routine ResetFrame resets all properties of one or more 
frames (objects or classes) to UNKNOWN.  
236 Language Reference



ResetFrame Routine
Interactive Dialog

ResetFrame is chosen with the Select Execute popup menu command in 
the Rule editor or Method editor, which automatically displays a special 
dialog box for specifying the execute parameters interactively, rather than 
by explicitly typing them in as listed below: 

Parameters

The @ATOMID parameter is the name of a frame (object or class) whose 
properties are to be reset, or a pattern specifying a list of such frames.  

The @STRING parameter is ignored.  

Effect

All properties of each object or class designated by the @ATOMID parameter 
are reset to UNKNOWN.  

Result

The result returned by ResetFrame is TRUE if the call is successful, FALSE 
if an error occurs.  

Examples

Suppose class Cube has two instances named cube1 and cube2 and three 
properties named width, height, and depth.  Then an action of the form 

Execute  "ResetFrame"  @ATOMID=cube1;

will reset the properties 

cube1.width
cube1.height
cube1.depth

to UNKNOWN, and  

Execute  "ResetFrame"  @ATOMID=<Cube>;

will reset 

cube1.width cube2.width
cube1.heightcube2.height
cube1.depth cube2.depth

Related Topics

Data Types
Patterns
Execute Operator
Language Reference 237



Chapter Execute Library Routines2
SetMultiValue Routine
Definition

The Execute routine SetMultiValue adds or deletes elements from one or 
more multi-values.  

Interactive Dialog

SetMultiValue is chosen with the Select Execute popup menu command 
in the Rule editor or Method editor, which automatically displays a special 
dialog box for specifying the execute parameters interactively, rather than 
by explicitly typing them in as listed below

Parameters

The @ATOMID parameter is the name of a slot (object property) containing a 
multi-value string to be operated on, or a pattern specifying a list of such 
slots.  

The @STRING parameter may include the following:  

@ADD=value_list (Optional) List of elements to be added.

@DELETE=value_list (Optional) List of elements to be deleted.

@DUPLICATE (Optional) Allow duplicate occurrences of the 
same element in a multi-value.

@NODUPLICATE (Optional) Avoid duplicate occurrences of the 
same element in a multi-value.

@STRAT=options (Optional) Strategy options governing the 
assignment (see Execute Library Overview for 
details).

@COMP=value-type (Optional)  Specifies the way in which the 
individual values in the multivalues are to be 
compared.  (See Value Types below.)
238 Language Reference



SetMultiValue Routine
At most one of the parameters @DUPLICATE and @NODUPLICATE may be 
specified; if neither is present, @NODUPLICATE is assumed by default.  

Value Types

The comp specifier can be used for indicating how the individual values in 
a multivalue are to be compared.  If it is absent, STRING is the default.  The 
following types are valid: STRING, INT, FLOAT, DATE, and TIME.

For example, if one multivalue contains the element 1.0 and another 
multivalue contains the element 1.00, these will be regarded as the same 
value if @COMP=FLOAT is specified.  However, if @COMP=STRING is 
specified (the default), they are regarded as two different strings.

Effect

If an @ADD parameter is given, each individual element in the @ADD list is 
added to the multi-value(s) designated by @ATOMID.  If @DUPLICATE is 
specified, elements already present in the multi-value will be included 
again; if @NODUPLICATE, such additional occurrences will be suppressed.  

If a @DELETE parameter is given, each individual element in the @DELETE 
list is deleted from the multi-value(s) designated by @ATOMID.  If 
@DUPLICATE is specified, only the first occurrence of each element will be 
deleted, leaving any additional occurrences intact; if @NODUPLICATE, all 
occurrences of each element will be deleted.  

Both @ADD and @DELETE may be specified in a single SetMultiValue.  In that 
case, the deletes are done first.

Result

The result returned by SetMultiValue is TRUE if the call is successful, 
FALSE if an error occurs.  

Examples

If Duckburg.residents contains the multi-value 
Donald,Daisy,Dewey, a condition or action of the form 

Execute  "SetMultiValue" @ATOMID=Duckburg.residents;
@STRING="@ADD=Huey,Dewey,Louie";

will assign the string Donald,Daisy,Dewey,Huey,Louie as the new 
value of Duckburg.residents (since in the absence of any explicit 
indication, the default behavior is @NODUPLICATE).  By contrast, 

Execute  "SetMultiValue" @ATOMID=Duckburg.residents;
@STRING="@ADD=Huey,Dewey,Louie,
@DUPLICATE";

will set it to Donald,Daisy,Dewey,Huey,Dewey,Louie, with the 
element Dewey duplicated.  Following this operation, 

Execute  "SetMultiValue" @ATOMID=Duckburg.residents;
@STRING="@DELETE=Dewey";

will set Duckburg.residents to Donald,Daisy,Huey, Louie 
(defaulting to @NODUPLICATE and deleting all occurrences of the element 
Dewey), whereas
Language Reference 239



Chapter Execute Library Routines2
Execute  "SetMultiValue" @ATOMID=Duckburg.residents;

@STRING="@DELETE=Dewey,@DUPLICATE";

will set it to Donald,Daisy,Huey,Dewey,Louie (deleting just the first 
occurrence of Dewey).  

Related Topics

Multi-Values
Patterns
Execute Operator

SetValue Routine
Definition

The Execute routine SetValue stores a fixed value into one or more 
designated slots (object properties).  

Interactive Dialog

SetValue is chosen with the Select Execute popup menu command in the 
Rule editor or Method editor, which automatically displays a special dialog 
box for specifying the execute parameters interactively, rather than by 
explicitly typing them in as listed below: 

Parameters

The @ATOMID parameter is a pattern specifying a list of objects or slots 
whose values are to be set.  

The @STRING parameter may include the following:  

@VALUE=new_value Value to be stored.

@STRAT=options (Optional) Strategy options governing the 
assignment (see Execute Library Overview for 
details).

The @VALUE parameter may specify a value of any type.  
240 Language Reference



TestMultiValue Routine
Effect

If @ATOMID represents a list of object properties, then all of the designated 
properties will be set to the value specified by @VALUE.  If @ATOMID 
represents a list of objects themselves, then all properties of each such object 
will be set to the given value.  Notice that this routine does not set the values 
associated directly with the objects themselves; if this is what is needed, the 
objects’ Value property must be specified explicitly.  

If the type of a property doesn’t match that of the value to which it is to be 
set, the value is automatically converted to the required type.  Some such 
conversions may not work properly, however (such as Date to Boolean); 
it is the application developer’s responsibility to ensure that the specified 
assignments are meaningful.  

Result

The result returned by SetValue is TRUE if the call is successful, FALSE if 
an error occurs.  

Examples

Suppose class Box has two instances named box1 and box2 and two 
properties named width and height.  Then a condition or action of the 
form 

Execute  "SetValue"  @ATOMID=<Box>.width; @STRING="@VALUE=10";

will assign the value 10 to the properties box1.width and box2.width, 

Execute  "SetValue"  @ATOMID=<Box>; @STRING="@VALUE=10";

will assign it to box1.width, box1.height, box2.width, and 
box2.height, and 

Execute  "SetValue"  @ATOMID=<Box>.Value; @STRING="@VALUE=10";

will assign it directly to the objects box1 and box2 (that is, to the properties 
box1.Value and box2.Value).  

Related Topics

Execute Operator
Data Types
Value Property
Patterns

TestMultiValue Routine
Definition

The Execute routine TestMultiValue compares multi-values for a variety 
of possible relations.  
Language Reference 241



Chapter Execute Library Routines2
Interactive Dialog

TestMultiValue is chosen with the Select Execute popup menu 
command in the Rule editor or Method editor, which automatically displays 
a special dialog box for specifying the execute parameters interactively, 
rather than by explicitly typing them in as listed below: 

Parameters

The @ATOMID parameter is the name of a slot (object property) containing a 
multi-value string to be tested, or a pattern specifying a list of such slots.  

The @STRING parameter may include the following:  

@TEST=test_val Slot containing multi-value to compare against.

@condition Test to be applied (see Test conditions below).

@RETURN=answer Destination in which to return result of test.

@STRAT=options (Optional) Strategy options governing the 
assignment (see Execute Library Overview for 
details).

@COMP=value-type (Optional)  Specifies the way in which the 
individual values in the multivalues are to be 
compared.  (See Value Types below.)
242 Language Reference



TestMultiValue Routine
The destination specified by @RETURN must be either a boolean-valued slot, 
the name of a class, or the name of an object.  If it is a boolean slot, then 
@ATOMID must also designate a single slot (rather than a pattern matching 
a whole list of slots).  

Value Types

The comp specifier can be used for indicating how the individual values in 
a multivalue are to be compared.  If it is absent, STRING is the default.  The 
following types are valid: STRING, INT, FLOAT, DATE, and TIME.

For example, if one multivalue contains the element 1.0 and another 
multivalue contains the element 1.00, these will be regarded as the same 
value if @COMP=FLOAT is specified.  However, if @COMP=STRING is 
specified (the default), they are regarded as two different strings.

Test conditions

The test condition included in the @STRING parameter specifies the type of 
comparison to be performed on the multi-values.  It consists of one of the 
four keywords 

followed by one of the six comparison operators 

followed by another of the four keywords.  The first keyword refers to the 
multi-value specified by the @ATOMID parameter, the second to that 
specified by the @TEST parameter.  Thus, for example, the test condition 
@MIN>MAX tests whether the smallest element of @ATOMID is greater than 
the largest element of @TEST. Thus 96 test conditions are possible (though 
some of them turn out to have the same meaning):  

MIN Smallest element

MAX Largest element

ANY Any element

ALL All elements

= Equal

<> Not equal

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

@MIN=MIN @MAX=MIN @ANY=MIN @ALL=MIN

@MIN=MAX @MAX=MAX @ANY=MAX @ALL=MAX

@MIN=ANY @MAX=ANY @ANY=ANY @ALL=ANY

@MIN=ALL @MAX=ALL @ANY=ALL @ALL=ALL

@MIN<>MIN @MAX<>MIN @ANY<>MIN @ALL<>MIN

@MIN<>MAX @MAX<>MAX @ANY<>MAX @ALL<>MAX

@MIN<>ANY @MAX<>ANY @ANY<>ANY @ALL<>ANY

@MIN<>ALL @MAX<>ALL @ANY<>ALL @ALL<>ALL
Language Reference 243



Chapter Execute Library Routines2
In addition, four special test conditions are recognized 

@SUBSET  @SUPERSET  @NOT_SUBSET  @NOT_SUPERSET

making a total of 100 possible test conditions in all.  

The following chart shows how many of the executes have related 
meanings.  The operators in the left column replace the asterisk (*) in the 
expressions along the top row.  All of the operations in a given box have the 
same meaning.  For example, the following three operations have the same 
effect when used in TestMultiValue: MAX>MIN, ANY>MIN, MAX>ANY.  

@MIN<MIN @MAX<MIN @ANY<MIN @ALL<MIN

@MIN<MAX @MAX<MAX @ANY<MAX @ALL<MAX

@MIN<ANY @MAX<ANY @ANY<ANY @ALL<ANY

@MIN<ALL @MAX<ALL @ANY<ALL @ALL<ALL

@MIN<=MIN @MAX<=MIN @ANY<=MIN @ALL<=MIN

@MIN<=MAX @MAX<=MAX @ANY<=MAX @ALL<=MAX

@MIN<=ANY @MAX<=ANY @ANY<=ANY @ALL<=ANY

@MIN<=ALL @MAX<=ALL @ANY<=ALL @ALL<=ALL

@MIN>MIN @MAX>MIN @ANY>MIN @ALL>MIN

@MIN>MAX @MAX>MAX @ANY>MAX @ALL>MAX

@MIN>ANY @MAX>ANY @ANY>ANY @ALL>ANY

@MIN>ALL @MAX>ALL @ANY>ALL @ALL>ALL

@MIN>=MIN @MAX>=MIN @ANY>=MIN @ALL>=MIN

@MIN>=MAX @MAX>=MAX @ANY>=MAX @ALL>=MAX

@MIN>=ANY @MAX>=ANY @ANY>=ANY @ALL>=ANY

@MIN>=ALL @MAX>=ALL @ANY>=ALL @ALL>=ALL
244 Language Reference



TestMultiValue Routine
In addition, these are the same as ANY>ANY, which is shown in the column 
header.

Effect

As noted above, if the @RETURN parameter designates a boolean slot, then 
@ATOMID must also be a single slot containing a multi-value string.  The 
multi-values specified by @ATOMID and @TEST are compared according to 
the given test condition, and the boolean result is stored into the slot 
specified by @RETURN.  

If the @RETURN parameter instead designates a class or an object, then 
@ATOMID may be either a single slot containing a multi-value string or a 
pattern matching a whole list of such slots.  Each multi-value in turn is 
compared with the one specified by the @TEST parameter, using the given 
test condition.  If @RETURN is a class, all multi-values for which the result of 

M * T

=

<>

>

<

>=

<=

ANY * ANY ANY * ALL ALL * ANY ALL * ALL

∃ m∈ M /
∃ t∈ T, m=t

∃ m∈ M /
∃ t∈ T, m≠ t

∀ t∈ T /
∃ m∈ M, t=m

SUPERSET

∃ m∈ M /
∀ t∈ T / m≠ t

NOT_SUBSET

∀ m∈ M /
∃ t∈ T, m=t

SUBSET

∃ t∈ T /
∀ m∈ M, t≠ m

NOT_SUPERSET

∀ m∈ M /
∃ t∈ T, m=t

∀ t∈ T /
∃ m∈ M, t=m

AND

∀ m∈ M /
∀ t∈ T, m≠ t

MAX>MIN
ANY>MIN
MAX>ANY

MAX>MAX
ANY>MAX
MAX>ALL

MIN>MIN
ALL>MIN
MIN>ANY

MIN>MAX
ALL>MAX
MIN>ALL

MIN<MAX
ANY<MAX
MIN<ANY

MIN<MIN
ANY<MIN
MIN<ALL

MAX<MAX
ALL<MAX
MAX<ANY

MAX<MIN
ALL<MIN
MAX<ALL

MAX>=MIN
ANY>=MIN
MAX>=ANY

MAX>=MAX
ANY>=MAX
MAX>=ALL

MIN>=MIN
ALL>=MIN
MIN>=ANY

MIN>=MAX
ALL>=MAX
MIN>=ALL

MIN<=MAX
ANY<=MAX
MIN<=ANY

MIN<=MIN
ANY<=MIN
MIN<=ALL

MAX<=MAX
ALL<=MAX
MAX<=ANY

MAX<=MIN
ALL<=MIN
MAX<=ALL
Language Reference 245



Chapter Execute Library Routines2
the test is TRUE are added to it as instances; if it is an object, they are 
associated with it as components (subobjects).  

Result

The result returned by TestMultiValue is TRUE if the call is successful, 
FALSE if an error occurs.  

Examples

In all of the following examples, TheAnswer is a boolean-valued object and 
ABc, BCD, and CDE are instances of class Alphabet with the following 
initial values:  

ABC.members = "alpha,beta,charlie"
BCD.members = "beta,charlie,dog"
CDE.members = "charlie,dog,echo"

Example 1

A condition or action of the form 

Execute  "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,charlie,beta,
@ALL=ALL,@RETURN=TheAnswer.Value";

will set TheAnswer.Value to TRUE, since all elements in ABC.members 
equal all elements in @TEST.  (Notice that the order in which the elements 
are given is unimportant.)  However, 

Execute  "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,beta,
@ALL=ALL,@RETURN=TheAnswer.Value";

sets TheAnswer.Value to FALSE (since ABC.members contains elements 
that are not matched by those in @TEST), and 

Execute  "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,beta,gamma,
@ALL=ALL,@RETURN=TheAnswer.Value";

also sets it to FALSE (since @TEST contains elements that don’t match those 
in ABC.members).  

Example 2

Execute  "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,gamma,
@ANY=ANY,@RETURN=TheAnswer.Value";

sets TheAnswer.Value to TRUE (since ABC.members contains at least one 
element that matches at least one element in @TEST), but 

Execute  "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=gamma,delta,
@ANY=ANY,@RETURN=TheAnswer.Value";

sets it to FALSE (since ABC.members and @TEST have no elements in 
common).  

Example 3

Execute  "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,delta,
@ANY>ANY,@RETURN=TheAnswer.Value";
246 Language Reference



TestMultiValue Routine
sets TheAnswer.Value to TRUE, since ABC.members contains at least one 
element (beta) that is greater than at least one element in @TEST (alpha), 
but 

Execute  "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,delta,
@ALL>ALL,@RETURN=TheAnswer.Value";

sets it to FALSE, since not all elements in ABC.members are greater than all 
elements in @TEST.  

Example 4

Execute  "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,beta,gamma,
@MAX>MIN,@RETURN=TheAnswer.Value";

sets TheAnswer.Value to TRUE, since the largest element in 
ABC.members (charlie) is greater than the smallest element in @TEST 
(alpha), but 

Execute  "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,beta,gamma,
@MIN>MAX,@RETURN=TheAnswer.Value";

sets it to FALSE, since the smallest element in ABC.members (alpha) is not 
greater than the largest element in @TEST (gamma), and 

Execute  "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,beta,gamma,
@MAX<MIN,@RETURN=TheAnswer.Value";

also sets it to FALSE, since the largest element in ABC.members (charlie) 
is not less than the smallest element in @TEST (alpha).  

Example 5

Execute  "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,beta,

@SUPERSET,@RETURN=TheAnswer.Value";

sets TheAnswer.Value to TRUE (since ABC.members is a superset of 
@TEST), and 

Execute  "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,beta,gamma,charlie,

@SUBSET,@RETURN=TheAnswer.Value";

also sets it to TRUE (since ABC.members is a subset of @TEST), but 

Execute  "TestMultiValue" @ATOMID=ABC.members;
@STRING="@TEST=alpha,gamma,
@SUBSET,@RETURN=TheAnswer.Value";

sets it to FALSE (since in this case ABC.members is not a subset of @TEST). 

Example 6

Execute  "TestMultiValue" @ATOMID=<Alphabet>.members;
@STRING="@TEST=apple,candy,
@ANY<ANY,@RETURN=TheAnswer";

associates the objects ABc and BCD as components (subobjects) of 
TheAnswer, since they each contain at least one element that is less than at 
least one element of the @TEST multi-value.  However, CDE.members 
contains no such element, so CDE is not made a component of TheAnswer.  
Language Reference 247



Chapter Execute Library Routines2
Execute  "TestMultiValue" @ATOMID=<Alphabet>.members;
@STRING="@TEST=dog,SUPERSET,
@RETURN=TheAnswer";

makes BCD and CDE components of TheAnswer, since they are both 
supersets of @TEST, but ABc is not.  

Execute  "TestMultiValue" @ATOMID=<Alphabet>.members;
@STRING="@TEST=alpha,echo,
@ANY=ANY,@RETURN=TheAnswer";

makes ABc and CDE components of TheAnswer, since they each contain at 
least one element (alpha and echo, respectively) that is equal to some 
element of @TEST.  However, BCD.members contains no such element, so 
BCD is not made a component of TheAnswer.  

Related Topics

Comparison Operators
Multi-Values
Patterns
Execute Operator

Unify Routine
Definition

The Execute routine Unify compares specified properties of two lists of 
frames (objects or classes) and finds those pairs that satisfy a stated 
condition.  

Interactive Dialog

Unify is chosen with the Select Execute popup menu command in the Rule 
editor or Method editor, which automatically displays a special dialog box 
for specifying the execute parameters interactively, rather than by explicitly 
typing them in as listed below:
248 Language Reference



Unify Routine
Parameters

The @ATOMID parameter consists of the following items, separated by 
commas:  

from_length Number of frames in from_list.

from_list List of frames to be compared.

to_list List of frames to compare to.

The @STRING parameter may include the following:  

@TESTFROM=from_prop
Relevant property of from_list.

@TESTTO=to_prop Relevant property of to_list.

@condition Test condition to be applied (see Test conditions 
below).

@SETFROM=set_from_prop
(Optional) Property to copy from from_list.

@SETTO=set_to_prop
(Optional) Property to copy to in to_list.

@FROMLINK=from_link_frame
(Optional) Frame in which to accumulate from_list 
elements.

@TOLINK=to_link_frame
(Optional) Frame in which to accumulate to_list 
elements.

The @TESTFROM and @TESTTO parameters are required.  All others are 
optional, but the pairs @SETFROM/@SETTO and @FROMLINK/@TOLINK 
must be specified together:  that is, if one of the pair is present, the other 
must be present as well.  

Test Conditions

The test condition included in the @STRING parameter specifies the type of 
comparison to be performed.  It must consist of exactly one of the following:  

If no test condition is specified, @EQUAL is assumed by default.  

Effect

The value of property from_prop for each frame in from_list is 
compared with that of property to_prop for each frame in to_list, using 

EQUAL Equality

NOT_EQUAL Inequality

LESS Less-than

LESS_EQUAL Less-than-or-equal

GREATER Greater-than

GREATER_EQUAL Greater-than-or-equal
Language Reference 249



Chapter Execute Library Routines2
the stated test condition.  If the condition holds and the parameters 
@SETFROM and @SETTO are specified, then the value of property 
set_from_prop in the from_list element is copied to property 
set_to_prop in the to_list element.  In addition, if @FROMLINK and 
@TOLINK are specified, then the from_list element is attached to 
from_link_frame as an instance or component, and the to_list 
element is similarly attached to to_link_frame.  

This behavior is summarized by the following fragment of pseudo-code:  

for each from_frame in from_list
for each to_frame in to_list

if from_frame.from_prop <condition> 
to_frame.to_prop

assign from_frame.set_from_prop to 
to_frame.set_to_prop

attach from_frame to from_link_frame
attach to_frame to to_link_frame

end if
end for

end for

Result

The result returned by Unify is TRUE if the call is successful, FALSE if an 
error occurs.  

Examples

Example1:  Suppose we have a class Pianos with property width and a 
class Doorways with property height.  Since a piano must be tilted on its 
side to get through a door, the width of the piano must be less than the 
height of the door.  A condition or action of the form 

Execute  "Unify"
@ATOMID=numPianos.Value,<Pianos>,<Doorways>;

@STRING="@LESS,@TESTFROM=width,
@TESTTO=height,@SETFROM=model,
@SETTO=accommodates,
@FROMLINK=Small_enough_pianos,
@TOLINK=Big_enough_doors";

will test the width of each piano against the height of each door to see if it 
will fit.  If, say, Grand_Piano.width is less than Front_Door.height, 
then Grand_Piano will become an instance of class 
Small_enough_pianos, Front_Door will become an instance of 
Big_enough_doors, and the value of Grand_Piano.model (Steinway, 
for example) will be assigned to Front_Door.accommodates.  

Example 2:  Suppose we have a class Truck_Drivers with properties city 
and name, and a class Trucks with properties location and driver.  In order 
for a truck to be driven, there must be an available driver in the same city.  
A condition or action of the form:

Execute  "Unify" @ATOMID=numTruckDrivers.Value, <Truck_Drivers>, 
<Trucks>; 

@STRING="@EQUAL, @TESTFROM=city,@TESTTO=location,
@SETFROM=name, @SETTO=driver, @FROMLINK=Can_Drive, 
@TOLINK=can_go";

will test the city of each Truck_Driver against the location of each Truck 
to see if they match.  If, for example, Chuck.city and Ace.location are 
both "Chicago", then Chuck will become an instance of class Can_Drive, 
250 Language Reference



WriteTo Routine
Ace will become an instance of class Can_Go, and the value of Chuck.name 
(Charles Smith, for example) will be assigned to Ace.Driver.

It is important to note that:

■ The length of the first list (from_length) can be obtained in a 
condition directly before the Unify execute by using the Length 
function.

■ When a match is found in a Unify, the appropriate assignments take 
place and no further matches are sought on that object!  For example, 
once we have found a driver for a truck, no further searching is done on 
that truck, even if several drivers are available in the same city.

Related Topics

Patterns
Execute Operator
Length Function
Comparison Operators

WriteTo Routine
Definition

The Execute routine WriteTo writes a message to the transcript, a file, or 
the terminal.

Interactive Dialog

WriteTo is chosen with the Select Execute popup menu command in the 
Rule editor or Method editor, which automatically displays a special dialog 
box for specifying the execute parameters interactively, rather than by 
explicitly typing them in as listed below:
Language Reference 251



Chapter Execute Library Routines2
Parameters

The @ATOMID parameter is an optional list of slots (object properties) whose 
values are to be appended to the message.

The @STRING parameter may include the following:

@TEXT=text_string Text of message to be written.

@TRANSCRIPT (Optional) If present, write message to transcript.

@FILE=file_name (Optional) If present, write message to specified 
file.

@TERMINAL (Optional) If present, write message to terminal.

@ADD (Optional) If present, append message to existing 
file.

@NEW (Optional) If present, create new file.

Any combination of the parameters @TRANSCRIPT, @FILE, and 
@TERMINAL may be included, but at least one must be present.  If neither 
@ADD nor @NEW is specified, @ADD is assumed by default.

Effect

The message given by the @TEXT parameter is written to the transcript, a 
file, and/or the terminal, as specified by the parameters.  If a list of slots is 
specified with @ATOMID, their names and current values are written after 
the end of the message text.  

The @ADD and @NEW options are meaningful only if a file name is given with 
@FILE.  @ADD appends the message to the end of the designated file; if the 
file does not exist, it is created automatically.  @NEW forces creation of a new 
file containing the specified message; if an old file already exists with the 
same name, it is converted to a $$$backup file.  

Result

The result returned by WriteTo is TRUE if the call is successful, FALSE if an 
error occurs.  

Examples

A condition or action of the form 

Execute  "WriteTo" @STRING="@TEXT=Failure in Valve #3, 
@TRANSCRIPT";

will write the message Failure in Valve #3 to the transcript.  

A condition or action of the form 

Execute  "WriteTo" @STRING="@TEXT=Tank pressures are , 
@TRANSCRIPT,@FILE=Session.log";
@ATOMID=<Tank>.pressure;

will append the message Tank pressures are to both the transcript and 
the file Session.log, followed by the values of the property pressure 
for all instances of class Tank.  

Related Topics
Patterns
Execute Operator
252 Language Reference



Chapter
3 Database Integration 
Topics 3

This chapter describes the various procedures, key concepts, and general 
principles of the Rules Element database interface.  The topics appear in 
alphabetical order.

Core Database Topics
New users should read these first for more detailed 
information about the different ways the database 
interface can be used and for specific information 
about specific database types.

Database Interface Features
Identifies features of the Rules Element database 
interface that you can use to extend the database 
retrieve and write capabilities of your 
knowledge-based application.

Rule Editor / Method Editor Windows
Lists topics related to setting up database retrieve 
/ write operations in a rule or method.

Database Editor Windows
Lets you find descriptions of the Database Editor 
windows’ various fields.

Database Interface Operations
The topics in this list identify optional as well as 
required tasks of the retrieve / write operations.  
This information supplements the Database Editor 
Windows topics list.

Before looking up topics in this chapter read Chapter Seven, “Application 
Data”in the Intelligent Rules Element User’s Guide.

Access String
General

When the Rules Element begins a retrieve or write operation, it first needs 
to access the file or database server containing the data to be accessed.

The first argument of a Retrieve or Write command is a quoted string which 
specifies the database access string used to establish communications with 
the database.  This string can be as simple as just a filename or something 
more complex, for example containing one or more of the following fields: 
username, password, server name, database name, network transport 
mechanism, or computer node name.  Typically, the more complicated 
access strings are used by relational databases.
Language Reference 253



Chapter Database Integration Topics3
Related Topics

Access String Specification
Retrieve Operator
Write Operator

Access String Specification
General

To supply the database access string field enter the name of the file (for flat 
file databases) or the database access string (for relational databases) as the 
first argument of the Retrieve or Write operator.  A quoted entry for this 
field is required for the Rules Element to initiate the desired operation.  To 
pass a null string specify "" (double quotes) as the first argument of the 
Retrieve or Write operator.

The following example shows how the database access string would be 
specified for a Retrieve operation.  In this example, the access string "scott 
tiger" appears as the Retrieve operator’s first argument in the Rule Editor 
window.

Figure 3–1   Specifying a Database Access String

Flat-File Databases

For flat-file databases, the string is interpreted as a file name, and is handled 
like any other file name on your operating system.  For flat-file databases 
such as NXPDB and DBASE III files, the access string must contain the 
254 Language Reference



Access String Specification
filename of the data file or database.  The filename extension is optional.  If 
it is not specified, the Rules Element uses the following default extensions:

.NXPNXP and NXPDB files

.SLKSYLK (Excel) files

.DBFDBase III files

.WKSWKS files (Lotus 1-2-3)

Relational Databases

For relational databases such as Oracle, Sybase, and Ingres, the Rules 
Element needs the access string used to sign on to the database manager. 
The string you supply is passed to the database manager for interpretation. 
Parameters in the connection string must be delimited by a space character. 

You must not skip parameters within the access string, but you can omit the 
last parameter in the string. If you need to, use a dummy name to supply a 
connection parameter that is not used, but do not skip a parameter or 
replace one by blanks. For example, in the case of Sybase, the connection 
string might take the following form:

"scott tiger hyperion SYBASE_HYPERION MyApp customerdb"

In this example, the application name MyApp was supplied as a dummy 
placeholder. 

Details about specific database access string requirements are located in the 
corresponding database name topic in this manual.

Pathname Specification

Absolute or relative pathnames can be used.  The pathname syntax depends 
on the underlying operating system:

For DOSA:\dir1\dir2\file1
For UNIX/dir1/dir2/file1
For VMS$disk:[dir1.dir2]file1

If a relative filename specification is used, the Rules Element will use its own 
search path (the logical name ND_PATH on VMS, the shell variable 
ND_PATH on UNIX, or the path specified in the Rules Element on the 
Macintosh) to locate flat-file databases.  The filename will be concatenated 
to each of the directories in the search path until a file is found.

Environment Variables

On some systems (VMS & UNIX), the Rules Element will attempt to 
construct the access string argument using environment variables.  On VMS 
systems, you can specify a VMS logical name.  On UNIX systems, you can 
use shell environment variables (setenv(1) or EXPORT variables).  This 
feature is particularly useful with ORACLE, as the account/password 
information can be hidden in an environment variable.

Dynamic Values

It's possible to use Rules Element interpretations ("@V(...)") in this field.  
Instead of having a fixed value, the string can be constructed at runtime 
Language Reference 255



Chapter Database Integration Topics3
from the string values of various object slots.  The quoted string can contain 
any of the following constructs:

@V(obj.prop) will be replaced by the current value of obj.prop

@SELF will be replaced by the name of the current object 
(methods only)

@PROP will be replaced by the name of the current 
property (methods only)

For example, when working with flat-file databases different cases can be 
stored in files called filecase1, filecase2, etc.  If you specify 
"@V(cur_case.filename)", and cur_case.filename currently 
holds the value filecase2, then the file filecase2 will be used for the 
transaction.

Note: Slot names used in @V(obj.prop) constructs are not compiled 
when the rule or method containing the retrieve or write statement is 
compiled, they are interpreted at runtime.  Usually, these slots exist 
elsewhere in the knowledge base, but if you misspell a name in these 
special constructs, the Rules Element will not create the 
corresponding object or slot and you will get an error at runtime.

Related Topics

Write Operator Oracle
Retrieve Operator Sybase
Interpretations @(V...) Informix
Dynamic Values Ingres

Also, look up your database type for details about the exact syntax required.

Arguments Overview
The Retrieve and Write operators invoke a Database Editor window that 
provides fields to specify the retrieve or write operation.  The following two 
lists give an overview of the fields for the Retrieve window and the Write 
window.

Retrieve Arguments

The following table summarizes the various arguments available in a 
Retrieve operation:

Database Type Always required.  Indicates type of database to 
retrieve from.  The default type is machine 
dependent.

Name Name of the object to be updated or created when 
reading the current record.  If the object already 
exists, the record is retrieved (see the In filter) into 
the object.  If the object does not exist and 
CreateObject is checked, a dynamic object is 
created.  If the object does not exist and 
CreateObject is not checked, the record is skipped.  
This field is not normally used for sequential 
queries or atomic queries.
256 Language Reference



Arguments Overview
In List of objects, classes, slots used to filter what is to 
be retrieved.  If empty list (the default), all fields 
are retrieved.  If non-empty list, only those fields 
mapped to objects or slots in the lists are retrieved.  
Pattern matching lists or interpretations can be 
used.  Used in grouped or atomic transactions.

Link To List of classes or objects to which the new or 
updated object should be linked.  Pattern matching 
lists or interpretations can be used.

Cursor For sequential retrieves, an atom of type integer 
that represents the record number or the query 
number.  For atomic retrieves, it must be present, 
but specified as UNKNOWN.  For grouped 
retrieves, it must be empty. 

Begin Box for the command starting the transaction of a 
relational database.  Executed only once for 
sequential retrieves.  Also used to hold the range 
name for the SYLKDB (Excel) and WKSDB 
(Lotus123) types.

End Box for end of transaction command (typically 
used for Write).  End statement is only done the last 
time during a sequential operation.

Create Object Enables the creation of dynamic objects when the 
current Name doesn't exist in the KB.  Valid for 
grouped retrieve operations only.

Fields / Props List Describes how to map the fields of each record to 
the property-slots of the object in the Rules 
Element.  If the lists are empty, ALL property 
names will be used as Field names.  If the lists are 
not empty, only the Fields / Properties specified 
are affected.  For atomic or sequential retrieves, the 
Rules Element list should be slots (obj.prop).  
Otherwise, a list of properties belonging to the 
object being retrieved into should be provided.

Query Box for the actual database query.  Look up your 
database type for details.  Query is used to select 
the current record in sequential mode.  The cursor 
refers to a query id in that case.

Retrieve Unknown Check this option to enable UNKNOWN values to 
be read (string "Unknown" in the database or 
spreadsheet).  The default is to have the option off 
so that only meaningful values are retrieved.

Retrieve Strategies Specify the way values are propagated after a 
Retrieve.  Always Forward means values are used 
in the forward chaining.  Current Forward means 
the current strategy of the rule is used (this is the 
default).  Do Not Forward means the values are 
used without effects.  Note that the If Change 
methods are also triggered when new values are 
retrieved.
Language Reference 257



Chapter Database Integration Topics3
Write Arguments

The following table summarizes the various arguments available in a Write 
operation:

Database Type Always required.  Indicates type of database to 
write to.  The default type is machine dependent.

Name Name of the object to use for updating the current 
record.  If the object already exists, the record is 
updated (see the In filter), otherwise the record is 
skipped.  This field is not normally used for 
sequential queries or atomic queries.

In Filters records to be written back.  If empty list (the 
default), all fields are updated.  If non-empty list, 
only those fields mapped to objects or slots in the 
lists are written.  All remaining atoms in the list 
create new records (if Create Record selected).  
Pattern matching lists or interpretations can be 
used.  Usually not used in sequential transactions.

Cursor An atom of type integer that represents the record 
number or the query number.  Typically used for 
sequential write(s) following sequential retrieves. 

SqlError Name of the slot in the knowledge base that you 
want to use to trap Sql database server error 
messages. 

Fields / Props List Describes how to map the fields of each record to 
the property-slots of the object in the Rules 
Element.  If the lists are empty, ALL property 
names will be used as Field names.  If the lists are 
not empty, only the Fields / Properties specified 
are affected.  For atomic or sequential writes, the 
Rules Element list should be slots (obj.prop).  
Otherwise, a list of properties belonging to the 
object being written should be provided.

Create New Record Enables the creation of new records with the atoms 
in the In list not already used, otherwise updates 
the records that already exist.  Valid for grouped 
write operations only.

Insert Only Assumes no records exist in the database to 
correspond to the atoms in the In list and enables 
the creation of all new records.  Not used for 
sequential transactions.

New File Instead of updating an existing file, a new file is 
created with a set of new records.  Note that if the 
In list is empty, each object of the KB is written in a 
record.  And if the Fields and Properties lists are 
empty, all existing properties are used.  Cannot be 
used in sequential write or with relational 
databases.
258 Language Reference



Atomic Retrieve
Begin Box for the command starting the transaction of a 
relational database.  Executed only once for 
sequential transactions.  Also used to hold the 
range name for the SYLKDB (Excel) and WKSDB 
(Lotus123) types.

Query Box for the actual database query.  Look up your 
database type for details.  Query is used to select 
the current record in sequential mode.  The cursor 
refers to a query id in that case.

End Box for end of transaction command (typically 
used for Write).  End statement is only done the last 
time during a sequential operation.

Write Unknown Check this option to enable UNKNOWN values to 
be written (string "Unknown" in the database or 
spreadsheet).  The default is to have the option off 
so that only meaningful values are stored.

Related Topics

Database Editor Windows
Retrieve Operator
Write Operator

Also, look up individual arguments and your database type for more 
detailed information.

Atomic Retrieve
General

Atomic retrieval can be used with both flat-file databases and relational 
databases such as INGRES, Sybase, and Oracle.

An atomic retrieve operation reads the fields from one record (and only one 
record) into slots in the Rules Element’s working memory.  The slots 
(object.property combinations) usually all belong to the same object, but it's 
also possible to read the fields into slots belonging to two or more objects.

Atomic retrieves are used when the knowledge base needs to retrieve a 
single, isolated bit of information about the problem at hand.  For example, 
an atomic read would be used to get a single car's Price and Sportive 
fields from the CARS database.

Atomic retrieves are also "isolated" from the standpoint that they don't need 
any "surrounding" logic in the knowledge base or object network to support 
them.  A retrieve can be included in the LHS or RHS of any rule without 
regard for it affecting other rules in the knowledge base.  Of course, if the 
retrieve is used in the LHS of a rule and it returns "False", then execution of 
the LHS will be terminated and the rule's hypothesis will be set to "False".

Specification

The Rules Element recognizes atomic retrieves from the fact that a cursor 
slot is provided in the database retrieve window, and it has the value 
UNKNOWN when the retrieve is executed.  If the cursor's value is NOT 
Language Reference 259



Chapter Database Integration Topics3
unknown, the Rules Element will assume that the retrieve is sequential and 
unpredictable results will occur.

To determine which record will be retrieved, a query is included in the 
database retrieve window's Query field.  The query should be specific 
enough to return one, and only one record to the Rules Element.  If the query 
isn't specific enough and more than one record is returned, only the first 
record is processed.  For relational databases, you can use any query 
accepted by the database manager (usually an ANSI SQL statement), for 
flat-file databases, you can use the Rules Element Query Language to filter 
the records. 

If the query fails and no record is returned by the retrieve, the cursor slot is 
set to -1.  If the query succeeds and the record is retrieved, the cursor is set 
to an arbitrary positive number.

Atomic retrieves always read the record's fields into specific slots which 
already exist when the retrieve is issued.  As a rule, objects are not created 
by atomic retrieves.

Fields

To build an atomic retrieve, complete the Retrieve screen in the Database 
Editor window as follows.

■ Ensure that the cursor slot which will be specified in the retrieve 
window has an "Unknown" value.  An easy way to do this is to include 
a "Reset slot_name" (where "slot_name" is the cursor's slot name) before 
the retrieve operation.

■ Specify Retrieve as the operator for the LHS, RHS, if change, or order of 
sources statement.

■ As the first operand of the Retrieve, specify the database access string 
for the relational database being accessed.

■ In the database retrieve window, click on the appropriate selection in 
the Database Type field for the database being retrieved from.

■ The Begin field should contain whatever is appropriate for your 
database.

■ In the Query field specify the database table name and appropriate SQL 
query OR the Rules Element query to select the record to be retrieved.

■ The End field should contain whatever is appropriate for your database 
to end a transaction.

■ The Name field should be left blank.

■ The Cursor field should contain the name of the slot to be used as the 
cursor for this retrieve operation.  This slot must be of the integer type, 
and MUST have an "Unknown" value when the retrieve is issued.  The 
slot name may be specified as "object.property" or just "object", which is 
shorthand for "object.Value".

■ The In field should contain the name of the slot that will update the 
database record field.

■ The Link to field should be left empty

■ In the Database Fields column, specify the names of the database fields 
to be retrieved.  In the corresponding Object Properties column, specify 
the property slots into which the fields should be retrieved.
260 Language Reference



Atomic Write
■ The Create Object option must be left unselected.  Only grouped 
retrieves can be used to create objects.

Related Topics

Cursor Slot Specification Retrieving from Databases
Access String Slot Specification for Retrieves
Query Retrieve Operations Object Names In Retrieve Operations
Database Editor Windows

Also, look up individual arguments and your database type for more 
detailed information.

Atomic Write
General

Atomic write operations can be used with both flat-file databases and 
relational databases such as INGRES, Sybase, and Oracle.

An atomic write takes the slots from one or more objects and writes them 
out to fields in a database record.  In the vast majority of the cases, the slots 
are written to a single record, but it's also possible to update multiple 
records with an atomic write operation.  The fields can all be written from 
slots which belong to the same object, or from slots belonging to several 
objects.  When all the slots are written from the same object, the 
object-property relationship is, in effect, transformed into a record-field 
relationship.

Atomic writes are used to write out a single piece of information from the 
Rules Element’s working memory.  For example, an atomic write could be 
used in a slot's If Change actions to update a field in a database record when 
a slot's value changes.

For example, a knowledge base which recalculates the Price properties of 
cars (to apply a discount) could use an atomic write to update the CARS 
database with new DB_PRICE field values.

Atomic writes are "isolated" from the standpoint that they don't need any 
"surrounding" logic in the knowledge base or object network to support 
them.  An atomic write can be included in the LHS or RHS of any rule 
without regard for it affecting other rules in the knowledge base.  Of course, 
if the write is used in the LHS of a rule and it returns "False" (due to an 
error), then execution of the LHS will be terminated and the rule's 
hypothesis will be set to "False".

Specification

An atomic write is recognized by the fact that a cursor slot is provided in the 
database write window, and it has an ‘UNKNOWN’ value when the write 
is executed.  If the cursor's value is NOT unknown, the Rules Element will 
assume that the write is sequential and unpredictable results will occur.

To determine which record's fields will receive the slots, a query is included 
in the database write window's Query field.  It is very important that the 
query be specific enough to update ONLY the intended records.  If the 
Language Reference 261



Chapter Database Integration Topics3
query is not specific enough, then many more records could be updated 
than intended.  For relational databases, you can use any query accepted by 
the database manager (usually an ANSI SQL statement), for flat-file 
databases, you can use the Rules Element Query Language to filter the 
records. 

The Rules Element implements atomic writes by building a SQL UPDATE 
statement with a WHERE clause constructed from the Query field.  For 
example, if the Query field contained:

CARS WHERE DB_CAR_NAME='car_1'

the SQL statement would look like:

UPDATE CARS SET .... WHERE DB_CAR_NAME='car_1'

It's also possible to use a "parameterized query" which substitutes data from 
the knowledge base into the query at execution time.

If the query fails and no records are updated, the cursor slot is set to -1.  If 
the query succeeds and record(s) are updated, the cursor is set to an 
arbitrary positive number. 

Atomic writes always update existing records.  Atomic writes cannot be 
used to add new records.

Fields

To build an atomic write, complete the Write screen in the Database Editor 
window as follows.

■ Ensure that the cursor slot which will be specified in the Write window 
has an "Unknown" value.  An easy way to do this is to include a "Reset 
slot_name" (where "slot_name" is the cursor's slot name) before the 
write operation.

■ Specify Write as the operator in the LHS or RHS of the rule.

■ As the first operand of the Write, specify the database access string for 
the relational database being accessed.

■ In the database write window, click on the appropriate selection in the 
Database Type field for the database being retrieved from.

■ The Begin field should contain whatever is appropriate for your 
database.  See the Beginning Database Operations topic for more 
information.

■ In the Query field specify the database table name and appropriate SQL 
query OR the Rules Element query to select the record to be updated.

■ The End field should contain whatever is appropriate for your database 
to end a transaction.  For almost all relational databases, either 
"COMMIT" or "COMMIT RELEASE" should be specified.

■ The Name field may be left blank or may contain an explicit object name 
whose property slots will be written to the record's fields.

■ The Cursor field should contain the name of the slot to be used as the 
cursor for this write operation.  This slot must be of the integer type, and 
MUST have an "Unknown" value when the retrieve is issued.  The slot 
name may be specified as "object.property" or just "object", which is 
shorthand for "object.Value".

■ The In and Link to fields should be left empty
262 Language Reference



Begin - (@BEGIN)
■ In the Object Properties column, specify the property slots which are to 
be written to the fields in the database.  In the Database Fields column, 
specify the corresponding field which is to receive each property slot.

■ The Create New Record option must be left unselected.  Only grouped 
writes can be used to create records.

Related Topics

Cursor Slot Specification Slot Specification for Writes
Query Write Operations Access String
Database Editor Windows Beginning Database Operations
Write Unknown Ending Database Operations
Writing to Databases

Also, look up individual arguments and your database type for more 
detailed information.

Begin - (@BEGIN)
Syntax

The formal syntax of the begin statement is:

@BEGIN=quoted_string;

Note: When editing the Begin field in the retrieve or write dialog screens, 
do not enclose the entry in double quotes; the Rules Element will 
insert them.

Usage

The Begin argument is used in two different contexts:

■ When using a relational database, the begin string will be sent to the 
DBMS server before the query string is executed.  It is most frequently 
used to initiate write transactions.  For example, an RDB transaction 
might be initiated by specifying:

@BEGIN="start_transaction read_write";

■ A Sybase update transaction might be initiated by specifying:

@BEGIN="begin transaction change_price";

■ The begin string can also be used to perform operations which are 
neither retrieve nor write requests.  It can be used for operations such 
as deleting records, dropping or creating tables, and specifying a 
timeout period.  Look up your database type for more examples on how 
this string can be used.

■ When using SYLKDB spreadsheet databases, the begin string can be 
used to specify a database range name.  If no range is specified, the 
Rules Element will use the default range Database.  See the SYLKDB 
topic for further details.

The special construct @V(obj.prop) can be used in the begin field, as well 
as @SELF, and @PROP when initiating retreive or write from a method.

  For sequential queries the begin statement is performed only once, before 
the retrieval of the first record.
Language Reference 263



Chapter Database Integration Topics3
Related Topics

Interpretations @V(...)
Dynamic Values
Beginning Database Operations

Also, look up your database type for more detailed information.

Beginning Database Operations
General

Before beginning a retrieve or write operation, the Rules Element executes 
whatever statements have been included in the Begin field of the retrieve or 
write window.

For the SYLKDB database type, the Begin field holds the database range 
name.  See the topic “SYLKDB” for more details.

For most relational databases, this field is not required.  Some databases, 
such as Sybase, require that you include a Begin Transaction or similar 
statement in this field.

Actually, any valid SQL statement can be included in the Begin field since it 
is passed "as-is" to the database manager.  This is useful for executing SQL 
DML (or data manipulation language) statements before retrieve or write 
operations.  For example, statements like CREATE TABLE, DROP TABLE, 
and DELETE can be executed from the Begin field.

Note that the Rules Element doesn't make any effort to receive data from the 
statement in the Begin field, so coding a SELECT would not be very useful.

For example, to delete all the records from the CARS table before beginning 
a Write operation, a statement like the following could be included in the 
Begin field:

DELETE FROM CARS

Multiple statements can be included in the Begin field by separating them 
with semicolons (";").

If the statements executed from the Begin field fail, the retrieve or write 
operation will be terminated. 

Note that for sequential retrieve operations, the Begin field is ONLY 
executed before the first retrieve--it's not re-executed for each record.

Specification

To fill in the Begin field you just include the SQL statements you would like 
executed before beginning the database operation.  More than one 
statement can be executed by separating the statements with semicolons.

Interpretations ("@V(...)") can be used in the Begin field.
264 Language Reference



Create New Record - (@FILL)
The following example shows a write operation using the Begin field to 
delete all the records from the CARS table before beginning the write.

Figure 3–2   Using the Begin Field to Delete Records

Related Topics

Interpretations @V(...)
Dynamic Values
Begin - (@Begin)
File Retrieves @F(...)

Also, look up your database type for more detailed information.

Create New Record - (@FILL)
Usage

The Create New Record setting is only meaningful in the context of a 
grouped write only.  Create New Record specifies whether new records 
may be added to a database during a grouped write.  The system first 
updates existing records before creating new ones.  If you already know that 
the records do not exist, you can instead specify the Insert Only setting so 
no update is attempted first.

In the write dialog screen this setting can be specified by clicking in the 
Create New Record check box.  In a text format knowledge base it will 
appear as: 

@FILL=ADD;

When New File is selected, Create New Record is automatically implied.  
The Insert Only setting is not compatible with either of these settings.
Language Reference 265



Chapter Database Integration Topics3
Related Topics

Grouped Write Arguments Overview
Database Editor Windows New File
Writing to Databases Insert Only
Spreadsheets

Create Object - (@FILL)
Usage

The Create Object setting is used in the context of a grouped retrieve only.  
It controls whether or not dynamic objects are created during a retrieve 
operation.

In the retrieve dialog screen this setting can be specified by clicking in the 
Create Object check box.  In a text format knowledge base it will appear as: 

@FILL=ADD;

If this setting is disabled, @FILL will not appear in the text format 
knowledge base.

Related Topics

Grouped Retrieve Database Editor Windows
Arguments Overview Retrieving from Databases
Debugging Operations

Cursor Slot Specification
Purpose

The Rules Element uses a cursor to determine the type of database 
transaction being requested.  For sequential queries the cursor keeps track 
of the last record retrieved.

The presence or absence of a cursor determines whether the transaction is a 
grouped transaction:

Cursor absent Grouped transaction

Cursor present Atomic or Sequential transaction

If present, the value of the cursor slot immediately before the transaction 
determines whether an atomic or sequential query is being requested:

■ If the value of the cursor slot is NON-NEGATIVE when a retrieve query 
is requested, the Rules Element treats the transaction as a sequential 
one.

■ If the value of the cursor slot is UNKNOWN when a retrieve or write 
query is requested, the Rules Element treats the transaction as an 
atomic one.
266 Language Reference



Cursor Slot Specification
■ If the value of the cursor slot is NEGATIVE or NOTKNOWN when a 
retrieve or write query is requested, the Rules Element generates an 
error message.

Typically, in the case of a sequential retrieve, once a record has been 
retrieved a set of rules is fired to analyze the retrieved data.  The cursor slot 
is used to hold the current state of the transaction so that the Rules Element 
knows how to resume its operation when another retrieve is executed to 
fetch the next record.

Value

The value of the cursor slot has different meanings depending on the type 
of database being accessed:

■ For flat-file databases, the cursor holds the index of the last record 
retrieved, and is incremented each time a new record is retrieved.  If the 
initial value of the cursor slot is 0, the retrieve will begin with the first 
record in the file.  By specifying a positive cursor slot value, the retrieve 
can be started anywhere in the file.  The cursor slot value can also be 
changed by rules to skip records in the file.

■ For relational databases, the cursor slot holds a stream number (RDB) 
or an SQL cursor number (Oracle, Sybase, Ingres, ...).  It is not modified 
when subsequent records are retrieved because the index in the virtual 
table is maintained internally by the DBMS.  If several sequential 
transactions are active simultaneously, a unique cursor must exist for 
each one.  For relational databases, the cursor slot must be initialized to 
0 for any sequential transaction.  During the first retrieve, the cursor slot 
will always be set to a positive value which will not be modified by 
subsequent retrieves (except when the retrieve fails because of an error 
or when all of the records have been retrieved).  Consequently, the 
cursor slot value must never be modified by rules which are fired 
between retrieve transactions 

When the retrieve encounters the end of a flat-file or the end of a virtual 
table of records (end-of-fetch), the Rules Element will set the value of the 
cursor slot to -1.  The looping logic driving the application should test for 
this value and exit the retrieve loop.

The cursor will also be set to -1 if a query cannot be processed successfully 
for other reasons (data file not found, invalid field names, etc.).  An error 
message will also be written into the transcript window.

Sequential Operations

With relational databases, sequential writes are usually performed in 
conjunction with sequential retrieves.  A sequential write should use the 
same cursor as its associated sequential retrieve to ensure that the last 
record retrieved is updated.  A sequential write does not modify the value 
of the cursor slot.

With flat-file databases, a sequential write can be executed independently of 
a sequential retrieve.  In this case, the cursor value will directly index the 
record to be updated, and will be incremented automatically.
Language Reference 267



Chapter Database Integration Topics3
Related Topics

Atomic Retrieve Atomic Write
Sequential Retrieve Sequential Write
Cursor Record Specification for Writes

Also, look up your database type for details about how the cursor slot 
should be specified.

Cursor - (@CURSOR)
Usage

The cursor argument is only used in atomic and sequential transactions.  If 
this argument is omitted the query is evaluated as a grouped query.

For sequential queries the cursor keeps track of the last record retrieved.

For atomic queries the value of the cursor slot indicates whether the query 
was successful.

In the retrieve or write dialog screens it is specified in the Cursor field.  In a 
text format knowledge base it will appear as: 

@CURSOR=slot;

The cursor is an integer object slot typically defined as object.prop.

Examples:

■ CurrentRecord.number

■ TheCursor (shorthand for TheCursor.Value)

The data type of a cursor slot must be integer.

The Cursor Slot Specification topic explains how the cursor is used in 
database transactions.

Related Topics

Atomic Retrieve Atomic Write
Sequential Retrieve Sequential Write
Cursor Slot Specification Database Editor Windows
Arguments Overview Record Specification for Writes

Database Interface Concepts
General

The Rules Element database interface is used to transfer data between 
external data sources and the Rules Element's object representation.  In 
many applications, the data is stored in an external file or database, where 
its format is very different from the Rules Element's object representation.  
The object representation - classes, objects, properties, and slots - is a 
structure for data which the inference engine reasons over.  The database 
interface transforms and translates the data between its external format (a 
file or database) and the Rules Element object representation.
268 Language Reference



Database Interface Concepts
From another perspective, the database interface allows one to manage 
knowledge and facts separately in a Rules Element application:

■ Knowledge is represented by rules describing the reasoning process, 
and a set of classes, objects, and properties which represent the world 
upon which the reasoning takes place.

■ Knowledge is input by the application designers as they build the Rules 
Element application.

■ Facts represent the actual data which is being processed by the 
knowledge base, and is represented in the Rules Element’s working 
memory by classes, objects, and properties.

■ In some applications, all of the facts are input by the user, in others 
some or all of the facts are obtained from external files or databases.  
The reasoning process can also produce new or altered facts, which can 
in turn be saved on external files or databases.

The database interface provides for a clean separation of knowledge and 
facts: knowledge is stored in knowledge bases (or KBs), facts are stored in 
external files or databases.  The database interface allows the application to 
Retrieve data - or facts - from an external file or database, and Write the 
results of its reasoning - new or altered facts - into an external file or 
database.  This approach has several advantages:

■ The size of the knowledge base remains reasonable because only the 
rules and the structural representation of the facts (classes, objects, etc) 
are saved as knowledge.  The facts or data are stored and retrieved 
separately.

■ The size of the data or facts may be very large and is managed (in the 
case of relational databases) by powerful database managers which 
provide services such as data integrity for shared data, fast indexing, 
and so forth.

■ Since they are stored in external data files or databases, data or facts can 
be accessed or produced by other applications.

Features of the Database Interface

The Rules Element database interface has many features which make it a 
good method for transferring data between the Rules Element and external 
files or databases:

■ The database interface is invoked using Rules Element rules or 
methods.  The database interface takes care of translating the 
parameters on the Retrieve or Write statement into the appropriate 
database access commands.

■ Translation of data between the data's external representation (records, 
rows, cells, etc) and the Rules Element’s object representation is 
handled automatically by the database interface.

■ During retrieve operations, you can control whether the database 
interface should update existing Rules Element objects, or create new 
objects to represent the external data.  Likewise, during write 
operations, the database interface can handle either updating existing 
records or creating new ones. 

■ Since Rules Element knowledge bases are portable, the Rules Element 
Retrieve and Write statements are also portable.  Of course, the 
Language Reference 269



Chapter Database Integration Topics3
portability of the application will be influenced by the portability of the 
target databases(s).  Applications which use platform specific databases 
like ODBC will be less portable than those which use portable databases 
like Oracle or flat files.

■ If the database changes, at the most only small modifications will have 
to be made to the Rules Element knowledge base.  For example, 
changing a knowledge base to access a relational database instead of a 
spreadsheet file requires only a few parameter changes in the Rules 
Element knowledge base.

Of course, if by chance your database type is not supported by the Rules 
Element, there are other methods for interfacing the Rules Element to 
external files or databases.  These include the following.

■ A program using the Rules Element Application Programming 
Interface (API) could load a Rules Element knowledge base, read the 
records from the database, and volunteer the information into the Rules 
Element’s working memory.  When the inferencing process was 
complete, the program could use the Rules Element API again to extract 
the information from the Rules Element’s working memory and write 
it back out to the database.

■ A Rules Element Execute handler could be written, which is invoked 
via an "execute" statement in a Rules Element rule or method.  When 
called, the handler would read data from the database and volunteer it 
into the Rules Element’s working memory.  The knowledge base can 
pass a list of the objects to receive data from the database to the handler 
in the "execute" statement.  Another execute could be used to write the 
data from the Rules Element’s working memory to the external file.  
Since an execute handler only receives object identifiers, or Atomids, 
the handler would still have to use the Rules Element API to extract the 
actual data from the Rules Element’s working memory.

■ A program could also be written as a Rules Element "question handler" 
to retrieve the data from the database.  In this case, it would still have 
to use the Rules Element API to volunteer the data into the Rules 
Element, and would have the additional problem of determining 
whether the Atomid passed to the question handler should even come 
from a database (it could come from the user, or another data source).

If you use one of these methods for accessing your database, keep the 
following considerations in mind:

■ The programs or handlers described are written in a high level 
language which supports the Rules Element API.

■ The program or handler must do the transformation between the 
database or file's format and the Rules Element’s object representation. 

■ The programs or handler is responsible for all interaction with the 
database or file's access methods.

■ If your Rules Element application is to be portable, special care must be 
taken to ensure that the programs or handlers used to access the file or 
database are also portable.

When possible, using the Rules Element database interface to access 
external data bases and files is much easier than writing your own 
program(s) to handle the transfer.  Only in the rare occurrence where the 
Rules Element doesn't support your external file type should it be necessary 
270 Language Reference



Database Interface Concepts
for you to provide your own access.  Refer to the Rules Element API 
Programmer’s Reference Manual for details about the previously 
mentioned handlers needed to interface the Rules Element with 
unsupported databases.

Using the Rules Element Database Interface

Following are examples of applications which use the Rules Element 
database interface.  In each case, one or more of the rules use the database 
interface to either get data from a database into Rules Element’s objects, or 
take Rules Element objects and write them to a database:

Retrieving Records Sequentially

Assume that you have a Rules Element knowledge base to evaluate credit 
applications to determine whether or not the applications should be 
approved.  The current application being processed is represented in the 
Rules Element by the object current_application, with the properties 
applicant_name, income, prior_bankruptcy, and 
application_approved.  Rules will evaluate whether or not the 
application should be approved or denied, and the object's 
application_approved property updated as appropriate. 

The credit applications themselves are stored in a relational database as 
rows in a table - a format which is very different from the Rules Element’s 
class and object organization.

To implement this, a rule would use the database interface to retrieve the 
rows one at a time from the table.  As each row is fetched, its column values 
are "pasted" into the properties of the object current_application.  The 
Rules Element then uses the rules created by the application designer to 
determine whether or not to approve the application, and sets the 
application_approved property appropriately.  Another rule would 
use the database interface to write the object out to the appropriate row in 
the database.  During the write, the database interface will transform the 
object's properties into the appropriate columns in the row.

Retrieving Records as a Group

Another example is a knowledge base to assist in projecting the budget for 
a company which is divided up into departments.  The example company is 
represented by objects in the class department, each of which has the 
properties personnel_cost, overhead, rent, income, 
department_name, and final_budget.  The rules evaluate the needs of 
all the departments together, and update each department object’s 
properties to reflect the final budget allocation. 

The departmental information is stored in an EXCEL spreadsheet file.  The 
file's format is very different from the knowledge base's representation of 
the data - it is organized in cells whereas the data in the knowledge base is 
organized in classes, objects, and properties.  Another characteristic of this 
example is the requirement to process all the departments at once - in a 
group as it were.

Here, a Rules Element rule uses the database interface to read in all the 
department records from the spreadsheet, creating an object for each 
department.  The objects are created in the department class, and the 
Language Reference 271



Chapter Database Integration Topics3
database interface takes care of pasting the appropriate cells into each 
object’s properties.  The rules then develop a proposed budget and update 
each object’s final_budget property in the Rules Element’s working 
memory.  Another rule writes the updated objects out to the EXCEL 
spreadsheet - with the database interface transforming the objects and 
properties back into EXCEL’s cell-type organization.

Retrieving One Record at a Time

A system for configuring automobiles accepts input from a car buyer on the 
features they would like to order with their car.  Each feature is represented 
by an object with the properties Feature_Name, Color, Style, Price, 
Dimension, and Stock_Number.  The user only selects the 
Feature_name, color and style for each feature - the remaining 
information - Price, Dimension, and Stock_Number - must be retrieved 
from a database.  The records are accessed one at a time, as the features are 
selected.

In this knowledge base, a rule would use the database interface to retrieve 
the appropriate record from the database as each feature was selected by the 
user.  As each record is retrieved, the Rules Element would update the 
object's Price, Dimension, and Stock_Number properties with the 
information from the database.  The rest of the knowledge base evaluates 
the feature's compatibility with other features (represented by previously 
created objects) already on the car.

Summary

You can see that the database interface is very much like a "pipe" between 
the Rules Element’s working memory and an external data source like a 
database or a spreadsheet.  However, the database interface does much 
more than simply transfer data - it also transforms it between the Rules 
Element’s class-object-property representation and the external data 
source's format.  You can also see that the database interface is capable of 
different types of processing - retrieving all the records one at a time, 
retrieving all records at once, and retrieving only one record.  See the 
Related Topics list for more information about these operations.

All of these examples use only one type of database, but it's possible to read 
and write multiple database types from the same Rules Element knowledge 
base.  Since the database interface always reads into and writes from the 
Rules Element objects, the Rules Element application doesn't have to be 
concerned about conversions between different database types.

Related Topics

Databases Spreadsheets
Retrieving from Databases Writing to Databases
Database Editor Windows Arguments Overview
272 Language Reference



Database Editor Windows
Database Editor Windows
Usage

The retrieve and write dialog windows behave in a manner similar to that 
of the other Rules Element editors like the Rule Editor and the Object Editor.  
A cell can be selected by clicking on it with a mouse, or by using the 
RETURN, TAB or DOWN ARROW keys to move forward through the 
fields, or by using the UP ARROW or shift-TAB keys to move backwards 
through the fields.

Figure 3–3   Retrieve Dialog Screen

Figure 3–4   Write Dialog Screen
Language Reference 273



Chapter Database Integration Topics3
A DBMS can be selected by clicking on the desired name in the list of 
database types.

The Copy property pop-up menus can be used while editing the Object 
Properties list to avoid typing errors in atom names.

Note: :  When editing the fields Begin, Query and End, do not add double 
quotes.  They will be inserted automatically by the Rules Element.

Each field and button in the write and retrieve windows has an associated 
key word.  The correspondence between the two is as follows:

Saving Fields

When you are in one of the Database Editor windows and you click on the 
OK button, the arguments you have entered are saved in the Rule or 
Method Editor, prefixed by their keywords (see above).  The entire 
argument list of your Retrieve or Write can be viewed in the edit line at the 
top of the Rule or Method Editor.  To do this, you can either clear the 
Retrieve from the first column and then click in the third column , or you 
can click on the right side of the third column to bring up the pop-up, and 
then move away from it, leaving the argument list displayed in the edit line.  
A knowledge base saved in a text format can be edited with any standard 
text editor.

Begin @BEGIN

Query (1st part of query cell) @QUERY

Query arguments (2nd part of 
query cell)

@ARGS

End @END

Name @NAME

Cursor @CURS

In @ATOMS

Link to @CREATE

Database Fields @FIELDS

Object Properties @PROPS or @SLOTS

Database Type @TYPE

Create Object (Retrieve) @FILL

Create New Record (Write) @FILL

Insert Only (Write) @FILL

New File (Write) @FILL

SqlError (Write) @ERROR

Retrieve Unknown (Retrieve) @UNKNOWN

Write Unknown (Write) @UNKNOWN

Forward buttons @FWRD
274 Language Reference



Database Type - (@TYPE)
Related Topics

Arguments Overview Write Operator
Retrieve Operator Retrieving from Databases
Writing to Databases Databases
Spreadsheets Database Type
Debugging Operations

Also, look up individual arguments and your database type for more 
detailed information about completing the Database Editor windows.

Database Type - (@TYPE)
Purpose

This keyword specifies the type of database to be accessed.  It can take one 
of the following values:

Note: :  This list is continually growing and additional database interfaces 
may be available that are not documented here.  Contact Neuron 
Data to determine the availability of any database interface not listed 
above.

SQLSERVER is not supported on the PC.

NXP, NXPDB, SYLK, SYLKDB, WKS, WKSDB, and DBF3 are 
available on all versions of the Rules Element, even if the spreadsheet 
or database application is not available for that platform.  These 

DAL_CL1 Apple's Data Access Language (formerly CL/1) 

DB2 IBM's DB2 relational database 

DBF3 dBase III 

INFORMIX Informix's SQL relational database

INGRES Ingres' SQL relational database

NONSTOP Tandem’s relational database

NXP Rules Element’s spreadsheet

NXPDB Rules Element’s database table

ORACLE Oracle's SQL relational database

RDB DEC RDB relational database (VAX/VMS only)

RDBCDD RDB installed with the CDD common dictionary

SQLBASE GUPTA's relational database

SQLDS IBM's SQL/DS relational database 

SQLSERVER Sybase's OS/2 relational database

SYBASE Sybase's SQL relational database

SYLK EXCEL spreadsheet

SYLKDB EXCEL database

VAX SQL Interface to RDB/VMS for DEc

WKS Lotus 1-2-3 spreadsheet

WKSDB Lotus 1-2-3 database
Language Reference 275



Chapter Database Integration Topics3
formats are provided to ensure compatibility across platforms.  For 
example, a flat-file database created by dBase III on an IBM-PC can be 
read by the Rules Element database interface on a VAX or UNIX 
platform.

When opening flat-file databases, the Rules Element checks the file header 
and will generate runtime errors if there is a mismatch between the database 
type specified and the file header.

Related Topics

Database Editor Windows Arguments Overview
Databases Spreadsheets
DBF3 INGRES
ORACLE RDBINFORMIX
SYBASE WKS
SYLK VAX SQL
Databases

The concept of databases describes a much more typical organization of 
data which is common to all other database and file formats supported by 
the Rules Element.  Although the terminology varies widely among the file 
types and products, the basic data structure is the same.

Terminology

In a database, data is grouped into logical entities which we will refer to as 
records.  A record represents an individual thing such as a transaction, an 
inventory item, an event record, or a personnel record.  The decision of what 
goes into a record is completely up to the application designer.

Each record is divided up into fields, which represent individual data items 
about the thing the record represents.  For example, a car inventory record 
could contain fields for the car's price and its model.  Generally, records of 
the same type contain the same fields, but this is not necessarily so.

Records of the same type are grouped together into files.  Again, generally 
all the records in a file contain the same fields, but some file or database 
formats allow some fields to be omitted in some records. 

File formats like NXPDB, DBASE III, RDB, and others use the terms file, 
record, and field to describe this organization.  Relational databases such as 

Honda 15,000 Red

BMW 39,000 Black

Saab 50,000 Green

Records

Fields

File
276 Language Reference



DBF3
ORACLE, INGRES, SYBASE, and Apple's DAL use the terms table, row, 
and column, but the structure is exactly the same: tables (files) are composed 
of rows (records), which in turn are made up of columns (fields).

With relational databases, it is important to note that it is possible to access 
rows from two or more tables in a single request using a JOIN.  Nonetheless, 
the Rules Element database interface always sees a single virtual table 
which is the result of the join operation.  No matter how many tables are 
involved, the data is still presented to the Rules Element database interface 
as a collection of columns, organized into rows, from a single table.

Related Topics

Database Type DBF3
INGRES Oracle
RDB SYBASESYLK
WKS Spreadsheets
Retrieving from Databases
Writing to Databases

DBF3
General

DBF3 is the dBase III format.  The Rules Element can read and write this 
format on any platform, even if the data file can be used directly only by 
dBase III on the IBM-PC.

Header names cannot exceed 10 characters according to DBF3 specification.  
By default, new DBF3 files are created with the following field widths:

boolean 1 (Logical value)

integer 10

float 10 + <Current Precision in the Rules Element>

string, date, time 30

special property Value 30

The Rules Element Flat-File Format topic explains how you can define your 
own field width and override these default values.

In dBase III, boolean values are stored in a one-character field.  By default, 
the Rules Element uses the following formats for boolean values:

Table File
Row Record

Column Field
Language Reference 277



Chapter Database Integration Topics3
When writing into the DBF3 file

TRUE becomes y

FALSE becomes n

NOTKNOWN becomes *

UNKNOWN becomes ?   when Write UnKnown is enabled,  
(otherwise nothing is written).

When reading a DBF3 file

y,Y,t,T are interpreted as TRUE

n,N,f,F are interpreted as  FALSE

u,U,? are interpreted as UNKNOWN

* is interpreted a NOTKNOWN

Note that data and time data types, as well as indices are not supported.

Related Topics

Databases
Retrieving from Databases
Writing to Databases
Rules Element Flat-File Format

Debugging Operations
This section contains information that might be of use when it comes to 
debugging why your Retrieve or Write operation is not behaving exactly as 
you had wanted.  Among the topics covered are: using the Transcript 
window, stand-alone query testing, and miscellaneous commonly 
occurring errors.

Transcript Window

The Transcript window is probably the single most useful debugging tool 
for debugging database interface problems.  To cause the Rules Element to 
write to the Transcript window when in the Development interface, you 
should select the “Enable Write” option from the window’s popup menu.

Transcript Window Usage

When trying to debug a Retrieve or Write using the Transcript window, it is 
a good idea to try to come up with a test case with only one or at most a few 
rules.  This avoids filling the transcript log with volumes of information not 
relevant to the problem, and also makes the debugging go faster since the 
entire KB is not being run.  If this is not possible, a couple of other 
possibilities exist.  One possibility is to set the Rules Element breakpoints 
before and after the database operation.  You can enable the Transcript 
window when the first breakpoint is reached, and disable it afterwards.  
Another possibility is to add new conditions or actions just before and after 
the database operation to enable and disable the Transcript writing.
278 Language Reference



Debugging Operations
Even in this case, a Retrieve and/or Write can still generate a significant 
amount of information to the Transcript window.  If this slows down the 
application too much, you can select the Close option from the Transcript 
window’s popup menu while the writing is going on.  This should cause the 
application to record the information, but run significantly faster, since the 
window is not being updated (typically not a fast operation).  When the 
session ends, you can then bring the Transcript window up to browse 
through the information reported by the Rules Element.

Database Messages

The Transcript window should now contain messages of the form: "xxx 
Interface executing: ..." (or something along these lines), where "xxx" is the 
specific database interface you have (e.g. Oracle, Sybase, etc).  You should 
try to find each occurrence of one of these lines and determine if they were 
successfully executed.  Any failure should be apparent by the appearance of 
an error message following the executing message.  These error messages 
will usually have been generated by the specific database server, returned 
to the Rules Element, and displayed in the Transcript window by the Rules 
Element.  Note that not all error messages are fatal: (e.g. warnings about 
trying to drop tables that don't exist, etc).  Other messages, however, will be 
fatal (e.g. access failed because of invalid database access string, and field 
name doesn't exist).

Error Slot

If you want to trap each error and test the value before proceeding, you can 
use the SqlError field of the Database Editor window to create an error slot.  
The error slot you specify will receive the error message or number 
generated by the specific relational database server.  If the database returns 
either an error number or an error message at runtime, the transaction is 
immediately halted, and the inference engine automatically sets the 
left-hand side Retrieve or Write condition to FALSE.  If no error slot is 
specified, error messages that are generated at runtime can be viewed in the 
Transcript window that you enable.

Query Syntax

You should also check that the "..." part of the executing message appears to 
be valid query syntax (SQL, RDO or whatever) for your database.  In many 
cases, you can execute almost exactly the same query outside the Rules 
Element environment by using an interface provided for the database.  For 
example, with RDB, you could use the RDO interface; with ORACLE, you 
could use SQL*Plus; with SYBASE, you could use isql and so on.

Sometimes the problem may be with the presence (or absence) of quotes 
around the information being passed to the database.  The Rules Element 
normally knows to transfer integer fields without quotes, string fields with 
quotes, and so on (although this is not always the case).  The Rules Element 
does not normally know the datatype of the database field it is writing into 
and might inappropriately provide (or not provide) quotes around the 
database field value.  This can be detected by the Transcript window error 
message, and confirmed by a standalone query test.  

In most places where quotes are required (in the Name field and in the 
Fields list) it’s possible to provide a "hint" to the Rules Element to override 
Language Reference 279



Chapter Database Integration Topics3
its default handling.  The way to do this is to preface the database fieldname 
with "{I}" (denoting integer-like, or more generally, numeric) or "{S}" 
(denoting string, the normal default).  Specifying something as a numeric 
fieldname should force the Rules Element to omit putting quotes around the 
field value.  Likewise, specifying "{S}" should force quotes to be placed 
around the field value.  This syntax is documented under the Query 
Language topic, and the datatypes / database interfaces that need this 
syntax are documented under specific database types.

Rules Element Messages

The Transcript window could also indicate that the problem with the 
database operation is not with the database server, but on the Rules Element 
end of the transaction.  For example, the field might exist, but there is no 
object available to Retrieve the information into.  Similarly on a Write, there 
might not be an object from which to obtain information, or the Name field 
might be causing the wrong database record to be updated. 

A more common problem occurs with formats being incompatible between 
the Rules Element default and the default for the appropriate database.  See 
your database topic in this chapter for a datatype compatibility table.  
Typically this occurs with dates and times.  The Transcript window again 
should show the information being returned from the database and the 
Rules Element format(s) which are being tried for a match.

Other Errors

A variety of other common errors may occur as follows.

Name Field

In a Write statement, you should never use a database field name in both the 
Name and Field areas.  This might work in some cases, but in other cases it 
will lead to unpredictable results.  It is acceptable to duplicate the database 
field name in this manner in a Retrieve statement, however.

The Name field consists of a series of expressions like:  
'root1'!field1!'root2'!field2! ... with a maximum of five root/field 
combinations being allowed.  On RETRIEVEs and WRITEs, typical field 
names are strings and integers.  Some other conversions may be done by the 
Rules Element to retrieve into a proper object name, but the conversion is 
not always reversed on a write operation.

Commit

Following a write operation or on the last write before the end of the session, 
you should typically specify "commit" or "rollback" in the End field.  You 
should issue a "commit" if you are satisfied with what has been written; 
"rollback" otherwise.  The Rules Element does NOT automatically commit 
for you (this would negate the advantages offered with commit/rollback).  
However, you should be aware that when you do a RESTART, the Rules 
Element automatically does a rollback.  If you forget the commit, even 
though all your database writes succeeded, the actions from this session will 
be totally undone by the rollback.
280 Language Reference



Dynamic Values
No Fields Specified

A common mistake when coding a Grouped Retrieve is to omit the Fields 
and Props from the retrieve, thinking this will retrieve all the properties of 
the object(s) you are interested in.  This, however, causes the Rules Element 
to construct a query which attempts to select all the properties which the 
Rules Element knows about from the database/table (using the property 
names as field names).  Even if the knowledge base is carefully constructed 
to only include properties known to be present in the table, the Rules 
Element has special properties (e.g. "Value") which probably won't be in the 
table and will cause the query to fail.  This should be noticeable if, again, you 
look at the Transcript output and notice the names of the various database 
fields that the Rules Element is trying to retrieve information from.

Create Object Not Specified

Another common mistake when coding a Grouped Retrieve is to neglect to 
check the Create Object (@FILL=ADD) box in the Database Editor window.  
In this case, the Rules Element only retrieves those rows whose names 
match the names of existing objects as specified by the Name field.  If no 
Name field is specified, then the Rules Element uses a Name field in the 
database to get an object name, and tries to find an existing object with that 
name.  If the field doesn't exist in the database, or the field exists, but there 
is no object with that name, the Retrieve will succeed from the Rules 
Element's perspective, but fail from yours.  If a Name field has been 
specified with roots and database field names, then the Rules Element will 
look for an existing object with that name.  Again, if it doesn't exist, the 
Retrieve will not return any information from the database.

Related Topics

Query Language Name
End Create Object
Retrieving from Databases Writing to Databases
Database Editor Windows Formats
Existence Filtering SqlError

Dynamic Values
You can use reserved words or arguments to tailor your query so that values 
in the query are not determined until the query is evaluated.

Using Reserved Words

You can use two reserved words to tailor your queries:

■ Use @V to use the current value of the property slot.

■ Use @SELF to use the current object whose property is being evaluated.  
This is valid only when the Retrieve or Write is in an Order of Sources 
or If Change.

For example, this query finds the value of MyFavoriteColor.value.  If 
the value is blue, then the query retrieves all records where the color is blue:

cars where color contains @V(MyFavoriteColor.value)
Language Reference 281



Chapter Database Integration Topics3
This example uses the value of the current object to find all employees 
whose salary is greater than that value:

employees where salary > @V(@SELF.amount)

Using Arguments

You can also use arguments to tailor your queries.  To use arguments, 
specify an identifier in the query.  The Rules Element then checks the 
contents of the Query Arguments field (second cell) to determine the value 
of the identifier.

SQL identifiers use this format:

:argument

where argument is a string that you supply.

RDB identifiers use this format:

!argument

where argument is a string that you supply.

This is an example of a query that uses an argument:

employees where salary > :v1

:v1 refers to the first value in the Query Arguments field.  The Query 
Arguments field contains this:

TooBigSalary.amount

Related Topics

Query Retrieve Operations Query Write Operations
Writing to Databases Database Editor Windows
Query Language Interpretations @V(...)
Query Arguments

End - (@END)
Syntax

The formal syntax of the end statement is:

@END=quoted_string;

When editing the end field in the retrieve or write dialog screens, do not 
enclose the entry in double quotes; the Rules Element will insert them.

Usage

This argument is used only with relational databases.  It contains a 
statement which will be sent to the DBMS server just before the resources 
involved in the transaction are released (after the last record has been 
retrieved or updated).  Typically, this string will contain Commit or 
Rollback statements.

The special constructs @V(obj.prop), @SELF, and @PROP can be used in 
the End field.
282 Language Reference



Ending Database Operations
Note: For sequential queries the end statement is performed only once, 
after the retrieval of the last record.

Related Topics

Database Editor Windows Debugging Operations
Arguments Overview Ending Database Operations
Interpretations @V(...) Dynamic Values

Ending Database Operations
Purpose

Once the database successfully completes a retrieve or write operation, it 
executes whatever statement has been included in the End field of the 
database retrieve or write window.

The End field is used ONLY with relational databases such as Oracle, 
Informix, Sybase and INGRES.  For most databases, this field is only used 
for write operations, and in these cases will contain a SQL COMMIT or 
COMMIT RELEASE statement.

The COMMIT statement is used to signal the database manager that all of 
the updates to the database are complete, and should be made permanent.  
Optionally, the word RELEASE can also be included to tell the Rules 
Element to close its connection with the database manager.

It's a good practice to always include a COMMIT in the End field, since 
different database managers have different default actions if an application 
terminates without issuing a COMMIT or ROLLBACK statement.  Some 
databases will automatically commit the changes, other will assume that a 
failure has occurred and will roll the changes back.

Actually, any valid SQL statement can be included in the End field since it 
is passed as-is to the database manager.  This is useful for executing SQL 
DML (or data manipulation language) statements after retrieve or write 
operations.  For example, statements like CREATE TABLE, DROP TABLE, 
and DELETE can be executed from the End field.

Note that the Rules Element doesn’t try to receive data from the statement 
in the End field, so coding a SELECT wouldn’t make much sense.

Multiple statements can be included in the End field by separating them 
with semicolons (;).

Specification

Filling in the End field is quite simple--you just include the SQL statements 
you would like executed when the database operation is complete.  The key 
words COMMIT and ROLLBACK have been defined by a resource file with 
the definition supported for each database. When the Rules Element parses 
the End field and finds the keyword COMMIT or ROLLBACK, it will 
convert it to the correct database SQL query. The resource file ensures that 
these keywords can be used without regard to which database system is to 
be accessed.
Language Reference 283



Chapter Database Integration Topics3
More than one statement can be executed by separating the statements with 
semicolons. Interpretations @V(...) can be used in the End field.

The syntax of the COMMIT and ROLLBACK keywords for your database 
are defined by the resource file nxda.dat. You can view and edit the 
definitions in the Resource Browser by displaying the resource names 
NxDa.Commit.DbName and NxDa.Rollback.DbName (where DbName is the 
name of the database supported or ANSI, in the case of the default ANSI 
SQL). The Rules Element will try to execute the query as defined in the 
resource file, if it doesn’t find a resource defined for a particular database, it 
will use the ANSI SQL type.

The following example shows a write operation using the End field to 
commit the changes after a write operation.

Figure 3–5   Filling in the End Field

Related Topics

Database Editor Windows Debugging Operations
Arguments Overview End
File Retrieves @F(...) Interpretations @V(...)
Dynamic Values

Existence Filtering Operations
Existence filtering is used in grouped retrieve operations which specify 
specific objects to update.  During the retrieve operation the Rules Element 
determines if the specified objects exist to hold the record's fields.  It is 
possible to use the object's existence as a final criteria for determining if the 
record should be retrieved or not.
284 Language Reference



Existence Filtering Operations
Existence filtering cannot be used with sequential and atomic retrievals 
because the slot names (object.property combinations) are always specified 
explicitly for these operations. The Rules Element's rule compiler requires 
that explicitly named slots exist when the rule is compiled, thus the object 
will always exist when the retrieve is executed. 

Existence filtering can be used with grouped retrieval since the object may 
not exist when the retrieve is executed.  Existence filtering can be used to 
bypass retrieving a record if the object doesn't already exist, or if the object 
doesn't already exist in the In list.  This section discusses how to use 
existence filtering.

Usage

During a retrieve, the Rules Element builds an object name to identify which 
object will hold the current record's fields.  Existence filtering can then be 
used to make the final determination of whether or not to retrieve the 
record.  Stated simply, existence filtering means:

■ If the object doesn't already exist, then don't create it (and bypass the 
record).

■ If the object isn't in the In list - a list of eligible objects and classes - then 
bypass the record.

Existence filtering is a good way to update an existing set of objects from a 
database, reading only those records which correspond to existing objects.

For example, assume that there are two objects in the Rules Element's 
working memory - car_1 and car_2, and that the CARS table contains ten 
records for car_1 thru car_10.  In order to fill in the property slots of car_1 
and car_2, all of the CAR records could be retrieved, but this would have 
the undesirable side affect of creating objects for car_3, car_4, etc.  By 
using existence filtering, ONLY the fields from the car_1 and car_2 
records could be retrieved, and the rest of the records bypassed (since no 
objects exist to hold the record's fields).

Existence filtering can work on two levels--it can test to see if the object 
exists anywhere in the Rules Element's working memory, or it can test to see 
if an object is the member of an In list.

Check Memory

To test for object existence in all of the Rules Element's working memory, 
the Create Objects box must NOT be checked in the Retrieve window.  If this 
box is not checked and the In field is empty, then the Rules Element will look 
through all of its working memory for a matching object.

Check In List

The In list field can be used to restrict the search for a matching object to a 
specific set of object names and/or class specifications.  Both object names 
and class specifications can appear in the In List.

Object names are used "as-is" by the Rules Element. The Rules Element 
compares the object name generated for the record to the object names in the 
list.  If it's in the list, the record is considered to have passed the existence 
test. 
Language Reference 285



Chapter Database Integration Topics3
Specify a class name by enclosing it in angle brackets.  For example, to match 
the objects in car_class against the generated object name, 
<car_class> should be specified in the In list.

Actually, <class_name> is an existential pattern matching operation with 
no test, therefore all objects currently in the pattern matching list are used.  
If this is the first time the particular <class_name> specification appears 
in the LHS or RHS of the rule, then all the objects in the class will be used.  
However, if previous pattern matching operations had trimmed the list, 
then only those objects remaining in the list are matched against.

Using the In List in this fashion is useful for limiting the records retrieved 
using a piece of data which is "known" to the Rules Element, but is not 
contained in the database being retrieved from. 

For example, assume that the objects in the class car_class have a 
property Color, which does NOT have a corresponding field in the CARS 
database.  Also, there are ten car_class objects (car_1, car_2, car_3, 
etc), and only two of them -- car_1 and car_5--have a Color slot of Red. 

To retrieve ONLY the records for Red cars would be difficult since the CARS 
database has no Color field to use as a reference.  However, using pattern 
matching, <car_class> can be trimmed to contain only car_1 and 
car_5, and existence filtering used to limit the records retrieved to only 
those objects left in the list.  To do this, include a statement like the following 
in the LHS or RHS of the rule which issues the Retrieve:

= <car_class>.Color "Red"

This will cause <car_class> to yield only car_1 and car_5 the next time 
it is referenced in the LHS or RHS of the rule.  By including <car_class> 
in the In list, records would only be retrieved for the objects in the list: 
car_1 or car_5.

Specification

To use existence filtering, one or more of the following must be done when 
filling in the Retrieve window:

■ Make sure the Create Objects box is NOT checked.

■ To further restrict the search for an object, specify an In list of object 
and/or class specifications in the In field.

Do NOT check the Create Objects box and include names in the In field.  
This can have undesirable side effects such as creating "ghost" objects which 
are attached to no classes and have no properties.

Ensure Create Objects Box is NOT Checked

Checking the Create Objects box tells the Rules Element NOT to use 
existence filtering.  This means that if the Rules Element does NOT find an 
object to match the generated object name, the Rules Element will create an 
object to hold the record’s contents.

If Create Objects is NOT checked and nothing is specified in the In List (the 
In field in the Retrieve window), then the Rules Element will look at all 
objects in its working memory for a matching object.
286 Language Reference



Field Name Specification
Specifying an In List

To limit the search for a matching object to a specific set of objects, specify a 
list of object names and/or class names in the In field of the Retrieve 
window, separated by commas.  The class names are specified as 
<class_name>, which is actually an existential pattern matching 
operation.  Remember that if <class_name> has been used previously in 
the LHS or RHS of the rule, only those objects which passed the pattern 
matching operation will be in the list when it is used by the Retrieve 
operation.

Related Topics

Database Editor Windows Debugging Operations
Arguments Overview In Filtering List
Existence Filtering Example In List
Grouped Retrieve Create Object

Field Name Specification
Usage

To specify the field names to be retrieved or written, you fill in their names 
in the left hand side of the Fields and Properties List - the double column list 
box at the bottom of the Database Editor window.  A field name may be 
specified more than once in the list.

Usually, the field name is specified as a simple name (such as DB_MODEL, 
DB_PRICE, etc.), but additional information may be included for some 
databases including field width or context names.  Some relational 
databases allow you to specify an expression like DB_PRICE*2 or 
substr(DB_MODEL, 1, 7) as a field name.

Related Topics

Fields List
Retrieving from Databases
Writing to Databases
Object Names In Retrieve Operations
Database Editor Windows

For precise information on what is allowed for a given database type, look 
up your database type.

Fields List - (@FIELDS)
Usage

The fields list can be specified in all types of transactions, except when using 
spreadsheet files (NXP, SYLK and WKS).  This list is edited under the 
heading Database Fields, in the left side of the double list box at the 
bottom of the retrieve and write dialog windows and is used to specify the 
mapping between database fields and property slots of Rules Element 
objects.
Language Reference 287



Chapter Database Integration Topics3
Additional information may be associated with each field name:  in the case 
of data files, field width; in the case of RDB, context variable; in the case of 
some relational databases field names may be expressions .  The precise 
syntax of field names is specific to a particular database and is described in 
more detail under specific database types.

In text knowledge bases, the field list is saved as a list of quoted strings.  The 
formal syntax is:

@FIELDS=list of quoted_strings

Note: :  When editing the fields list do not add double quotes.  They will be 
inserted automatically by the Rules Element.

Related Topics

Databases
Database Editor Windows
Arguments Overview
Retrieving from Databases
Writing to Databases

For precise information on what is allowed for a given database type, look 
up your database type.

File Retrieves - @F(...)
Usage

Recall that the Rules Element's @F(filename) syntax allows to you provide 
the name of a file that is to be read into the Rules Element at that location.  
In the Rules Element's database interface, you can take advantageous of this 
syntax in the BEGIN statement.

For example, you could have a BEGIN statement like:

@BEGIN= "@F(myfile.sql)";

that could contain some specific SQL statements pertaining to this 
operation.  The file could contain a specific start string to allow a read/write 
transaction, or it could also contain SQL statements specific to 
dropping/creating tables and deleting records for example.  Many of the 
examples provided with the Rules Element take advantage of this technique 
for dropping and creating tables.  This allows the knowledge base to be 
relatively independent of the particular database interface, and the external 
file contains the SQL specific to the database being used (SQL 
implementations do vary from vendor to vendor).  Some of the specific 
database administration and maintenance operations possible in the BEGIN 
statement are found under the Begin topic.

Note that you could combine @F and @V for additional flexibility by 
specifying something like: @F(@V(slot)), which would let you choose the file 
dynamically.

Related Topics

Database Editor Windows Interpretations @V(...)
Begin Dynamic Values
Beginning Database Operations
288 Language Reference



Formats
Formats
General

Formats are used to describe how the values contained in the database cells 
are mapped into the values of the Rules Element slots.  These formats can be 
attached to properties or to individual slots.

Usually the mapping of values is straight-forward.  For example, textual 
information is usually stored as character strings in the database and is 
transferred without modifications to Rules Element string slots.  The 
mapping is less obvious in the case of dates, where different databases use 
different formats for representing dates.  Local conventions may also affect 
the representation of dates.

Formats are described in more detail in Chapter One, “Application 
Development Features”, but the most important points are:

■ The first or the first two formats specify how the values will be 
formatted for output.  They define how values will be written to the 
database.

■ All the formats may be used to interpret input values.  The Rules 
Element tries to scan the incoming strings according to every format 
specified until a match is found.  If the external string does not match 
any format, a warning message is displayed in the transcript and the 
slot is set to NOTKNOWN.

■ If you start a format description with an exclamation mark (!), then the 
format will be ignored for database transactions.

Specific database type topics contain additional information on various 
formats that are required for specific databases to be able to properly 
retrieve various database datatypes into Rules Element slots.  The following 
examples illustrate the important role formats can play in database 
transactions.

Example 1  Boolean format 
Format  =  @N="*";@U="?";1;0;T;F;

In this case, a NOTKNOWN value will be written as an asterisk (*), an 
UNKNOWN value as a question mark (?), a TRUE value as a 1, and a FALSE 
value as a 0.  A cell containing the single letter T will be interpreted as a 
TRUE value in a Retrieve operation, but the database cell will be updated 
with a 1 or 0 in a Write operation.

This format allows you to store boolean values in a single character field.  
An eight character field is required if you do not specify any format, because 
any NOTKNOWN values are written as the NOTKNOWN keyword.

With this format, values will also be displayed as single characters in the 
Object Network, reports, etc.  You can avoid this and reserve single 
characters for database operations.  If a format description starts with an 
exclamation mark (!), then the format will be ignored for database 
transactions.  To keep the ability to store single characters in database cells, 
but display values as True and False, the above format could be changed to:

Format  =  !@N="NOTKNOWN";!@U="UNKNOWN";@N="*";@U="?";!True;!False;1;0;
Language Reference 289



Chapter Database Integration Topics3
Example 2  Integer format 
Format  =  d*;

This format can be used when your data is stored as floating point data in 
the database, but you want to retrieve it in an integer Rules Element slot.  
The decimal part of the database data will be ignored (the value is truncated, 
not rounded to the nearest integer).

If you don't specify this integer format and your database data is formatted 
as floating point numbers, the Rules Element will not be able to interpret the 
database data and will set the slot values to NOTKNOWN.  Of course, this 
problem can also be avoided by using the float datatype of the Rules 
Element.

Related Topics

Debugging Operations
String to Numeric Conversion
Retrieving from Databases
Writing to Databases

Forwarding Strategy - (@FWRD)
Purpose

The forward strategy setting is only used in retrieve operations.  It specifies 
whether the passing of values to property slots during retrieve operations 
will cause the system to place hypotheses on the Rules Element agenda for 
evaluation 

This setting is specified with the three check buttons Always Forward, 
Current Forward and Do Not Forward in the Retrieve dialog window.  The 
corresponding values in text knowledge bases are as follows:

Always Forward @FWRD=TRUE;

Do Not Forward @FWRD=FALSE;

Current Forward @FWRD string not specified

Always Forward specifies that database retrieves which affect the slot 
values of the LHS conditions of any rule will always cause those rules to be 
placed on the agenda for evaluation.  Do Not Forward specifies that 
database retrieves will never cause rules to be placed on the agenda.  
Current Forward specifies that the forwarding strategy in effect when the 
retrieve is executed will be used to determine whether rules are placed on 
the agenda.

Related Topics

Database Editor Windows
Retrieving from Databases
Arguments Overview
290 Language Reference



Grouped Retrieve
Grouped Retrieve
General

Grouped retrieval can be used with both flat-file databases and relational 
databases.

A grouped retrieve operation reads multiple records in one operation.  As 
the Rules Element processes each record, its fields are read into slots.  All of 
the fields from a given record are read into the same object's 
slots--"transforming" the record-field relationship into an object-property 
relationship.

A typical use of Grouped retrieve is to propagate a Rules Element class with 
objects created from records in a database.  The objects can then be used in 
the Rules Element rules just as any other objects would be.  Another use of 
grouped retrieve is to update a set of objects from data in a database.  In this 
case, only the records are retrieved which have corresponding objects in the 
Rules Element's working memory.

For example, a grouped retrieval could be used to read all the records from 
the CARS database into the Rules Element working memory, creating an 
object for each record and attaching it to the cars_class class. 

Grouped retrieves don't require supporting logic in other rules to retrieve 
the records.  However, the appropriate class and object definitions must 
exist so that the Rules Element has a model for transforming the records and 
fields into objects and slots (object.property combinations).

Specification

Grouped retrieves are recognized by the absence of a Cursor slot in the 
Retrieve window. 

A grouped retrieve does not have to retrieve all the records from the 
database--in fact this is usually VERY undesirable since an object will 
probably need to be created for each record in the database.  To limit the 
records retrieved, a query can be included to filter the records read.  For 
relational databases, you can use any query accepted by the database 
manager (usually an ANSI SQL statement), for flat-file databases, you can 
use the Rules Element's SQL-like query language to filter the records.

A grouped retrieve can either update existing objects, or create new objects 
and attach them to one or more classes. 

Another technique for filtering records to be retrieved is to qualify them 
based on whether or not a corresponding object already exists to hold the 
record's fields.  The search for an existing object can be thru all of the Rules 
Element's working memory, or confined to a specific list of objects and 
classes.

Fields

To build a grouped retrieve, complete the Retrieve screen in the Database 
Editor window as follows.

■ Specify Retrieve as the operator in the LHS or RHS of the rule.

■ As the first operand of the Retrieve, specify the database access string if 
a relational database is being accessed.  If a flat file database such as 
Language Reference 291



Chapter Database Integration Topics3
NXPDB or DBASE III is being accessed, specify the file name.  See the 
Access String Specification topic for more information.

■ In the database Retrieve window, click on the appropriate selection in 
the Database Type field for the database being retrieved from. 

■ The Begin field should contain whatever is appropriate for your 
database.  See the Beginning Database Operations topic for more 
information.

■ For a relational database, specify the table name to be accessed in the 
Query field.  If you want to limit the records retrieved by the retrieve, 
you can also include a SQL query (for relational databases) or a Rules 
Element SQL-like query (for flat file databases).  See the Query Retrieve 
Operations topic for more information on the Query field.

■ The End field should contain whatever is appropriate for your database 
to end a transaction.

■ The Name field is used to construct the slot names (object.property 
combinations) into which the record fields will be read.  The slot names 
are built dynamically using data from the record.  See the Slot 
Specification for Retrieves topic for more information.

■ The Cursor MUST be left empty

■ The In field is used to specify a list of objects (and/or their classes) in 
which the object selected to hold the record's fields must exist in order 
for the record to be processed.  See the Existence Filtering Operations 
topic for more information.

■ If objects are to be created dynamically as the records are retrieved, the 
Link to field should contain the name(s) of the classes to which the new 
objects should be linked.  The Create Record option must be selected if 
objects are to be created dynamically.  The In field must not be used in 
this case to avoid creation of objects outside of the specified list.

■ In the Database Fields column, specify the names of the database fields 
to be retrieved.  In the corresponding Object Properties column entries, 
specify the property slots into which the fields should be retrieved.  See 
the Slot Specification for Retrieves topic for more information.

Related Topics

Object Names In Retrieve OperationsQuery Retrieve Operations
Database Editor Windows Slot Specification for Retrieves
Retrieving from Databases Link To
Name Field Name Specification
In Filtering List Existence Filtering Operations

Also, look up individual arguments and your database type for more 
detailed information.

Grouped Write
General

Grouped writes can be used with both flat-file databases and relational 
databases.
292 Language Reference



Grouped Write
A grouped write will write multiple object's slots in one operation.  All of 
the slots written to a given record come from the same object, transforming 
the Rules Element's object-property relationship to a record-field 
relationship in the database.

A typical use of grouped write is to write an entire class of objects out to a 
database.  It's also possible to write out every object in a list, or every object 
in a list of classes, to the database. 

For example, a grouped retrieval could be used to write all the objects from 
the cars_class into the CARS table, creating a row for each object in the 
cars_class.  As each object is written, the appropriate slots 
(object.property combinations) from the objects are written into the columns 
of the new rows.

Grouped writes don't require supporting logic in other rules to write the 
records.

Specification

Grouped writes are recognized by the Cursor field being left empty in the 
database write window. 

A grouped write does not have to write all the objects in the Rules Element's 
working memory to the database.  The In field allows an In list of objects 
and/or classes to be specified which will be written to the database.  The 
class specifications are actually existential pattern matching operations, 
which allows even finer filtering of the objects if desired.

To even further limit which records are updated or written, a WHERE 
clause may be included in the Query field to select which records will be 
updated based on their contents.

Finally, which objects are ultimately written can be controlled by whether 
or not a record already exists to represent it.  If the record doesn't exist, a 
record can be created to hold it.

Fields

To build a grouped write, complete the Write screen in the Database Editor 
window as follows.

■ Specify Write as the operator

■ As the first operand of the Write, specify the database access string if a 
relational database is being accessed.  If a flat file database is being 
accessed, specify the file name.  See the Access String Specification topic 
for more information.

■ In the database Write window, click on the appropriate selection in the 
Database Type field for the database being written to. 

■ The Begin field should contain whatever is appropriate for your 
database.  See the Beginning Database Operations topic for more 
information.

■ For a relational database, specify the table name to be accessed in the 
Query field.  If you want to limit the records updated by the write, you 
can also include a SQL query (for relational databases) or a Rules 
Element SQL-like query (for flat file databases) in this field.  See the 
Query Write Operations topic for more information on filling in the 
Query field.
Language Reference 293



Chapter Database Integration Topics3
■ The End field should contain whatever is appropriate for your database 
to end a transaction.  For almost all relational databases, either 
"COMMIT" or "COMMIT RELEASE" should be specified.  See the 
Ending Database Operations topic for more information.

■ The Name field is used to construct record "keys" by which the objects 
will be correlated with records in the database.  The keys are built 
dynamically using the object name.  See Writing by Key under the 
Record Specification for Writes topic for more information.

■ The Cursor field MUST be left empty

■ The In field is used to specify a list of objects and/or classes which will 
be written to the database.  See the Slot Specification for Writes topic for 
more information.

■ If records are to be added and it is not known whether a corresponding 
record exists to hold an object, then the Create New Record box should 
be checked.

■ If records are to be added and it is known in advance that no 
corresponding record exists to hold an object, then the Insert Only box 
should be checked.

■ In the Rules Element Properties column, specify the property slots 
which are to be written to the fields in the database.  In the database 
fields column, specify the corresponding field which is to receive each 
property slot.  See the Slot Specification for Writes topic for more 
information.

Related Topics

Writing to Databases In Filtering List
Name Field Name Specification
Slot Specification for Writes Record Specification for Writes
Beginning Database Operations Ending Database Operations
Create New Record Query Write Operations
Insert Only

Also, look up individual arguments and your database type for more 
detailed information.

If Change Retrieves
Usage

A retrieve is mostly useful in "if change" actions as a side affect.  For 
example, a slot's change of value could be a "hint" that other data will be 
needed, and a retrieve in its If Change actions could be use to retrieve that 
data.  Of course, this is a rather indirect approach - it may be more 
appropriate to include the retrieve in the RHS of a rule or an order of 
sources.

Remember that all statements in an if change action are ALWAYS executed, 
so no matter what the results of the retrieve, execution of the If Change will 
continue with the next statement.
294 Language Reference



If Change Writes
When the Rules Element begins a retrieve operation, it gets the database 
access string from the first argument of the retrieve statement.

Related Topics

Arguments Overview Retrieve Operator
Access String Atomic Retrieve
Sequential Retrieve Group Retrieve
Left-Hand Side Retrieves Right-Hand Side Retrieves
Order of Sources Retrieves Retrieving from Databases

If Change Writes
Usage

Using a Write in a slot's If Change action is very interesting, since it allows 
an application to immediately reflect a slot's change of value in an external 
database.  This can include the original database that the slot's value was 
retrieved from, thus changes to a data item can be instantly reflected in the 
original data source.  If the database is shared among multiple users, the 
change would be reflected to all users when the Rules Element updated the 
slot's value.

In the car inventory example, a Write could be included in the if change 
actions for the car's "price" property.  If, during the course of the inferencing, 
the price of a car changed, the write in the if change action would update 
that car's price in its inventory record.  Any subsequent retrieves from the 
file or database would reflect the new car's price.

This technique has applications anywhere multiple users share data.  It has 
the capability of allowing multiple users to share the results of the Rules 
Element's inferencing actions since changes to all data - including 
hypotheses - can be reflected in an external database.

Again, ALL statements in an if change action are always executed, so no 
matter what the result of the Write, the if change actions will continue 
executing.

When the Rules Element begins a write operation, it gets the database access 
string from the first argument of the write statement.

Related Topics

Arguments Overview Write Operator
Access String Atomic Write
Sequential Write Group Write
Left-Hand Side Writes Right-Hand Side Writes
Order of Sources Writes Writing to Databases
Language Reference 295



Chapter Database Integration Topics3
In List - (@ATOMS)
Usage

The In argument can be specified in grouped retrieve and write operations.  
It specifies the list of objects or slots to be processed by the transaction.  
Interpretations and pattern matching constructs can be included in the In 
list.  The items in the list must be separated by commas.  In text knowledge 
bases the formal syntax of the In list is:

@ATOMS=list of generic_atoms;

Examples:

■ valve1; only the object valve1 will be processed.

■ valve1.state; only the object valve1 will be processed and only its 
property slot state will be retrieved or written.

■ \theTank\.fluid; only one slot will be processed.  The string 
\theTank\ will be interpreted to yield the object to be processed.

■ <sensors>; all the objects in the list <sensors> will be processed.  This 
pattern matching list will be a subset of the objects in the class sensors 
if it results from the evaluation of one or more conditions in the rule in 
which the Retrieve or Write statement appears.

■ valve1, \theTank\.fluid, <sensors>; all the objects and slots 
previously described will be processed.

Specification

For grouped write operations, the Rules Element takes a group of objects 
and writes the same property slots from each object to the database.  The 
group of objects is specified in the In list, which can contain lists of object 
names or class specifications.  The properties are specified in the Fields and 
Properties list in the write window.

Both object and class names may be used in the same operation.

When object names are specified, they are passed to the Rules Element 
directly.  For example, if the In list contained “car_1, car_2, car_3”, then 
the objects car_1, car_2 and car_3 are passed to the Rules Element. 

A class name is passed to the Rules Element database interface by enclosing 
it in angle brackets.  For example, to pass all the objects in car_class to the 
database interface, <car_class> should be specified in the In list.

Actually, specifying <class_name> is an existential pattern matching 
operation with no "test", therefore all objects currently in the pattern 
matching list will be passed to the database interface.  If this is the first time 
the particular <class_name> specification appears in the LHS or RHS of 
the rule, then all the objects in the class will be passed.  However, if previous 
pattern matching operations had "trimmed" the list, then only those objects 
remaining in the list will be passed.

For example, assume that the class car_class contains three objects - 
car_1, car_2, and car_3, and these objects have the string property 
Sportive.  Also, assume that only car_2’s Sportive property contains a 
value of Yes.
296 Language Reference



In List - (@ATOMS)
In a rule where the LHS contains only a Write operation with an In list of 
<car_class>, ALL of the objects will be passed to the Rules Element, and 
car_1, car_2, and car_3 will be written.

If the LHS has a statement like the following preceding the write:

= <car_class>.Sportive"True"

Then ONLY car_2 will be passed to the database interface.  This is because 
the pattern match will have trimmed the list <car_class> to only those 
objects with a Sportive property of Yes.

This capability is much like being able to do a query across the objects in the 
Rules Element's working memory and passing only those objects which 
meet the query criteria to the Rules Element.

How to Specify a List of Object or Class Names

The objects or classes (or, more precisely, the existential pattern matching 
lists) are passed to the Rules Element in the In field of the database Write 
window.  The following example shows how the class <car_class> 
would be passed to the database interface in a grouped write operation:

Figure 3–6   Writing All the Objects in "car_class"

Related Topics

Database Editor Windows Existence Filtering Operations
Arguments Overview Grouped Write
Sequential Write Grouped Retrieve
Sequential Retrieve Interpretations @V(...)
Dynamic Values
Language Reference 297



Chapter Database Integration Topics3
INFORMIX
The Rules Element INFORMIX database interface is only available on 
certain Unix platforms, and is not currently available under other operating 
systems (i.e. Mac, PC, Mainframe, VAX/VMS).

INFORMIX-Online is the relational database product of Informix Software, 
Inc.  The query language of INFORMIX is the standard SQL (Structured 
Query Language) language.  This section assumes familiarity with the SQL 
language and the INFORMIX product.

The Rules Element INFORMIX interface is available as a separate package.  
An installation guide is provided with the software.  It contains all the 
information required to configure the system and install the database 
interface.

The basic logic controlling the transactions has been described in the 
Retrieve and Write topics in this chapter.  This part will explain how the 
SQL queries are constructed.

Database Access String

As explained in the Access String topic in this chapter, the first argument of 
the Retrieve or Write operators contains the information required to 
establish the connection with the database.  In order to connect with the 
Informix database server, you must specify the database name and 
optionally the name of the server on which you wish to use it.  The syntax 
takes the form:

"DatabaseName@servername"

For more information, please consult your database administrator or refer 
to the section “Database Name” in the INFORMIX Guide to SQL Reference 
December 1991 included in your INFORMIX 5 distribution.

On the PC several additional connection parameters are optional.  

"DatabaseName@servername username password host service 
protocol"

For example,

"customerdb@hyperion scott tiger jupiter sqlexec tcp-ip"

Each parameter must be delimited by a blank space. 

Note: Entering the username, password, host, service, and protocol 
parameters in your connection string may have no effect on establishing the 
connection.  Consult your database adminstrator to determine whether 
your database configuration uses these optional parameters.

You cannot be connected to several databases simultaneously.  You can 
nevertheless close a connection by issuing a RELEASE statement (see End 
string description below) and open a connection to another database 
afterwards.
298 Language Reference



INFORMIX
Query Syntax

Begin and End Strings

In these strings, you can specify any valid SQL statement which will be sent 
to the DBMS server.  If you want to send several SQL statements, you must 
separate them by a semi-colon character (;).

The Rules Element recognizes the special words COMMIT, ROLLBACK, 
and RELEASE in the End statement because they need to be processed 
differently by the INFORMIX connection module.  If COMMIT is 
encountered, the Rules Element commits the current transaction.  If 
ROLLBACK is encountered the transaction is rolled back and if RELEASE 
is found, the Rules Element closes the connection with the database.

Usually, in the case of a Write transaction, the Begin statement contains a 
BEGIN WORK and the End statement contains a COMMIT WORK.  A 
COMMIT will generally be translated to COMMIT WORK.  Note that a 
RELEASE or ROLLBACK assumes a BEGIN WORK has been done.  If this 
is not the case, INFORMIX will generate a warning.  You should not be 
concerned if you see this.  You are most likely to encounter this warning 
after selecting the Restart Session option (which does a ROLLBACK).

Query String 

The query string contains one or several table names followed by an 
optional where clause.

Let us take an example.  Our database contains two tables:

■ employees with the fields emp_id, name, dept_id, salary and bonus.

■ departments with the fields dept_id, name, budget.

You can retrieve all the employee records with the following query:

@QUERY= "employees";

Note: In the Database Editor, you should not enclose your string in double 
quotes.  You should type only the word “employees.”

You can express complex queries such as:

(a) @QUERY= "employees where salary > 3000";
(b) @QUERY= "employees, departments where salary > 3000 and employee.dept_id

= department.dept_id";

In the second case (b), the query will join the two tables employees and 
departments.

The query string is not sent as is to the DBMS server (it is not a valid SQL 
statement).  The actual SQL query is built in the following way:

■ If a Name is specified (grouped queries), the Rules Element extracts the 
field1 and the optional field2...field5 information from the Name.

■ Then the Rules Element builds the SELECT statement:

SELECT  field1, field2,...field5, list_of_fields FROM 
query_string

where list_of_fields is the list of fields specified in the left part of the double 
list box of the Database Editor (@FIELDS). 

The resulting string would be the string used with the INFORMIX isql 
utility.  isql displays the results of the query on the terminal but the Rules 
Language Reference 299



Chapter Database Integration Topics3
Element needs to assign the retrieved values to some internal variables.  Let 
us consider our example query string (b).  If the name slot of our Database 
Editor contains 'emp_'!emp_id!, and the fields list contains the three 
properties name, employees.dept_id and salary, then the following string 
will be sent to the INFORMIX server:

SELECT emp_id, name, employees.dept_id, salary FROM employees, departments
WHERE salary > 3000 and employee.dept_id = department.dept_id

You must fully specify field names which are present in more than one 
relation.  In our example, dept_id must be prefixed by a table name (even if 
the two tables contain the same value for this field as a result of our join 
operation).

You can use the full power of the SQL language and specify expressions 
instead of field names (i.e. write salary + bonus instead of salary) as long as 
the SQL string which will be generated is a valid SELECT statement.

Writing Parameterized Queries

You can use either the @V(obj.prop) syntax or the query argument box to 
parameterize your queries.  If you use the query argument box, then you 
should specify the parameters to be supplied to INFORMIX as "?".  The 
previous example can be transformed as follows:

@QUERY= "employees, departments where salary > @V(@SELF.amount) and 
employee.dept_id = department.dept_id";

or

@QUERY= "employees, departments where salary > ? and employee.dept_id = 
department.dept_id"; @ARGS= SELF.amount;

Note: SELF and interpretations are allowed in the right part of the 
fields/properties list box (@SLOTS) in the case of sequential or 
atomic queries (grouped queries use a list of properties, not slots).  
SELF is allowed only if the query is placed in methods.

Update and Insert Statements

UPDATE and INSERT statements are constructed in a similar way.  INSERT 
statements are generated only if the Create New Record option is selected 
and will concern only the objects specified in the In list which do not already 
have a matching record in the database.

The UPDATE statement is generated as follows:

UPDATE tables_from_query_string SET list_of_fields/values WHERE 
[field1 = value_of_field1 [AND field2 = value_of_field2]...] [AND] 
[where_clause_from_query_string]

The square brackets indicate optional strings.  The field values are passed in 
a special descriptor area, but their places are identified with "?".  Let us take 
our example (a) and suppose  that the salary field needs to be updated and 
that the Name cell contains 'emp'!emp_id!.  The resulting SQL statement 
will be:

UPDATE employees SET salary = ? WHERE emp_id = ? and salary > 
3000

Note:   In that example, the last part of the statement (and salary > 3000) is 
probably useless.
300 Language Reference



INFORMIX
The INSERT statement is built from the following model:

INSERT  INTO table_from_query_string ([field1, ][field2, ...] list_of_fields) 
VALUES ([value_of_field1, ][value_of_field2, ]  ...)

Our update example becomes:

INSERT INTO employees (emp_id, salary) VALUES (?, ?)

The INSERT statement is limited to the first table specified in the query 
string.  You can insert records only into real tables, not into views.

Sequential Queries

In the current implementation, you cannot have more than three active 
queries simultaneously.  You are limited to three active sequential queries 
or one grouped or atomic query when two sequential queries are pending.

Sequential Write operations are not implemented.  You can easily replace a 
sequential write by an atomic write.

Error Reporting

The Rules Element will report any SQL error message generated by 
INFORMIX in the transcript window (if this window is write enabled).  It 
will also generate error messages if it encounters problems while building 
the SQL strings.  You can consult the various INFORMIX manuals for a 
detailed explanation of the messages.

Retrieve Datatype Mapping

The following table indicates how various INFORMIX datatypes may (or 
may not) be retrieved into various Rules Element datatypes.  The Rules 
Element datatypes are listed (underlined) across the top; the INFORMIX 
datatypes are listed in the column to the left.  A "Y" means that the operation 
works with no additional effort or concerns.  A number means that the 
operation is possible, but you should see the notes that appear below the 
table for additional details.  A "--" means that the operation is not possible.

The following notes correspond to the table shown above.

Integer Float Boolean String Date

integer Y 1 5 Y --

smallint Y 1 5 Y --

float -- Y 5 Y --

real -- Y 5 Y --

char(n) 2 2 5 Y 4

varchar(n) 2 2 5 Y 4

date -- -- 5 Y 3

long -- -- -- -- --

rowid -- -- -- -- --

raw(n) -- -- -- -- --
Language Reference 301



Chapter Database Integration Topics3
Notes:

1. Conversion from integer to float will automatically take place.

2. If the string contains the proper numeric type requested, it will be 
copied into the Rules Element property.  Otherwise, formats will be 
required.

3. Informix requires a special Rules Element format be defined in order to 
retrieve this into a date property.  Since the standard INFORMIX date 
format is "mm/dd/yyyy", a Rules Element format that will accept this 
format is 'm"/"d"/"yyyy'.  This method makes the Rules Element 
conform to the INFORMIX time format (note that information 
concerning hours / minutes / seconds is not available).  

4. If the string contains a valid date, the Rules Element will take it if 
provided in the default Rules Element date format ('Mmm dd yyyy 
hh:mm:ss;mm dd yy hh:mm:ss;Mmm dd yyyy;mm dd yy;').  If in some 
other format, a format may be attached to the property to allow its 
acceptance (e.g. a format of 'mm"/"dd"/"yy' would accept "12/25/90").

5. Formats may be applied to treat most datatypes as booleans, though the 
most obvious / preferred datatypes for this purpose are strings and 
integers.  A default property has been defined so that any string of the 
form "True" or "False" (case-insensitive) will be converted to the 
appropriate Rules Element boolean.  For example, if you have integers 
that are "0" for "False" and "1" for "True", you could assign a format of 
'True;False;1;0;' (which make it print out as True/False, even though it 
comes in as 1/0).  In another example, a Rules Element boolean could 
be used to indicate all people born in 1990 by reading date fields from 
the database using the format: 'True;False;*"/"*"/"1990;*'.

6. The INFORMIX money type returns a dollar sign ("$") that must be 
accounted for with a Rules Element format statement.  A format that 
will allow loading INFORMIX money into a Rules Element float is 
'"$"0.0d'.  To load INFORMIX money into a Rules Element integer, you 
should use '"$"d*' (note that this will truncate the decimal/cents portion 
of the field).

7. It is possible to do a "non-standard" retrieve from the various 
INFORMIX datatypes into a Rules Element date slot.  However it 
requires use of the Rules Element formats, and typically results in a 
peculiar mapping from INFORMIX type to the Rules Element type.  
This mapping, while possible, is not a preferred way to read integer or 
floating data from the database, or to load a Rules Element date slot.  
For reference, formats that could be used are 'yyyy' or 'm"."yy', to load 
from an integer or float field, respectively.

8. This is possible, but is not a preferred way to read a date from 
INFORMIX or load a Rules Element float or integer, and does result in 
loss of information.  However, you might need to read an INFORMIX 
date, and put the year directly into a Rules Element float.  You could do 
such a thing with the following format: '*"/"*"/"0.0d'.  The desired field 
could equally well have been the month or day.  To load an integer with 
the year, you could use '*"/"*"/"d'.  

9. In order to load any kind of INFORMIX floating point number into a 
Rules Element integer, you must specify a format that will result in 
truncation of the decimal portion of the number.  A format that will 
work is: 'd*'.  Note that you do have to worry about overflow, since a 
302 Language Reference



INFORMIX
Rules Element integer is a 32 bit signed quantity, and floating point 
numbers can be larger than this.

Write Datatype Mapping

The following table indicates how various INFORMIX datatypes may (or 
may not) be written into from various Rules Element datatypes.  The Rules 
Element datatypes are listed (underlined) across the top; the INFORMIX 
datatypes are listed in the column to the left.  A "Y" means that the operation 
works with no additional effort or concerns.  A number means that the 
operation is possible, but you should see the notes that appear below the 
table for additional details.  A "--" means that the operation is not possible.

The following notes correspond to the table shown above.

Notes:

1. A special Rules Element format must be defined in order to write into 
an INFORMIX date field.  The standard INFORMIX date format is 
"mm/dd/yyyy".  A Rules Element format that will generate this format 
is 'mm"/"dd"/"yyyy'.  This method makes the Rules Element conform 
to the default INFORMIX time format (this date format does not 
support  the hours / minutes / seconds fields).  

2. If the string contains a valid date, INFORMIX will take it if provided in 
the standard INFORMIX date format (see note 1). 

3. If the string contains the proper numeric type requested, it will be 
copied into the Informix field.  See also note 7.

4. Formats must be applied to treat booleans as non-string INFORMIX 
datatypes.  For example, you could write into an integer field if you use 
a boolean format of '1;0;True;False' (which accepts True/False, though 
prints out as 1/0). The most obvious candidates to use for storing 
booleans are string and integer datatypes.  (Strings will directly receive 
True/False with the default Rules Element format).

5. Floats will be truncated, as necessary, when stored in integer fields.  See 
also note 7.

6. This requires the use of special formats, and is not a preferred or 
recommended way to store values into the specific INFORMIX fields.  
For example, one would almost never use Rules Element dates to hold 
INFORMIX integers, or vice versa.   It could be done, but might place 
restrictions on the values that may be stored.

Integer Float Boolean String Date

Y 5 4 3 --

Y 5 4 3 --

Y Y 4 3 --

Y Y 4 3 --

Y Y Y Y Y

Y Y Y Y Y

-- -- 4 2 1

-- -- -- -- --

-- -- -- -- --
Language Reference 303



Chapter Database Integration Topics3
7. Overflow is possible in certain cases if the input field is larger than the 
database datatype supports (e.g. storing a Rules Element integer into an 
INFORMIX smallint).  It is also possible to lose precision by, for 
example, storing the Rules Element integers or floats (double precision) 
into INFORMIX smallfloats (single precision).

Notes

The main differences between INFORMIX and the screen captures 
documented in Appendix A, “Database Integration Examples” are as 
follows:

■ You must remember to specify INFORMIX in the Database Editor 
window (or in the TKB, @TYPE=INFORMIX).

■ You must specify parameterized queries as "?", rather than ":val".

Related Topics

Databases
Retrieving from Databases
Writing to Databases

INGRES
INGRES is the relational database product of INGRES Corporation.  The 
query language of INGRES is the standard SQL (Structured Query 
Language) language.  This section assumes familiarity with the SQL 
language and the INGRES product.

The Rules Element INGRES database interface is available as a separate 
package.  An installation guide is provided with the software.  It contains all 
the information required to configure the system and install the database 
interface.

The basic logic controlling the transactions has been described under the 
Retrieve and Write topics in this chapter.  This part will explain how the 
SQL queries are constructed.

Database Access String

As explained under the Access String topic, the first argument of the 
Retrieve or Write operators contains the information required to establish 
the connection with the database.  In order to connect with the INGRES 
database server, you must specify the virtual node, database name, and the 
user name:

"virtualnode database username options"

For example,

"sun10 iidbdb scott"

Each parameter must be delimited by a blank space. You should consult 
your database administrator or Ingres manuals for the exact information 
about the connection parameters.
304 Language Reference



INGRES
You cannot be connected to several accounts simultaneously.  You can, 
however, close a connection by issuing a RELEASE statement (see End 
string description below) and open a connection to another account 
afterwards.

Query Syntax

Begin and End strings

In these strings, you can specify any valid SQL statement which will be sent 
to the DBMS server.  If you want to send several SQL statements, you must 
separate them by a semi-colon character (;).

The Rules Element recognizes the special words COMMIT, ROLLBACK, 
and RELEASE in the End statement because they need to be processed 
differently by the INGRES connection module.  If COMMIT is encountered, 
the Rules Element commits the current transaction.  If ROLLBACK is 
encountered the transaction is rolled back and if RELEASE is found, the 
Rules Element closes the connection with the database via the 
DISCONNECT statement.

Usually, the Begin statement is left empty and the End statement contains a 
COMMIT in the case of a Write transaction.  You could alternatively specify 
ROLLBACK if you wish to undo the effects of your current transaction:

@END= "commit";
@END= "rollback";

By default, the Rules Element does a ROLLBACK when a Restart Session is 
done.

If the Rules Element is able to communicate with the INGRES database 
server, but INGRES is unable to open the table (typically because it is locked 
by some other user/application), the Rules Element will wait until access is 
allowed.  It is possible to use special syntax in the BEGIN field to cause 
INGRES to give up after a specified time.  The syntax for this is, for the first 
query, to specify:

@BEGIN= "set lockmode session where timeout = n";

where "n" is the number of seconds you are willing to wait while trying to 
establish the connection to the INGRES database.

It is also possible to use the BEGIN field to tell INGRES that you wish to 
automatically do a COMMIT following each transaction:

@BEGIN= "set autocommit on";

Query string

The query string contains one or several table names followed by an 
optional where clause.

Let us take an example.  Our database contains two tables:

■ employees with the fields emp_id, name, dept_id, salary and bonus.

■ departments with the fields dept_id, name, budget.

You can retrieve all the employee records with the following query:

@QUERY= "employees";

Note:   In the Database Editor, you should not enclose your string in double 
quotes.  You should type only the word employees.
Language Reference 305



Chapter Database Integration Topics3
You can express complex queries such as:

(a) @QUERY= "employees where salary > 3000";
(b) @QUERY= "employees, departments where salary > 3000 and employee.dept_id = 

department.dept_id";

In the second case (b), the query will join the two tables employees and 
departments.

The query string is not sent as is to the DBMS server (it is not a valid SQL 
statement).  The actual SQL query is built in the following way:

■ If a Name is specified (grouped queries), the Rules Element extracts the 
field1 and the optional field2...field5 information from the Name.

■ Then the Rules Element builds the SELECT statement:

SELECT  field1, field2,...,field5, list_of_fields FROM 
query_string

where list_of_fields is the list of fields specified in the left part of the double 
list box of the Database Editor (@FIELDS). 

The resulting string would be the string used with the SQL utility.  SQL 
displays the results of the query on the terminal but the Rules Element 
needs to assign the retrieved values to some internal variables.  Let us 
consider our example query string (b).  If the name slot of our Database 
Editor contains 'emp_'!emp_id!, and the fields list contains the three 
properties name, employees.dept_id and salary, then the following string 
will be sent to the INGRES server:

SELECT emp_id, name, employees.dept_id, salary FROM employees, 
departments WHERE salary > 3000 and employee.dept_id = 
department.dept_id

You must fully specify field names which are present in more than one 
relation.  In our example, dept_id must be prefixed by a table name (even if 
the two tables contain the same value for this field as a result of our join 
operation).

You can use the full power of the SQL language and specify expressions 
instead of field names (i.e. write salary + bonus instead of salary) as long as 
the SQL string which will be generated is a valid SELECT statement.  The 
INGRES SQL Reference Manual provides detailed information on SQL.

Writing parameterized queries

You can use either the @V(obj.prop) special syntax or the query argument 
box to parameterize your queries.  Our previous example can be 
transformed as follows:

@QUERY= "employees, departments where salary > @V(@SELF.amount) and 
employee.dept_id = department.dept_id";

or

@QUERY= "employees, departments where salary > :v1 and employee.dept_id = 
department.dept_id";@ARGS= SELF.amount;

Note:  SELF and interpretations are allowed in the right part of the 
fields/properties list box (@SLOTS) in the case of sequential or 
atomic queries (grouped queries use a list of properties, not slots).  
SELF is allowed only if the query is placed in methods.
306 Language Reference



INGRES
Update and Insert statements

UPDATE and INSERT statements are constructed in a similar way.  INSERT 
statements are generated only if the Create New Record option is selected 
and will concern only the objects specified in the In list which do not already 
have a matching record in the database.

The UPDATE statement is generated as follows:

UPDATE tables_from_query_string SET list_of_fields/values 
WHERE [field1 = value_of_field1 [AND field2 = 
value_of_field2]...] [AND] [where_clause_from_query_string]

The square brackets indicate optional strings.  Let us take our example (a) 
and suppose that the salary field needs to be updated and that the Name cell 
contains 'emp'!emp_id!.  The resulting SQL statement will be:

UPDATE employees SET salary = 5000 WHERE emp_id = '104' and 
salary > 3000

Note:  In this example, the new salary information and the emp_id is 
obtained from the object identified by the Name field (e.g. 'emp104').  
Also, the last part of the statement (and salary > 3000) is probably 
useless.

The INSERT statement is built from the following model:

INSERT INTO table_from_query_string ([field1, ][field2, ...] list_of_fields) 
VALUES ([val1, ][val2, ] ...)

Our update example becomes:

INSERT INTO employees (emp_id, salary) VALUES ('105', 6500)

The INSERT statement is limited to the first table specified in the query 
string.  You can insert records only into real tables, not into views.

Sequential queries

In the current implementation, you cannot have more than three active 
queries simultaneously.  You are limited to three active sequential queries 
or one grouped or atomic query when two sequential queries are pending.

Sequential writes are not implemented.  You can easily replace a sequential 
write by an atomic write.

Error Reporting

The Rules Element will report any SQL error message generated by INGRES 
in the transcript window (if this window is write enabled).  It will also 
generate error messages if it encounters problems while building the SQL 
strings.  You can also consult the appropriate INGRES manuals for a 
detailed explanation of the INGRES messages.

Retrieve Datatype Mapping

The following table indicates how various INGRES datatypes may (or may 
not) be retrieved into various Rules Element datatypes.  The Rules Element 
datatypes are listed (underlined) across the top; the INGRES datatypes are 
listed in the column to the left.  A "Y" means that the operation works with 
no additional effort or concerns.  A number means that the operation is 
Language Reference 307



Chapter Database Integration Topics3
possible, but you should see the notes that appear below the table for 
additional details.  A "--" means that the operation is not possible.

The following notes correspond to the table shown above.

Notes
1. Conversion from an integer value to a float will take place.

2. If the string contains the requested numeric type, it will be copied into 
the Rules Element property.

3. A special Rules Element format must be defined in order to retrieve this 
field into a date property.  A format that should work is 
'd"-"mmm"-"yyyy" "h":"mm":"ss'.  

4. If the string contains a valid date, the Rules Element will take it if 
provided in the default Rules Element date format ('Mmm dd yyyy 
hh:mm:ss;mm dd yy hh:mm:ss;Mmm dd yyyy;mm dd yy;').  If in some 
other format, a format may be attached to the property to allow its 
acceptance (e.g. a format of 'mm"/"dd"/"yy' would accept a string 
containing "12/25/90").

5. Formats may be applied to treat most datatype as booleans.  By default, 
the Rules Element will convert any string of the form "True" or "False" 
(case-insensitive) to the appropriate Rules Element boolean.  The most 
obvious field types to read into booleans are the various strings and 
integers.  For example, if you have integers that are "0" for "False" and 
"1" for "True", you could assign a format of '!True;!False;1;0;' (which 
makes the Rules Element print it out as True/False, even though it 
comes in as 1/0).

6. A special the Rules Element format is needed to accept this, which ends 
up discarding the floating point portion (there will be problems if an 
exponent is present).  For example, you could use the following format:  
'd*;'.

Write Datatype Mapping

The following table indicates how various INGRES datatypes may (or may 
not) be written into from various Rules Element datatypes.  The Rules 
Element datatypes are listed (underlined) across the top; the INGRES 
datatypes are listed in the column to the left.  A "Y" means that the operation 
works with no additional effort or concerns.  A number means that the 

Integer Float Boolean String Date

Y 5 4 3 --

Y 5 4 3 --

Y Y 4 3 --

Y Y 4 3 --

Y Y Y Y Y

Y Y Y Y Y

-- -- 4 2 1

-- -- -- -- --

-- -- -- -- --
308 Language Reference



INGRES
operation is possible, but you should see the notes that appear below the 
table for additional details.  A "--" means that the operation is not possible.

Note that the Rules Element INGRES database interface needs to make 
extensive use of the "{I}" syntax for integer database field names in the Name 
field and the Fields list.  This instructs the database interface to not treat this 
as a string, but rather as a numeric field (e.g. integer).

The following notes correspond to the table shown above.

Notes
1. Datatype conversion, as appropriate and if possible, will take place.  For 

example, a Rules Element integer can be placed into an INGRES 
integer1 (8 bits), but it must have a value in the allowed range.  If the 
number overflows the fieldwidth, INGRES will not always generate an 
error, and the value written is not always predictable.

2. There are no "cents" passed in.  The integer is treated as an integer 
number of dollars ("$").

3. Formats must be applied to treat booleans or dates as various INGRES 
datatypes.  For example, you could write a boolean into an integer field 
if you use a boolean format of '1;0;True;False' (which accepts 
True/False, though prints out as 1/0).  The most obvious candidates to 
use for storing booleans are the various string and integer formats.  
(Strings will directly receive True/False with the default Rules Element 
format).

4. Since this INGRES field needs to be entered without quotes, but the 
Rules Element, by default, will put quotes around the field values, the 
"{I}" prefix syntax must be used for the database field name to indicate 
that this is a numeric-like field and the Rules Element should not 
provide quotes.

Integer Float Boolean String Date

int Y 1 1,4,5 1,5 1,4,5

smallint 1 1 1,4,5 1,5 1,4,5

tinyint 1 1 1,4,5 1,5 1,4,5

float 1 Y 1,4,5 1,5 1,4,5

char(n) -- -- Y Y Y

varchar(n) -- -- Y Y Y

bit 3 3 1,4,5 1,5 1,4,5

money 2 -- -- 1,5 1,4,5

date -- -- 4 1,5 Y

text -- -- -- -- --

binary(n) -- -- -- -- --

varbinary(n) -- -- -- -- --

image -- -- -- -- --

timestamp -- -- -- -- --
Language Reference 309



Chapter Database Integration Topics3
5. You must be sure to specify a date field that INGRES will accept.  
Otherwise, with certain platforms and INGRES versions, the database 
server has been known to crash.  A format that is acceptable is:  
'd"-"mmm"-"yyyy" "h":"mm":"ss'.

6. Typically not used in this manner, but possible if the integer contains, 
for example, "mmddyy" (a valid INGRES date input format).

Notes

The main difference between INGRES and the screen captures documented 
in Appendix A, “Database Integration Examples” are as follows:

1.   You must remember to specify INGRES in the Database Editor 
window (or in the TKB, @TYPE=INGRES).

2. When writing numeric fields, you must use the "{I}" syntax to let the 
database interface know that it must not provide quotes around the 
database field being sent from the Rules Element.  For example (e.g. 
ex02ing.tkb):

3. @FIELDS= "{I}DB_PRICE","DB_MODEL_DATE","DB_SPORTIVE";

4. In all of the examples where you are going to retrieve from a table, the 
INGRES interface is generally exactly the same as the standard 
examples. 

Related Topics

Databases
Retrieving from Databases
Writing to Databases

Insert Only - (@FILL)
Usage

Insert Only specifies that a new record be created automatically without 
first performing an update to existing records.  This can be useful when you 
know in advance that none of the records being written from the Rules 
Element currently exist in the database.  Duplicate records may result if an 
insert is performed and the record already exists.  However, using the Insert 
Only setting instead of the Create New Record setting produces a significant 
performance boost since there is no update to perform before inserting the 
new records.  

In the write dialog screen this setting can be specified by clicking in the 
Insert Only check box.  In a text format knowledge base it will appear as: 

@FILL=INSERT;

When Insert Only is selected, do not select Create New Record or New File 
since these settings are mutually exclusive.

Related Topics

Grouped Write Arguments Overview
Database Editor Windows Create New Record
Writing to Databases New File
310 Language Reference



Interpretations - @V(...)
Interpretations - @V(...)
Usage

The Rules Element allows you to use the syntax @V(obj.prop) (or 
equivalently @V(slot)) for more flexibility in parameterizing your 
knowledge base.  This syntax also proves to be very useful with the Rules 
Element database interface.

As a reminder, you can parameterize your query using a :val syntax (!val for 
RDB) and specifying a Query Arguments list as in: 

@QUERY= 'CARS WHERE MODEL = :val1 AND PRICE < :val2'; @ARGS= 
car.model,car.price ;

where the values found in the Rules Element slots car.model and 
car.price will be used to select the appropriate record from the database.  
For example, car.model could be a string slot containing a model name 
like FORD, and car.price could be an integer slot containing a price like 
12500.  There is an implicit issue with quotes in the resulting query 
statement generated and sent to the database sever.  Some query 
implementations are indifferent to quotes, while others want quotes only in 
selected areas.  Where quotes matter, the Rules Element will typically 
provide (or not provide) quotes based on the Rules Element property type 
(not the database type).  For example, with RDB, integer and float values are 
not quoted, but everything else is.

It is also possible for you to use @V to parameterize this query, as in: 

@QUERY= 'CARS WHERE MODEL="@V(car.model)" AND PRICE < 
@V(car.price)';

With @V you do not provide the slots in the @ARGS keyword area.  It is 
important to note that the Rules Element does not provide the quotes 
around the @V that will be required by most databases.  Therefore, you 
should remember to provide the quotes when dealing with database fields 
like strings, but typically leave them off when dealing with numeric fields.

The choice of one method or the other is largely based on personal 
preference.  Using @V allows you to generate a query that looks more like 
the normal query that would be generated (e.g. from an interactive SQL 
interface), and you do not have to remember about @ARGS and :val.  In 
addition, @V gives you control over where quotes are provided and where 
they are not.  The drawback to @V is that the slot referenced is not 
"compiled", so if an invalid slot is provided, it is not detected until you 
actually run the application.

Another interesting way to use the @V syntax is as the 1st argument to the 
Retrieve or Write: the database access string.  In this case, your rule would 
look something like:

RETRIEVE "@V(SLOT)" [second_argument(s)]

There are two advantages to using @V here.  The main one is that a 
password is frequently involved in providing access to a database.  Using 
@V means that this information does not have to be hard-coded in the 
knowledge base itself (which could raise security issues).  The password / 
access string would still have to be provided by the slot, but it could be filled 
by doing something more acceptable (e.g. prompting the user).  The other 
advantage is that this mechanism would allow you to totally switch your 
Language Reference 311



Chapter Database Integration Topics3
database access strings to make a more portable application.  You could 
provide an ORACLE string on one system, and a SYBASE string on another.  
Unfortunately the entire query cannot be totally parameterized.  For 
example, the @TYPE=database_type field must be fully specified in the 
knowledge base.

Note that @V can also be used in the BEGIN and END statements in the 
Retrieve or Write operation, with many of the same advantages listed 
above.  For example, you could have an END statement like:

@END= "@V(commit)";

where you could have the slot commit contain "commit" for most databases, 
but "commit transaction" for SYBASE.  A similar technique could be applied 
to the BEGIN statement.  The BEGIN statement can provide a lot more 
generic database access (e.g. creating/dropping tables, deleting records, 
etc).  See the Begin topic for details.

Related Topics

Dynamic Values Filename Retrieves @F(...)
Beginning Database Operations Begin
Ending Database Operations End
Retrieve Operation Write Operator
Access String Specification

Left-Hand Side Retrieves
Usage

In the left hand side (LHS) of a rule or method, a retrieve statement is used 
to fetch data (or facts) relevant to the current rule or chain of reasoning 
being followed.  For example, if the Rules Element is evaluating a set of rules 
for determining the evaluation of a car dealer's inventory, a retrieve could 
be used in the LHS of a rule to get all of the car inventory records.

Remember that a retrieve will still return "True" even if no records are 
fetched.  A retrieve ONLY returns "False" when an error occurs.

Depending on the type of retrieve, different strategies can be used to 
determine if any records were retrieved.  For sequential and atomic 
retrieves, the cursor will be set to a negative value when no records are 
returned.

For grouped retrieves, there is no direct way to tell how many records were 
retrieved.  If the records were retrieved into a previously empty class, the 
Length function can be used to determine how many objects are in the class 
after the retrieve. 

When the Rules Element begins a retrieve operation, it gets the database 
access string from the first argument of the write statement.

Related Topics

Arguments Overview Retrieve Operator
Access String Atomic Retrieve
312 Language Reference



Left-Hand Side Writes
Sequential Retrieve Group Retrieve
Right-Hand Side Retrieves If Change Retrieves
Order of Sources Retrieves Retrieving from Databases

Left-Hand Side Writes
Usage

Write operations are used less often on the left hand side of a rule or 
method, largely because a Write isn't an action normally taken when testing 
for a condition or hypothesis.

Like a retrieve, a write only returns "False" if the write fails.  You cannot, for 
example, test to see if a write added or updated any records by testing to see 
if the write returned "true" or "false".  Since a write doesn't affect the objects 
which are written, it's not possible to use indirect means to see which objects 
were written, and which weren't.

When the Rules Element begins a write operation, it gets the database access 
string from the first argument of the retrieve statement.

Related Topics

Arguments Overview Write Operator
Access String Atomic Write
Sequential Write Group Write
Right-Hand Side Writes If Change Writes
Order of Sources Writes Writing to Databases

Link To - (@CREATE)
Usage

The Link To argument is only used in the context of grouped retrieves.  It 
specifies a list of classes or objects to which the objects dynamically created 
by the retrieve will be linked.  Interpretations and pattern matching 
constructs can be included in the Link To list.  The items in the list must be 
separated by commas.  The formal syntax of the Link To list is:

@CREATE=list of generic_classes or generic_objects;

Example:

@CREATE=|sensors|,new_object;

The objects dynamically created by the retrieve will be linked to the class 
sensors and as sub-objects to the object new_object.

Related Topics

Database Editor Windows
Grouped Retrieves
Arguments Overview
Language Reference 313



Chapter Database Integration Topics3
Name - (@NAME)
Usage

The Name field is typically used in the context of grouped transactions.  It 
describes the mapping between Rules Element object names and database 
field names.

During grouped retrieves, the Name field specifies how database field 
values (!fieldx!) and string constants ('rootx') are to be concatenated 
to yield names for the dynamic objects created by the query.

During grouped writes, the Name field specifies how Rules Element object 
names are to be parsed to yield unique database key values for the 
insert/update database transaction.

Syntax

There are several valid syntactic forms for the Name string:

@NAME="!field1!"
@NAME="'root1'!field1!"
@NAME="!field1!'_'!field2!"
@NAME="'root1'!field1!'_'!field2!"
@NAME="'root1'!field1!'root2'!field2!"

...and so on up to a maximum of five root/field combinations

When editing the Name field in the retrieve or write dialog screens, do not 
enclose the entry in double quotes; the Rules Element will insert them 
automatically.  Also,.do not exceed the 255 character limit for slot names 
when specifying the Name string.

For example, if you want to use the second form described above, you type 
'root1'!field1!.  The rooti's are string constants and the fieldi's are 
field names.  When processing one record (in Retrieve or Write), the Rules 
Element will get the values of fieldi as strings.  Then it will sequentially 
go through the various root/field combinations and concatenate the 
string rooti with the value of fieldi (those which are not specified in the 
Name string are considered to be empty strings).  The result of this 
concatenation is the name or the object which is associated with the record.  
Thus the fields are the "keys" which define the mapping between records 
and objects.

Note: String constants must be delimited by single quotes ('rootx').

Example 1:

@NAME="'sensor'!num_id!";
num_id (from database) object name
   1 sensor1
   2 sensor2
   3 sensor3

Example 2:

@NAME="'part_'!type!'_'!id!";
type (from database)id (from database) object name
new 1 part_new1
used 2 part_used2
old 3 part_old3
314 Language Reference



New File - (@FILL)
As the Name information is used to associate objects and records, the fields 
should be chosen so that they provide a unique key in the database (no two 
records have the same fields combination).  Otherwise, there will not be a 
one to one mapping between objects and records and information may be 
retrieved from one record, transferred to an object and written back to many 
records by mistake.  Providing additional information in the Query field 
could reduce some of the ambiguity if the fields do not identify a unique 
record, but you should be sure you understand the database contents if 
using this approach.

Related Topics

Grouped Retrieve Grouped Write
Database Editor Windows Debugging Operations
Arguments Overview Object Names In Retrieve Operations
Record Specification for Writes

Also see the Grouped Retrieve/Write examples in Appendix A, “Database 
Integration Examples” for further illustrations of the Name field.

New File - (@FILL)
Usage

The New File setting is only meaningful in the context of a grouped write to 
a flat-file database.  New File specifies whether a new spreadsheet file may 
be created during a grouped write.

In the write dialog screen this setting can be specified by clicking in the New 
File check box.  In a text format knowledge base it will appear as: 

@FILL=NEW;

When New File is selected, Create New Record is automatically implied.  
The Insert Only setting is not compatible with either of these settings.

New File cannot be used to automatically create a table in a relational 
database during a grouped write.  Tables must be explicitly created, either 
in an external application, or in the Begin or End fields in a retrieve or write 
operation.  For flat-file databases, new files will be created according to the 
format specified in the database type field.  These files can then be accessed 
by other applications like EXCEL, Lotus 1-2-3, or DBase III.

Related Topics

Grouped Write Arguments Overview
Database Editor Windows Create New Record
Writing to Databases Insert Only
Spreadsheets
Language Reference 315



Chapter Database Integration Topics3
NEXPERT Flat-File Formats
These custom Rules Element spreadsheet and database formats offer some 
advantages:

■ Simplicity and compatibility:  the standard ascii data file can be used on 
any platform, and simple custom programs can read or write in the 
same format.

■ Speed:  the read and write access are much faster than with other data 
files (SYLK, WKS, DBF3).

■ Readability:  the data file can be edited outside the Rules Element with 
a text editor, or even printed as a report.

They should be used instead of SYLK, WKS, or DBF3 if you do not plan to 
use your data file outside the Rules Element with an application program 
(Excel, Lotus 1-2-3, dBaseIII).

NXP File Format 

Every slot is stored on a single line.  Its name and value are written with the 
following delimiters:

\obj.prop\="value"............

or:

\obj\="value"............

The second form is used to store obj.Value

The 12 dots represent 12 blank characters which are added when the cell is 
created, so that the same cell can be updated later with a longer value 
without altering the line length.

The file is terminated by a line of stars (*).

Example of a file with three slots:

\problem\="TRUE"
\sensor.pressure\="200.50"
\sensor.location\="blast_furnace"
************

Note: The objects are sorted alphabetically.

The termination of each line is machine dependent:  Carriage Return 
and/or Line Feed.

The Rules Element will not attempt to move data when it replaces a 
short string value with a longer one.  New values will be truncated if 
they are more than 12 characters longer than the original values.  You 
can use other tools (i.e. sed on UNIX) to extend the lines on an 
existing NXP file.

The NXP format can be demonstrated with the following rule.  The result is 
more interesting if you add this rule to an existing set of rules (i.e. 
primer.kb).

If Yes Write_NXP_file
Then hypo
And Write "test.nxp" @TYPE=NXP;@FILL=NEW(*)

(*) choose NXP in the database list and select the New File button in the 
Database Editor.
316 Language Reference



NEXPERT Flat-File Formats
This rule will create a file called test.nxp in your current directory.  You 
can open this file with a text editor to see all the slots of the knowledge base 
(except those which are UNKNOWN) written line by line with their current 
values.

NXPDB File Format 

The records are stored with the following format:

field1| field2| field3| field4|
*********************************************************

 val11|  val12|  val13|  val14|
 val21|  val22|  val23|  val24|

...
*********************************************************

The main characteristics of the NXPDB format are the following:

■ It is an ASCII file and thus can be ported from one machine to another 
(only the End-Of-Line character may differ).

■ All the lines have the same length (fixed length record).  This length is 
computed when the file is created by adding the field widths (including 
separators).

■ The first two lines are the file header and describe the fields of the table.  
The first line contains all the field names separated by vertical bars.  It 
also defines the widths of the fields.  The second line is filled with stars 
(*).

■ The last line of stars indicates the end of the file.  Any record written 
after it will be ignored.

■ Every line between the second and the last line represents a record.  The 
values are right-aligned in the columns, followed by vertical bars.

The NXPDB format can be demonstrated with the following rule.  The result 
is more interesting if you add this rule to an existing set of rules (eg. 
primer.kb).

If      Yes       Write_NXPDB_file
Then    hypo
And     Write    "test.nxp"  @TYPE=NXPDB;@FILL=NEW;(*)

(*) choose NXPDB in the database list and select the New File button in the 
Database Editor.

This rule will create a file test.nxp in the current directory.  You can open 
this file to see all the objects and classes of the knowledge base written line 
by line in records.  The two first fields are Name and Value (30 characters 
long), followed by the list of properties of the knowledge base.  Each object 
name is written, but only KNOWN values are pasted.  The lines may 
become very long and difficult to read if your knowledge base contains 
many properties (especially if your text editor wraps lines).  This NXPDB 
file contains a complete dump of the object base.
Language Reference 317



Chapter Database Integration Topics3
Specifying Field Widths

NXPDB uses fixed width records and fields.  The default field widths 
depend on the data type of the property:

boolean Max(10, length of the field name)

integer, float Max(15, length of the field name)

string, date, time Max(30, length of the field name)

special property Value Max(30, length of the field name)

You can override these default values and specify field widths on a property 
by property basis.  The field width information can be edited in the left part 
of the double list box of the Write Editor (list of fields, @FIELDS keyword).  
You specify the field width as a number between parentheses after the name 
of the field.  This feature allows you to customize the layout of your NXPDB 
files so they can be edited easily or printed as reports.  You must carefully 
choose your field widths because the Rules Element will truncate the strings 
to fit in the space that you have reserved for them.  If a string is larger than 
its field, it will be truncated and some information will be lost.  This may be 
harmless if you want to use the NXPDB file only as a report but problems 
will arise if the contents of the file are retrieved afterwards.

Examples
List of Fields List of Properties Notes
Job(15) Position (a)
Salary(10) Salary (b)
SS_Number(10) SS_Number (b)
Married(5) MaritalStatus (c)

(a) The Job field has a maximum width of 15 characters (default is 30 for 
string, date and time).  Your job descriptions must be less than 15 characters 
wide.

(b) The Salary and SS_Number fields have a maximum width of 10 
characters (default is 15 for integer and float).  You must take into account 
the formatting information associated with the property to compute the 
field width.  For example, the Salary property may be formatted as $ 3000 
or 3000 dollars.

(c) The default width for booleans is 10 characters.  Five is sufficient for 
TRUE and FALSE.  One character will be enough if your boolean format is 
"T";"F"; (and if you are also using a 1 letter format for UNKNOWN and 
NOTKNOWN values).

Notes

The Rules Element will never truncate the field names written in the header 
of the file.  If a field name contains 8 letters and if you specified a field width 
of 5 characters for it, the Rules Element will use 8 as field width.

Field names are also used in the Name specification (@NAME) which defines 
the mapping between records and objects ('root1'!field1!'root2'!field2!).  You 
can also specify a field width for field1 and field2 (i.e. 
'emp_'!emp_name(12)!).

UNKNOWN and NOTKNOWN values are written as UNKNOWN (if 
Write Unknown is selected) and NOTKNOWN unless you have specified a 
special format for them (i.e. @N=*; @U=?;).  So, your fields should be at 
318 Language Reference



Object Names In Retrieve Operations
least 8 characters wide if you expect NOTKNOWN or UNKNOWN values 
and you have not defined a custom format.

Related Topics

Spreadsheets Writing to Databases
Database Editor Windows Retrieving from Databases
Arguments Overview

Object Names In Retrieve Operations
Explicit Object Names

In the simplest case, the Retrieve operation explicitly states which slots 
(object.property combinations) will receive which fields from the database 
records.  This means that no matter what the records or fields contain, the 
fields will always be mapped to the same slots. 

For example, a Retrieve could be coded such that as a car record is retrieved, 
the fields would be pasted into the slots MyCar.Name, MyCar.Price, and 
MyCar.Model.  These are explicit names: EVERY car's record will be pasted 
into the MyCar object's Name, Price, and Model properties.

Explicit names are used when records are retrieved one by one, as in an 
atomic or sequential retrieval.  With explicit names, a knowledge base will 
typically retrieve a record, process the slots, and (possibly) go on to retrieve 
the next record into the same slots.  

Explicit names cannot be used with grouped retrieval, since many records 
are retrieved at once, and each succeeding record's fields would be written 
over the previous fields in the slots (since only one set of slots can be 
specified), and all but the last record's fields would be lost.

When a Retrieve operation uses explicit names, it is possible to split a 
record's fields across several objects by merely specifying slot names 
(object.property combinations) which are in different objects.  For example, 
a car record's fields could be retrieved into MyCar.Price, 
YourCar.Model, and TheirCar.Model_Date.  However, as discussed 
before, this is probably only useful in specialized applications since the 
relationship of the fields is no longer reflected in the Rules Element's object 
representation.

Constructed Object Names

It's also possible to use data from the record itself to construct the name of 
the object which will receive the record's fields.  All or a portion of the name 
can be built using the actual data in one or more of the record's fields.  If 
desired, constant strings can be interspersed with the field data when 
forming the object name.

Take, for example, a car inventory database containing a field DB_MODEL 
and DB_CAR_NAME for each car.  In this inventory there are four cars whose 
DB_MODEL fields contain TOYOTA, HONDA, BMW, and MERCEDES. 

These records could be retrieved into four different objects by using the 
DB_MODEL field used to build the name of each object.  Thus, the records 
Language Reference 319



Chapter Database Integration Topics3
could be retrieved into the objects named TOYOTA, HONDA, BMW, and 
MERCEDES.  In this case, the object names are built directly from the 
database field DB_MODEL.  The object name is later combined with the 
property names to form "object.property" combinations - slot names - to 
receive the record's field values.

As the Rules Element forms the name for each object, it looks in its working 
memory for an object with the same name.  If the object is found, the Rules 
Element will update its slots with the fields from the record.  If the object is 
NOT found, the Rules Element can either skip the record, or create a new 
object for the record. 

It is important that the fields and constants used to form the object names 
result in unique names.  If not, the data retrieved into some objects may be 
lost as later records generate the same object name, and overlay the earlier 
data.  For example, if there were two HONDA records in the car inventory, 
the data from the second HONDA record retrieved would overlay the first 
record's data. 

To avoid this, include at least one field in the object name whose value will 
be unique, or combine two or more fields to form a unique value.  For 
example, the previous case could be made unique by using the 
DB_CAR_NAME field for the object name, or combining the DB_MODEL and 
DB_CAR_NAME to form the name. 

Grouped Retrieve operations MUST use data from the record to construct 
the object names.  A grouped retrieve typically fetches more than one record 
at once, and the Rules Element must have a way to build multiple object 
names as the records are retrieved.

Constructing Object Names

You provide the model for constructing the object names in the Name field 
of the Retrieve window.  It is specified as a series of constants (or "roots") 
and/or field names to be used in constructing the object names.  The root 
fields should be enclosed in single quotes, and the field names in 
exclamation points ("!").  For example, to specify that the field "DB_MODEL" 
is to be used as the object name, you would specify "!DB_MODEL!" in the 
name field.

To combine the "make" field with the constant CAR_, you would specify:

'CAR_'!DB_MODEL!

 Even more complex constructs are possible: to combine the DB_MODEL and 
DB_CAR_NAME field with two roots, you might specify:

'CAR_'!DB_MODEL!'_NAME_IS'!DB_CAR_NAME!

It's important to remember that the Name field is composed of field names, 
not property names.  The field names specified must be present in the 
records being retrieved, otherwise an error will occur.

Field names which occur in the Name field may be repeated in the Fields 
and Properties list.
320 Language Reference



ORACLE
Related Topics

Grouped Retrieve Cursor Slot Specification
Access String Slot Specification for Retrieves
Query Retrieve Operations Database Editor Windows
Retrieving from Databases Name

ORACLE
ORACLE is the relational database product of ORACLE Corporation.  The 
query language of ORACLE is the standard SQL (Structured Query 
Language) language.  This section assumes familiarity with the SQL 
language and the ORACLE product.

The Rules Element ORACLE database interface is available as a separate 
package.  An installation guide is provided with the software.  It contains all 
the information required to configure the system and install the database 
interface.

The basic logic controlling the transactions has been described under the 
Retrieve and Write topics in this chapter.  This part will explain how the 
SQL queries are constructed.

Database Access String

As explained under the Access String topic in this chapter, the first 
argument of the Retrieve or Write operators contains the information 
required to establish the connection with the database.  In order to connect 
with the Oracle 7 database server, you must specify the account name and 
the password. 

The syntax is the standard Oracle 7 syntax:

"username password host usefixed"

For example:

"scott tiger t:hyperion:HYPERIONSID"

Each parameter must be delimited by a blank space. The host name follows 
any syntax supported by SQL*Net. Consult your database administrator or 
Oracle manual for the exact information.

On the PC, Oracle users with SQL*Net 2.0 must provide the full network 
information; aliases are not supported. On other platforms, aliases are 
supported.

Note: The “usefixed” parameter controls whether the Oracle 7 CHAR (Type 
96) is supported. The default is set to True in order to map fixed and variable 
length character types as required by Oracle 7. You must set this parameter 
to False for any connection that you establish to Oracle 6. 

You cannot be connected to several accounts simultaneously.  You can 
nevertheless close a connection by issuing a RELEASE statement (see End 
string description below) and open a connection to another account 
afterwards.
Language Reference 321



Chapter Database Integration Topics3
Query Syntax

Begin and End Strings

In these strings, you can specify any valid SQL statement which will be sent 
to the DBMS server.  If you want to send several SQL statements, you must 
separate them by a semi-colon character (;).

The Rules Element recognizes the special words COMMIT, ROLLBACK, 
and RELEASE in the End statement because they need to be processed 
differently by the ORACLE connection module.  If COMMIT is 
encountered, the Rules Element commits the current transaction.  If 
ROLLBACK is encountered the transaction is rolled back and if RELEASE 
is found, the Rules Element closes the connection with the database.

Usually, the Begin statement is left empty and the End statement contains a 
COMMIT in the case of a Write transaction.

Query String

The query string contains one or several table names followed by an 
optional where clause.

Let us take an example.  Our database contains two tables:

■ employees with the fields emp_id, name, dept_id, salary and bonus.

■ departments with the fields dept_id, name, budget.

You can retrieve all the employee records with the following query:

@QUERY= "employees";

Note:   In the Database Editor, you should not enclose your string in double 
quotes.  You should type only the word employees.

You can express complex queries such as:

(a) @QUERY= "employees where salary > 3000";
(b) @QUERY= "employees, departments where salary > 3000 and employee.dept_id = 

department.dept_id";

In the second case (b), the query will join the two tables employees and 
departments.

The query string is not sent as is to the DBMS server (it is not a valid SQL 
statement).  The actual SQL query is built in the following way:

■ If a Name is specified (grouped queries), the Rules Element extracts the 
field1 and the optional field2...field5 information from the Name.

■ Then the Rules Element builds the SELECT statement:

SELECT  field1, field2,...field5, list_of_fields FROM 
query_string

where list_of_fields is the list of fields specified in the left part of the double 
list box of the Database Editor (@FIELDS). 

The resulting string would be the string used with the SQL*Plus utility.  
SQL*Plus displays the results of the query on the terminal but the Rules 
Element needs to assign the retrieved values to some internal variables.  In 
fact, the Rules Element inserts an INTO clause before the FROM clause to 
describe where the values should be returned (see the Pro*C manual for 
details).  Let us consider our example query string (b).  If the name slot of 
our Database Editor contains 'emp_'!emp_id!, and the fields list contains the 
322 Language Reference



ORACLE
three properties name, employees.dept_id and salary, then the following 
string will be sent to the ORACLE server:

SELECT emp_id, name, employees.dept_id, salary INTO :nxp1, :nxp2, :nxp3, 
:nxp4 FROM employees, departments WHERE salary > 3000 and employee.dept_id 
=department.dept_id

The :nxp1, :nxp2 variable syntax is the standard SQL syntax.  If you write 
parameterized queries (see section below), you should choose variable 
names which do not conflict with these names.

You must fully specify field names which are present in more than one 
relation.  In our example, dept_id must be prefixed by a table name (even if 
the two tables contain the same value for this field as a result of our join 
operation).

You can use the full power of the SQL language and specify expressions 
instead of field names (i.e. write salary + bonus instead of salary) as long as 
the SQL string which will be generated is a valid SELECT statement.  The 
SQL*Plus User's Guide provides detailed information on SQL.

Writing Parameterized Queries

You can use either the @V(obj.prop) special syntax or the query argument 
box to parameterize your queries.  Our previous example can be 
transformed as follows:

@QUERY= "employees, departments where salary > @V(@SELF.amount) and 
employee.dept_id = department.dept_id";

or

@QUERY= "employees, departments where salary > :v1 and employee.dept_id = 
department.dept_id";@ARGS= SELF.amount;

Note:  SELF and interpretations are allowed in the right part of the 
fields/properties list box (@SLOTS) in the case of sequential or 
atomic queries (grouped queries use a list of properties, not slots).  
SELF is allowed only if the query is placed in methods.

Update and Insert Statements

UPDATE and INSERT statements are constructed in a similar way.  INSERT 
statements are generated only if the Create New Record option is selected 
and will concern only the objects specified in the In list which do not already 
have a matching record in the database.

The UPDATE statement is generated as follows:

UPDATE tables_from_query_string SET list_of_fields/values WHERE 
[field1 = value_of_field1 [AND field2 = value_of_field2]...] [AND] 
[where_clause_from_query_string]

The square brackets indicate optional strings.  Let us take our example (a) 
and suppose that the salary field needs to be updated and that the Name cell 
contains 'emp'!emp_id!.  The resulting SQL statement will be:

UPDATE employees SET salary = :nxp1 WHERE emp_id = :nxpr1 and salary > 3000

In that example, the last part of the statement (and salary > 3000) is probably 
useless.
Language Reference 323



Chapter Database Integration Topics3
The INSERT statement is built from the following model:

INSERT INTO table_from_query_string ([field1, ][field2, ...] list_of_fields) 
VALUES ([:nxpv1, ][:nxpv2, ] :nxpvi ...)

Our update example becomes:

INSERT INTO employees (emp_id, salary) VALUES (:nxpv1, :nxpv2)

The INSERT statement is limited to the first table specified in the query 
string.  You can insert records only into real tables, not into views.

Sequential Queries

In the current implementation, you cannot have more than three active 
queries simultaneously.  You are limited to three active sequential queries 
or one grouped or atomic query when two sequential queries are pending.

Sequential Write operations are not implemented.  You can easily replace a 
sequential write by an atomic write.

Error Reporting

The Rules Element will report any SQL error message generated by 
ORACLE in the transcript window (if this window is write enabled).  It will 
also generate error messages if it encounters problems while building the 
SQL strings.  You can consult the ORACLE Error Messages and Code 
manual for a detailed explanation of the ORACLE messages.

Retrieve Datatype Mapping

The following table indicates how various ORACLE datatypes may (or may 
not) be retrieved into various Rules Element datatypes.  The Rules Element 
datatypes are listed (underlined) across the top; the ORACLE datatypes are 
listed in the column to the left.  A "Y" means that the operation works with 
no additional effort or concerns.  A number means that the operation is 
possible, but you should see the notes that appear below the table for 
additional details.  A "--" means that the operation is not possible.

Integer Float Boolean String Date

signed word 1 1 1,2 1 1,2

signed longword 
(scale)

Y 1 1,2 1 1,2

signed longword (no 
scale)

Y 1 1,2 1 1,2

signed quadword Y 1 1,2 1 1,2

f_floating 1 1 1,2 1 1,2

g_floating 1 1 1,2 1 1,2

text Y Y Y Y Y

varying string Y Y Y Y Y

date 4 -- 1,2 1 3

segmented string -- -- -- -- --
324 Language Reference



ORACLE
Notes
1. Conversion, as appropriate and if possible, will take place.

2. If the string contains the proper numeric type requested, it will be 
copied into the Rules Element property.

3. .Oracle requires a special Rules Element format be defined in order to 
retrieve this into a date property.  The "Standard ORACLE DATE" 
format is "DD-MON-YY" (in Oracle terms).  A Rules Element format 
that will accept this format is 'dd"-"mmm"-"yy'.  This method makes the 
Rules Element conform to the Oracle time format (costing loss of 
information in the hours/minutes/seconds fields).  An alternative is to 
make Oracle conform to the Rules Element format.  To do this requires 
the user specify an Oracle conversion format.  What you should realize 
is that the retrieve request passes the fieldname listed in the FIELD box 
on exactly as typed.  The database will use this in its retrieve.  Since 
Oracle permits a conversion function in the retrieve, you could have 
entered: TO_CHAR(date_fieldname,'MON DD YYYY HH24:MI:SS')  ... 
where "date_fieldname" is the name of the date field being retrieved.  
This will cause the returned date field to be in a form that is directly 
accepted by the Rules Element (plus it provides the additional time 
information).

4. If the string contains a valid date, the Rules Element will take it if 
provided in the default Rules Element date format ('Mmm dd yyyy 
hh:mm:ss;mm dd yy hh:mm:ss;Mmm dd yyyy;mm dd yy;').  If in some 
other format, a format may be attached to the property to allow its 
acceptance (e.g. a format of 'mm"/"dd"/"yy' would accept "12/25/90").

5. Formats may be applied to treat most datatypes as booleans.  A default 
property has been defined so that any string of the form "True" or 
"False" (case-insensitive) will be converted to the appropriate Rules 
Element boolean.  For example, if you have integers that are "0" for 
"False" and "1" for "True", you could assign a format of 'True;False;1;0;' 
(which make it print out as True/False, even though it comes in as 1/0).  
The most obvious candidates to use for booleans are the various strings 
and the various integers.

Write Datatype Mapping

The following table indicates how various ORACLE datatypes may (or may 
not) be written into from various Rules Element datatypes.  The Rules 
Element datatypes are listed (underlined) across the top; the ORACLE 
datatypes are listed in the column to the left.  A "Y" means that the operation 
works with no additional effort or concerns.  A number means that the 
operation is possible, but you should see the notes that appear below the 
table for additional details.  A "--" means that the operation is not possible.

Integer Float Boolean String Date

Y 5 4 3 --

Y 5 4 3 --

Y Y 4 3 --

Y Y 4 3 --

Y Y Y Y Y

Y Y Y Y Y
Language Reference 325



Chapter Database Integration Topics3
Notes
1. Oracle requires a special Rules Element format be defined in order to 

write into an Oracle date field.  The "Standard ORACLE DATE" format 
is "DD-MON-YY" (in Oracle terms).  A Rules Element format that will 
generate this format is 'dd"-"mmm"-"yy'.  This method makes the Rules 
Element conform to the default Oracle time format (costing loss of 
information in the hours/minutes/seconds fields).  

2. If the string contains a valid date, Oracle will take it if provided in the 
"Standard ORACLE DATE" format (see note 1). 

3. If the string contains the proper numeric type requested, it will be 
copied into the Oracle field.

4. Formats must be applied to treat booleans as non-string Oracle 
datatypes.  For example, you could write into an integer field if you use 
a boolean format of '1;0;True;False' (which accepts True/False, though 
prints out as 1/0).  The most obvious candidates to use for storing 
booleans are the various string and integer formats.  (Strings will 
directly receive True/False with the default Rules Element format).

5. Conversion, as appropriate and if possible, will take place.

Notes

The main difference between ORACLE and the screen captures 
documented in Appendix A, “Database Integration Examples” are as 
follows:

1. You must remember to specify ORACLE in the Database Editor 
window (or in the TKB, @TYPE=ORACLE).

2. There are no differences between the ORACLE examples and the 
general/generic database examples.

Related Topics

Databases
Retrieving from Databases
Writing to Databases

Order of Sources Retrieves
Usage

An Order of Sources method is an ideal place to use retrieve operations, 
especially atomic retrieves.  This allows you to fetch a slot's value from a 
database only when it is needed (that is, when a slot is referenced and its 
value is UnKnown).  

For example, using the car inventory example again, the car object could 
have a property called dealer_name which is NOT included in the "cars" 
inventory database, and thus remains unknown even if the object's 

-- -- 4 2 1

-- -- -- -- --

-- -- -- -- --
326 Language Reference



Order of Sources Writes
inventory record is retrieved.  Including a retrieve operation in the 
dealer_name method's order of sources will cause the retrieve to be 
executed ONLY if that slot is referenced.

Remember that no matter what the retrieve operation returns, the order of 
sources will continue execution until a value has been found for the slot.  
Thus, if the retrieve fails to get a value for the slot - due to an error OR a "no 
records found" condition - the order of sources will continue execution with 
the next statement.  The statements that follow can pursue alternative 
sources for the slot's value - including executing additional Retrieve 
statements.

This behavior can lend itself to very interesting implementations, especially 
in rich database environments.  In the simplest case, multiple Retrieve 
statements in an order of sources can be used to search a hierarchy of files 
or databases for a slot’s value.  This hierarchy could reflect the preferred 
order of the retrieves since the Rules Element will execute the order of 
sources top down.  Therefore, the first retrieve could be from a table or file 
with the most preferred data, the second in one with less confidence, and so 
forth.

An even more interesting approach is possible in distributed database 
environments - the first retrieve can attempt to access a remote file or 
database, such as a very large database on a mainframe-type platform.  If 
this fails - due to a communications failure or other problems - subsequent 
retrieves in the order of sources can access a local, "backup" file or database 
to satisfy the request.  This technique is very useful in applications like 
credit authorization - which need some data source to complete 
successfully.

When the Rules Element begins a retrieve operation, it gets the database 
access string from the first argument of the retrieve statement.

Related Topics

Arguments Overview Retrieve Operator
Access String Atomic Retrieve
Sequential Retrieve Group Retrieve
Left-Hand Side Retrieves Right-Hand Side Retrieves
If Change Retrieves Retrieving from Databases

Order of Sources Writes
Usage

The main use for a Write operation in a method’s Order of Sources is as a 
side affect of the Rules Element inquiring as to a slot's value.  One possible 
application of this could be a specialized logging mechanism for making a 
record when a particular slot is referenced.

Since a write can NEVER change a slot’s value from UnKnown, an order of 
sources will ALWAYS continue execution after a write.

When the Rules Element begins a write operation, it gets the database access 
string from the first argument of the write statement.
Language Reference 327



Chapter Database Integration Topics3
Related Topics

Arguments Overview Write Operator
Access String Atomic Write
Sequential Write Group Write
Left-Hand Side Writes Right-Hand Side Writes
If Change Writes Writing to Databases

Properties List - (@PROPS)
Usage

The properties list can be specified in all types of transactions except 
operations on spreadsheet files.  This list is edited in the right part of the 
double list box at the bottom of the Database Editor windows. 

In the case of a grouped transaction, the list is a list of properties (separated 
by commas), and it is prefixed by the @PROPS keyword.

@PROPS=list of properties;

This is very similar to the Slots List (@SLOTS) as described for that topic.

Related Topics

Database Editor Windows Slots List
Arguments Overview Retrieving from Databases

Query (@QUERY)
Usage

The query string contains the record selection statement which will be sent 
to the Rules Element and/or the DBMS server.  The query statements use 
the query language provided by the underlying database architecture:

■ RDO if using RDB

■ SQL if using most relational databases

■ the Rules Element Query Language if using a flat file

With RDB, the query string is a substring of the start_stream statement 
which would be written in RDO.

With most relational databases, the query string is a substring of the select 
statement which would be written in SQL with the appropriate SQL 
user-interface.

The Rules Element Query Language used with flat files appears under the 
Query Language topic.

The formal syntax of the query statement is:

@QUERY=quoted_string;

When you edit the query string with the database editor, you should not 
enclose it in double quotes.  They will be automatically inserted by the Rules 
Element.
328 Language Reference



Query Language
The special constructs @V(obj.prop), @SELF, and @PROP are allowed in 
the query statement.

If the query string is an interpreted slot (@V(obj.prop)) to yield a formatted 
date, it must be preceded by the DATE function:  DATE(@V(obj.prop)).

Related Topics

Database Editor Windows Arguments Overview
Query Retrieve Operations  Query Language
Query Arguments Query Example (Sequential Retrieve)
Query Write Operations

Specific database operations and database topics provide more details and 
examples on how to use the query statement.

Query Language
This section describes how to use the Rules Element Query Language.  You 
can use the Query Language to query flat-file databases such as Lotus files, 
NXPDB files, or Excel files.  Without the Query Language, you cannot limit 
the records like you can with relational databases that have their own query 
languages.  The Query Language is based on SQL's Select statement, and 
you can use it in the Query field of the Retrieve or Write window.

An example of using the Query Language to limit records you retrieve from 
or write to flat-file databases is given, followed by a description of the 
structure of the language.  This section contains the following topics:

■ Example of a query

■ Structure of a query

■ Values

■ Operators: Arithmetic, Relational, Boolean, and Others

■ Functions: SUM, MIN, MAX, and Others

■ Using Dynamic Values

■ Wildcards

■ Two Kinds of Errors.

Example of a Query

If you are familiar with other query languages, this query language is a 
subset because the Rules Element constructs the full query from other 
information you supply in the Retrieve or Write window.  Using SQL 
terminology, the Rules Element's Query Language consists of the WHERE 
clause such as shown in this example:

select serial_number, price, color from cars where price 
between 12000 and 15000 or color like "red"

Specify the fields you are selecting, such as serial_number, price, and color, 
in the Database Fields field.  
Language Reference 329



Chapter Database Integration Topics3
Instead of specifying a table, such as cars in the above example, specify the 
filename of the database you are using when you select the Retrieve or Write 
operators.

Specify the where clause in the Query field of the Retrieve or Write window 
using the Rules Element's Query Language that is described in this section.

The structure of the Rules Element's Query Language is summarized in the 
next section.

Structure of a Query

This summarizes how to construct a query using the Rules Element's Query 
Language:

search_criteria

or

search_criteria boolean_operator search_criteria

where search_criteria is:

expression relational_operator expression

or

expression in x : y

or

expression between x and y

or

expression in [x1, x2, x3]

expression is a field name, or field names with arithmetic operators.

boolean_operators and relational_operators are described in the 
section Operators: Arithmetic, Relational, Boolean, and Others.

x, y, x1, x2, and x3 are values, which are described in the section 
Values.

Values

Values can be strings, numbers, booleans, dates, or times.  Here are 
examples of each:

Strings "red"
"Miata"

Numbers 15000
1990
19.90

Booleans True
1
False
0

Dates DATE(1990, 6, 15)
DATE(1990, 12, 25)

Times TIME(10, 45, 0)
TIME(22, 30, 0)
330 Language Reference



Query Language
Use values when you are selecting fields from the database based on their 
value.  For example, this query retrieves all records where the price is less 
than $15,000 and the car has been sold:

price < 15000 and sold = True

This example selects all records where the date the car was made is later 
than December 1, 1989:

model_date > DATE(1989, 12, 1)

This example selects all records where the time field is less than 1:15 p.m. or 
the car is in stock:

time_stamp < TIME(13,15,0) or in_stock = 1

Operators: Arithmetic, Relational, Boolean, and Others

Operators perform an action on values.  These are examples of operators:

*

/

<

>

=

and

or

contains

Operators are arithmetic, relational, boolean, or other.  The next four 
sections describe the types of operators.

Arithmetic Operators: +, -, *, /

Use arithmetic operators to do arithmetic on values.   This table lists the 
arithmetic operators and their descriptions:

Arithmetic Operators Description

+ Addition

- Subtraction

* Multiplication

/ Division

Examples:

This query finds cars that generated a commission of more than $1,200:

(price * (commission_rate/100)) > 1200

This query finds cars that, if prices were raised 8 percent, will cost more than 
$18,000:

(price * 1.08) > 18000
Language Reference 331



Chapter Database Integration Topics3
Relational Operators: =, <, In, Contains, and Like

Relational operators compare the value of expressions.  This table lists the 
relational operators and their descriptions:

Relational Operators Description

=  ==  eq Equal to

!=  /=  ne Not equal to

<  lt Less than

<=  le Less than or equal to

>  gt Greater than

>=  ge Greater than or equal to

?  like  contains String contains a pattern

Using not:

You can use the modifier not with like, contains, and ? to negate the search 
query.  For example, this query looks for all cars which were not sold in 
California:

city_and_state not contains "California"

Examples:

This query finds cars that cost more than 15000:

price > 15000

This query finds all cars that are not Volkswagens:

model != "Volkswagen"

These queries finds salespeople whose name contains "John":

salesperson contains "John"
salesperson like "John"
salesperson ? "John"

Boolean Operators: And's, Or's, and Xor's

These boolean operators take two operands and form an expression that 
evaluates to true or false.  For example, this is an expression that contains 
the boolean operator and:

(price < 15000) and (color = "red")

The first operand of and is (price < 15000), and the second operand is 
(color = "red").

This table lists the boolean operators and their descriptions:

Boolean Operators Description

and  & Both operands being evaluated must be true for the 
whole expression to be true.

or  | Either operand or both operands being evaluated 
must be true for the whole expression to be true.

xor  # Either operand must be true but not both for the 
whole expression to be true (exclusive-or).
332 Language Reference



Query Language
Examples:

This query finds cars that satisfy both of these criteria:

■ sold by salesperson "Jan"

■ cost more than or equal to $21,000

(salesperson like "Jan") and (price ge 21000)

This query finds cars that satisfy one of these criteria:

■ sold by salesperson "Jan"

■ sold by salesperson "Kris"

(salesperson ? "Jan") | (salesperson ? "Kris")

This query finds all cars that are not Volkswagens or Mazdas:

(model = "Volkswagen") xor (model = "Mazda")

Other Operators: In, Between

Use these operators to evaluate whether an expression is in a range of values 
or a list of values.  The values can be strings, numbers, dates, or times.  For 
example, this query evaluates whether price is greater than $10,000 and less 
than $15,000:

price between 10000 and 15000

This table lists the other operators and their descriptions:

Other Operators Description

value between x and y Evaluates whether value is greater than x and less 
than y.

value in x : y Evaluates whether value is greater than or equal to 
x and less than or equal to y.

value in [x1, x2, x3] Evaluates whether value is one of the values listed 
in brackets.

Using not:

You can use the modifier not with in and betwe
n to negate the search query.  For example, this query looks for all cars with 
a price not in the range of $13,000 and $18,000:

price not between 13000 and 18000

This query finds cars that are not Mazdas, Hondas, or Volkswagens:

make not in ["Mazda", "Honda", "Volkswagen"]

Examples:

This query finds cars that were sold after January 1, 1990 and before June 30, 
1990:

sold_date between DATE(1990, 1, 1) and DATE(1990, 6, 30)

This query finds cars that cost more than $15,000 and less than $15,100:

price between 15000 : 15100

This query finds all cars sold by Alex, Jan, or Kris:

salesperson in ["Alex", "Jan", "Kris"]
Language Reference 333



Chapter Database Integration Topics3
Functions: SUM, MIN, MAX, and Others

You can use functions in your query to a relational database (not supported 
on other database types).  This table lists the functions available in the Rules 
Element's Query Language and the descriptions of the functions.  

Function Description

AVG(expression) Compute the average value of all values described 
by expression.

COUNT(fieldname) Counts the total number of occurrences of 
fieldname.

MAX(expression) Computes the largest value of all the values 
described by expression.

MIN(expression) Computes the smallest value of all the values 
described by expression.

SUM(expression) Computes the total of all the values described by 
expression.

Expressions are names of fields, or names of fields with arithmetic 
operators.

Examples:

This query selects all the cars that cost more than the average price of all the 
cars:

price > AVG(price)

Dynamic Values

You can use the current value of the property slot of an object in your query.  
For example, this query finds the value of MyFavoriteColor.value, blue, and 
uses it to retrieve all the records that describe a blue car:

color contains “@V(MyFavoriteColor.value)”

This query finds the value of CurrentCity.value, San Francisco, and uses it 
to find all records where the car was shipped to San Francisco:

shipped_city like “@V(CurrentCity.value)”

Warning: For NXPDB, SYLKDB, DBF3, and WKSDB use field names that are 
in the query, in the Database Fields column, or in the properties 
list of the Retrieve or Write statement.  When the @V contains a 
character value, it must be enclosed in quotes.

Wildcards

You can use wildcards with strings.  Wildcards allow you to specify a 
pattern to match when doing the query.  The Rules Element's Query 
Language has two wildcards: 

? Replaces one character.

* Replaces any string.

Examples:

This query finds all records that have an address in California:

city_and_state contains "*, California"
334 Language Reference



Query Field in Retrieve Operations
This query finds all records that have a 4-character serial number that ends 
in 0:

serial_number = "???0"

Two Kinds of Errors

When the Rules Element finds an error in the query, such as a misspelling, 
no records are retrieved.  Two errors are:

■ Syntax

■ Incompatible types

The Rules Element writes error messages to the transcript window.  This is 
an example of a syntax error, because contains is misspelled:

city_and_state contains "*, New York"

If you try and compare incompatible types, such as numbers and strings, the 
Rules Element generates an error message.  This is an example of 
incompatible types because the field serial_number is a string:

serial_number > 2350

Related Topics

Query Retrieve Operations
Query Arguments
Query

Query Field in Retrieve Operations
This section discusses how to build the Query field for retrieve operations.  
The Query allows you to filter incoming records based on the actual data in 
the record's fields.  Two kinds of queries can be used with the Rules 
Element:

■ For relational databases such as Oracle, INGRES, and Sybase, any 
ANSI-standard SQL query supported by the database may be used.  See 
the appropriate database topic for details.

■ For non-relational databases, the Rules Element's own SQL-like query 
language can be used to filter records.  See the Query Language topic 
for more details.

Query Field

When retrieving records from a relational database such as INGRES, 
Sybase, Oracle, or SQL/DS, the query is handled by the central database 
manager or server.  Therefore, the query can use whatever implementation 
of the ANSI SQL standard is supported by the particular database being 
used.

Keep in mind that using specialized features of a given database will mean 
that the Retrieve may have to be changed if another database type is used.  
Generally, if the query uses only those features defined by the ANSI SQL 
standard, it will be portable across most, if not all, relational database 
products.
Language Reference 335



Chapter Database Integration Topics3
The first thing in the query field must be the table name(s) to be accessed by 
the retrieve operation.  The names can be in any format legal for the 
database being accessed.  This flexibility is important for databases such as 
SQL/DS which allow you to specify remote table names in a special format.  
The Rules Element will use the table names "as-is" as it constructs the SQL 
"SELECT" statement.

If ALL records are to be retrieved, then nothing except the table name 
should be specified in the Query field.

The second part of the query field is the "WHERE" clause to be included in 
the SQL "SELECT" statement, and MUST be preceded by the word 
"WHERE".  It is also included "as-is" in the "SELECT" statement constructed 
by the database interface. 

For example, to retrieve only the records from the CARS table in which the 
DB_SPORTIVE column contains YES, the query field would contain the 
following:

CARS WHERE DB_SPORTIVE = 'YES'

More complex queries can be specified, such as:

CARS WHERE DB_SPORTIVE = 'YES' AND DB_PRICE > 10000

to retrieve only those records in which the DB_SPORTIVE field is YES and 
the DB_PRICE field is greater than 10000.

Schematically, the "SELECT" statement built by the Rules Element will look 
something like this:

SELECT field_names FROM table_names WHERE query...

where:

■ field_names are the fields specified in the "fields and columns" list

■ table_names are the names preceding the word WHERE in the Query 
field

■ Query is the string after the word WHERE in the query field.

The query field is also where a SQL join operation is built.  A "join" takes the 
data from two or more tables and unifies them into a single "result" table 
based on the "WHERE" clause in the SQL statement.  The Rules Element sees 
the result of a join just as it would rows from a single table.

When coding a join in the query field, it's important to remember that the 
field names are copied "as-is" from the Fields and Properties list into the 
SQL select statement.  In a join, it may not be sufficient to just code a simple 
field name, since there could be ambiguity in which table fields come from.  
Consider the following query:

CARS, DEALERS WHERE CARS.DB_MODEL = DEALERS.DB_MODEL

If DB_MODEL is specified in the fields and properties list, there will be 
ambiguity since the database manager will not know which table - CARS or 
DEALERS - to retrieve the field DB_MODEL from.  To avoid this problem, 
DB_MODEL should be specified as CARS.DB_MODEL or DEALERS.DB_MODEL.

Example

The Query - composed of the table names to be accessed and optionally 
followed by the word "WHERE" and a SQL query clause - is specified in the 
Query field of the database Retrieve window.  The query should NOT be 
336 Language Reference



Query Field in Write Operations
enclosed in quotes.  The following example shows how to retrieve only 
those records from the CARS table where the Sportive field contains YES:

Figure 3–7   Using the Query Field to Retrieve Selected Records

Related Topics

Database Editor Windows Arguments Overview
Query Language Query Example (Sequential Retrieve)
Query Arguments Query Write Operations
Query

Specific database operations and database topics provide more details and 
examples on how to use the query statement.

Query Field in Write Operations
This section discusses how to build the Query field for write operations.  
The Query field supplies another level of criteria determining which records 
will be written by writing to only those records whose fields contain certain 
values.  Two kinds of queries can be used with the Rules Element:

■ For relational databases such as Oracle, INGRES, and Sybase, any 
ANSI-standard SQL query supported by the database may be used.  See 
the appropriate database topic for details.

■ For non-relational databases, the Rules Element's own SQL-like query 
language can be used to filter records.  Look up the Query Language 
topic for more detail.
Language Reference 337



Chapter Database Integration Topics3
Query Field

The Query field is used in atomic and grouped write operations.  In the case 
of atomic writes, the query is used to uniquely identify the record(s) to be 
updated by the write.  See the Atomic Write Operations topic for more 
information on this.

Using queries with grouped write operations is useful when not all the 
information necessary to identify a record is available in the Rules Element's 
working memory.  Recall that the Name field uses the object name to 
identify records in the database, but it may be that this is not sufficient to 
limit the records written to the database.

For example, assume that there are three car objects - car_1, car_2, and 
car_3 - and each object has the properties Model, Model_Date, Price, 
and Sportive.  Assume that the Price properties have been updated to 
reflect a sale, but, due to a special promotion, only red cars will be marked 
down, and therefore only the red car's database records should be updated. 

If the car objects had a Color property, then an existential pattern matching 
operation could be used to select only those objects with a Color property 
of red to be written.  In this example, however, there is no Color to do the 
pattern matching on.

Remember that the Name field constructs a record "key" based on the object 
name and compares it to selected record fields.  There's no way to use the 
Name field to check for red cars in the database.

However, by including a SQL or SQL-like query in the Query field, you can 
limit the database records updated to those which have Red in the 
DB_COLOR field (assuming, of course, that there is a DB_COLOR field in the 
database), by using a query like this:

WHERE DB_COLOR = 'RED'

This causes the Rules Element to consider ONLY those records which have 
a DB_COLOR field of RED.  Note that the conditions specified in the Query 
are "anded" with any conditions imposed by the Name field.  For example, 
recall that if the Name field is specified as !DB_CAR_NAME!, then the 
following "WHERE" clause would be generated as the object "car_1" was 
written:

WHERE DB_CAR_NAME = 'car_1'

Combining this with the query example above, the generated "WHERE" 
clause would look like this:

WHERE DB_CAR_NAME = 'car_1' AND DB_COLOR = 'RED'

This has the affect of updating car_1's record ONLY if car_1 is red.

Caution must be exercised when the Create New Record box is checked in 
the Write window and a query is specified in the Query field.  In this case, 
if no record is found to match the Query and Name criteria, the Rules 
Element will add a record to the database for the object.  However, since, in 
this example, there's no Color property in the cars objects, the DB_COLOR 
field can't be filled in when the record is written.  This could generate 
records whose contents are illogical or invalid.
338 Language Reference



Query Field in Write Operations
Specifying Queries for Relational Databases

When writing records to a relational database such as INGRES, Sybase, 
Oracle, or SQL/DS, the query is handled by the central database manager 
or server.  Therefore, the query can use whatever implementation of the 
ANSI SQL standard is supported by the particular database being used.

Keep in mind that using specialized features of a given database will mean 
that the write operation may have to be changed if another database type is 
used.  Generally, if the query uses only those features defined by the ANSI 
SQL standard, it will be portable across most, if not all, relational database 
products.

The first thing in the query field must be the table name to be written by the 
write operation.  The name can be in any format legal for the database being 
accessed. 

If no query criteria are to be applied during the write, then nothing except 
the table name should be specified in the Query field.

The second part of the query field is the "WHERE" clause to be included in 
the SQL UPDATE statement, and MUST be preceded by the word 
"WHERE".  It is also included "as-is" in the UPDATE statement constructed 
by the Rules Element. 

For example, to write only the records from the CARS table in which the 
DB_SPORTIVE column contains YES, the query field would contain the 
following:

CARS WHERE DB_SPORTIVE = 'YES'

More complex queries can be specified, such as:

CARS WHERE DB_SPORTIVE = 'YES' AND DB_PRICE > 10000

to write only those records in which the DB_SPORTIVE field is YES and the 
DB_PRICE field is greater than 10000.

Schematically, the UPDATE statement built by the Rules Element will look 
something like this:

UPDATE table_name WHERE name_column = object_name AND query SET field_name 
= slot_value, field_name = slot_value, ...

where:

■ table_name is the names preceding the word WHERE in the Query 
field

■ column_name is one of the column names specified in the Name field 
between exclamation points (!).

■ object_name is the object name (or portion thereof) extracted to be 
matched against column_name

■ query is the string after the word "WHERE" in the query field.

■ field_name and slot_value are the "Field and Property" pairs 
specified in the Write window.

It is NOT possible to use a join operation during a write.

Example

The Query - composed of the table name to be accessed and optionally 
followed by the word "WHERE" and a SQL query clause - is specified in the 
Language Reference 339



Chapter Database Integration Topics3
Query field of the database Write window.  The query should NOT be 
enclosed in quotes.  The following example shows how to write only those 
records from the CARS table where the DB_SPORTIVE field contains YES:

Figure 3–8   Using a Query in a Write Operation

Related Topics

Database Editor Windows Arguments Overview
Query Retrieve Operations Query Language
Query Arguments Query

Specific database operations and database topics provide more details and 
examples on how to use the query statement.

Record Specification for Writes
After the Rules Element selects the slots (object.property combinations) to 
be written, it writes them out to records (actually, fields within records) in 
the database.  This section discusses how the Rules Element determines 
which records will receive the data.

Writing by Position

During sequential operations, the Rules Element stores its current position 
(in the database) in the cursor slot specified in the retrieve or write window.  
When a sequential write is issued, it writes the record at the position stored 
in the cursor. 

Thus, the logic in the knowledge base determines which records will be 
written during a sequential write operation.  For example, if the knowledge 
340 Language Reference



Record Specification for Writes
base issues a sequential write after each read to the database, it will 
effectively update every record in the database:

■ For the first retrieve, the Rules Element will fetch record #1 in the 
database, and leave the cursor positioned at the beginning of the first 
record.

■ When the sequential write is issued (using the cursor), it will overwrite 
record #1, and position the cursor at record #2.

■ The next retrieve will fetch record #2, and leave the cursor positioned at 
the beginning of the record.

How to Write by Position

Write by position is supported ONLY for sequential write operations.  
Remember that sequential write is NOT supported for most relational 
databases such as Oracle, Sybase, and INGRES.  To specify write by 
position, you:

■ Specify a cursor name in the Cursor field of the Write window.

■ Ensure that the cursor value is 0 for the first sequential retrieve or write 
operation.

■ Ensure that the cursor is set to the position where you would like the 
next record written when the Write is issued.

Specifying a cursor name

You specify the cursor name as a slot name (object.property combination) in 
the Cursor field of the database write window.  This slot must be an 
"Integer" type.

Ensuring the cursor value is 0 for the first sequential operation

When the Rules Element begins a write operation in which a cursor is 
specified, it first checks the value of the cursor to determine the type of 
operation.  If the value is 0, it's assumed to be the first sequential read or 
write; if it's nonzero, it's assumed to hold the position of the next record to 
be accessed.

It's very important to ensure that the cursor has the appropriate value before 
the write is issued.  Failure to set the cursor properly can result in the Rules 
Element issuing an atomic write instead of a sequential write, or 
encountering errors during the write operation.

Ensuring the cursor is set to the record position for subsequent operations

When attempting to add records to a database, or replace existing records, 
you must ensure that the sequential write is properly coordinated with read 
operations to ensure that the cursor is set to the proper value.  This is done 
by specifying the same slot name for both the retrieve and write operations.

Writing by Key

During a grouped write, the Rules Element takes the selected objects 
(actually, object's slots) and writes them to the database in a single 
operation.  To determine which objects will be written to which records, the 
Rules Element builds a record "key" to identify the record(s) which will 
receive the object's slots.
Language Reference 341



Chapter Database Integration Topics3
The record key is built by taking the object name and comparing it to the 
appropriate fields in the database records.  Records whose field values 
match the key (or keys) are considered to be a match for the object, and its 
slots will be written to those records.  If no matches are found, a record can 
optionally be created.

How the object name is compared to the field(s) is very flexible: all of the 
name can be compared to a single field, part of the name can be compared 
to a single field, parts of the name can be compared to multiple fields, and 
so forth.

Simple Keys

As a simple example, assume that there are four objects to be written whose 
names are HONDA, PINTO, TOYOTA, and BMW.  The database records contain 
a field called DB_MODEL which will be considered the "key" for this write 
operation.  As each object is written, the Rules Element searches the 
database for a record where the value of the field DB_MODEL matches the 
object's name.  Thus, the HONDA object's slots will be written to the record 
with the DB_MODEL field of HONDA the CHEVROLET object will be written to 
the record whose model field contains CHEVROLET, and so forth.  Figure 3-9 
illustrates this example

Figure 3–9   Using an Explicit Field Name as the Record Key

Complex Keys

As a more complex example, assume the object names are CAR_TOYOTA and 
CAR_HONDA, but the DB_MODEL fields still contain TOYOTA and HONDA.  It's 
possible to split the object names into two parts: the constant CAR_, and the 
model name, and have only the model name matched against the 
DB_MODEL field in the records.

The object name can also be matched across multiple fields.  In this case, 
assume that that object names are composed of the car's model, a constant, 
342 Language Reference



Record Specification for Writes
and the car's name: HONDA_is_car_1, TOYOTA_is_car_2, and so forth.  
The name can be divided into three parts: the model, a constant ("_is_"), and 
the car name.  The model and the name can then be used as "keys", and 
matched against the DB_MODEL and DB_CAR_NAME fields in the database.  
Figure3-10 illustrates this example.

Figure 3–10   Using a Constructed Field Name as the Record Key

Summary

When writing to relational databases such as INGRES, Sybase, Oracle, and 
Informix, the Rules Element builds a SQL "UPDATE ... WHERE ..." 
statement to update the proper rows using the "key" values.  Using the 
simplest car inventory example above, SQL statements like the following 
would be built:

UPDATE CARS SET ... WHERE DB_MODEL = 'HONDA'
UPDATE CARS SET ... WHERE DB_MODEL = 'CHEVROLET'

For the case where two columns are used as "key" fields:

UPDATE CARS SET ... WHERE DB_MODEL = 'HONDA' AND DB_CAR_NAME = 'car_1'
UPDATE CARS SET ... WHERE DB_MODEL = 'CHEVROLET' AND DB_CAR_NAME = 'car_2'

Note that any additional WHERE clauses specified in the Query field of the 
Write window will be appended to these WHERE clauses. 

In most cases, there will be a one-to-one correspondence between objects 
and records in the database.  In the case of the cars example, the key would 
be constructed so that one car object would be written to exactly one 
database record.  If the car database contained only four records - one of 
each car model - then the simple scheme of mapping the DB_MODEL field 
directly to the object name would suffice.  However, realistically, the 
DB_MODEL field may not be enough to uniquely identify the records, and a 
more complex scheme - such as using the model and car name - may be 
necessary.
Language Reference 343



Chapter Database Integration Topics3
It's also possible to have one object written to MANY records.  This is done 
by constructing a key which is not unique to one record.  In this case, the 
object's properties will be written to all records whose field value(s) match 
the key.  For example, in a realistic car inventory, many records would have 
the same value in the DB_MODEL field.  If the object names were mapped 
directly to the DB_MODEL field, then each object would be written to 
multiple records.  Thus all of the records for HONDA cars would be updated 
by the object named HONDA, and so forth.  This technique is useful for 
updating a group of records. 

For example, if all the cars of the model TOYOTA were moved to a new 
location, this type of key could be used to update all the records in a single 
operation.  Obviously, this type of write should specify only the properties 
and fields which are to be set the same in all records.  Writing out properties 
which are not common to all records - such as DB_CAR_NAME - would not 
be desirable since the DB_CAR_NAME in all records would receive the same 
value!

How to Build Record Keys

When filling in the Write window, you build record keys from the object 
name by specifying how the Rules Element is to construct the record’s 
name, or key fields from the object name.

You provide the model for constructing the record key(s) in the Name field 
of the Write window.  It is specified as a series of constants (or "roots") 
and/or field names.  The Name field tells the Rules Element how to break 
up the object name into separate parts to build the record's key, and what 
fields in the record will be matched against what parts of the key.

The root fields should be enclosed in single quotes, and the field names in 
exclamation points (“!”).  For example, to specify that the entire object name 
is to be matched against the field name model (thus making model the key 
field), you would code the Name as !model!.

If the object names were prefixed by the constant CAR_, but only the portion 
of the name following the constant was to be matched against the database 
field DB_MODEL, you would code the Name field as 'CAR_'!DB_MODEL!.

Multiple fields can be used as record keys: if the object names were 
composed of the car's model, a constant _SERIAL_, and the car's name, then 
the Name field would be specified as 
!DB_MODEL!'_SERIAL_'!DB_CAR_NAME!.  In this example, the record 
fields DB_MODEL and DB_CAR_NAME are the record "keys".

When specifying a Name field which combines constants and/or multiple 
fields, it is very important that the Name field is unambiguous.  For 
example, a Name field of !DB_DEALER!!DB_CAR_NAME! is ambiguous, 
since the Rules Element has no way of telling which part of the object name 
is to go in the DB_DEALER field and which is to go into the DB_CAR_NAME 
field.

The Name field must also be accurate:  If Name is specified as 
'A_CAR_'!DB_MODEL!, and the object names are all of the form 
CAR_model, then the Rules Element won’t be able to match any of the object 
names against the Name field, and no records will be written.  See the Slot 
Specification for Writes topic for more information on this.
344 Language Reference



Records Filtering
Remember that the Name field is composed of field names, not property 
names.  The field names specified must be present in the records being 
retrieved, otherwise an error will occur.

Field names which occur in the name field must NOT be repeated in the 
Fields and Properties list.  The field names specified in the Name field are 
the record’s "key", or name, and cannot be changed in the same operation in 
which they are used to identify the record.

Figure 3–11   Filling in the Name Field

Related Topics

Arguments Overview Create New Records
Name Slot Specification for Writes

Records Filtering
General

In most transactions, the Retrieve or Write operation does not process all the 
records stored in the database, but only processes a limited subset.  The 
records are filtered by the transaction.  There are two ways by which records 
can be filtered:

■ Records can be filtered by a selection criteria expressed in the Query 
statement (@QUERY).  For example, a query may retrieve only the 
employee records which have a salary greater than $4000.  This type of 
filtering is possible only if a query language is available.  For relational 
databases, this query language is typically SQL (or RDO for RDB).  For 
flat database files, you can use the Rules Element Query Language.

■ Records can be filtered by the fact that they match a set of existing 
objects or slots in the working memory of the Rules Element.  For 
Language Reference 345



Chapter Database Integration Topics3
example, a query may retrieve the salary from the employee records for 
which there is already an employee object (an instance of the employees 
class) in the Rules Element object base.  This type of filtering is 
controlled by the In List (@ATOMS) and the slots/properties lists 
(@SLOTS/@PROPS).  This type of filtering can be performed only if the 
Create Object setting (@FILL=NEW;) is disabled.

Related Topics

Query In List
Create Objects Arguments Overview
Query Language

Retrieve Operator
The Retrieve operator is used in rules and methods to read information 
from a database or spreadsheet.  

Operands

The Retrieve operator takes two operands:  

■ The first operand is either a string constant or an interpretation to a 
string constant specifying the name of the file containing the database 
to be queried or the login name/access string for a DBMS.

■ The second operand consists of a series of arguments defining the 
specific retrieval operation to be performed.  

Arguments

The second operand may include the following arguments:  

@TYPE Type of database (creator software and file format)

@BEGIN Command string for opening transaction

@END Command string for closing transaction

@QUERY Command string for querying database

@ERROR Slot name to trap database error message

@ARGS Argument list for query command

@ATOMS List of objects or properties affected

@NAME Correspondence between records and objects

@FIELDS List of field names to retrieve from

@PROPS List of properties to retrieve to

@SLOTS List of slots to retrieve to

@FILL Create new objects

@CREATE Classes or parents to link new objects to

@UNKNOWN Retrieve UNKNOWN values

@FWRD Forward retrieved values

@CURSOR Current position for sequential retrieval
346 Language Reference



Retrieve Unknown - (@UNKNOWN)
When entering a Retrieve action in the Rule Editor or Method Editor, 
clicking in the space for the second operand displays the Database Editor 
window for specifying the retrieval arguments interactively, rather than by 
explicitly typing them in as listed above.

Note:  It is valid to have an empty second operand.  When this occurs, the 
Rules Element will determine the type of database from the filename 
extension specified in the first argument, and will default to the SYLK 
type if no extension is specified.  Only simple spreadsheet files can be 
accessed in this case.  This operating mode has been maintained to 
ensure compatibility with earlier versions of the Rules Element.

Effect

The requested information is retrieved from the specified database to the 
Rules Elementthe Rules Element knowledge base for further processing.  

Result

When used in a condition on the left-hand side of a rule, the Retrieve 
operator always produces a TRUE result, even if no records are retrieved 
satisfying the given query.  The only exception is if an error occurs while 
attempting to open the database or transmit the query, in which case the 
result is FALSE.  

Related Topics

Access String Left-Hand Side Retrieves
Access String Specification Right-Hand Side Retrieves
Arguments Overview Order of Sources Retrieves
Database Editor Window If Change Retrieves
Interpretations @V(...)

Look up the following topics in Chapter One, “Application Development 
Features” for information related to the Retrieve operator.

Rules Classes
Methods Properties
Actions String Constants
Objects

Retrieve Unknown - (@UNKNOWN)
Usage

The Retrieve Unknown setting is meaningful in all types of transactions.  It 
controls whether or not UNKNOWN values should be retrieved by the 
transaction.
Language Reference 347



Chapter Database Integration Topics3
This setting is specified with the Retrieve Unknown check button in the 
Database Editor windows.  In the text form of the knowledge base, it is 
saved as:

@UNKNOWN=TRUE;

or

@UNKNOWN=FALSE;

Related Topics

Database Editor Windows
Retrieving from Databases
Arguments Overview

Retrieving from Databases
General

During most retrieve operations, the Rules Element selects a single object to 
receive each record’s fields, and the fields are read into the object’s slots.  
Thus, the contents of a record are represented by an object, and the fields in 
the record are represented by the object's property slots.  This has the affect 
of transforming the record-field relationship into an object-property 
relationship in the Rules Element’s working memory.

For example, take the case of a car inventory file.  Each car is represented by 
a record with the fields DB_MODEL, DB_MODEL_DATE, and DB_PRICE.  In 
the knowledge base, a car is represented by an object with the properties 
Model, Model_date, and Price.  The Retrieve operation in the 

Honda 15,000 Red

Honda

MyCar.Color

Red

MyCar

MyCar.Model

15,000

MyCar.Price
348 Language Reference



Retrieving from Databases
knowledge base specifies the mapping between the record's fields and 
Rules Element properties

In this example, all of the fields from a car's record are mapped into one 
object's slots, and thus a car's record is "transformed" into a car object.

Depending on the type of retrieval, records can be retrieved one by one and 
mapped into the same object, or many records retrieved and mapped into 
many different objects.  In either case, as the records are retrieved, the Rules 
Element is capable of either updating existing objects, or creating new 
objects to hold the records.

For example, the car records could be retrieved one by one into the same car 
object, or many cars records could be retrieved at once into many different 
car objects. 

With sequential and atomic retrieval, it's also possible to retrieve a record's 
fields into slots belonging to two or more objects, in effect “scattering” a 
record’s contents across several different objects.

Of course, it’s not always necessary to retrieve all the records in the external 
file or database.  The Rules Element therefore provides several ways of 
filtering the records which are actually read into its working memory.

This filtering occurs in three stages:

■ A SQL or SQL-like query can be used to select a subset of the records 
from the database based on the data in the record fields themselves. 

DB_MODEL DB_MODEL_DATE DB_PRICE

MODEL

PRICE

MODEL_DATE
Language Reference 349



Chapter Database Integration Topics3
■ An object or object’s slots (object.property combinations) are selected to 
hold the record’s fields.

■ Existence filtering determines if the selected object exists, and if it does, 
checks to see if it exists in a specified list of objects or classes.  If it 
doesn’t exist, or doesn’t exist in the list, the record can either be 
bypassed or a new object created to hold it. 

Related Topics

Databases Spreadsheets
Grouped Retrieve Sequential Retrieve
Atomic Retrieve Retrieve Operator
Query Retrieve Operations Existence Filtering Operations
Object Names In Retrieve OperationsSlot Specification for Retrieves
String to Numeric Conversion Retrieve Unknown
Create Object Debugging Operations
Forwarding Strategy Formats

Return Errors
Like all Rules Element operations, retrieve and write return a "true" or 
"false" value depending on the results of the operation.

Flat-Files

Retrieve and Write operations always return "true" unless an error occurs.  
For flat-file type databases such as spreadsheets, NXPDB, NXP, and 
DBASE3 files, some of these errors include:

■ The file could not be found

■ An operating system error occurred while opening the file 

■ You don't have the authority to access the file

■ The file's format was invalid for the database type

■ Syntax error in the Query field

Relational Databases

For relational databases such as Oracle, Sybase, INGRES, Oracle, Informix, 
possible errors include:

■ The account specified for the access was rejected by the database

■ The table name(s) specified in the Query argument was invalid

■ The syntax of the query was invalid for the database

■ A column name specified in the query did not exist

■ An operating system or database error occurred 

It is especially important to note that for all database types, a "record not 
found" condition is NOT considered an error, and therefore will not 
invalidate the condition on the LHS of a rule.  Thus, a retrieve or write can 
350 Language Reference



Right-Hand Side Retrieves
return "True" but NO records will have been read or written.  Examples of 
when this can occur include:

■ No records met the criteria of the Query argument

■ During a retrieve, no records could be mapped to existing object names 
and "fill" was specified as "no", therefore no new objects could be 
created and no rows were retrieved.

■ During a write, no objects could be mapped to existing records and "fill" 
was specified as "no", therefore no new records could be created and no 
records were written.

When designing your knowledge base, you should ensure that it can handle 
a condition where no records are accessed, yet a "True" condition is returned 
by the Retrieve or Write operation.

Related Topics

Databases Spreadsheets
Retrieve Operator Write Operator
Left-Hand Side Retrieves Query Argument
Left-Hand Side Writes Access String
Debugging Operations

Right-Hand Side Retrieves
Usage

A retrieve statement can also be used in the RHS of a rule or method, but 
here it's not as useful because it's impossible to test if the Retrieve operation 
failed, and therefore if there is any valid data to process.

When the Rules Element begins a retrieve operation, it gets the database 
access string from the first argument of the retrieve statement.

Related Topics

Arguments Overview Retrieve Operator
Access String Atomic Retrieve
Sequential Retrieves Group Retrieve
Left-Hand Side Retrieves Atomic Retrieve Example
Retrieving from Databases

Right-Hand Side Writes
Usage

In the right hand side of a rule or method, a write statement is usually used 
to reflect the consequence of a hypothesis being found "true" in a database.  
In the case of the car inventory example, if the LHS of a rule determines that 
a car was sold, then the RHS of the rule could contain a write statement to 
update the inventory.
Language Reference 351



Chapter Database Integration Topics3
Remember that even if the write fails due to an error and returns "False", the 
RHS will continue execution until all RHS statements have been executed.

When the Rules Element begins a write operation, it gets the database access 
string from the first argument of the write statement.

Related Topics

Arguments Overview Write Operator
Access String Atomic Write
Sequential Write Group Write
Left-Hand Side Writes If Change Writes
Order of Sources Writes Writing to Databases

Sequential Retrieve
General

Sequential retrieval can be used with both flat-file databases and relational 
databases such as INGRES, Sybase, and Oracle.

The sequential retrieve operation reads the fields from multiple records, one 
record at a time, into slots in the Rules Element's working memory.  The 
slots (object.property combinations) usually all belong to the same object, 
but it's also possible to read the fields into slots belonging to two or more 
objects.

Typically, a knowledge base will use a sequential retrieval to read a record's 
fields, do some reasoning over the record, "loop back" to retrieve another 
record, reason over it, and so on.  It's also possible to include a sequential 
write in this loop (for some database types) to write out an updated copy of 
the record after each reasoning step.

For example, a sequential retrieval could be used to read each record from 
a "CARS" database into an object's properties, compute a discounted price 
for the car, and write out an updated record to the database.  In this 
example, each record is processed independently of the next one.

Sequential retrieves require that you provide the logic in your knowledge 
base to "loop" thru the retrieve until all the records have been retrieved.  One 
approach is to create rules like the following:

■ Rule #1 tests the value of the cursor in the LHS to ensure that it's not 
negative. 

■ If the cursor isn't negative, Rule #1 issues a Retrieve (in the LHS or RHS) 
to retrieve the next record's fields into a fixed set of slots.

■ Subsequent rules process the slots.

■ When the record has been completely processed, the hypothesis of Rule 
#1 is reset, forcing the next record to be retrieved.

The processing associated with the record can also include a sequential 
write (using the same cursor slot), which will update the record just 
retrieved.  Remember however, that sequential writes are NOT supported 
for most database types.
352 Language Reference



Sequential Retrieve
Specification

Sequential retrieves are recognized by the fact that a Cursor slot is provided 
in the database retrieve window, and it has a positive (0 is defined as a 
positive number) value when the Retrieve is issued. 

For relational databases, the cursor must be set to 0 for the first retrieve, and 
the Rules Element set to an arbitrary positive number for subsequent 
retrieves.  When all the records have been retrieved, the cursor will be set to 
-1.  The cursor's value must NOT be changed by the knowledge base once 
the retrieve begins--doing so will cause errors and/or unpredictable results.

For flat-file databases, the Rules Element will read the "Cursor+1"-th record 
in the database.  For example, if the cursor slot has a value of 23 when the 
retrieve is executed, then the 24th will be retrieved.

A sequential retrieve does not necessarily have to retrieve all the records 
from the database.  It is possible to limit which records are retrieved by 
supplying a query with the retrieve.  For relational databases, you can use 
any query accepted by the database manager (usually an ANSI SQL 
statement), for flat-file databases, you can use the Rules Element Query 
Language to filter the records. 

If no records meet the query criteria, then the cursor will be set to -1 on the 
first retrieve.

A sequential retrieve reads the record fields into specific slots which already 
exist when the retrieve is issued.

Fields

To build a sequential retrieve, complete the Retrieve screen in the Database 
Editor window as follows.
■ If the Retrieve is to a relational database such as Oracle, Sybase, or 

INGRES, ensure that the Cursor slot specified in the Retrieve window 
is 0 before the first retrieve is executed.

■ Usually, in the LHS of the rule issuing the Retrieve, a test is specified to 
ensure that the Cursor slot has not gone negative, which indicates that 
the last record has been retrieved.

■ Specify Retrieve as the operator in the LHS or RHS of the rule.
■ As the first operand of the Retrieve, specify the database access string if 

a relational database is being accessed.  If a flat file database such as 
NXPDB or DBASE III is being accessed, specify the file name.  See the 
Access String Specification Topic for more information.

■ In the database Retrieve window, click on the appropriate selection in 
the Database Type field for the database being retrieved from. 

■ The Begin field should contain whatever is appropriate for your 
database.  See the Beginning Database Operations topic for more 
information.  Flat-file databases use this field to specify a range name, 
see the Begin topic for details.

■ For a relational database, specify the table name to be accessed in the 
Query field.  If you want to limit the records retrieved by the retrieve, 
you can also include a SQL query (for relational databases) or a Rules 
Element SQL-like query (for flat file databases) in this field.  See the 
Query Retrieve Operations topic for more information on filling in the 
Query field.
Language Reference 353



Chapter Database Integration Topics3
■ The End field should contain whatever is appropriate for your database 
to end a transaction.

■ The slot names (object.property combinations) to receive each record’s 
fields are specified explicitly.  See the Slot Specification for Retrieves 
topic for more information.

■ The Cursor field should contain the name of the slot to be used as the 
cursor for this retrieve operation.  This slot must be of the integer type, 
and MUST have a value of 0 when the retrieve is issued from a 
relational database.  The slot name may be specified as 
"object.property" or just "object", which is shorthand for "object.Value".

■ In the Database Fields column, specify the names of the database fields 
to be retrieved.  In the corresponding Object Properties column entries, 
specify the property slots into which the fields should be retrieved.  See 
the Slot Specification for Retrieves topic for more information.

■ The Create Object option must be left unselected.  Only grouped 
retrieves can be used to create objects.

Related Topics

Cursor Slot Specification Query Retrieve Operations
Database Editor Windows Slot Specification for Retrieves
Object Names In Retrieve Operations Query Example
Sequential Retrieve Example Query Language

Also, look up individual arguments and your database type for more 
detailed information.

Sequential Write
General

Sequential Write operations can be used ONLY with RDB RDO or with 
flat-file databases such as NXPDB and DBASE III.  It can NOT be used with 
relational databases (other than RDB RDO).

The Sequential write operation writes a set of slots into database fields one 
record at a time.  The slots (object.property combinations) usually all belong 
to the same object, but it's also possible to write slots belonging to two or 
more objects to each record.  Each record is written from the same set of slots 
which are presumably updated in the logic between the executions of the 
Write statement.

Typically, a knowledge base will use a sequential write to rewrite updated 
records during a sequential read operation.  For example, a knowledge base 
would use a sequential read to reach a record, rules would reason over its 
contents, possibly change some slot values, and a sequential write would 
replace the record in the database.

Sequential writes can also be used in a standalone fashion (not in 
conjunction with a sequential retrieve), in which case the Cursor field is 
used to position the database to the correct record before each write 
operation.
354 Language Reference



Sequential Write
A sequential write requires that some logic be built around the write 
operations to support them.  The amount of logic required depends on 
whether the write is used in conjunction with a sequential read. 

If the sequential write is NOT used in conjunction with a sequential read, 
then the logic in the knowledge base must set and maintain the cursor's 
value to correspond to the record number to be written.

If the write is associated with a sequential read, then the read operations will 
take care of setting and maintaining the cursor value once the retrieve 
begins.  See the Sequential Retrieve operations topic for more information.

Specification

Sequential writes are recognized by the fact that a Cursor slot is provided in 
the database retrieve window, and it has a positive (0 is defined as a positive 
number) value when the Write is issued. 

The Rules Element will write the Cursor-th record in the database.  For 
example, if the cursor slot has a value of 23 when the write is executed, then 
record 23 will be written.

A sequential write cannot add records to a database, it can only update 
existing records.

Fields

To build a sequential write, complete the Write screen in the Database 
Editor window as follows.

■ Ensure that the cursor slot's value is a positive value (0 is considered 
positive) before the write is issued.

■ Specify Write as the operator.

■ As the first operand of the Write specify the file name to be accessed.  
See the Access String Specification topic for more information.

■ In the database Write window, click on the appropriate selection in the 
Database Type field for the database being written.  Remember that 
sequential writes can NOT be used with most relational databases.

■ The Begin and Query fields should be left blank.

■ The End field should contain whatever is appropriate for your database 
to end a transaction.  For almost all relational databases, either 
"COMMIT" or "COMMIT RELEASE" should be specified.  See the 
Ending Database Operations topic for more information.

■ The Name field may be left blank or may contain an explicit object name 
whose property slots will be written to each record's fields.  See the Slot 
Specification for Writes topic for more information.

■ The Cursor field should contain the name of the slot to be used as the 
cursor for this write operation.  This slot must be of the integer type, and 
MUST have a positive value when the retrieve is issued.  The slot name 
may be specified as "object.property" or just "object", which is 
shorthand for "object.Value".

■ The In and Link to fields should be left empty.
Language Reference 355



Chapter Database Integration Topics3
■ In the Rules Element Properties column, specify the property slots 
which are to be written to the fields in the database.  In the database 
fields column, specify the corresponding field which is to receive each 
property slot.  See the Slot Specification for Writes topic for more 
information.

■ The Create New Record option must be left unselected.  Only grouped 
writes can be used to create records.

Related Topics

Cursor Slot Specification Sequential Retrieve

Also, look up individual arguments and your database type for more 
detailed information.

Slot Specification for Retrieves
As the Rules Element retrieves a record or records, it takes the data from the 
fields and places it in the property slots of one or more objects.  Usually, a 
given record's fields are almost always read into a single object's slots - thus 
preserving the record and field relationship as objects and properties.

Remember that property slots are identified as "object.property", where 
"object" is the object name, and "property" is the property name.  The 
property names are always specified explicitly in the database Retrieve 
window (in the right hand side of the Fields and Properties list).  The object 
names can be determined in a number of ways, including from the data in 
the records themselves.  This section describes how object names are built 
during Retrieve operations.

Using Explicit Object Names

There are two ways to specify the slots which will receive the fields from the 
records:

■ You explicitly state each "object.property" name in the right hand side 
of the fields and properties list, opposite the corresponding field 
specification.  The Name field is left empty.

■ You list only the property name(s) in the right hand side of the double 
column list, and specify the object name in the Name field.  As the 
records are retrieved, the Rules Element uses these fields together to 
form the slot names.

Both techniques are equally valid, and in almost all circumstances, there's 
no advantage to using one technique over another.  One exception is that 
listing the "object.property" combinations explicitly allows you to split a 
record's fields among two or more objects.
356 Language Reference



Slot Specification for Retrieves
The following illustrations show how to use each of these techniques to 
retrieve the fields DB_MODEL, DB_CAR_NAME, and DB_PRICE in object 
MyCar's Model,  Name, and Price properties.

Figure 3–12   Using Slot Names in Properties List

Figure 3–13   Using Property Names Only in the Properties List

In the first example, we have listed the "target" slots MyCar.Model, 
MyCar.name, and MyCar.Price explicitly in the right hand side of the 
fields and properties list, across from their corresponding fields 
DB_CAR_NAME, DB_MODEL, and DB_PRICE.

The second example shown accomplishes the same thing, except that only 
the properties are listed in the fields and properties list, and the object name 
- MyCar - is listed explicitly in the Name field.
Language Reference 357



Chapter Database Integration Topics3
Using Constructed Object Names

Constructed object names are used only with grouped retrieve operations.  
To specify the slots to receive the fields, you list only the property name(s) 
in the right hand side of the double column list.  As the records are retrieved, 
the Rules Element combines the generated name for the object with these 
property names to form the actual slot names to receive the records’ data.

The following illustration shows how to build object names from record 
data.  The object names are formed using the DB_MODEL and 
DB_CAR_NAME fields.  The fields DB_MODEL, DB_MODEL_DATE, and 
DB_PRICE are retrieved into the property slots Model, Model_Date, and 
Price.

Figure 3–14   Building Slot Names from Record Data

Related Topics

Retrieving Databases
Name
Object Names In Retrieve Operations

Also see the Grouped Retrieve example in Appendix A, “Database 
Integration Examples” for further illustrations of the Name field.

Slot Specification for Writes
When a write operation is requested, the Rules Element first selects the slots 
(object.property combinations) which are to be the source of the write 
operation.  There are two ways to specify the slots to be written:

■ As an explicit list of "object.property" combinations 

■ As a list of object names or classes along with a list of properties to be 
written from them. 

This section describes these techniques in detail.
358 Language Reference



Slot Specification for Writes
Using Explicit "Obj.Prop" Combinations

For sequential and atomic write operations, you specify a list of 
"object.property" combinations to be written to each record.  In this case, the 
fields are always written from the same slots.  Usually, all of the slots are 
from the same object, but it's also possible to specify slots from two or more 
different objects.

With atomic write operations, the use of this technique is quite simple: the 
logic in the knowledge base fills in the slots, and the slots are written to the 
fields in the database.  A slot name can be specified more than once in the 
list.

The slots to be written can be specified by listing them as explicit 
"object.property" combinations, or by specifying the object name and listing 
the properties in the Fields and Properties list.  Both techniques are equally 
valid.  If slots from two or more different objects are to be written, the first 
technique must be used.

Specifying explicit object.property combinations

To specify explicit slot names, list them in the Properties column of the 
Fields and Properties list , opposite the fields which the slots will be written 
to.  The following example shows how the slots in object MyCar could be 
written to the database:

Figure 3–15   Using Slot Names in the Properties List

Using "Obj.Prop" Combinations

There are two ways to specify the slot names:

■ As explicit "object.property" combinations.

■ As an object name and a list of properties.
Language Reference 359



Chapter Database Integration Topics3
Specifying an object name and list of properties

To use this technique, specify the object name (enclosed in single quotes) in 
the Name field of the Write window, and the properties in the Properties 
column of the Fields and Properties list opposite the corresponding 
database fields.  The following examples show how to write MyCars’s slots 
to the database.

Figure 3–16   Using Property Names Only in Properties List

Related Topics

Name Writing to Databases
Record Specification for Writes Arguments Overview

Also see the Grouped Write example in Appendix A, “Database Integration 
Examples” for further illustrations of the Name field.

Slots List - (@SLOTS)
General

The slots list can be specified in all types of transactions except operations 
on spreadsheet files.  This list is edited in the right part of the double list box 
at the bottom of the Database Editor windows. 

In the case of sequential or atomic transactions, the list is a list of slots 
(separated by commas), and it is prefixed by the @SLOTS keyword.

@SLOTS=list of slots;

This is very similar to the Properties List (@PROPS) described for that topic.
360 Language Reference



Spreadsheets
Related Topics

Database Editor Windows Slot Specification for Writes
Arguments Overview Slot Specification for Retrieves

Spreadsheets
General

The spreadsheet files have formats associated with spreadsheet programs 
such as Lotus 1-2-3, EXCEL, and the Rules Element's own spreadsheet 
format (also referred to as "NXP").  In these formats, each spreadsheet cell is 
treated as a unique data item, completely unrelated to other cells in the file.

In a spreadsheet, individual cells are usually addressed by row and column 
like "A1", "C23", "KK16".  This works well in the context of a user interface, 
but it is not very convenient when it comes to identifying data items in a file.  
Not only is there no "dictionary" of which cells represent which data items, 
there is the problem that insertion of a row or column shifts the row-column 
coordinates of many other cells, and invalidates any references to their old 
positions (inserting a column between column "A" and "B" means that what 
was in position "B1" is now in "C1", etc);

Therefore, to use a spreadsheet file with the Rules Element database 
interface, the cells which will be accessed from the Rules Element must have 
a Name or "definition" attached to them.  This Name is stored by the 
spreadsheet software with the spreadsheet, and provides a consistent 
reference for a particular datum no matter how its position changes.

Although the ability to read and write spreadsheet format files is useful for 
accessing existing information from LOTUS 1-2-3 or EXCEL files, it is not so 
useful as an application "database".  The spreadsheet's simple nature makes 
it difficult to group data together into logical entities.  For example, there is 
no built in way to state that "cells A1, A2, A3, and A4 represent CAR_1's 
price, model, model date, and sportiness", and "cells B1, B2, B3, and B4 are 
CAR_2's price, model, model date... ", and so forth.

Related Topics

Retrieving from Databases Writing to Databases
Query Language WKS
SYLK Arguments Overview
Rules Element Flat-File Formats

SqlError - (@ERROR)
Usage

The database server that you initiate transactions with may generate error 
messages or error numbers that you can trap at runtime.  The SqlError field 
of the Database Editor window lets you specify a slot that you create for this 
purpose.  If an error occurs, the message generated is stored as the value of 
the slot and the transaction is immediately halted.
Language Reference 361



Chapter Database Integration Topics3
Your knowledge base might use an if change method to test the value of the 
error slot each time its value changes.  At runtime, if the database returns 
either an error number (the slot should be of type Integer) or an error 
message (the slot should be of type String), the transaction is immediately 
halted, and the inference engine automatically sets a left-hand side Retrieve 
or Write condition to FALSE.  If no error slot is specified, error messages that 
are generated at runtime can be viewed in the Transcript window that you 
enable.

In text knowledge bases, the field list is saved as a list of quoted strings.  The 
formal syntax is:

@ERROR=slot name

Note:  If the slot name is specified in the Database Editor window, the Rules 
Element automatically creates the slot for the knowledge base.

Related Topics

Debugging Operations
Database Editor Windows
Arguments Overview
Retrieving from Databases
Writing to Databases

For precise information on what is allowed for a given database type, look 
up your database type.

String to Numeric Conversion {x}
General

The "{x}" syntax is used with relational database queries to provide a "hint" 
to the Rules Element as to the datatype of the corresponding database field.  

Depending on the particular database interface being used and the current 
availability of the database server and table(s) being accessed, the Rules 
Element has some, little, or no knowledge of the datatypes of the fields 
being referenced (retrieved or written) in the database table.  In particular, 
the problem being addressed with this syntax is the case where numeric 
field values are not being provided without the quotes typically associated 
with strings.  Some databases (e.g. ORACLE) will automatically do most 
string to numeric conversion.  Some of the Rules Element database 
interfaces (e.g. SYBASE) have some understanding of the Rules Element 
property type and will generally do the right thing with fields (quoting as 
appropriate).  Other databases need some help, though.

This syntax is used immediately before the database field name in the Field 
list or in the Name field, with "x" set to be "S" for string, “F” for float, or "I" 
for integer (i.e. numeric).  Only a single character is permitted, and it must 
be exactly as specified (it is case-sensitive).  This syntax should only be used 
when, for example, use of the Transcript indicates an inappropriate use of 
quotes by the Rules Element.
362 Language Reference



SYBASE
Example

As an example, suppose we are using the SYBASE database interface and 
have two Rules Element properties of type string (str_money and 
str_int) that we wish to write into two SYBASE fields of type money and 
int with field names of db_money and db_int, respectively.  For a normal 
transaction involving integers or strings, the SYBASE database interface 
would not need the "{I}" syntax, but in this case we are dealing with money 
(a type unknown to the Rules Element) and a string we are forcing into an 
integer field.  Using this syntax, the properties and fields lists would look 
like:

@PROPS= str_money,str_int;
@FIELDS= "{I}db_money","{I}db_int";

In a similar manner, staying with the SYBASE example, the db_int field 
may actually be part of the object name derived from the Name field as in: 

@NAME= "'root_'!{I}db_int!";

In this case, the Rules Element is obtaining the value of db_int from a 
string (part of the object name) and would normally provide the value 
inside quotes, which SYBASE would not accept.  By using the "{I}" syntax 
again, we have forced a numeric handling.

In many cases, this additional syntax is not required, and it should only be 
used where the Rules Element is obviously providing a form that the 
database server will not accept.  The database topics contain additional 
details for the various Rules Element database interfaces on when and 
where this syntax is required.

Related Topics

Database Editor Windows
Formats
Arguments Overview

SYBASE
SYBASE is the relational database product of SYBASE, Inc.  The query 
language of SYBASE is the standard SQL (Structured Query Language) 
language.  This section assumes familiarity with the SQL language and the 
SYBASE product.

The Rules Element SYBASE database interface is available as a separate 
package.  An installation guide is provided with the software.  It contains all 
the information required to configure the system and install the database 
interface.

The basic logic controlling the transactions has been described under the 
Retrieve and Write topics in this chapter.  This part will explain how the 
SQL queries are constructed.

Database Access String

As explained in the Access String topic in this chapter, the first argument of 
the Retrieve or Write operators contains the information required to 
establish the connection with the database.  In order to connect with the 
Language Reference 363



Chapter Database Integration Topics3
SYBASE database server, you must specify the user name and password 
with which to connect.  You may additionally be required to specify a server 
name and database. You may optionally specify a host name and 
application name. The correct order for specifying these connection 
parameters is as follows:

"username password hostname severname applicationname 
database"

You must not skip parameters within the connection string. If you need to, 
use a dummy name to supply a connection parameter that is not used, but 
do not skip a parameter or replace one by blanks. For example, the above 
connection parameters might take the following connection string:

"scott tiger hyperion SYBASE_HYPERION MyApp customerdb"

In this example, the application name MyApp was supplied as a dummy 
placeholder. Each parameter must be delimited by a blank space.

You cannot be connected to several accounts simultaneously.  You can, 
however, close a connection by issuing a RELEASE statement (see End 
string description below) and open a connection to another account 
afterwards.

Query Syntax

Begin and End strings

In these strings, you can specify any valid SQL statement which will be sent 
to the DBMS server.  If you want to send several SQL statements, you must 
separate them by a semi-colon character (;).

The Rules Element recognizes the special word RELEASE in the End 
statement because it needs to be processed differently by the SYBASE 
connection module.  If RELEASE is found, the Rules Element closes the 
connection with the database.

Usually, the Begin statement is left empty for Retrieves.  In the case of a 
Write, however, the Begin statement must be of the form:

@BEGIN= "begin transaction transaction_name";

where transaction_name is a name of the user's choosing.  Also, for a 
Write operation, the End statement will typically be one of the following:

@END= "commit transaction";
@END= "rollback transaction";

depending on whether the actions performed during the transaction are to 
be kept or discarded, respectively.  By default, the Rules Element will do a 
rollback when a Restart Session is done. 

Another frequently used Begin statement is

@BEGIN= "use database_name";

to select a database other than from the default database area. 

Query string 

The query string contains one or several table names followed by an 
optional where clause.
364 Language Reference



SYBASE
Let us take an example.  Our database contains two tables:

■ employees with the fields emp_id, name, dept_id, salary and bonus.

■ departments with the fields dept_id, name, budget.

You can retrieve all the employee records with the following query:

@QUERY= "employees";

Note:  In the Database Editor, you should not enclose your string in double 
quotes.  You should type only the word employees.

You can express complex queries such as:

(a) @QUERY= "employees where salary > 3000";
(b) @QUERY= "employees, departments where salary > 3000 and employee.dept_id = 

department.dept_id";

In the second case (b), the query will join the two tables employees and 
departments.

The query string is not sent as is to the DBMS server (it is not a valid SQL 
statement).  The actual SQL query is built in the following way:

■ If a Name is specified (grouped queries), the Rules Element extracts the 
field1 and the optional field2...field5 information from the Name (see 
Name topic for details).

■ Then the Rules Element builds the SELECT statement:

SELECT  field1, field2,...,field5, list_of_fields FROM query_string
where list_of_fields is the list of fields specified in the left part of the double 
list box of the Database Editor (@FIELDS). 

The resulting string would be the string used with the "isql" program.  SQL 
displays the results of the query on the terminal but the Rules Element 
needs to assign the retrieved values to some internal variables.  Let us 
consider our example query string (b).  If the name slot of our Database 
Editor contains 'emp_'!emp_id!, and the fields list contains the three 
properties name, employees.dept_id and salary, then the following string 
will be sent to the SYBASE server:

SELECT emp_id, name, employees.dept_id, salary FROM employees, departments 
WHERE salary > 3000 and employee.dept_id = department.dept_id

You must fully specify field names which are present in more than one 
relation.  In our example, dept_id must be prefixed by a table name (even if 
the two tables contain the same value for this field as a result of our join 
operation).

You can use the full power of the SQL language and specify expressions 
instead of field names (i.e. write salary + bonus instead of salary) as long as 
the SQL string which will be generated is a valid SELECT statement.  The 
Transact-SQL User's Guide and the Transact-SQL Commands Reference 
manual provide detailed information on SQL.

Writing parameterized queries

You can use either the @V(obj.prop) special syntax or the query argument 
box to parameterize your queries.  Our previous example can be 
transformed as follows:

@QUERY= "employees, departments where salary > @V(@SELF.amount) and 
employee.dept_id = department.dept_id";
Language Reference 365



Chapter Database Integration Topics3
or

@QUERY= "employees, departments where salary > :v1 and employee.dept_id = 
department.dept_id";

@ARGS= SELF.amount;

Note:  SELF and interpretations are allowed in the right part of the 
fields/properties list box (@SLOTS) in the case of sequential or 
atomic queries (grouped queries use a list of properties, not slots).  
SELF is allowed only if the query is placed in methods.

Update and Insert statements

UPDATE and INSERT statements are constructed in a similar way.  INSERT 
statements are generated only if the Create New Record option is selected 
and will concern only the objects specified in the In list which do not already 
have a matching record in the database.

The UPDATE statement is generated as follows:

UPDATE tables_from_query_string SET list_of_fields/values WHERE 
[field1 = value_of_field1 [AND field2 = value_of_field2]...] [AND] 
[where_clause_from_query_string]

The square brackets indicate optional strings.  Let us take our example (a) 
and suppose that the salary field needs to be updated and that the Name cell 
contains 'emp'!emp_id!.  The resulting SQL statement will be:

UPDATE employees SET salary = 5000 WHERE emp_id = '104' and salary > 3000

Note:  In this example, the new salary information and the emp_id is 
obtained from the object identified by the Name field (e.g. 'emp104').  
Also, the last part of the statement (and salary > 3000) is probably 
useless.

The INSERT statement is built from the following model:

INSERT INTO table_from_query_string ([field1, ][field2, ...] list_of_fields) 
VALUES ([val1, ][val2, ] ...)

Our update example becomes:

INSERT INTO employees (emp_id, salary) VALUES ('105', 6500)

The INSERT statement is limited to the first table specified in the query 
string.  You can insert records only into real tables, not into views.

Sequential queries

In the current implementation, you are not limited in the number of active 
sequential queries you have at any time.

Sequential writes are not implemented.  You can easily replace a sequential 
write by an atomic write.

Error Reporting

The Rules Element will report any SQL error message generated by SYBASE 
in the transcript window (if this window is write enabled).  It will also 
generate error messages if it encounters problems while building the SQL 
strings.  You can consult the SYBASE System Administration Guide for a 
detailed explanation of the SYBASE messages.  Additional error messages 
are explained in the Open Client DB-Library Reference Manual.
366 Language Reference



SYBASE
Retrieve Datatype Mapping

The following table indicates how various SYBASE datatypes may (or may 
not) be retrieved into various Rules Element datatypes.  The Rules Element 
datatypes are listed (underlined) across the top; the SYBASE datatypes are 
listed in the column to the left.  A "Y" means that the operation works with 
no additional effort or concerns.  A number means that the operation is 
possible, but you should see the notes that appear below the table for 
additional details.  A "--" means that the operation is not possible.

Notes
1. Conversion from an integer value to a float will take place.

2. If the string contains the proper numeric type requested, it will be 
copied into the Rules Element property.

3. SYBASE puts an "AM" or "PM" stamp on times retrieved from the 
database, requiring a special Rules Element format be defined in order 
to retrieve this into a date property.  A format that should work is 
'AMmm" "*d" "yyyy" "h":"mm*P'.  The first wildcard match is for single 
or double date returns (with one or two blanks).  The last "*" is 
dependent on your version of SYBASE which may or may not return 
seconds (you could add ':ss' to get them) and thousandths of seconds 
(which the Rules Element won't accept).

4. If the string contains a valid date, the Rules Element will take it if 
provided in the default Rules Element date format ('Mmm dd yyyy 
hh:mm:ss;mm dd yy hh:mm:ss;Mmm dd yyyy;mm dd yy;').  If in some 
other format, a format may be attached to the property to allow its 
acceptance (e.g. a format of 'mm"/"dd"/"yy' would accept "12/25/90").

5. Formats may be applied to treat most datatype as booleans.  A default 
property has been defined so that any string of the form "True" or 
"False" (case-insensitive) will be converted to the appropriate Rules 
Element boolean.  For example, if you have integers that are "0" for 
"False" and "1" for "True", you could assign a format of 'True;False;1;0;' 
(which make it print out as True/False, even though it comes in as 1/0).  
The most obvious candidates to use for booleans are the various strings, 
the various integers, and "bit".

Integer Float Boolean String Date

integer (not scaled) Y 5 4 3 6

integer (scaled) Y 5 4 3 6

smallint 7 5 4 3 6

quadword Y 5 4 3 6

tinyint 7 5 4 3 6

real Y 8 4 3 6

double precision Y 8 4 3 6

char(n) Y Y Y Y Y

varchar(n) Y Y Y Y Y

date 6 6 4 2 1
Language Reference 367



Chapter Database Integration Topics3
Write Datatype Mapping

The following table indicates how various SYBASE datatypes may (or may 
not) be written into from various Rules Element datatypes.  The Rules 
Element datatypes are listed (underlined) across the top; the SYBASE 
datatypes are listed in the column to the left.  A "Y" means that the operation 
works with no additional effort or concerns.  A number means that the 
operation is possible, but you should see the notes that appear below the 
table for additional details.  A "--" means that the operation is not possible.

The Rules Element SYBASE database interface needs to use the "{I}" syntax 
for integer database field names in the Name field.  This instructs the Rules 
Element to not treat this as a string, but rather as a numeric field (e.g. 
integer).

Notes
1. Datatype conversion, as appropriate and if possible, will take place.  For 

example, a Rules Element integer can be placed into a SYBASE tinyint 
(8 bits), but it must have a value in the allowed range or SYBASE will 
generate an error and the entire write operation will fail.

2. There are no "cents" passed in.  The integer is treated as an integer 
number of dollars ("$").

3. A Rules Element integer or float value of "0" will be "0" in the bit field; 
any other number will be stored as a "1".

4. Formats must be applied to treat booleans as non-string SYBASE 
datatypes.  For example, you could write into an integer field if you use 
a boolean format of '1;0;True;False' (which accepts True/False, though 
prints out as 1/0).  The most obvious candidates to use for storing 
booleans are the various string and integer formats.  (Strings will 
directly receive True/False with the default Rules Element format).

Integer Float Boolean String Date

int Y 1 1,4,5 1,5 1,4,5

smallint 1 1 1,4,5 1,5 1,4,5

tinyint 1 1 1,4,5 1,5 1,4,5

float 1 Y 1,4,5 1,5 1,4,5

char(n) -- -- Y Y Y

varchar(n) -- -- Y Y Y

bit 3 3 1,4,5 1,5 1,4,5

money 2 -- -- 1,5 1,4,5

date -- -- 4 1,5 Y

text -- -- -- -- --

binary(n) -- -- -- -- --

varbinary(n) -- -- -- -- --

image -- -- -- -- --

timestamp -- -- -- -- --
368 Language Reference



SYLK
5. Since this SYBASE field needs to be entered without quotes, but the 
Rules Element, by default will put quotes around non-numeric fields, 
the "{I}" prefix syntax must be used for the database field name to 
indicate that this is a numeric-like field and should not have quotes 
provided by the Rules Element.

Notes

The main difference between SYBASE and the screen captures documented 
in Appendix A, “Database Integration Examples” are as follows:

1. You must remember to specify SYBASE in the Database Editor window 
(or in the TKB, @TYPE=SYBASE).

2. In all of the examples where you are going to write to a table, you must 
specify a BEGIN statement that starts a "named" transaction, and an 
END statement that, for example, commits the transaction.  This syntax 
is slightly different from the standard examples.  For example (e.g. 
ex01syb.tkb):

@BEGIN= "begin transaction write_table";
@END= "commit transaction";

3. In all of the examples where you are going to retrieve from a table, the 
SYBASE interface is generally exactly the same as the standard 
examples. 

Related Topics

Databases
Retrieving from Databases
Writing to Databases

SYLK
SYLK is a standard data format used by several commercial spreadsheet 
software packages, including Excel on the Macintosh and the IBM-PC.  The 
maximum number of fields which can be contained in a SYLK data file is 
10,000.

SYLK

When the SYLK type is specified, the data file is processed as a spreadsheet 
by the Rules Element.  As explained previously, each cell of the spreadsheet 
containing a value must be named with a unique corresponding slot name 
obj.prop.  In Excel this is done with the Define Name command in the 
Formula menu. 

Example:  to modify an existing spreadsheet so that it contains the slot value 
Expenses.Total, select the cell where you want to put the value and enter the 
string Expenses.Total in the Define Name dialog.  You can repeat the 
operation for other cells and other slot names.  The unnamed cells of the 
spreadsheet will be ignored by the Rules Element during a Retrieve or 
Write.  The Rules Element may or may not dynamically create new objects 
when it encounters a named cell (see the Create Object topic for details).

When you create a new SYLK file, the Rules Element automatically names 
the cells with the corresponding slot names.  New cells are created in the 
Language Reference 369



Chapter Database Integration Topics3
first column of the spreadsheet, but you can modify the layout of the 
spreadsheet later, provided you keep the correct cell names. 

SYLKDB

SYLKDB is used when the Excel spreadsheet file (or a portion of it) is treated 
as a database.  The Excel documentation describes how to select a set of rows 
and columns (a range) and define it as a database with the Set Database 
command.  In this case, cells are not named individually, but the selected 
range constitutes a database:  rows are records and columns are fields.

This format is more functional than the NXP format for storing structured 
objects and their slots.  You can specify a database name in the Begin 
(@BEGIN) statement of your query.  The Rules Element will search for this 
database name in the spreadsheet file, and will use the range associated 
with this database name to locate the records and fields.  If you leave the 
Begin statement empty, the Rules Element will use the word Database as the 
database name.

You can have several databases in a single spreadsheet file.  You can define 
them with different names in Excel and access them as separate tables from 
the Rules Element (you must use the Begin statement to identify your 
database range).

Note: The only database range that you can create directly from the Rules 
Element is “Database”; all other ranges must be pre-defined in the 
Excel file. Also, when adding records, you must pre-size the range to 
contain at least one row.

Related Topics

Spreadsheets Retrieving from Databases
Writing to Databases Query Language
Begin

WKS
Description

WKS and WKSDB are used to query and update files which follow the WKS 
format defined by the Lotus 1-2-3 program on the IBM-PC.

Descriptions of SYLK and SYLKDB hold in the case of WKS and WKSDB.  
The main points are:

■ WKS is a spreadsheet format.  The cells must be named in Lotus 1-2-3 
to be accessible by the Rules Element.

WKSDB is a Lotus 1-2-3 spreadsheet viewed as a database.  You must 
select a database range in Lotus 1-2-3, and assign a name to it.  You must 
specify the database name in the Begin statement of your transaction.

Note:  Transfer of data files between the VAX and PC's (in both directions) 
should not cause any special problem except in the case of WKS files.  
In the current version, WKS files created on the VAX (with a RHS 
Write) can be read on the VAX but not on the PC if they contain 
numeric data (because of differences in the floating point format), 
370 Language Reference



Write Operator
and files created on the PC cannot be read on the VAX because of 
RMS file format incompatibilities (you cannot transfer them with 
Kermit-32 because the records are too long; if you transfer them with 
the VAXmate PC Server, you create RMS files with unterminated 
records which cannot be converted properly by the CONVERT VMS 
utility).

Related Topics

Spreadsheets Retrieving from Databases
Writing to Databases Query Language
SYLK Begin

Write Operator
The Write operator is used in rules and methods to write information to a 
database.  

Operands

The Write operator takes two operands:  

■ The first operand is either a quoted string constant or an interpretation 
evaluating to a string constant specifying the name of the file containing 
the database to be updated or the login name/password for a DBMS.  

■ The second operand consists of a series of arguments defining the 
specific update operation to be performed.  

Arguments

The second operand may include the following arguments:  

@TYPE Type of database (creator software and file format)

@BEGIN Command string for opening transaction

@END Command string for closing transaction

@QUERY Command string for updating database

@ERROR Slot name to trap database error message

@ARGS Argument list for update command

@ATOMS List of objects or properties affected

@NAME Correspondence between objects and records

@FIELDS List of field names to update

@PROPS List of properties to update from

@SLOTS List of slots to update from

@FILL Create new records or files

@UNKNOWN Write UNKNOWN values

@CURSOR Current position for sequential update
Language Reference 371



Chapter Database Integration Topics3
Note:  It is valid to have an empty second operand.  When this occurs, the 
Rules Element will determine the type of database from the filename 
extension specified in the first argument, and will default to the SYLK 
type if no extension is specified.  Only simple spreadsheet files can be 
accessed in this case.  This operating mode has been maintained to 
ensure compatibility with earlier versions of the Rules Element.

When entering a Write action in the Rule Editor or Method Editor, clicking 
in the space for the second operand displays the Database Editor dialog box 
for specifying the update arguments interactively, rather than by explicitly 
typing them in as listed above.

Effect

The designated information is written to the specified database from the 
Rules Element knowledge base. 

Related Topics

Access String Left-Hand Side Writes
Access String Specification Right-Hand Side Writes
Arguments Overview Order of Sources Writes
Database Editor Window If Change Writes
Interpretations @V(...)

Look up the following topics in the Chapter One, “Application 
Development Features” for information related to the Write operator.

Rules Classes
Methods Properties
Actions String Constants
Objects

Write Unknown - (@UNKNOWN)
Usage

The Write Unknown setting is meaningful in all types of transactions.  It 
controls whether or not UNKNOWN values should be written by the 
transaction.

This setting is specified with the Write Unknown check button in the 
Database Editor windows.  In the text form of the knowledge base, it is 
saved as:

@UNKNOWN=TRUE;

or

@UNKNOWN=FALSE;

Related Topics

Database Editor Windows Writing to Databases
Arguments Overview
372 Language Reference



Writing to Databases
Writing to Databases
General

During write operations, the database takes slots and writes them out to the 
fields in a database record.  In most cases, all of the slots are from the same 
object, thus transforming the Rules Element’s object-property relationship 
into a record-field relationship in the database.

For example, take the case of a car inventory file.  Each car is represented by 
a record with the fields DB_MODEL, DB_MODEL_DATE, and DB_PRICE.  In 
the knowledge base, a car is represented by an object with the properties 
Model, Model_date, and Price.  The Write operation in the knowledge 
base specifies the mapping between the Rules Element properties and the 
record's fields:

PostScript error (undefined, x6)

DB_MODEL DB_MODEL_DATE DB_PRICE

MODEL

PRICE

MODEL_DATE
Language Reference 373



Chapter Database Integration Topics3
Each car object's Name, Price, Model, Model_date, and Sportive 
property slots could be written into a car record's DB_CAR_NAME, 
DB_PRICE, DB_MODEL, DB_MODEL_DATE, and DB_SPORTIVE fields, 
respectively.  This effectively "transforms" each car object into a car record.

In specialized cases, it's also possible to write the slots from different objects 
into a record's fields.

Depending on the type of write operation, records can be written one by one 
from the same slots (with logic in the knowledge base updating the slots 
before each write), or multiple objects can be written in one operation to 
many records.  During the write, the Rules Element can either update 
existing records or create new ones.

In most applications, it's not necessary to write all of the slots 
(object.property combinations) in the Rules Element's working memory to 
the database.  The Rules Element therefore provides several ways of 
filtering the slots which are actually written from its working memory to the 
database.

Filtering occurs in several stages:

■ A list of slot, object, or class names are provided to the database 
interface to initially represent the slots to be written.  For atomic and 
sequential writes, the slots are named explicitly; for grouped writes a 
list of objects or classes is provided from which the slots will be written.

■ For grouped writes, existence filtering can be used to determine if a 
record already exists in the database for the corresponding object.  The 
correlation between a record and an object is established by building a 
record "key" using the object's name.

Related Topics

Databases Spreadsheets
Grouped Write Sequential Write
Atomic Write Write Operator
Query Write Operations Slot Specification for Writes
Write Unknown Create New Record
Debugging Operations Record Specification for Writes
374 Language Reference



Appendix
A Database Integration 
Examples A

This appendix provides examples of the various ways to use the Intelligent 
Rules Element database interface.  

Example 1 - Grouped Write
Description

In this example data from the slots of two objects is written to the database 
in a single operation.  Each object is written as an individual record.  
Although this example is oriented towards relational databases, it is also 
applicable to flat-file databases.

This example uses the following objects and records:
■ The class |cars_class| contains two objects: Newcar_1 and 

Newcar_2.  Values have been assigned to their property slots using the 
InitValue operator in the Order of Sources field.

■ Each object has the properties Model, Model_date, Price and 
Sportive.

■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL, 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

■ There are no rows in the table where the column DB_CAR_NAME 
contains the value Newcar_1 or Newcar_2.

Operation

Figure A-1 shows the rule that will invoke the grouped write:

Figure A–1   Rule Invoking a Grouped Write
Language Reference 375



Appendix Database Integration ExamplesA
The rule shown above is evaluated as follows:

■ The LHS of the rule will always be true. 

■ The first statement of the RHS (Assign db_access_string...) will 
prompt the user for the database access string.  Look up your database 
type in Chapter Three, “Database Integration Topics” for details.

■ The LoadKB, Assign DropTable, and UnloadKB statements will drop, 
recreate and reload the CARS table in the database.  This will ensure that 
the CARS table is reset to its initial state each time the example is run.

■ A Write  operation will be invoked.  The argument 
@V(db_access_string) will be evaluated to yield the user-specified 
database access string.

Figure A–2   Write Screen for a Grouped Write

Figure A-2 shows the database interface write screen:

■ The object names Newcar_1 and Newcar_2 will be used as keys in the 
update query.

■ The database will try to update those records where the column 
DB_CAR_NAME contains the values Newcar_1 or Newcar_2.  Since 
there are no rows in the table which satisfy this criteria and Create New 
Record has been selected, two rows will be inserted into the table CARS 
using the object names as keys.

■ For each of the two objects, the values in property slots Model, 
Model_date, Price and Sportive will be written to the columns 
DB_MODEL, DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE, 
respectively.

■ If all of the rows are written successfully, a Commit will be passed to 
the database.
376 Language Reference



Example 1 - Grouped Write
Reference

Field descriptions for this Write operation follow.

Database Type

An Oracle database is being used in this example.

Begin

For most databases this field is to be left blank for grouped write operations.  
Some databases, such as Sybase, require a statement here.  Look up your 
database type in Chapter Three, “Database Integration Topics” for details.

Query

This field specifies the database table to which the records are to be written 
(in this example the table CARS).  For flat-file databases this field must be 
left blank .

End

For Oracle and most other relational databases, this field should contain a 
Commit statement to make the changes to the table permanent if all rows 
are written successfully.  Look up your database type in Chapter Three, 
“Database Integration Topics” for details.

Name

This field indicates that the object names are to be used as keys in the 
DB_CAR_NAME field.

In

Specifying a value of <|class_cars|> indicates that the Rules Element is to 
write all of the objects in the class |class_cars| to the database.

Cursor

This field must be left blank to indicate a grouped write.

Database Fields / Rules Properties 

These columns specify that the values in the property slots Model, 
Model_date, Price and Sportive are to be written to the columns 
DB_MODEL, DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE 
respectively.  Although in this example all of the object's property slots are 
to be written out, this does not necessarily have to be the case.

Create New Record

This is selected to indicate that a new row should be inserted into the table 
if the update query generated by the Name field fails.Related Topics

Grouped Write Cursor Slot Specification
Access String Slot Specification for Writes
Query Write Operations Database Editor Windows

Also, look up individual arguments and your database type for more 
detailed information.
Language Reference 377



Appendix Database Integration ExamplesA
Example 2 - Grouped Write with a Complex Name
Description

In this example data from the slots of two objects is written to the database 
in a single operation.  Each object is written as an individual record.  Unlike 
the previous example where the object names could be used in the database 
as a single-column key to uniquely identify a record, in this example the 
object names must be parsed into two strings and compared with two 
database columns in order to determine which records to update.  Although 
this example is oriented towards relational databases, it is also applicable to 
flat-file databases.

This example uses the following objects and records:

■ The class |cars_class| contains two objects: Newcar_1_A_Lexus and 
Newcar_2_A_Infiniti .  Values have been assigned to their property 
slots using the InitValue operator in the Order of Sources field.

■ Each object has the properties Model, Model_date, Price and 
Sportive.

■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL, 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

■ There are no rows in the table where the columns DB_CAR_NAME and 
DB_MODEL contain the values car_1  and Lexus, or car_2  and 
In f in i t i .

Operation

Figure A-3 shows the rule which will invoke the grouped write.

Figure A–3   Rule Invoking a Grouped Write
378 Language Reference



Example 2 - Grouped Write with a Complex Name
The rule shown above is evaluated as follows:

■ The LHS of the rule will always be true. 

■ The first statement of the RHS (Assign db_access_string...) will 
prompt the user for the database access string.  Look up your database 
type for the exact syntax.

■ The LoadKB, Assign DropTable, and UnloadKB statements will drop, 
recreate and reload the CARS table in the database.  This will ensure that 
the CARS table is reset to its initial state each time the example is run.

■ A Write  operation will be invoked.  The argument 
@V(db_access_string) will be evaluated to yield the user-specified 
database access string.

Figure A–4   Write Screen for a Grouped Write Using Name

Figure A-4 shows the Rules Element Write screen:

■ The object names will be parsed to yield the values which will be used 
as keys in the update query.  The object Newcar_1_A_Lexus will yield 
the values car_1  and Lexus, and the object Newcar_2_A_Infiniti  
will yield the values car_2  and In f in i t i .

■ The database will try to update those records where the columns 
DB_CAR_NAME and DB_MODEL contain the values car_1  and 
Lexus, or car_2  and In f in i t i .  Since there are no rows in the table 
which satisfy this criteria and Create New Record has been selected, 
two rows will be inserted into the table CARS using the parsed values 
as keys.

■ For each of the two objects, the values in property slots Model_date, 
Price and Sportive will be written to the columns 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE, respectively.

■ If all of the rows are written successfully, a Commit will be passed to 
the database.
Language Reference 379



Appendix Database Integration ExamplesA
Reference

Field descriptions for this Write operation follow.

Database Type

An Oracle database is being used in this example.

Begin

For most databases this field is to be left blank for grouped write operations.  
Some databases, such as Sybase, require a statement here.  Look up your 
database type for the exact syntax.

Query

This field specifies the database table to which the records are to be written 
(in this example the table CARS).  For flat-file databases this field must be 
left blank .  Look up your database type for the exact syntax.

End

For Oracle and most other relational databases, this field should contain a 
Commit statement to make the changes to the table permanent if all rows 
are written successfully.  Look up your database type for the exact syntax.

Name

This field indicates how the object names are to be parsed and in which 
database columns they will be used as keys.  In this example, 
'New'!DB_CAR_NAME!'_A_'!DB_MODEL! specifies that the write query 
is to search for records where the column DB_CAR_NAME contains the 
substring delimited by New and _A_ and where the column DB_MODEL 
contains the substring which begins after _A_.

In
Specifying a value of <|class_cars|> indicates that the Rules Element is to 
write all of the objects in the class |class_cars| to the database.

Cursor
This field must be left blank to indicate a grouped write.

Database Fields / Rules Properties 
These columns specify that the values in the property slots Model_date, 
Price and Sportive are to be written to the columns DB_MODEL_DATE, 
DB_PRICE and DB_SPORTIVE respectively.  Although in this example all 
of the object's property slots are to be written out, this does not necessarily 
have to be the case.

Create New Record
This is selected to indicate that a new row should be inserted into the table 
if the update query generated by the Name field fails.

Related Topics

Grouped Write Writing to Databases
Access String Slot Specification for Write
Query Write Operations Database Editor Windows
Record Specification for Writes
380 Language Reference



Example 3 - Atomic Write
Also, look up individual arguments and your database type for more 
detailed information.

Example 3 - Atomic Write
Description

In this example one record in a database is updated with the data from the 
slots of a single object.  Although this example is oriented towards relational 
databases, it is also applicable to flat-file databases.

This example uses the following objects and records:

■ The class |cars_class| contains one object: MyCar.  Values have been 
assigned to its property slots using the InitValue operator in the Order 
of Sources field.

■ The object MyCar has the properties Model, Model_date, Price and 
Sportive.

■ The object dummy_object has a single property, dummy_cursor.

■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL, 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

■ The table CARS contains ten records, each of which can be uniquely 
identified by the values car_1 , car_2 , car_3,... in the field 
DB_CAR_NAME.

Operation

Figure A-5 shows the rule which will invoke the atomic write.

Figure A–5   Rule Invoking an Atomic Write
Language Reference 381



Appendix Database Integration ExamplesA
The rule shown above is evaluated as follows:

■ The LHS of the rule will always be true. 

■ The first statement of the RHS (Assign db_access_string...) will 
prompt the user for the database access string.  Look up your database 
type in Chapter Three, “Database Integration Topics” for details.

■ The LoadKB, Assign DropTable, and UnloadKB statements will drop, 
recreate and reload the CARS table in the database.  This will ensure that 
the CARS table is reset to its initial state each time the example is run.

■ Reset dummy_object.dummy_cursor will set the value of 
dummy_object.dummy_cursor to UNKNOWN.  This will signal the 
Rules Element that an atomic write will be performed.

■ A Write  operation will be invoked.  The argument 
@V(db_access_string) will be evaluated to yield the user-specified 
database access string.

Figure A–6   Write Screen for an Atomic Write

Figure A-6 shows the Rules Element Write screen:

■ Data from the slots MyCar.Model, MyCar.Model_date, MyCar.Price 
and MyCar.Sportive will update the fields DB_MODEL, 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE in the record 
where DB_CAR_NAME is car_1.

■ If the row is written successfully, a Commit will be passed to the 
database.

Reference

Field descriptions for this Write operation follow.

Database Type

An Oracle database is being used in this example.
382 Language Reference



Example 4 - Grouped Retrieve
Begin

For most databases this field should be left blank for atomic write 
operations.  Some databases, such as Sybase, require a statement here.  Look 
up your database type in Chapter Three, “Database Integration Topics” for 
details.

Query

This field specifies which database table is to be updated (in this example 
the table CARS), and the criteria to be used to select the record to be updated 
(where DB_NAME like...).

End

For Oracle and most other relational databases, this field should contain a 
Commit statement to make the changes to the table permanent, if the row is 
updated successfully.  Look up your database type in Chapter Three, 
“Database Integration Topics” for details.

Name

This field must be empty for atomic writes.  Object names are stated 
explicitly in the Database Fields / Rules Properties list.

In

This field must be empty for atomic writes.

Cursor

This field specifies the name of an integer property slot (in this example 
dummy_object.dummy_cursor) which, in order to specify an atomic 
write, MUST contain the value UNKNOWN.

Database Fields / Rules Properties 

These columns specify that the values in the property slots Model, 
Model_date, Price and Sportive of the object MyCar are to be written to 
the columns DB_MODEL, DB_MODEL_DATE, DB_PRICE and 
DB_SPORTIVE.

Create New Record

This must NOT be selected.  New records cannot be added to the database 
with atomic or sequential writes.Related Topics

Atomic Write Cursor Slot Specification
Access String Slot Specification for Writes
Query Write Operations Database Editor Windows

Also, look up individual arguments and your database type for more 
detailed information.

Example 4 - Grouped Retrieve 
Description

In this example data from multiple records in the database is retrieved into 
the property slots of a group of objects in a single operation.  Although this 
example is oriented towards relational databases, it is also applicable to 
flat-file databases.
Language Reference 383



Appendix Database Integration ExamplesA
This example uses the following objects and records:

■ Initially, the class |cars_class| contains no objects.  Objects in 
|cars_class| will have the properties Model, Model_date, Price and 
Sportive.

■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL, 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

■ The table CARS contains ten records, each of which can be uniquely 
identified by the values car_1 , car_2 , car_3,... in the field 
DB_CAR_NAME.

Operation

Figure A-7 shows the rule which will invoke the grouped retrieve.

Figure A–7   Rule Invoking a Grouped Retrieve

The rule shown above is evaluated as follows:

■ The LHS of the rule is always true. 

■ The first statement of the RHS (Assign db_access_string...) will 
prompt the user for the database access string.  Look up your database 
type in Chapter Three, “Database Integration Topics” for details.

■ The LoadKB, Assign DropTable, and UnloadKB statements will drop, 
recreate and reload the CARS table in the database.  This will ensure that 
the CARS table is reset to its initial state each time the example is run.
384 Language Reference



Example 4 - Grouped Retrieve
■ A Retrieve operation will be invoked.  The argument 
@V(db_access_string) will be evaluated to yield the user-specified 
database access string.

Figure A–8   Retrieve Screen for a Grouped Retrieve

Figure A-8 shows the Rules Element Retrieve screen:

■ As each record in the table CARS is retrieved, the Rules Element will 
search the knowledge base for an object whose name matches the 
current value of the field DB_CAR_NAME.  Since no object will be 
found, a dynamic object with this name will be created and linked to the 
class |car_class|.

■ As each object is created values from the database fields DB_MODEL, 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE will be passed to 
the property slots Model, Model_date, Price and Sportive.

Reference

Field descriptions for this Retrieve operation follow.

Database Type

An Oracle database is being used in this example.

Begin

For most databases this field should be left blank for grouped retrieve 
operations.  Some databases require a statement here.  Look up your 
database type in Chapter Three, “Database Integration Topics” for details.

Query

This field specifies from which table records are to be retrieved.  This field 
can also contain a where clause to limit the records to be retrieved.
Language Reference 385



Appendix Database Integration ExamplesA
End

For most relational databases, this field should be left blank.  Some 
databases may require a statement here.  Look up your database type in 
Chapter Three, “Database Integration Topics” for details.

Name

This field specifies that for each record retrieved from the database the value 
of the field DB_CAR_NAME is to be used to build the object name in which 
the database values will be stored.

In

This field specifies the list of objects and/or classes to be searched to 
determine if an object exists whose name matches the value specified by the 
Name field.  If this field is left blank, as in this example, then all of the objects 
in the knowledge base will be searched.

Cursor

This field must be empty for grouped retrieves.

Link To

This field specifies the class to which new objects created by the retrieve are 
to be linked.  In this example, new objects will be linked to the class 
|cars_class|.

Database Fields / Rules Properties 

These columns specify that data from the columns DB_MODEL, 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE are to be passed to the 
property slots Model, Model_date, Price and Sportive .

Create New Record

This is selected to indicate that if an object with a name specified by the 
Name field doesn't already exist, it is to be created.  If this is not selected, 
data will only be retrieved into objects which already exist in the knowledge 
base.

Current Forward

This is selected to indicate that the retrieval of any data into property slots 
will place hypotheses on the agenda according to the current RHS 
forward-chaining strategy.

Related Topics

Grouped Retrieve Cursor Slot Specification
Access String Slot Specification for Retrieves
Object Name Specification Query Retrieve Operations
Database Editor Windows

Also, look up individual arguments and your database type for more 
detailed information.
386 Language Reference



Example 5 - Grouped Retrieve with a Complex Name
Example 5 - Grouped Retrieve with a Complex Name
Description

This is an example of a grouped retrieve in which field values from two 
table columns are combined with a constant string to form the object names.  
Although this example is oriented towards relational databases, it is also 
applicable to flat-file databases.

This example uses the following objects and records:

■ Initially, the class |cars_class| contains no objects.  Objects in 
|cars_class| will have the properties Model, Model_date, Price and 
Sportive.

■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL, 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

■ The table CARS contains ten records, each of which can be uniquely 
identified by the values car_1 , car_2 , car_3,... in the field 
DB_CAR_NAME.

■ The table CARS contains ten records, each of which can be uniquely 
identified by the values car_1 , car_2 , car_3,... in the column 
DB_CAR_NAME.  The column DB_MODEL contains values like 
Toyota, Honda and BMW.

Operation

Figure A-9 shows the rule which will invoke the grouped retrieve.

Figure A–9   Rule Invoking a Grouped Retrieve
Language Reference 387



Appendix Database Integration ExamplesA
The rule shown above is evaluated as follows:

■ The LHS of the rule is always true. 

■ The first statement of the RHS (Assign db_access_string...) will 
prompt the user for the database access string.  Look up your database 
type for the exact syntax.

■ The LoadKB, Assign DropTable, and UnloadKB statements will drop, 
recreate and reload the CARS table in the database.  This will ensure that 
the CARS table is reset to its initial state each time the example is run.

■ A Retrieve operation will be invoked.  The argument 
@V(db_access_string) will be evaluated to yield the user-specified 
database access string.

Figure A–10   Retrieve Screen for a Grouped Retrieve Using Name

Figure A-10 shows the Rules Element Retrieve screen:

■ As each record in the table CARS is retrieved, the Rules Element will 
combine the value of the field DB_CAR_NAME with the string _A_ and 
the value of the field DB_MODEL to create an object name.  The Rules 
Element will then search the knowledge base for an object with this 
name.  Since no object will be found, a dynamic object with this name 
will be created and linked to the class |car_class|.

■ As each object is created values from the database fields 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE will be passed to 
the property slots Model_date, Price and Sportive.

Reference

Field descriptions for this Retrieve operation follow.

Database Type

An Oracle database is being used in this example.
388 Language Reference



Example 5 - Grouped Retrieve with a Complex Name
Begin

For most databases this field should be left blank for grouped retrieve 
operations.  Some databases require a statement here.  Look up your 
database type for the exact syntax.

Query

This field specifies from which table records are to be retrieved.  This field 
can also contain a where clause to limit the records to be retrieved.

End

For most relational databases, this field should be left blank.  Some 
databases may require a statement here.  Look up your database type for the 
exact syntax.

Name

This field specifies that for each record retrieved from the database the value 
of the field DB_CAR_NAME, the string _A_ and the value of the field 
DB_MODEL will be combined to form the object name in which the 
database values will be stored.

In

This field specifies the objects and/or classes of objects to be searched to 
determine if an object exists whose name matches the value of the database 
field(s) specified in the Name field.  If this field is left blank, as in this 
example, then all of the objects in the knowledge base will be searched.

Cursor

This field must be empty for grouped retrieves.

Link To

This field specifies the class to which new objects created by the retrieve are 
to be linked.  In this example, new objects will be linked to the class 
|cars_class|.

Database Fields / Rules Properties 

These columns specify that data from the columns DB_MODEL_DATE, 
DB_PRICE and DB_SPORTIVE are to be passed to the property slots 
Model_date, Price and Sportive.

Create New Record

This is selected to indicate that if an object with a name specified by the 
Name field doesn't already exist, it is to be created.  If this is not selected, 
data will only be retrieved into objects which already exist in the knowledge 
base, and any other records ignored.

Current Forward

This is selected to indicate that the retrieval of any data into property slots 
will place hypotheses on the agenda according to the RHS forward-chaining 
strategy currently in effect.
Language Reference 389



Appendix Database Integration ExamplesA
Related Topics

Grouped Retrieve Cursor Slot Specification
Access String Slot Specification for Retrieves
Object Name Specification Query Retrieve Operations
Database Editor Windows

Also, look up individual arguments and your database type for more 
detailed information.

Example 6 - Grouped Retrieve with Existence Filtering
Description

This is an example of a grouped retrieve in which database values are only 
passed to those objects specified by the In field which already exist in the 
knowledge base.  Although this example is oriented towards relational 
databases, it is also applicable to flat-file databases.
This example uses the following objects and records:
■ The class |cars_class| contains two objects, car_1  and car_2 .  These 

objects have the properties Model, Model_date, Price and Sportive 
Initially, all of these property slots are set to UNKNOWN for both 
objects.

■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL, 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

■ The table CARS contains ten records, each of which can be uniquely 
identified by the values car_1 , car_2 , car_3,... in the field 
DB_CAR_NAME.

Operation

Figure A-11 shows the rule which will invoke the grouped retrieve.

Figure A–11   Rule Invoking a Grouped Retrieve
390 Language Reference



Example 6 - Grouped Retrieve with Existence Filtering
The rule shown above is evaluated as follows:

■ The LHS of the rule is always true. 

■ The first statement of the RHS (Assign db_access_string...) will 
prompt the user for the database access string.  Look up your database 
type for details on how to specify this for other DBMSs.

■ The LoadKB, Assign DropTable, and UnloadKB statements will drop, 
recreate and reload the CARS table in the database.  This will ensure that 
the CARS table is reset to its initial state each time the example is run.

■ A Retrieve operation will be invoked.  The argument 
@V(db_access_string) will be evaluated to yield the user-specified 
database access string.

Figure A–12   Retrieve Screen for a Grouped Retrieve Using In Field

Figure A-12 shows the Rules Element retrieve screen:

■ As each record in the table CARS is retrieved, the Rules Element will 
search the objects in the class <|cars_class|> (as specified by the In 
field) for an object whose name matches the current value of the field 
DB_CAR_NAME.

■ Only two records will have values in the field DB_CAR_NAME which 
match the name of an object in the class <|cars_class|>.

■ For the two objects car_1  and car_2,  the values from the database 
fields DB_MODEL, DB_MODEL_DATE, DB_PRICE and 
DB_SPORTIVE will be passed to the property slots Model, 
Model_date, Price and Sportive.  Data from other records retrieved 
will be ignored.

Reference

Field descriptions for this Retrieve operation follow.
Language Reference 391



Appendix Database Integration ExamplesA
Database Type

An Oracle database is being used in this example.

Begin

For most databases this field should be left blank for grouped retrieve 
operations.  Some databases require a statement here.  Look up your 
database type for details.

Query

This field specifies from which table records are to be retrieved.  This field 
can also contain a where clause to limit the records to be retrieved.

End

For most relational databases, this field should be left blank.  Some 
databases may require a statement here.  Look up your database type for the 
exact syntax for your database.

Name

This field specifies that for each record retrieved, the Rules Element is to 
search for objects whose name matches the value of the field 
DB_CAR_NAME.

In

This field specifies the list of objects and/or classes of objects to be searched 
to determine if an object exists whose name matches the value specified by 
the Name field.  In this example, data will only be passed to existing objects 
in the class <|cars_class|>.

Cursor

This field must be empty for grouped retrieves.

Link To

Since no objects are to be created by this retrieve, this field is left empty.

Database Fields / Rules Properties 

These columns specify that data from the columns DB_MODEL, 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE are to be passed to the 
property slots Model, Model_date, Price and Sportive .

Create New Record

Since this is not selected, data will only be retrieved into objects which 
already exist in the knowledge base.  Any other records will be ignored.

Current Forward

This is selected to indicate that the retrieval of any data into property slots 
will place hypotheses on the agenda according to the current RHS 
forward-chaining strategy.

Related Topics

Grouped Retrieve Cursor Slot Specification
Access String Slot Specification for Retrieves
392 Language Reference



Example 7 - Grouped Retrieve with Content Filtering
Object Name Specification Query Retrieve Operations
Database Editor Windows Existence Filtering Operations

Also, look up individual arguments and your database type for more 
detailed information.

Example 7 - Grouped Retrieve with Content Filtering
Description

This is an example of a grouped retrieve in which the records retrieved are 
limited by a database query.  Although this example is oriented towards 
relational databases, it is also applicable to flat-file databases.

This example uses the following objects and records:

■ Initially, the class |cars_class| contains no objects.  Objects in 
|cars_class| will have the properties Model, Model_date, Price and 
Sportive.

■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL, 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

■ The table CARS contains ten records, each of which can be uniquely 
identified by the values car_1 , car_2 , car_3,... in the field 
DB_CAR_NAME.  Five records have a Sportive field with a value of 
Yes:  car_1, car_4, car_5, car_7 and car_8.

Operation

Figure A-13 shows the rule which will invoke the grouped retrieve.

Figure A–13   Rule Invoking a Grouped Retrieve
Language Reference 393



Appendix Database Integration ExamplesA
The rule shown above is evaluated as follows:

■ The LHS of the rule is always true. 

■ The first statement of the RHS (Assign db_access_string...) will 
prompt the user for the database access string.  Look up your database 
type for information on how to specify this for other DBMSs.

■ The LoadKB, Assign DropTable, and UnloadKB statements will drop, 
recreate and reload the CARS table in the database.  This will ensure that 
the CARS table is reset to its initial state each time the example is run.

■ A Retrieve operation will be invoked.  The argument 
@V(db_access_string) will be evaluated to yield the user-specified 
database access string.

Figure A–14   Retrieve Screen for a Grouped Retrieve Using Link To

Figure A-14 shows the Rules Element retrieve screen:

■ Since the SQL query CARS where DB_SPORTIVE = 'Yes' has been 
specified, the DBMS will return only those records which satisfy this 
condition.

■ As each record in the table CARS is retrieved, the Rules Element will 
search the knowledge base for an object whose name matches the 
current value of the field DB_CAR_NAME.  Since no object will be 
found, a dynamic object with this name will be created and linked to the 
class |car_class|.

■ As each object is created values from the database fields DB_MODEL, 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE will be passed to 
the property slots Model, Model_date, Price and Sportive.

Reference

Field descriptions for this Retrieve operation follow.
394 Language Reference



Example 7 - Grouped Retrieve with Content Filtering
Database Type

An Oracle database is being used in this example.

Begin

For most databases this field should be left blank for grouped retrieve 
operations.  Some databases require a statement here.  Look up your 
database type for details.

Query

This field specifies from which table records are to be retrieved and the 
criteria to be used to select the desired records.  In this example, only records 
which have a Yes value in the field DB_SPORTIVE will be retrieved.

End

For most relational databases, this field should be left blank.  Some 
databases may require a statement here.  Look up your database type for the 
exact syntax for your database.

Name

This field specifies that for each record retrieved from the database the value 
of the field DB_CAR_NAME is to be used to build the object name in which 
the database values will be stored.

In

This field specifies the list of objects and/or classes to be searched to 
determine if an object exists whose name matches the value specified by the 
Name field.  If this field is left blank, as in this example, then all of the objects 
in the knowledge base will be searched.

Cursor

This field must be empty for grouped retrieves.

Link To

This field specifies the class to which new objects created by the retrieve are 
to be linked.  In this example, new objects will be linked to the class 
|cars_class|.

Database Fields / Rules Properties 

These columns specify that data from the columns DB_MODEL, 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE are to be passed to the 
property slots Model, Model_date, Price and Sportive .

Create New Record

This is selected to indicate that if an object with a name specified by the 
Name field doesn't already exist, it is to be created.  If this is not selected, 
data will only be retrieved into objects which already exist in the knowledge 
base.

Current Forward

This is selected to indicate that the retrieval of any data into property slots 
will place hypotheses on the agenda according to the current RHS 
forward-chaining strategy.
Language Reference 395



Appendix Database Integration ExamplesA
Related Topics

Grouped Retrieve Query Retrieve Operations
Database Editor Windows Slot Specification for Retrieves
Object Name Specification

Also, look up individual arguments and your database type for more 
detailed information.

Example 8 - Atomic Retrieve
Description

In this example the property slots of a single object are passed values from 
a single database record.  Although this example is oriented towards 
relational databases, it is also applicable to flat-file databases.

This example uses the following objects and records:
■ The class |cars_class| contains one object: MyCar.  It has the 

properties Model, Model_date, Price and Sportive.
■ The object dummy_object has a single property, dummy_cursor.
■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL, 

DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.
■ The table CARS contains ten records, each of which can be uniquely 

identified by the values car_1 , car_2 , car_3,... in the field 
DB_CAR_NAME.

Operation

Figure A-15 shows the rule which will invoke the atomic retrieve

Figure A–15   Rule Invoking an Atomic Retrieve
396 Language Reference



Example 8 - Atomic Retrieve
The rule shown above is evaluated as follows:

■ The LHS of the rule is always true. 

■ The first statement of the RHS (Assign db_access_string...) will 
prompt the user for the database access string.  Look up your database 
type for information on how to specify this for other DBMSs.

■ The LoadKB, Assign DropTable, and UnloadKB statements will 
drop, recreate and reload the CARS table in the database.  This will 
ensure that the CARS table is reset to its initial state each time the 
example is run.

■ Reset dummy_object.dummy_cursor will set the value of 
dummy_object.dummy_cursor to UNKNOWN.  This will signal the 
Rules Element that an atomic retrieve will be performed.

■ A Retrieve operation will be invoked.  The argument 
@V(db_access_string) will be evaluated to yield the user-specified 
database access string

Figure A–16   Retrieve Screen for an Atomic Retrieve

Figure A-16 shows the Rules Element retrieve screen:

■ Since the SQL query CARS where DB_CAR_NAME = 'car_1' has been 
specified, the DBMS will return the record which satisfies this 
condition.

■ The values from the database fields DB_MODEL, DB_MODEL_DATE, 
DB_PRICE and DB_SPORTIVE will be passed to the property slots 
Model, Model_date, Price and Sportive of the object MyCar.

Reference

Field descriptions for this Retrieve operation follow.
Language Reference 397



Appendix Database Integration ExamplesA
Database Type

An Oracle database is being used in this example.

Begin

For most databases this field should be left blank for atomic retrieve 
operations.  Some databases require a statement here.  Look up your 
database type for details.

Query

This field specifies from which table records are to be retrieved and the 
criteria to be used to select the desired records.  In this example, only the 
record which has the value car_1  in the field DB_CAR_NAME will be 
retrieved.  If, for an atomic retrieve, the query specified returns more than 
one record, only the first one will be used; all of the others will be ignored.

End

For most relational databases, this field should be left blank.  Some 
databases may require a statement here.  Look up your database type for 
details.

Name

This field must be empty for atomic retrieves.  Object names are stated 
explicitly in the Database Fields / Rules Properties list.

In

This field is left empty.

Cursor

This field specifies the name of an integer property slot (in this example 
dummy_object.dummy_cursor) which, in order to specify an atomic 
retrieve, MUST contain the value UNKNOWN.  Upon successful completion 
of the retrieve, the cursor will be set to 1.  It must be reset to UNKNOWN, 
before another atomic retrieve can be performed.

Link To

This field is left empty.

Database Fields / Rules Properties 

These columns specify that data from the columns DB_MODEL, 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE are to be passed to the 
property slots Model, Model_date, Price and Sportive of the object 
MyCar.

Current Forward

This is selected to indicate that the retrieval of any data into property slots 
will place hypotheses on the agenda according to the current RHS 
forward-chaining strategy.

Related Topics

Atomic Retrieve Cursor Slot Specification
Database Editor Windows Slot Specification for Retrieves
398 Language Reference



Example 9 - Sequential Retrieve
Object Name Specification Query Retrieve Operations
Retrieving from Databases

Also, look up individual arguments and your database type for more 
detailed information.

Example 9 - Sequential Retrieve
Description

In this example data from multiple database records is passed to the 
property slots of a single object one record at a time.  The retrieve is invoked 
once for each record in the table.  Although this example is oriented towards 
relational databases, it is also applicable to flat-file databases.

This example uses the following objects and records:

■ The class |cars_class| contains one object: MyCar.  It has the 
properties Model, Model_date, Price and Sportive.

■ The object dummy_object has a single property, dummy_cursor.

■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL, 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

■ The table CARS contains ten records, each of which can be uniquely 
identified by the values car_1 , car_2 , car_3,... in the field 
DB_CAR_NAME.Operation

Figure A-17 shows the rule which will invoke the sequential retrieve.

Figure A–17   Rule Initializing a Sequential Retrieve
Language Reference 399



Appendix Database Integration ExamplesA
The rule shown above is evaluated as follows:

■ The LHS of the rule is always true. 

■ The first statement of the RHS (Assign db_access_string...) will 
prompt the user for the database access string.  Look up your database 
type in Chapter Three, “Database Integration Topics” for details.

■ The LoadKB, Assign DropTable, and UnloadKB statements will drop, 
recreate and reload the CARS table in the database.  This will ensure that 
the CARS table is reset to its initial state each time the example is run.

■ Assign dummy_object.dummy_cursor 0  will set the value of 
dummy_object.dummy_cursor to zero.  This will signal the Rules 
Element that a sequential retrieve will be performed.

■ The "Assign ReadTable ReadTable" will invoke the rule which will 
perform the sequential retrieve.

Figure A–18   Rule Invoking a Sequential Retrieve

FigureA-18 shows the rule which will invoke the sequential retrieve.  It is 
evaluated as follows:

■ The LHS tests to see if the value of dummy_object.dummy_cursor is 
greater than or equal to 0.  This will be true until the Retrieve fetches 
the last record, at which point it will be set to -1.  At that point, the test 
will fail and execution will end.

■ The second statement of the LHS will invoke the retrieve.

■ Reset ReadTable will cause this rule to be re-executed.  This, in turn, 
will re-test the cursor's value, and re-execute the Retrieve until all 
records have been retrieved.
400 Language Reference



Example 9 - Sequential Retrieve
Note that each time the Retrieve is invoked, it overlays the property slots 
with the data from the current record.  In a real knowledge base, there 
would undoubtedly be some intermediate processing of the slots before the 
hypothesis ReadTable is reset and the next retrieve is issued.

Figure A–19   Retrieve Screen for a Sequential Retrieve

Figure A-19 hows the Rules Element retrieve screen:

■ The DBMS will retrieve all of the records in the table CARS one record 
at a time.

■ Each time the retrieve is invoked, the values from the database fields 
DB_MODEL, DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE of 
the current record will be passed to the property slots Model, 
Model_date, Price and Sportive of the object MyCar.

Reference

Field descriptions for this Retrieve operation follow.

Database Type

An Oracle database is being used in this example.

Begin

For most databases this field should be left blank for sequential retrieve 
operations.  Some databases require a statement here.  Look up your 
database type in Chapter Three, “Database Integration Topics” for details.

Query

This field specifies from which table records are to be retrieved and the 
criteria to be used to select the desired records.  In this example, all of the 
records in the table CARS will be retrieved.
Language Reference 401



Appendix Database Integration ExamplesA
End

For most other relational databases, this field should be left blank.  Some 
databases may require a statement here.  Look up your database type in 
Chapter Three, “Database Integration Topics” for details.

Name

This field must be empty for sequential retrieves.  Object names are stated 
explicitly in the Database Fields / Rules Properties list.

In

This field is left empty.

Cursor

This field specifies the name of an integer property slot (in this example 
dummy_object.dummy_cursor) which, in order to specify a sequential 
retrieve, MUST contain the value 0 before the retrieve is invoked for the 
first time.  Each time a record is successfully retrieved, the cursor will be set 
to 1.  When all records have been retrieved, or, if an error has occurred, the 
cursor will be set to -1.

Link To

This field is left empty.

Database Fields / Rules Properties 

These columns specify that data from the columns DB_MODEL, 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE are to be passed to the 
property slots Model, Model_date, Price and Sportive of the object 
MyCar.

Current Forward

This is selected to indicate that the retrieval of any data into property slots 
will place hypotheses on the agenda according to the current RHS 
forward-chaining strategy.

Related Topics

Sequential Retrieve Cursor Slot Specification
Access String Slot Specification for Retrieves
Object Name Specification Query Retrieve Operations
Database Editor Windows

Also, look up individual arguments and your database type for more 
detailed information.

Example 10 - Sequential Retrieve with a Parameterized Query
Description

In this example data from multiple database records is passed to the 
property slots of a single object one record at a time.  The retrieve is invoked 
once for each record in the table.  Unlike the previous example, this retrieve 
employs a query which contains slot values as parameters.  Although this 
402 Language Reference



Example 10 - Sequential Retrieve with a Parameterized Query
example is oriented towards relational databases, it is also applicable to 
flat-file databases.

This example uses the following objects and records:

■ The class |cars_class| contains one object: MyCar.  It has the 
properties Model, Model_date, Price and Sportive.

■ The object dummy_object has a single property, dummy_cursor.

■ The object ref_object has two properties, ref_price  and 
ref_sportive.  The values 30000  and Yes have been assigned to the 
property slots using the InitValue operator in the Order of Sources 
field.

■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL, 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

■ The table CARS contains ten records, each of which can be uniquely 
identified by the values car_1 , car_2 , car_3,... in the field 
DB_CAR_NAME.

Operation

Figure A- 20 shows the rule which will invoke the sequential retrieve.

Figure A–20   Rule Initializing a Parameterized Sequential Retrieve

The rule shown above is evaluated as follows:

■ The LHS of the rule is always true. 

■ The first statement of the RHS (Assign db_access_string...) will 
prompt the user for the database access string.  Look up your database 
type in Chapter Three, “Database Integration Topics” for details.
Language Reference 403



Appendix Database Integration ExamplesA
■ The LoadKB, Assign DropTable, and UnloadKB statements will drop, 
recreate and reload the CARS table in the database.  This will ensure that 
the CARS table is reset to its initial state each time the example is run.

■ Assign dummy_object.dummy_cursor 0  will set the value of 
dummy_object.dummy_cursor to zero.  This will signal the Rules 
Element that a sequential retrieve will be performed.

■ The "Assign ReadTable ReadTable" will invoke the rule which will 
perform the sequential retrieve.

Figure A–21   Rule Invoking a Parameterized Sequential Retrieve

Figure A-21 shows the rule which will invoke the parameterized sequential 
retrieve.  It is evaluated as follows:

■ The LHS tests to see if the value of dummy_object.dummy_cursor is 
greater than or equal to 0.  This will be true until the Retrieve fetches 
the last record, at which point it will be set to -1.  At that point, the test 
will fail and execution will end.

■ The second statement of the LHS will invoke the retrieve.

■ Reset ReadTable will cause this rule to be re-executed.  This, in turn, 
will re-test the cursor's value, and re-execute the Retrieve until all 
records have been retrieved.
404 Language Reference



Example 10 - Sequential Retrieve with a Parameterized Query
Note that each time the Retrieve is invoked, it overlays the property slots 
with the data from the current record.  In a real knowledge base, there 
would undoubtedly be some intermediate processing of the slots before the 
hypothesis ReadTable is reset and the next Retrieve is issued

Figure A–22   Retrieve Screen for a Sequential Retrieve Using Query

Figure A-22 shows the Rules Element retrieve screen:

■ The variables @V(ref_object.ref_price) and 
@V(ref_object.ref_sportive) in the query will be replaced by the 
value of the slots 30000 and Yes respectively.  The four records in the 
table CARS which satisfy this query will be passed to the object MyCar 
one record at a time.

■ Each time the retrieve is invoked, the values from the database fields 
DB_MODEL, DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE of 
the current record will be passed to the property slots Model, 
Model_date, Price and Sportive of the object MyCar.

Reference

Field descriptions for this Retrieve operation follow.

Database Type

An Oracle database is being used in this example.

Begin

For most databases this field should be left blank for sequential retrieve 
operations.  Some databases require a statement here.  Look up your 
database type in Chapter Three, “Database Integration Topics” for details.
Language Reference 405



Appendix Database Integration ExamplesA
Query

This field specifies from which table records are to be retrieved and the 
criteria to be used to select the desired records.  Slot values can be used as 
query parameters; they can be specified in the query as @v(object.property).  
Note that the interpretation must be placed in single quotes if it has a value 
of type string.  See the Query field of Figure A-22 for examples.

End

For most other relational databases, this field should be left blank.  Some 
databases may require a statement here.  Look up your database type in 
Chapter Three, “Database Integration Topics” for details.

Name

This field must be empty for sequential retrieves.  Object names are stated 
explicitly in the Database Fields / Rules Properties list.

In

This field is left empty.

Cursor

This field specifies the name of an integer property slot (in this example 
dummy_object.dummy_cursor) which, in order to specify a sequential 
retrieve, MUST contain the value 0 before the retrieve is invoked for the 
first time.  Each time a record is successfully retrieved, the cursor will be set 
to 1.  When all records have been retrieved, or, if an error has occurred, the 
cursor will be set to -1.

Link To

This field is left empty.

Database Fields / Rules Properties 

These columns specify that data from the columns DB_MODEL, 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE are to be passed to the 
property slots Model, Model_date, Price and Sportive of the object 
MyCar.

Current Forward

This is selected to indicate that the retrieval of any data into property slots 
will place hypotheses on the agenda according to the current RHS 
forward-chaining strategy.

Related Topics

Sequential Retrieve Cursor Slot Specification
Access String Slot Specification for Retrieves
Object Name Specification Query Retrieve Operations
Database Editor Windows Retrieving from Databases

Also, look up individual arguments and your database type for more 
detailed information.
406 Language Reference



Example 11 - Grouped Retrieve with a SQL Join
Example 11 - Grouped Retrieve with a SQL Join
Description

This is an example of a grouped retrieve in which records are retrieved from 
more than one database table use an SQL join query.  Since a join is a concept 
which only applies to relational databases, this example is not applicable to 
flat-file databases.

This example uses the following objects and records:

■ Initially, the class |cars_class| contains no objects.  Objects in 
|cars_class| will have the properties Model, Model_date, Price, 
Sportive and Dealer_name.

■ The table CARS contains the columns DB_CAR_NAME, DB_MODEL, 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

■ The table CARS contains ten records, each of which can be uniquely 
identified by the values car_1 , car_2 , car_3,... in the field 
DB_CAR_NAME.

■ The table DEALERS contains the columns DB_DEALER_NAME and 
DB_DEALER_MODEL.

■ The table DEALERS contains eight records which relate dealer names 
and models.

Operation

Figure A-23 shows the rule which will invoke the grouped retrieve

Figure A–23   Rule Invoking a Grouped Retrieve
Language Reference 407



Appendix Database Integration ExamplesA
The rule shown above is evaluated as follows:

■ The LHS of the rule is always true. 

■ The first statement of the RHS (Assign db_access_string...) will 
prompt the user for the database access string.  Look up your database 
type in Chapter Three, “Database Integration Topics” for details.

■ The LoadKB, Assign DropDEALERSTable, and UnloadKB statements 
will drop, recreate and reload the DEALERS table in the database.  This 
will ensure that the DEALERS table is reset to its initial state each time 
the example is run.

■ The LoadKB, Assign DropTable, and UnloadKB statements will drop, 
recreate and reload the CARS table in the database.  This will ensure that 
the CARS table is reset to its initial state each time the example is run.

■ A Retrieve operation will be invoked.  The argument 
@V(db_access_string) will be evaluated to yield the user-specified 
database access string

Figure A–24   Retrieve Screen for a Grouped Retrieve Using SQL Join

Figure A-24 shows the Rules Element Retrieve screen:

■ The query CARS, DEALERS where CARS.DB_MODEL = 
DEALERS.DB_MODEL specifies that records from the tables CARS and 
DEALERS which have common DB_MODEL values are to be combined 
into one result table.

■ As each record in the table CARS is retrieved, the database interface will 
combine the string my with the value of the field DB_CAR_NAME with 
the string _A_ and the value of the field DB_MODEL to create an object 
name.  The database interface will then search the knowledge base for 
an object with this name.  Since no object will be found, a dynamic 
object with this name will be created and linked to the class 
|car_class|.
408 Language Reference



Example 11 - Grouped Retrieve with a SQL Join
■ As each object is created values from the database fields 
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE in the table CARS 
will be passed to the property slots Model_date, Price and Sportive.  
Values from the database field DB_DEALER_NAME in the table 
DEALERS will be passed to the property slot Dealer_name.

Reference

Field descriptions for this Retrieve operation follow.

Database Type

An Oracle database is being used in this example.

Begin

For most databases this field should be left blank for grouped retrieve 
operations.  Some databases require a statement here.  Look up your 
database type in Chapter Three, “Database Integration Topics” for details.

Query

This field specifies from which table(s) records are to be retrieved.  This field 
can also contain a where clause to limit the records to be retrieved or to 
specify the criteria used to join two or more tables into one result table.

End

For most relational databases, this field should be left blank.  Some 
databases may require a statement here.  Look up your database type in 
Chapter Three, “Database Integration Topics” for details.

Name

This field specifies that for each record retrieved from the database the 
string my, the value of the field DB_CAR_NAME, the string _A_ and the 
value of the field DB_MODEL will be combined to form the object name in 
which the database values will be stored.

In

This field specifies the objects and/or classes of objects to be searched to 
determine if an object exists whose name matches the value of the database 
field(s) specified in the Name field.  If this field is left blank, as in this 
example, then all of the objects in the knowledge base will be searched.

Cursor

This field must be empty for grouped retrieves.

Link To

This field specifies the class to which new objects created by the retrieve are 
to be linked.  In this example, new objects will be linked to the class 
|cars_class|.

Database Fields / Rules Properties 

These columns specify that data from the columns 
CARS.DB_MODEL_DATE, CARS.DB_PRICE, CARS.DB_SPORTIVE and 
DEALERS.DB_DEALER_NAME are to be passed to the property slots 
Model_date, Price, Sportive and Dealer_name.  Note that in order to 
Language Reference 409



Appendix Database Integration ExamplesA
avoid ambiguity the database field names must be prefixed by the 
appropriate table name.

Create New Record

This is selected to indicate that if an object with a name specified by the 
Name field doesn't already exist, it is to be created.  If this is not selected, 
data will only be retrieved into objects which already exist in the knowledge 
base, and any other records ignored.

Current Forward

This is selected to indicate that the retrieval of any data into property slots 
will place hypotheses on the agenda according to the RHS forward-chaining 
strategy currently in effect.

Related Topics

Grouped Retrieve Database Editor Windows
Access String Slot Specification for Retrieves
Object Name Specification Query Retrieve Operations

Also, look up individual arguments and your database type for more 
detailed information.;
410 Language Reference



Index 2

Symbols
@ATOMS 296
@BEGIN 263
@CREATE 313
@CURSOR 268
@END 282
@F 288
@FIELDS 287
@FILL

ADD 265, 266
INSERT 310
NEW 315

@FWRD 290
@NAME 314
@PROP

access string 255
Begin field 263
End field 282
Query field 328

@PROPS 328
@QUERY 328
@SELF

access string 255
Begin field 263
End field 282
Query field 281

@SLOTS 360
@TYPE 275
@UNKNOWN 347, 372
@V

access string 255
Begin field 263
End field 282
Link To field 313
Query field 281

A
ABS function 1
access string

environment variables 255
interpretations 255
pathnames 255
specification 254
usage 253

accessing databases 253, 254–256
ACOS function 2
actions 2
AddFile command 211
agenda 5
Align Column command 210

Always Forward field 290
AND 16
API 270
application programming interface vii
application programming interface see API
arguments

keywords 274
overview 256–259

arithmetic operators 331
ASIN function 6
AskQuestion Operator 7
Assign operator 8
ATAN function 10
AtomExist Routine 197
atomic operations

atomic retrieves
example 396–399
specification 259–261

atomic writes
example 381–383
specification 261–263

cursor slot 266
explicit slots 319

AtomNameValue Routine 198
AVERAGE function 11

B
backward chaining 12
Backward operator 13
Begin field 263–265

retrieving files 288
beginning database operations 264
BOOL2STR function 14
boolean constants 15
boolean expressions 16
boolean formats 17
Boolean operators 332–333

C
CEIL function 19
Center command 210
CHARFIND function 19
CharWrap command 210
classes 20
column 276
comment attribute 22
commit 280, 283
COMPARE function 23
comparison operators 24
ComputeMultiValue Routine 200
conditions 26
content filtering 393
context links 28
context variable 287
Language Reference 411



Index
ControlSession Routine 202
CopyFrame Routine 204
COS function 29
COSH function 30
Create New Record field 265, 338
Create Object field 266, 281, 286
CreateObject operator 30
CreateObjects Routine 205
CreateReport Routine 207
Current Forward field 290
Cursor field 268
cursor slot

atomic retrieves 259
atomic writes 261
error setting 267
sequential retrieves 353
sequential writes 341, 355
specification 266–268

D
DAL  see data manipulation language
data manipulation language 264, 283
data types 32
data validation 33
database editor windows

arguments overview 256
description 273

database interface 268–272
databases

access 253, 254
accessing created files 315
basics 276, 348, 373
beginning operations 264
ending database operations 283
ending operations 283
format of data 289
grouped retrieve 291
grouped writes 292
multiple user 295
multiple-user 295
range names 263, 282
return errors 350
sequential retrieves 352
sequential writes 354
supported 275
unsupported 270
 see also flat-file databases, relational data-

bases
datatype

conversion 362
specifying 289

date 38, 289
Informix 303
Ingres 308
Oracle 302, 325, 326

Date command 211
date formats 35
DATE2FLOAT function 39

DATE2STR function 40
DAY function 41
dBase III 277
DBF3 277
debugging operations 278–281, 350
DeleteObject operator 42
Do Not Forward field 290
dynamic data exchange (DDE) 43
dynamic objects 47
dynamic values see @V, @SELF, @PROP

E
End field 280, 282–284
end of file 267
environment variables 255
error messages

cursor slot setting 267
general 279
possible 350
trapping 279

error slot 279, 361
examples

atomic retrieve 396
atomic writes 381
database interface usage 271
existence filtering 390
grouped retrieves 383, 387, 393, 407
grouped writes 375, 378
sequential retrieves 399, 402

Excel see SYLK
execute library routines 50
Execute operator 48
execute routines 50
existence filtering

defined 284–287
example 390

EXP function 53
expressions 54, 287

F
FALSE 15
field width 318
fields

defined 276
mapping from properties 373
mapping to properties 348
selection 314, 319
specification 287
width 287

Fields list 287
file creation 315
file retrieves 288
FileExist Routine 213
filtering records 296, 338
filtering retrieves 284, 335
FindListElem Routine 214
412 Language Reference



Index
flat-file databases
access string 254
atomic retrieves 259
atomic writes 261
basics 361
last record retrieved 267
opening 276
query language 329–335
return errors 350
Rules Element formats 316
sequential retrieves 352
sequential writes 354
supported 275
SYLK format 369
terminology 276

FLOAT2DATE function 56
FLOAT2INT function 56
FLOAT2TIME function 58
floating point constants 59
floating point formats 60
FLOOR function 63
FOAT2STR function 57
Footer commands 209
format attribute 64
format errors 280
formats 64, 289–290
forward chaining 66, 140
forwarding strategy 290
functions 334

G
gates 140
GetListElem Routine 216
GetMultiValue Routine 218
GetRelatives Routine 220
grouped operations

cursor slot specification 266
naming objects 314, 320
naming records 314
record naming 344

grouped retrieves
creating new objects 266
errors 281
example 383–386, 387–390, 390–392,

393–396, 407–410
existence filtering 284
linking objects 313
specification 291–292

grouped writes
creating a file 315
creating new records 265
example 375–377, 378–381
inserting a record 310
object filtering 296
query operations 338
record selection 341
specification 292

H
Header commands 209
HOUR function 68
hypotheses 69

I
identifiers 70
If Change method 71, 294, 295
In List field 285, 286, 296–297
Include command 211
inference 73
inference priority 74
inference slot 75
inference strategy 76
Informix interface 298–304
Ingres operations 304–310
inheritability strategy 79
inheritance 81
inheritance priority 82
inheritance slot 83
inheritance strategy 84
InhMethod operator 86
InhValueDown operator 87
InhValueUp operator 88
Init Value attribute 89
Insert 310
Insert Only check box 310
INT2STR function 90
integer constants 91
integer conversion 362
integer formats 91
interfacing to databases 270
interpretations 94

access string 255
Begin field 263
End field 282
In List field 296
Query field 281
query language 334
usage 311

Interrupt operator 95

J
join example 407
join operation 336
Journal Routine 222

K
key see record key
keywords 273
knowledge representation features vii
KNOWN 15
Language Reference 413



Index
L
LeftAlign command 210
LENGTH function 96
LHS conditions 312, 313
Link To field 313
LinkMultiValue Routine 223
LN function 97
LoadKB operator 98
LOG function 100
logical operators 212

M
Margin commands 209
MAX function 101
Member operator 102
Message Routine 225
meta-slots 103
Method Editor window

argument keywords 274
If Change method 294, 295
Order of Sources 326, 327

methods 104
MIN function 107
MINUTE function 109
MOD function 109
MONTH function 110
multiple retrieves 327, 352
multiple user databases 295
multiple writes 354
multi-values 111

N
Name field 314

retrieve operations 280, 320
write operations 341

New File field 315
NewFile command 211
No operator 112
NoFormFeed command 211
NoInherit operator 113
NOT 16
NOTKNOWN 15
NotMember operator 113
NOW function 114
null string 254
NXP file format 316

O
object 115

as part of slot 319
creation 266
filtering 296

object  (continued)
linking 313
naming 314, 319
updating 284

operators 331–333
OR 16
Oracle operations 255, 321–326
Order of Sources method 117, 326, 327

P
PageBreak commands 210
PageLength command 209
PageWidth command 209
Parse Routine 227
password see access string
pattern matching 296, 313
pattern matching filtering 286
PatternMatcher Routine 230
patterns 120
portability 269, 275, 339
POW function 123
priorities 33, 74, 82
private slots 150
PROD function 124
prompt line attribute 125
PropagateValue Routine 233
properties list 328
property 126
ProtoDB file format 317
public slots 150

Q
query

cannot be processed 267
errors 279
filtering example 393, 402
for flat-file databases 329–335
for relational databases 335–336
join operations 336

Query Arguments field 282
Query field

@V 311
arguments 281
atomic retrieves 260
atomic writes 261
flat-file databases 329
grouped writes 338
relational databases 335
sequential retrieves 353
statements 328
where clause 336, 339

Query Language
operators 331, 333

query language
example 329
functions 334
414 Language Reference



Index
query language  (continued)
interpretations 334
operators 330–333
values 330
wildcards 334

question window attribute 127
quotes

around interpretations 311
in fields 279

R
RAND function 128
RANDOM function 129
RANDOMMAX function 130
RANDOMSEED function 130
range name 263, 282
RankList Routine 235
RDB seerelational databases
record keys 341–342
record naming 314, 344
records

defined 276
filtering 284, 345
inserting only 310
mapping from objects 373
mapping to objects 348
position 266
retrieving multiple 291
writing 292, 340

relational databases
access string 255
atomic retrieves 259
atomic writes 261
beginning operations 264
context variable 287
cursor specification 267
datatype specification 362
ending operations 283
expressions in field names 287
field width 287
join operations 277
query operations 335, 336
return errors 350
sequential retrieves 352
stream number 267
supported 275
terminology 276

relational operators 332
reports

logical operators 212
reserved words 131
Reset operator 132
ResetFrame Routine 236
Retrieve operator 133, 346
retrieve operator

access string 253
arguments 256
null string 254

Retrieve window 273
retrieving

dates 289
field specification 287
files 288
forwarding data 290
general 348
in If Change method 294
in LHS conditions 312
in Order of Sources method 327
in RHS actions 351
join operations 336
methods 271
multiple records 291
multiple retrieves 327, 352
sequential records 352
single record 259
slot specification 356–358
to constructed slots 319
to existing objects 284
to explicit slots 319
unknown values 347
with queries 335, 337

return errors 350
RHS actions 351
RightAlign command 210
rollback 280, 283
ROUND function 135
row 276
Rule Editor window

access string example 254
argument keywords 274
LHS conditions 312, 313
RHS actions 351

rules 136
RunTimeValue operator 137

S
SECOND function 138
SELF 139
semantic gates 140
SendMessage operator 141
sequential operations

cursor slot 267, 341
explicit slots 319
retrieve example 399–402, 402–406
retrieves 352
writes 340, 354

Set Column command 210
SetMultiValue Routine 238
SetValue Routine 240
Show operator 145
SIGN function 148
sign-on see access string
SIN function 148
SINH function 149
slot list 360
Language Reference 415



Index
slots 150
constructed names 319, 358, 360
constructed names example 378
explicit name 319
explicit names 356, 359
for retrieves 356–358
for writes 358–360
value changes 295

spreadsheets see flat-file databases
SQL commit 283
SQL cursor number 267
SQL statements 264, 283, 288
SQL-like queries 329–335
SQRT function 152
STDEV function 153
STR2BOOL function 164
STR2DATE function 165
STR2FLOAT function 166
STR2INT function 167
STR2TIME function 168
strategy 154
Strategy operator 155
STRCAT function 157
stream number 267
STRFIND function 158
string constants 159
string formats 160
string to integer conversions 362
STRLEN function 162
STRLOWER function 162
strong link 140
STRUPPER function 163
SUBSTRING function 169
SUM function 170
Sybase

beginning database operations 264
ending database operations 283
operations 363–369

SYLK operations 369
SYLKDB operations 370
system attributes 103

T
table 276
Tabs command 210
TAN function 171
TANH function 172
terminology 276
TestMultiValue Routine 241
text file

file commands 211
AddFile command 211
Include command 211
NewFile command 211
NoFormFeed command 211

text file  (continued)
screen layout commands 209

Footer commands 209
Header commands 209
LeftMargin command 209
PageBreak command 210
PageLength command 209
PageWidth command 209
RightMargin command 209

text commands 210
Align Column command 210
Center command 210
CharWrap command 210
Date command 211
LeftAlign command 210
RightAlign command 210
Set Column command 210
Tabs command 210
WordWrap command 210

text formatting
commands (See also text file)

time 174
time formats 173
TIME2FLOAT function 175
TIME2STRING function 176
Transcript window 278
TRUE 15

U
Unify Routine 248
UNIX 255
Unix

Informix interface 298–304
UNKNOWN 15
unknown values

retrieving 347
writing 372

UnloadKB operator 177
updating records 292

V
value changes 295
Value property 179
VAR function 180
VAX issues 370
VMS 255

W
warning message 289
WEEKDAY function 181
where clause 336, 339
why attribute 182
wildcards 334
WKS operations 370
WordWrap command 210
416 Language Reference



Index
Write operator 183, 371
write operator

access string 253
arguments 258
null string 254

Write window 273
WriteTo Routine 251
writing

by key 341
by position 340
creating a file 315
field specification 287
general 373
in If Change method 295
in LHS conditions 313
in Order of Sources method 327
in RHS actions 351
inserting a record 310
logging slot activity 327
multiple records 292
multiple writes 354
object specification 296
record specification 340
sequential records 354
single record 261
slot specification 358–360
unknown values 372
with queries 337–340

Y
YEAR function 184
YEARDAY function 185
Yes operator 186
Language Reference 417



FrameMaker has detected one or more
PostScript errors in this document.
(Jack Godwin)
Please check your output.



PostScript error (--nostringval--, --nostringval--)PostScript error (--nostringval--, --nostringval--)


	Contents
	Preface
	Purpose of this Manual
	Description
	Audience
	How to Use this Manual
	Organization
	Related Manuals

	Application Development Features
	ABS Function
	ACOS Function
	Actions
	Agenda
	ASIN Function
	AskQuestion Operator
	Assign Operator
	ATAN Function
	AVERAGE Function
	Backward Chaining
	Backward Operator
	BOOL2STR Function
	Boolean Constants
	Boolean Expressions
	Boolean Formats
	CEIL Function
	CHARFIND Function
	Classes
	Comment Attribute
	COMPARE Function
	Comparison Operators
	Conditions
	Context Links
	COS Function
	COSH Function
	CreateObject Operator
	Data Types
	Data Validation Attribute
	Date Formats
	DATE Function
	DATE2FLOAT Function
	DATE2STR Function
	DAY Function
	DeleteObject Operator
	Dynamic Data Exchange
	Dynamic Objects
	Execute Operator
	Execute Routines
	EXP Function
	Expressions
	FLOAT2DATE Function
	FLOAT2INT Function
	FLOAT2STR Function
	FLOAT2TIME Function
	Floating Point Constants
	Floating Point Formats
	FLOOR Function
	Format Attribute
	Formats
	Forward Chaining
	HOUR Function
	Hypotheses
	Identifiers
	If Change Method
	Inference
	Inference Priority Attribute
	Inference Slot Attribute
	Inference Strategy
	Inheritability Strategy
	Inheritance
	Inheritance Priority Attribute
	Inheritance Slot Attribute
	Inheritance Strategy
	InhMethod Operator
	InhValueDown Operator
	InhValueUp Operator
	Init Value Attribute
	INT2STR Function
	Integer Constants
	Integer Formats
	Interpretations
	Interrupt Operator
	LENGTH Function
	LN Function
	LoadKB Operator
	LOG Function
	MAX Function
	Member Operator
	Meta-Slots
	Methods
	MIN Function
	MINUTE Function
	MOD Function
	MONTH Function
	Multi-Values
	No Operator
	NoInherit Operator
	NotMember Operator
	NOW Function
	Objects
	Order of Sources Method
	Patterns
	POW Function
	PROD Function
	Prompt Line Attribute
	Properties
	Question Window Attribute
	RAND Function
	RANDOM Function
	RANDOMMAX Function
	RANDOMSEED Function
	Reserved Words
	Reset Operator
	Retrieve Operator
	ROUND Function
	Rules
	RunTimeValue Operator
	SECOND Function
	SELF
	Semantic Gates
	SendMessage Operator
	Show Operator
	SIGN Function
	SIN Function
	SINH Function
	Slots
	SQRT Function
	STDEV Function
	Strategy
	Strategy Operator
	STRCAT Function
	STRFIND Function
	String Constants
	String Formats
	STRLEN Function
	STRLOWER Function
	STRUPPER Function
	STR2BOOL Function
	STR2DATE Function
	STR2FLOAT Function
	STR2INT Function
	STR2TIME Function
	SUBSTRING Function
	SUM Function
	TAN Function
	TANH Function
	Time Formats
	TIME Function
	TIME2FLOAT Function
	TIME2STR Function
	UnloadKB Operator
	Value Property
	VAR Function
	WEEKDAY Function
	Why Attribute
	Write Operator
	YEAR Function
	YEARDAY Function
	Yes Operator

	Execute Library Routines
	Execute Library Overview
	Using The Execute Library
	AtomExist Routine
	AtomNameValue Routine
	ComputeMultiValue Routine
	ControlSession Routine
	CopyFrame Routine
	CreateObjects Routine
	CreateReport Routine
	Formatting Commands
	Conditional Statements
	Include Command

	FileExist Routine
	FindListElem Routine
	GetListElem Routine
	GetMultiValue Routine
	GetRelatives Routine
	Journal Routine
	LinkMultiValue Routine
	Message Routine
	Parse Routine
	PatternMatcher Routine
	PropagateValue Routine
	RankList Routine
	ResetFrame Routine
	SetMultiValue Routine
	SetValue Routine
	TestMultiValue Routine
	Unify Routine
	WriteTo Routine

	Database Integration Topics
	Access String
	Access String Specification
	Arguments Overview
	Atomic Retrieve
	Atomic Write
	Begin - (@BEGIN)
	Beginning Database Operations
	Create New Record - (@FILL)
	Create Object - (@FILL)
	Cursor Slot Specification
	Cursor - (@CURSOR)
	Database Interface Concepts
	Database Editor Windows
	Database Type - (@TYPE)
	DBF3
	Debugging Operations
	Dynamic Values
	End - (@END)
	Ending Database Operations
	Existence Filtering Operations
	Field Name Specification
	Fields List - (@FIELDS)
	File Retrieves - @F(...)
	Formats
	Forwarding Strategy - (@FWRD)
	Grouped Retrieve
	Grouped Write
	If Change Retrieves
	If Change Writes
	In List - (@ATOMS)
	INFORMIX
	INGRES
	Insert Only - (@FILL)
	Interpretations - @V(...)
	Left-Hand Side Retrieves
	Left-Hand Side Writes
	Link To - (@CREATE)
	Name - (@NAME)
	New File - (@FILL)
	NEXPERT Flat-File Formats
	Object Names In Retrieve Operations
	ORACLE
	Order of Sources Retrieves
	Order of Sources Writes
	Properties List - (@PROPS)
	Query (@QUERY)
	Query Language
	Query Field in Retrieve Operations
	Query Field in Write Operations
	Record Specification for Writes
	Records Filtering
	Retrieve Operator
	Retrieve Unknown - (@UNKNOWN)
	Retrieving from Databases
	Return Errors
	Right-Hand Side Retrieves
	Right-Hand Side Writes
	Sequential Retrieve
	Sequential Write
	Slot Specification for Retrieves
	Slot Specification for Writes
	Slots List - (@SLOTS)
	Spreadsheets
	SqlError - (@ERROR)
	String to Numeric Conversion {x}
	SYBASE
	SYLK
	WKS
	Write Operator
	Write Unknown - (@UNKNOWN)
	Writing to Databases

	Database Integration Examples
	Example 1 - Grouped Write
	Example 2 - Grouped Write with a Complex Name
	Example 3 - Atomic Write
	Example 4 - Grouped Retrieve
	Example 5 - Grouped Retrieve with a Complex Name
	Example 6 - Grouped Retrieve with Existence Filter...
	Example 7 - Grouped Retrieve with Content Filterin...
	Example 8 - Atomic Retrieve
	Example 9 - Sequential Retrieve
	Example 10 - Sequential Retrieve with a Parameteri...
	Example 11 - Grouped Retrieve with a SQL Join

	Index

