Neuron Data Elements Environment
Intelligent Rules Element

Version 4.1

Language Reference

© Copyright 1986-1997, Neuron Data, Inc. All Rights Reserved.

This software and documentation is subject to and made available only
pursuant to the terms of the Neuron Data License Agreement and may be
used or copied only in accordance with the terms of that agreement. It is
against the law to copy the software except as specifically allowed in the
agreement. This document may not, in whole or in part, be copied
photocopied, reproduced, translated, or reduced to any electronic medium
or machine-readable form without prior consent, in writing, from Neuron
Data, Inc.

Use, duplication, or disclosure by the U.S. Government is subject to
restrictions set forth in the Neuron Data License Agreement and in
subparagraph (c)(1) of the Commercial Computer Software-Restricted
Rights Clause at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013;
subparagraph (d) of the Commercial Computer Software—L.icensing clause
at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does
not represent acommitment on the part of Neuron Data. THE SOFTWARE
AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION,
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. FURTHER, NEURON DATA DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS
REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE
SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Open Interface Element™, Data Access Element™, Intelligent Rules
Element™, and Web Element™ are trademarks of, and are developed and
licensed by Neuron Data, Inc., Mountain View, California. NEXPERT
OBJECT® and NEXPERT® are registered trademarks of, and are developed
and licensed by, Neuron Data, Inc., Mountain View, California.

Other brand or product names are the trademarks or registered trademarks
of their respective holders.

contents

Preface
Purpose of this ManUAloooiii e vii
DESCIIPTION ...t b bbb bt e bt e e et h et b et vii
J AU Lo 11T o T TSP PR UPROPRRRPRROTI vii
HOW t0 USE thisS ManUalcoiiiiiiiiice ettt viii
(@ 0T U a1 11 To] o PSS X
REIAtEA IMANUAIS........oo ittt be e s be e sbe e srbe e sbeesareeabeas X

1. Application Development Features

ABS FUNCLION 1.ttt ettt bt b e et be b e s be e sbesbeesbeebsesbe e st e sbeenbesbeenbesreennes 1
PN 1@ 1) U] aTex £ o] o TR USRS 2
AACTIONS ...ttt ettt st et e b e e b e e bt e b e e ab e b e eab e be et ehe e beebe e b e eRa e be e Rt e ebeenbeebeenteareenrs 2
N 1= o (o - SRS 5
ASTN FUNCTION ...ttt ettt ettt et b e et be et e s be et e s baesbesbeesbeeabesbeenbesbeenbesreennes 6
ASKQUESTION OPEIALONecveieieiiiisiestese e sttt e et e te e sresteste st e besee e e e eneeneeneens 7
YN0 I @0 =] - 1 (] SRR 8
ATAN FUNCHION ..ottt ettt b e s ae e b e s ae e be st e sbe st e s beeaesbeesbe e 10
AVERAGE FUNCLION ...ttt sttt et be b sae e b sre e sbe e sbe e beeaesbe e b e 11
BaCKkwWard ChaiNing ..ottt st sn e neens 12
2T ATV Lo @0 1= - | (o] S 13
BOOL2STR FUNCLION ...eoviiticciecteeie ettt ettt sbe ettt st be st e b e snv et s snbesbeentesbeennesbeesrens 14
BOOIEAN CONSTANTS......cviiiiiiticieite ettt ettt be s ta e b e e tbeebe et e sbeenbesbeebesbeesrens 15
BOOIEAN EXPIESSIONSviviieieiiuietieieeeetes e ste e stesteste et et e e sae e eseeseasessessestestesaesteseensenseseeses 16
10 T0] [T Ta I o] ¢ g 1T L PSR ORRRPPPRRTROTR 17
(O =1 I = U7y To1 (o] o [OOSR 19
CHARFIND FUNCHION ...ttt sttt sbe ettt sbe et sbeesbesbeebesbaesbeensenas 19
(O - 11T OSSPSR 20
COoMMENT ATLFIDULE.....cvi i et b et b e b beenr e 22
COMPARE FUNCLION ...ttt sttt ettt sttt be b s be e naesba e besbaesbeenrenas 23
(000 aa] o L1 g 1o] A W@ 0 1= - L 0] SRS 24
(O70] oo 11 1] o SO O PR 26
(O70] 01 () Ll I 01O ORISR 28
(O1@ 1) = U] aTex 1 o] o FER OO SRUROPUSRRP 29
(010 13 o I =¥] aTox 4 o] o ISR URO PO 30
(11T 1 (=10 o] [=Tod A @] =T =1 {0] SRS 30
DT U7 B IV o 1= ST 32
Data Validation ATIIIDULEooiiiiii ettt be e 33
(DY (=3 0] 1 T USSP 35
DATE FUNCHION......ctiiticiecte ettt sttt ettt e st e et e b e et e sbeebesasesbesaeesbesseesbeesbesbeesbenns 38
DATEZ2FLOAT FUNCLION ..ottt ittt sttt sttt et sbs b b ebe st s sbesaesbeenesbeesbe e 39
DATE2STR FUNCHION......viitiiiiite ittt sttt ste et st ebe b et e sbeebesaeesbesaaesbesneesbeeseesbeesbe e 40
DAY FUNCLION ..ottt sttt sttt st et b et e et e et e e b e et e sbeeabesaeesbesaeesbesreesbeeseesbeenbenns 41
(D ICT 1= (=T@ o] [=To @] o] -1 (o (SRR 42
Dynamic Data EXCRANQEcce ettt 43
)Y T 1 a1 Toa @] o= &SRS 47
T | (I @] o =T = 1 (o] PSSR 48
EXECULE ROULINES ...evviiveiie ettt ettt ettt e sb et s be et ba e b e s taesbestsesbeenbesbeentesbeeeesbeesrens 50

Language Reference

Contents

EXP FUNCLION ..ottt b et b e s bbb nn e 53
EXPIESSIONS ...ttt bbbt bbbttt h bbbt bt bbbt nn e nes 54
FLOATZDATE FUNCLION ...ttt s 56
FLOATZINT FUNCLION ...ttt b bbbt 56
FLOATZ2STR FUNCLION ...ttt bbb 57
FLOAT2TIME FUNCHION ...cutiniiiiciee et s 58
Floating POINt CONSTANTS........cccviiiiiciiccse ettt re e sre e e 59
Floating POINT FOIMALScciiiiiiiicc ettt e st e e sre e e nne s 60
FLOOR FUNCLION ..ttt ettt b bbbttt 63
FOrMAat ATIFTDULE ..ot st 64
FOIMIALS ...ttt bt b e bbb e bt b e bt e sn e r e r e b e b ne s 64
FOrward ChaiNiNg ..o et e st e et e s reeeeareenresneeseeas 66
HOUR FUNCEION. ...ttt ettt sb e bbbt 68
HYPOTNESES. ...ttt b et b e bbb bbb e eneas 69
TABNTITIEES ...ttt b e bbb b b bbb e eneas 70
If Change METNOc.oo it neas 71
INTEIEINCE ..ttt h ettt b e bbbt bbb bt e e e eneas 73
Inference Priority AtLHDULEcoo i 74
INference SIOt ALLFIDULE ..o 75
L (] =] TO] £ =L (=T e | 76
INNErItability StrAtEOYcccoiiie et 79
INNEEITANCE. ...ttt bt bbbt s b bbbt e e eneas 81
Inheritance Priority AFDULE...........coi i 82
INNeritance SIOt ATEFIDULE...........ooiii e 83
Tl aT=T g1 F= L[- LT S US 84
INNMETNOA OPEIALOL ...ttt bbb bt 86
INNAVAIUEDOWN OPEIALONcviiiitiitiiie ittt ettt bbb et 87
INNVAIUEUD OPEIALOT ...ttt ettt b bbbt bbbt 88
INIEVAIUE ATIFTDULE ... bbb 89
INT2STR FUNCLION ..ottt st e 90
T (=T o [T 00T 0151 F- U g1 K3 P TR UPPPR TP 91
Tl =T o [T gl o] 1 4 F-1 £ PR UPPPRPPO 91
INTEIPIELALIONSottt b bbb bbbt eene e eneas 94
INEEITUPT OPEIALON ..ottt e bbb e nb e e bt esnenneenneanis 95
LENGTH FUNCEION ...ttt ettt bt bbb 96
LN FUNCEION bbbtttk b bbb bt e 97
LOAAKB OPEIALOLc.uetiiiiieiteie ettt bttt ettt b st b e bbb bbb nne e 98
LOG FUNCHION ...ttt bbbt ettt bbb bbb b e e 100
IMAX FUNCLION ..ttt ettt b e bbb b e 101
MEMDET OPEIALON ...ttt bbbttt e et b bbb b e 102
IMIBTA-SHOTS ...ttt ettt ettt b e bt ne e b 103
IMIBENOMS ...ttt ettt b e bt b bbb e 104
IMIIINL FUNCEION Lttt ettt bbb bbb e e 107
MINUTE FUNCHION ..ottt ettt sbe e 109
IMOD FUNCEION ...ttt ettt ettt b e bt bbb b e e 109
MONTH FUNCHION ...ttt ettt sb b 110
IMIUITI-WATUES ..ttt bbb bbb e 111
N (oI ®] o =] - 1 (o] cHN T PSP PP PR PP PR 112
NOINNEIT OPEIALONviitiie ittt ettt sb b b e 113
NOTMEMDET OPEIALONcuiieitiieieeieee ettt ettt sb e b b e 113
INOW FUNCHION ...ttt bbbttt eb e bt b bbb e e 114
(O o] =T od £ SSPR 115
Order of SOUICES METNOA ..o e 117
PALLEIINIS ...t bbb bt r e nnens 120

Language Reference

Contents

POW FUNCLION ...ttt ettt b bbbttt sn b 123
PROD FUNCLION ..ttt ettt b ettt sb bt e b 124
Prompt LiNe ATEIIDULEocuiii e 125
PIOPEITIES ...ttt bbb bbbt b e bt bt bt bbb b e e e 126
QUESEION WINAOW ATLIDULE.......ceiiiie e 127
RAND FUNCHION ...ttt ettt sb ettt sb b e sn b 128
RANDOM FUNCHION....c.tiititiie ettt sttt sb bbb e 129
RANDOMMAX FUNCLION ...ttt 130
RANDOMSEED FUNCHION. ..ot 130
RESEIVEA WOTTS ...ttt bbbttt b bbbt e sn b 131
RESET OPBIALON ...t ettt bt b e sb et e e nbeennenis 132
RETIIEVE OPBIALONcviiieeteie ettt ettt ettt sb ettt sb b e sr b 133
ROUND FUNCEHION ...ttt bbbttt ettt sb bbb 135
RUIES ... bttt b bbbttt st sb b b sr e e 136
RUNTIMEVAIUE OPEIALON ..ottt b e 137
SECOND FUNCHION ...ttt sttt sb e 138
S L et b bbb bbb e et 139
SEMANTIC GALES ..ottt b ettt b e b b e nn b ne s 140
SENAMESSAGE OPEIALONc.eiueiiieiieiieiieieeie sttt ettt ettt sb ettt sbe b b e 141
SNOW OPEIALOT ...ttt b bttt b e bt e sn e e 145
STIGN FUNCHION .ttt bbbt b b e se e e 148
STN FUNCLION 1.ttt b bbb bt 148
SINH FUNCEION ...ttt b b bt 149
R3] (0] £ PSP P U VPP 150
1@ 1 I U T 1 o o SRS 152
STDEV FUNCHION ...ttt ettt b bbbt b b e sn e e s 153
Y = 1 (=T 0)Y PO PP PSP 154
SErALEQY OPBIALONottt bbbt e bt e sbe e e s beenresbe e b 155
STRCAT FUNCHION ...ttt ettt ettt b e eb bbb e 157
STREIND FUNCEION....ceiiiieiiic ettt b bbb e 158
(g [o T O] g ES] 7 U oL USSR 159
SEENG FOMMALS ..ot e st e e e b e e e reebesreesresreeee e 160
STRLEN FUNCLION 1.ttt 162
STRLOWER FUNCHION ..ottt sttt s 162
STRUPPER FUNCLION....c.ciiiiiiic ettt s 163
STR2BOOL FUNCHION ...ttt bbb e 164
STR2DATE FUNCHION....c.eiii ettt sb e 165
STR2FLOAT FUNCLION ...ttt bbb 166
STR2INT FUNCHION ...ttt ettt b bbb e 167
STR2TIME FUNCHION ...ttt 168
SUBSTRING FUNCLION ...ttt bbb 169
SUM FUNCEION ..ttt ettt ettt b e b b e sn e e 170
TAN FUNCLION ...t b et b e bbb bbb e 171
TANH FUNCTION ...ttt bbb bbb e 172
THME FOINALS ...ttt b bbbt bbb bbb e 173
THME FUNCEION ..ttt b bbbt bt bbb e 174
TIMEZFLOAT FUNCLION .ttt sttt 175
TIMEZ2STR FUNCHION.......uiiiiiiiitiie ettt ettt sa e 176
UNIOAAKB OPEIALONeiieitiie ettt ettt sb bbb e 177
VAIUE PROPEITY ...ttt e ettt b e bt bbb b e 179
VAR FUNCHION ...ttt ettt b e bt bbb b e 180
WEEKDAY FUNCHION ...ttt sttt sbe bt snn 181
WY ATITIDULE......oecce et te et esre e e e nnas 182
VA g G @] o =] -1 (o] GO TPV P TP 183

Language Reference

Contents

YEAR FUNCLION ...ttt ettt e b e e b e sae e besneenneeneeare s 184
YEARDAY FUNCHION ...ttt sttt s s s st e snnnas 185
YES OPBIALON ...tttk b ekt e ket e s bt e b e nb e e bt e bt e b e eaeenre e e nne s 186
2. Execute Library Routines

EXECULe LiDrary OVEIVIBWccciiiiicces sttt 187
UsSIiNg The EXECULE LIBIary ..ottt 190
ALOMEXISE ROULINE ..ot et eesn e 197
ALOMNAMEVAIUE ROULINEoviiiiiice ettt e nnens 198
ComputeMultiValue ROUTINE.........c.coviiiiiiicise s 200
CoNtrolSesSION ROUTINEcocieieieicese et ne et sresre e e 202
(010] o) V4=l = 10 4TI = {0 10 | 1] 0 T- 204
(14T 1 (1@ o] [=Tod £3 = 01U | {1 = 205
CreateREPOIT ROULINEccvo et re et sre e e 207

FOrmatting COMIMANTScooiiiiiiiiiieieeec ettt et sbe b see 209

Conditional StAtEMENTScoiiiiiieice e re et eaeas 211

[Ted [8]o =B @0 5 0] s 4 F- 1 [RS 212
FHEEXIST ROULINE ...o.viiiieciesic ettt ettt e et et nesresresnesrens 213
T To | T = 1= o g (0T U) [T 214
GELLISTEIEM ROULINE.......oii ittt e st sne e 216
GEtMUIEIVAIUE ROULINE ..ot 218
GELREIALIVES ROULINE ..ottt et n e re e re st e re e 220
01U g F= VI = (01U 1] 1= 222
LIiNKMUItIValue ROUTINEocviiiieicecee e e et sne e nne 223
MESSAGE ROULINEoviiiiiciie ettt e et e re s ae st et e srente st e e e 225
ParsSE ROULINEoeiieiiiie ettt sttt seese et e e sesaesbesbesnenteseenreeeneas 227
PatternMatCher ROUTINEcoviieiiicce st 230
PropagateValug ROULINEcc.ocieieiicice st 233
RANKLIST ROULINEoiiiiiiiiee ettt te e snestestesre b e srenteneas 235
RESELFIaME ROUTINE.......iiiiiiie e ettt e et e reanesnesrenrenrennas 236
SEtMUILIVAIUE ROUTINE ..ottt e 238
SEVAIUE ROULINEc.viiiiceecce ettt e te b e bt sae e e e e s 240
TeSTMUIIVAIUE ROULINEc.ociiiiece ettt 241
L0 Y2 (10 1 11 - SN 248
WITETO ROULINE ...ttt ettt e ae s ne st sne e et e e e 251

3. Database Integration Topics

ool =TI 1] T R 253
ACCESS STriNG SPECITICALION ..ovvve e 254
ATGUMENTS OVEIVIEWviviiiiieie e ettt et e st te sttt e e sae s es e seeneeneeressesneseesnennens 256
g N 0] gL Tol) TS 259
F N o] 0 41TV - 261
7= o T T (@121 = €1 1N) R 263
Beginning Database OPerationsccccoiveiiienieiiese s sesese e 264
Create New RecOrd - (@FILL) ...covoveieeeese et 265
(1 4=T: 1L @] o] =T ot a1 I I 266
CUrsor SIot SPECITICALIONccvcveecice e 266
CUrSOr - (QCURSOR)......oieieiciciee ettt sttt seeseeresresnesresresrenee e nes 268
Database INterface CONCEPLScvvivveiieiiicieiee et neens 268
Database EAItOr WINAOWScoiieieiieccese e e s snesre e snens 273
Database TYPE - (ATYPE) .ocvoeieiereie ettt sre e nnens 275
D PP 277
Debugging OPEratioNS.......ccccvvieiiriereiceee e e e re e snesreseenrens 278

Language Reference

Contents

DYNAMIC VAIUES ...ttt st sttt e esteeneeanas 281
ENd - (@END) ...ttt bbb bbb 282
Ending Database OPerations..........cocieiriiiiiiine ettt 283
Existence Filtering OPeratioNsccciiiiiiiiiie it 284
Field Name SPeCIfiCAtIONcc.oiiiiiiii e 287
Fields LiSt - (@FIELDS)ottt e 287
File RErIEVES = @F(1..) cviveeieeie ettt te st et este et e ene e beaneenneenes 288
FOIMIALS ... bbbt b bbb nr e ns 289
Forwarding Strategy - (QFWRD)coovoiiiicie et 290
GrOUPEA RELIEVE ...t ettt bbb bbb e sn e 291
GrOUPEA WITR ... ettt b ettt b e b b e e e 292
If ChanQe RELIIEVES.........icie ettt et et re e beeneesreannesne s 294
I ChANGE WIS ...t e st et eere e beeaeesaeaneesne s 295
IN LISt - (@ATOMS) ...ttt bbb bbb e e 296
INFORIMIX ...ttt b bbb bt bbb e 298
INIGRES. ...ttt a bbbt bt st e b b e bt b bbb e e 304
Ry @] Y ()] I I SR 310
INTErPretations = @V (..) ceoeiereiere ettt b bbb 311
Left-Hand Side REIFEVEScc.oiiieeeee e 312
Left-HanNd Side WIITESooiiie et 313
LiNK TO - (@CREATE) ...ttt ettt ettt sbe b 313
NaME = (@NAME) ..o ettt sb b b e 314
NEW Fl = (@FTLL) .eveieiieeieeitee ettt s 315
NEXPERT Flat-File FOIMALScoviiiiiiiiiieeenere e 316
Object Names In RetrieVe OPerations.........cocieiirerenininienieseie e e 319
ORACLE ... ettt ettt b e bbbt b b e n e 321
Order Of SOUICES REIMEVESc..oiiiiiieiiiieeit ettt 326
Order Of SOUICES WIITES ..ottt sa e 327
Properties LiSt - (QPROPS)ooiiiiieieiee e 328
QUETY (@QUERY)... ittt ettt b bbbt bbb b e 328
(O 18 =] 0V BT g o [F- Vo T 2 PO PP U ROPR 329
Query Field in Retrieve OPerationscccoeiiiiiinenine e 335
Query Field in WIite OPEIatioNScciiririieiinere et 337
Record Specification fOr WIITES. ..o s 340
R eToloT o [1 | (=T o [o PSSR 345
RETIIEVE OPBIALON ... ettt bbbttt b et b ettt sb b e sr b neas 346
Retrieve Unknown - (@QUNKNOWN) ..o 347
Retrieving from Databases ..o e 348
RELUIN EFTOTS ...ttt bbbt nn e nas 350
Right-Hand Side RELFEVEScoiiieiiiiei et 351
RIght-HaNd SIde WIITESccveiiiei ettt 351
SEQUENTIAL REIFIBVE ...ttt bbb e 352
SEOUENTIAT WWITTE ...ttt bbb e 354
Slot Specification fOr RETFIEVES...........cviiiiie e 356
Slot SPeCification FOr WIITEScooiiiiiiiiie e 358
SIOLS LiSE - (@SLOTS) ..ttt ettt b bbb e 360
SPIEAASNEELS ... b e 361
SQIErTOr - (ERRORY) ...ttt 361
String to NUMEric CONVEISION {X}ooviiiiiiiiie it 362
SYBASE ...ttt bbbttt b e bbb e n et 363
SY LK bbb e et h bt bt bbb bbb e et e s 369
LA S TSSOSO TO PRV 370
VA g G @] o =] -1 (o] GO TPV P TP 371

Language Reference %

Contents

Write Unknown - (QUNKNOWN).......cooviiiieic sttt 372
WIFItING 10 DAtADASESccvveeviiiice e 373
A. Database Integration Examples
oG L] o] LI R T o 18] o1 To VAV) (- 375
Example 2 - Grouped Write with a Complex Name...........ccccoveveveieieiisiese e, 378
oG L o] LR T AN (o] 4 Y oA AV A (- 381
Example 4 - Grouped REIMEVEcvivcicicece sttt 383
Example 5 - Grouped Retrieve with a Complex Name.........cccceevevevciiiecce s, 387
Example 6 - Grouped Retrieve with Existence Filteringc.ccoocvceveveiivccicivsieinsnnn, 390
Example 7 - Grouped Retrieve with Content Filtering..........ccccocevevvicicicci s, 393
EXample 8 - ATOMIC REIMEVEccveveicecece et 396
Example 9 - Sequential RELIEVEccvcveiiiiicese e 399
Example 10 - Sequential Retrieve with a Parameterized QUErYcccccovveeveivrivinennnnn, 402
Example 11 - Grouped Retrieve with @ SQL JOINccccvvviiiiiiieeeeeece e 407
INABX ..o 409

Vi

Language Reference

Preface

Purpose of this Manual

This manual describes the application representation features available for
use in your application development effort. Specifically, it addresses the
implementation of these features in the Intelligent Rules Element shell,
including their correct usage and syntax, where appropriate.

It also describes the Intelligent Rules Element Database Bridge. The
database bridge is a link between your database and the Rules Element.
Through this link, you can do two things: retrieve and write. You can
retrieve data from your database and create objects in the Rules Element,
and you can write Rules Element objects to your database.

Description

Audience

A wide variety of application representation features exist for use in the
application development effort. These features include specific operators,
functions, and execute routines, as well as conceptual features such as
inference control, pattern matching, and dynamic objects. The application
development environment of the Rules Element shell gives the developer
easy access to these representation features through its use of popup menus
and template-based editors.

Additionally, the Intelligent Rules Element database bridge lets you transfer
data between external data sources and Rules Element’s object
representation. In many knowledge-based applications, the data is stored
in an external file or database, where its format is very different from Rules
Element’s object representation. The object representation that includes
classes, objects, properties, and slots provides a structure for data which the
Rules Element reasons over. The database bridge transforms and translates
the data between its external format (a file or database) and the Rules
Element object representation.

This manual is the application developer’s reference to locate specific topics
during the application development effort. For example, developers can
look-up the purpose of specific topics before implementing a feature in the
application development environment of the Rules Element shell. Then
during the implementation phase of the application, developers can locate
examples in this manual to learn about syntax options.

Developers who want to embed Rules Element functionality directly into
the code of another application should also refer to the APl Reference. This
alternative approach to applications design completely bypasses the
graphical user interface and is therefore not addressed in the Language
Reference.

Language Reference vii

Preface

How to Use this Manual

Developers can use this manual for reference purposes since the features
appear in alphabetical order. Each feature has standard subtopics that give
detailed information in the following categories: definition, syntax,
arguments (if any), results, and examples. Additionally, each feature
includes a listing of “related topics” that identify relevant information. The
developer should always look-up the related topics in this manual before
implementing the feature. The organization of this manual leaves the
reading order up to the developer, but the related topics lists help to keep
the topic investigation focused.

Chapter One “Application Development Features” describes the features
that the developer uses to implement rule and object structures. A
cross-section of the general representation features includes the following.

Test Operators Determine the value of data or the logical state of
subgoal hypotheses. Tests are used in the left-hand
side (LHS) of rules.

Assignment Operators
Let you manipulate the value of slots in the
application. Assignments can be made in the
left-hand side or right-hand side of rules and
methods.

Dynamic Objects Ops.
Let you manipulate objects and their links created
during application processing (dynamically).

Interface Operators Let you specify interactions with the outside
world, including human operators, databases,
user-written routines, or programs.

Inheritance Operators
Let you control both the strategy and the triggering
of inheritance mechanisms.

Patterns Let you perform queries on the object base. You
can extract the list of objects that verify one or
several conditions and then perform actions on the
objects.

Formats Let you specify how values should be output to the
display, database, or data files. Also specifies how
incoming text strings from the session control
window, databases, data files, or the application
programming interface (API) should be converted
into the internal data types of the Rules Element.

Functions Let you control both the strategy and the triggering
of inheritance mechanisms.

Execute Routines This category includes a full-range of pre-defined
procedures for performing common or useful
tasks. These routines are built into the system for
use with the Execute operator.

viii Language Reference

How to Use this Manual

Chapter Two, “Execute Library Routines” describes the functions in the
execute library. They can be used like any user-defined execute routine in
either conditions or actions of rules and methods. They can be divided up
into several functional groups:

Frame Operations This set of routines performs “crunching”
operations on frames such as setting values,
copying values, etc.

Multi-Value Operations
This set of routines performs operations on
multi-values.

Sorting and Comparison
This set of routines performs operations on pattern
matching lists.

Session Control This set of routines controls the session and
perform 1/0.
Utility Operations This set of routines performs useful tasks that

extend application development.

Chapter Three, “Database Integration Topics” describes the key concepts,
fundamental procedures, and general principles of the Intelligent Rules
Element Database Bridge. This chapter includes topics from the following
categories:

Core Database Topics
New users should read these first for more detailed
information about the different ways the database
bridge can be used and for detailed information
about specific database types.

Database Bridge Features
Identifies features of the Rules Element Database
Bridge that you can use to extend the database
retrieve and write capabilities of your
knowledge-base application.

Rule Editor /7 Meta-Slot Editor Windows
Lists topics specific to setting up database retrieve
and write operations in a rule or method.

Database Editor Windows
Lets you find descriptions of the database editor
windows’ various fields.

Database Bridge Operations
The topics in this list identify optional as well as
required tasks of the retrieve and write operations.
This information supplements the Database Editor
Windows topics list.

This manual is a member of the document set. See “Related Manuals” for a
complete list of prerequisite and corequisite manuals.

Language Reference iX

Preface

Organization

To locate specific features, look-up the features from one of the two
chapters. All features appear in alphabetical order. The general table of
contents identifies the complete features list and the index identifies more
specific topics. This manual contains the following three chapters and one
appendix:

Chapter One, “Application Development Features” describes the features
that the developer uses to implement rule and object structures in the
Intelligent Rules Element environment. All features appear in alphabetical
order.

Chapter Two, “Execute Library Routines” explains how to use the special
library of built-in routines the developer can invoke through the Execute
operator. All routines appear in alphabetical order.

Chapter Three, “Database Integration Topics” gives information for key
concepts, fundamental procedures, and general principles specific to
building retrieve and write operations for a wide range of database types.

Appendix A, “Database Integration Examples” demonstrates the
principles and operations of the Rules Element Database Bridge through
specific examples.

Related Manuals

The following manuals contain information related to this Language
Reference. Read prerequisite manuals before using this manual. Read
corequisite manuals for background information as explained.

Prerequisite Manuals:

Getting Started

This manual gives an overview of the entire Rules Element shell, including
the graphical user interface, the inference engine, and application
representation features. Many of the design features described in the
Reference Manual are first introduced in this manual.

User’s Guide

This manual gives general procedures for using the graphical user interface.
Chapter Eight, “Application Data” of the User’s Guide shows how to
perform Retrieve and Write operations. Additionally, Chapter Two,
“Application Structure Implementation” of the User’s Guide gives useful
information about rules and objects.

Corequisite Manuals:

Language Programmer’s Reference

This manual is required reading for developers who need an overview of
the types of knowledge representation features available. The chapters
describe the rule and object structures and control mechanisms that form

X Language Reference

Related Manuals

Language Reference

the basis of all Rules Element application development efforts. It also
addresses the behavior of the inference engine.

The Bibliography, located in the Getting Started Manual, gives a complete
list of manuals.

Users who received the Intelligent Rules Element packaged with other
Neuron Data Elements, including the Open Interface Element and the Data
Access Element, will have other documents in addition to the Intelligent
Rules Element documents described above.

Xi

Preface

Xii Language Reference

Chapter

Application Development
Features

This chapter describes the various application features of the Intelligent
Rules Element.

ABS Function

Definition

The ABSfunction is used in expressions to find the absolute value of a
floating point number. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax

The function consists of the word ABS followed by a single argument in
parentheses:

ABS(x)

Argument

The argument may be any expression yielding a numerical result. The
expression may include patterns or interpretations.

Result

The function returns a floating point or integer result equal to the absolute
value of the argument.

If the argument expression does not produce a numerical value, an error
message is posted and the function result is NOTKNOAN.

Examples

The following examples illustrate the results of the ABS function:

ABS(98. 6) = 98.6

ABS(-273.18) = 273.18

ABS(28) = 28.0

ABS(0. 0) = 0.0

Related Topics

Expr essi ons Patterns

Fl oati ng Poi nt Constants Interpretations

I nteger Constants

Language Reference 1

Chapter

1 Application Development Features

ACOS Function

Actions

Definition

The ACGS function is used in expressions to find the arc-cosine of a floating
point number. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax

The function consists of the word ACOS followed by a single argument in
parentheses:

ACOS(X)

Argument

The argument may be any expression yielding a numerical result between
-1.0and 1. 0. The expression may include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to
an equivalent floating point value.

Result

The function returns a floating point result equal to the arc-cosine of the
argument. The result is expressed in radians.

If the argument expression does not produce a numerical value, an error
message is posted and the function result is NOTKNOAN.

Examples

The following examples illustrate the results of the ACOS function:

ACOS(1. 0)
ACOS(0. 5)
ACOS(0. 0)
ACOS(- 1. 0)

Related Topics

Expressions Interpretations
Floating Point Constants COS Function
Integer Constants ASIN Function
Patterns ATAN Function

Definition

An action expresses a unique operation to be performed by the system in a
rule or method. Actions are normally considered consequences of a list of
test conditions and would therefore appear on the right-hand side.
However, actions can also appear in the conditions list on the left-hand side.
Actions that appear on the right-hand side can be divided into two sets:
actions to be performed when the conditions on the left-hand side are

Language Reference

Actions

satisfied or actions to be performed when any single condition on the
left-hand side fails to be satisfied.

Syntax

An action consists of an operator followed by one or two operands. The
following operators can occur in both rules and methods:

Assi gn Reset

Creat eObj ect Strat egy

Del et eCbj ect Show

Retrieve Execut e

Wite LoadkB

SendMessage Unl oadKB

The following operators are valid in methods only:
I nhivet hod

I nterrupt

Nol nheri t

The following operators are valid only in the right-hand side actions of
Order of Sources methods:
AskQuesti on I nhVal ueUp

Backwar d RunTi neVal ue
| nhVal ueDown

The exact number and form of the operands varies from one operator to
another; see the sections on individual operators for details.

Execution

Actions can appear on either the left-hand side (the “IF” section) or the
right-hand side (the “ACTIONS” section) of rules and methods. On the
right-hand side, actions can belong to one of two lists (the “Then” or “Else”
lists). Which of these two actions list the system executes depends on the
evaluation outcome of the rule or method. The execution of actions in rules
and methods is as follows:

IF actions Actions that appear in the left-hand side conditions
list are executed sequentially in the order they
appear. The “evaluation” result of an action is
always set to TRUE.

Then actions Actions that appear in the “Then” list are executed
sequentially in the order they appear, but the
system must first determine that each left-hand
side condition is TRUE. This is known as a positive
rule or method evaluation.

Note: The system automatically executes the Then
actions defined for the method lacking a list of
left-hand side conditions.

Else actions Actions that appear in the “Else” list are executed
sequentially in the order they appear, but the
system must first determine that one of the
left-hand side conditions is FALSE. This is known
as a hegative rule or method evaluation.

The two part structure of the right-hand side allows actions to be executed
whether or not the rule or method conditions succeed. This is equivalent to
using two rules each with a different actions list to contend with the two

Language Reference 3

Chapter

1

Application Development Features

possible evaluation outcomes. The following two rules demonstrate how
Else actions would be represented using only Then actions:
Rulel IF Yes A => Hypol

THEN: Perform “true” actions |ist

Rule2 |F No Hypol = Hypo2
THEN: Perform “fal se” actions |ist

Let’s assume the system evaluates Rulel first. After the evaluation of Rulel,
the system forward chains to Rule2 due to the hypothesis test condition “No
Hypol” (called Hypothesis Forward). If Rulel’s condition fails, then Hypol
will be FALSE and Rule2’s condition will evaluate to TRUE. Therefore, the
failure of Rulel ensures that the only actions list of Rule2 will be triggered.

Or if Rulel succeeds and its actions triggered, Rule2 will always fail. Thus
only one set of actions can be triggered between these two rules. What took
two rules can be accomplished more easily by including the Else actions list
in a single rule as follows:

Rulel IF Yes A => Hypol

Then Do: Perform “true” actions |ist
El se Do: Perform“fal se” actions |ist

Forward Chaining

Depending on the inference strategy options currently in effect, the results
of right-hand side actions may be forward-chained to the conditions of
other rules that share the same data. If another rule shares the same data,
its hypothesis is automatically placed on the agenda for consideration. This
form of forward chaining is known as Forward Action-Effects. Methods are
not affected by the results of actions because they do not have hypotheses to
be considered for evaluation. However, actions in a method may
forward-chain data to relevant rules. Action operators that will produce
forward chaining include: Assi gn, Retri eve (from a database), and
Execut e (using an external routine).

Data that belongs to a private slot can not trigger action-effects since private
slot data cannot appear in the conditions or actions of rules. Only data that
belongs to public slots can trigger action-effects.

Depending on the inference strategy options currently in effect, only the
results of the Ret r i eve and Execut e actions triggered from rule or
method conditions may be forward-chained. The Assi gn operator has no
effect on forward chaining from the left-hand side. See the Retrieve
Operator and Execute Operator topics for details.

Examples

The following example depicts the IF, THEN, ELSE construction that can be
used in rules and methods.

I F Retrieve “data. nxp”
THEN Get infornmation
ELSE Execute “Message” @EXT="Error”

Related Topics

Rul es Agenda

Met hods I nference Strategy

Hypot heses Inference Priority Attribute
Condi ti ons Forwar d Chai ni ng

Slots

Also see the sections on individual operators by name, as listed above.

Language Reference

Agenda

Agenda

Language Reference

Definition

The agenda is the Rules Element’s central control mechanism, which directs
the course of its inference processing.

Form

The agenda is an ordered list of hypotheses pending investigation via
inference processing. Notice that it is the hypotheses themselves that are
placed on the agenda, not the rules that lead to them.

Operation

When the Knowcess command is issued to begin inference processing, the
first hypothesis with the highest inference priority from the highest list on
the agenda becomes the focus of attention, the object of active investigation
by the Rules Element system. All rules leading to this hypothesis are
investigated until its value is determined to be either TRUE, FALSE, or
NOTKNOWN. Other hypotheses may be added to the agenda in the course of
this inference process, as described under “Insertion,” below.

As the value of each hypothesis is determined, it is removed from the
agenda and the next hypothesis following it becomes the focus of attention.
This process continues until all hypotheses have been processed and the
agenda is empty, at which point the message End of Session is displayed in
the session control panel of the Rules Element’s main window.

Insertion

Although the user can explicitly place hypotheses on the agenda by
selecting Suggest or related commands, the contents of the agenda are
maintained automatically by the Rules Element and are not under the user’s
direct control. Hypotheses can be added to the agenda in any of the
following ways:

1. Viaan explicit suggestion by the user.

2. By backward chaining from the conditions of a rule already under
investigation.

3. By forward chaining:

a. from the value of a hypothesis determined in the course of
inference processing.

b. from a data value set in a rule by an action of some other rule.
c. from a data value set in a rule by an action of some method.
d. from a data value explicitly volunteered by the user.

4. Viaasemantic gate from a rule previously investigated.
Via a context link from a hypothesis previously investigated.

Precedence

New hypotheses may be inserted in the agenda at any point, not just at the
beginning or end. The list above shows the order of precedence: for
example, hypotheses added to the agenda via semantic gates are placed
after those reached via backward or forward chaining, but before those

Chapter 1 Application Development Features

reached via context links. Hypotheses added in the same way (for example,
via semantic gates) are ordered according to their respective inference
priorities or those of the rules leading to them.

Strategy

The ways in which hypotheses can be placed on the agenda are subject to
the inference strategy currently in effect. The following strategy options

apply:

m Forward confirmed hypot heses

m Forward rejected hypot heses

m Forward not known hypot heses

m Forward Action-Effects (rules and nethods)
m Forward through gates (rules only)

All of these options are normally enabled by default, but can be disabled if
necessary. See the section “Inference Strategy” for more information.

Related Topics

Acti ons Inference Slot Attribute
Condi ti ons Inference Strategy
Cont ext Li nks Rules

Hypot heses Forward Chaining

Met hods Backward Chaining

I nference Semantic Gates

Inference Priority Attribute

For a thorough understanding of the Rules Element agenda mechanism,
please refer to the Functional Description manual.

ASIN Function

Definition

The AS/ Nfunction is used in expressions to find the arc-sine of a floating
point number. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax

The function consists of the word ASI Nfollowed by a single argument in
parentheses:

ASI N(X)

Argument

The argument may be any expression yielding a numerical result
between--1.0 and 1. 0. The expression may include patterns or
interpretations.

If the value of the argument expression is an integer, it will be converted to
an equivalent floating point value.

6 Language Reference

AskQuestion Operator

Result

The function returns a floating point result equal to the arc-sine of the
argument. The result is expressed in radians.

If the argument expression does not produce a numerical value, an error
message is posted and the function result is NOTKNOAN.

Examples

The following examples illustrate the results of the ASI N function:

ASIN(0.0) = 0.0

ASIN(0.5) = 0.52 (= 3.14/ 6)

ASIN(1.0) = 1.57 (= 3.14/ 2)
ASIN(-1.0) = -1.57 (= -3.14] 2)

Related Topics

Expr essi ons Interpretations
Fl oati ng Point Constants SI NFunction
I nteger Constants ACOS Function
Patterns ATANFunction

AskQuestion Operator

Definition

The AskQuest i on operator is used in the right-hand side actions of an
Order of Sources method to prompt the user interactively for the value of a
desired slot and test the answer.

Operand
The AskQuest i on operator takes two operands:

m The first operand is a slot, commonly (but not necessarily) the one in
whose Order of Sources method the AskQuest i on operator appears
(named in the At t ach To field of the Method editor).

m The second operand is either a constant of the right type for the slot
named as the first operand, or the special value NOTKNOWN.

Effect

The user is prompted, via the session control panel of the Rules Element
main window, to supply a value for the slot to which this Order of Sources
method belongs. If a prompt line attribute is defined for the slot, it is
displayed in the window in place of the standard text.

After the value has been supplied, the slot named as the operator’s first
operand is tested for the value given by the second. If the two are unequal,
the value supplied by the user is accepted and the method terminates; if
they are equal, the value is rejected and execution continues with the next
action in the Order of Sources method.

Language Reference 7

Chapter

1

Application Development Features

Example

The following actions, appearing in the Order of Sources method for an
object’s cost property, prompt the user to supply a value for that slot. Any
known value is accepted; if the response is NOTKNOWN, the slot’s value is
instead inherited downward from a class or parent object:

AskQuestion SELF. cost NOTKNOWN
I nhvVal ueDown DEFAULT

Related Topics

oj ect s Methods

Properties Order of Sources Method
Acti ons Prompt Line Attribute

Assign Operator

Definition

The Assi gn operator is used in the conditions and actions of rules and
methods to assign a value to a variable.

Operands
The Assi gn operator takes two operands:

m The first operand can be a numeric constant, an arbitrary expression, a
string, the special values NOTKNOAN or UNKNOWN, or a boolean constant
(TRUE or FALSE) in the case where the second operand is a boolean
variable.

m Thesecond operand can be a slot, a list of slots specified by a pattern, or
a boolean variable.

The operands may be of any type, but must both be of the same or
compatible type. Any type of slot may be set to NOTKNOAN or UNKNOA.
Both operands may include patterns and interpretations. Note that a
private slot used in the second operand is ignored unless the Assign
operator appears in a method specifically triggered for the slot. See the
description of Slots for more information about using private slots.

Effect

The value of the first operand is assigned to the slot named as the second. If
both operands are identical, the effect is simply to force evaluation of the
specified slot. For example, the following condition initiates backward
chaining on the hypothesis “assigned” to itself.

Assi gn Hypo Hypo
If either or both operands include a pattern on the same class or object, the
assignment is performed once for each object in the corresponding list. For

example, the following condition assigns the product of the first operand to
each object in the Rect class.

Assi gn <Rect>.length * <Rect>.w dth <Rect>. area

Language Reference

Assign Operator

The condition with a pattern shown above, is equivalent to the following
two conditions, assuming the Rect class contains two objects, Rectl and

Rect2.
Assi gn Rectl.length * Rectl.wi dth Rectl. area
Assi gn Rect2.length * Rect2.wi dth Rect?2.area

Depending on the strategy options currently in effect, the new value of the
slot assigned in an action of a rule or method may be forward-chained to
other rules in which the slot appears in a condition (causing the hypotheses
of those rules to be placed on the agenda for consideration). See the
Forward Chaining section below for details. Also, the new value
assignment may trigger the execution of the slot’s If Change method, if one
has been defined at the slot or parent slot level.

Forward Chaining

Right-hand side actions in rules and methods involving the Assi gn
operator can forward chain the new value of the slot to other rules in which
the slot appears in a condition (causing the hypotheses of those rules to be
placed on the agenda for consideration). This form of forward chaining,
known as Forward Action-Effects, is controlled first by a local strategy
specific to the right-hand side Then and Else components of rules and
methods. By default the local strategy is set to ON. If the local strategy is
set to GLOBAL, the Rules Element defaults to the Rule Global forward
action effects strategy in the Strategy Monitor window (from the Expert
menu) until a St r at egy operator overrides the global strategy at the local
level.

Conditions of rules and methods involving the Assi gn operator are not
able to initiate forward chaining. Values assigned by such a condition are
never propagated forward to other rules, nor can such a condition be
triggered by forward chaining from another rule or method.

Data that belongs to a private slot cannot trigger action-effects since private
slot data cannot appear in the conditions or actions of rules. Only data that
belongs to public slots can trigger action-effects.

Result

The result produced by the Assi gn operator is always TRUE unless the
operands include a pattern with no matching values, in which case the
result is NOTKNOVN.

Examples
The following are examples of conditions using the Assi gn operator:

Assign 3. 14159 pi

Assi gn " G unpy” dwar f . name

Assi gn TRUE Credi t _approved
Assi gn FALSE Credi t _approved
Assi gn UNKNOAN item cost

Assi gn NOTKNOWN swi t ch_nunber
Assi gn DATE(1904, 6, 16) bl oonsday
Assignitemcount + 1 i tem count

Assignrect_1l.length * rect_1.width rect_1.area

Language Reference 9

Chapter

1

Application Development Features

Related Topics

bj ect s String Constants

Rul es Boolean Constants
Met hods Patterns

I f Change Met hod Forward Chaining
Condi ti ons Inference Strategy
Acti ons St r at egy Operator
Data Types Agenda

Expr essi ons Reserved Words
Slots

ATAN Function

10

Definition

The ATANfunction is used in expressions to find the arc-tangent of a floating
point number. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax

The function consists of the word ATAN followed by a single argument in
parentheses:

ATAN(x)
Argument

The argument may be any expression yielding a numerical result. The
expression may include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to
an equivalent floating point value.

Result

The function returns a floating point result equal to the arc-tangent of the
argument. The result is expressed in radians.

If the argument expression does not produce a numerical value, an error
message is posted and the function result is NOTKNOAN.

Examples
The following examples illustrate the results of the ATAN function:

ATAN(0.0) = 0.0

ATAN(1.0) = 0.78 (= 3.14 | 4)
ATAN(999999) = 1.57 (= 3.14 / 2)

ATAN(- 1. 0) =-0.78 (= -3.14 | 4)

Related Topics

Expr essi ons Interpretations
Fl oati ng Point Constants TANFunction
I nteger Constants ASI NFunction
Patterns ACCS Function

Language Reference

AVERAGE Function

AVERAGE Function

Definition

The AVERAGE function is used in expressions to find the average of a set of
numerical values. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax

The function consists of the word AVERAGE followed by any number of
arguments in parentheses:

AVERAGE(x1, X2, ..., xn)

Arguments

Each argument may be any expression yielding a numerical or time-valued
result. There may be either a list of arguments or a pattern matching list.

If some of the argument values are integers and some floating point, the
integers will be converted to equivalent floating point values before
computation.

Result

The function averages all the argument values and returns their arithmetic
mean. For arguments that include patterns, it averages all values in the
corresponding list.

Integer and floating point values may be mixed in the same average, but
time values can be averaged only with each other. If numeric and time
arguments are mixed, or if any argument is of another type, an error
message is posted and the function result is NOTKNOAN.

Examples
The following examples illustrate the results of the AVERAGE function:

AVERAGE(365, 240, 577) = 394

AVERACE(98. 6, 37.0,-273.18) = -29.85

AVERAGE(obj 1. p, obj 2. p, obj 3. p) = 11.85

AVERAGE(TI ME(8, 4, 23) , TI ME(3, 6, 11)) = TI ME(5, 35, 17)
AVERAGE(123, "456") = NOTKNOWN

If class Tank has four instances with capaci t y valuesof 6. 3,14. 5,12. 9,
and 9. 0, then

AVERAGE(<Tank>. capacity) = 10.67

Related Topics

Expr essi ons Patterns DATE Function
Dat a Types Interpretations VAR Function
TI ME Function STDEV Function

Language Reference 11

Chapter 1 Application Development Features

Backward Chaining

Definition

Backward chaining is the process of determining the truth or falsity of a
hypothesis by evaluating the rules that lead to it.

Invocation

Backward chaining is initiated by suggesting a hypothesis via any of the
following commands:

m The Suggest command on the Expert menu.
m The Suggest/ Vol unt eer. .. command on the Expert menu.
m The Suggest. .. command on the windows pop-up menu.

m The Suggest Hypot hesi s command on the Rule editor or List of
Rules pop-up menu.

m The Suggest command on the Rule Network, Object Network, or List
of Hypotheses pop-up menu.

m The Suggest command from the Agenda Monitor.

Backward chaining can also be initiated during runtime from the
knowledge base itself:

m TheAssi gn Hypo Hypo construct from a rule or method forces the
evaluation of the hypothesis “assigned” to itself.

m The Backwar d operator may appear in an Order of Sources method as
an action that backward chains to evaluate a hypothesis.

Each of these approaches places a hypothesis on the agenda for
consideration. When the Knowcess command is issued to begin inference
processing, the Rules Element will look for any inference rules leading to the
designated hypothesis and begin evaluating them to determine whether the
hypothesis is TRUE or FALSE.

Operation

Rules are considered one at a time in order of priority, as defined by their
inference priorities. The results determine the value of the hypothesis, as
follows:

m Ifany ruleis found whose conditions are all TRUE, the hypothesis is set
to TRUE and all of the rule’s actions are executed.

m Otherwise, if at least one rule has a condition that is NOTKNOWN, the
hypothesis is set to NOTKNOMN.

m Otherwise, the hypothesis is set to FALSE.

The process terminates as soon as the value of the suggested hypothesis is
determined, unless the strategy option Exhausti ve eval uati onisin
effect; this option forces all rules leading to the suggested hypothesis to be
evaluated, even after the value of the hypothesis has already been found.

In the course of evaluating a rule, hypotheses occurring in its conditions
may in turn be placed on the agenda as subgoals, invoking the same
reasoning process recursively to investigate all rules leading to those

12 Language Reference

Backward Operator

hypotheses. Such backward chaining can continue recursively to any
required depth.

Propagation

Depending on the global strategy options currently in effect, the results of
the inference process described above may be propagated forward to other
parts of the knowledge base, causing additional hypotheses to be placed on
the agenda and additional rules to be evaluated. Strategy options relevant
to this process include the following:

m Forward confirmed hypotheses

m Forward rejected hypotheses

m Forward notknown hypotheses

m Forward Action-Effects (rules and methods)
m Forward through gates (rules only)

See the section “Inference Strategy” for further details.

Related Topics

Agenda Inference Priority Attribute
Bool ean Const ant s Inference Slot Attribute
Hypot heses Inference Strategy

Rul es Forward Chaining

I nference Exhaustive Evaluation
Backwar d oper at or Assign operator

Backward Operator

Definition

The Backwar d operator is used in the actions list of an Order of Sources
method to seek the value of a boolean slot by backward chaining to the
inference rules in which it appears as a hypothesis.

Operand

The Backwar d operator is valid only in the THEN actions list on the
right-hand side of an Order of Sources. The Backwar d operator takes one
operand, which must be the boolean constant TRUE. The following is the
only valid form for an action using the Backwar d operator:

Backwar d TRUE

The Att ach To field of the Method editor specifies the hypothesis to which
the Backwar d operator applies.

The Backwar d operator cannot be used as an Order of Sources action for a
private slot since private slot data cannot be a hypothesis. Only public slots
can be hypotheses.

Language Reference 13

Chapter

1

Application Development Features

Effect

The Backwar d operator is meaningful only as an Order of Sources action
for a boolean slot. If the slot appears as the hypothesis of one or more
inference rules, it is placed on the agenda as a subgoal, causing its value to
be sought by backward chaining on those rules. If there are two or more
rules with the same hypothesis, they will be evaluated in the order specified
by their inference priorities or inference slots.

Example

In the case of the boolean slot that is a hypothesis, the system triggers an
available user-defined Order of Sources before it initiates backward
chaining to obtain the value of the slot. To reincorporate the default
behavior as part of a user-defined Order of Sources method, include the
equivalent sequence of operators explicitly within the method:

| nhMet hod DEFAULT

Backwar d TRUE

I nhVal ueDown DEFAULT

I nhVal ueUp DEFAULT
AskQuestion SELF TRUE

Related Topics

Actions Order of Sources Method
Agenda Slot

Backward Chaining Rules

Boolean Constants Methods

Inference Priority Attribute
Inference Slot Attribute
Hypotheses

BOOL2STR Function

14

Definition

The BOOL2STRfunction is used in expressions to convert a boolean value to
an equivalent character string. The expression can appear on the left-hand
side or right-hand side of rules and methods.

Syntax

The function consists of the word BOOL2STR followed by one or two
arguments in parentheses:

BOOL2STR(b)

BOOL2STR(b, f)

Argument

Each argument may be any expression yielding a result of the appropriate
type:
m The first argument (b) is the boolean value to be converted.

m The optional second argument (f) is a string specifying the format
under which the first argument is to be converted. See “Boolean
Formats” for the syntax and meaning of this string.

Language Reference

Boolean Constants

The argument expressions may include patterns or interpretations.

Result

The function returns a string result representing the boolean value of
argument b, converted according to format f . If no format argument is
given, the default system format for booleans (defined in the

ckbres. f or mat module in the file nxr un. dat) is used.

Examples
The following examples illustrate the results of the BOOL2STR function:

BOOL2STR(FALSE) = "FALSE"
BOOL2STR(obj . p) = "FALSE"
BOOL2STR(FALSE, " Yup; Nope") = " Nope"

Related Topics

Expressions Patterns

String Constants Interpretations
Boolean Constants STR2BOCL Function

Boolean Formats

Boolean Constants

Definition

A boolean constant is a sequence of characters that stand directly for a
boolean (logical) value, representing the truth value of a condition or
hypothesis or other boolean variables.

Values

There are two states that describe hypotheses and conditions: evaluated or
unevaluated. Once the evaluation of a hypothesis or condition is complete,
it resolves to one of the following boolean values.

TRUE

FALSE
NOTKNOWN

If a value has not yet been determined, the condition or hypothesis has the
following boolean value.

UNKNOWN

An UNKNOWN value for a condition or hypothesis can be resolved to TRUE,
FALSE, or NOTKNOWN as a result of further inference. A NOTKNOWN value
can never be so resolved,; its indeterminacy is an intrinsic condition of the
problem itself and is usually volunteered by the user through the
application interface. Both UNKNOWN and NOTKNOWN may be modified with
the Assign operator.

Language Reference 15

Chapter

1

Application Development Features

Data Types

Although NOTKNOWN and UNKNOVWN are applicable to boolean variables,
slots of any data type may take these values. The values TRUE and FALSE
are reserved for slots defined as type boolean. A fifth constant KNOANis the
counterpart of UNKNOWN, and may be assigned to slots of any data type.

All boolean constants are built into the Rules Element as reserved words

Related Topics

Data Types Boolean Expressions
Identifiers Reserved Words
Boolean Formats Assi gn Operator

Boolean Expressions

16

Definition

A boolean expression represents a statement that when resolved returns a
boolean result. It can make use of AND, OR, NOT, and embedded
comparison operators.

Usage

The boolean expression is always used as an operand in a condition that
returns a boolean result, such as a comparison or value test condition. There
are two value test operators that return a boolean result:

Yes
No

There are six comparison operators that return a boolean result:

= Equal

<> Not equal

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

Note: Comparison operators can also be embedded in the boolean
expression itself.

Boolean Operators

Numeric or string values can be combined using the standard boolean
operators when the result of the expression is a boolean value.

AND R NOT

The Rules Element permits you to use these operators to combine values
that individually evaluate to TRUE, FALSE, or NOTKNOAN. The result

produced by the boolean expression depends on the evaluation of these
values as described below.

Language Reference

Boolean Formats

OR

TRUE
FALSE
NOTKNOAN

AND

TRUE
FALSE
NOTKNOWN

Result

The result produced by a boolean expression is either TRUE, FALSE, or
NOTKNOWN. The boolean operators provide the following results:

TRUE FALSE INOTKNOAN
TRUE TRUE TRUE

TRUE FALSE INOTKNOVWN
TRUE NOTKNOAN INOTKNOVWN

Boolean operator And provides the following results:

TRUE FALSE INOTKNOWN
TRUE FALSE INOTKNOVWN
FALSE FALSE INOTKNOVWN
NOTKNOWN NOTKNOWN INOTKNOVWN

NOT:

NOT T == FALSE

NOT F == TRUE

NOT N == NOTKNOMN

Examples

The following is an example of a condition which tests a boolean expression:
Yes (a AND b) OR (NOT (c=1))

Related Topics

Conditions Comparison Operators
Boolean Constants No Operator
Expressions Yes Operator

Boolean Formats

Definition

A boolean format specifies the representation of aboolean value in text form
for input and output purposes.

Syntax

This section defines the syntax of format elements for boolean-valued
properties only. See the section titled “Formats” for the syntax of formats in
general.

Like all formats, those for booleans may include strings of literal characters
enclosed in double quotationmarks (" . . . "),andmay alsoinclude the
wild-card character (*). Format elements beginning with an exclamation
point (!) are ignored in database transactions; they are meaningful only for
direct interaction with the user via the screen and keyboard.

Language Reference 17

Chapter

18

1

Application Development Features

Input

On input, each element in the format list is tried in order until one of them
matches the input text. If no match is found, the input is rejected and an
error message is displayed on the screen. The following conventions apply:

m Odd-numbered elements in the format list (the first, third, and so on)
produce a TRUE result, even-numbered elements (the second, fourth,
and so on) produce a FALSE result.

m Strings of literal characters enclosed in double quotation marks must
match exactly, except that no distinction is made between upper- and
lowercase letters.

m The wild-card character (*) matches any sequence of zero or more
characters.

Output
On output, only the first two elements in the format list are used:

m The first format element is used for TRUE values, the second for FALSE
values; any further elements in the list are ignored.

m Strings of literal characters enclosed in double quotation marks are
reproduced exactly in the output.

m The wild-card character (*) is ignored on output.

Default

The default system format for booleans is defined in the ckbr es. f or mat
module in the file nxr un. dat . The standard default format is

Tr ue; Fal se

Example
The following example illustrates the use of boolean formats:
Format: Yes;No;Y*;:N*;@N=Maybe

Value Output Comments

TRUE Yes Uses first element
FALSE No Uses second element
NOTKNOAN Maybe Uses last (@N=) element
Input Value Comments

Yes TRUE Matches first element
no FALSE Case is irrelevant

Yup TRUE Matches third element
Nope FALSE Matches fourth element
Not Known NOTKNOAN Reserved word

Maybe NOTKNOAN Matches last (@N=) element
Tru NOTKNOAN No match

Related Topics

Formats
Format Attribute
Boolean Constants

Language Reference

CEIL Function

CEIL Function

Definition

The CEI L function is used in expressions to find the smallest whole number
greater than a given floating point number. The expression can appear on
the left-hand side or right-hand side of rules and methods.

Syntax

The function consists of the word CEI L followed by a single argument in
parentheses:

CEl L(x)

Argument

The argument may be any expression yielding a floating point result. The
expression may include patterns or interpretations.

Result

The function returns a floating point result equal to the smallest whole
number greater than the argument. Notice that although the result is
always a whole number, it is of type FLOAT rather than | NTEGER For
negative arguments, the rounding is toward zero, rather than toward minus
infinity.

If the argument expression does not produce a numerical value, an error
message is posted and the function result is NOTKNOAN.

Examples

The following examples illustrate the results of the CEl L function:

CEIL(3.1416) = 4.0
CEl L(98. 6) 99.0
CElL(-273.18) = -273.0
CEIL(-9.9) =-9.0

Related Topics

Expressions Interpretations
Floating Point Constants FLOOR Function
Integer Constants ROUND Function
Patterns

CHARFIND Function

Definition

The CHARFI NDfunction is used in expressions to search a character string for
a specified character or characters. The expression can appear on the
left-hand side or right-hand side of rules and methods.

Language Reference 19

Chapter 1

Classes

20

Application Development Features

Syntax

The function consists of the word CHARFI NDfollowed by two arguments in
parentheses:

CHARFI ND(s1, s2)

Arguments

Each argument may be any expression yielding a string result:

m The first argument (s 1) is the string to be searched.

m The second argument (s2) specifies the characters to search for.

The argument expressions may include patterns or interpretations.

Result

The function returns an integer result equal to the offset from the beginning
of the firstargument string (s 1) to the first occurrence of any character from
the second string (s2). The search is case sensitive, thus corresponding
upper- and lowercase letters (such as A and a) are considered different for
purposes of the search.

A result of 0 denotes the first character in string s1 (no offset at all from the
start of the string). If s1 does not contain any of the characters in s2, the
function result is equal to the length of string s 1.

If either argument expression does not produce a string value, an error
message is posted and the function result is NOTKNOAN.

Examples
The following examples illustrate the results of the CHARFI ND function:

CHARFI ND(" SHAZAM ", "AEI QU") = 2

CHARFI ND(" SHAZAM ", "WKYZ") = 3

CHARFI ND(" SHAZAM ", "SPQR') =0

CHARFI ND(" SHAZAM ", "LMNOP") = 5

CHARFI ND(" SHAZAM ", "aei ou") = 7

CHARFI ND(" SHAZAM ", " ") =7

CHARFI ND(" ", " SHAZAM ") =0

Related Topics

Expressions SUBSTRI NG Function STRUPPER Function
String Constants STRLEN Function STRLOWER Function
Patterns STRCAT Function STRFI ND Function

Interpretations

Definition

A class defines the common characteristics shared by a family of related
objects.

Language Reference

Classes

Structure

Every class has a name, which must comply with the Rules Element’s
standard rules for a well-formed identifier. The class definition may include
any number of properties to be inherited by the objects belonging to the class
(called its instances). The class may also have any number of subclasses,
which will likewise inherit its properties and pass them on in turn to their
own instances. A given class may be a subclass of more than one other class
(called its superclasses), just as a given object may be an instance of more than
one class (called its including classes).

The class itself may associate a value with each property, independent of the
property’s value for any individual instance. Depending on the global and
local inheritability settings currently in effect, the specific value of the
property at the class level may or may not be inherited by instances or
subclasses along with the property definition itself.

Inheritance

The default inheritability strategy allows both property definitions
themselves and the specific values associated with them to be inherited
downward from a class to its instances or subclasses. If necessary, these
standard strategy settings can be changed from the Strategy Monitor
window (from the Expert menu), the St r at egy operator in a condition or
action, or the Rules Elements application programming interface call
NXP_St r at egy to disable the inheritance of properties or their values or to
permit upward as well as downward inheritance, from child to parent or
parent to child. In addition, a class can override the global strategy settings
by using the Meta-Slot editor to specify local inheritability attributes for
individual slots associated with the class.

Creation
Classes can be created by several means:
m Interactively, via the Newor Copy command in the Class editor.

m Implicitly, by using a previously undefined class name in a condition
or action of a rule or method, or as a subclass of another class.

m Dynamically, through the Rules Element application programming
interface (API).

Note: The system might display the class name enclosed between vertical
bars(| . . . |)todistinguish it from an object name.

Deletion

Classes can be destroyed in either of two ways, depending on how they
were originally created:

m Classes created interactively by the application developer, via the
Del et e command in the Class editor.

m Dynamically, through the Rules Element application programming
interface.

Language Reference 21

Chapter 1 Application Development Features
Methods
Although a method is by definition triggered through a message sent
directly to the object to which the method is attached, methods can be
attached at the level of the class to govern the behavior of class instances. In
the case where the object has no method attached, the system will try to use
downward inheritance to obtain one. In asituation where the object belongs
to multiple classes, each with its own method defined, then an | nhMet hod
operator can be used to resolve the conflict by explicitly naming the parent
class.
Related Topics
Objects Methods
Properties Dynamic Objects
Identifiers Inheritability Strategy
Rules St r at egy Operator
Meta-Slots I nhiMet hod Operator
Inheritance Ret ri eve Operator
Slots

Comment Attribute
Definition
The comment attribute is an arbitrary piece of text associated with a rule,
method, or slot (a property of a class or object) to document its meaning or
usage for the benefit of the application developer.
Syntax
The comment attribute may consist of any sequence of text characters,
without restriction.
Effect
Comment attributes have no effect whatever on the operation of the system;
their sole purpose is to help the application developer understand the
structure and design of the knowledge base.
Creation
Comment attributes are specified or edited by typing into the box labeled
Conmrent s in the Meta-Slot editor (for an individual slot), the Rule editor
(for a rule), or the Method editor (for a method).
Saving
Comment attributes are saved along with the knowledge base if the Save
Comments and Whys option is chosen in the Save Knowledge Base...
command.
Related Topics
Meta-Slots Rules
Methods Why Attribute

22 Language Reference

COMPARE Function

COMPARE Function

Definition

The COVPARE function is used in expressions to compare data values for
equality or inequality. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax

The function consists of the word COVMPARE followed by two arguments in
parentheses:

COVPARE(X, Y)

Arguments

Each argument may be any arbitrary expression. The expressions may
include patterns or interpretations.

The argument values may be of any type, but the types must be comparable
(either both the same or both numeric). If one is an integer and the other
floating point, the integer will be converted to an equivalent floating point
value before comparison.

Result

The function returns an integer result expressing the relation between the
two argument values:

m Ifthe firstargument (x) is less than the second (y), the function result is
-1

m If the arguments are equal, the function result is 0.
m If x is greater than y, the function result is 1.

Integers and floating point values are compared numerically, strings
lexically, and dates and times chronologically. In string comparisons,
equivalent upper- and lowercase letters (such as A and a) are considered
identical. In boolean comparisons, TRUE is considered greater than FALSE.

If the argument values are not of comparable types, the function result is
NOTKNON.

Examples

The following examples illustrate the results of the COVPARE function:

COVPARE(365, 240) =1
COVPARE(98.6,98.6) = 0
COVPARE(12, 12. 0) =0
COVPARE(12, 12. 3) = -1
COVPARE(" Hunpty", "dunpty") = 1
COVPARE(" boo", " booj unt') = -1
COVPARE(" ABC', " xyz") = -1
COVPARE(" abc", " XYZ") = -1

COVPARE(" shazam ", " SHAZAM ") =0
COVPARE("", " SHAZAM ") = -1
COVPARE(DATE(1776, 7, 4) , DATE(1789, 7, 14)) = 1
COVPARE(TI ME(8, 4, 23), TI ME(3, 6, 11)) =1

COMPARE(TRUE, FALSE) = 1
COVPARE(123, "456") = NOTKNOWN

Language Reference 23

Chapter

1

Application Development Features

Related Topics

Expressions Patterns
Data Types Interpretations

Comparison Operators

24

Definition

The comparison operators are used in a rule’s conditions to compare
numerical values, dates, and times, as well as non-numeric values in the
form of slots, strings, and booleans.

Operators

There are six comparison operators:

= Equal

<> Not equal

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

Note: Forthe operators = (equal) and <> (not equal) only, comparisons may
be numeric or non-numeric as described below.

Numeric Operands

All comparison operators provide the means to compare two numeric
values of the same or compatible type. To perform this type of comparison,
the operators take the following two operands:

m The first operand may be any numeric constant, expression, or slot
yielding an integer, floating point, date, or time value, and may include
patterns.

m The second operand may be any numeric constant, expression, or slot
yielding an integer, floating point, date, or time value, and may include
patterns. It can also include KNOWN, NOTKNOWN, and
UNKNOWN.

For the operators = (equal) and <> (not equal) only, the second operand may
be a list of numbers separated by commas. Comparisons involving dates
and times, must use the Date or Time function to yield a constant value.

Note that a private slot used in the second operand is ignored unless the
comparison operator appears in a method specifically triggered for the slot.
See the description of Slots for more information about using private slots.

Language Reference

Comparison Operators

Non-Numeric Operands

The operators = (equal) and <> (not equal) also allow comparison for
equality between non-numeric values of the same or compatible type. To
perform this type of comparison, the = and <> operators take the following
two operands:

m The first operand can be either the name of a slot or a list of slots
specified by a pattern.

m The second operand can be a list of one or more string or boolean
constants separated by commas, or a single slot (patterns are not
allowed). It can also include KNOWN, NOTKNOWN, and
UNKNOWN.

Note: If the second operand is a slot, it must be of the same type defined for
the first operand.

Result

The result produced by a comparison operator is TRUE, FALSE, or
NOTKNOWN depending on whether the stated relation exists between the
two operands. If the first operand includes a pattern, the condition tests
whether at least one of the values in the corresponding list (for an existential
pattern) or all of them (for a universal pattern) satisfy the given relation.

In the case of the operators = (equal) and <> (not equal), string constants
listed in the second operand are recorded as possible values of the given
slot, and will be presented as suggested options when requesting a value
from the user for that slot.

Numeric Examples

The following are examples of conditions using the comparison operators to
test numeric equality that involves variables, constants, and expressions:

> tenperature 98.6

<= item11.quantity * item1.cost 10000
<= <ltenp.quantity * <ltemp.cost 10000
<= {Iten}.quantity * {lten}.cost 10000

= swi t ch. nunber 8, 14, 22

> item1.quantity * item1.costmx_cost

Non-Numeric Examples

The following are examples of conditions using the = (equal) and <> (not
equal) comparison operators to test strings and boolean constants:

val ve_1. pressure "i ncreasi ng"

val ve_1. pressure "increasing", "stabl e"
<Val ve>. pressure KNOWN

{Val ve}. pressure UNKNOWN, NOTKNOWN

<> val ve_1. pressure "i ncreasing"
<> val ve_1. pressure "increasing", "stabl e"
<> <Val ve>. pressure KNOWN

<> {Val ve}. pressure UNKNOWN, NOTKNOWN

Notice that the special values KNOWN, UNKNOWN, and NOTKNOWN
are not written with string quotes ("...").

Language Reference 25

Chapter 1

Application Development Features

Conditions

26

The following are examples of conditions using the = (equal) and <> (not
equal) comparison operators to test the equality between two slots:

item11. quantity
max_quantity

<ltenmp. quantity
{Iten}.quantity

<> item1. quantity
<> max_quantity

<> <ltenmp. quantity
<> {Iten}.quantity

max_quantity
iteml.quantity
max_quantity
max_quantity
max_quantity
item1.quantity
max_quantity
max_quantity

The following pattern matching statements are not valid comparisons and
are illegal constructions due to the use of two dissimilar classes:

<itemA>. quantity

= <itenB>. quantity
= <itemA>. quantit

<i tenB>. avai | abl e_anount

Related Topics

Rules Floating Point Constants
Conditions Patterns

Slots Expressions

Data Types Boolean Expressions

DATE Function
TIME Function

Integer Constants
Boolean Constants
String Constants

Definition

A condition expresses a test to be performed on the left-hand side of arule or
method, helping to determine whether the rule or method is satisfied.
Conditions in methods are optional.

Syntax

A condition consists of an operator followed by one or two operands. The
possible operators are:

Yes Wite

No Creat eObj ect
= Del et ehj ect
<> Menber

< Not Merber

<= LoadKB

> Unl oadKB

>= Reset

Assi gn Show

Execut e Strat egy
Retri eve endMessage

The exact number and form of the operands varies from one operator to
another; see the sections on individual operators for details.

Language Reference

Conditions

Rule Evaluation

The list of conditions within a rule is normally evaluated sequentially, in the
order they appear in the rule definition; this evaluation order may be altered
by the inference priorities of the data involved.

For the rule to be satisfied, all of its conditions must evaluate to TRUE. The
conditions are thus implicitly linked by the logical “and” operator. To
achieve the effect of a logical “or,” use separate rules leading to the same
hypothesis.

The system executes one of two different lists of consequent actions (Then
and Else) for the same rule depending on whether the rule is satisfied or not.

Method Evaluation

The list of conditions is optional for methods. If no conditions are present,
the system automatically executes the Then actions list when the method
itself is triggered. If method conditions are present, the system executes one
of two different lists of consequent actions (Then and Else) depending on
whether the method is satisfied or not.

For the method to be satisfied, all of its conditions must evaluate to TRUE.
The conditions are thus implicitly linked by the logical “and” operator. To
achieve the effect of a logical “or,” use backward chaining on separate rules.

If present, conditions within a method are always evaluated sequentially, in
the order they appear in the method definition; unlike rule conditions this
evaluation order is not altered by the inference priorities of the data
involved.

Forward Chaining

Depending on the inference strategy options currently in effect, the
evaluated data item or pattern in a condition may be forward-chained to the
conditions of other rules that share the same data. In order for the
hypothesis of another rule to be placed on the agenda for consideration, the
forwarded data must make the condition of the target rule TRUE. This form
of forward chaining is known as semantic gates. Methods are not affected
by shared data because they do not have hypotheses to be considered for
evaluation, nor can a condition in a method trigger forward chaining to
another rule or method through a gate.

The system does not forward-chain the results of the Assign action triggered
from the rule or method conditions list. However, depending on the
inference strategy options currently in effect, the Retrieve and Execute
actions triggered from the rule or method’s conditions list may be
forward-chained. See the Retrieve Operator and Execute Operator topics
for details.

Data that belongs to a private slot cannot trigger forward chaining since
private slot data cannot appear in the conditions or actions of rules. Only
data that belongs to public slots can trigger forward chaining.

Language Reference 27

Chapter

1

Application Development Features

Examples

The following examples illustrate conditions that can appear in a rule or
method:

= car. col or “blue”, “red”, “yellow
Yes Question_Answered OR Info_Retrieved

Related Topics

Rules Comparison Operators
Methods Boolean Constants
Hypotheses Inference Priority Attribute
Actions Semantic Gates

Slots Inference Strategy

Forward Chaining

Also see the sections on individual operators by name, as listed above.

Context Links

28

Definition
A context link (also called a weak link) is an explicit connection defined

between two hypotheses to direct the course of the inference process. It is
the only possible link between two knowledge islands.

Creation

Context links are always created interactively, via the New and Copy
commands in the Context editor.

Deletion

Context links are always deleted interactively, via the Delete command in
the Context editor.

Operation

Each time a hypothesis is investigated in the course of inference processing
and its value (TRUE, FALSE, or NOTKNOWN) is determined, the Rules
Element finds any other hypotheses that are connected to it via context links
and places them on the agenda for later consideration. When these
hypotheses come to the top of the agenda, their values in turn will be sought
by backward chaining.

Asymmetry

Context links are one-directional: that is, a link from hypothesis A to
hypothesis B does not also imply a link from B to A. For the connection to
operate in both directions, two separate context links must be explicitly
defined.

Precedence

Hypotheses generated as a result of context links have lower precedence
(and consequently are placed lower on the agenda) than those generated
either by backward chaining or via semantic gates. When several

Language Reference

COS Function

hypotheses are placed on the agenda via context links, their precedence is
determined according to their respective inference priorities.

Related Topics

Hypotheses Backward Chaining

Rules Forward Chaining

Boolean Constants Inference Priority Attribute
Inference Semantic Gates

Agenda

COS Function

Definition

The COS function is used in expressions to find the cosine of a floating point
number. The expression can appear on the left-hand side or right-hand side
of rules and methods.

Syntax

The function consists of the word COS followed by a single argument in
parentheses:

COS(x)

Argument

The argument may be any expression yielding a numerical result. The
expression may include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to
an equivalent floating point value.

Result

The function returns a floating point result equal to the cosine of the
argument. The argument is assumed to be expressed in radians.

If the argument expression does not produce a numerical value, an error
message is posted and the function result is NOTKNOWN.

Examples

The following examples illustrate the results of the COS function:

COS(0. 0)
CoS(3.14 / 3)
CoS(3. 14 1 2)
COos(3. 14)

I nn
' OO
. Oouo
o

Related Topics

Expressions SIN Function
Floating Point Constants TAN Function
Integer Constants ACOS Function
Patterns COSH Function
Interpretations

Language Reference 29

Chapter

1 Application Development Features

COSH Function

Definition

The COSHfunction is used in expressions to find the hyperbolic cosine of a
floating point number. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax

The function consists of the word COSH followed by a single argument in
parentheses:

COSH(x)

Argument

The argument may be any expression yielding a numerical result. The
expression may include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to
an equivalent floating point value.
Result

The function returns a floating point result equal to the hyperbolic cosine of
the argument.

If the argument expression does not produce a numerical value, an error
message is posted and the function result is NOTKNOAN.

Examples

The following examples illustrate the results of the COSH function:

COSH(0. 0) = 1.0
COSH(0. 5) =1.12
COSH(- 0. 5) =1.12
COSH(1.0) = 1.54
COSH(- 1. 0) = 1.54
Related Topics
Expressions Interpretations
Floating Point Constants SI NH Function
Integer Constants TANH Function
Patterns COS Function
CreateObject Operator
Definition

30

The Creat e(bj ect operator is used in the conditions and actions of a rule
or method to create dynamic objects in the course of inference processing,
or to link existing objects to new including classes or parent objects.

The operator has an equivalent Rules Element application programming
interface routine (NXP_Cr eat e(bj ect) and Rules Element Execute
Library routine (Cr eat ebj ect s).

Language Reference

CreateObject Operator

Operands
The Cr eat ehj ect operator takes one or two operands:

m The first operand is the name of an object or class and is usually
specified as an interpretation of a slot.

m The optional second operand is a list of one or more class or object
names separated by commas. Classes and objects may be mixed in the
same list.

Either or both operands may include patterns or interpretations.

Effect

The object designated by the first operand is made an instance of each class
and a component (subobject) of each object named in the second operand.
If no object exists with the given name, a new one is created belonging to the
given classes and parent objects.

If the first operand is a class rather than an object, it is made a subclass of
each class named in the second operand.

If either operand includes a pattern, the operation applies separately to each
object in the corresponding list.

Dynamic objects can have either public or private slots as determined by the
parent object’s slot attribute.

Any unknown name occurring in either operand will be created implicitly
at compile time. Names enclosed within verticalbars (| . . . |)will
automatically be created as classes; otherwise, the application developer
will be prompted to identify the name as either a class or an object.

Dynamic objects and links created with the Cr eat eCObj ect operator can be
deleted by the Del et eCbj ect operator in the course of evaluating a rule or
method. Additionally, dynamic objects and links exist only for the duration
of the session in which they are created, and are automatically destroyed by
the Quit or Restart Session commands.

Examples
If what s_hi s_nan® is a string slot whose value is Rover then the action
Creat eObj ect \ what s_hi s_nane\

creates a new object named Rover , belonging to no particular class or
parent object.

If Dog is the name of a class and ny_pet s is an object, then

Cr eat e(bj ect Rover Dog, my_pets

makes the object Rover an instance of Dog and a component of my_pet s.
Creat eObj ect | Poodl e Dog

makes the class Poodl e a subclass of Dog.

If what s_hi s_nan® is a string slot whose value is Rover then

Creat eObj ect 'Good_A d_'\whats_his_nanme\ Dog
creates an object named Good_0 d_Rover belonging to class Dog.

Creat eObj ect < nmy_pet s>| Ani mal |

Language Reference 31

Chapter

1

Application Development Features

makes every component of object my_pet s an instance of a new class
named Ani nal .

If my_fam |y isan object,

Cr eat e(bj ect ny_house< ny_famly>

links the existing object named my _house to every component of
ny_famly.

Creat eQbj ect <my_pet s> <Dog>

links every component of object my _pet s to every instance of class Dog.

Related Topics

Objects Actions
Dynamic Objects Conditions
Classes Slots

Rules Patterns
Methods Interpretations
Del et e(hj ect Operator

Data Types

32

Definition

Data types are the most basic units of information with which the Rules
Element can work. There are six such types:

m | nt eger (32 bit whole numbers)

m Fl oat (64 bit floating point numerical values)
m Bool ean (logical values)

m String (sequences of text characters)

m Dat e (calendar dates and times of day)

m Ti nme (intervals of duration)

There is also a seventh type named Speci al , representing the union of the
other six: that s, a property of this type can take on values belonging to any
of the other six elementary types. The use of this type is limited to the
special property Val ue, used to carry the data value associated directly
with an object itself. No other property can ever be defined to be of type
Speci al .

Special values

All slots of a newly created object are initialized to the special value
UNKNOWN, denoting a value that has not yet been determined. Another
special value, NOTKNOWN, denotes a value that is definitively stated to be
unspecified as one of the givens of the problem. An UNKNOWN value can be
resolved to a specific data value as a result of further inference or
computation. A NOTKNOAN value can never be so resolved; its
indeterminacy is an intrinsic condition of the problem itself. Both UNKNOWN
and NOTKNOWN may be modified with the Assi gn operator.

Language Reference

Data Validation Attribute

Related Topics

Objects String Constants
Properties DATE Function
Integer Constants TIME Function
Floating Point Constants Val ue Property
Boolean Constants Assi gn Operator

Data Validation Attribute

Definition
Data Validation is used to predetermine an acceptable numeric range, list of

strings, or more complex constraint for a slot or property whose value is
determined at runtime.

Syntax

Data validation has three attributes. You can specify all or none as required
for an individual slot. The attributes have the following syntax
requirements:

Function You can specify a boolean expression to check the
validity of the value entered for the slot. The slot
must be referenced by SELF. Operators such as
AND, OR, and NOT can be used, as well as any
standard functions such as RANDOM The functions
DATE and Tl ME should be used to specify data and
time values.

Note: A compilation error will occur if you specify
the slot by name; SELF must be used when
referencing the slot displayed by the Meta-Slot
editor.

Execute You can specify an external routine installed
through the Rules Element application
programming interface call NXP_Set Handl er to
specify more complex constraints. The routine
must return TRUE or FALSE.

Error Help You can customize the alert dialog help string. It
can be made dynamic by using the @/() and
@BELF syntax. If no help string is specified, the
system displays a default alert window with the
options ABORT, ALLOW and RETRY.

Data validation expressions can include pattern matching in order to match
values against a list. Examples of such a validation function include:

SELF. VALUE = <O ass>. prop
SELF.item = <itens>. nane

This example requires SELF. VALUE to match at least one of the objects in
the class specified with the property given. The SELF variable is useful
when the data validation attribute is inherited by the children of the object
whose slot includes the validation function. The system replaces the SELF
variable with the name of the object which inherits the validation function.

Language Reference 33

Chapter

34

1

Application Development Features

The list generated by the existential or universal pattern used in a validation
function cannot be reduced by further patterns since it is local to the data
validation expression.

If you specify an external routine in the “Execute field,” the system will
automatically pass the slot name, the proposed value, and the result if any
of the evaluation of the “Function field” expression to the routine. In turn
the routine will return its decision to accept or reject the proposed value for
the slot.

Private slots can be the subject of a data validation test, but cannot be used
in the validation of another slot. Public slots have no such restriction.

Creation

Data validation is specified via the Dat a Val i dat i on fields in the
Meta-Slot editor in the case of the individual slot. Data validation can also
be specified via the Property editor in the case of an individual property.
Both editors provide the same attributes.

Default

By default data validation is disabled by a strategy at the global level. The
strategy must be enabled in order for the system to process data validation
expressions defined in the Meta-Slot or Property editors.

Strategy

You can enable or disable all data validation functions at two separate
levels:

End User Validation When the value of the slot for which a data
validation function exists is solicited from the end
user through a question window.

Engine Validation When the value of the slot for which a data
validation function exists is provided during the
inferencing session by one of the assignment
operators (Assign, Execute, and Retrieve).

Both types of data validation are normally disabled by default, but can be
modified if necessary globally through the Strategy Monitor window (from
the Expert menu) or locally through the St r at egy operator in a rule or
method. Both provide the following options:

OFF (default) No data validation checking of the values entered.

ON/ACCEPT Accept the value entered when the data validation
expression contains a slot not yet evaluated.

OFF/REJECT Reject the value entered when the data validation

expression contains a slot not yet evaluated.

Operation

Data validation is either enabled or disabled as determined by the strategy
currently in effect. If it is enabled and the system receives a value from the
end user or determines a value through an Order of Sources for example,
the inference engine processes the data validation attributes for the slot in
guestion. If no data validation expression has been defined for the slot, the
system will first try to inherit the data validation attributes of the slot’s

Language Reference

Date Formats

parent class or object and then try the property of the slot. Finally, if the
system determines that an incorrect value has been supplied, an alert dialog
with the default help string appears:

New val ue <val ue> for slot <slot> doesn’'t satisfy <test>.

You can customize the text of the alert dialog by using the @/() and @SELF
syntax.

Inheritance

Inheritability of data validation attributes is controlled by the inference
engine. The search for inheritable data validation attributes occurs from the
more specific to the more general. If no data validation expression or
execute routine has been defined for the slot, the system will try to inherit
the data validation attributes of the slot’s parent class or object. If none is
available at the parent level; it will check at the property level.

Examples

The following example illustrates the data validation function:
SELF. quanti ty*Departnent.factor < Departnent.threshold

Related Topics

Meta-Slots St r at egy operator
Properties DATE Function
Patterns TI ME Function
Slots SELF

Date Formats

Definition

A date format specifies the representation of a date value in text form for
input and output purposes.

Syntax

This section defines the syntax of format elements for dates only. See the
section titled “Formats” for the syntax of formats in general.

The following special characters are meaningful in date formats:

Y,y Year field

M m Month or minute field
D, d Day field

H, h Hour field

S, s Second field

Note: Itis important to use spaces between the format characters. For
example, “dd mm yy” is a valid format, whereas, “ddmmyy” is not.

Language Reference 35

Chapter

36

1

Application Development Features

The meaning and usage of these fields are discussed in the relevant sections
below. Only the first element in the format list is used for output; any
further elements are meaningful for input only.

Like all formats, those for dates may include strings of literal characters
enclosed indouble quotationmarks (" . . . "),andmay also include the
wild-card character (*). Format elements beginning with an exclamation
point (!) are ignored in database transactions; they are meaningful only for
direct interaction with the user via the screen and keyboard.

Year

A series of Ys or ys denotes a year field. Upper- and lowercase letters may
be used interchangeably; the distinction is irrelevant. The following forms
are recognized:

Format Example Meaning
vy 84 Abbreviated year (2 digits)
yyyy 1984 Full year (4 digits)

Uppercase Y and lowercase y may be used interchangeably.

The abbreviated, two-digit form applies to twentieth-century years
(1900-1999) only. On input, only one or two digits are accepted and are
considered to be prefixed implicitly by 19: for example, the input value 84
is interpreted as the year 1984, and 4 as 1904. On output,
twentieth-century years are automatically abbreviated to their last two
digits, but years in other centuries are represented in full: for example,
1990 is represented as 90, but 1492 as 1492. A year field of any length
other than two always denotes a full four-digit year number.

Month

A series of Ms or s denotes a month field unless immediately preceded by
an hour field, in which case it is interpreted as a minute instead (see
“Minute,” below). The following forms are recognized:

Format Example Meaning

MVIVM JANUARY Full month name, all caps

Mrmmm January Full month name, initial cap

nmmm j anuary Full month name, all | ower case

MW JAN Three-letter abbreviation,al | caps
Mrm Jan Three-letter abbreviation, initial cap
nmm jan Three-letter abbreviation, all lowercase
nm 01 Two-digit month number

m 1 One- or two-digit month number

Uppercase Mand lowercase mmay be used interchangeably in the last two
cases. In the last case, the month number is represented in the shortest form
possible, one or two digits depending on the month.

Language Reference

Date Formats

Day
A series of Ds or ds denotes a day field. The following forms are recognized:

Format Example Meaning

DDDD MONDAY Full weekday name, all caps

Dddd Monday Full weekday name, initial cap

dddd nonday Full weekday name, all lowercase
DDD MON Three-letter abbreviation, all caps

Ddd Mon Three-letter abbreviation, initial cap
ddd mon Three-letter abbreviation, all lowercase
dd 01 Two-digit day of month

d 1 One- or two-digit day of month

The three- and four-letter forms represent the day of the week. These forms
are invalid for input; on output, the weekday for a given date is computed
automatically and formatted in the specified form.

The one- and two-letter forms represent the day of the month, and do not

distinguish between uppercase Dand lowercase d. In the one-letter case, the
day number is represented in the shortest form possible, one or two digits
as the case may be.

Hour

A series of Hs or hs denotes an hour field. The following forms are
recognized:

Format Example Meaning
hh 01 Two-digit hour number
h 1 One- or two-digit hour number

The distinction between uppercase Hand lowercase h is irrelevant. In the
one-letter case, the hour number is represented in the shortest form
possible, one or two digits as the case may be.

Minute

A series of Ms or s, immediately preceded by an hour field, denotes a
minute field. (If not preceded by an hour field, it is interpreted as a month
instead; see “Month,” above.) The following forms are recognized:

Format Example Meaning
mm 01 Two-digit minute number
m 1 One- or two-digit minute number

The distinction between uppercase Mand lowercase mis irrelevant. nn the
one-letter case, the minute number is represented in the shortest form
possible, one or two digits as the case may be.

Second

A series of Ss or ss denotes a second field. The following forms are
recognized:

Format Example Meaning
Ss 01 Two-digit second number
S 1 One- or two-digit second number

Language Reference 37

Chapter

1

Application Development Features

The distinction between uppercase S and lowercase s is irrelevant. In the
one-letter case, the second number is represented in the shortest form
possible, one or two digits as the case may be.

Examples

The format

Dddd, Mmmd, yyyy " at " hh:mm ss; mmdd-yy hh: nm ss
will output dates in the form

Thur sday, Decenber 18, 1984 at 13:43:07
and will accept them as input in the form
12-18-84 13:43:07

The format

DDD D MW YY; ml dd/ yy

will output dates in the form

THU 18 DEC 84

and will accept them as input in the form

12/ 18/ 84

Default

The default system format for dates is defined in the ckbr es. f or nat
module in the file nxr un. dat . The standard default format is
Mrm dd yyyy hh:mm ss;mm dd yy hh: mm ss; Mim dd yyyy; mm dd yy

This format will output dates in the form
Dec 18 1984 13:43:07

and will accept them as input in any of the forms

Dec 18 1984 13:43:07
12 18 84 13:43:07
Dec 18 1984

12 18 84

Related Topics

Formats TI ME Function
Format Attribute Time Formats
DATE Function

DATE Function

38

Definition

A date is a Rules Element data value representing a calendar date, optionally
also including a time of day. See also the TI ME Funct i on topic.

Language Reference

DATEZ2FLOAT Function

Syntax
A date constant can be specified in either of two formats, similar to those for
times (see the TIME Function topic):

DATE(year, nonth, day)
DATE(year, nonth, day, hour, ninute, second)

The parameters year, month, day, hour, minute, and second are integer
values falling within the following ranges:

0 < year < 32767
1 < nonth < 12

1 < day < 31

1 < hour < 24

1 < mnute < 60

1 < second < 60
For example,

DATE(1904, 6, 16)

denotes the date 16 June 1904, and
DATE(1981, 6, 8, 21, 8, 46)
denotes 8 June 1981 at 9:08:46 p.m.

Expressions

Dates and times can be combined arithmetically in various ways. You can
add or subtract two time intervals to produce a third interval representing
their sum or difference, subtract two dates to find the interval between
them, or add or subtract a date and a time to produce another date. You can
also multiply or divide a time by a number (integer or floating point). In
summary, here are the valid arithmetic operations on dates and times:

time + tinme yields time
time - tine yields time
date - date yields time
date + tine yields date
date - tine yields date
number * tinme yields time
time * nunber yields time
time / nunber yields tinme

Related Topics

TI ME Functi on MONTH Function

Data Types DAY Function

Expressions VEEKDAY Function

Date Formats YEARDAY Function

YEAR Function NOWFunction
DATE2FLOAT Function

Definition

The DATE2FL QAT function is used in expressions to convert a date to an
equivalent floating point value. The expression can appear on the left-hand
side or right-hand side of rules and methods.

Language Reference 39

Chapter 1 Application Development Features

Syntax

The function consists of the word DATE2FLQOAT followed by a single

argument in parentheses:

DATE2FLOAT(d)

Argument

The argument may be any expression yielding a date result. The expression

may include patterns or interpretations.

Result

The function returns a floating point result representing the number of

seconds from midnight, 1 January 1970, to the given date d. If the date is

earlier than 1970, the result will be negative.

Examples

The following examples illustrate the results of the DATE2FL QAT function:

DATE2FLOAT(DATE(1981, 6, 8, 21, 8, 46)) = 360882526. 0

DATE2FLQOAT(DATE(1904, 6, 16)) = -2068416000. 0

DATE2FLOAT(" 16 June 1904") = NOTKNOMN

Related Topics

Expressions Interpretations

DATE Function FLOAT2DATE Function

TI ME Function TI ME2FLQAT Function

Patterns DATE2STR Function

DATE2STR Function

Definition

The DATE2STRfunction is used in expressions to convert a date value to an

equivalent character string. The expression can appear on the left-hand side

or right-hand side of rules and methods.

Syntax

The function consists of the word DATE2STR followed by one or two

arguments in parentheses:

DATE2STR(d)

DATE2STR(d, f)

Argument

Each argument may be any expression yielding a result of the appropriate

type:

m The first argument (d) is the date to be converted.

m The optional second argument (f) is a string specifying the format
under which the firstargument is to be converted. See the Date Formats
topic for the syntax and meaning of this string.

The argument expressions may include patterns or interpretations.

40 Language Reference

DAY Function

Result

The function returns a string result representing the date value of argument
d, converted according to format f . If no format argument is given, the
default system format for dates (defined in the ckbr es. f or rat module in
the file nxr un. dat) is used.

Examples

The following examples illustrate the results of the DATE2STR function:

DATE2STR(DATE(1904, 6, 16)) = "Jun 16 1904 00: 00: 00"

DATE2STR(DATE(1904, 6, 16), "mf d/ yy") = "6/ 16/ 04"

DATE2STR(DATE(1904, 6, 16) , " Dddd, Mmm dd, yyyy") =
"Thur sday, June 16, 1904"

Related Topics

Expressions Patterns

String Constants Interpretations

DATE Functi on DATE2FLQAT Function
TI ME Function STR2DATE Function

Date Formats

DAY Function

Definition

The DAY function is used in expressions to extract the day field of a date or
time. The expression can appear on the left-hand side or right-hand side of
rules and methods.

Syntax

The function consists of the word DAY followed by a single argument in
parentheses:

DAY(d)

Argument

The argument may be any expression yielding a date or time result. The
expression may include patterns or interpretations.

Result

The function returns an integer result equal to the day field of the argument.
For date arguments, the result ranges from 1 to 31.

If the argument expression does not produce a date or time value, an error
message is posted and the function result is NOTKNOAN.

Examples

The following examples illustrate the results of the DAY function:

DAY(DATE(1492, 10, 12)) = 12
DAY(DATE(1981, 6, 8, 21, 8, 46)) =8
DAY(TI ME(8, 4, 23)) =0
DAY(TI ME(3, 6, 11, 22, 34, 17)) =11
DAY(" Cct ober 12, 1492") = NOTKNOWN

Language Reference 41

Chapter 1 Application Development Features

Related Topics

Expressions HOUR Function

DATE Function M NUTE Function

TI ME Function SECOND Function

Patterns WEEKDAY Function

Interpretations YEARDAY Function

YEAR Function NOWFunction

MONTH Function

DeleteObject Operator

Definition

The Del et ebj ect operator is used in a condition or action of a rule or

method to remove instances from a class or components from a parent

object.

Operands

The Del et eQhj ect operator takes one or two operands:

m The first operand is the name of an object or class.

m The second operand is a list of one or more class or object names
separated by commas. Classes and objects may be mixed in the same
list.

Either or both operands may include patterns or interpretations.

Effect

If there is one argument and the object is a dynamic object, then the object is

deleted. Otherwise, the link is destroyed between the object designated by

the first operand and each class or parent object named in the second
operand. The object itself is not destroyed, only the link between it and the
designated classes or parents.

If the first operand is a class rather than an object, it is removed as a subclass

of each class named in the second operand.

If either operand includes a pattern, the operation applies separately to each

object in the corresponding list.

Any unknown name occurring in either operand will be created implicitly

when the rule is compiled. Names enclosed within vertical bars

(0 . . . |)willautomatically be created as classes; otherwise, the

application developer will be prompted to identify the name as either a class

or an object.

Instance and component links destroyed with the Del et eCbj ect operator

are eliminated only for the duration of the session in which they are deleted.

If the underlying object was created dynamically (with the Cr eat ebj ect

operator), it will automatically be destroyed by the Quit or Restart Session

commands; if it was created explicitly (for example, via the Object editor), it
will continue to exist and its original instance and component relationships
will be restored by those commands.

42 Language Reference

Dynamic Data Exchange

Examples

If Dog is the name of a class and Fi do and ny_pet s are objects, then
Del et e(bj ect Fi do Dog, nmy_pet s

removes Fi do as an instance of Dog and as a component of my_pet s.
If Poodl e is a subclass of Dog,

Del et eCbj ect Poodl e Dog

eliminates the subclass relationship.

If what s_hi s_nane is a string slot whose value is Rover , then

Del et ebj ect ' Good_d d_'\whats_hi s_nane\ Dog
removes the object named Good_Q d_Rover from class Dog.
Del et ehj ect <ny_pet s> Ani mal

removes every component of my_pet s from class Ani mal .
If my_fam |y isan object,
Del et eCbj ect ny_house <ny_famly>

destroys the links between the object my _house and every component of
my famly.
Del et eCbj ect < ny_pet s> <Dog>

destroys all links between the components of object ny_pet s and the
instances of class Dog.

Related Topics

Objects Actions

Dynamic Objects Conditions

Classes Patterns

Rules Interpretations

Methods Cr eat e(bj ect Operator

Dynamic Data Exchange

This topic addresses DDE calls. The Rules Element is shown both as a client
and as a server for DDE conversations. It contains the following topics.

Introduction

Dynamic Data Exchange (DDE) is a Microsoft Windows communication
protocol. Using DDE, a Windows application (the client) starts up a second
Windows application (the server), passes data, uses the functions of the
server, and calls for results. An application can be engaged in several DDE
“conversations” at the same time, acting as the client in some and as the
server in others.

DDE Conversations

The syntax of a DDE message is based on the following pattern:
Qperation Topic Argunents

Language Reference 43

Chapter

44

1

Application Development Features

where:
Operation is either Request, Poke, or Execute.
Topic (of the conversation) depends on the application.
Example: it can be the name of a spreadsheet file if Excel is the server.
Arguments depends on the operation.

Rules Element-Based Application as a DDE Client

A Rules Element application is the client and initiates a DDE conversation
with the server application. The Rules Element kernel currently supports
three DDE calls in the Execute library: DDE_Poke, DDE_Request and
DDE_Execute. The arguments to the DDE_ execute call (@STRING and
@ATOMID which are edited in the Execute Dialog) depend on the type of
the call and are documented below.

Note: to copy the names, you can use the central column “Select Execute”
pop-up menu in the Rule or Method editor of the Rules Element
development environment.

Execute “DDE_Poke”

DDE_Poke copies a value from the Rules Element memory into the
designed remote reference of the server application. The Atoms argument
contains the data to be passed to the server. The String argument contains
the names of the DDE Application, the Topic, and the remote reference,
separated by spaces. The data to be passed can also be passed as a fourth
argument in the string line.

Note: In the case of Excel, remote references should be indicated using the
format R1C1 rather than Al.

Execute “DDE_Request”

DDE_Request copies a value from a designed remote reference into a Rules
Element slot. The Atoms argument contains the slot where the value will be
pasted. The String argument follows the same syntax as DDE_Poke. The
remote reference argument can also be passed in the Atoms argument as the
value of a second slot.

Execute “DDE_Execute”

DDE_Execute passes commands from a Rules Element application to the
remote application. The Atoms argument does not carry information. The
String argument contains the names of the DDE Application, the Topic, and
the command string to be execute by the server, separated by spaces. The
syntax of the command string depends on the server and is usually
documented in the server manuals.

Rules Element-Based Application as a DDE server

When a Rules Element application is used as a server in a DDE conversation,
the Rules Element will respond to Execute, Poke and Request messages
from other client applications using the DDE protocol as published by
Microsoft. The topic of the conversation must be “DDE”. How to generate
those DDE messages will be described in your client application manuals.

Language Reference

Dynamic Data Exchange

In the case of an Execute message, the Rules Element will recognize the
following commands (not case sensitive):

Command Action Syntax

EXE _cl ear Clear All KB EXE_clear()

EXE_| oad Load KB EXE_load(KBName)

EXE restart Restart EXE_restart()

EXE_run Knowcess EXE_run()

EXE_suggest Suggest EXE_suggest (hypoName)
EXE_vol unt eer Volunteer EXE_volunteer (atomName, value)

When running the Rules Element as a DDE server, you might want to
prevent the Rules Element from coming in front of your client window and
getting the Windows input focus. This can be achieved by adding the
following lines to the WIN.INI file in your Windows root directory

[Smartelt]
banner =of f

Note: DDE initialization messages should be sent to the application called
by the Rules Element. You might need to rename your Rules
Element-based application to Intelligent Rules Element, if you want
the client to start up the Rules Element-based application.

Excel Examples

Excel™ is a popular spreadsheet application (similar to Lotus 1-2-3) from
Microsoft. Both the Rules Element applications and Excel support DDE.
Two Excel examples, DATA and WEATHER, are included with the
development kit which use DDE features. The examples are contained in
the directory EXAMPLES\EXCEL

Excel version 5 Notes

Starting in Excel version 5, the REQUEST(B5, “advi ce.str”) macro
cannot be used to retrieve the string. Use instead DDESpy . exe to show that
the value is correctly sent to Excel.

Also, with Excel 5, in order to execute an Excel macro remotely from within
the Rules Element, you must name the macro in Excel using the option:
Name Define from the Insert menu of Excel.

Rules Element as an Excel DDE client

In the example called Data, the Rules Element plays the client role in a DDE
conversation. The Rules Element uses the functionality of Excel to place
datain acell, get data from another cell after an Excel calculation is remotely
performed, and finally has Excel display a graph showing results of the
previous operations.

To run the Data demonstration:

m Start Excel, close Sheet 1, and open DATA.XLW.

m Start the Rules Element, load DATA.TKB, and open the list of DATA.

Language Reference 45

Chapter

46

1

Application Development Features

m Minimize the Program Manager and arrange the windows so they can
all be seen as on the next figure. Please note that the value in cell R3C3
is 1 and that the total of columny is 5.

m With the window focus on the Rules Element, do a Restart, Suggest, and
Knowcess to see the Rules Element put value 5 in cell R3C3, get the new
total of 12 in the slot total.num from cell R6C3, and display a graph with
the updated value.

Note: It happens that a "DDE Execute failed" message appears and that the
Excel icon or title bar blinks after doing the execute. With the current
version of Excel 4.0, we are not getting an acknowledgment to the DDE
Execute Operation from Excel, even though the command is correctly
executed.

The Rules Element commands used in this example are described as
follows:

Execut e (“DDE_Poke”) (@WAI T=TRUE; GATOM D=cont ent . num @TRI NG=
“Excel DATA. XLS R3C3";)

puts the string content.num (previously set to “8”) into the cell designated
in the STRING.

Execute (“DDE_Request”) (@W T=TRUE; @GATOM D=t ot al . num @TRI NG
="Excel DATA. XLS R6C3";)

asks Excel for the content on cell R6C3 and places it in the slot total.num.

Execute (“DDE_Execute”) (@W T=TRUE; @TRI NG="Excel DATA. XLM
[RUN("R1C1")] [BEEP()]";)

tells Excel to run the macro contained in DATA.XLM.

: SMART ELEMENTS
ile Edit App Expert Network Report Windows

i Mlcrosoﬂ Excel
File Edit Formula Format Data

i Macro Window

Options content.num: Unknown|

DATAXLM
1

2 3
% ¥

GRAPH
=OPEN("data.xIc")
=RETURNI]

Rules Element as an Excel DDE server

In the example called WEATHER, the Rules Element plays the server role in
a DDE conversation. Excel volunteers data in the Rules Element, runs the
inference engine (Knowcess), and writes the value of a Rules Element slot in
acell.

m Start the Rules Element.

m Start Excel, close Sheet 1, and open WEATHER.XLW. Then select cell
B1 (or R1C2) in WEATHER.XLM to run the macro (select the option
Run from the Macro Menu).

Language Reference

Dynamic Objects

m The Excel sheet prompts you for several answers to questions.
Successively answer:
OK to the Run window,

Rainy or Sunny to the weather condition and RETURN,

As a result of the DDE conversation, the cell R10C2 now displays the
appropriate advice given by the Rules Element. You can see the data being
displayed both in the Rules Element and in Excel by arranging the windows
such as in the next figure. Check the option Display Formula of the Options
menu in Excel on WEATHER.XLM macro sheet to see some of the
commands that activate the Rules Element functions. Some of these
commands are as follows:

=I NI TIATE(“Intel ligent Rules Elenment”,” DDE")

is the Excel macro to initiate a DDE conversation. Following DDE calls will
refer to this conversation by its cell address, which is B5 in this case. The
program the Rules Element needs to be already running. Note that the name

is Intelligent Rules Element so that if your runtime is Rules Element-based
only you will not need to change the Excel sheet.

EXECUTE(B5, “EXE_clear()”)
passes the command EXE_clear to be executed by the Rules Element.

Consequently, the Rules Element will clear all databases that might be
loaded at the time.

=REQUEST(B5, "advi ce.str")

is a DDE Excel Macro to request data from the Rules Element advice.str slot.
=TERM NATE(B5)

ends the DDE conversation.

The following figure shows the Rules Element as a server with Excel.

Dynamic Objects

Definition

MGrasatEN SE ~ LIST OF DATA]

= File Edi Formula Format Data Options i advice. str: Unknown | ab_ |

Macro Window Help: i —';‘:—

1 B1 . Weather ADVISOR 1 ah”|

A B i

1 |To start select cell B1 Weather ADVISOR. |kl _]

2 |and do Macro/run Lmn_J

<1 . opn_|

4 |Options/Display/Formulas _gtr_

5 |[toggles between the formulas 0 uvy |

6 |and their value, TRUE [w |

7 FALSE vz |:

8 LIS B B Che E—— KA
9 TRUE

A dynamic object is one that is created by a condition or action of a rule or
method in the course of inference processing, rather than explicitly by the

application developer.

Language Reference

47

Chapter

1

Application Development Features

Creation

Dynamic objects are created by executing the Cr eat eCbj ect operatorina
condition or action of a rule or method. It also has an equivalent Rules
Element application programming interface routine (NXP_Cr eat eObj ect)
and Rules Element Execute Library routine (Cr eat ebj ect s).

The name of such an object need not be fixed in advance, but may be
constructed dynamically from the value of a slot, using an interpretation:
for example, if what s_hi s_nan® is a string slot whose value is Rover,
then

CreateObject 'Good_dAd_'\whats_his_nane\ | Dog|

creates a dynamic object named Good_QO d_Rover belonging to class Dog.
Dynamic objects can have either public or private slots as determined by the
parent object’s slot attribute.

Lifetime

Dynamic objects are temporary, existing only for the duration of the session
in which they are created.

Display

When displayed on the screen (for example, in the Object editor, Object
Network, or List of Objects), the name of a dynamic object is preceded by a
plus sign in parentheses to indicate its dynamic nature:

(+) Good_A d_Rover
Deletion

The Del et eCbj ect operator deletes dynamic objects. They are
automatically deleted by the Quit or Restart Session command ending the
session in which they are created.

Related Topics

Objects Actions

Classes Slots

Rules Cr eat e(bj ect Operator
Methods Del et etnj ect Operator
Conditions Interpretations

Execute Operator

48

Definition

The Execute operator is used in rules and methods to invoke
externally-written procedures or routines from the Rules Element library.
See Chapter Two, “Execute Library Routines” for details about individual
routines.

Language Reference

Execute Operator

Operands
The Execut e operator takes one or two operands:

m The first operand is a string constant or an interpretation which
evaluates to a string constant (using the @/(obj ect . pr op) syntax)
specifying the name of the external procedure to be invoked.

m The optional second operand consists of a series of execution
parameters controlling the invocation of the procedure.

Parameters

The second operand may include the following parameters:

@BTRI NG A string constant to be passed to the external
procedure as an argument.

@A\TOM D A list of objects, slots, or classes to be passed to the
external procedure as an argument.

@' YPE=EXE External procedure is an executable file.

@ YPE=FRM External procedure is a form.

See the Intelligent Rules Element APl Reference for further details on the
meaning and use of these parameters. Note that a private slot passed in the
argument @ATOM D s ignored unless the Execute operator appears in a
method specifically triggered for the slot. See the description of Slots for
more information about using private slots.

Execute Dialog

When entering an Execut e condition or action in the Rule editor or Method
editor, clicking in the space for the second operand displays a special dialog
box for specifying the execution parameters interactively, rather than by
explicitly typing in the keywords listed above:

Execute |

|\I_

Atoms

Strings |

_| Form Input _| Wait 0K |
_| Executable Cancel |

Effect

The external procedure named as the first operand is executed, using the
argument values specified by the second operand.

Language Reference 49

Chapter

1

Application Development Features

Unless the parameter @ YPE=EXE is specified, the external procedure must
previously have been installed as an execute handler via the Rules Element
application programming interface routine NXP_Set Handl er (described
in the Intelligent Rules Element API Reference).

Result

When the Execut e operator is used in a condition on the left-hand side of
a rule, the return code of the executed procedure is checked; if it indicates
success, the operator’s result is set to TRUE, otherwise to FALSE.

Forward Chaining

Actions and conditions in rules and methods involving the Execut e
operator can forward-chain the new value of the slot to other rules in which
the slot appears in a condition (causing the hypotheses of those rules to be
placed on the agenda for consideration). In the case of the Execute operator,
forward chaining is controlled by the global inference strategy setting from
the Strategy Monitor window (from the Expert menu) and the local strategy
which is always set to CURRENT.

Data that belongs to a private slot cannot trigger forward chaining since
private slot data cannot appear in the conditions or actions of rules. Only
data that belongs to public slots can trigger forward chaining.

Examples

The following are examples of conditions or actions using the Execute
operator:

Execut e "fl apdoodl e"

Execut e "fl apdoodl e" @ TYPE=EXE; @TRI NG=" munbl e";
Execut e" @ (object.prop)"@ ATOM D=fee,|fie|,fo.fum
Related Topics

Rules Properties

Methods Slots

Conditions String Constants

Actions Forward Chaining

Objects Inference Strategy

Classes Execute Routines

Also see the Intelligent Rules Element API Reference for more information
on user-defined external procedures.

Refer to Chapter Two, “Execute Library Routines” for the complete list of
available Rules Element routines.

Execute Routines

50

Definition

Rules Element execute routines are predefined external procedures for
performing common or useful tasks, supplied with the system for use with
the Execute operator.

Language Reference

Execute Routines

Routines

The Rules Element run-time library includes the following routines:

Frame Operations

Set Val ue Get Rel atives
Reset Frane Pr opagat eVal ue
CopyFr ame Creat eQbj ect s
Multi-Value Operations

At omNaneVal ue Test Mul ti Val ue
Set Mul ti Val ue Conput eMul ti Val ue
Get Mul ti Val ue Li nkMul ti Val ue

Sorting and Comparison

RankLi st Pat t er nMat cher
Get Li st El em Uni fy
Fi ndLi st El em

Session Control

Cont r ol Sessi on Message

Jour nal WiteTo
Utility Operations

At onExi st Fi | eExi st
Par se Cr eat eReport

Each of these routines is fully described in its own section of this manual.
Refer to Chapter Two, “Execute Library Routines.”

Invocation

Execute routines are invoked by using the Execut e operator in a condition
or action of a rule or method. The first operand to this operator is a string
constant giving the name of the desired library routine; the second operand
is a string consisting of a series of execution parameters to control the
routine’s operation.

Parameters

Two standard execution parameters are used to specify the arguments of a
library routine:

m The @TRI NG parameter passes a single string argument. If two or
more such arguments are needed, they can be combined to form a
multi-value and passed as a single argument; see the section
“Multi-values” for more information.

m The @GATOM D parameter passes a list of objects, properties, or classes
(typically specified via a pattern) for the library routine to operate on.

The specific usage of these parameters varies from one library routine to
another, and is described in the section on each individual routine.

Note private slots must not be passed in the @ATOM D and @STRI NG
parameter of the Execute routines. See the description of Slots for more
information about using private slots.

Result

All execute routines return a result of TRUE if the call is successful, FALSE if
an error occurs.

Language Reference 51

Chapter

52

1

Application Development Features

Dynamic Values

Individual atoms (objects and object properties) can be evaluated
dynamically within the @TRI NG parameter by enclosing them within
parentheses, preceded by the characters @/ (for “value™). The atom’s
current value will then be substituted into the @TRI NG parameter before
execution.

For example, if Ducks. st art contains the multi-value string Donal d,

Dai sy and Ducks. nor e contains Huey, Dewey, Loui e,thena

condition or action of the form

Execut e " Conput eMul ti Val ue" @\TOM D=Ducks. start;
STRI NG=" @/ALUE=

@/(Ducks. mor e) , @GQUNI ON,
@RETURN=Ducks. al I ";

is equivalent to

Execut e " Comput eMul ti Val ue" @\TOM D=Ducks. start;
@TRI NG=" @/ALUE=Huey,
Dewey, Loui e, @NI ON,
@RETURN=Ducks. al | ";
and will set the value of Ducks. al | to the string Donal d,
Dai sy, Huey, Dewey, Loui e (the union of @ucks. st art and
@ucks. nore).

Strategy Options

Many execute routines include an optional parameter named @TRAT as
part of their @TRI NGparameter. This parameter is used to control the
volunteering strategy for any value assignments made during the routine’s
execution. It can be set to any of the following options:

SET Store value immediately, but do not forward.
FWRD Queue value for later forwarding if global strategy

Forward Acti on- Ef f ect s iscurrently enabled.
SETFWRD Combines both SET and FWRD options.

If no explicit @STRAT parameter is specified, the SET option is assumed by
default.

Error Handling

Certain global flags can be used to control the handling of errors and tracing
information by the built-in execute routines. All of these are boolean-valued
objects whose Val ue properties contain the relevant flags:

SYS_ALERTFLAG Report errors with alert handler
SYS_TRANSFLAG Report errors in transcript
SYS_TRACEFLAG Report trace messages in transcript
SYS_BEEPFLAG Beep on error

SYS_STOPFLAGS top session on error

These objects should be defined in a separate knowledge base so that they
can be loaded in any session.

Language Reference

EXP Function

Related Topics

Conditions Execut e Operator
Actions Patterns

Rules Val ue Property
Methods Multi-Values

Slots Inference Strategy

String Constants

Also see Chapter Two, “Execute Library Routines” for a detailed
description of the routines.

EXP Function

Definition

The EXPfunction is used in expressions to find the natural (Napierian)
exponential of a floating point number. The expression can appear on the
left-hand side or right-hand side of rules and methods.

Syntax

The function consists of the word EXP followed by a single argument in
parentheses:

EXP(x)
Argument

The argument may be any expression yielding a numerical result. The
expression may include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to
an equivalent floating point value.

Result

The function returns a floating point result equal to X, the exponential of
the argument to the Napierian base e (= 2. 71828).

If the argument expression does not produce a numerical value, an error
message is posted and the function result is NOTKNOAN.

Examples

The following examples illustrate the results of the EXP function:

EXP(0.0) = 1.0

EXP(0.5) = 1.64 (= SQRT(2.71))
EXP(1.0) = 2.71

EXP(-1.0) = 0.36 (= 1/ 2.71)

Related Topics

Expressions Patterns
Floating Point Constants Interpretations
Integer Constants LN Function

Language Reference 53

Chapter 1 Application Development Features
Expressions
Definition
An expression represents a computation to be performed on one or more
elementary data values. Expressions can appear on the left-hand side or
right-hand side of rules and methods. The system uses the expression result
to complete the condition or action in which the expression appears.
Binary operators
Numerical (integer and floating point) values can be combined using the
standard arithmetic operators:
+ -
The result of integer division is truncated toward zero. For example:
19/ 5= 3
-19/ 5 =-3
19/ -5 =-3
-19/ -5 =3
The arithmetic operators can also be applied in certain limited ways to date
and time values; see the DATE Function and the TIME Function topics for
details.
Boolean Operators
Numeric or string comparisons can be combined using the standard
boolean operators when the result of the expression is a boolean value.
AND OR NOT
For example, the following expression has two requirements:
(x<10) AND (x>0)
Type conversion
If both operands to a binary operator are of the same type (integer or
floating point), then the result is also of that type. If the operands are of
different types, the integer operand is converted to floating point and the
operation produces a floating point result. For example:
1 /! 2 + 8 = 0 + 8 = 8
1 !/ 2 +80 =0 +80 = 8.0
1.0/ 2 + 8 = 0.5+ 8 = 8.5
1 / 2.0 + 8 = 0.5+ 8 = 8.5
If an operand or function argument is not of the proper type or has the
special value NOTKNOWN (denoting a value definitively stated to be
unspecified), then the result of the expression is NOTKNOAN.
Precedence
The multiplication and division operators (* and /) take precedence over
addition and subtraction (+ and -). Thus the expression
2 +3* 4
is evaluated as
2 +(3* 4) =14
54 Language Reference

Expressions

rather than as

(2 +3) * 4=20

Operators of the same precedence associate to the left: for example, the

expression

371 9
is evaluated as
(3* 7)1 9

rather than as

3% (71 9)

Functions

The following functions are built into the Rules Element and can be used

1]
w

*
o

freely in expressions:

Mathematical

ABS ROUND

SI GN CEl L
FLOOR MOD

SI N ASI N
cos ACOS

TAN ATAN
SQRT EXP

POW LN

LOG RANDOMSEED
Statistical

SUM AVERAGE
PROD VAR
STDEV

Dates and Times

DATE TI MVE
YEAR HOUR
MONTH M NUTE
DAY SECOND
Strings and Lists

LENGTH STRFI ND
STRLEN SUBSTRI NG
STRCAT CHARFI ND
Conversion

STR2| NT STR2DATE
| NT2STR DATE2STR
STR2FLOAT STR2TI ME
FLOAT2STR TI ME2STR
STR2BOCL FLOAT2I NT
BOOL2STR

Related Topics

Data Types

DATE Function

Also see the sections on individual functions by name, as listed above.

Language Reference

I
)
[
~
©

1

COVPARE

M N
SI NH

TANH

RAND
RANDCM
RANDOMVAX

NOW
WEEKDAY
YEARDAY

STRUPPER
STRLOVNER

FLOAT2DATE
DATE2FLOAT
FLOAT2TI ME
TI ME2FLCAT

TI ME Function
Boolean Expressions

55

Chapter

1 Application Development Features

FLOAT2DATE Function

Definition

The FLOAT2DATE function is used in expressions to convert a floating point
to an equivalent date value. The expression can appear on the left-hand side
or right-hand side of rules and methods.

Syntax

The function consists of the word FLOAT2DATE followed by a single
argument in parentheses:

FLOAT2DATE(x)

Argument

The argument may be any expression yielding a numerical result. The
expression may include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to
an equivalent floating point value.
Result

The function returns a date result equivalent to the specified number of
seconds (x) past midnight, 1 January 1970, rounded to the nearest second.
If the argument value is negative, the result will be a date earlier than 1970.

Examples

The following examples illustrate the results of the FLOAT2DATE function:

FLOAT2DATE(250000000) DATE(1977, 12, 3, 12, 26, 40)
FLOAT2DATE(- 777777777.7) = DATE(1945, 5, 9, 22, 37, 2)

FLOAT2DATE(" 1234567. 89") NOTKNOWN

Related Topics

Expressions Interpretations

DATE Function DATE2FLQOAT Function
TI ME Function FLOAT2TI ME Function
Patterns

FLOATZ2INT Function

56

Definition

The FLOAT2I NT function is used in expressions to convert a floating point
number to an equivalent integer value. The expression can appear on the
left-hand side or right-hand side of rules and methods.

Syntax

The function consists of the word FLOAT2I NT followed by a single
argument in parentheses:

FLOAT2I NT(x)

Language Reference

FLOAT2STR Function

Argument

The argument may be any expression yielding a numerical result. The
expression may include patterns or interpretations.

Result

The function returns an integer result which is equal to the integral portion
of the argument. Thus if the argument is positive, it returns the FI oor of
the argument (as an integer), and if the argument is negative, it returns the
Cei | of the argument (as an integer).

Examples

The following examples illustrate the results of the FLOAT2I NT function:

FLOAT2I NT(3. 0) 3
FLOAT2I NT(5. 68) 5
FLOAT2I NT(- 4. 54) -4

Related Topics

Expressions Interpretations
Patterns Fl oor Function
Cei | Function

FLOAT2STR Function

Definition

The FLOAT2STRfunction is used in expressions to convert a floating point
value to an equivalent character string. The expression can appear on the
left-hand side or right-hand side of rules and methods.

Syntax
The function consists of the word FLOAT2STR followed by one or two
arguments in parentheses:

FLOAT2STR(x)
FLOAT2STR(x, f)

Argument

Each argument may be any expression yielding a result of the appropriate
type:

m The first argument (x) is the floating point number to be converted.

m The optional second argument (f) is a string specifying the format

under which the first argument is to be converted. See “Floating Point
Formats” for the syntax and meaning of this string.

Argument x may also yield an integer value, which will first be converted
to floating point and then to a string. The argument expressions may
include patterns or interpretations.

Language Reference 57

Chapter

1

Application Development Features

Result

The function returns a string result representing the numeric value of
argument x, converted according to format f . If no format argument is
given, the default system format for floating point numbers (defined in the
ckbres. f or mat module in the file nxr un. dat) is used.

Examples
The following examples illustrate the results of the FLOAT2STR function:

FLOAT2STR(98. 6) = "98.6"
FLOAT2STR(- 273) = "-273.0"
FLOAT2STR(1234. 5, "k, u. 0") ="1,234.5"
FLOAT2STR(0. 9944, "%u. 00\ "% "") = "99. 44%
Related Topics

Expressions Floating Point Formats
String Constants Patterns

Integer Constants Interpretations
Floating Point Constants STR2FLQAT Function

FLOAT2TIME Function

58

Definition

The FLOAT2TI MEfunction is used in expressions to convert a floating point
value to an equivalent time. The expression can appear on the left-hand side
or right-hand side of rules and methods.

Syntax

The function consists of the word FLOAT2TI ME followed by a single
argument in parentheses:

FLOAT2TI ME(x)

Argument

The argument may be any expression yielding a numerical result. The
expression may include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to
an equivalent floating point value.
Result

The function returns a time result equivalent to the specified number of
seconds (x), rounded to the nearest second.

Examples

The following examples illustrate the results of the FLOAT2TI ME function:

FLOAT2TI ME(1234567. 89) TI ME(O, 0, 14, 6, 56, 7)
FLOAT2TI ME(- 1234567. 89) TIME(O, O, - 14, - 6, - 56, - 7)
FLOAT2TI ME(" 1234567. 89") NOTKNOWN

Language Reference

Floating Point Constants

Related Topics

Expressions Interpretations

DATE Function TI ME2FLOAT Function
TI ME Function FLOAT2DATE Function
Patterns

Floating Point Constants

Definition

A floating point constant is a sequence of characters that stand directly for a
floating point (real number) value.

Syntax

A floating point constant consists of one or more decimal digits (0-9),
including a decimal point (.). It may optionally be preceded by a sign (+ or
-) and/or followed by a decimal exponent. It may not include embedded
spaces or commas. The decimal point is required in order to distinguish
floating point from integer constants. The exponent, if present, is
introduced by the letter E or e and may have an optional sign of its own,
which is independent of the sign of the number itself.

The number after the letter E or e must be a constant (a slot is not allowed)
and if used within a complex arithmetic expression, parentheses should be
used:

3. 09E- 3* PON Densi tyConvrtr. Densityln, 2)
is ambiguous and should be written instead as:
(3.09E-3)*(PON DensityConvrtr.Densityln, 2))

Examples

The following are valid floating point constants:
2.718281828 38.0

-273.18 38.

+98. 6 0.38

6. 02e23 .38

+125e3 - 125E+3 125e-5 -125E-5
1. 25e+5 -1. 25E5 +1. 25E-3 -1. 25e-3
125000. 0 -125000. . 00125 -0. 00125

The following are not:

Xyz Not a number

38 Integer, not floating point

62. 5% Contains an invalid character
$1. 98 Contains an invalid character
125 000. Contains an embedded space
125, 000. Contains an embedded comma
125e2.5 Exponent not an integer

Related Topics

Data Types Integer Constants
Floating Point Formats Expressions

Language Reference 59

Chapter 1 Application Development Features

Floating Point Formats

Definition

A floating point format specifies the representation of a floating point value
in text form for input and output purposes.

Syntax

This section defines the syntax of format elements for floating point
properties only. See the section titled “Formats” for the syntax of formats in
general.

The following special characters are meaningful in floating point formats:

k Use next character as thousands separator
u Suppress leading zeros

0 Placeholder for required digits

d Placeholder for significant digits

% Convert to percentage

The integral part of the number is represented by a series of zeros (0)
specifying the minimum number of places preceding the decimal separator.
The first nonzero character following this series defines the character to be
used for the decimal separator itself, separating the integral and fractional
parts. (This would normally be a period (.) in American or English usage,
acomma (,) in some other countries.) The letter u in place of the zeros limits
the integral part to the smallest number of digits actually needed to
represent the given numerical value.

Following the decimal separator, the fractional part of the number is
represented by a series of Os followed by a series of ds, either or both of
which may be empty. (Notice thatall 0s must precede all ds.) The Os denote
required digits that must always be present; the ds denote optional
additional digits to be included only if significant.

The letter k specifies that the next character following it is to be used as a
thousands separator, dividing the integral part of the number into groups of
three digits. (This would be a comma (,) in American or English usage, a
period (.) or space in some other countries.) If the k is omitted, the integral
part will be set as a solid series of digits, with no separators.

The percent sign (%9 causes the number to be formatted in percentage form
(for example, 0. 25 as 25%.

Like all formats, those for floating point may include strings of literal
characters enclosed in double quotationmarks (* . . . "),and may also
include the wild-card character (*). Format elements beginning with an
exclamation point (!) are ignored in database transactions; they are
meaningful only for direct interaction with the user via the screen and
keyboard.

60 Language Reference

Floating Point Formats

Input

On input, each element in the format list is tried in order until one of them
matches the input text. If no match is found, the input is rejected and an
error message is displayed on the screen. The following conventions apply:

Odd-numbered elements in the format list (the first, third, and so on)
produce a positive result, even-numbered elements (the second, fourth,
and so on) produce a negative result.

Input values of any length are recognized; placeholders (0 and d) used
in the format to specify the number of digits before and after the
decimal separator are ignored.

The specified decimal separator is recognized as separating the integral
and fractional parts of the input value.

The thousands separator, if any, is optional on input.

Strings of literal characters enclosed in double quotation marks must
match exactly, except that no distinction is made between upper- and
lowercase letters.

The wild-card character (*) matches any sequence of zero or more
characters.

If the format includes a percent sign (%, the input supplied is
interpreted as a percentage and is divided by 100 to arrive at the actual
data value. (For example, an input value of 37. 5 produces an actual
data value of 0. 375.)

Output
On output, only the first one or two elements in the format list are used:

Language Reference

The first format element is used for positive and zero values, the second
for negative values; any further elements in the list are ignored. If there
is no second element, the first is used for all output values.

A series of zeros (0) preceding the decimal separator in a format
element specifies the minimum number of digits representing the
integral part of the number. Numbers with integral parts shorter than
this are padded with leading zeros; longer numbers are represented in
full, using more than the specified number of digits.

If the letter u precedes the decimal separator instead of a series of zeros,
the integral part is represented in the minimum number of digits
needed, with no leading zeros.

A series of zeros (0) following the decimal separator in a format element
specifies the minimum number of digits representing the fractional part
of the number. Numbers with fractional parts shorter than this are
padded with trailing zeros. Decimal places represented in the format
by the letter d are included in the output only if they contain significant
digits; trailing zeros in these positions are suppressed.

If the fractional part exceeds the maximum length specified by the
series of Os and ds, it is truncated (not rounded) to the indicated
number of digits.

If a thousands separator is specified (introduced by the letter k), it is
used to separate groups of three digits in the integral part of the
number. No separator is used in the fractional part.

61

Chapter

62

1

Application Development Features

m Strings of literal characters enclosed in double quotation marks are
reproduced exactly in the output.

m Ifthe format includes a percent sign (%), the data value is interpreted as
a percentage and is multiplied by 100 before being output. (For
example, an actual data value of 0. 375 produces an output value of
37.5)

m The wild-card character (*) is ignored on output.

Default

The default system format for floating point is defined in the
ckbr es. f or mat module in the file nxr un. dat . The standard default
format is

0. 0d

denoting at least one digit before and after the decimal point and no
thousands separator.

Examples

The following examples illustrate the use of floating point formats:
Format: "$"k,0.00;"($"k,0.00")";u.d

Value Output Comments

1234.5 $1, 234. 50 Positive uses first element
-1234.5 (%1, 234.50) Negative uses second element
12. 347 $12. 34 Truncated, not rounded

Input Value Comments

$1, 234.5 1234.5 Matches first element
$1234.5 1234.5 Thousands separator optional
($1234.5) -1234.5 Matches second element
1234.5 1234.5 Matches third element
-1234.5 -1234.5 Matches third element

1,234.5 NOTKNOWN No match: first element has a dollar sign,
third has no thousands separator

$ 1234.5 NOTKNOWN No match; space is significant

Format: %00.00d"%";;u.d*

Value Output Comments

0. 062 06. 20% Converted to percentage

0. 2533333 25.333% Third decimal place is significant
-1.23 -123. 00% Exceeds integral length

Language Reference

FLOOR Function

Input Value Comments

6. 20% 0. 062 Matches first element

-123% -1.23 Matches first element

6. 20 6.2 Matches third element; no percentage
conversion

Related Topics

Formats Floating Point Constants

Format Attribute Integer Formats
FLOOR Function

Definition

The FLOORfunction is used in expressions to find the largest whole number
less than a given floating point number. The expression can appear on the
left-hand side or right-hand side of rules and methods.

Syntax

The function consists of the word FLOOR followed by a single argument in
parentheses:

FLOOR(X)

Argument

The argument may be any expression yielding a floating point result. The
expression may include patterns or interpretations.

Result

The function returns a floating point result equal to the largest whole
number less than the argument. Notice that although the result is always a
whole number, it is of type FLOAT rather than | NTEGER. For negative
arguments, the rounding is toward minus infinity, rather than toward zero.

If the argument expression does not produce a numerical value, an error
message is posted and the function result is NOTKNOAN.

Examples

The following examples illustrate the results of the FLOOR function:

FLOOR(3.1416) = 3.0

FLOOR(98. 6) = 98.0

FLOOR(-273.18) = -274.0

FLOOR(- 9. 9) =-10.0

Related Topics

Expressions Patterns
Floating Point Constants Interpretations
Integer Constants CEIl L Function

Round Function

Language Reference 63

Chapter 1 Application Development Features

Format Attribute

Formats

64

Definition

The format attribute associated with a property of a class or object specifies
the representation of its value in text form for input and output purposes.
Syntax

The syntax for format attributes is described under “Formats” and in the
sections on individual format types (such as “Integer Formats”).

Creation

The format attribute for a specific property of an individual class or object
(public or private slot) is specified or edited by typing into the box labeled
For mat in the Meta-Slot editor. When specified, such an attribute overrides
the format (if any) associated with the corresponding general, system-wide
property that might have been specified in the Property editor.

Inheritance

Format attributes cannot be inherited.

Related Topics

Objects Time Formats

Classes Integer Formats
Properties Floating Point Formats
Meta-Slots Boolean Formats

Slots String Formats
Formats Date Formats

Definition

A format specifies the representation of a data value in text form for input
and output purposes.

Creation

Formats can be specified either for a general, system-wide property or for a
specific property of a given class or object (public or private slot). They are
specified or edited by typing into the box labeled For mat in the Property
editor or the Meta-Slot editor, respectively.

Precedence

The applicable format for a given data item is determined according to the
following order of precedence:

1. The format attribute (if any) associated with the specific data item (slot)
2. The format (if any) associated with the corresponding general property

3. The default system format for this data type (defined in the
ckbres. f or mat module in the file nxr un. dat).

Language Reference

Formats

Syntax

A format consists of one or more individual format elements separated by
semicolons (;):

el ement _1; element_2; elenment_3;

The syntax for individual elements depends on the specific data type with
which they are associated; see the sections on individual format types (such
as “Integer Formats”) for details.

All format elements may include strings of literal characters enclosed in
double quotation marks (* . . . "). Such quoted strings will be
reproduced exactly on output and must be matched exactly on input. The
guotes may be omitted if the literal characters do not form a meaningful
combination within the format itself; this practice is discouraged, however,
since the syntax of meaningful format elements may be subject to change in
the future.

On input, an asterisk (*) in any format element acts as a “wild card” that
will match any sequence of zero or more input characters. On output, it is
simply ignored.

Format elements beginning with an exclamation point (!) are ignored in
database transactions; they are meaningful only for direct interaction with
the user via the screen and keyboard.

Special forms

In addition to those for specific data types, format elements may be defined
for the special values UNKNOWN and NOTKNOWN. The syntax is as follows:

@J~=format_string for UNKNOMWN val ues
@\=f ornmat_string for NOTKNOMN val ues

For example, the format

@E"Who knows?"; @\E"¢Qui én sabe?"

defines the strings Who knows? and ¢Qui én sabe? to stand for UNKNOAN
and NOTKNOAN values, respectively. These strings will be used to represent

the corresponding values on output and will be recognized as denoting
them on input.

To avoid disturbing the sequence of odd and even format elements (see
“Input,” below), such special UNKNOAN and NOTKNOWN format elements
should always be placed at the end of the format list.

Input

On input, each element in the format list is tried in order until one of them
matches the input text. If no match is found, the input is rejected and an
error message is displayed on the screen.

For some data types, the identity of the matching format element may affect
the resulting input value:

m For numerical (integer and floating point) data, odd-numbered
elements (el enent _1, el enent _3,...) produce a positive result,
even-numbered elements (el enent _2, el enent _4,...) produce a
negative result.

Language Reference 65

Chapter

1

Application Development Features

m For boolean data, odd-numbered elements produce a TRUE result,
even-numbered elements produce a FALSE result.

m For strings, dates, and times, the identity of the matching element does
not affect the resulting value.

No distinction is made between upper- and lowercase letters in the input
text: for example, the following are all considered identical:

february

February

FEBRUARY
f EbRUArY

If the user presses the space bar while entering input interactively from the
keyboard, the Rules Element will attempt to complete the text automatically
if it can be determined without ambiguity. For example, in entering the
month field of a date, the letters f e will be expanded automatically to
Febr uary; the lettersj u will bring up a dialog window to choose between
June and Jul y.

Output
On output, only the first one or two elements in the format list are used:

m For numerical (integer and floating point) data, el enenT_1 is used for
positive and zero values, el enent _2 for negative. If el ement _2(is
not present, el enent _1 is used for all values.

m Forboolean data, el ement _1 is used for TRUE values, el enent _2 for
FALSE.

m orstrings, dates, and times, el ement _1 is used for all values.

Any remaining elements in the format list are ignored.

Related Topics

Objects Integer Formats
Classes Floating Point Formats
Properties Boolean Formats
Meta-Slots String Formats

Slots Date Formats

Time Formats

Forward Chaining

66

Definition

Forward chaining is the process of propagating the values of public slots
(objects and their properties) to the rules that refer to them, generating new
hypotheses to be placed on the agenda for investigation. Methods are
unable to be the target of forward chaining, but they have the ability to place
the hypotheses of relevant rules on the agenda when public slots are
involved. Private slots cannot initiate forward chaining since their value is
accessible only by a method specifically triggered for the slot and will
therefore not appear in any rule.

Language Reference

Forward Chaining

Invocation

Forward chaining is initiated explicitly by volunteering the value of a public
slot via any of the following commands:

m The Vol unt eer command on the Expert menu.
m The Suggest/ Vol unt eer. .. command on the Expert menu.
m The Vol unt eer. .. command on the windows pop-up menu.

m The Vol unt eer command on the Rule Network, Object Network, or
List of Data pop-up menu.

m The Vol unt eer/ Modi f y command on the List of Objects or List of
Classes pop-up menu.

Each of these commands assigns new values to one or more slots, which can
then forward-chain to any rules whose conditions refer to these slots.

Depending on the strategy options in effect, forward chaining can also occur
implicitly, when values are assigned to hypotheses as a result of inference
processing or to variables by the actions of rules and methods. The list of
forward chaining inferencing processes includes:

m Hypothesis Forward occurs after the evaluation of a subgoal hypothesis
(one that is tested in the condition of another hypothesis).

m Forward Action-Effects occurs after a rule or method action is executed
and the result is shared with another rule condition.

m Semantic Gates occurs after data in a rule condition is evaluated that
makes the condition of another rule TRUE upon propagation.

Operation

After assigning a new value to a public slot, the Rules Element searches for
any existing rules whose conditions refer to that slot. The hypotheses of
these rules are then placed on the agenda for consideration. When the
Knowcess command is issued to begin inference processing, the values of
these hypotheses will be sought by backward chaining. Notice that this can
trigger the evaluation of all rules leading to the given hypotheses, not only
those that refer to the originally volunteered slot.

Data that belongs to a private slot cannot trigger forward chaining since
private slot data cannot appear in the conditions or actions of rules. Only
data that belongs to public slots can trigger forward chaining.

Strategy

Forward chaining during the course of inference processing is subject to the
global and local strategy options currently in effect. Options relevant to this
process include the following:

m Forward confirmed hypotheses

m Forward rejected hypotheses

m Forward notknown hypotheses

m Forward through gates (rules only)

m Forward Action-Effects (rules and methods)

See the Inference Strategy topic for further details.

Language Reference 67

Chapter 1 Application Development Features
In addition to these global (system-wide) and local strategy options,
forward chaining may be further restricted for individual rules by the
values of their inference priorities; see the Inference Priority Attribute topic
for more information.
Related Topics
Hypotheses Agenda
Rules Inference Strategy
Actions Inference Priority Attribute
Slots Assi gn Operator
Boolean Constants Execut e Operator
Inference Ret ri eve Operator
HOUR Function
Definition
The HOURfunction is used in expressions to extract the hour field of a date or
time. The expression can appear on the left-hand side or right-hand side of
rules and methods.
Syntax
The function consists of the word HOUR followed by a single argument in
parentheses:
HOUR(d)
Argument
The argument may be any expression yielding a date or time result. The
expression may include patterns or interpretations.
Result
The function returns an integer result equal to the hour field of the
argument. For date arguments, the result ranges from 0 to 23.
If the argument expression does not produce a date or time value, an error
message is posted and the function result is NOTKNOAN.
Examples
The following examples illustrate the results of the HOUR function:
HOUR(DATE(1492, 10, 12)) =0
HOUR(DATE(1981, 6, 8, 21, 8, 46)) =21
HOUR(TI ME(8, 4, 23)) =8
HOUR(TI ME(3, 6, 11, 22, 34, 17)) =22
HOUR(" Cct ober 12, 1492") = NOTKNOWN
Related Topics
Expressions DAY Function
DATE Function M NUTE Function
TI ME Function SECOND Function
Patterns WEEKDAY Function
68 Language Reference

Hypotheses

Interpretations YEARDAY Function
YEAR Function NOWFunction
MONTH Function

Hypotheses
Definition

A hypothesis is a slot with a boolean value, named on the right-hand side of
a rule to specify the inference to be drawn from the rule’s conditions.

Creation

New hypotheses may be created implicitly, by using a previously undefined
name as the hypothesis of a rule in the Rule editor. On creation, such

hypotheses are initialized to the special value UNKNOAN, meaning that their
value is not yet determined; this setting may be resolved to TRUE or FALSE
as aresult of later processing. An existing boolean-valued object can also be
made into a hypothesis by naming it as such in the hypothesis box of a rule.

Deletion

Hypotheses exist as objects in the Rules Element and can therefore be
removed with the Del et e command in the Object editor. Deleting a
hypothesis also automatically deletes all rules leading to it if deletion is
confirmed in the “Dependencies Warning Dialog Box.”

Access

The current value of a hypothesis is denoted simply by the name of the
hypothesis itself

hypo_nane

(omitting the default Val ue property) or by an object or class name and a
property name separated by a period

obj ect _nan®e. prop_nane
cl ass_nane. prop_nane

(if it is a property of some other object or class).

The value of the hypothesis may be set interactively via the Object editor,
but it is normally computed by the Rules Element as a result of evaluating
one or more rules. This can take place either through backward chaining
(when the hypothesis itself is suggested as a goal to be inferred) or through
forward chaining (when a data value in one of the rule’s conditions is
volunteered).

Related Topics

Objects Boolean Constants
Properties Backward Chaining
Rules Forward Chaining
Conditions Value Property

Language Reference 69

Chapter 1

Identifiers

70

Application Development Features

Definition

An identifier is a sequence of characters used as the name of a Rules Element
atom, such as a rule, method, object, class, or property.

Syntax

An identifier consists of one or more letters (A-Z, a-z), digits (0-9), and
underscores (_), beginning with a letter. It may be up to 255 characters; all
characters are significant. Corresponding uppercase and lowercase letters
are considered identical.

The underscore is a meaningful character and not just a null separator,
which must be typed by the application developer during the editing
session.

In some cases, the class name must be enclosed between vertical bars
(] . . . |)todistinguish it from an object name.

Certain words, notably the names of Rules Element types, operators,
functions, and special values, are reserved by the system and should not be
used as ordinary identifiers. See the Reserved Words topic for a complete
list.

Examples
The following are valid identifiers:

wi dt h TOTAL

Fi ni shed Bt f spl k

t axRat e H2SO4

a_very_long_name_but_still _only_one_identifier

The following are not:

4t 010 Doesn’t begin with a letter.
_width Doesn’t begin with a letter.
Fi ni shed? Contains an invalid character.
tax.rate Contains an invalid character.
tax rate More than one word.

Nane Reserved Wrd.

The following are all considered the same identifier:

taxrate TAXRATE
t axRat e t AxRaTe
TaxRat e

The following are different identifiers:

taxrate tax_rate

Related Topics

Obijects PropertiesReserved Words
Classes Expressions

Language Reference

If Change Method

If Change Method

Definition

An If Change method is an optional method that can be attached to a public
or private slot (property associated with a class or object), defining the
actions to be taken whenever the slot’s value changes during the course of
evaluating a rule or other method.

Structure

The method consists of most importantly a sequential list of actions, similar
to those on the right-hand side of a rule. If desired, the If Change method
can be structured exactly like a rule including a list of conditions on the
left-hand side and two separate consequent lists of actions on the right-hand
side. The conditions listis optional. Like all methods, the If Change method
has no hypothesis component.

Creation

The If Change system method is specified via the Method editor. Creation
begins by selecting the Met hod field and displaying the local popup menu
for the edit line. Choose the Select Method option to view the selection
dialog. Select the option *IfChange from the list (the asterisk in front of the
name distinguishes it from user-defined methods). Or you can also type the
name “IfChange” (one word) in the edit line for the Met hod field. The
structure to which the method is attached is specified in the Att ach To
field. The structure you specify can be a slot, a class, or an object.

Invocation

In the case of public and private slots with an If Change method attached,
the system automatically triggers the method whenever the value of the slot
is changed during the inference process. A strategy option also permits
slots that are reset to UNKNOWNto trigger the method. The If Change method
actions list is executed in sequential order as soon as the value changes.

Optionally the method can be explicitly triggered by a SendMessage
operator during the course of evaluating a rule or other method. This allows
the application developer to trigger If Change actions instead of the
inference engine. In the case of a class or object with an If Change attached,
the SendMessage operator must be used in order to trigger the method, but
it will no longer be dependent on the If Change strategy (and will actually
be treated as a user-defined method by the inference engine).

If no explicit If Change method is specified at the level of the slot, a
substitute method will be sought by downward inheritance from an
including class, superclass, or parent object as directed by the inheritance
strategy currently in effect. See the “Inheritance” section for details.

Operators

The following operators are valid in the conditions and actions of an If
Change method:

Assi gn Execut e

SendMessage LoadKB

Creat eObj ect Unl oadkB
Del et eChj ect Strategy

Language Reference 71

Chapter

72

1

Application Development Features

Retrieve | nhivet hod
Wite Nol nheri t
Reset I nterrupt
Show

Inheritance

If Change methods can only be inherited downward (from a class to its
instances or subclasses, or from an object to its components), never upward.
The search through the parent tree hierarchy is directed by the global
inheritance strategy and can be class or object-first and depth or
breadth-first. Any explicit If Change method defined at the level of the slot
overrides this inheritance behavior; to reincorporate inheritance as part of
such a method, include an explicit call to the | nhMet hod operator. To
prevent the method from being inherited, change the Publ i ¢ option to
Pri vat e in the Method editor.

When an inheritance conflict exists between two parent objects or classes at
the same level, the application developer can use the | nhMet hod operator
to override the default inheritance strategy by specifying the parent object
to begin the search. When the inheritance conflict occurs between two slots
at the same level, the application developer can set the inheritance priority
of the slots to override the default inheritance strategy. If neither approach
is used, by default the system chooses the method attached to the parent
whose name appears first in alphabetic order. However, if the order is
important, it is recommended that you force the method evaluation rather
than rely on the default behavior.

Strategy

Automatic execution of If Change methods is normally enabled by default,
but can be modified if necessary by changing the global inference strategy:

m Interactively through the Strategy Monitor window (from the Expert
menu), by turning off the | f Change Acti ons option (OFF).

m Dynamically during the course of inference processing itself, via the
St r at egy operator in a condition or action of a rule or method, using
the @CACTI ONSON=COFF setting.

m Inaddition to ONand OFF, a third option ON/ UNKNOAN allows the
system to trigger the If Change method not only when the value of the
associated slot changes but also when it is reset to UNKNOAN. Unless this
option is selected, values set to UNKNOAN will not trigger the If Change
method.

Note: The SendMessage operator can be used to explicitly trigger an If
Change method. The method triggered by the SendMessage
operator is not affected by any of the strategy settings and will
actually be treated as a user-defined method by the inference engine.

During the inferencing process the system first uses the St r at egy operator
setting to determine the global strategy, however, it is possible to invoke the
Strategy Monitor window’s If Change setting from the St r at egy operator.
This option is provided by the CURRENT setting in the St r at egy operator
argument dialog box.

Language Reference

Inference

Inference

Related Topics

Objects Inheritance

Classes Inheritance Strategy
Propertie Inference

Actions Inference Strategy

Rules St r at egy Operator
Methods SendMessage Operator
Order of Sources Method | nhiet hod Operator
Slots

Also see the sections on individual operators by name, as listed above.

Definition

Inference is the process of reasoning by which the Rules Element determines
the truth or falsity of hypotheses.

Techniques
The Rules Element uses two main inference techniques:

m Backward chaining begins with a hypothesis whose truth or falsity is to
be determined and works backward to all rules leading to that
hypothesis.

m Forward chaining begins with the value of a public slot and works
forward to all rules whose conditions refer to that slot.

Either technique may generate further hypotheses or data values,
continuing the inference process recursively to greater depths.

Invocation

Inference is initiated by suggesting one or more hypotheses to be
investigated and/or volunteering one or more public slot values to be
propagated. (See the Backward Chaining and Forward Chaining topics for
more information.) These actions determine the agenda that will direct the
course of the inference process; the contents of the agenda may be further
modified dynamically in the course of processing. The Start With...
Knowledge Base command on the Expert menu begins the inference process
itself.

Private slots cannot initiate inferencing since their value is accessible only
by a method specifically triggered for the slot and will therefore not appear
in any rule.

Strategy

Various aspects of the inference process can be controlled or modified
according to the global and local strategy options currently in effect; see the
Inference Strategy topic for details.

Language Reference 73

Chapter

1

Application Development Features

Related Topics

Hypotheses Slots

Rules Backward Chaining
Boolean Constants Forward Chaining
Object Agenda

Properties Inference Strategy

Inference Priority Attribute

74

Definition

An inference priority is a number that defines the priority and behavior of a
hypothesis, rule, or data item during inference processing.

Value

The value of the inference priority must be an integer in the range £32000.

Default

If no inference priority is explicitly defined, its value is 1 by default.

Effects

Inference priorities control the sequence of inference processing in the
following ways:

m When two or more rules lead to the same suggested hypothesis, they
are evaluated in the order of their inference priorities.

m For rules with equal inference priorities, the order of evaluation is
determined by the highest inference priority among the data items
referred to in each rule’s conditions.

m Within a single rule, conditions are evaluated according to the highest
inference priority among each condition’s data items.

m When the Rules Element focuses on a new hypothesis within a
particular inference agenda queue, it focuses on the hypothesis with the
highest inference priority.

In each case, the order of evaluation is from highest inference priority to
lowest.

Strategy Control

Certain specific ranges of inference priorities control the strategic behavior
of a rule during inference processing. The effects of these special inference
priorities are similar to disabling various strategy options (such as For war d
Acti on- Ef f ect s or Forward t hrough gat es), but only for a single
rule, rather than globally for the entire system. The following inference
priorities apply to rules only; the negative values have no effect on
hypotheses and data:

= -32000 to -20001: The rule is completely disabled and can never be
reached during inference processing, either through forward or
backward chaining.

Language Reference

Inference Slot Attribute

m -20000 to -10001: The rule cannot be reached by any form of forward
chaining, whether from the hypothesis of another rule, an action of a
rule or method, a semantic gate, or a data value explicitly volunteered
by the user. Such a rule can be reached only through backward
chaining, when its hypothesis is suggested either explicitly (by the user)
or implicitly (as a subgoal in the investigation of some other
hypothesis).

= -10000 to -5001: The rule cannot be reached by forward chaining
through a semantic gate.

= -5000t0-1001: The rule cannot be reached by forward chaining from an
action in another rule or method.

= -1000 to 32000: The rule’s inference behavior is unrestricted, subject
only to the global strategy options currently in effect.

Creation

A rule’s inference priority is specified viathe | nf erence Priority
Nunber box in the Rule editor; that of a slot (data item or hypothesis) is set
by the I nf Nunber box in the Meta-Slot editor. The inference priority
ranges described above are meaningful only when assigned to a rule
through the Rule editor. Negative values assigned in the Meta-Slot editor
have no effect on inferencing behavior resulting from the evaluation of data
or hypotheses. The Meta-Slot editor in this case is used primarily to control
the order of condition evaluation in a rule or the order of hypothesis
evaluation.

Instead of a single fixed value, the inference priority can be calculated
dynamically by designating an inference slot in the box labeled | nf
Priority Sl ot intheRuleeditororl nf Sl ot inthe Meta-Slot editor. If
present, the value of the inference slot overrides that of the explicit inference
priority.

Related Topics

Rules Inference

Objects Backward Chaining
Properties Forward Chaining
Integer Constants Inference Strategy
Hypotheses Inference Slot Attribute
Conditions Semantic Gates
Actions Methods

Meta-Slots

Inference Slot Attribute

Definition

An inference slot is a public slot whose value determines the priority and
behavior of a hypothesis, rule, or data item during inference processing.

Language Reference 75

Chapter

1

Application Development Features

Value

The inference slot must be an integer public slot (a property of an object or
class) with a value in the range £32000. The negative range of values are
useful on rules and otherwise have no effect on data or hypotheses. Ifitis
the name of an object itself, its value is taken from the special Val ue
property associated with the object.

Default

If no inference slot is defined or the defined slot’s value is UNKNOAN or
NOTKNOWN, the data or rule’s explicit inference priority is used instead.

Operation

If an inference slot is specified, the value of the designated variable will be
used in place of the explicit inference priority in determining the rule’s or
data item’s inference priority and strategic behavior. This allows these
attributes to be calculated dynamically at run time, rather than fixed
unalterably in advance. See the Inference Priority Attribute topic for the
specific meaning and effects of these numbers on rules. If the inference slot
is UNKNOWN, the Rules Element will not try to determine its value (the Rules
Element will use the inference priority or the default value).

Creation

The inference slot is specified via the box labeled I nf Priority Slot in
the Rule editor or I nf Sl ot in the Meta-Slot editor. The slot name
specified must be a public slot; a private slot cannot be used for this
purpose.

Related Topics

Rules Inference

Objects Inference Priority Attribute
Propertie Inference Strategy

Slot Meta-Slots

Integer Constants Val ue Property

Floating Point Constants

Inference Strategy

76

Definition
Inference strategy controls the operation of the Rules Element’s inference

processing and the propagation of results from one inference rule to
another.

Options

The following option selections are available for controlling the system’s
inference strategy. The keyword (preceded by an @ sign) following each
strategy name is the abbreviation recorded in the text knowledge base:

m Forward confirmed hypotheses (@WRUE): Any hypothesis
which is in the context of a TRUE hypothesis will be put on the agenda
for evaluation.

Language Reference

Inference Strategy

Language Reference

Forward rejected hypot heses (@WALSE): Any hypothesis
which is in the context of a FALSE hypothesis will be put on the agenda
for evaluation.

Forward not known hypot heses (@WNOTKNOMW) : Any
hypothesis which is in the context of a NOTKNOWN hypothesis will be
put on the agenda for evaluation.

Rule dobal: Forward action-effects (@FACTI ONS): Any
public slots whose values are changed by an Assign, Retrieve, or
Execute operator involved in conditions or Then actions of a rule will
be propagated forward to all rules that refer to them in their conditions.
Note: The Assign operator never forwards actions from a condition,
and the Retrieve and Execute operators only forward actions from a
condition depending on the forwarding option selected. See each
operator topic for details.

Rul e Else: Forward action-effects (@FEACTI ONS): Any
public slots whose values are changed by an Assign, Retrieve, or
Execute operator involved in the Else actions of a rule will be
propagated forward to all rules that refer to them in their conditions.

Met hod G obal: Forward action-effects (@FMACTI ONS):
Any public slots whose values are changed by an Assign, Retrieve, or
Execute operator involved in conditions or Then actions of a method
will be propagated forward to all rules that refer to them in their
conditions. Note: The Assign operator never forwards actions from a
condition, and the Retrieve and Execute operators only forward actions
from a condition depending on the forwarding option selected. See
each operator topic for details.

Met hod El se: Forward action-effects (@FMEACTI ONS):
Any public slots whose values are changed by an Assign, Retrieve, or
Execute operator involved in the Else actions of a method will be
propagated forward to all rules that refer to them in their conditions.

Forward t hr ough gat es (@°TGATES) : After evaluating arule, the
inference process will propagate via semantic gates to any other rules
with which it shares one or more public slots. The shared data item
must make the condition of the target rule TRUE to be propagated.

Exhaustive eval uation (@XHBWRD): All rules leading to a
suggested hypothesis will always be evaluated, even after the value of
the hypothesis has already been determined by a previous rule.

Enabl e order of sources (@OURCESON): Order of Sources
methods are in effect and will be executed when appropriate. Actions
in Order of Sources methods may result in further inference processing
depending on the current Forward Action-Effects strategy.

Enable if change (@ACTI ONSON) : If Change methods are in
effect and will be executed when appropriate. Actions in If Change
methods may result in further inference processing depending on the
current Forward Action-Effects strategy.

User validation (@/ALI DUSER): Enable validation of input
solicited from the user before input is accepted for inferencing.

Engi ne val i dation (@/ALI DENG NE) : Enable validation of input
given by the system before input is accepted for inferencing (for
example, from an Assign, Execute, or Retrieve).

"7

Chapter

78

1

Application Development Features

Default

All inference strategy options listed above are normally enabled by default.
The default settings can be modified interactively through the Strategy
Monitor window (from the Expert menu) or during the course of evaluating
a rule or method through the St r at egy operator. See Global Control and
Local Control below for details.

Global Control

The inference strategies listed above can be individually controlled through
the Strategy Monitor window (from the Expert menu). The window has a
list of checkboxes and menu buttons which determine whether a strategy is
enabled or disabled. Clicking the mouse in any of the checkboxes toggles
the corresponding strategy setting on or off. The darkened checkboxes
show which inference options are currently enabled; unselected checkboxes
are disabled. In the case of menu button controls, other options in addition
to enabled and disabled are available from a menu that you display by
clicking on the button. The currently displayed setting can be changed by
selecting a new option from the list. During inferencing the settings may be
changed interactively and placed into effect immediately.

Local Control

The system’s inference strategy can be controlled locally during the course
of inference processing via the St r at egy operator in a condition or action
of a rule or method. The St r at egy operator selections override their
corresponding global inference strategy, although the operator can default
to the global strategy. The St r at egy operator uses an arguments dialog
box to control the inference strategies listed above with the following
options:

ON Enables the strategy until the next local strategy
changes the setting.

OFF Disables the strategy until the next local strategy
changes the setting.

CURRENT Invokes the corresponding Strategy Monitor
window setting (from the Expert menu) until the
next local strategy changes the setting.

GLOBAL This option is used to synchronize control of the
individual Forward Action Effects strategies
(@PFEACTI ONS, @PFMACTI ONS, and
@PFMEACTI ONS). with the setting of “Rule Global
Forward Action-Effects” (@FACTI ONS) that
appears in the Strategy Monitor window. For
instance, you can selectively enable or disable Else
actions from a rule, or you can select the GLOBAL
option so the strategy behaves exactly as the rule
Then actions setting.

In addition to the local strategy options described here, the strategic
behavior of individual rules and hypotheses can be controlled by using
certain special values for their inference priorities: see the Inference Priority
Attribute topic for details.

Language Reference

Inheritability Strategy

Related Topics

Hypotheses Semantic Gates

Rules Methods

Strategy Order of Sources Method
Inference If Change Method
Backward Chaining Inference Priority
Forward Chaining St r at egy Operator

Inheritability Strategy

Definition

Inheritability strategy controls the inheritance of properties and their values
from one object or class to another.

Variations

The following forms of inheritance can be controlled:

m Inheritance of property definitions between a class and its subclasses or
instances.

m Inheritance of property definitions between an object and its
components (subobjects).

m Inheritance of property values.

In each of these cases independently, inheritance may be permitted or
forbidden in any direction or combination of directions:

m Downward (from class to subclass, class to instance, or parent object to
component).

m Upward (from subclass to class, instance to class, or component to
parent object).

m Both downward and upward.
m Neither downward nor upward.

m Private and public slots observe the same inheritability strategies. The
private slot attribute controls the accessibility of the slot value and has
nothing to do with inheritability.

Default

The system’s default inheritability strategy permits downward inheritance
only, and only in the first and third cases listed above (property definitions
from class to subclasses or instances, property values). Upward inheritance
and inheritance between objects are disabled.

The default settings can be modified interactively through the Strategy
Monitor window, during the course of evaluating a rule or method through
the St r at egy operator, or at the level of the individual slot. See Global
Control and Local Control below for details.

Language Reference 79

Chapter

80

1

Application Development Features

Global Control

The global inheritability strategy in effect for the entire system can be set
either with the Strategy Monitor window (from the Expert menu) or
through the St r at egy operator in a rule or method, using the options

@ NHCLASSDOWN, @ NHCLASSUP, @ NHOBJ DOWN, @ NHOBJ UP,

@ NHVALDOWN, and @ NHVALUP. In the Strategy Monitor window (from
the Expert menu) the inheritability strategy is controlled by a diagram of the
following form:

Inheritability
i fiir 1l
[cClass || object || wvalue |
ﬂ < 1

Clicking the mouse in any of the various arrows toggles the inheritability
setting for the corresponding form of inheritance. Highlighted arrows show
which inheritability options are currently enabled; those shown in the figure
are for the standard default settings.

Local Control

The global inheritability strategy can be overridden in the case of individual
slots through the Meta-Slot editor. In the Meta-Slot editor the inheritability
strategy of the slot is controlled by a diagram of the following form:

Inheritability

iz

Slot Default |
&

ais

Yalue Default I
W

In this case there are only two sets of arrows, controlling the inheritability
of the slot itself and of its value, respectively. Clicking inside Default button
sets the local inheritability strategy equal to the corresponding global
strategy currently in effect.

The box labeled | ni t Val ue in the Meta-Slot editor lets you predetermine
the value of the slot and specify whether or not it will be inheritable

(Publ i c) or not inheritable (Pri vat e). If an initial value is defined for the
slot, it overrides the inheritability strategy currently in effect.

Related Topics

Objects Meta-Slots

Classes Inheritance
Properties Inheritance Strategy
Rules Strategy

Methods St r at egy Operator

Language Reference

Inheritance

Slots I nhMet hod Operator
Init Value Attribute

Inheritance

Definition

Inheritance is a process by which characteristics of an object or class are
propagated automatically to other, related objects or classes.

Variations

The following kinds of characteristics can be inherited:

m Property definitions

m Property values

m Slot accessible by rules (public slot) or method only (private slot)
m Data validation expression meta-slot or property attribute

m Prompt line meta-slot attribute

m Order of Sources and If Change methods

m Other user-defined methods.

Any of these characteristics can be inherited in the following ways:
m Between a class and its subclasses

m Between a class and its instances

m Between an object and its components (subobjects).

Direction

Inheritance can proceed in either of two directions (except methods and
meta-slots):

m Downward (from class to subclass, class to instance, or parent object to
component)

m Upward (from subclass to class, instance to class, or component to
parent object)

Inheritance normally proceeds in the downward direction; upward
inheritance is less common, but can be useful in some situations. Methods
and meta-slot attributes can only be inherited downward, never upward.

Control

Inheritance takes place under the control of the global strategy settings
currently in effect; see the sections “Inheritance Strategy” and
“Inheritability Strategy” for details. The effects of these global settings are
further modified by the local attributes (inheritance priority, inheritance
slot, inheritance and inheritability attributes) associated with individual
slots.

Additionally, specific inheritance behavior for individual slots can be
defined via the following operators available through methods (the first two
are valid only in Order of Sources methods):

Language Reference 81

Chapter

1

Application Development Features

I nhVval ueUp

I nhval ueDown
I nhMet hod
Nol nheri t

The meta-slot attributes, Data Validation and Prompt Line, are not under
the control of the user; they are always inheritable in the downward
direction. All other meta-slot attributes cannot be inherited including
Format, Priorities, Question Window, and Why.

Related Topics

Objects Inheritance Priority Attribute
Classes Inheritance Slot Attribute
Properties Inheritance Strategy
Meta-Slot Inheritability Strategy
Methods I nhVal ueDown Operator
Order of Sources Method I nhVal ueUp Operator

If Change Method I nhMet hod Operator
Strategy Nol nherit Operator

Inheritance Priority Attribute

82

Definition

An inheritance priority is a number that defines the inheritance priority of a
slot.

Value

The value of the inheritance priority must be an integer in the range
+32000.

Default
If no inheritance priority is explicitly defined, its value is 1 by default.

Operation

In seeking an inherited value for a given slot, the Rules Element will give
precedence to the candidate with the highest inheritance priority, subject to
its global and local inheritability attributes. This principle applies at each
ply of the search tree, under both depth-first and breadth-first inheritance
strategies. The inheritance priority can therefore be used to resolve
inheritance conflicts when a value is sought from multiple slots. Conflicts
between methods attached to slots can also be resolved this way. (Note:
Conflicts between methods attached to classes, objects, or properties must
be resolved through the | nhiet hod operator.)

Creation

The inheritance priority is specified via the | nh Nunber box in the
Meta-Slot editor. Instead of a single fixed value, the inheritance priority can
be calculated dynamically by designating an inheritance slot in the box
labeled | nh Sl ot . If present, the value of the inheritance slot overrides that
of the explicit inheritance priority.

Language Reference

Inheritance Slot Attribute

Related Topics

Objects Inheritance

Classes Inheritance Slot Attribute
Properties Inheritance Strategy
Integer Constants Inheritability Strategy
Meta-Slots Methods

Inheritance Slot Attribute

Definition

An inheritance slot is a public slot whose value determines the inheritance
priority of a slot.

Value

The inheritance slot must be an integer public slot (a property associated
with an object or class) with a value in the range £32000. If it is the name
of an object itself, its value is taken from the special Val ue property
associated with the object.

Default

If no inheritance slot is defined, the system will use the explicit inheritance
priority of the slot whose value is being sought. See the Inheritance Priority
Attribute topic for details.

Operation

If an inheritance slot is specified, the value of the designated variable will be
used in place of the explicit inheritance priority in determining the priority
with which the slot’s value can be inherited by other objects or classes. This
allows the inheritance priority to be calculated dynamically at run time,
rather than fixed unalterably in advance. If the inheritance slot is UNKNOWN,
the Rules Element will not try to determine its value (the Rules Element will
use the inheritance priority or the default value).

In seeking an inherited value for a given slot, the Rules Element will give
precedence to the candidate with the highest inheritance priority, subject to
its local inheritability attributes and the global inheritability strategy
currently in effect. This principle applies at each ply of the search tree,
under both depth-first and breadth-first inheritance strategies. The
inheritance slot can therefore be used to resolve inheritance conflicts when
a value is sought from multiple slots. Conflicts between methods attached
to slots can also be resolved this way. (Note: Conflicts between methods
attached to classes, objects, or properties must be resolved through the

| nhiet hod operator.)

Creation

The inheritance slot is specified by typing the name of the slot into the | nh
Sl ot box in the Meta-Slot editor. The slot name specified must be a public
slot; a private slot cannot be used for this purpose.

Language Reference 83

Chapter

1

Application Development Features

Related Topics

Objects Floating Point Constants
Classes Inheritance

Properties Inheritance Strategy

Slots Inheritability Strategy
Meta-Slots Inheritance Priority Attribute
Integer Constants Val ue Property

Inheritance Strategy

84

Definition

Inheritance strategy controls the order in which a slot value or method is
inherited from its including classes and parent objects. If the same property
can be inherited from more than one source, the strategy determines which
source will actually be used.

Variations

The search for an inherited value of a given property can be conducted in
either of two ways:

m Class-first, examining the classes to which the object belongs before the
parent objects of which it is a component.

m Object-first, examining parent objects before classes.

In either case, the search can proceed in either of two orders:

m Breadth-first, examining all of the object’s immediate classes or parent
objects before any of their own more remote ancestors.

m Depth-first, examining each complete chain of superclasses or
superobijects to its full depth before moving on to the next.

In both breadth-first and depth-first search, the order in which classes or
objects are examined at each ply of the search tree is determined by their
individual inheritance priorities or inheritance slots. In addition, the search
may be constrained by the global inheritability settings in effect or by the
local inheritability attributes of a given slot.

Private and public slots observe the same inheritance strategies. The private
slot attribute controls the accessibility of the slot value and has nothing to
do with inheritance.

Default

The system’s default inheritance strategy is class-first and breadth-first. The
default settings can be modified interactively through the Strategy Monitor
window (from the Expert menu), during the course of evaluating a rule or
method through the St r at egy operator, or at the level of the individual

Language Reference

Inheritance Strategy

slot. In both the global Strategy Monitor window and the Meta-Slot editor,
the inheritance strategy is controlled by the following radio buttons:

Inheritance Strategy

7~ Breadth First
IS ANEBINEE]

Default |

7~ Class First
.~ Object First

Global Control

The global inheritance strategy in effect for the entire system can be set
either with the Strategy Monitor window (from the Expert menu) or via the
St r at egy operator in a rule or method, using the options @ NHBREADTH
and @ NHPARENT. Clicking on the class-first or the object-first checkbox
sets the inheritance strategy as follows, The global inheritance strategy in
effect for the entire system can be set either with the Strategy Monitor
window (from the Expert menu) or via the St r at egy operator in a rule or
method, using the options @ NHBREADTH and @ NHPARENT. Clicking on
the class-first or the object-first checkbox sets the inheritance strategy as
follows, where the diagram on the left represents breadth-first and the
diagram on the right represents depth-first:

Breath-FirstDepth-First

Local Control

The global inheritance strategy can be overridden in the case of individual
slots through the Meta-Slot editor.

Related Topics

Objects Strategy

Classes Inheritability Strategy
Properties Inheritance

Rules Inheritance Priority Attribute
Methods Inheritance Slot Attribute
Slot St r at egy Operator
Meta-Slots

Language Reference 85

Chapter 1 Application Development Features

InhMethod Operator

Definition

The I nhMet hod operator is used in the conditions or actions of methods to
specify downward inheritance of the corresponding method from an
including class, superclass, or parent object. Method inheritability allows
an entire class of objects to share a single method, which is defined once for
the class and automatically inherited by all instances.

Operand

The | nhMet hod operator takes one operand, which can be either the special
reserved word DEFAULT or an explicitly named parent object from which to
inherit the corresponding method.

I nhMet hod DEFAULT
I nhiet hod Par ent Cbj ect Nane

The operand can be an interpretation of the type \ sl ot _nane\ that
resolves to the desired slot ParentObjectName.

Effect

Execution of the method in which the | nhMet hod operator appears is
suspended and an inherited method of the same name is executed. The
method to be executed is sought by downward inheritance only (from class
to instance, class to subclass, or parent object to component), subject to the
global and local inheritance and inheritability strategies currently in effect.
Methods can never be inherited upward. Once the inherited method
finishes executing, the execution of the original, calling method resumes.

This operator also allows the developer to resolve inheritance conflicts by
explicitly naming a parent object in the | nhiMet hod operand. If no method
can be triggered from the named parent object, the search for a
corresponding method begins on the branch to which the object belongs.
When the operand is DEFAULT and no parent object is explicitly named,
inheritance conflicts are resolved based on the alphabetic order of the parent
object names or inheritance priorities in the case of slots. However, if the
order is important, it is recommended that you specify the method
evaluation, rather than rely on the default behavior.

Result

When the | nhMet hod operator is used in a condition on the left-hand side
of a method, the result produced by the operator is TRUE if the method is
inherited, FALSE if a corresponding method does not exist or the parent
object named through the operand has been deleted during the course of the
session.

Example

Let’s assume the following actions appear in a method attached to a
subclass Tri angl es that belongs to a class Fi gur es. The method is
defined as a public one (inheritance enabled) and has the name | ni t :

I nhivet hod Fi gures
Assi gn SELF. wi dt h SELF. hei ght

86 Language Reference

InhValueDown Operator

The first action in this method demonstrates the use of the | nhMet hod
operator to force the evaluation of another method of the same name before
assigning the values. Let’s assume it triggers inheritance from the class
Fi gur es of a public method (also named I ni t) with the following actions

list:
Assi gn SELF. ori gi nx SELF. ori gi nx
Assi gn SELF. ori gi ny SELF. ori gi ny

Because the action in the first method triggers the method of the same name
at the class level (Fi gur es), the subclass Tr i angl es inherits the new
method down from its parent class before completing its own method
actions list. In this case, the class Fi gur es and the subclass Tri angl es
share the same list of properties: ori gi nx, ori gi ny,wi dt h, and hei ght
and the definition of the method | ni t at the parent class avoids duplication
of the initialization actions for its subclasses (or objects) whose properties it
shares.

Related Topics

Objects If Change Method
Classes Inheritance

Conditions Inheritance Strategy
Actions Inheritability Strategy
Methods Inheritance

Order of Sources Method Inheritance Slot Attribute

InhValueDown Operator

Definition

The I nhVal ueDown operator is used in the right-hand side actions of an
Order of Sources method to specify downward inheritance of a public or
private slot’s value from that of a parent class or object.

Operand

The I nhVal ueDown operator is valid only in the THEN actions list on the
right-hand side of an Order of Sources. The | nhVal ueDown operator takes
one operand, which must be the special reserved word DEFAULT.

Effect

The value of the slot to which this Order of Sources method belongs is
sought by downward inheritance (from class to instance, class to subclass,
or parent object to component), subject to the global and local inheritance
and inheritability strategies currently in effect.

Private and public slots both may obtain a value by downward inheritance.
The private slot attribute controls the accessibility of the slot value and has
nothing to do with inheritance.

Language Reference 87

Chapter 1 Application Development Features

Example

The following is the only valid form for an action using the | nhVal ueDown

operator:
I nhval ueDown DEFAULT

Related Topics

Obijects

Classes

Properties

Slots

Action

Methods

Order of Sources Method

InhValueUp Operator

Definition

Inheritance

Inheritance Strategy
Inheritability Strategy
Inheritance Priority Attribute
Inheritance Slot Attribute

I nhVal ueUp Operator

The I nhVal ueUp operator is used in the right-hand side actions of an Order
of Sources method to specify upward inheritance of a public or private slot’s
value from that of an instance, subclass, or component (subobject).

Operand

The | nhVal ueUp operator is valid only in the THEN actions list on the
right-hand side of an Order of Sources. The | nhVal ueUp operator takes
one operand, which must be the special reserved word DEFAULT.

Effect

The value of the slot to which this Order of Sources method belongs is
sought by upward inheritance (from instance to class, subclass to class, or
component to parent object), subject to the global and local inheritance and
inheritability strategies currently in effect.

Private and public slots both may obtain a value by upward inheritance.
The private slot attribute controls the accessibility of the slot value and has

nothing to do with inheritance.

Example

The following is the only valid form for an action using the | nhVval ueUp

operator:

I nhVval ueUp DEFAULT

Related Topics

Object

Classes

Properties

Slots

Actions

Methods

Order of Sources Method

88

Inheritance

Inheritance Strategy
Inheritability Strategy
Inheritance Priority Attribute
Inheritance Slot Attribute

I nhVal ueDown Operator

Language Reference

Init Value Attribute

Init Value Attribute

Definition

An Init Value Attribute can be used to declare an initialization value for
individual public and private slots.

Effect

A slot that has an initial value declared will automatically be initialized to
that value either when the knowledge base file containing the initial value
declaration is loaded or when the state of the system is reinitialized with the
Restart Session command. If the inheritability strategy of the initialized slot
permits, the system automatically propagates the value to the children slots
according to the inheritability strategy defined for the initialized slot.
Whether the slot is public or private has no effect on slot value initialization.

Notice the difference between an initial value and the assignment made
through the RunTi meVal ue operator. The initial value specifies a value to
be set and propagated at system initialization time; RunTi neVal ue
specifies a default value to be set dynamically during inference processing
when processed in the Order of Sources method. Also, no If Change
method is triggered when a slot’s value is determined by an initial value,
whereas RunTi nmeVal ue will trigger the corresponding If Change method.

Creation

The initial value is specified or edited by typing into the box labeled | ni t
Val ue Publicorlnit Value Private inthe Meta-Slot editor. The
supplied value can be a string, integer, or boolean value (including the
keyword NOTKNOWN). String values must appear between double quotes
(“a_string™).

If you want to specify an initial value for a slot that is different from its
parent’s initial value declaration, you can modify the meta-slot attribute
local to the slot. Initial values that are declared locally override any
potentially inheritable initial value declarations.

Inheritance

The value of the slot can be made uninheritable by typing the value into the
Pri vat e box, otherwise type the value in the Publ i ¢ box. The

inheritability of a slot’s initial value when declared overrides either local or
global inheritability strategies currently in effect. An initial value declared
locally also overrides any potentially inheritable initial value declarations.

Related Topics

Boolean Value Methods

Objects Order of Sources Method
Properties RunTi neVal ue Operator
Slots Inheritability Strategy
Data Types Meta-Slots

Language Reference 89

Chapter 1 Application Development Features

INT2STR Function

Definition

The I NT2STRfunction is used in expressions to convert an integer value to
an equivalent character string. The expression can appear on the left-hand
side or right-hand side of rules and methods.

Syntax
The function consists of the word | NT2STR followed by one or two
arguments in parentheses:

| NT2STR(n)
I NT2STR(n, f)

Argument

Each argument may be any expression yielding a result of the appropriate
type:

m The first argument (n) is the integer to be converted.

m The optional second argument (f) is a string specifying the format

under which the first argument is to be converted. See “Integer
Formats” for the syntax and meaning of this string.

Argument n may also yield a floating point value, which will be truncated
to the next lower integer (toward zero) before being converted. The
argument expressions may include patterns or interpretations.

Result

The function returns a string result representing the numeric value of
argument n, converted according to format f . If no format argument is
given, the default system format for integers (defined in the

ckbres. f or mat module in the file nxr un. dat) is used.

Examples
The following examples illustrate the results of the | NT2STR function:

I NT2STR(98) = "98"

I NT2STR(98.6) = "98"

I NT2STR(-98.6) = "-98"

I NT2STR(79, "x") = "4f"

Related Topics

Expressions Integer Formats
String Constants Patterns

Integer Constants Interpretations
Floating Point Constants STR2I NT Function

90 Language Reference

Integer Constants

Integer Constants

Definition

An integer constant is a sequence of characters that stand directly for an
integer (whole number) value.

Syntax

An integer constant consists of one or more decimal digits (0-9), optionally
preceded by asign (+ or -). It must not include embedded spaces, commas,
a decimal point, or an exponent.

Examples
The following are valid integer constants:

6

-27

+441

0

16777216

The following are not:

abc Not a number

6+5 Expression, not a constant
23a Contains an invalid character
16 777 216 Contains embedded spaces
16, 777, 216 Contains embedded commas
98. 6 Contains a decimal point
125e3 Contains an exponent

Related Topics

Data Types Floating Point Constants
Integer Formats Expressions

Integer Formats

Definition

An integer format specifies the representation of an integer value in text form
for input and output purposes.

Syntax

This section defines the syntax of format elements for integer-valued
properties only. See the section titled “Formats” for the syntax of formats in
general.

Language Reference 91

Chapter

92

1

Application Development Features

The following special characters are meaningful in integer formats:
d Decimal representation

X Hexadecimal representation with capital letters
A-F for digit values 10-15

X Hexadecimal representation with lowercase letters
a—f for digit values 10-15

0 significant digits only

Any of these may optionally be followed by a series of zeros (0) defining the
minimum number of digits to be used in representing the number. For
example, the format dO00 denotes a decimal number at least three digits
long.

Like all formats, those for integers may include strings of literal characters
enclosed indouble quotationmarks(* . . . "),and mayalsoinclude the
wild-card character (*). Format elements beginning with an exclamation
point (!) are ignored in database transactions; they are meaningful only for
direct interaction with the user via the screen and keyboard.

Input

On input, each element in the format list is tried in order until one of them
matches the input text. If no match is found, the input is rejected and an
error message is displayed on the screen. The following conventions apply:

m Odd-numbered elements in the format list (the first, third, and so on)
produce a positive result, even-numbered elements (the second, fourth,
and so on) produce a negative result.

m Input values of any length are recognized; zeros (0) used in the format
to specify the number of digits in the data value are ignored.

m In hexadecimal representation, no distinction is made between
uppercase digits A-F and lowercase a—f . Both forms are recognized,
and may even be mixed in the same number; the case explicitly
specified by the format itself (X or x) is ignored.

m Strings of literal characters enclosed in double quotation marks must
match exactly, except that no distinction is made between upper- and
lowercase letters.

m The wild-card character (*) matches any sequence of zero or more
characters.

Output
On output, only the first one or two elements in the format list are used:

m Thefirst format element is used for positive and zero values, the second
for negative values; any further elements in the list are ignored. If there
is no second element, the first is used for all output values.

m Aseries of zeros (0) within a format element specifies the minimum
number of digits to be used in the output representation. Numbers
shorter than this will be padded with leading zeros; longer numbers
will be represented in full, using more than the specified number of
digits.

Language Reference

Integer Formats

m Strings of literal characters enclosed in double quotation marks are
reproduced exactly in the output.

m The wild-card character (*) is ignored on output.

Default

The default system format for integers is defined in the ckbr es. f or mat
module in the file nxr un. dat . The standard default format is

d

denoting decimal representation in the minimum required number of
digits.

Examples

The following examples illustrate the use of integer formats:

Format: d000;;"+"d000;"-"d000

Value Output Comments

23 023 Leading zero to fill

1234 1234 Exceeds specified length

-23 -023 No second element; uses first
Input Value Comments

23 23 Matches first element

-23 23 Matches first element

+23 23 Matches third element

23.0 NOTKNOAN No match; use d000*

Format: "0x"X0000;;d

Value Output Comments

254 Ox00FE Leading zeros to fill

-1 OxXFFFFFFFF Exceeds specified length
Input Value Comments

Oxfe 254 Case is irrelevant

254 254 Matches third element

Format: d000*;"minus "d000*

Value Output Comments

23 023 Leading zero to fill

1234 1234 Exceeds specified length

-23 m nus 023 Negative uses second element
Input Value Comments

23 23 Matches first element

-23 -23 Matches first element

m nus 23 -23 Matches second element

pl us 23 NOTKNOAN No match

23.7 23 No rounding; wild card discards

fractional part

In the last example, notice that both input values (Oxf e and 254) will be
displayed on output as 0OxOOFE.

Language Reference 93

Chapter 1 Application Development Features
Related Topics
Formats Integer Constants
Format Attribute Floating Point Formats
Interpretations
Definition
An interpretation is used in an expression to refer to an object, class, or
property indirectly, via the value of a slot calculated at runtime.
Syntax
Typically, an interpretation can be used wherever an object, class, or
property name would be valid in an expression, although it is specifically
not allowed in the SendMessage operator expression. It consists of the name
of a slot enclosed between backslashes(\ . . . \). It may optionally be
preceded by a string of characters, called the root string, enclosed in single
quotationmarks (* . . . "). Theroot string or the variable name (but
not both) may be empty.
If the slot used in the interpretation is a private slot, the interpretation can
only appear in the method attached to the slot and the SELF keyword must
be used to refer to the private slot name. Interpretations that appear in rule
conditions and actions must be made on public slots.
Meaning
The slot named within the backslashes is evaluated and the resulting string
is substituted in its place in the expression. If the interpretation includes a
root string, it is concatenated together with the value of the slot to form the
required object, class, or property name.
If the slot named between the backslashes is not of type STRI NG its value is
converted into an equivalent string of characters before being used. In
particular, floating point values are truncated to their integer part only,
since the decimal point (.) is not a valid character in an object, class, or
property name.
An interpretation may be embedded within a pattern, but a pattern may not
be embedded within an interpretation.
Examples
The following are valid class, object, or property interpretations:
\whi ch_client\
\whic__client. nanme\
""\whi ch_client\
"tank_'\n\
"tank_'\tank. nurmber\
<|\ conponent _cl ass\ | >
{\ war ehouse. i nventory\}
regul ar _tank_1.\tank. | evel\
auxi liary_tank_1."aux_'\tank.|evel\
‘regul ar_tank_'\tank. nunber\.\tank. Il evel\
\ whi ch_conpany. nane\ .\ whi ch_cl i ent\
94 Language Reference

Interrupt Operator

The following are not valid interpretations:

\whi ch_client Backslashes not balanced.
tank_\ n\ No quotes around root.

" _tank'\n\ Invalid form for identifier.
"tank_'\ men\ Expression inside backslashes.

"part_"\<Part>. nunber\
Pattern inside backslashes.

If the value of enpt y_t ank is the string t ank_3, then the expressions
\enpty_tank\.capacity

and

""\enpty_tank\.capacity

are both equivalent to

tank_3. capacity

Similarly, if both n and t ank. nunber are equal to 3, then
"tank_'\n\.capacity

and

"tank_'\tank. nunber\ . capacity

are again equivalent to

tank_3. capacity

If the value of conponent _cl ass isthe string Swi t ch, then the existential
pattern

<|\ conponent _cl ass\ | >

refers to all existing instances of class Swi t ch. If the value of
war ehouse. i nvent ory isparts_i n_st ock, then the universal pattern

{\ war ehouse. i nventory\}

denotes all components (subobjects) of the objectparts_i n_st ock.

Related Topics

Objects Data Types

Classes Identifiers

Properties Expressions

Slots Patterns
Interrupt Operator

Definition

The I nt er r upt operator is used in the conditions or actions of methods to
interrupt the execution of the method and return control of the system to the
user.

Language Reference 95

Chapter

1

Application Development Features

Operand

The | nt er r upt operator takes one operand, which must be the boolean
constant TRUE. The following is the only valid form for an action using the
I nt errupt operator:

I nterrupt TRUE

Effect

Execution of the method containing the | nt er r upt operator is interrupted,
displaying an alert box with a message. For example, for an Order of
Sources method:

Interrupt in Sources slot of Flap.doodle.
or, for an If Change method:
Interrupt in Action slot of Flap.doodle.

During the interruption, the user is free to activate other windows, edit the
knowledge base, invoke commands, or take any other desired action.
Clicking the Continue button in the session control panel of the Rules
Element main window resumes execution of the suspended method from
the point of the interruption.

Result

When the | nt er r upt operator is used in a condition on the left-hand side
of a method, the result produced by the operator is always TRUE.

Related Topics

Properties Order of Sources Method
Actions If Change Method
Methods

LENGTH Function

96

Definition

The LENGTHfunction is used in expressions to find the number of objects
matching a given pattern. The expression can appear on the left-hand side
or right-hand side of rules and methods.

Syntax

The function consists of the word LENGTHfollowed by a single argument in
parentheses:

LENGTH(p)

Argument

The argument may be any existential pattern with a property name
specified. Universal patterns are not allowed.

Note: The pattern must include a property name or unexpected side-effects
in gating may result. If desired, you can execute your own C routine
to get the number of objects attached to a class.

Language Reference

LN Function

Result

The function returns an integer result equal to the number of objects in the
list corresponding to the given pattern.

Examples

The following examples illustrate the results of the LENGTH function. If
class Cl i ent has 22 instances, object j ob_queue has 12 components, and
object or der s_pendi ng has none, then

LENGTH(<d i ent >. nane) = 22

LENGTH(<j ob_queue>. val ue) = 2

LENGTH(<or der s_pendi ng>) =0

The following expressions are invalid:

LENGTH(<d i ent >) = 22

LENGTH(C i ent) Not a pattern

LENGTH(C i ent. nanme) Not a pattern
LENGTH({Cl i ent}) Uni versal patterns not allowed
Related Topics

Expressions Patterns

Objects Integer Constants

Classes

LN Function

Definition

The LNfunction is used in expressions to find the natural (Napierian)
logarithm of a floating point number. The expression can appear on the
left-hand side or right-hand side of rules and methods.

Syntax

The function consists of the word LN followed by a single argument in
parentheses:

LN(x)

Argument

The argument may be any expression yielding a numerical result greater
than 0. 0. The expression may include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to
an equivalent floating point value.
Result

The function returns a floating point result equal to the logarithm of the
argument to the Napierian base e (= 2. 71828).

If the argument expression does not produce a numerical value, an error
message is posted and the function result is NOTKNOAN.

Language Reference 97

Chapter 1 Application Development Features

Examples

The following examples illustrate the results of the LN function:

LN(0. 0001) =-9.21

LN(1 / 2.71828) = -1.0

LN(SQRT(2.71828)) = 0.5

LN(2. 71828) = 1.0

LN(10000) = 9.21

Related Topics

Expressions Interpretations

Floating Point Constants LOGFunction

Integer Constants EXP Function

Patterns

LoadKB Operator

Definition

The LoadKBoperator is used in the conditions or actions of a rule or method

to load or enable a knowledge base.

Operands

The LoadKB operator takes one or two operands:

m The first operand is a string constant or an interpretation which
evaluates to a string constant (using the @v(object.prop) syntax)
specifying the name of the file containing the knowledge base to be
loaded. It must be between double quotes.

m The optional second operand specifies the knowledge base’s load level,
and must be one of the following:

@.EVEL=ENABLE;

@.EVEL=DI SABLEWEAK;

@.EVEL=Dl SABLESTRONG,

(Note that the closing semicolon is required.) If the second operand is

omitted, a load level of ENABLE is assumed by default.

98 Language Reference

LoadKB Operator

LoadKB Dialog

When entering a LoadKB action in the Rule editor or Method editor, clicking
in the space for the second operand displays a special dialog box for
specifying the load level interactively, rather than by explicitly typing in the

keywords listed above:

Load KB

<~ Enable

. Disable Weak

-~ Disable Strong

Cancel

Effect

The knowledge base named as the first operand is loaded into memory from
a file and given the load level specified by the second operand. Definitions
loaded from the knowledge base are added to those already present in
memory. If the designated knowledge base is already loaded, its load level
is simply changed to that specified by the second operand.

Load Levels

The effects of the various load levels are as follows:

ENABLE:

DI SABLEWEAK:

DI SABLESTRONG

Language Reference

All definitions in the knowledge base are fully
effective and operational, including objects,
classes, properties, rules, and methods.

Obiject, class, and property definitions in the
knowledge base are in effect. Rules and methods
are defined, but are temporarily disabled and
unavailable for inference processing; they can later
be reenabled by specifying load level ENABLE.
Any such disabled rules or methods already on the
agenda remain there and will be processed
normally.

Obiject, class, and property definitions in the
knowledge base are in effect. Rules and methods
are defined, but are temporarily disabled and
unavailable for inference processing; they can later
be reenabled by specifying load level ENABLE.
Any such disabled rules or methods already on the
agenda are removed from the agenda and will not
be processed.

99

Chapter

1

Application Development Features

Examples

The following are examples of actions using the LoadKB operator:

LoadKB "I nventory.tkb"

LoadKB "l nventory. ckb" @.EVEL=ENABLE

LoadKB "I nventory. ckb" @.EVEL=DI SABLEWEAK
LoadkB "@(object.prop)” @.EVEL=DI SABLESTRONG
Related Topics

Rules Properties

Methods Agenda

Actions String Constants

Objects Unl oadKB Operator

Classes

LOG Function

100

Definition

The LOGfunction is used in expressions to find the common (decimal)
logarithm of a floating point number. The expression can appear on the
left-hand side or right-hand side of rules and methods.

Syntax

The function consists of the word LOGfollowed by a single argument in
parentheses:

LOX x)

Argument

The argument may be any expression yielding a numerical result greater
than 0. 0. The expression may include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to
an equivalent floating point value.
Result

The function returns a floating point result equal to the logarithm of the
argument to the base 10.

If the argument expression does not produce a numerical value, an error
message is posted and the function result is NOTKNOAN.

Examples
The following examples illustrate the results of the LOG function:

LOG(0.0001) = -4.0
LO 0. 1) =-1.0
LOG SQRT(10)) = 0.5
LOG(10) = 1.0
LOG(10000) = 4.0

Language Reference

MAX Function

Related Topics

Expressions Patterns

Floating Point Constants Interpretations

Integer Constants LN Function
MAX Function

Definition

The MAXfunction is used in expressions to find the largest of a set of values.
The expression can appear on the left-hand side or right-hand side of rules
and methods.

Syntax

The function consists of the word MAX followed by any number of
arguments in parentheses:

MAX(x1, X2, ..., Xxn)

Arguments

Each argument may be any arbitrary expression. The expressions may
include existential patterns or interpretations; universal patterns are not
allowed.

Argument values may be of any type, but the types must be comparable
(either all the same or all numeric). If some are integers and some floating
point, the integers will be converted to equivalent floating point values
before comparison.

Result

The function returns the largest of the argument values it receives. For
arguments that include patterns, it finds the largest value in the
corresponding list.

Integers and floating point values are compared numerically, strings
lexically, and dates and times chronologically. In string comparisons,
equivalent uppercase and lowercase letters (such as Aand a) are considered
identical. Inboolean comparisons, TRUE is considered greater than FALSE.

If the argument values are not of comparable types, the function result is
NOTKNOWN.

Examples
The following examples illustrate the results of the MAX function:

MAX(365, 240, 577) = 577
MAX(98.6,37.0,-273.18) = 98.6

MAX(12, 12. 0) = 12.0

MAX(12, 12. 3) = 12.3

MAX(12, 11. 7) = 12.0

MAX(" Hi ckory", " Di ckory", " Dock") = "Hickory"
MAX(" boo", "o00j um') = "booj unt
MAX(" ABC', "xyz") = "xyz"
MAX(" abc", " XYZ") = "Xyz"
MAX(" ", " SHAZAM ") = "SHAZAM "

Language Reference 101

Chapter 1 Application Development Features
MAX(DATE(1776, 7, 4) , DATE(1789, 7, 14)) = DATE(1789, 7, 14)
MAX(TI ME(8, 4, 23), TI ME(3, 6, 11)) = TI ME(8, 4, 23)
MAX(TRUE, FALSE) = TRUE
MAX(123, "456") = NOTKNOMW
If class Tank has four instances with capaci ty values of 6. 3,14. 5,12. 9,
and 9. 0, then
MAX(<Tank>. capacity) = 14.5
Related Topics
Expressions Interpretations
Data Types M N Function
Patterns
Member Operator
Definition
The Menber operator is used in the conditions of a rule or method to test
whether an object belongs to a given class or list.
Operands
The Menber operator takes two operands:
m The first operand is either a single object or a list of objects specified by
a pattern.
m The second operand is a list of objects specified by a pattern. This
operand must use the pattern matching syntax.
The second operand is commonly a list of objects satisfying some
qualification or relation, as determined by a prior condition within the same
rule or method.
Result
The result produced by the Menber operator is TRUE if the first operand is
a member of the class or list designated by the second, FALSE if itisn’t. If
the first operand is a pattern, the condition tests whether at least one of the
objects in the corresponding list (for an existential pattern) or all of them (for
a universal pattern) also belong to the second class or list. The contents of
the first list are then reduced to the intersection of the two.
Examples
The following are examples of conditions using the Menber operator:
Mermber t he_st ock <Portfolio>
Member <Portfolio> <Common_St ock>
Menber {Portfolio} <Common_St ock>
Related Topics
Rules Objects
Methods Patterns
Conditions Not Menber Operator
102 Language Reference

Meta-Slots

Meta-Slots

Definition

Meta-slots are attributes associated with a slot (a property associated with a
class or object), governing its inheritability and relationships with the user
interface.

Variations

The following meta-slots can be associated with an individual slot:

m The public/private option controls whether the slot value will be
accessible by rules and methods (public slot) or by methods only
(private slot).

m The inheritance strategy controls the inheritance of the slot’s value from
including classes and parent objects.

m Theinheritability strategy controls the inheritance of the slot and its value
by subclasses, instances, and components.

m The inheritance priority defines the priority with which the slot or its
value can be inherited.

m The inheritance slot allows the inheritance priority to be determined
dynamically at run time, rather than fixed unalterably in advance.

m The inference priority defines the slot’s priority and behavior during
inference processing.

m The inference slot allows the inference priority to be determined
dynamically at run time, rather than fixed unalterably in advance.

m The format attribute defines the way in which the slot’s value is
displayed on the screen.

m The prompt line attribute defines the text to be displayed on the screen
when requesting the slot’s value from the user. This meta-slot can be
inherited downward.

m The why attribute allows you to customize the Why information for a
particular slot.

m The comment attribute helps document the slot’s meaning or usage for
the benefit of the application developer.

m Theinitvalue field specifies an initialization value for the individual slot
to be used when the knowledge base is loaded. The inheritability
strategy of this meta-slot is specified for each value.

m The question window attribute lets you associate the component of your
application interface that the system will use to solicit the slot’s value
from the end-user.

m The data validation attribute lets you predetermine the range of input or
list of strings that the system will accept from the end-user when the
value of the slot is sought. This meta-slot can be inherited downward.

Creation

Meta-slots are specified by editing the contents of the relevant boxes in the
Meta-Slot editor.

Language Reference

103

Chapter 1

Methods

104

Application Development Features

Indication

The presence of one or more meta-slot definitions for an individual slot is
indicated by a solid-colored box at the right end of the property’s value in
the Class or Object editor. If no meta-slots are defined, the box is displayed
in outline only. Clicking on the box with the mouse brings up the Meta-Slot
editor, allowing the meta-slots to be defined or modified.

Related Topics

Objects Format Attribute

Classes Question Window
Properties Data Validation

Slots Init Value Attribute
Inheritance Strategy Why Attribute
Inheritability Strategy Comment Attribute
Inheritance Priority Attribute Inference Priority Attribute
Inheritance Slot Attribute Inference Slot Attribute

Prompt Line Attribute

Definition

A method is an attribute attached to an object, class, property, public slot or
private slot, consisting of a sequence of actions to be executed under certain
conditions during inference processing. There are two general categories of
methods. User-defined methods that may be triggered through the use of the
SendMessage operator during the course of evaluating rules and other
methods. System methods are automatically triggered by the inference
engine under predefined circumstances. Unlike public slots, private slots
must have their attached method triggered explicitly by a SendMessage
operator.

Structure

The method consists of most importantly a sequential list of actions, similar
to those on the right-hand side of a rule. If desired, the method can be
structured exactly like a rule including a list of conditions and two separate
consequent lists of actions. Unlike rules, methods have no hypothesis
component. Methods can also accept local arguments which you use in the
method actions and conditions. Generic methods can use the SELF variable
to represent the current class or object.

Creation

Creation begins by typing the name of the method in the Met hod field of the
Method editor. Or you can display the local popup menu for the edit line
and choose the Select Method option to make a selection from the list of
existing methods. System methods are usually attached at the level of the
individual slot (optionally to a class or object, see the Order of Sources
Method and If Change Method topics for further details). User-defined
methods can be attached to a property, a class, or an object, as well as a

Language Reference

Methods

public or private slot. The atom name to which the method is attached is
specified inthe At t ach To field.

If local arguments will be passed to the method by the SendMessage
operator, the method itself defines the characteristics of the arguments
locally. The Local Argunent s component of the Method editor lets you
specify the argument name for use in the method’s conditions and actions.
The name you specify must be preceded by an underscore (_). Other fields
determine the local argument’s usage for that particular method.

Invocation

User-defined methods are not limited to slots, but must be explicitly
triggered through a SendMessage operator that appears in a condition or
action of arule or method. The application developer has the choice to send
the message at startup or from the interface using either the scripting
language or using the Rules Element application programming interface.
Whenever a method is triggered by the SendMessage operator, the system
executes the complete list of actions.

There are two types of system methods that are available at the level of the
individual public slot;

m The order of sources method is triggered automatically when the value of
a public slot is needed in the course of inference processing and was
found to be UNKNOWN.

Note: In the case of a private slot an Order of Sources method can be
attached, but the system is unable to trigger the method automatically.
The application developer is required to use the SendMessage
operator to explicitly trigger the system method of a private slot.

m The if change method is triggered automatically when the value of a
public or private slot is changed in the course of inference processing.

The list of conditions is optional for all methods. If no conditions are
present, the system automatically executes the Then actions list when the
method itself is triggered. If method conditions are present, the system
executes one of two different lists of consequent actions (Then or Else)
depending on whether the method is satisfied or not.

For the method to be satisfied, all of its conditions must evaluate to TRUE.
The conditions are thus implicitly linked by the logical “and” operator. To
achieve the effect of a logical “or,” use the boolean OR operator within a
single condition.

If present, conditions within a method are always evaluated sequentially, in
the order they appear in the method definition; unlike rule conditions this
evaluation order is not altered by the inference priorities of the data
involved.

If the system tries to trigger a method for a property name, it first tries the
slot to which the property belongs (object.prop or class.prop). When no slot
has been defined, the system will try the property definition itself.

If no method is specified at the level of the addressee (in the case of a
user-defined method) or at the level of the slot (in the case of a system
method), a substitute method of the same name will be sought by
downward inheritance. See the section on “Inheritance” for more details.

Language Reference 105

Chapter

106

1

Application Development Features

Strategy

Execution of system methods that are under the control of the inference
engine (If Change and Order of Sources) is normally enabled by default, but
can be disabled if necessary by changing the global inference strategy. This
can be done in either of two ways:

m Interactively through the Strategy Monitor window (from the Expert
menu), by turning off the | f Change Acti ons option or the O der
of Sources Actions option.

m Dynamically in the course of inference processing itself, via the
St r at egy operator in a condition or action of a rule or method.

Note: The SendMessage operator can be used to explicitly trigger any
method. The method triggered by the SendMessage operator is not
affected by any of the strategy settings and will actually be treated as
a user-defined method by the inference engine.

Forward Chaining

Actions that appear in the conditions list or actions list of a method may
forward-chain data from public slots to relevant rules depending on the
inferencing strategies currently in effect. The method actions include:
Assi gn, Retri eve (from a database), and Execut e (using an external
routine). From the method conditions list only the results of the Ret ri eve
and Execut e actions may be forward-chained. The Assi gn operator has
no effect on forward chaining from the conditions list. See the individual
operator topics for details.

Data that belongs to a private slot that appears in a method condition or
action cannot trigger forward chaining since private slot data cannot appear
in the conditions or actions of rules. Only data that belongs to public slots
can trigger forward chaining.

Methods are not affected by the results of actions or gates because they do
not have hypotheses to be considered for evaluation.

Inheritance

Methods can only be inherited downward (from a class to its instances or
subclasses, or from an object to its components), never upward. The search
through the parent tree hierarchy is directed by the global inheritance
strategy and can be class or object-first and depth or breadth-first. If the
method should not be inherited, change the Publ i ¢ optionto Pri vat e in
the Method editor.

When an inheritance conflict exists between two parent objects or classes at
the same level, the application developer can use the | nhMet hod operator
to override the default inheritance strategy by specifying the parent object
upon which to begin the search. When the inheritance conflict occurs
between two slots at the same level, the application developer can set the
inheritance priority of the slots to override the default inheritance strategy.
If neither approach is used, by default the system chooses the method
attached to the parent whose name appears first in alphabetic order.

Private and public slots observe the same inheritance strategies. The private
slot attribute controls the accessibility of the slot value and has nothing to
do with inheritance.

Language Reference

MIN Function

Example

Let’s assume the following actions appear in two methods attached to the
subclasses Tr i angl es and Rect angl es that belong to a class Fi gur es.
The method attached to Tri angl es is defined as a public one (inheritance
enabled) and has the name Conput eAr ea:

Assi gn (SELF. wi dt h* SELF. hei ght)/ 2 SELF. ar ea

The second method attached to Rect angl es is also defined as a public one
and has the same name Conput eAr ea:

Assi gn SELF. wi dt h* SELF. hei ght SELF. ar ea

To trigger these methods, let’s assume we have a rule with the following
SendMessage action:

SendMessage “Conput eAr ea” @o <Fi gures>

Because the SendMessage operator in this rule specifies a pattern match on
the class Fi gur es as its addressee, the message is received by each object
that belongs to the class. Let’s assume the following objects exist; Rect 1,
Rect _2,Tri _1,and Tri _2 and that no method is attached at their level.
In case, each object will automatically inherit the method Conput eAr ea
defined at the level of its parent class and the specific values for the
properties wi dt h and hei ght may be supplied by the objects themselves
or may be obtained from a question or some other means.

In this example, definition of the method Conput eAr ea at the level of the
parent classes (Tr i angl es and Rect angl es) avoids duplication of the
area computation action for each object whose properties they share.

Related Topics

Objects Inheritance

Classes Inheritance Strategy
Properties Inheritance Priority
Conditions Strategy

Actions If Change Method

Rules Order of Sources Method
Slots I nhiet hod Operator
Inference SendMessage Operator

Forward Chaining

MIN Function

Definition

The M Nfunction is used in expressions to find the smallest of a set of values.
The expression can appear on the left-hand side or right-hand side of rules
and methods.

Syntax

The function consists of the word M N followed by any number of
arguments in parentheses:

M N(x1, x2, ..., xn)

Language Reference 107

Chapter

108

1

Application Development Features

Arguments

Each argument may be any arbitrary expression. The expressions may
include existential patterns or interpretations; universal patterns are not
allowed.

Argument values may be of any type, but the types must be comparable
(either all the same or all numeric). If some are integers and some floating
point, the integers will be converted to equivalent floating point values
before comparison.

Result

The function returns the smallest of the argument values it receives. For
arguments that include patterns, it finds the smallest value in the
corresponding list.

Integers and floating point values are compared numerically, strings
lexically, and dates and times chronologically. In string comparisons,
equivalent uppercase and lowercase letters (such as Aand a) are considered
identical. Inboolean comparisons, TRUE is considered greater than FALSE.

If the argument values are not of comparable types, the function result is
NOTKNOWN.

Examples
The following examples illustrate the results of the M N function:

M N(365, 240, 577) = 240

M N(98.6,37.0,-273.18) = -273.18

M N(12,12.0) = 12.0

M N(12, 12. 3) = 12.0

M N(12, 11.7) = 11.7

M N(" Hi ckory", "Di ckory", "Dock") = "Dickory"
M N(" boo", "booj um') = "boo"

M N("ABC', "xyz") = "ABC

M N("abc", " XYZ") = "abc"

MN("", " SHAZAM ") ="
M N(DATE(1776, 7, 4) , DATE(1789, 7, 14))
M N(TI ME(8, 4, 23), TI ME(3, 6, 11))

M N(TRUE, FALSE) = FALSE

M N(123, "456") = NOTKNOWN

If class Tank has four instances with capaci t y valuesof 6. 3,14. 5,12. 9,
and 9. 0, then

M N(<Tank>. capacity) = 6.3

DATE(1776, 7, 4)
TI ME(3, 6, 11)

Related Topics

Expressions Interpretations
Data Types MAX Function
Patterns

Language Reference

MINUTE Function

MINUTE Function

Definition

The M NUTE function is used in expressions to extract the minute field of a
date or time. The expression can appear on the left-hand side or right-hand
side of rules and methods.

Syntax

The function consists of the word M NUTE followed by a single argument in
parentheses:

M NUTE(d)

Argument

The argument may be any expression yielding a date or time result. The
expression may include patterns or interpretations.

Result

The function returns an integer result equal to the minute field of the
argument. For date arguments, the result ranges from 0 to 59.

If the argument expression does not produce a date or time value, an error
message is posted and the function result is NOTKNOAN.

Examples

The following examples illustrate the results of the M NUTE function:

M NUTE(DATE(1492, 10, 12)) =0
M NUTE(DATE(1981, 6, 8,21, 8,46)) = 8
M NUTE(Tl ME(8, 4, 23)) = 4
M NUTE(TI ME(3, 6, 11, 22, 34, 17)) = 34
M NUTE(" Cct ober 12, 1492") = NOTKNOWN
Related Topics
Expressions DAY Function
DATE Function HOUR Function
TIME Function SECOND Function
Patterns WEEKDAY Function
Interpretations YEARDAY Function
YEAR Function NOWFunction
MONTH Function

MOD Function
Definition

The MODfunction is used in expressions to find the remainder of one floating
point or integer number modulo of another. The expression can appear on
the left-hand side or right-hand side of rules and methods.

Language Reference 109

Chapter

1

Application Development Features

Syntax

The function consists of the word MOD followed by two arguments in
parentheses:

MOD(X,)

Arguments

Each argument may be any expression yielding a numerical result. The
expressions may include patterns or interpretations.

Result

The function returns a floating point result equal to the remainder of the
first argument modulo the second (x mod y) if one or both arguments are
floats. If both arguments are integers, the function will also return an
integer. This value is defined as the difference between y and the next
smaller whole multiple of x. Truncation is always toward zero, yielding a
result of the same sign as x.

If either argument expression does not produce a numerical value, an error
message is posted and the function result is NOTKNOAN.

Examples

The following examples illustrate the results of the MOD function:

MO(8, 3) = 2
MOD(8, -3.0) = 2.0
MOD(-8, 3.0) = -2.0
MOD(-8, -3) = -2
MOD(8.5, 3.1) = 2.3 (= 8.5 - 2 * 3.1)

Related Topics

Expressions Patterns
Floating Point Constants Interpretations
Integer Constants

MONTH Function

110

Definition

The MONTHfunction is used in expressions to extract the month field of a date
or time. The expression can appear on the left-hand side or right-hand side
of rules and methods.

Syntax

The function consists of the word MONTH followed by a single argument in
parentheses:

MONTH(d)

Argument

The argument may be any expression yielding a date or time result. The
expression may include patterns or interpretations.

Language Reference

Muilti-Values

Result

The function returns an integer result equal to the month field of the
argument. For date arguments, the result ranges from 1 (January) to 12
(December).

If the argument expression does not produce a date or time value, an error
message is posted and the function result is NOTKNOAN.

Examples

The following examples illustrate the results of the MONTH function:

MONTH(DATE(1492, 10, 12)) = 10

MONTH(DATE(1981, 6, 8, 21, 8,46)) = 6

MONTH(TI ME(8, 4, 23)) = 0

MONTH(TI ME(3, 6, 11, 22, 34,17)) = 6

MONTH(" Cct ober 12, 1492") = NOTKNOWN
Related Topics

Expressions HOUR Function
DATE Function M NUTE Function
TIME Function SECOND Function
Patterns WEEKDAY Function
Interpretations YEARDAY Function
YEAR Function NOWFunction

DAY Function

Multi-Values

Definition

A multi-value is a string value representing a series of individual items that
can be extracted or manipulated separately.

Syntax

A multi-value consists of one or more string-valued items separated by
commas. (If there isjust one item, the multi-value is indistinguishable from
a simple string value representing the item.) Leading and trailing spaces
around each item are ignored, but internal spaces within an item are
significant.

The length of a multi-value string is limited by default to no more than 2,048
characters, but may be extended by setting NXP_BUFSIZE.

Operations

The following execute routines perform various operations on multi-values:

Get Mul ti Val ue Conput eMul ti Val ue
Set Mul ti Val ue Li nkMul ti Val ue
Test Mul ti Val ue At omNane

Language Reference 111

Chapter

1

Application Development Features

Example

The string

"London , Paris, New York , Tokyo
is a legal multi-value consisting of the four items

London
Pari s
New Yor k
Tokyo

Notice that the spaces before and after each item are ignored, but the
internal space in New Yor K is significant.

Related Topics

String Constants Test Mul ti Val ue Routine
Execute Routines Conput eMul ti Val ue Routine
Get Mul ti Val ue Routine Li nkiwul ti Val ue Routine
Set Mul ti Val ue Routine At omNane Routine

Refer to Chapter Two, “Execute Library Routines” for a description of
specific routines.

No Operator

112

Definition

The No operator is used in the conditions of a rule or method to test whether
a boolean value or boolean expression is FALSE.

Operands

The No operator takes a single operand, which must be either a
boolean-valued slot, a list of such slots specified by a pattern, or a boolean
expression.

Result

The result produced by the No operator is the logical inverse of its boolean
operand: TRUE if the operand is FALSE, FALSE if the operand is TRUE. If
the operand includes a pattern, the condition tests whether the overall result
of the pattern match is FALSE. Thus for an existential pattern, the result is
TRUE if all values in the corresponding list are FALSE; for a universal
pattern, it is TRUE if at least one value in the list is FALSE. If the operand is
a boolean expression, the result is the logical inverse of the value of the
resolved expression (either TRUE or FALSE) .

Examples

The following are examples of conditions using the No operator;

No credit _approved
No switch_1.on
No <Swi t ch>. on
No {Swi tch}.on

Language Reference

Nolnherit Operator

Related Topics

Rules Boolean Constants
Methods Patterns
Conditions Yes Operator

Boolean Expressions

Nolnherit Operator

Definition

The Nol nher it operator is used in the conditions or actions of methods to
prevent inheritance of the standard default behavior for the given method.

Operand

The Nol nher i t operator takes one operand, which must be the boolean
constant TRUE. The following is the only valid form for an action using the
Nol nheri t operator:

Nol nheri t TRUE

Effect

The Nol nheri t operator is meaningful only when used alone, as the only
action in a method. The standard default behavior for the given method is
disabled, preventing any inheritance of methods or values from other
classes and objects. In the case of an Order of Sources method, the user will
always be prompted interactively for the value of the slot to which the
method is attached.

Result

When the Nol nher i t operator is used in a condition on the left-hand side
of a method, the result produced by the operator is always TRUE.

Related Topics

Objects Methods

Classes Order of Sources Method

Properties If Change Method

Actions Inheritance
NotMember Operator

Definition

The Not Menber operator is used in the conditions of a rule or method to test
whether an object is absent from a given class or list.

Operands
The Not Menber operator takes two operands:

m The first operand is either a single object or a list of objects specified by
a pattern.

Language Reference 113

Chapter 1 Application Development Features

m The second operand is either a class or a list of objects specified by a
pattern.

The second operand is commonly a list of objects satisfying some
qualification or relation, as determined by a prior condition within the same
rule or method.
Result
The result produced by the Not Menber operator is TRUE if the first operand
is not a member of the class or list designated by the second operand, FALSE
if itis. If the first operand is a pattern, the condition tests whether at least
one of the objects in the corresponding list (for an existential pattern) or all
of them (for a universal pattern) are excluded from the second class or list.
The contents of the first list are then reduced to the difference of the two (the
set of all members of the first that do not belong to the second).
Examples
The following are examples of conditions using the Not Merber operator:;
Not Merber t he_st ock Conmmon_St ock
Not Merber t he_st ock <Portfolio>
Not Menber <Portfolio> <Conmmon_St ock>
Related Topics
Rules Objects
Methods Patterns
Conditions Menber Operator

NOW Function
Definition
The NOWfunction is used in expressions to find the current date and time.
The expression can appear on the left-hand side or right-hand side of rules
and methods.
Syntax
The function consists of the word NOMollowed by an empty pair of
parentheses:
NOW()
Argument
The function takes no arguments.
Result
The function returns a date result equal to the current calendar date and
clock time at the time of call.
Example
The following is an example using the NOA() operator:
NOW) = Jul 17 1990 15:22:24

114 Language Reference

Objects

Objects

Related Topics

Expressions DAY Function
DATE Function HOUR Function
TIME Function M NUTE Function
Patterns SECOND Function
Interpretations WEEKDAY Function
YEAR Function YEARDAY Function
MONTH Function

Definition

An object is the fundamental representation unit in the Rules Element which
can have associated with it one elementary data value or a list value
expressed as a string (multi-value).

Structure

Every object has a name, which must comply with the Rules Element’s
standard rules for a well-formed identifier. The object’s information content
consists of its properties and its components. The object may be defined to
belong to one or more classes, which determine the names and types of its
properties.

Properties

The property is always a simple data value belonging to one of the six
elementary data types (integer, floating point, boolean, string, date, or time),
and is identified by name. Its current value is denoted by appending the
name of the property to the name of the object, separated by a period (.).
This construction is known as a slot:

obj ect _nane. property_nane

In addition, one elementary data value or a list value expressed as a string
(multi-value) may be associated directly with the object itself. This value is
assigned to a special property named Val ue, which usually need not be
named explicitly when referring to the value. For example, the name

obj ect _nane by itself, without any qualifying property, is equivalent to
the expression obj ect _nane. Val ue when used in places where a slot is
expected. If the object is specified in an @V() interpretation or in the case
where the property name is ambiguous, you will need to use the full
construction obj ect _nan®e. Val ue.

Components

Unlike a property, a component (also called a subobject) is in turn a
full-fledged object with properties and components of its own.
Components need not be (and in general aren’t) of the same class as the
parent object to which they belong.

Language Reference 115

Chapter

116

1

Application Development Features

Methods

A method is by definition triggered through a message sent directly to the
object to which the method is attached. In the case where the system tries to
bind a message with a method but the object has no method attached, the
system will try to use downward inheritance to obtain one. In a situation
where the object belongs to multiple classes, each with its own method
defined, then an | nhMet hod operator can be used to resolve the conflict by
explicitly naming the parent class.

Creation
Obijects can be created by several means:
m Explicitly, via the Newor Copy command in the Object editor.

m Implicitly, by using a previously undefined object name in a condition
or action of a rule or method, or as a component of another object.

m Dynamically, by executing the Ret r i eve operator to bring in database
information in the course of evaluating a rule or method.

m Dynamically, by executing the Cr eat eObj ect operator in the course
of evaluating a rule or method. Italso has an equivalent Rules Element
application programming interface routine (NXP_Cr eat e(bj ect) and
Rules Element Execute Library routine (Cr eat eCbj ect s).

Objects created dynamically are called dynamic objects. Such objects are
temporary, existing only for the duration of the session in which they are
created.

Deletion

Objects can be destroyed in either of two ways, depending on how they
were originally created:

m Objects created interactively by the application developer, either
explicitly or implicitly, are destroyed with the Del et e command in the
Obiject editor.

m Dynamic objects can be deleted by executing the Del et eObj ect
operator in the course of evaluating a rule or method.

Dynamic objects are destroyed automatically by the Quit or Restart Session
command ending the session in which they are created.

Related Topics

Classes Cr eat eCbj ect Operator
Properties Del et ethj ect Operator
Identifiers Val ue Property

Data Types Patterns

Rules Methods

Dynamic Objects Slots

Refer to the Intelligent Rules Element Database Integration Guide for
information about creating objects using database retrieve operations.

Language Reference

Order of Sources Method

Order of Sources Method

Definition

The Order of Sources is an optional system method that can be attached to a
slot (property associated with a class or object), defining the procedure for
determining the slot’s value when needed in the course of evaluating a rule
or method. If no Order of Sources method exists, the inference engine uses
the system default procedure instead, except in the case of private slots,
whose Order of Sources method must be explicitly triggered.

Structure

The method consists most importantly of a sequential list of actions, similar
to those on the right-hand side of a rule. If desired, the Order of Sources
method can be structured exactly like a rule including a list of conditions on
the left-hand side and two separate consequent lists of actions on the
right-hand side. The conditions list is optional. Like all methods, the Order
of Sources method has no hypothesis component.

Creation

The Order of Sources system method is specified via the Method editor.
Creation begins by selecting the Met hod field and displaying the local
popup menu for the edit line. Choose the Select Method option to view the
selection dialog. Select the option *OrderOfSources from the list (the
asterisk in front of the name distinguishes it from user-defined methods).
Or you can also type the name “OrderOfSources” (one word) in the edit line
for the Met hod field. The structure to which the method is attached is
specified in the At t ach To field. The structure you specify can be a slot, a
class, or an object.

Deleting a user-defined Order of Sources method, causes the system to use
the default behavior described under “Default” below.

Invocation

In the case of a public slot with an Order of Sources attached, the inference
engine automatically triggers the method when the value of a slot is needed
and is set to UNKNOWN. Optionally the method can be explicitly triggered by
a SendMessage operator during the course of evaluating a rule or other
method. This allows the application developer to trigger initialization
instead of the inference engine. In the case of a class or object with an Order
of Sources attached, the SendMessage operator must be used in order to
trigger the method, but it will no longer be dependent on the Order of
Sources strategy (and will actually be treated as a user-defined method by
the inference engine).

If the Order of Sources is triggered automatically, and depending on the
current strategy, the system executes each action in sequential order until
the value of the slot is found and then stops. In the case of an Order of
Sources that is triggered explicitly by a SendMessage operator, the system
will first determine whether the value of slot has already been determined.
If the slot value needs to be determined, and depending on the current
strategy, the system executes the Order of Sources actions list in sequential
order until the value of the slot is found and then stops. The actions
execution behavior can be altered for both types of Order of Sources

Language Reference 117

Chapter

118

1

Application Development Features

(triggered automatically or by a SendMessage operator) by setting the
global or local Order of Sources strategy to ON/CONTINUE. If the Order
of Sources is triggered automatically, however, arguments that might have
been passed by the SendMessage operator are ignored.

In the case of a private slot with an Order of Sources method attached, the
system is unable to trigger the method automatically. The application
developer is required to use the SendMessage operator to explicitly
trigger the Order of Sources method of a private slot. The SendMessage
operator must appear in a method and cannot used in a rule condition or
action.

If no explicit Order of Sources method is specified at the level of the slot, a
substitute method will be sought by downward inheritance from an
including class, superclass, or parent object as directed by the inheritance
strategy currently in effect. See the “Inheritance” section for details.

Inheritance

Order of Sources methods can only be inherited downward (from a class to
its instances or subclasses, or from an object to its components), never
upward. The search through the parent tree hierarchy is directed by the
global inheritance strategy and can be class or object-first and depth or
breadth-first. Any explicit Order of Sources method defined at the level of
the slot overrides this inheritance behavior; to reincorporate the inheritance
behavior as part of such a method, include an explicit call to the | nhMet hod
operator as described in the “Default” section below. To prevent the
method from being inherited, change the Publ i c optionto Pri vat e in the
Method editor.

When an inheritance conflict exists between two parent objects or classes at
the same level, the application developer can use the | nhMet hod operator
to override the default inheritance behavior by specifying the parent object
to begin the search. When the inheritance conflict occurs between two slots
at the same level, the application developer can also set the inheritance
priority of the slots to resolve the conflict. If neither approach is used, by
default the system chooses the method attached to the parent whose name
appears first in alphabetic order.

Default

If no explicit Order of Sources is specified, the value of an unknown slot is
determined by the following sequence of steps:

1. An applicable Order of Sources method is sought by downward
inheritance from an including class or parent object. If such an
inherited method is found, it is used in place of this default method.
(Note that methods can only be inherited downward, never upward.)

2. Ifthe desired value is a boolean and appears as the hypothesis of one or
more inference rules, the value is sought by backward chaining to those
rules.

3. The needed value itself is sought by downward inheritance from an
including class or parent object.

4. The value is sought by upward inheritance from a component object.
The user is prompted for the value interactively.

Language Reference

Order of Sources Method

Unless the Order of Sources strategy setting is ON/CONTINUE, this
process terminates as soon as any step yields a value for the desired
property; any remaining steps are skipped.

Any explicit Order of Sources defined for a slot overrides the default
method described above. To reincorporate the default behavior as part of
such a method, include the equivalent sequence of operators explicitly
within the method:

I nhMet hod
Backwar d

I nhVal ueDown
I nhval ueUp
AskQuesti on

To disable downward inheritability of a particular method, select the
Private option in the Method editor for the method definition.

Operators

The following operators can occur in an Order of Sources method defined
for a slot:

Assi gn Strat egy
SendMessage Unl oadKB

Cr eat eQbj ect RunTi neVal ue*
Del et ehj ect I nhval ueDown*
Retrievet I nhVal ueUp*
Witet I nhivet hod
Reset Nol nheri t
Showt Backwar d* t
Execut e AskQuesti on*t
LoadkB I nterrupt

Operators marked by an asterisk (*) may be used to obtain a value, with the
exception that AskQuest i on, Backwar d, RunTi neVal ue, | nhVal ueUp

and | nhVal ueDown are available only on the right-hand side of the Order
of Sources method.

Operators marked by a cross () may not be used in the case of a private slot
whose value is being sought by the Order of Sources method attached to the
slot.

Strategy

Execution of Order of Sources system methods by the inference engine is
normally enabled by default, but can be modified if necessary by changing
the global inference strategy:

m Interactively through the Strategy Monitor window (from the Expert
menu), by turning off the Or der of Sour ces option.

m Dynamically during the course of inference processing itself, via the
St r at egy operator in a condition or action of a rule or method, using
the @GBOURCESON=OFF setting.

m Inaddition to ONand OFF, a third option ON' CONTI NUE forces the
system to execute every action in the actions list, even after the value of
the slot is found. Unless this option is selected, the system will stop
executing the Order of Sources actions once the value is found.

Language Reference 119

Chapter 1

Patterns

120

Application Development Features

Note: The SendMessage operator can be used to explicitly trigger an
Order of Sources method. The method triggered by the
SendMessage operator is not affected by any of the strategy settings
and will actually be treated as a user-defined method by the inference
engine.

During the inferencing process the system first uses the St r at egy operator
setting to determine the current strategy, however, it is possible to invoke
the Strategy Monitor window Order of Sources setting from the St r at egy
operator. This option is provided by the CURRENT setting in the St r at egy
operator argument dialog box.

Related Topics

Objects Inheritance

Classes Inheritance Strategy
Properties Inference

Actions Inference Strategy

Rules Backward Chaining
Slots St r at egy Operator
Methods I nhiet hod Operator

If Change Method SendMessage Operator

Also see the sections on individual operators by name, as listed above.

Definition

A pattern is used in the conditions or actions of a rule or method to refer
collectively to all existing instances of a class (including those of subclasses)
or all components (subobjects) of an object.

Syntax

A pattern consists of the name of a class or object enclosed between angle
brackets(< . . . >)orcurlybraces({ . . . }),optionally qualified
by a dot (.) and a property name. The brackets or braces may be doubled
(<< . . . >>)tripled (<< . . . >>>) etc, provided that they are
evenly balanced on left and right.

The class name may appear between vertical bars inside the brackets or
braces (<] . . . |>)todistinguish it from an object name.

Interpretations of the class or object name are valid within patterns. The
string that appears in the interpretation is the name of a slot that resolves to
a class or object name to which the pattern applies.

Scope

The scope of a pattern is limited to the conditions and actions of the single
rule or method in which it appears. Occurrences of the same pattern in
other rules or methods are separate and unrelated to the one in question.
Objects with private slots are not included in the list resulting from a pattern
matching statement. When establishing a pattern the system considers only
public slots and ignores any objects whose private slots belong to the same
class.

Language Reference

Patterns

Meaning

A pattern represents a list which is defined at runtime and contains an
indefinite number of objects. Any condition or action in which the pattern
appears is understood to apply separately to each object in the list. For
example, the action

Assi gn <Rect>.length * <Rect>.wi dth <Rect>. area

independently sets the pubic slot values for each object that belongs to class
Rect and has the property ar ea equal to | engt h times wi dt h.

Note: You cannot do tests on a pattern without specifying a property or
using the property Value. Objects whose properties comprise a
private slot (specified as a Meta-Slot attribute of the slot) are not
included in the list of objects generated by the pattern.

Initially, the list consists of all existing instances of the specified class or all
components (subobjects) of the specified object. Each time the pattern
appears in a condition, the list is reduced to only that subset of its previous
contents that satisfy the given condition. Later occurrences of the pattern
within the same rule refer only to this reduced list of objects, and may in
turn reduce its contents still further. To begin a new list based on the same
class or object, use a different number of brackets or braces: for example, the
patterns

<Rect >
and

<<Rect >>

refer to two independent lists of objects belonging to class Rect . Action
side lists generated by patterns cannot be reduced further because no tests
are performed on the list.

Theanglebrackets< . . . >forman existential pattern, meaning “There
exists an object in the list such that ... ” Any condition including such a
pattern is TRUE if there is at least one instance of the given class or
component of the given object that satisfies the condition. For example, the
condition

< <ltenmp.quantity * <Itenp. cost 10000

is TRUE if there is at least one instance of class | t emfor which the product
of the properties quant i t y and cost is less than 10000.

The curly braces{ . . . } form auniversal pattern, whose meaning is
“For all objects in the list, . .. ” In this case, the condition is TRUE only if it
is satisfied by every instance or component in the list. For example, the
condition

< {Iten}.quantity * {lten}. cost 10000

is TRUE if quant i t y times cost is less than 10000 for every object
belonging to class | t em Universal patterns can be used in either condition
or action lists, but unlike the existential pattern they cannot generate
reduced lists.

Because the action side of a rule or method cannot perform tests, only the
universal pattern is meaningful. If angle brackets (existential pattern) are
used on the actions side of a rule or method, they will be read by the system

Language Reference 121

Chapter

122

1

Application Development Features

as curly braces (universal pattern) and the list will contain all of the objects
of the parent on which the pattern is done.

Evaluation

The system completes the evaluation of the entire pattern before it produces
a consequence effect on the rule or method condition. This means each
public slot specified by a pattern is evaluated before returning the value of
the condition. In the case of existential patterns, the evaluation continues
even after the system finds one slot that satisfies the condition. In the case
of universal patterns, the evaluation stops after one slot fails to satisfy the
condition. However, you can assign inference priorities to individual object
slots and force the evaluation order of the object slots in the pattern. If no
priorities are specified, the default is to process the object slots in alphabetic
order.

If the pattern is performed on a set of objects whose properties comprise
only private slots, the pattern is not evaluated and the condition is
automatically set to FALSE. The occurrence of a private slot in the class
specified by a pattern will send a message to the Rules Element Transcript.

Implicit Definition

If the name appearing between brackets or braces is not yet known to the
system, it will be defined implicitly as a result of its use in a pattern. By
default, the name is assumed to refer to a single object rather than a class; to
define a new class implicitly, enclose the name between vertical bars inside
the brackets or braces. For example, if the name | t emis not yet defined, the
pattern

<ltenp

will prompt you as to whether you want to create an object or class named
I t em while

<|Itenm >

will create a new class by that name.

Examples
The following are examples of valid patterns:

<Swi t ch> Existential pattern.
<| Swi tch| > Existential pattern with explicit class name.
{Swi t ch} Universal pattern.

{\ Swi t chd assNan®\ }. o Universal pattern with interpretation to get class
n name.

<Swi t ch>. on Existential pattern on class members with prop “on”.

<<Swi t ch>>. on Produces new existential pattern list for class
members with prop “on”.

The following are not legal:

<Swi tch Unbalanced brackets.
<<Swi t ch> Unbalanced brackets.
<Swi t ch} Mismatched brackets.
<| Swi tch Mismatched brackets.

Language Reference

POW Function

Some additional illegal comparisons using patterns are:

= <Swi t ch>. on <Ref Swi t ch>. of f Comparison on different classes.
= <Swi t ch>. on {Swi tch}. status Comparison on different pattern types.
= {Swi tch}.on <Swi t ch>. st at us Comparison on different pattern types.
Related Topics
Objects Methods
Classes Conditions
Properties Actions
Rules Data Validation Attribute
Slots
POW Function
Definition

The POWfunction is used in expressions to raise a floating point number to
any required power. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax

The function consists of the word PONfollowed by two arguments in
parentheses:

POX(X, y)

Arguments

Each argument may be any expression yielding a numerical result. The
expressions may include patterns or interpretations. If the value of the
second argument is not a whole number, the first argument must be greater
than or equal to 0. 0.

If the value of either argument expression is an integer, it will be converted
to an equivalent floating point value.
Result

The function returns a floating point result equal to the firstargument raised

to the power specified by the second (x¥). The function is equivalent to the
expression

EXP(y * LN(x))

If either argument expression does not produce a numerical value, an error
message is posted and the function result is NOTKNOAN.

Examples

The following examples illustrate the results of the POMunction:

PON 3, 5) = 243.0
PON-3, 5) = -243.0
PON 3.1, 5.4) = 450.14
PON 3, -2) = 0.11
PON 3, 0.5) = 1.73

Language Reference 123

Chapter

1

Application Development Features

PON 3, 0)
PON 0, 3)

Related Topics

Expressions Interpretations
Floating Point Constants EXP Function
Integer Constants LN Function
Patterns

PROD Function

124

Definition

The PRODfunction is used in expressions to find the product of a set of
numerical values. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax

The function consists of the word PROD followed by any number of
arguments in parentheses:

PROD(x1, X2, ..., Xn)

Arguments

Each argument may be any expression yielding a numerical or time-valued
result. There may be either a list of arguments or a pattern matching list.

If some of the argument values are integers and some floating point, the
integers will be converted to equivalent floating point values before
computation.

Result

The function multiplies together all the argument values and returns their
product. For arguments that include patterns, it multiplies all values in the
corresponding list.

If any argument is of a non-numeric type, an error message is posted and
the function result is NOTKNON.

Examples

The following examples illustrate the results of the PROD function:

PROD(365, 240, 577) 50545200
PROD(98. 6, 37. 0, - 273. 18) - 996615. 27
PROD(12, 11. 7) 140. 4
PROD(TI ME(8, 4, 23), TI ME(3, 6, 11)) = NOTKNOWN
PROD(123, " 456") NOTKNOWN

If class Tank has four instances with capaci t y valuesof 6. 3,14. 5,12. 9,
and 9. 0, then

PROD(<Tank>. capacity) = 10605.73

Language Reference

Prompt Line Attribute

Related Topics

Expressions Interpretations
Data Types SUMFunction
Patterns

Prompt Line Attribute
Definition

The prompt line attribute associated with a public slot specifies the text (up to
2,048 characters, extendable via NXP_BUFSIZE) to be displayed on the
screen when requesting the slot’s value interactively from the end user.

Usage

The text of the prompt line is displayed either in the Rules Element main
window or a custom window that you provide, whenever the value of the
given public slot must be requested from the user. There are several ways
this can happen:

m The user explicitly volunteers the value with the Vol unt eer or
Suggest/ Vol unt eer. .. command.

m AnAskQuest i on operator is executed in an Order of Sources method.

m The value is needed in the course of evaluating a rule’s conditions
during inference processing.

The prompt line can only be used in the case of a public slot. Private slots
cannot be updated directly and must use a method to determine the slot
value.

Creation

The prompt line attribute is specified or edited by typing into the box
labeled Pronpt Li ne in the Meta-Slot editor. You can also use the @/()
and @ELF constructions in the Prompt Line.

Default

If no prompt line is explicitly specified, one of the following messages will
be used by default, depending on the situation:

What is the capacity of tank_3?
Vol unteer the capacity of tank_3
Modi fy the capacity of tank_3

(where, in this case, the data item being requested is named
tank_3. capacity).
Inheritance

Inheritability of the prompt line attribute is controlled by the inference
engine. If no prompt line has been specified for the slot, the system will try
to inherit the prompt line attribute of the slot’s parent class or object.

Language Reference 125

Chapter 1

Properties

126

Application Development Features

Related Topics

Objects Order of Sources Method
Classes Inference

Properties Meta-Slots

Rules AskQuest i on Operator
Conditions Question Window Attribute
Methods SELF

Slots

Definition

A property is an attribute which can be associated with an object or class.

Form

Every property has a name, which must comply with the Rules Element’s
standard rules for a well-formed identifier. Its value is always a simple data
value belonging to one of the six elementary data types (integer, floating
point, boolean, string, date, or time).

Scope

The definition of a given property is not local to a particular object or class,
but global throughout the entire system. This means that two objects may
not have properties with the same name but different types: a given
property name always designates a value of the same type, wherever it may
occur. (The specific value of the property may, of course, vary from one
object to another.) The one exception to this rule is the special, predefined
property named Val ue; see “Val ue Property” for more information.

Creation
Properties can be created in either of two ways:

m Implicitly, by using a previously undefined property name in a
condition or action of a rule or method in the Rule, Object, Class or
Method editor.

m Interactively, via the Newor Copy command in the Property editor.

Deletion
Properties are destroyed with the Del et e command in the Property editor.

Access

The current value of a property when associated with a given object or class
is denoted by appending the name of the property to the name of the object,
separated by a period (.). This construction is known as a slot:

obj ect _nane. property_nane

Language Reference

Question Window Attribute

Slots can be defined by a meta-slot attribute to be either public or private. A
public slot’s current value can be changed in either of two ways:

m Explicitly, by executing the Assi gn operator in a condition or action of
a rule or method.

m Interactively, via the Vol unt eer command.

A private slot’s current value can be changed only by triggering a method
attached to the slot. Private slots let you use object-encapsulation and
therefore are accessible only by methods.

Related Topics

Objects ConditionsRules

Classes Val ue PropertyData ValidationAttribute
Slots Assi gn OperatorMethods

Data Types

Question Window Attribute

Definition

The question window attribute associated with a public slot specifies the
window to be displayed on the screen when requesting the slot’s value
interactively from the end user. The window is a custom resource created
using the GUI builder, provided with the Open Interface Element.

Usage

The window you specify in the question window attribute lets you use a
guestion window of your own design instead of the session control panel of
the Rules Element main window. The custom window is opened during
application processing by the question handler:

m For apublic slot with a window specified in the slot’s meta-slot.

m For a public slot with a window specified in the meta-slot of one of the
slot’s parents.

The question window can only be used in the case of a public slot. Private
slots cannot be updated directly and must use a method to determine the
slot value.

Creation

The question window attribute is specified by typing the name of the
window into the box labeled Questi on W n in the Meta-Slot editor. The
name must include the window’s full resource name:

Modul eNanme. W ndowNane

The window resource itself is created through the Resource Browser
window as described in the Open Interface Element User’s Guide.

Language Reference 127

Chapter 1 Application Development Features
Default
If you are running your application from the Rules Element development
version and no question window is explicitly specified, the system displays
the question in the session control panel of the Rules Element main window
that uses the meta-slot prompt line attribute or default question to solicit the
value of the slot with a list of choices for string slots.
If, however, you want to run your application using the Rules Element
standalone and no question window is explicitly specified, the system does
not have the option to display the session control panel (since there will be
no main window). Consequently, the user prompt will never be displayed
and the system automatically assigns the value NOTKNOANto the slot value.
Before running a standalone application, assign a simple window to the
guestion window attribute for every slot that you anticipate may become
evaluated.
Inheritance
Inheritability of the question window attribute is controlled by the inference
engine. If no question window has been specified for the slot, the system
will try to inherit the question window attribute of the slot’s parent class or
object.
Related Topics
Methods
Prompt Line Attribute
Meta-Slots
Slots
For complete details about building graphical user interfaces for your Rules
Element application, refer to the Open Interface Element User’s Guide.
RAND Function
Definition
The RANDfunction is used in expressions to generate a random floating point
number. The expression can appear on the left-hand side or right-hand side
of rules and methods.
Syntax
The function consists of the word RAND followed by an empty pair of
parentheses:
RAND()
Arguments
The function takes no arguments.
Result
The function returns a random floating point result generated from a
uniform distribution on the range 0 <= x <= 32767. The floating point
number will never have a decimal part.
128 Language Reference

RANDOM Function

Examples
The following examples illustrate the results of the RAND function:

RAND() = 17515.0
RAND() = 542.0
RAND() = 26874.0

Related Topics

Expressions RANDOMFunction
Floating Point Constants RANDOVMAX Function
RANDOMSEED Function

RANDOM Function

Definition

The RANDOVfunction is an alternate way to generate a random floating point
number in expressions. On some platforms (usually UNIX) it is better than
RAND due to the specific machine implementation, while on others it is
exactly the same as RAND. The expression can appear on the left-hand side
or right-hand side of rules and methods.

Syntax

The function consists of the word RANDOMfollowed by an empty pair of
parentheses:

RANDOM()

Arguments
The function takes no arguments.

Result

The function returns a random floating point result which does not include
adecimal part. Note that this result is more random than the RAND function
on many platforms. If an argument is given to RANDOVSEED, then the
argument is used as the seed for the random number generator.
RANDOMVAX is the maximum value over which the uniform distribution is
distributed. Note that RANDOVIVAX is machine dependent which means that
the range of the RANDOMfunction is machine dependent and thus
applications using it may not behave exactly the same from one hardware
platform to the next. However, the ratio RANDOM) / RANDOMVAX()
provides you with a random generator that is portable across platforms. It
returns a floating point value between 0 and 1.

Examples

The following examples illustrate the results of the RANDOMfunction:

RANDOM) = 5758.0
RANDOM) = 247512.0

Language Reference 129

Chapter 1 Application Development Features
Related Topics
Expressions RAND Function
Floating Point Constants RANDOVMAX Function
RANDOVSEED Function

RANDOMMAX Function
Definition
The RANDOWWAX function is used to get the upper bound of the RANDOM
function. The function can appear on the left-hand side or right-hand side
of rules and methods.
Syntax
The function consists of the word RANDOVMAX without any arguments:
RANDOMVAX()
Arguments
This function takes no arguments.
Result
This function returns the upper bound over which the RANDOMfunction will
generate uniform random numbers. The upper bound is machine
dependent (231—2 on the Macintosh, 2311 on the UNIX platforms, and 2151
on the DOS machines).
Examples
The following examples illustrate the results of the RANDOMVAX function
when used on the Macintosh (it returns the value of 231-2):
RANDOMVAX () = 2147483646
Related Topics
Expressions RAND Function
Floating Point Constants RANDOMFunction
RANDOVMSEED Function

RANDOMSEED Function
Definition
The RANDOVISEEDfunction is used to give a specific seed to the RANDOM
random number generator. On machines where RANDOMand RAND are
identical (typically non-UNIX), RANDOVISEED will also seed the RAND
function. The function can appear on the left-hand side or right-hand side
of rules and methods.

130 Language Reference

Reserved Words

Syntax

The function consists of the word RANDOVSEED followed by the seed within
a pair of parentheses:

RANDOVBEED(x)

Arguments

The function takes an integral argument. The argument can be any slot or
interpreted value which evaluates to an integer.

Result

Giving the RANDOVSEEDfunction a particular value within an application is
useful for generating the same sequence of random numbers for each run of
the application. The function returns the integer argument.

Examples

The following example illustrates the results of the RANDOMSEED function:
RANDOVSEED(12345) = 12345

Related Topics

RAND Function
RANDOMFunction

Expressions
Floating Point Constants
RANDOVMAX Function

Reserved Words

Definition

A reserved word is a word that is used by the Rules Element for a special
purpose (such as the name of a type, operator, or special value) and is not
available for use as an ordinary identifier. Some reserved words are case
sensitive, others are case insensitive.

The following words are reserved:

AND* I nhMet hod Retrieve
AskQuestion InhVal ueDown RunTi neVval ue
Assign I nhVal ueUp SELF
Backwar d | NTEGER* SendMessage
BOCLEAN I nterrupt Show
Cr eat eQbj ect KNOWN™ Strat egy
DATE | LoadKB STRI NG
DEFAULT Menmber Time
Del et eCbj ect No . TRUE
Execut e Nol nheri t UNKNOWN*
FALSE* NOTKNOWN' Unl oadKB
FLOAT Not Merrber Val ue
I f Change Nul | Wite

OR Yes

* denotes case insensitive reserved word.

Language Reference

131

Chapter 1 Application Development Features
Examples
The following examples show the difference between case sensitive and
case insensitive reserved words:
UNKNOWN reserved (case insensitive)
uNknoWh reserved (case insensitive)
Yes reserved (case sensitive)
YES not reserved (case sensitive)
Related Topics
Identifiers
Expressions
Data Types
Also see the sections on individual operators and functions by name, as
listed above.

Reset Operator
Definition
The Reset operator is used in rules and methods to reset a variable to
UNKNOVN.
Operands
The Reset operator takes one operand, which may be either a slot or a list
of slots specified by a pattern.
Effects
The designated slot is set to the special value UNKNOMN, denoting a value
that has not yet been determined. If the operand includes a pattern, all slots
in the corresponding list are set to UNKNOMN.
If the slot to be reset is a hypothesis, all rules and the rules left-hand side
conditions pointing to it are reset to the UNKNOWN state as well. The Reset
operator is then applied in turn to any hypotheses occurring in the
conditions of these rules, propagating backward recursively to unlimited
depth. Only hypotheses are affected, however; no other data occurring in
the conditions of any rule are reset.
If the designated slot is of any type other than boolean, or does not occur as
the hypothesis of any rule, then only that one slot is reset to UNKNOAN.
The effects of the Reset operator are never propagated forward to other
rules and have no effect on the state of the agenda. If there are any If Change
actions, they will not be fired.
Result
When used in a condition on the left-hand side of arule, the Reset operator
always produces a TRUE result unless the operand includes a pattern with
no matching values, in which case the result is NOTKNOWN.

132 Language Reference

Retrieve Operator

Examples

The following are examples of conditions or actions using the Reset

operator:

Reset
Reset
Reset
Reset
Reset

Related Topics

Rules
Methods
Conditions
Actions

Retrieve Operator

Definition

t ot al

cust oner. name
all _tanks_full
tank_9.full
<Tank>. ful |

Data TypesAgenda
HypothesesObjects
PatternsProperties
Forward Chaining

The Ret ri eve operator is used in the conditions or actions of rules and
methods to read information from a database or spreadsheet.

Operands

The Ret ri eve operator takes two operands:

m The first operand is either a string constant or an interpretation to a
string constant specifying the name of the file containing the database
to be queried or the login name/password for a DBMS.

m The second operand consists of a series of parameters defining the
specific retrieval operation to be performed.

Parameters

The second operand may include the following parameters:

@'YPE
@EG N
@ND
@UERY
@\RGS
@\TOVS
@NAVE
@ ELDS
@ROPS
@LOTS
@l LL

Language Reference

Type of database (creator software and file format)
Command string for opening transaction
Command string for closing transaction
Command string for querying database
Argument list for query command

List of objects or properties affected
Correspondence between records and objects

List of field names to retrieve from

List of properties to retrieve to

List of slots to retrieve to

Create new objects

133

Chapter

134

1

Application Development Features

@CREATE Classes or parents to link new objects to
@INKNOWN Retrieve UNKNOWN values
@V\RD Forward retrieved values
@CURSOR Current position for sequential retrieval

See the Database Integration Guide for further details on the meaning and
use of these parameters.

When entering a Ret r i eve action in the Rule editor or Method editor,
clicking in the space for the second operand displays the Database editor
dialog box for specifying the retrieval parameters interactively, rather than
by explicitly typing them in as listed above.

Note that data retrieved for a private slot named in @SLOTS is ignored
unless the Retrieve operator appears in a method specifically triggered for
the slot. See the description of Slots for more information about using
private slots.

Effect

The requested information is retrieved from the specified database to the
Rules Element knowledge base for further processing.

Result

When used in a condition on the left-hand side of a rule, the Retri eve
operator always produces a TRUE result, even if no records are retrieved
satisfying the given query. The only exception is if an error occurs while
attempting to open the database or transmit the query, in which case the
result is FALSE.

Forward Chaining

Actions and conditions in rules and methods involving the Ret ri eve
operator can forward chain the new value of the slot to other rules in which
the slot appears in a condition (causing the hypotheses of those rules to be
placed on the agenda for consideration). This form of forward chaining,
known as Forward Action-Effects, is controlled first by a strategy setting in
the Database editor. If the Cur r ent option is checked, the system uses the
local strategy currently in effect (determined by the St r at egy operator),
unless the Ret r i eve operator appears in a left-hand side condition, in
which case the Rule Global strategy setting in the Strategy Monitor window
is used.

Data that belongs to a private slot cannot trigger forward chaining since
private slot data cannot appear in the conditions or actions of rules. Only
data that belongs to public slots can trigger forward chaining.

Examples

See the Database Integration Guide for examples of the use of the Ret r i eve
operator.

Language Reference

ROUND Function

Related Topics

Rules Properties
Methods Slots
Actions String Constants
Conditions W i t e Operator
Objects Inference Strategy
Classes Forward Chaining
Also see the Database Integration Guide for more information on database
operations.
ROUND Function
Definition

The ROUNDfunction is used in expressions to find the nearest whole number
to a given floating point number. The expression can appear on the
left-hand side or right-hand side of rules and methods.

Syntax

The function consists of the word ROUND followed by a single argument in
parentheses:

ROUND(x)

Argument

The argument may be any expression yielding a floating point result. The
expression may include patterns or interpretations.

Result

The function returns a floating point result equal to the nearest whole
number to the argument. Notice that although the result is always a whole
number, it is of type FLQOAT rather than | NTEGER.

If the argument expression does not produce a numerical value, an error
message is posted and the function result is NOTKNOAN.

Examples

The following examples illustrate the results of the ROUND function:

ROUND(3. 1416) 3.0
ROUND(98. 6) 99. 0
ROUND(- 273. 18) = -273.0
ROUND - 9. 9) -10.0

Related Topics

Expressions Patterns
Floating Point Constants Interpretations
Integer Constants CEIl L Function
FLOOR Function

Language Reference 135

Chapter

Rules

136

1

Application Development Features

Definition
A rule is the Rules Element’s basic unit of inference and reasoning.

Structure
Every rule consists of the following parts:
m One or more conditions under which the rule is to be invoked, or fired.

m Exactly one hypothesis, which is inferred to be true if all of the
conditions are satisfied.

m Zero or more Then actions to be taken when the conditions are satisfied.

m Zero or more Else actions to be taken when any condition is not
satisfied.

Collectively, the conditions constitute the left-hand side of the rule and the
hypothesis and actions together constitute the right-hand side.

In addition, a rule may optionally have an inference priority or inference
slot to control its order of evaluation relative to other rules leading to the
same hypothesis, and a comment attribute and why attribute to help
document its meaning or purpose for the benefit of the application
developer.

Evaluation
The evaluation of a rule may be triggered in either of two ways:

m By backward chaining, when its hypothesis is suggested as a goal to be
investigated.

m By forward chaining, when a data value named in one of its conditions is
volunteered.

Evaluation proceeds by evaluating each of the conditions on the rule’s
left-hand side:

m If all the conditions are TRUE, the rule’s hypothesis is set to TRUE and
all actions specified on its right-hand side are executed.

m If any condition is NOTKNOWN, the hypothesis is set to NOTKNOAN.
m Otherwise, if any condition is FALSE, the hypothesis is set to FALSE.

Conditions and actions are normally executed sequentially, in the order
they appear in the rule definition, but this order may be altered by the
inference priorities or inference slots of the data involved. Rule evaluation
stops as soon as one condition is evaluated as FALSE. Depending on the
strategy options currently in effect, the inferred value of the hypothesis and
the results of any actions taken may be forward-chained, resulting in other
hypotheses being placed on the agenda for consideration. Actions may be
executed whether or not the rule’s conditions are satisfied by specifying
separate lists of actions using the Then and Else lists. If all the conditions
are met, the system executes the Then actions list; otherwise, the system
executes the Else actions list.

Language Reference

RunTimeValue Operator

Creation

Rules are created interactively via the Newand Copy commands in the Rule
editor (you can also create rules by editing the text knowledge base
directly). Rules cannot include tests on private data. Only public slot values
may be tested in rule conditions. Private slots are accessible by methods
only.

Deletion

Rules are always deleted interactively, via the Del et e command in the
Rule editor.

Related Topics

Hypotheses Agenda

Conditions Strategy

Actions Forward Chaining
Slots Backward Chaining
Inference Priority Attribute Semantic Gates
Inference Slot Attribute Comment Attribute

Why Attribute

RunTimeValue Operator

Definition

The RunTi meVal ue operator is used in Order of Sources methods to define
a default value for a property.

Operand

The RunTi neVal ue operator takes one operand, which must be one of the
following:

m A constant of the proper type for the property being initialized.
m The special value NOTKNON.

Effect

The value of the operand is assigned as the value of the property to which
this Order of Sources method belongs. This operator is typically used as the
last line of the method, to specify a default value for the property in case all
preceding actions fail to yield a usable value.

Notice the difference between RunTi meVal ue and the related Initial Value
attribute from the Meta-Slot editor. RunTi meVal ue specifies a default
value to be set dynamically during inference processing; the Init Value
attribute specifies an initial value to be set at system initialization time. In
the case of multiple KBs, always use RunTi meVal ue instead of the Init
Value attribute because the Init Value attribute won’t be used when a
knowledge base is dynamically loaded.

Language Reference 137

Chapter 1 Application Development Features
Examples
The following are examples of actions using the RunTi neVal ue operator:
RunTi neVal ue 28
RunTi meVal ue -273.18
RunTi nmeVal ue " SHAZAM "
RunTi neVal ue TRUE
RunTi meVal ue DATE(1981, 6, 8, 21, 8, 46)
RunTi neVal ue TI ME(8, 4, 23)
RunTi neVal ue NOTKNOWN
Related Topics
Obijects Methods
Properties Actions
Data Types Init Attribute
Value Order of Sources Method
SECOND Function
Definition
The SECONDfunction is used in expressions to extract the seconds field of a
date or time. The expression can appear on the left-hand side or right-hand
side of rules and methods.
Syntax
The function consists of the word SECOND followed by a single argument in
parentheses:
SECOND(d)
Argument
The argument may be any expression yielding a date or time result. The
expression may include patterns or interpretations.
Result
The function returns an integer result equal to the seconds field of the
argument. For date arguments, the result ranges from 0 to 59.
If the argument expression does not produce a date or time value, an error
message is posted and the function result is NOTKNON.
Examples
The following examples illustrate the results of the SECOND function:
SECOND(DATE(1492, 10, 12)) =0
SECOND(DATE(1981, 6, 8, 21, 8, 46)) = 46
SECOND(TI ME(8, 4, 23)) =23
SECOND(TI ME(3, 6, 11, 22, 34, 17)) = 17
SECOND(" Cct ober 12, 1492") = NOTKNOMWN
138 Language Reference

SELF

SELF

Related Topics

Expressions DAY Function
DATE Function HOUR Function
TIME Function M NUTE Function
Patterns WEEKDAY Function
Interpretations YEARDAY Function
YEAR Function NOWFunction
MONTH Function

Definition

The special name SELF is used to refer to the current class or object
executing a method, data validation function, or prompt line attribute.

Syntax

The name SELF is case-insensitive. Typically, it is qualified by adot (.) and
a property name to refer to a specific slot. All of the following forms are
equivalent:

SELF. property_nane

Sel f. property_nane

sel f. property_nane
sEl F. property_nane

Itis important to realize that SELF is not usually used to designate an object
slot without a corresponding property name. The only exception is in the
case of a hypothesis slot since the property name VALUE need not be
explicitly stated for hypotheses.

Usage

The name SELF may be used in a Data Validation function, any action
occurring in a method (but not in a rule), or within the @V syntax of the
Prompt Line attribute. In a method associated with a property of a class, it
refers to the particular object (instance) of the class for which the method is
being executed.

SELF is instantiated by the value of the current object under evaluation.
Since Prompt Lines, Data Validation attributes, and methods can be
inherited down, the child object inheriting the item instantiates the SELF
variable.

If the dynamic quality of the SELF is desired in the @STRI NG parameter of
an execute routine, the syntax is @GELF.

The SELF keyword must be used when referring to private slots in amethod
associated with the slot.

Example

A class named Rect angl e might include the following action in an If
Change method associated with property wi dt h:

Assi gn SELF.wi dth * SELF. hei ght SELF. ar ea

Language Reference 139

Chapter

1

Application Development Features

If t heBox is an instance of class Rect angl e whose wi dt h property is
changed in the course of inference processing, the If Change method will be
executed with SELF referring to object t heBox. The action shown above
will then sett heBox. ar ea to the product of t heBox. wi dt h and

t heBox. hei ght .

The method action:

Assi gn 10 <sel f>. prop

will set the value of the slot <sel f >. pr op of all children of the current
object or class with the property pr op to 10.

Related Topics

Objects Methods

Classes Order of Sources Method
Properties If Change Method
Actions Prompt Line Attribute
Rules Data Validation Attribute
Slots

Semantic Gates

140

Definition

A semantic gate (also called a strong link) is a connection between the
left-hand side conditions of two inference rules that share the same data.

Creation

Semantic gates are created implicitly by defining rules that share data in the
relevant ways; no special action is required to establish them.

Deletion

Just as semantic gates are not explicitly created, they cannot be explicitly
destroyed except by deleting the rules involved, or by redefining them so as
to remove the relevant data dependencies.

Operation

Each time a data item or pattern is evaluated in the course of inference
processing, the Rules Element searches the knowledge base for other rules
whose conditions refer to that same data. For each such rule, it evaluates the
relevant condition and, if TRUE, places the rule’s hypothesis on the agenda
for later consideration. When this hypothesis comes to the top of the
agenda, its value will be sought by backward chaining. Notice that this can
trigger the evaluation of all rules leading to the given hypothesis, not only
those that refer to the original data item.

Data associated with private slots cannot form semantic gates because
private slots cannot appear in rule conditions. Only public slots that appear
in rule conditions can form semantic gates.

Language Reference

SendMessage Operator

Precedence

Hypotheses generated as a result of semantic gates have lower precedence
(and consequently are placed lower on the agenda) than those generated by
backward chaining, but higher than those generated via context (weak)
links. When several hypotheses are placed on the agenda via gates, their
precedence is determined according to the inference priorities of the rules
involved.

Strategy

The use of semantic gates is normally enabled by default, but can be
disabled if necessary by changing the global inference strategy. This can be
done in either of two ways:

m Interactively through the Strategy Monitor window (from the Expert
menu), by turning off the For war d t hr ough Gat es option.

m Dynamically during the course of inference processing itself, via the
St r at egy operator in the conditions or actions of a rule, using the
@PTGATES=0FF setting.

During the inferencing process the system first uses the St r at egy operator
setting to determine the current strategy, however, it is possible to invoke
the Strategy Monitor window’s Forward through Gates setting from the
St r at egy operator. This option is provided by the CURRENT setting in
the St r at egy operator argument dialog box.

Related Topics

Objects Inference

Properties Agenda

Classes Backward Chaining

Rules Forward Chaining
Conditions Inference Priority Attribute
Actions Inference Slot Attribute
Hypotheses Inference Strategy

Patterns St r at egy Operator

Slots Context Links

SendMessage Operator

Definition

The SendMessage operator is used in the conditions and actions of rules
and methods to explicitly trigger user-defined methods and pass arguments
that the method uses in its conditions and actions.

Operands
The SendMessage operator takes two operands:

m The first operand is a quoted string specifying the name of the method
to be triggered.

m The second operand requires the name of one or more addressees
which will receive the message to trigger a method. It can be a class,

Language Reference 141

Chapter 1 Application Development Features

object, slot, or property name. As an alternative it can also be a pattern
match when a list of addresses belongs to the same class. (The method
to trigger need not be attached directly to the target object since
methods can be inherited.)

Interpretations cannot be specified for the addressee using either the
@V or \obj.prop\ notation.

m Optionally, the second operand can include a series of message passing
parameters specifying the arguments to pass to the method.

Parameters
The second operand may include the following message parameters:

(@Yo=K Name of addressee(s) to send the message to. Can
be a class, object, slot, or property name. List of
addressees must be separated by commas or the
list can be specified by the desired pattern
matching syntax. Or, can be a pattern match on a
class (i.e., <Figures>).

@A\RGL=; Corresponds to the first argument to pass to the
addressees, can be a value you supply or a slot
name. (Optional)

@A\RGX=; Corresponds to the last argument to pass to the
addressees, can be a value you supply or a slot
name. (Optional)

The order of the arguments list determines which variable it corresponds to
in the Method’s local argument definition template. The first argument
corresponds to the first row of the Method editor’s Local Argunents
component, the second argument corresponds to the second row of the
Method editor’'s Local Ar gunent s component, and so on. See the
Message dialog window below for more details about specifying local
arguments.

If a slot name is used an argument to pass, it is usually a public slot. Private
slots can also be used as arguments but have the particular restrictions that
they can appear only in the method attached to the private slot and they can
only be passed by value (not by reference). The SELF keyword must be used
to refer to the private slot.

Message Dialog

When entering a SendMessage condition or action in the Rule editor or
Method editor, clicking in the space for the second operand displays a
special dialog box for specifying the addressee(s) and optional message
passing parameters interactively, rather than by explicitly typing in the
keywords listed above. The SendMessage dialog window has the following
fields:

Send To This field holds the names of one or more
addressees. A list can be specified by pattern
matching syntax or individual atoms separated by
commas. No quotes are needed; the system inserts
them automatically.

142 Language Reference

SendMessage Operator

Template Atom This menu button is used with the Args table (see
below). It lets you choose a prototype for your
arguments (argument prototypes are defined in
the Method editor Local Arguments area). The
displayed list of possible prototypes is limited to
object structures that have the method named as
the first operand attached.

Args Each row of this table corresponds to a single
argument to pass to the method. The Template
Atom selection helps you to identify the order that
the defining atom expects the arguments. Click in
a row and the system displays the argument
parameters (Name, Type, and Nature) from the
Method editor’s argument template in the Help
box. .

<Ifiguresly

Send To figures|s

Args <|lcolors|>

[Template Atom | [figures|

MName of the Atom to which to send this message.

Send To list must be able to use the same argument prototype (specified by
the Template Atom field). Sending messages to addressees with local
arguments that are defined differently requires separate SendMessage
operators. If arguments that are passed during application processing do
not match types, the system writes an error message to the Transcript
window and automatically sets a condition with the SendMessage
operator to FALSE. If more arguments are passed to the method’s local
variables than needed, the extra arguments are ignored. If desired, passing
arguments to local variables can be avoided by defining an initial value in
the Method editor for each local variable used by that method.

Effect

The method named as the first operand is triggered for the list of addressees
specified by the second operand. If no method is specified at the level of an
addressee, a substitute method of the same name will be sought by

downward inheritance from an including class or parent object as directed
by the inheritance strategy currently in effect. If the message is sentto aslot,
the system can also try to trigger the method attached to the property of the

Language Reference 143

Chapter

144

1

Application Development Features

slot, or to the property of the same name (a property that exists independent
of an object or class)

The application developer can resolve inheritance conflicts between two
parent slots by assigning inheritance priorities to the slots or through the

I nhMet hod operator to explicitly name an inheritance path. If no conflict
resolution is specified, the method is chosen by default based on the
alphabetic order of the parent names.

The method that is successfully triggered is treated by the system as a
“user-defined” method whether it was originally created as a user-defined
method or as a system method (Order of Sources or If Change). In the
default strategy case, the system executes the list of Then or Else actions,
depending on the evaluation status of the method left-hand side, from top
to bottom until the value of the slot is found. Changing the local or global
Order of Sources strategy to ON/CONTINUE will force the system to
execute all the actions in the list even after the value of the slot is found.

The triggered method may receive data to be used as local arguments in its
list of conditions and actions. The SendMessage operator specifies the
data, and the triggered method processes the data according to a template
that defines its usage. Data passed to the object receiving the message can
be passed by reference or by value as defined in the Local Argunents
component of the Method editor.

When the data is a slot value “passed by reference,” the method’s actions list
can alter the value of the slot that contains the data and may produce
forward chaining action effects and trigger any If Change method attached
to the slot. Public slots can be passed by reference but private slots cannot
(private slots value are accessible only locally by the method). When data is
“passed by value,” the value is used by the method locally and has no
side-effects on processing. Both private and public slots can be passed by
value. If aslot name is specified as an argument but no initial value appears
in the Meta-Slot editor, the system will use the default value specified in the
Method editor arguments template.

The Nat ur e field of the Local Ar gunent s component in the Method
editor lets you specify how the argument is passed to the named method:
select the Sl ot Ref popup menu option when you want the slot value to be
passed to the method by reference (thus allowing the method to modify the
named slot), or select the Sl ot popup menu option when you want the slot
value to be passed to the method by value (thus preventing named slot from
being modified outside of the method). Note: If the argument passed is an
object or class name, it is always passed by Reference (never by Value). For
more information about the Method editor, refer to the User’s Guide.

Result

When the SendMessage operator is used in a condition on the left-hand
side of a rule or method, the result produced by the operator is TRUE if the
message is successfully bound to the method, FALSE if the named method
does not exist at the level of the addressee or at its parent object level or if
arguments passed during application processing do not match the types
specified for the method’s local variables.

Language Reference

Show Operator

Examples

The following are examples of actions using the SendMessage operator:

SendMessage “Init” @o=<| Fi gures| >

SendMessage “Rotate” @o=<| Fi gures| >, @\rgl=90
SendMessage “Comput eArea” @o=Circle

SendMessage “ Conput eArea” @o=circlel, @rgl=circlel.radius
SendMessage“ C ose” @o=val vel, valve2, valve3

It is not legal to use interpretations in the arguments list of the
SendMessage operator.

Refer to the User’s Guide for information about implementing the method
and its local arguments.

Related Topics

Objects Methods
Properties I nhiet hod Operator
Conditions Inheritance Priority
Actions Inheritance Strategy
Rules Pattern Matching
Slots

Show Operator
Definition

The Showoperator is used in rules and methods to display the contents of an
information file on the screen for the benefit of the user. It has the same
functionality as the Apropos command from the Rules Element’s pop-up
menus.

Operands
The Showoperator takes one or two operands:

m The first operand is a string constant or an interpretation evaluating to
a string constant (using the @v(object.prop) syntax) specifying the
name of the file containing the information to be displayed. It must be
between double quotes.

m The optional second operand consists of a series of display parameters
controlling the display of the information.

Language Reference 145

Chapter

146

1

Application Development Features

File formats

The file-name extension indicates the type of information the file contains
and the form in which it is encoded. You are not required to specify the
extension since the Rules Element recognizes the type by reading the file.
The following file formats are recognized:

. nbm Rules Element bitmap file on Unix or VMS (was
. bmap)

. bm X Windows bitmap file (was . x)

. bmp PC bitmap file

.gif Giff format file

. ncp MacPaint file

txt ASCII text file

Additional formats supported on the Macintosh include PICT (drawing, eg.
MacDraw) and PICT2.

Of these file types, all but the PC bitmap file (. bnp) are portable across
platforms. You can use the Rules Element-provided converter utility when
porting to another platform, as described in your Installation Guide.

If the file name has no extension, the Rules Element will try all possible
extensions. This allows the same knowledge base to run easily on different
platforms. To convert to a non-graphic terminal, for example, you can
simply replace your graphics files with text files (. t xt) without modifying
the knowledge base itself.

You can specify a list of directory names which will be searched
automatically for the designated information files if the full pathname is not
given by:

m Using the SearchPaths string resource on the Macintosh

m Setting the ND_DATA environment variable under Unix, VMS, and
PCs.

Parameters

The second operand may include the following display parameters:

@XEEP=TRUE; Display information in a new window and keep it
until the next show or the user explicitly closes it.

@XEEP=FAL SE; Use same window as previous Show operation

@\ T=TRUE; Display Cont i nue and Cl ose buttons; wait for
mouse click before continuing

@M\ T=FALSE; No Cont i nue button; just display information and
continue processing

@RECT=left, top; Specify window’s location

@RECT=left, top, width, height;
Speci fy wi ndow s | ocation and size

Language Reference

Show Operator

Show Dialog

When entering a Show condition or action in the Rule editor or Method
editor, clicking in the space for the second operand displays a special dialog
box for specifying the display parameters interactively, rather than by
explicitly typing in the keywords listed above:

Show |

I Wait 0K

_| Keep Cancel

Top | Width |
Left | Height|

Effect

The information contained in the file named as the first operand is
displayed in awindow on the screen, subject to the display options specified
by the second operand.

Result

When used in a condition on the left-hand side of a rule or method, the Show
operator always produces a TRUE result, even if no information file exists
with the specified name.

Note: The Show operator can be customized by installing an APROPOS
handler with the Rules Element application programming interface.
The Rules Element will use the user-defined function instead of the
default behavior described above.

Examples
The following are examples of actions using the Show operator:

Show "Diagnosticl"

Show " Di agnosticl. ncp”

Show "Diagnosticl.txt"

Show " Di agnosti cl" @KEEP=FALSE; @\Al T=TRUE;

Show " Di agnosti cl" @KEEP=TRUE; @\l T=TRUE; @RECT=100, 150;
Show " @(obj.prop)"

@EEP=TRUE; @\l T=FALSE; @RECT=100, 150, 275, 140;

Related Topics

Rules Actions

Methods Apr opos handler of API
Conditions

Language Reference 147

Chapter 1 Application Development Features

SIGN Function

Definition

The SI GNfunction is used in expressions to find the sign of a number. The
expression can appear on the left-hand side or right-hand side of rules and
methods.

Syntax

The function consists of the word SI G\ followed by a single argument in
parentheses:

SI GN(x)

Argument

The argument may be any expression yielding a numerical result. The
expression may include patterns or interpretations.

Result

The function returns an integer result equal to the sign of the argument:
m If the argument is positive, the function result is 1.

m If the argument is zero, the function result is 0.

m |If the argument is negative, the function result is -1.

If the argument expression does not produce a numerical value, an error
message is posted and the function result is NOTKNOAN.

Examples
The following examples illustrate the results of the SI GN function:

SI GN(28) = 1

SI G\(- 5) =-1

Sl G\(98. 6) = 1

SIGN(-273.18) = -1

Sl G\(0) =0

Related Topics

Expressions Patterns
Floating Point Constants Interpretations

Integer Constants

SIN Function

Definition

The SI Nfunction is used in expressions to find the sine of a floating point
number. The expression can appear on the left-hand side or right-hand side
of rules and methods.

148 Language Reference

SINH Function

Syntax

The function consists of the word Sl N followed by a single argument in
parentheses:

SIN(x)

Argument

The argument may be any expression yielding a numerical result. The
expression may include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to
an equivalent floating point value.
Result

The function returns a floating point result equal to the sine of the argument.
The argument is assumed to be expressed in radians.

If the argument expression does not produce a numerical value, an error
message is posted and the function result is NOTKNOMN.

Examples

The following examples illustrate the results of the SI N function:

SIN(0.0) = 0.0

SIN(3.14/ 6) = 0.5

SIN(3.14/ 2) = 1.0

SIN(3.14) = 0.0

SIN(-3.14 / 2) =-1.0

Related Topics

Expressions Interpretations
Floating Point Constants COS Function

Integer Constants TAN Function

Patterns ASI N Function

SINH Function

Definition

The SI NHfunction is used in expressions to find the hyperbolic sine of a
floating point number. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax

The function consists of the word SI NHfollowed by a single argument in
parentheses:

SINH(x)

Argument

The argument may be any expression yielding a numerical result. The
expression may include patterns or interpretations.

Language Reference 149

Chapter

Slots

150

1

Application Development Features

If the value of the argument expression is an integer, it will be converted to
an equivalent floating point value.

Result

The function returns a floating point result equal to the hyperbolic sine of
the argument.

If the argument expression does not produce a numerical value, an error
message is posted and the function result is NOTKNOMN.

Examples

The following examples illustrate the results of the SI NH function:

SINH(0.0) = 0.0
SINH(0.5) = 0.52

SINH(-0.5) = -0.52

SINH(1.0) = 1.17

SINH(-1.0) = -1.17

Related Topics

Expressions Interpretations
Floating Point Constants COSH Function
Integer Constants TANH Function
Patterns

Definition

Aslot is the constructed unit in the Rules Element which stores a data value
for objects or classes. It is the fundamental unit upon which rules and
methods act to evaluate conditions or perform actions. The usage of slots
depends upon whether the slot is defined as public or private.

Structure

For each property associated with a particular object or class name, the
Rules Element constructs a slot. This construction is denoted by appending
the name of the property to the name of the object or class, separated by a
period (.):

obj ect _nane. property_nanme or cl ass_nane. property_name

Because the property associated with the object or class defines the data
type, the slot data value belongs to one of the six elementary data type
(integer, floating point, boolean, string, date, or time). If data encapsulation
is required, the slot can be defined to be private to the object. Unless
specified, slots are created as public and data protection is not provided.
Property names associated with a particular object or class must be unique
whether the slot is defined as public or private.

Language Reference

Slots

Scope

Unlike properties, the slot is local to a particular object or class. Initially all
slots, regardless of its data type, have the value UNKNOAN. During
knowledge processing the Rules Element tries to determine the data value
of a slot when it is needed to evaluate a rule or method condition. In most
cases the slot will be public. If data protection is desired, the application
developer may decide to use a private slot to store the data value. While
public slot values are accessible globally by any rule or method, private slot
values are accessible only locally through a method associated with the
class, object, or property named by the slot.

Private slots, together with methods, let application developers enforce
object encapsulation when particular functionality and objects should be
hidden. The developer can be sure that no part of their application will
modify the stored value other than the object’s associated method. On the
other hand, a private slot value set by the action of a method has no
consequence on rule processing. The resulting data value will not produce
forward chaining of any kind (either through semantic gates or forward
action effects) because the private slot cannot be used in rules. To ensure
data protection is maintained for private slots the following behavior is
enforced:

m Private slots cannot appear in the conditions and actions or rules.
m Private slots are ignored in pattern matching conditions.

m Methods attached to a private slot can only be triggered from another
method.

m Interpretations on a private slot are only valid in the method associated
with the object, class, or property named by the slot and the SELF
keyword must be used.

Public slots, in contrast to private slots, are the fundamental unit upon
which rule test conditions act. The Rules Element tries to determine a value
for a public slot through a variety of means defined by the system default
Order of Sources strategy. Also, public slots can be used without restriction
in method conditions and actions where they can have consequences onrule
processing (through semantic gates and forward action affects).

Private and public slots have the same value and property inheritance
behavior. It is legal to inherit up and down from a private slot. It is also
legal to inherit into a private slot. Inheritance of slots is controlled by
inheritability strategies.

Creation
Slots can be created in either of two ways:

m Implicitly, by using a previously undefined slot name in a condition or
action in the Rule, Object, Class or Method editor.

m Interactively, by adding previously created property names to the list
that appears in the Class or Object editor.

By default slots are created as globally accessible (public) and data
protection is not provided. A private slot is created by setting the Private
attribute in the Meta-Slot editor. Slots created from properties inherited
from a parent class or object which are private will also be private in the
child.

Language Reference 151

Chapter

1

Application Development Features

Deletion

Slots are destroyed by removing property names from the Class or Object
editor list of associated properties.

Access

How a slot’s current value is obtained depends upon whether the slot is
private or public.

A private slot’s data value is always obtained by a method associated with
the slot (or its class, object, or property). The method is triggered through
the use of the SendMessage operator in the conditions or actions of another
method. The method used to determine a private slot’s value can never be
triggered from a rule since it is not legal to specify private slot names in rule
conditions and actions. Also, the private slot name cannot appear directly in
the conditions or actions of a method. Itis only legal to refer to the private
slot name using the SELF operator in the conditions or actions of the
method associated with the slot. The construction SELF. pr operty_nane
allows an inherited method to properly access a private slot used in the
method’s conditions or actions. Use of the actual private slot name is not
legal even in the method and will produce an error message during
compilation.

A public slot’s data value is obtained by the standard Order of Sources
method defined by the Rules Element (see Order of Sources Method).

Related Topics

Patterns Methods

Forward Chaining Meta-Slots
Interpretations SELF

Inference SendMessage Operator
Inheritance If Change Method

Rules Order of Sources Method

SQRT Function

152

Definition

The SQRT function is used in expressions to find the square root of a floating
point number. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax

The function consists of the word SQRT followed by a single argument in
parentheses:

SQRT(x)

Argument

The argument may be any expression yielding a numerical result greater
than or equal to 0. 0. The expression may include patterns or
interpretations.

Language Reference

STDEV Function

If the value of the argument expression is an integer, it will be converted to
an equivalent floating point value.
Result

The function returns a floating point result equal to the square root of the
argument.

If the argument expression does not produce a numerical value, an error
message is posted and the function result is NOTKNOMN.
Examples

The following examples illustrate the results of the SQRT function:

SQRT(0.0) = 0.0

SQRT(0.5) = 0.71

SQRT(1.0) = 1.0

SQRT(2) = 1.41

SQRT(2.0) = 1.41

SQRT(4) = 2.0

Related Topics

Expressions Patterns
Floating Point Constants Interpretations

Integer Constants

STDEV Function

Definition

The STDEVfunction is used in expressions to find the standard deviation of
a set of numerical values. The expression can appear on the left-hand side
or right-hand side of rules and methods.

Syntax

The function consists of the word STDEV followed by any number of
arguments in parentheses:

STDEV(x1, X2, ..., Xn)

Arguments

Each argument may be any expression yielding a numerical or time-valued
result. There may be either a list of arguments or a pattern matching list.

If some of the argument values are integers and some floating point, the
integers will be converted to equivalent floating point values before
computation.

Result

The function returns a floating point result equal to the standard deviation
of all the argument values (the square root of the sum of the squares of the
differences of the values from the mean divided by the number of values).
For arguments that include patterns, it uses all values in the corresponding
list.

Language Reference 153

Chapter 1

Strategy

154

Application Development Features

If any argument is of a non-numeric type, an error message is posted and
the function result is NOTKNOWN.

Examples
The following examples illustrate the results of the STDEV function:

STDEV(365, 240, 577) = 139. 09
STDEV(98. 6, 37. 0, - 273. 18) = 162. 69
STDEV(12, 11. 7) = 0.15
STDEV(TI ME(8, 4, 23), TI ME(3, 6, 11)) = NOTKNOWN
STDEV(123, " 456") = NOTKNOWN

If class Tank has four instances with capaci ty values of 6. 3,14. 5,12. 9,
and 9. 0, then

STDEV(<Tank>. capacity) = 3.22

Related Topics

Expressions Interpretations
Data Types AVERAGE Function
Patterns VAR Function
Definition

Strategy options determine various aspects of the Rules Element’s behavior
under the control of the application developer or of the inference process
itself.

Variations
Strategy options include three general varieties:

m Inference strategy controls the operation of the Rules Element’s
inference processing and the propagation of results from one inference
rule or method to another rule.

m Inheritability strategy controls the inheritability of properties and their
values from one object or class to another.

m Inheritance strategy controls the order in which an object’s classes and
parent objects are searched for the inherited values of its properties. If
the same property can be inherited from more than one source, the
strategy determines which source will actually be used.

See the sections “Inference Strategy,” “Inheritability Strategy,” and
“Inheritance Strategy” for further information.

Control

Strategy options can be set either interactively, with the Strategy Monitor
window (from the Expert menu), or dynamically in the course of inference
processing itself, via the St r at egy operator in the conditions or actions of
a rule or method.

Language Reference

Strategy Operator

Related Topics

Rules Inference Strategy
Methods Inheritance Strategy
Actions Inheritability Strategy
Inference St r at egy Operator
Inheritance

Strategy Operator
Definition

The St r at egy operator is used in the conditions or actions of a rule or
method to control or modify the system’s global strategy settings.

Operands

The St r at egy operator takes a single operand, which consists of a series of
individual strategy options of the forms

@pt i on=TRUE;
@pt i on=FALSE;

Notice that the closing semicolon (;) is required, even for the last option in
the list.
Parameters

The following strategy options are recognized:

Inference

@PWI'RUE Forward confirmed hypotheses (“Propagate when
TRUE”).

@PWFALSE Forward rejected hypotheses (“Propagate when
FALSE™).

@WWNOT KNOWN Forward NOTKNOWN hypotheses (“Propagate when
NOTKNOWN™).

@PFACTI ONS Forward Action-Effects for rules (“Propagate

forward actions”). Specifically controls the rule
left-hand side and right-hand side Then part.

@PFEACTI ONS Forward Action-Effects for rules (“Propagate
forward actions”). Controls only the rule
right-hand side Else part.

@PFMACTI ONS Forward Action-Effects for methods (“Propagate
forward actions”). Specifically controls the
method left-hand side and right-hand side Then
part.

@PFMEACTI ONS Forward Action-Effects for methods (“Propagate
forward actions”). Controls only the method
right-hand side Else part.

@PTGATES Forward through gates (“Propagate through
gates”).

Language Reference 155

Chapter

156

1

Application Development Features

@EXHBWRD
@0OURCESON

@CACTI ONSON
@/AL| DUSER

@/AL| DENG NE

Inheritability
@ NHCLASSDOWN

@ NHCLASSUP
@ NHOBJDOWN
@ NHOBJUP

@ NHVALDOWN
@ NHVALUP
Inheritance

@ NHPARENT
@ NHBREADTH

Exhaustive evaluation (“Exhaustive backward”).

Automatically trigger Order of Sources methods
when value is needed.

Automatically trigger If Change methods when
value changes.

Enable validation of input solicited from the user
before input is accepted for inferencing.

Enable validation of input given by the system
before input is accepted for inferencing (for
example, from an Assign, Execute, or Retrieve).

Inherit class properties downward
Inherit class properties upward
Inherit object properties downward
Inherit object properties upward
Inherit property values downward
Inherit property values upward

Inherit object-first
Inherit breadth-first

See the Inference Strategy, Inheritance Strategy, and Inheritability Strategy
topics for further details on the meanings and effects of individual options.

Strategy Arguments Dialog

When entering a St r at egy action in the Rule editor or Method editor,
clicking in the space for the first operand displays an arguments dialog box
for specifying the strategy arguments interactively, rather than by explicitly
typing in the keywords listed above. The inference strategies shown in the
dialog box have the following options that you can select:

ON

OFF

CURRENT

GLOBAL

Enables the strategy until the next local strategy
changes the setting.

Disables the strategy until the next local strategy
changes the setting.

Invokes the corresponding Strategy Monitor
window setting (on the Expert menu) until the next
local strategy changes the setting.

This option is used to synchronize control of the
individual Forward Action Effects strategies
(@PFEACTI ONS, @PFMACTI ONS, and

@PFMEACTI ONS) with the setting of “Rule Global
Forward Action-Effects” (@FACTI ONS) that
appears in the Strategy Monitor window. For
instance, you can selectively enable or disable Else
actions from a rule, or you can select the GLOBAL
option so the strategy behaves exactly as the rule
Then actions setting.

Language Reference

STRCAT Function

In addition to the local strategy options described here, the strategic
behavior of individual rules can be controlled by using certain special
values for their inference priorities. See the Inference Priority Attribute
topic for details.

Effect

The designated global strategy settings are enabled or disabled, as specified.
Options not explicitly modified by changing the setting CURRENT, remain
unchanged from their previous global settings.

Examples

The following are examples of actions using the St r at egy operator:

Strategy @WIRUE=TRUE; @WFALSE=TRUE; @WNOTKNOAK=FAL SE;
Strategy @ NHPARENT=FALSE; @ NHBREADTH=TRUE;
Strategy @ NHOBJDOM=TRUE;

Related Topics

Rules Inference Strategy

Methods Inheritance Strategy

Actions Inheritability Strategy
Inference NXP_St r at egy call from API
Inheritance

STRCAT Function

Definition

The STRCAT function is used in expressions to concatenate two character
strings. The expression can appear on the left-hand side or right-hand side
of rules and methods.

Syntax

The function consists of the word STRCAT followed by two arguments in
parentheses:

STRCAT(s1, s2)

Arguments

Each argument may be any expression yielding a string result. The
expressions may include patterns or interpretations.

Result

The function returns a string result equal to the concatenation of the two
argument strings.

If either argument expression does not produce a string value, an error
message is posted and the function result is NOTKNOAN.

Language Reference 157

Chapter 1 Application Development Features

Examples

The following examples illustrate the results of the STRCAT function:

STRCAT("","")
STRCAT("fl ap", s) "fl apdoodl e" if s="doodl e"
STRCAT("red_", STRCAT("fl ap", "doodl e") = "red_fl apdoodl e"

STRCAT("fl ap", "doodl e") = "fl apdoodl e"
STRCAT(" f | aF)Il , nn) = " f I apII
STRCAT("", "doodI| e") = "doodl e"

Related Topics

Expressions STRLEN Function
String Constants SUBSTRI NG Function
Patterns STRFI ND Function
Interpretations STRUPPER Function
STRLOVWER Function

STRFIND Function

Definition

The STRFI NDfunction is used in expressions to search a character string for
another character string. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax

The function consists of the word STRFI ND followed by two arguments in
parentheses:

STRFI ND(s1, s2)

Arguments

Each argument may be any expression yielding a string result:
m Thefirstargument (s1) is the string to be searched.

m The second argument (s2) specifies the string to search for.

The argument expressions may include patterns or interpretations.

Result

The function returns an integer result equal to the offset from the beginning
of the first argument string (s1) to the first occurrence of the second string
(s2). The search is case sensitive, therefore corresponding uppercase and
lowercase letters (such as Aand a) are considered different for purposes of
the search. An offset of O denotes the first character in string s1 (no offset at
all from the start of the string). If s1 does not contain s2, the function result
is -1. If either argument expression does not produce a string value, an error
message is posted and the function result is NOTKNOMN.

158 Language Reference

String Constants

Examples
The following examples illustrate the results of the STRFI ND function:

STRFI ND(" SHAZAM ", "SHA") = 0

STRFI ND(" SHAZAM ", " A") =2

STRFI ND(" SHAZAM ", "ZAM') = 3

STRFI ND(" SHAZAM ", " ZAMS") = -1

STRFI ND(" SHAZAM ", "ZaM') = -1

STRFI ND(" SHAZAM ", " ") =0

STRFI ND(" ", " SHAZAM ") =-1

Related Topics

Expressions SUBSTRI NG FunctionSTRUPPER
Function

String Constants STRLEN FunctionSTRLOAER Function
Patterns STRCAT Functionlnterpretations

CHARFI ND Function

String Constants

Definition

A string constant is a sequence of text characters used directly as a data
value in a Rules Element rule or method, or as a property of an object.

Syntax

A string constant consists of any sequence of characters enclosed in double
quotationmarks (" . . . "). Toinclude the double quote character itself
within a string, precede it with a backslash (\). The backslash is merely a
syntactic marker, and will not be included in the string; any backslash not
followed immediately by a quote character is considered to stand for itself
and will be included in the string.

Note: in many places where arguments must be string constants, you can
include an interpreted slot with the syntax @ (sl ot).

Examples

The following are valid string constants:

" an
" SHAZAM "

"Jack and Jill went up the hill"
"Press \"Return\" to continue"
"Either\O"

Ll N

"1789"

The last example denotes the empty string, which contains no characters at
all. Notice that the string 1789 is merely a sequence of characters, and is not
the same as the integer 1789.

Language Reference 159

Chapter

1

Application Development Features

The following are not valid string constants:

SHAZAM Not enclosed in quotes.
"Either\Or Quotes not balanced.
" Quotes not balanced.
"Press "Return" to continue" Quotes not backslashed.

Related Topics

Objects STRLEN Function
Properties STRCAT Function
Rules SUBSTRI NG Function
Data Types STRFI ND Function
Integer Constants STRUPPER Function
String Formats STRLOVER Function

String Formats

160

Definition

A string format specifies the representation of a string value for input and
output purposes.

Syntax

This section defines the syntax of format elements for string-valued
properties only. See the section titled “Formats” for the syntax of formats in
general.

The following special character is meaningful in string formats:
S Pl acehol der for value of string

Like all formats, those for string values may include strings of literal
characters enclosed in double quotationmarks (* . . . "),and may also
include the wild-card character (*). Format elements beginning with an
exclamation point (!) are ignored in database transactions; they are
meaningful only for direct interaction with the user via the screen and
keyboard.

Input

On input, each element in the format list is tried in order until one of them
matches the input text. If no match is found, the input is rejected and an
error message is displayed on the screen. The following conventions apply:

m Strings of literal characters enclosed in double quotation marks must
match exactly, except that no distinction is made between uppercase
and lowercase letters.

m The wild-card character (*) matches any sequence of zero or more
characters.

m The letter s in the format specification also matches any sequence of
zero or more characters, and in addition assigns these characters as the
value of the string slot being read.

Language Reference

String Formats

Output

On output, only the first element in the format list is used (except if
preceded by an !):

m Strings of literal characters enclosed in double quotation marks are
reproduced exactly in the output.

m The letter s in the format specification is replaced in the output by the
value of the string slot being written.

m The wild-card character (*) is ignored on output.

Default

The default system format for strings is defined in the ckbr es. f or mat
module in the file nxr un. dat . The standard default format is simply:

S

If necessary, the ckbr es. f or mat module in the file nxr un. dat can be
modified to substitute another default format instead.

Example

The following example illustrates the use of string formats:

Example 1 Format: "Color is "s;s; @N"Col or is undefined"

Value Output Comments
"red" Color is red Uses first element
NOTKNOM Col or is undefined Useslast(@N=)element

Input Value Comments

Color is "bl ue" Matches first element

bl ue

Color Is "Bl ue" Match is case-insensitive

Bl ue

green "green” Matches second element
NOTKNOWN NOTKNOWN Reserved word

Color is NOTKNOWN Matches last (QN=) element
undefi ned

undefined "undefined" Matches second element

Example 2 Format; ! "Col or is "s;s

Value Output on Screen Output in Database
"red" Color is red red

Example 3 Format: *"is"s;s

Value Input Comments

red "The color of this car is red" "Thecolor of this car"is
matched by *

Related Topics

Formats
Format Attribute
String Constants

Language Reference 161

Chapter 1 Application Development Features

STRLEN Function

Definition

The STRLENfunction is used in expressions to find the length of a character
string. The expression can appear on the left-hand side or right-hand side
of rules and methods.

Syntax

The function consists of the word STRLEN followed by a single argument in
parentheses:

STRLEN(s)

Argument

The argument may be any expression yielding a string result. The
expression may include patterns or interpretations.

Result

The function returns an integer result equal to the number of characters in
the argument string.

If the argument expression do not produce a string value, an error message
is posted and the function result is NOTKNOAN.

Examples

The following examples illustrate the results of the STRLEN function:

STRLEN("a")
STRLEN(" SHAZAM ")
STRLEN(" 1492")
STRLEN("")

TR TIT
=3 NENEN

Related Topics

Expressions STRCAT Function
String Constants SUBSTRI NG Function
Patterns STRFI ND Function
Interpretations STRUPPER Function
STRLOVWER Function

STRLOWER Function

Definition

The STRLOVEERfunction is used in expressions to convert a character string
to lowercase. The expression can appear on the left-hand side or right-hand
side of rules and methods.

Syntax

The function consists of the word STRLOAER followed by a single argument
in parentheses:

STRLOVER(s)

162 Language Reference

STRUPPER Function

Argument

The argument may be any expression yielding a string result. The
expression may include patterns or interpretations.

Result

The function returns a string result equivalent to the argument string with
all letters converted to lowercase. Nonalphabetic characters are unaffected.

If the argument expression does not produce a string value, an error
message is posted and the function result is NOTKNOAN.
Examples

The following examples illustrate the results of the STRLONER function:

STRLOVNER(" SHAZAM ") = "shazam "

STRLOVNER(" Shazaml ") = "shazam "

STRLOVER("shazanl ") = "shazam "

STRLOAER(" 23 SKIDOO') = "23 skiooo"

STRLONER(" ") =""

Related Topics

Expressions STRUPPER Function
String Constants STRLEN Function
Patterns STRCAT Function
Interpretations SUBSTRI NG Function

STRFI ND Function

STRUPPER Function

Definition

The STRUPPERfunction is used in expressions to convert a character string
to uppercase. The expression can appear on the left-hand side or right-hand
side of rules and methods.

Syntax

The function consists of the word STRUPPER followed by a single argument
in parentheses:

STRUPPER(s)

Argument

The argument may be any expression yielding a string result. The
expression may include patterns or interpretations.

Result

The function returns a string result equivalent to the argument string with
all letters converted to uppercase. Nonalphabetic characters are unaffected.

If the argument expression does not produce a string value, an error
message is posted and the function result is NOTKNOAN.

Language Reference 163

Chapter 1 Application Development Features

Examples

The following examples illustrate the results of the STRUPPER function:

STRUPPER(" shazam ") = "SHAZAM "

STRUPPER(" Shazaml ") = "SHAZAM "

STRUPPER(" SHAZAM ") = "SHAZAM "

STRUPPER(" 23 ski doo") = "23 SKI bOO'

STRUPPER("") =""

Related Topics

Expressions STRLOVWER Function

String Constants STRLEN Function

Patterns STRCAT Function

Interpretations SUBSTRI NG Function

STRFI ND Function

STR2BOOL Function

Definition

The STR2BOCAL function is used in expressions to convert a character string

to the boolean value it represents. The expression can appear on the

left-hand side or right-hand side of rules and methods.

Syntax

The function consists of the word STR2BOCOL followed by one or two

arguments in parentheses:

STR2BOOL(s)

STR2BOOL (s, f)

Argument

Each argument may be any expression yielding a string result:

m The firstargument (s) is the string to be converted.

m The optional second argument (f) is a string specifying the format by
which the first argument is to be interpreted. See “Boolean Formats”
for the syntax and meaning of this string.

The argument expressions may include patterns or interpretations.

Result

The function returns a boolean result equal to the boolean value represented

by string s, interpreted according to format f . If no format argument is

given, the default system format for booleans (defined in the

ckbres. f or mat module in the file nxr un. dat) is used.

If the string s cannot be interpreted as a boolean value under the given

format, the function result is NOTKNOWN.

164 Language Reference

STR2DATE Function

Examples
The following examples illustrate the results of the STR2BOOL function:

STR2BOOL(" FALSE") = FALSE
STR2BOOL(" Nope", " Yup; Nope") = FALSE
STR2BOOL(" FALSE", " Yup; Nope") = NOTKNOMN
STR2BOOL(" MAYBE") = NOTKNOWN
STR2BOOL("") = NOTKNOMWN
Related Topics

Expressions Patterns

String Constants Interpretations
Boolean Constants BOOL2STR Function

Boolean Formats

STR2DATE Function

Definition

The STRZDATE function is used in expressions to convert a character string
to the date value it represents. The expression can appear on the left-hand
side or right-hand side of rules and methods.

Syntax

The function consists of the word STR2DATE followed by one or two
arguments in parentheses:

STR2DATE(s)

STR2DATE(s,)

Argument

Each argument may be any expression yielding a string result:
m The first argument (s) is the string to be converted.

m The optional second argument (f) is a string specifying the format by
which the first argument is to be interpreted. See “Date Formats” for
the syntax and meaning of this string.

The argument expressions may include patterns or interpretations.

Result

The function returns a date result equal to the date represented by string s,
interpreted according to formatff . If no format argument is given, the
default system format for dates (defined in the ckbr es. f or mat module in
the file nxr un. dat) is used.

If the string s cannot be interpreted as a date under the given format, the
function result is NOTKNON.

Language Reference 165

Chapter 1 Application Development Features

Examples

The following examples illustrate the results of the STR2DATE function:

STR2DATE("jun 16 1904") = DATE(1904, 6, 16)

STR2DATE(" 6/ 16/ 04", "m d/ yy") = DATE(1904, 6, 16)

STR2DATE(" Bl oonsday") = NOTKNOWN

STR2DATE(" ") = NOTKNOWN

Related Topics

Expressions Date Formats

String Constants Patterns

DATE Function Interpretations

TIME Function DATE2STR Function

STR2FLOAT Function

Definition

The STR2FLQOAT function is used in expressions to convert a character string

to the floating point value it represents. The expression can appear on the

left-hand side or right-hand side of rules and methods.

Syntax

The function consists of the word STR2FLOAT followed by one or two

arguments in parentheses:

STR2FLOAT(s)

STR2FLOAT(s, f)

Argument

Each argument may be any expression yielding a string result:

m The first argument (s) is the string to be converted.

m The optional second argument (f) is a string specifying the format by
which the first argument is to be interpreted. See “Floating Point
Formats” for the syntax and meaning of this string.

The argument expressions may include patterns or interpretations.

Result

The function returns a floating point result equal to the numeric value

represented by string s, interpreted according to format f . If no format

argument is given, the default system format for floating point numbers

(defined in the ckbr es. f or mat module in the file nxr un. dat) is used.

If the string s cannot be interpreted as a floating point value under the given

format, the function result is NOTKNOWN.

Examples

The following examples illustrate the results of the STR2FLOAT function:

STR2FLOAT(" 98. 6") = 098.6

STR2FLOAT("-273. 18") = -273.18

STR2FLOAT("98. 6 degrees”,"0.0*") = 98.6

STR2FLOAT("1, 234. 5", "k, u. 0") = 1234.5

166 Language Reference

STR2INT Function

STR2FLOAT(" degrees", " 0. 0*") = NOTKNOMW
STR2FLOAT("") = NOTKNOMN
Related Topics

Expressions Patterns

String Constants Interpretations
Floating Point Constants FLOAT2STR Function

Floating Point Formats

STR2INT Function

Definition

The STR2I NT function is used in expressions to convert a character string to
the integer value it represents. The expression can appear on the left-hand
side or right-hand side of rules and methods.

Syntax

The function consists of the word STR2I NT followed by one or two
arguments in parentheses:

STR2I NT(s)

STR2I NT(s, f)

Argument

Each argument may be any expression yielding a string result:
m The first argument (s) is the string to be converted.

m The optional second argument (f) is a string specifying the format by
which the first argument is to be interpreted. See “Integer Formats” for
the syntax and meaning of this string.

The argument expressions may include patterns or interpretations.

Result

The function returns an integer result equal to the numeric value
represented by string s, interpreted according to format f. If no format
argument is given, the default system format for integers (defined in the
ckbres. f or mat module in the file nxr un. dat) is used.

If the string s cannot be interpreted as an integer value under the given
format, the function result is NOTKNOWN.

Examples

The following examples illustrate the results of the STR2I NT function:

STR2I NT(" 23") = 23
STR2I NT(" 23 skidoo", "d*") = 23
STR2I NT(" 4F", "x") = 79
STR2I NT(" ski doo”, " d*") = NOTKNOWN
STR2I NT(" ") = NOTKNOWN

Language Reference 167

Chapter

1

Application Development Features

Related Topics

Expressions Patterns
String Constants Interpretations
Integer Constants I NT2STR Function

Integer Formats

STR2TIME Function

168

Definition

The STR2TIME function is used in expressions to convert a character string
to the time value it represents. The expression can appear on the left-hand
side or right-hand side of rules and methods.

Syntax
The function consists of the word STR2TI ME followed by one or two
arguments in parentheses:

STR2TI ME(s)
STR2TI ME(s, f)

Argument
Each argument may be any expression yielding a string result:
m The firstargument (s) is the string to be converted.

m The optional second argument (f) is a string specifying the format by
which the first argument is to be interpreted. See “Time Formats” for
the syntax and meaning of this string.

The argument expressions may include patterns or interpretations.

Result

The function returns a time result equal to the time interval represented by
string s, interpreted according to format f. If no format argument is given,
the default system format for times (defined in the ckbres.format module in
the file nxrun.dat) is used.

If the string s cannot be interpreted as a time under the given format, the
function result is NOTKNOWN.

Examples

The following examples illustrate the results of the STR2TI ME function:

STR2TI ME(" 0 years 29 days 12:44:03") = TIMg(O,O0, 29, 12, 44, 3)
STR2TI ME(" 29 days 12:44:03") = NOTKNOMN

STR2TI ME(" 29 days 12:44:03", "dd*hh:mmss") =

TI ME(O, 0, 29, 12, 44, 3)
STR2TI ME(" 12: 44: 03")
STR2TI ME(" ")

TI ME(O, 0, 0, 12, 44, 3)
NOTKNOWK

Language Reference

SUBSTRING Function

Related Topics

Expressions Time Formats
String Constants Patterns

DATE Function Interpretations
TIME Function TI ME2STR Function

SUBSTRING Function

Definition

The SUBSTRI NGfunction is used in expressions to extract a substring of a
given character string. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax

The function consists of the word SUBSTRI NGfollowed by three arguments
in parentheses:

SUBSTRI N&(s, m n)

Arguments

Each argument may be any expression yielding a result of the appropriate

type:

m The first argument (s) is the string from which the substring is to be
extracted.

m The second argument (n) is an integer giving the offset in characters
from the beginning of the string to the beginning of the substring.

m The third argument (n) is an integer giving the length of the substring
in characters.

The second and third arguments may be given as floating point values,
which will be converted to equivalent integers. The argument expressions
may include patterns or interpretations.

Result

The function returns the substring of n characters taken from string s
beginning at offset m

An offset of O denotes the first character in string s (no offset at all from the
start of the string). If the end of the string is encountered prematurely, the
resulting substring will be shorter than the requested length n. If the offset
mlies beyond the end of string s, the function will return the empty string.

If any of the argument expressions does not produce a value of the
appropriate type, an error message is posted and the function result is
NOTKNOWN.

Language Reference 169

Chapter

1

Application Development Features

Examples
The following examples illustrate the results of the SUBSTRI NG function:

SUBSTRI N& " SHAZAM ", 0,2) = "SH'

SUBSTRI N " SHAZAM ", 3,3) = "ZAM'

SUBSTRI N " SHAZAM ", 3,10) = "ZAM"

SUBSTRI N& " SHAZAM ", 0, 7) = "SHAZAM "

SUBSTRI N " SHAZAM ", 0, 10) = " SHAZAM "

SUBSTRI N " SHAZAM ", 3,0) = ""

SUBSTRI N& " SHAZAM ", 10, 3) =

SUBSTRI N " SHAZAM ", -3,2) = ""

SUBSTRI N " SHAZAM ", -3,5) = "SH'

SUBSTRI NG "", 0, 3) ="

Related Topics

Expressions SUBSTRI NG Function
String Constants STRLEN Function
Patterns STRCAT Function
Interpretations STRUPPER Function

STRLOVER Function

SUM Function

170

Definition

The SUMfunction is used in expressions to find the sum of a set of numerical
values. The expression can appear on the left-hand side or right-hand side
of rules and methods.

Syntax

The function consists of the word SUMfollowed by any number of
arguments in parentheses:

SUM x1, x2, ..., Xn)

Arguments

Each argument may be any expression yielding a numerical or time-valued
result. There may be either a list of arguments or a pattern matching list.

If some of the argument values are integers and some floating point, the
integers will be converted to equivalent floating point values before
computation.

Result

The function adds together all the argument values and returns their sum.
For arguments that include patterns, it adds all values in the corresponding
list.

Integer and floating point values may be mixed in the same sum, but time
values can be added only to each other. If numeric and time arguments are
mixed, or if any argument is of another type, an error message is posted and
the function result is NOTKNON.

Language Reference

TAN Function

Examples
The following examples illustrate the results of the SUMfunction:

SUM 365, 240, 577) = 1182

SUM 98. 6, 37. 0, - 273. 18) = -137.58

SUM 12, 11. 7) = 23.7

SUM TI ME(8, 4, 23), TI ME(3, 6, 11)) = TI ME(11, 10, 34)
SUM 123, " 456") = NOTKNOWN

If class Tank has four instances with capaci ty values of 6. 3,14. 5,12. 9,
and 9. 0, then

SUM <Tank>. capacity) = 42.7

Related Topics

Expressions Patterns
Data Types Interpretations
DATE Function PROD Function

TIME Function

TAN Function

Definition

The TANfunction is used in expressions to find the tangent of a floating point
number. The expression can appear on the left-hand side or right-hand side
of rules and methods.

Syntax

The function consists of the word TAN followed by a single argument in
parentheses:

TAN(x)

Argument

The argument may be any expression yielding a numerical result. The
expression may include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to
an equivalent floating point value.
Result

The function returns a floating point result equal to the tangent of the
argument. The argument is assumed to be expressed in radians.

If the argument expression does not produce a numerical value, an error
message is posted and the function result is NOTKNOAN.

Examples

The following examples illustrate the results of the TAN function:

TAN(0.0) = 0.0
TAN(3.14 / 4) = 1.0
TAN(3.14 / 3) = 1.73
TAN(3.14) = 0.0
TAN(-3.14 / 3) = -1.73

Language Reference 171

Chapter

1

Application Development Features

Related Topics

Expressions Interpretations
Floating Point Constants SI NFunction
Integer Constants COS Function
Patterns ATAN Function

TANH Function

172

Definition

The TANHfunction is used in expressions to find the hyperbolic tangent of a
floating point number. The expression can appear on the left-hand side or
right-hand side of rules and methods.

Syntax

The function consists of the word TANH followed by a single argument in
parentheses:

TANH(X)

Argument

The argument may be any expression yielding a numerical result. The
expression may include patterns or interpretations.

If the value of the argument expression is an integer, it will be converted to
an equivalent floating point value.
Result

The function returns a floating point result equal to the hyperbolic tangent
of the argument.

If the argument expression does not produce a numerical value, an error
message is posted and the function result isSNNOTKNOWN.

Examples

The following examples illustrate the results of the TANH function:

TANH(0.0) = 0.0

TANH(0.5) = 0.46

TANH(-0.5) = -0.46

TANH 1.0) = 0.76

TANH(-1.0) = -0.76

Related Topics

Expressions Interpretations
Floating Point Constants SI NH Function
Integer Constants COSH Function

Patterns

Language Reference

Time Formats

Time Formats

Definition

A time format specifies the representation of a time value in text form for
input and output purposes.

Syntax

This section defines the syntax of format elements for times only. See the
section titled “Formats” for the syntax of formats in general.

The following special characters are meaningful in time formats:

Y,y Years field

Mm Months or minutes field
Dd Days field

Hh Hours field

Sss Seconds field

Time formats are case insensitive. A series of Ms or ns immediately
preceded by an hours field denotes a minutes field; otherwise it is
interpreted as months instead.

Like all formats, those for times may include strings of literal characters
enclosed in double quotationmarks (" . . . "),andmay also include the
wild-card character (*). Format elements beginning with an exclamation
point (!) are ignored in database transactions; they are meaningful only for
direct interaction with the user via the screen and keyboard.

Input

On input, each element in the format list is tried in order until one of them
matches the input text. If no match is found, the input is rejected and an
error message is displayed on the screen. The following conventions apply:

m Inputvalues of any length are recognized; the number of letters used to
specify a field in the format is ignored.

m Strings of literal characters enclosed in double quotation marks must
match exactly, except that no distinction is made between uppercase
and lowercase letters.

m The wild-card character (*) matches any sequence of zero or more
characters.

Output

On output, only the first element in the format list is used:

m Strings of literal characters enclosed in double quotation marks are
reproduced exactly in the output.

m The wild-card character (*) is ignored on output.

m The number of letters used to define a field within a format element
specifies the minimum number of digits to be used in that field’s output
representation. Values shorter than this will be padded with leading
zeros; longer values will be represented in full, using more than the
specified number of digits.

Language Reference 173

Chapter 1 Application Development Features

Example

The format

hh: nm ss; *h*nt s*

will format times on output in the form

02: 06: 50

and will accept them on input in such forms as

02: 06: 50
2:06: 50
2:6:50

(matching the first format element) or
The elapsed tinme is 2 hours, 6 mnutes, and 50 seconds.

(matching the second).

Default

The default system format for times is defined in the ckbr es. f or mat
module in the file nxr un. dat . The standard default format is

y" years "d" days "hh:mmss;yy dd hh: mm ss; hh: nm ss
This format will output times in the form

3 years 193 days 22:34:17

and will accept them as input in any of the forms

3 years 193 days 22:34: 17
3 193 22:34:17
22:34: 17

If necessary, the ckbr es. f or rat module in the file nxr un. dat can be
modified to substitute another default format instead.

Related Topics

Formats TIME Function
Format Attribute Date Formats
DATE Function

TIME Function

Definition

A time is a data value representing an interval of duration or elapsed time.
See also the DATE Function topic.

Time Syntax

A time constant can be specified in either of two formats, similar to those for
dates (see the DATE Function topic):

TI ME(hours, mi nutes, seconds)
TI ME(years, nonths, days, hours, m nutes, seconds)

174 Language Reference

TIMEZ2FLOAT Function

In this case, however, the ranges of the parameters are different:

0 < years < 32767
0 < nont hs < 255
0 < days < 32767
0 < hours < 255
0 < mnutes < 255
0 < seconds < 255
For example,

TI ME(8, 4, 23)

denotes a time interval of 8 hours, 4 minutes, and 23 seconds, while
TI ME(3, 6, 11, 22, 34, 17)

denotes an interval of 3 years, 6 months, 11 days, 22 hours, 34 minutes, and
17 seconds.

Expressions

Dates and times can be combined arithmetically in various ways. You can
add or subtract two time intervals to produce a third interval representing
their sum or difference, subtract two dates to find the interval between
them, or add or subtract a date and a time to produce another date. You can
also multiply or divide a time by a number (integer or floating point). In
summary, here are the valid arithmetic operations on dates and times:

time + tine yields tine
time - tine yields time
date - date yields tine
date + tine yields date
date - tine yields date
nunber * time yields tine
time * nunber yields time
time / nunber yields tinme

Note: Whenyou editarule, the Time function converts the values of its data
to the next possible higher unit. For example, if you add 32 days to a
date by using Time(0, 0, 32, 0, 0, 0) + date, the Time function converts
itto Time(0, 1, 2, 0, 0, 0). These conversions are not always correct for
conversions from days to months or years. Therefore, set the number
of days to equal to or less than 30.

Related Topics

Date HOUR Function
Data Types M NUTE Function
Expressions SECOND Function
Time Formats NOWFunction

TIME2FLOAT Function

Definition

The TI ME2FL QAT function is used in expressions to convert a time to an
equivalent floating point value. The expression can appear on the left-hand
side or right-hand side of rules and methods.

Language Reference 175

Chapter

1

Application Development Features

Syntax

The function consists of the word TI ME2FLQOAT followed by a single
argument in parentheses:

TI ME2FLOAT(t)

Argument

The argument may be any expression yielding a time result. The expression
may include patterns or interpretations.

Result

The function returns a floating point result representing the number of
seconds equivalent to the given time't .

Examples

The following examples illustrate the results of the TI ME2FLQAT function:
TI ME2FLQAT(TI ME(3, 6, 11, 22, 34, 17)) 111515657. 0

TI ME2FLOAT(TI ME(8, 4, 23)) = 29063.0

TI ME2FLQAT(" 8: 4: 23") = NOTKNOWN
Related Topics

Expressions Interpretations

DATE Function FLOAT2TI ME Function
TIME Function DATE2FLOAT Function

Patterns

TIME2STR Function

176

Definition

The TI ME2STRfunction is used in expressions to convert a time value to an
equivalent character string. The expression can appear on the left-hand side
or right-hand side of rules and methods.

Syntax

The function consists of the word Tl ME2STR followed by one or two
arguments in parentheses:

TI ME2STR(t)

TI ME2STR(t, f)

Argument

Each argument may be any expression yielding a result of the appropriate
type:

m The first argument (t) is the time to be converted.

m The optional second argument (f) is a string specifying the format
under which the first argument is to be converted. See “Time Formats”
for the syntax and meaning of this string.

The argument expressions may include patterns or interpretations.

Language Reference

UnloadKB Operator

Result

The function returns a string result representing the time value of argument
t, converted according to format f . If no format argument is given, the
default system format for times (defined in the ckbr es. f or mat module in
the file nxr un. dat) is used.

Examples

The following examples illustrate the results of the TI ME2STR function:

TI ME2STR(TI ME(0, 0, 29, 12, 44,03)) = "0 years 29 days 12: 44: 03"
TI ME2STR(TI ME(0, 0, 29, 12, 44, 03), "dd\" days \"hh:nmss") =

"29 days 12:44:03"
TI ME2STR(TI ME(O, 0, 0, 12,44,03)) = "12:44:03"

Related Topics

Expressions Time Formats
String Constants Patterns

DATE Function Interpretations
TIME Function STR2TI ME Function

UnloadKB Operator

Definition

The Unl oadKB operator is used in the conditions or actions of a rule or
method to unload or disable a knowledge base.

Operands
The Unl oadKB operator takes one or two operands:

m The first operand is a string constant or interpretation which evaluates
to a string constant (using the @/(obj ect . pr op) syntax) specifying
the name of the file containing the knowledge base to be unloaded. It
must be between double quotes.

m The optional second operand specifies the knowledge base’s load level,
and must be one of the following:

@Q.EVEL=ENABLE;

@.EVEL=DI SABLEWEAK;

@-EVEL=DI SABLESTRONG,

@.EVEL=DELETE;

@EVEL=W PEQUT;

(Note that the closing semicolon is required.) If the second operand is

omitted, a load level of DELETE is assumed by default.

Language Reference 177

Chapter

178

1

Application Development Features

UnloadKB Dialog

When entering an Unl oadKB action in the Rule editor or Method editor,
clicking in the space for the second operand displays a special dialog box for
specifying the load level interactively, rather than by explicitly typing in the
keywords listed above:

UnLoadKB |

~~ Enable

~~ Disable Weak
~~ Disable Strong
“ Delete

~ Wipeout

0K I Cancel |

Effect

The knowledge base named as the first operand is unloaded from memory
or changed to the load level specified by the second operand. Definitions
not belonging to the given knowledge base remain in effect.

Load levels
The effects of the various load levels are as follows:

ENABLE: All definitions in the knowledge base are fully
effective and operational, including objects,
classes, properties, rules, and methods.

DISABLEWEAK: Object, class, and property definitions from the
knowledge base remain in effect. Rules and
methods remain defined, but become temporarily
disabled and unavailable for inference processing;
they can later be reenabled with LoadKB. Any
disabled rules or methods already on the agenda
remain there and will be processed normally.

DISABLESTRONG: Obiject, class, and property definitions from the
knowledge base remain in effect. Rules and
methods remain defined, but become temporarily
disabled and unavailable for inference processing;
they can later be reenabled with LoadKB. Any
such disabled rules or methods already on the
agenda are removed from the agenda and will not
be processed.

DELETE: Object, class, and property definitions from the
knowledge base remain in effect. Rules and
methods are permanently deleted from memory

Language Reference

Value Property

and no longer available for inference processing;
they can be reenabled only by reloading the
knowledge base with LoadKB.

WIPEOUT: All definitions from the knowledge base are
permanently deleted from memory, including
objects, classes, properties, rules, and methods;
they can be reenabled only by reloading the
knowledge base with LoadKB.

Examples

The following are examples of actions using the LoadKB operator:

Unl oadKB" I nventory. kb"

Unl oadKB" I nvent ory. kb" @.EVEL=DI SABLEWEAK
Unl oadKB "I nventory. kb" @.EVEL=DI SABLESTRONG
Unl oadKB I nventory. kb" @ EVEL=DELETE

Unl oadKB" I nvent ory. kb" @.EVEL=W PEOUT

Related Topics

Rules ClassesString Constants
Methods PropertiesActions

LoadKB Operator Agenda

Objects NXP_Unl oadKB function of API

Value Property

Definition

The special property named Val ue holds the data value (if any) associated
directly with an object or class itself. Together the object and special
property form a slot of any data type.

Type

The Val ue property is defined to be of type Speci al , allowing it to take on
values of different data types for different objects. For any given object,
however, its value is restricted to exactly one of the six elementary data

types.

Access

The current value of an object’s Val ue property is ordinarily denoted
simply by the name of the object itself, with no qualifying property name.
If t he_obj ect is the name of an object, the expressions

t he_obj ect
and
t he_obj ect . Val ue

are equivalent.

Restrictions

You cannot perform a pattern matching over a list of objects’ Val ue
property. The value property will never inherit a value nor a method.

Language Reference 179

Chapter 1 Application Development Features
Modifying
The Val ue property associated with a particular object can be changed by
assigning a new value directly to the name of the object itself in either of two
ways:
m Explicitly, by executing the Assi gn operator in a condition or an

action.

m Interactively, via the Vol unt eer command.
Related Topics
Obijects Conditions
Properties Actions
Data Types Assi gn Operator

VAR Function
Definition
The VARfunction is used in expressions to find the variance of a set of
numerical values. The expression can appear on the left-hand side or
right-hand side of rules and methods.
Syntax
The function consists of the word VAR followed by any number of
arguments in parentheses:
VAR(x1, x2, ..., Xxn)
Arguments
Each argument may be any expression yielding a numerical result. The
expressions may include existential patterns or interpretations; universal
patterns are not allowed.
If some of the argument values are integers and some floating point, the
integers will be converted to equivalent floating point values before
computation.
Result
The function returns a floating point result equal to the statistical variance
of all the argument values (the sum of the squares of the differences of the
values from the mean divided by the number of values). For arguments that
include patterns, it uses all values in the corresponding list.
If any argument is of a non-numeric type, an error message is posted and
the function result is NOTKNOVN.
Examples
The following examples illustrate the results of the VAR function:
VAR(365, 240, 577) = 19348. 66
VAR(98. 6, 37.0, -273. 18) = 26469. 61
VAR(12, 11. 7) = 0.02

180 Language Reference

WEEKDAY Function

VAR(TI VE(8, 4, 23), TI ME(3, 6, 11))
VAR(123, " 456")

If class Tank has four instances with capaci t y valuesof 6. 3,14. 5,12. 9,
and 9. 0, then

VAR(<Tank>. capacity) = 10.38

NOTKNOWN
NOTKNOWN

Related Topics

Expressions Interpretations

Data Types AVERAGE Function

Patterns STDEV Function
WEEKDAY Function

Definition

The VEEKDAY function is used in expressions to find the day of the week
corresponding to a given date. The expression can appear on the left-hand
side or right-hand side of rules and methods.

Syntax

The function consists of the word WEEKDAY followed by a single argument
in parentheses:

V\EEKDAY(d)

Argument

The argument may be any expression yielding a date result. The expression
may include patterns or interpretations.

Result

The function returns an integer result representing the day of the week
corresponding to the given date argument. The result ranges from 1
(Monday) to 7 (Sunday).

If the argument expression does not produce a date value, an error message
is posted and the function result is NOTKNOAN.

Examples
The following examples illustrate the results of the WEEKDAY function:

VEEEKDAY(DATE(1492, 10, 12)) =4
VEEEKDAY(DATE(1981, 6, 8, 21, 8,46)) = 1
WEEKDAY(TI ME(8, 4, 23)) = NOTKNOWN
VEEEKDAY(Tl ME(3, 6, 11, 22, 34, 17)) = NOTKNOM
WEEKDAY(" Cct ober 12, 1492") = NOTKNOWN
Related Topics

Expressions YEAR Function
DATE Function MONTH Function
TIME Function DAY Function
Patterns HOUR Function

Language Reference 181

Chapter

1

Application Development Features

Interpretations M NUTE Function
YEARDAY Function SECOND Function
NOWFunction

Why Attribute

182

Definition

The why attribute associated with a slot, rule, or method specifies the text to
be displayed on the screen when the end user requests an explanation for
the system’s current focus of attention.

Usage

The text of the why attribute is displayed in a dialog window whenever the
end user selects the Why option from the session control panel of the Rules
Element main window. The text describes the inferencing links leading to
the slot displayed in the session control panel. The dialog window displays
two buttons that let the end user traverse the backward chaining links
starting from the current focus of attention:

m The Why button displays the why text associated with the next rule in
the backward chaining links.

m The How button displays the why text associated with the previous rule
in the backward chaining links.

Creation

The why text is specified or edited by typing into the box labeled Wy in the
Rule editor, Method editor, or Meta-Slot editor. The supplied text has the
following effect on the explanation dialog window:

Rule Editor Why text appears in the bottom box that normally
gives information about left-hand side conditions.

Method Editor Why text appears in the bottom box that normally
gives information about left-hand side conditions.

Meta-Slot Editor Why text appears in the top box that normally
gives information about the hypothesis.

You can also use the @/(obj ect . prop) and @(fi | enane)
constructions in the why attribute of all three editors. If a file is specified, it
can contain @ variables that the system interprets.

Default

If no why text is explicitly specified, the system follows syntactic rules to
derive the text displayed by the explanation dialog window.

Inheritance
The Why attribute cannot be inherited.

Related Topics

Rules Meta-SlotsForward Chaining
Methods Backward Chaininginference

Language Reference

Write Operator

Write Operator

Definition

The Wi t e operator is used in conditions or actions of rules and methods to
write information to a database.

Operands
The Wi t e operator takes two operands:

m The first operand is either a string constant or an interpretation
evaluating to a string constant specifying the name of the file containing
the database to be updated or the login name/password for a DBMS.

m The second operand consists of a series of parameters defining the
specific update operation to be performed.

Parameters

The second operand may include the following parameters:

@'YPE Type of database (creator software and file format)
@EG N Command string for opening transaction
@ND Command string for closing transaction
@UERY Command string for updating database
@A\RGS Argument list for update command

@ATOVS List of objects or properties affected

@NANMVE Correspondence between objects and records
@ ELDS List of field names to update

@PROPS List of properties to update from

@sLOoTS List of slots to update from

@l LL Create new records or files

@INKNOWN Write UNKNOWN values

@CURSOR Current position for sequential update

See the Database Integration Guide for further details on the meaning and
use of these parameters.

When entering a W i t e action in the Rule editor or Method editor, clicking
in the space for the second operand displays the Database editor dialog box
for specifying the update parameters interactively, rather than by explicitly
typing them in as listed above.

Note that private slots passed in the argument @S| ot s are ignored unless
the Write operator appears in a method specifically triggered for the slot.
See the description of Slots for more information about using private slots.
Effect

The designated information is written to the specified database from the
Rules Element knowledge base.

Language Reference 183

Chapter 1 Application Development Features
Examples
See the Database Integration Guide for examples of the use of the Wi t e
operator.
Related Topics
Rules PropertiesClasses
Methods Slots
Actions String Constants
Objects Ret ri eve Operator
Also see the Database Integration Guide for more information on database
operations.
YEAR Function
Definition
The YEARfunction is used in expressions to extract the year field of a date or
time. The expression can appear on the left-hand side or right-hand side of
rules and methods.
Syntax
The function consists of the word YEAR followed by a single argument in
parentheses:
YEAR(d)
Argument
The argument may be any expression yielding a date or time result. The
expression may include patterns or interpretations.
Result
The function returns an integer result equal to the year field of the
argument.
If the argument expression does not produce a date or time value, an error
message is posted and the function result is NOTKNOAN.
Examples
The following examples illustrate the results of the YEAR function:
YEAR(DATE(1492, 10, 12)) = 1492
YEAR(DATE(1981, 6, 8, 21, 8, 46)) = 1981
YEAR(TI ME(8, 4, 23)) = 0
YEAR(TI ME(3, 6, 11, 22, 34, 17)) = 3
YEAR(" Cct ober 12, 1492") = NOTKNOWN
Related Topics
Expressions HOUR Function
DATE Function M NUTE Function
TIME Function SECOND Function
Patterns WEEKDAY Function
184 Language Reference

YEARDAY Function

Interpretations YEARDAY Function
MONTH Function NOWFunction
DAY Function

YEARDAY Function

Definition

The YEARDAY function is used in expressions to find the ordinal day of the
year corresponding to a given date. The expression can appear on the
left-hand side or right-hand side of rules and methods.

Syntax

The function consists of the word YEARDAY followed by a single argument
in parentheses:

YEARDAY(d)

Argument

The argument may be any expression yielding a date result. The expression
may include patterns or interpretations.

Result

The function returns an integer result equal to the ordinal day of the year
corresponding to the given date argument. The result ranges from 1 to 366.

If the argument expression does not produce a date value, an error message
is posted and the function result is NOTKNOMN.

Examples

The following examples illustrate the results of the YEARDAY function:

YEARDAY(DATE(1492, 10, 12)) = 286
YEARDAY(DATE(1981, 6, 8, 21, 8, 46)) = 159
YEARDAY(TI ME(8, 4, 23)) = NOTKNOWN
YEARDAY(TI ME(3, 6, 11, 22, 34, 17)) = NOTKNOWN
YEARDAY(" Cct ober 12, 1492") = NOTKNOMWN
Related Topics

Expressions YEAR Function
DATE Function MONTH Function
TIME Function DAY Function
Patterns HOUR Function
Interpretations M NUTE Function
WEEKDAY Function SECOND Function

NOWFunction

Language Reference 185

Chapter 1 Application Development Features

Yes Operator

Definition

The Yes operator is used in the conditions of a rule or method to test whether
a boolean value or boolean expression is TRUE.

Operands

The Yes operator takes a single operand, which must be either a
boolean-valued slot, a list of such slots specified by a pattern, or a boolean
expression.

Result

The result produced by the Yes operator is simply the value of its boolean
operand, TRUE or FALSE as the case may be. If the operand includes a
pattern, the condition tests whether at least one of the values in the
corresponding list (for an existential pattern) or all of them (for a universal
pattern) are TRUE. If the operand is a boolean expression, the result is the
same as the value of the resolved expression (either TRUE or FALSE) .

Examples
The following are examples of conditions using the Yes operator:

Yes credit_approved
Yes switch_1.on
Yes <Swi t ch>. on

Yes {Swi tch}.on

Related Topics

Rules Boolean Constants
Methods Patterns
Conditions No Operator

Boolean Expressions

186 Language Reference

Chapter

2 Execute Library Routines

This chapter describes the various Execute routines you can use as
application design features.

Execute Library Overview

Definition

The Rules Element library of Execute routines has predefined procedures
for performing common or useful tasks, built into the system for use with
the Execut e operator.

Routines

The Rules Element run-time library includes the following routines:

Frame Operations

Set Val ue Create(bj ects
Reset Fr anme Get Rel atives
CopyFr ame Pr opagat eVal ue
Multi-Value Operations

At omNareVal ue Test Mul ti Val ue
Set Mul ti Val ue Conput eMul ti Val ue
Get Mul ti Val ue Li nkMul ti Val ue

Sorting and Comparison

RankLi st Pat t er nMat cher
Get Li st El em Unify
Fi ndLi st El em

Session Control

Cont r ol Sessi on Message
Jour nal WiteTo

Utility Operations

At onExi st Fi | eExi st
Cr eat eReport Par se

Each of these routines is fully described in its own section of this manual.

Multi-Values

A multi-value slot is defined as a string slot containing a list of values
separated by commas. Leading and trailing blanks around each value are
ignored, but internal blanks are not. For example, the following is a legal
multi-value string:

appl e, banana, two words, hel |l o

This contains four values: appl e,banana,t wo wor ds,and hel | 0. Notice
that the blanks before and after each value are ignored, but the internal
blank int wo wor ds is retained. Also notice that when a multi-value
appears in an expression, it does not have to be enclosed in quotes.

Language Reference 187

Chapter

188

2

Execute Library Routines

The values are always maintained as strings, but they can be compared as
floats, ints, dates, etc. with the TestMultiVValue Execute. But since the values
are actually maintained as strings, it is still up to the application developer
to make sure the values make sense. In other words, if the application
developer wants to do integer comparisons, it is up to him or her to make
sure the values really are integers. As far as the Rules Element is concerned,
a multi-value slot is just a string slot. See also the section on Using
Multi-Values.

Error Handling

Certain global flags can be used to control the handling of errors and tracing
information by the built-in Execute routines. Currently, the application
developer can define “System Objects” to set the error handling and tracing
status. At present, the following system objects are implemented:

SYS_ALERTFLAG Boolean - if true, errors are reported with alert
handler.

SYS TRACEFLAG Boolean - if true, report trace messages in
transcript.

SYS_TRANSFLAG Boolean - if true, errors are reported in transcript

SYS BEEPFLAG Boolean - if true, errors just beep

SYS STOPFLAG Boolean - if true, stops session on error.

All of these are boolean-valued objects whose Val ue properties contain the
relevant flag. These objects are defined in a separate knowledge base so that
they can be loaded in any session. Be sure to use them when developing the
application.

Other Notes

m Theexecutes all evaluate to TRUE if successful, and FALSE if there were
any errors.

m Throughout this chapter, the word “frame” is used for “object or class”
to describe the Execute routines.

m Ifaslotis expected in a parameter, and you are using a slot with
. Val ue, you must explicitly add the . Val ue. Otherwise, the Execute
routine will assume you are referring to a frame.

m When typing text parameters into the execute dialogs, quotes are never
used.

Note: The total length of a multi-value is limited only by the available
memory.

Invocation

Execute routines are invoked by using the Execut e operator in a condition
or action of a rule or method. The first operand to this operator is a string
constant giving the name of the desired Execute routine; the second
operand is a string consisting of a series of parameters to control the
routine’s operation.

Language Reference

Execute Library Overview

Parameters

Two standard parameters are used to specify the arguments of an Execute
routine (both parameters may be given as dynamic interpretations):

m The @TRI NG parameter passes a single string argument. If two or
more such arguments are needed, they can be combined to form a
multivalue and passed as a single argument; see the section
“Multivalues” for more information.

Atom names you specify for the @STRI NGparameter must be compiled
in the corresponding Rules Element editor before the system will
recognize it. Merely typing atom names into the execute dialogs’
@TRI NGfields will produce error messages during application
processing.

m The @GATOM D parameter passes a list of objects, properties, or classes
(typically specified via a pattern) for the Execute routine to operate on.

Note: Private slots must not be passed in the @ATOM D and
@STRI NG parameter of the Execute routines. Also, class
name atoms you specify in the execute dialogs must not
include vertical bars.

The specific usage of these parameters varies from one Execute routine to
another, and is described in the sections on each individual routine.

Result

All Execute routines return a result of TRUE if the call is successful, FALSE
if an error occurs.

Dynamic Values

Individual atoms (objects and object properties) can be evaluated
dynamically within the @TRI NGand @ATOM D parameters. Each
parameter uses its own syntax as follows: @TRI NGinterpretations must be
in the form of @/(t heAt om pr operty) -the atom name enclosed within
parentheses and preceded by the characters @V. @ATOM D interpretations
must be in the form of \ t heAt om pr opert y\ -the atom name enclosed
within backslashes. The slot’s current value will then be substituted into the
corresponding parameter before execution.

For example, if Ducks. st art contains the multi-value string

Donal d, Dai sy and Ducks. nor e contains Huey, Dewey, Loui e, thena
condition or action of the form

Execute "ConputeMiltiVal ue" @ATOM D=Ducks. start;

@BTRI NG=" @/ALUE=@/(Ducks. nore) ,
@INI ON, @RETURN=Ducks. al | ";

is equivalent to

Execute "ConputeMiltiVal ue" @ATOM D=Ducks. start;
@5TRI NG=" @/ALUE=Huey, DeweyLoui e,
@UNI ON, @GRETURN=Ducks. al | ";

and will set the value of Ducks. al | to the string Donal d,
Dai sy, Huey, Dewey, Loui e (the union of @ucks. st art and
@ucks. nore).

Language Reference 189

Chapter

2

Execute Library Routines

When an Execute routine is invoked from a method, atoms can also be
evaluated dynamically within the @ TRI NG parameter using the @GSELF
operator. For example, suppose there is a class Bi r ds with a subclass
Ducks. In addition, suppose Bi r ds has a property Par ent s which is a
multivalue string and it has an Order of Sources method with the following
Execute routine:

Execute "GCetRelatives" @\TOM D=SELF; @BTRI NG=" @PARENTS,
@RETURN=@BELF. Par ent s"

If a rule dynamically creates an object called Donal d of class Ducks, and
then tries to get the value of Donal d. Par ent s, the Order of Sources
method inherited from Bi r ds will be triggered, and Get Rel at i ves will
evaluate SELF as Donal d. So, Donal d. Par ent s will get the multivalue
Ducks, Bi rds since these are the parents of Donal d.

Strategy Options

Many Execute routines include an optional parameter named @TRAT as
part of their @STRI NG parameter. This parameter is used to control the
volunteering strategy for any value assignments made during the routine’s
execution. It can be set to any of the following options:

SET Store value immediately, but do not forward

FWRD Queue value for later forwarding if global strategy
Forward action effects is currently enabled

SETFWRD Combines both SET and FWRD options

If no explicit @ TRAT parameter is specified, the SET option is assumed by
default.

Note: See Chapter One, “Application Development Features” for details on
the Strategy operator.

Related Topics

Conditions Execut e Operator
Actions Patterns

Rules Val ue Property
Methods Multi-Values
String Constants Inference Strategy

Also see the sections on individual Execute routines by name, as listed
above.

Using The Execute Library

190

The functions in the execute library can be used like any user-defined
Execute routine in either conditions or actions of rules and methods. They
normally return TRUE unless there was some sort of error. They can be
divided up into several functional groups:

Frame Operations This set of routines performs “crunching”
operations on frames such as setting values,
copying values, etc.

Language Reference

Using The Execute Library

Multi-Value Operations
This set of routines performs operations on
multi-values.

Sorting and Comparison
This set of routines performs operations on pattern
matching lists.

Session Control This set of routines controls the session and
perform 1/0.
Utility Operations This set of routines performs useful tasks that

extend application development.

The following sections explain each of the categories of executes with
examples on how you might want to use them.

Frame Operations

The Frame Operations perform “crunching” operations on frames (objects
or classes) such as setting values, copying values, etc. They include the
following:

CopyFrame, CreateObjects, ResetFrane, SetValue, CetRelatives,
Propagat eVal ue

These operations do things which could be done frame by frame in other
ways, but it is more convenient to use these executes. For example,
CopyFr ane copies the values in all properties of a frame (except Val ue) to
a list of frames. Without this function, you could copy the values one by
one, but it would be very inconvenient.

Also, the Reset operator could be used to reset individual slots, but the
Reset Fr ane execute can reset all the slots in a list of frames all at once.

Cr eat e(bj ect s eliminates the need to have a rule which loops around
itself creating objects one by one.

Set Val ue sets all slots in a list of slots or frames to a given value, which
again, would be very inconvenient otherwise.

Cet Rel at i ves gets the names of the parents or children of a frame and
returns the answer as a multi-value.

Pr opagat eVal ue propagates a value up or down through the inheritance
paths from a given frame.

Multi-Value Operations

Multi-values can be used in many ways. The executes that deal with
multi-values are as follows:

Conput eMul ti Val ue, Get Mul ti Val ue, LinkMilti Val ue,
Set Mul ti Val ue, Test Multi Val ue, AtonNaneVal ue

One way you might want to use multi-values is to keep track of properties
which have an unspecified number of “sub-properties”. For example, you
might have a class of <Rest aur ant s> with a property ser ves which
contains the types of food served at a certain restaurant. The serves
property for a given restaurant might contain something like chi cken,
fish, pasta. The Set Mul ti Val ue execute can be used for adding and
deleting values from these multi-values. This is an ideal way of maintaining

Language Reference 191

Chapter

192

2

Execute Library Routines

this information because each restaurant may serve a different number of
foods.

The following diagram shows an example of how this sort of example might
be set up:

Restaurants serves

Chez_Bob Pasta_Pete

serves = serves = serves = serves =
"chicken, "pizza, "pasta, fish, "fish,
fish, pasta, hamburgers, chicken, chicken"
beef" subs" salads"

Now, suppose you wanted to ask something like, “Who serves fish?” You
could use the Test Mul ti Val ue execute to find all the restaurants that
serve fish and attach them to a class like this:
TestMul ti Val ue (@TRI NG=" @EST=fi sh, @UPERSET,
@RETURN=Fi shy";

@\TOM D=<Rest aur ant s>. serves;)
After that execute, the restaurants Chez _Bob, Past a_Pet e, and
See_Food will be attached to the class Fi shy. You could then do further
pattern matching or testing on that list. Notice we are using @SUPERSET
because we are finding the restaurants that serve a superset of f i sh. A
restaurant which serves only fish would qualify.

Now let’s ask the question, “What do Chez_Bob and Pasta_Pete have in
common?” We would do that like this:
Conput eMul ti Val ue (@TRI NG=" @Q/ALUE=@/(Chez_Bob. serves),

@ NTERSECT, @RETURN=conmmon. nul val ";
@A\TOM D=Past a_Pet e. serves;)

After that execute, the multi-value common. mul val will contain the
intersection of the two restaurants, i.e. chi cken, fish, pasta. Notice
we are using the @/(. . .) notation to evaluate Chez_Bob.serves
dynamically.

Now let’s say that Past a_Pet e is purchased by Chez _Bob, so they decide
to combine the menus. We could add the foods served by Pasta_Pete to the
foods served by Chez_Bob like this:
Set Mul ti Val ue (@TRI NG=" @\DD=@/(Past a_Pet e. serves)";

@\TOM D=Chez_Bob. serves;)
Since @NODUPLI CATE is the default, Chez_Bob.serves will now contain
chi cken, fish, pasta, beef, sal ads. Again, noticethe @/(...)
notation.

Language Reference

Using The Execute Library

Another way you might want to use multi-values is to maintain
relationships between objects. The values within a multi-value could
actually be object names. So, for example, you might have a class of
<Desks> with a property on_t op_of , and another class of
<Desk_accessori es>. Theon_t op_of slotfor a given desk might
contain the names of <Desk_accessor i es> objects which are on top of
the desk. So, a given desk may have an on_t op_of slot containing
something like st apl er, tape, phone. Each of the values in that
multi-value are actually the names of objects in the class
<Desk_accessori es>.

The following figure shows a possible configuration with multi-values
being used for relationships between objects:

on_top_of
Desks near
on_top_of ="phone, rolodex, stapler,
tape, stack_o_papers, phone_book"
MyDesk near = "trash_can, lamp"
near
Desk
Accessories weight
ST T T T T T TR T s s e 1
: [
: [
| |
[
phone I
I hone rolodex tape
| P book P !
[
I near = "rolodex, near = "phone, near = "phone, near = "stapler" :
: phone_book" phone_book" rolodex" I
[
: weight = 4 weight = 2 weight = 5 weight = 1 |
: [
: [
: [
| |
| stack o' trash |
: stapler papers can lamp :
[
[
[
: near = "tape" near = NULL near = "lamp" near = "trash_can" |
| weight=1 weight =7 weight = 8 weight = 15 :

Language Reference 193

Chapter 2

Execute Library Routines

With this sort of set up, there are all sorts of questions we might want to ask.
For example, “What’s on top of my desk?” This may seem trivial, but it
could be that the multi-value was constructed by other rules, and you may
now want to use that list as a pattern matching list in another condition of a
rule or method. So, to get the objects in a multi-value and attach them to a
class, we would do this:

Li nkMul ti Val ue (@TRI NG=" @.| NKTO=DeskSt uf f"; @GATOM D=MyDesk. on_t op_of ;)

At omNaneVal ue

After this execute, the class Desk St uf f would have as objects phone,
rol odex, st apl er,t ape, stack_o_papers, and phone_book.

Another thing you might want to do is construct a multi-value containing
the names of all the desk accessories. That multi-value could then be used
with Test Mul ti Val ue or Conmput eMul ti Val ue. This would be done
like this:

(@BTRI NG=" @RETURN=Desk St uf f . mul val "; GATOM D=<Desk_Accessori es>;)

194

After this execute, Desk St uf f . mul val will contain the multi-value
phone, rol odex, phone_book, tape, stapler,
stack_o_papers, trash_can, |anmp.

You might also want to ask more complicated questions like, “What objects
on my desk are heavy?” Let’s assume that “heavy” is greater than or equal
to five pounds. To do this, we would first need to create a list of objects on
the desk by using Li nkMul t i Val ue as above. Then, we would use the list
<DeskSt uf f > in a pattern matching statement like this:

>= <DeskStuff> weight 5

Directly after this statement, the pattern matching list will contain only the
objects on the desk whose weight is greater than or equal to 5.

Another possible question would be, “Is the trash can on top of my desk?”
To do this, you would use the following execute:

Test Mul ti Val ue (@TRI NG=" @EST=trash_can, @UPERSET,
@RETURN=answer . bool "; @\TOM D=MyDesk. on_t op_of ;)

After this execute, the boolean slot answer . bool will contain FALSE
because the multi-value MyDesk. on_t op_of is not a superset of
trash_can. Or, to put it another way, MyDesk. on_t op_of does not
containtrash_can.

Now, suppose there is an earthquake and the phone falls off the desk. How
would we update our objects to reflect this? First, we want to remove the
phone from the desk, and then we want to update the objects that the phone
is near, and the objects that are near the phone. There is probably more than
one way to do this, but here is one possibility:

Step 1: Remove phone from the desk:

Set Mul ti Val ue (@TRI NG=" @ELETE=phone";
@A\TOM D=MyDesk. on_t op_of ;)

Step 2: Link the objects that were near the phone to a temporary class:

Li nkMul ti Val ue (@TRI NG=" @.1 NKTO=Near St uf f";
@A\TOM D=phone. near ;)

Step 3: Make sure none of those objects is near the phone:

Set Mul ti Val ue (@TRI NG=" @ELETE=phone";
@A\TOM D=<Near St uf f >. near;)

Language Reference

Using The Execute Library

Step 4: Delete all the things that were near the phone:
Set Mul ti Val ue (@TRI NG=" @ELETE=@/(phone. near)"; @\TOM D=phone. near;)

Okay, so how does this work? Step 1 simply deletes phone from the
multi-value MyDesk. on_t op_of.

Step 2 takes the object names in the multi-value phone. near and links
them to a temporary class Near St uf f . In this case, that would link the
objects r ol odex and phone_book to Near St uf f like this:

LinkMultivValue attaches
these objects to this class. —™

phone *

near = "rolodex, phone_book"

N

rolodex

Step 3 deletes phone from each of the multi-values in the list

<Near St uf f >. near . In other words, since the phone is not near any of the
objects in <Near St uf f > anymore, we want to make sure that those objects
do not list phone as a nearby thing. So, in this case, phone is deleted from
r ol odex. near and phone_book. near.

Finally, step 4 deletes everything that was near the phone because it is not
near anything anymore. Notice we are using the @/(. . .) notation to
insure that everything in the current multi-value is deleted from itself. For
this step, you could also simply set the value of phone. near to an empty
string using the Assi gn operator. Notice that this is not the same as setting
it to UNKNOAN. Notice also that if you use the Assi gn operator, you may
cause side effects like forwarding through gates unless you set the strategies
appropriately.

Sort and Compare

The Sorting and Comparison executes perform operations on pattern
matching lists. This category includes the following executes:

Fi ndLi st El em GetListEl em RankList, PatternMtcher, Unify

These are used for ranking lists and getting individual elements, ranges of
elements, or finding the M Nand MAX in a list. Also, Patt er nMat cher
performs a more general purpose pattern matching, and Uni f y performs a
two-way pattern match.

For example, suppose we have a class of <Car s> with properties mi | eage,
engi ne_si ze and r ank. In a database, we have the latest information on

Language Reference 195

Chapter 2 Execute Library Routines

current cars. So, we create an object for each car and get the mi | eage and
engi ne_si ze from the database. Now, suppose we want to find the ten
highest mileage cars available. To do this, we would first use the RankLi st
execute to rank the list using nmi | eage as the RANKBY property, and r ank
as the RANKSET property. Then, we would use Get Li st El emto get
elements 1 through 10 by r ank. We could then use the returned list of ten
cars to do some other pattern matching like finding the cars whose engines
are greater than or equal to 1500 cc.

The following diagram shows the steps involved in this example:

mileage
engine_size
Cars
rank
Step 1.
Retrieve
from —m /Carl Car2 Car3 e Carn
dat abase
Step 2:

Execute "RankList" (@TR NG=" @GRANKBY=n | eage, @RANKSET=r ank,
@ECREASI NG'; @ATOM D=<Car s>;)

Step 3:

Execute "CetListE ent (@TR NG="@ROW1, @0O=10, @RANKSET=rank,
@I NKTC=H gh M | eages"; @\TOM D=<Cars>;)

Step 4:

>= <|H gh M| eages|>. engi ne size 1500

Session Control

The Session Control operations control the session and perform I/0. They
include the following:

Control Sessi on, Message, Journal, WiteTo

A very useful thing that you can do is send messages to the environment.
For example, you can put results into the transcript, or issue alert messages
to the user. You can also put up question boxes in which the user must
respond with Yes, No, OK, or Cancel. You can then use the response to
control the application. If you are writing your own environment in C or
some other language, these executes will call your own transcript handler
or alert handler. The Session Control operations also control the session,
suggest hypotheses, perform journaling, and so on.

196 Language Reference

AtomExist Routine

Utilities
The Utilities are Execute routines that perform useful tasks that extend your
application development capabilities. They include the following:

At onExi st, CreateReport, FileExist, Parse

Generally, these functions are used for testing the existence of certain
things, and sending messages to the environment. For example, suppose
you have a Ret ri eve in your rule, but the file does not exist. Normally,
you would get an error, and the rule would simply fail at that point. But, by
using Fi | eExi st before the Ret ri eve, you could check if the file exists
and then act accordingly. For example, if the file doesn’t exist, you might
want to try another file, or a different search path. Another particularly
useful routine is Cr eat eReport . This routine lets you generate a
formatted file to report the results of an application processing session.

AtomExist Routine

Definition

The Execute routine At orExi st tests whether a designated atom (a class,
object, property, slot, rule, or method) currently exists.

Interactive Dialog

At onExi st is chosen with the Select Execute popup menu command in the
Rule editor or Method editor, which automatically displays a special dialog
box for specifying the execute parameters interactively, rather than by
explicitly typing them in as listed below:

dtomExizk |

Atlom Neme | @NANE
Reiun Slot | @RETURN

Heme of desired stom 3 Help

Help

Jiy

4 Cancel

Parameters

The @GATOM D parameter is ignored.

The @TRI NG parameter must include the following:
@NAME=atom_name Name of desired atom.
@RETURN=answer_slot Name of slot in which to return result of test.

Both parameters are required. The destination specified by @GRETURN must
be a boolean-valued slot.

Language Reference 197

Chapter

2

Execute Library Routines

Effect

The destination slot designated by the GRETURN parameter is set to TRUE or
FALSE, depending on whether the requested atom currently exists.

Result

The result returned by At onExi st is TRUE if the call is successful, FALSE if
an error occurs.

Examples
A condition or action of the form

Execute "AtonExist" @TRI NG=" @NAME=FI apdoodl e,
@RETURN=TheAnswer . Val ue";

will set TheAnswer . Val ue to TRUE if the object FI apdoodl e currently
exists, FALSE if it does not.

AtomNameValue Routine

198

Definition
The Execute routine At omNaneVal ue stores the names or values of one or

more atoms (objects, classes, or slots) into a string-valued variable as a
multivalue.

Interactive Dialog

At onNanmeVal ue is chosen with the Select Execute popup menu command
in the Rule editor or Method editor, which automatically displays a special
dialog box for specifying the execute parameters interactively, rather than
by explicitly typing them in as listed below:

Atca¥aus¥alus |

AtomList | @ATOMID
Retum Slot | @RETURN

.~ Names - Dalues @STRAT

] Rdd] 51 Unluen .J Fonward Uealup1 Help

{ATOMID) Pottarm specitylrg a |15t of olome - oK

{ob)ec1s, claeses, B10LA, &LL.) WwhoBS nomes ar

values are to ba listed. . M

Help

Parameters

The @ATOM D parameter is a pattern specifying a list of atoms (objects,
classes, or slots) whose names or values are to be listed.

Language Reference

AtomNameValue Routine

The @TRI NG parameter may include the following:

@RETURN=destination String slot into which the requested atom names or
values are to be stored.

@\DD (Optional) If present, append new atom hames or
values to existing contents of destination variable
instead of assigning outright (no duplicates are

added).

@BTRAT=0ptions (Optional) Strategy options governing the
assignment (see Execute Library Overview for
details).

@NANVES (Optional) The names of the atoms are listed in the

destination. This is the default.

@Q/ALUES (Optional) The values of the atoms are listed in the
destination. In this case, the atoms must be slots.

The @GRETURN parameter must designate a slot (property associated with an
object) as the destination, and not simply the name of an object itself; for
example, a destination of @GRETURN=t heResul t is invalid, and must be
specified as GRETURN=t heResul t . Val ue instead.

Effect

The names or values of the atoms satisfying the pattern given by @GATOM D
are concatenated together, separated by commas, to form a multi-value.
(Notice that if there is only one such atom, its name alone is equivalent to a
one-element multi-value.) This multi-value is then assigned as the new
value of the string variable designated by @GRETURN (unless @ADD is
specified, in which case it is instead appended to the end of the variable’s
existing value without duplicates. Duplicates can be requested explicitly
with the SetMultiValue routine).

Result

The result returned by At omNaneVal ue is TRUE if the call is successful,
FALSE if an error occurs.

Examples

If class Duck has a single instance named Donal d, a condition or action of
the form

Execute " AtomNaneVal ue" @\TOM D=<Duck>;

@5TRI NG=" @RETURN=Duckbur g. r esi dent s";

will assign the string Donal d as the value of Duckbur g. r esi dent s. If
there are two instances of Duck named Donal d and Dai sy,

Duckbur g. resi dent s will be set to the multi-value string

Donal d, Dai sy. If the previous value of Duckbur g. r esi dent s was

Daf fy, then
Execut e " At omNaneVal ue" @\TOM D=<Duck>;
@BTRI NG=" @GRETURN=
Duckburg. resi dents,
@\D';

Language Reference 199

Chapter

2

Execute Library Routines

will set it to Daf f y, Donal d, Dai sy. If the object Nephews has three
components (subobjects) named Huey, Dewey, and Loui e, then
Execute " AtonmNaneVal ue" @ATOM D=<Nephews>. uncl e;

@TRI NG=
"@RETURN=Cartoon.rel ati ves";

will set Huey. uncl e, Dewey. uncl e, Loui e. uncl e as the new value of
Cartoon.rel atives.

If class Duck has two instances, Donal d and Dai sy, and a property
bill _size,andDonal d. bill_sizeis5andDai sy. bill _sizeis4,
then:

Execut e " At omNaneVal ue" @ATOM D=<Duck>. bi | | _si ze;
@5TRI NG=" @RETURN=Duckbi I | . si zes,
@/al ues";

will set the string slot Duckbi I | . si zes to the multivalue string 5, 4. The

value type of the slots in @GATOM D can be anything (string, integer, time,
date, etc.)

Related Topics

Execut e Operator
Multi-Values
Patterns

ComputeMultiValue Routine

200

Definition

The Execute routine Conput eMul t i Val ue combines multi-values in
various ways to form new multi-values.

Interactive Dialog

Conput eMul ti Val ue is chosen with the Select Execute popup menu
command in the Rule editor or Method editor, which automatically displays
a special dialog box for specifying the execute parameters interactively,
rather than by explicitly typing them in as listed below:

ComputethaltiTalus |

Mulll Vole S1ot [@ATOMID

Mult1 Velue Operend [@YVALUE
Reium Slot | @RETURN
dpaeration

-~ Union ~ Complement . Mimimum Help
~ Intersection - Difference . Mestimum
0K |
Tupe - $iring . Fipat . Time
@COMP .. intager bote ===l

CATOM DY Nam3 ofa Blat tabJect prapertyl canted ring & mult] -walue elrln to be
Help apareted on.

Language Reference

ComputeMultiValue Routine

Parameters

The @GATOM D parameter is the name of a slot (a property associated with a
given object) containing a multi-value string to be operated on.

The @TRI NG parameter may include the following:

@/ALUE=multi_val (Required for some operations--see Operations
below) Second multi-value operand.

@peration Operation to be performed (see Operations below).

@RETURN=answer Destination slot in which to return result of
operation.

@COVP=value-type (Optional) Specifies the way in which the

individual values in the multivalues are to be
compared (see Value Types below).

@/ALUETYPE=type The valuetype specifier can be used for indicating
how the individual values in a multivalue are to be
compared. If itis absent, STRING is the default.

Operations

The operation specifier included in the @STRI NG parameter identifies the
operation to be performed on the pair of multi-values designated by
@A\TOM Dand @/ALUE. It must consist of exactly one of the following:

@INI ON All elements in either GATOM D or @/ALUE or both
@ NTERSECT All elements in both @GATOM D and @/ALUE
@COMPLEMENT All elements in GATOM D or @/ALUE but not both
@l FFERENCE All elements in GATOM D but not @/ALUE

@1 N Smallest element in GATOM D

(@Y/AV4 Largest element in GATOM D

Notice that the operations @/ N and @/AX take only one operand
(@GATOM D); the second operand (@/ALUE) is ignored and may be omitted.

Value Types

The @OWP specifier can be used for indicating how the individual values
in a multivalue are to be compared. If it is absent, STRING is the default.
The following types are valid: STRING, INT, FLOAT, DATE, and TIME.

For example, if one multivalue contains the element 1.0 and another
multivalue contains the element 1.00, these will be regarded as the same
value if @OVP=FLQAT is specified. However, if @OVWP=STRI NGis
specified (the default), they are regarded as two different strings.

Effect

The two multi-values specified by the GATOM D and @Q/ALUE parameters
are combined according to the requested operation, and the result is stored
into the destination slot designated by @GRETURN.

Language Reference 201

Chapter 2 Execute Library Routines

Result

The result returned by Conput eMul ti Val ue is TRUE if the call is
successful, FALSE if an error occurs.

Examples

If Ducks. st art contains the multi-value Donal d, Dai sy, Dewey,a
condition or action of the form

Execut e " Conput eMul ti Val ue" @GATOM D=Ducks. start;
@5TRI NG=" @/ALUE=Huey, Dewey, Loui e,
@INI ON, @GRETURN=Ducks. uni on";

will assign the string Donal d, Dai sy, Dewey, Huey, Loui e (the union of
@A\TOM D and @/ALUE) as the new value of Ducks. uni on; notice that the
element Dewey is not duplicated.

Execut e " Conput eMul ti Val ue" @GATOM D=Ducks. start;
@BTRI NG=" @/ALUE=Huey, Dewey, Loui e,

@ NTERSECT, @RETURN=Ducks. i ntersect";

will set Ducks. i nt er sect to Dewey (the intersection of @GA\TOM Dand
@/ALUE).

Execut e " Conput eMul ti Val ue" @GATOM D=Ducks. start;
@TRI NG=" @M N, @RETURN=Ducks. first";

will set Ducks. first to Dai sy (the smallest element alphabetically in
@A\TOM D).

Related Topics

Execut e Operator
Multi-Values

ControlSession Routine
Definition

The Execute routine Cont r ol Sessi on performs various control
operations affecting the operation of the current Rules Element session.

Interactive Dialog

Cont r ol Sessi on is chosen with the Select Execute popup menu
command in the Rule editor or Method editor, which automatically displays
a special dialog box for specifying the execute parameters interactively,
rather than by explicitly typing them in as listed below:

Combrolis==ioo |

Lisi of Hypothesis | @ATOMID
@SUGLIST

_{ Stop jw..‘/ _| Sugqges1 Nypos Help
.J Restart Use KB Supyest List .. Unsuppgest Hypes

CATOM DY Dptiomll Lizt of Hypotheeme o b evgpaedad or ursumeeied.

Hslp
Cancel

=

202 Language Reference

ControlSession Routine

Parameters

The @GATOM D parameter is an (optional) list of hypotheses to be suggested
or unsuggested.

The @TRI NG parameter may include the following:

@ToP (Optional) Stop session.

@RESTART (Optional) Stop session and reinitialize all values.

@BUGLI ST (Optional) Suggest hypotheses on knowledge
base’s suggest list.

@BUGGEST (Optional) Suggest hypotheses specified by
©@ATOM D.

@UNSUGGEST (Optional) Unsuggest hypotheses specified by
@ATOM D.

@XNOWNCESS (Optional) Initiate inference processing.

The parameters @UGGEST and @QUNSUGGEST are mutually exclusive, and
may not both be specified. If neither is present, the @GATOM D parameter is
ignored.

Effect

The control operations specified by the @TRI NG parameter are executed.
Operations are always performed in the order shown under “Parameters”
above, regardless of the order in which they actually appear in the @TRI NG
parameter.

All parameters in Cont r ol Sessi on are performed even if one of them is
St opSessi on. Control Sessi on can be regarded as a single atomic
function.

The operations @SUGGEST and @QUNSUGGEST apply to the list of hypotheses
specified by the @GATOM D parameter; @UGLI ST applies to the hypotheses
in the suggest list saved with the knowledge base itself.

The operations @RESTART and @XNOWCESS are equivalent to the Expert
menu commands Restart Session and Knowcess, respectively.

Result

The result returned by Cont r ol Sessi on is TRUE if the call is successful,
FALSE if an error occurs.

Examples

A condition or action of the form

Execute "Control Session" @TR NG=" @TOP";
will stop the current session.

Execute "Control Session" @5TRI NG=" @GRESTART, @UG.I ST,
@KNOWCESS" ;

will stop the session, reinitialize all values, suggest all hypotheses on the
knowledge base’s suggest list, and restart inference processing.

Language Reference 203

Chapter 2 Execute Library Routines

Execute "Control Session" @TRI NG=" @UGGEST";
@ATOM D=hypol, hypo2;

will suggest the hypotheses hypol and hypo?2.

Related Topics

Multi-Values
Patterns
Execut e Operator

CopyFrame Routine

Definition

The Execute routine CopyFr ane copies property values from one frame
(object or class) to another.

Interactive Dialog

CopyFr ane is chosen with the Select Execute popup menu command in the
Rule editor or Method editor, which automatically displays a special dialog
box for specifying the execute parameters interactively, rather than by
explicitly typing them in as listed below:

CopyFraos |

Source Frame m‘b of source

LIzt of Fromes | @ATOMID of destination
| Se1 Palmes | Forward Ualues — @STRAT

i

Help
CATOMID] Nems of & :aurce frama Coaject or clean? YNt proparty
vBIV3E are to be capled Ceicapl r el) U
Help
Cancel
Parameters

The @GATOM D parameter consists of two items:

m The name of a source frame (object or class) whose property values are
to be copied

m The name of the destination frame to which they are to be copied, or a
pattern specifying a list of such frames

204 Language Reference

CreateObjects Routine

The @TRI NGparameter is optional, and consists entirely of the following:

@5TRAT=0ptions (Optional) Strategy options governing the
assignment (see Execute Library Overview for
details).

Effect

The values of all of the source frame’s properties are copied to the
corresponding properties of each destination frame, with the following
exceptions:

m The destination frame must already possess a property with the given
name. If it does not, the property is not automatically associated with
the destination frame and its value is not copied.

m The source frame’s Val ue property is never copied.

Result

The result returned by Copy Fr arne is TRUE if the call is successful, FALSE if
an error occurs.

Examples

Suppose class Box has two instances named box1 and box2 and two
properties named wi dt h and hei ght , and that cubel is an instance of
class Cube with properties wi dt h, hei ght , and dept h. Then a condition
or action of the form

Execute "CopyFrane" @ATOM D=cubel, box1;

will copy the values of cubel. wi dt hand cubel. hei ght tobox1. wi dt h
and box1. hei ght , respectively. The value of cubel. dept h is not copied,
since the destination frame box1 has no property named dept h.

Execute "CopyFrane" @ATOM D=cubel, <Box>;

will set both box1. wi dt h and box2. wi dt h equal to cubel. wi dt h, and
both box1. hei ght and box2. hei ght equal to cubel. hei ght.

Related Topics

Execut e Operator
Data Types

Val ue Property
Patterns

CreateObjects Routine

Definition

The Execute routine Cr eat eObj ect s creates dynamic objects and attaches
them to one or more frames (classes or objects) as specified.

Language Reference 205

Chapter

206

2

Execute Library Routines

Interactive Dialog

Cr eat e(bj ect s is chosen with the Select Execute popup menu command
in the Rule editor or Method editor, which automatically displays a special
dialog box for specifying the execute parameters interactively, rather than
by explicitly typing them in as listed below:

Creatalbjects]

X
J

Roat [@ROOT Nurnber ot objects [@NUMOBEJS

From | @FROM

List of Frames lT@ATOMﬁ) Help

M of objectz will iat of in: k=t byrrabed
e Ith & MMBIF ERrting with 116 From numbar. UK I
Cancel |
pParameters

The @GATOM D parameter is the list of frames (objects or classes) whose
properties the dynamic objects may inherit.

The @TRI NG parameter may include the following:

@ROOT=0bj_name Root part of name assigned to all created objects,
full name includes start_num.

@-ROVEstart_num (Optional) System increments this starting number
for each new dynamic object and adds to root part
of name to create unique object name.

@NUMOBJ S=total Number of dynamic objects the system is to create.

The full object name consists of the concatenated values of @ROOT and
@-ROM If @-ROMis omitted, the system automatically increments the
number part of the object name starting from the default value 1.

Effect

The parameters @ROOT and @-ROM(if present) determine the name of
objects the system creates dynamically by attaching them to the parent
objects or classes specified in GATOM D. The system keeps track of the total
number of objects created by incrementing the number part of the full object
name and stops when the number reaches the specified number @GNUMOBJ S.
Dynamic objects automatically inherit properties from their parents if the
inheritance strategy is unmodified.

Result

The result returned by Cr eat eObj ect s is TRUE if the call is successful,
FALSE if an error occurs.

Language Reference

CreateReport Routine

Examples

A condition or action of the form

Execute “Createjects” @BTRI NG=" @ROOT=nyChj , @NUMOBJS=10";
@ATOM D=Cl assA, C assB;)

will create ten objects called myGbj 1 through nyCbj 10. Each of them will

be attached to the classes ClassA and ClassB. If any of these objects already

exist, they will just be attached to the classes. If the @-ROMparameter is

added to the previous example, then

Execute “Createjects” @BTRI NG=" @ROOT=nyChj , @ROVE21,
@NUMOBJS=10"; @ATOM D=Cl assA;)

will create ten objects called ny Qbj 21 through ny Cbj 30 and attach them

each to ClassA.

Related Topics

Properties Execut e Operator
Inheritance Strategy Dynamic Objects
Inheritance

CreateReport Routine

Definition

The Execute routine Cr eat eReport processes a text file containing
formatting commands and interpretations on slot variables and then
displays the processed file.

Interactive Dialog

Cr eat eReport is chosen with the Select Execute popup menu command
in the Rule editor or Method editor, which automatically displays a special
dialog box for specifying the execute parameters interactively, rather than
by explicitly typing them in as listed below:

CreateReport

rite name |
orign [] Hewtent []
vorign[] wvestent []

[Keep O wait
Help |Name of report template file.

T —
)

Cancel

Parameters
The @GATOM D parameter is ignored.

Language Reference 207

Chapter

208

2

Execute Library Routines

The @TRI NG parameter can include the following:

@ LE=file_name Name of file to convert.

@RX=horizontal origin Horizontal origin of the window displayed.
@DRY=vertical origin Vertical origin of the window displayed.

@EXTX=width Width of the window displayed.
@EXTY=height Height of the window displayed.
@WI'T Display Cont i nue and Cl ose buttons; Wait for

mouse click before continuing.

@XEEP Display Information in a new window and keep it
until the next show or the user explicitly closes it.

Only the FI LE parameter is required.

Effect

The text file designated by the @I LE parameter is processed line by line. It
can contain commands and slot variable names as described below. You
assemble the commands of the text formatting language in the text file using
any text editor.

Formatting commands specify alignment, page length, inclusion of other
files, and sections which are included or not depending on variable values
from the Rules Element. (See Formatting Commands for more information
on the available commands.) Slot variables names are interpreted and are
substituted with their current values.

The processed file will not be displayed if it contains a #noDi spl ay#
formatting command and if it is saved on disk (#NewFi | e# or #AddFi | e#
commands).

Interpreting Slot Variables

When Cr eat eReport processes a text file, the contents of the text file are

preprocessed. It considers any string between “\ ”” (back slashes) or between
the parentheses of @/() an interpretation (dynamic value) and replaces it

with the current value of the interpreted variable, provided it is a valid slot
of the knowledge base. For example:

...\ passenger.fullnane\...

or

... @/(passenger. full nane)

isdisplayed as. .. Mar k Johnson. .. if the current value of the property
f ul I nanme of the object passenger is Mar k Johnson.

After this preprocessing, the system searches for global commands and
executes the corresponding instructions. Afterwards, the system scans the
text one character at a time; it then interprets and executes the local
commands.

Important:

m All the formatting commands and their arguments can be interpreted.
This means that the system can interpret a dynamic Rules Element
variable to obtain the command keyword and its arguments.

Language Reference

CreateReport Routine

m If your final text must contain a backslash (\), write “\\” so that the
parser does not mistake it for an interpretation.

Because the dynamic values are interpreted before the rest, you should
beware of using dynamic values containing “#”: when the system scans the
content of the file, it understands these symbols as the beginning or the end
of a command.

Formatting Commands

The text formatting language contains commands that describe the way the
text following the command needs to appear on the screen. Each command
starts and finishes with a # on its own line. Do not use this symbol in the
text itself. The following list identifies these commands that belong to one
of three categories: screen layout commands, text commands, and file
commands.

Screen Layout Commands

The following commands control how much of the screen the text window
uses. A text window can consist of several screen pages and is scrollable by
the end user.

Specify a Header#OpenHeader #
...(text)
#C oseHeader #

These two commands specify a header for the text window using text you
supply. The text must not exceed five lines. The text between these two
commands can contain interpretations of Rules Element variables.

Specify a Footer#QpenFoot er #
...(text)
#C oseFoot er #

These two commands specify a footer for the text window using text you
supply. The text must not exceed five lines. The text in between these two
commands can contain interpretations of Rules Element variables.

Set Page Length#PageLengt h=XXX#

This command sets the length of the page (number of lines between the top
two consecutive headers) to XXX. The system adds a page break every XXX
lines. The default page length is 50 lines. Page breaks appear as lines of “-”.
To change this default character, see the #Set PageBr eak=char # below.

Set Page Width#PageW dt h=XXX#

This command sets the width of the page (in number of columns) to XXX.
Lines wrap around every XXX characters. The default page width is 80
columns.

Set Left Margin#Lef t Mar gi n=XXX#

This command sets the left margin to XXX characters. The default left
margin is 0.

Set Right Margin#Ri ght Mar gi n=XXX#

This command sets the right margin to XXX characters. The default right
margin is 0.

Language Reference 209

Chapter

210

2

Execute Library Routines

Specify Page Break Character#Set PageBr eak=char #

This command changes the character used for displaying page breaks to the
one you specify.

Insert Page Break#PageBr eak#

This command forces a page break on the line.

Text Commands

The following commands control aspects of the text itself, including color,
alignment, and exact position:

Set Tabs#Tabs=X#

This command lets you tab at every X number of spaces or multiple of the
number. Be careful using tabs with dynamic text variables since the
formatted text position depends on the slot value not the slot name.

Center Text#Cent er #

This command centers the text following it. Text remains centered until the
Rules Element finds a #Lef t Al i gn# or #Ri ght Al i gn# command.

Left Align Text#Lef t Al i gn#

This command makes the text following it left aligned. Text stays left
aligned until the Rules Element finds a #Cent er # or #Ri ght Al i gn#
command.

Right Align Text#Ri ght Al i gn#

This command makes the text following it right aligned. Text stays right
aligned until the Rules Element finds a #Cent er # or #Lef t Al i gn#
command.

Set Text Column#LXXX#

This command begins the text following it on column XXX. This command
can appear embedded inside the text.

Align Text Column#RXXX#

This command begins the text following it on column XXX and makes it
right aligned. This command can appear embedded inside the text.

Set Word Wrap#Wor dW ap#

This command allows word wrap. Text you display does not exceed
#PageW dt h=XXX#. Word wrap is the default condition.

Set Character Wrap#Char W ap#

This command allows character wrap. This disables the word wrap
condition.

Set Precision#Pr eci si on=X#

This command lets you change the precision used to display the fractional
part of a floating point number. The default is 0, so fractions are ignored.

Set Date#dat e=YYYYY#

Language Reference

CreateReport Routine

This command displays the current system date in the format specified by
YYYYY, where Y can be any of the following characters:

d Uses the current date.

h Uses the current hour

m Uses the month number.

y Uses the current year.

D Uses the first three letters of the day.

M Uses the first three letters of the month.

Blank spaces and '/’ are valid separators. As an example,
#dat e=D _ni d/ y# is replaced by Wed_01/ 03/ 90 (the underscore denotes
a blank space).

File Commands
The following commands access files or external devices:
Override Form Feed#NoFor nFeed#

This command overrides the default form feed that normally occurs when
you print a text file, create a new file (#NewFi | e#), or append the file to an
existing file (#AddFi | e#).

Include a File#Include a filename [,<class>] {{[+,-] index] } #

This command causes the file you specify (filename) to appear in the current
text file. For complete details about including files, refer to the Include
Command section below.

Copy Text to File#NewFi | e=fi | enane#

This command creates a new text file (filename) and stores all the text
preceding this command in the newly created file. The text is stored exactly
as it appears on the screen, without commands.

Store Text Only in File#AddFi | e=fi | enane#

This command stores all the text preceding this command in the file you
specify (filename), without commands. If the file you specify already exists,
the text is appended to the end of the file.

Do not display the Text#NoDi spl ay#

This command will cause the text not to be displayed once it has been
processed (the default is to display the text). However, this commands will
only be effective if the text was saved with a #Newfi | e# or #AddFi | e#
command.

Conditional Statements

The following command structure lets you display text or execute
commands only if the conditions you specify are met.

#if(condition)#
commands and t ext

#el sei f(condition)#

... commands and text

#el se#

... commands and text

#endi f #

Language Reference 211

Chapter

2

Execute Library Routines

The condition compares one or more variables of the knowledge base to the
value you specify as follows:

(\ oj ect Narre. Propert y\ ==Val ue)
This command structure uses the following operators to make comparisons:
= Variable is not equal to the value.

== Variable is equal to the value.

< Variable is less than value.

> Variable is greater than value.

<= Variable is less than or equal to value.

>= Variable is greater than or equal to value.

Additionally, logical operators let you chain variables together or negate the
variable, as follows:

&& Logical and
|] Logical or

! Logical not.

Note: Use parentheses to limit operators if needed.

Include Command

212

This command tells CreateReport to find the file you specify and include it
in the current text file. The full possible syntax of an include command is
the following:

#i ncl ude=fil enane[, <cl ass>[.prop]]{[,[+ -]index]}#

The filename can be followed with a class (or object) name between <>
characters. In this case, the file will be included once for each of the
subobjects of the class (or object) and each occurrence of ISELF! in the
included file will be substituted with that subobject name. Additionally, if
the class (or object) name is followed with a property name, occurrences of
I PROP! in the included file will be substituted with that property name.

Any property specified after <cl ass>[. prop] is used for determining
how the different subobjects should be sorted. Several of these properties
can be used in which case the subobjects are first sorted on the first index,
using the second index in case of atie and so on. If the index is prefixed with
a'- ' (minus) character, the sorting is done is descending order. By default
the order is ascending.

Result
The result returned by Cr eat eReport is TRUE if the call is successful,
FALSE if an error occurs.

Examples

A condition or action of the form
Execute "CreateReport” @TRI NG=" @ | LE=nyfil e";
will convert the file nyf i | e and display the converted file.

Language Reference

FileExist Routine

If myfile contains the following lines:

#center#

Exanpl e of CreateReport file
#l eftal i gn#

#i f (\ di spl ayal | \ ==TRUE) #

#i ncl ude=nyfil e2.txt, <cl ass>#
#endi f #

End of CreateReport file

and myfile2 contains:
oj ect of class: !'SELF! with value @/(!SELF!.Info)

and di spl ayal | is TRUE and cl ass has two subobjects obj 1 and obj 2
with their property | nf o being | nf 01 and | nf 02, the converted file will be
displayed as:

Exanpl e of CreateReport file
oj ect of class: objl with value Infol

oj ect of class: obj2 with value |Info2
End of CreateReport file

FileExist Routine

Definition

The Execute routine Fi | eExi st tests whether a designated file currently
exists.

Interactive Dialog

Fi | eExi st ischosen with the Select Execute popup menu command in the
Rule editor or Method editor, which automatically displays a special dialog
box for specifying the execute parameters interactively, rather than by
explicitly typing them in as listed below:

FileExizk |

Flle Neme | @FILE

il

Help
Retun siot | @RETURN
MNane ol destred Ne oK
Help
Cancel
Parameters

The @GATOM D parameter is ignored.

The @TRI NG parameter must include the following:
@ LE=file_name Name of desired file.
@RETURN=answer_slot Name of slot in which to return result of test.

Both parameters are required. The destination specified by @GRETURN must
be a boolean-valued slot.

Language Reference 213

Chapter 2 Execute Library Routines

Effect

The destination slot designated by the GRETURN parameter is set to TRUE or
FALSE, depending on whether the requested file currently exists. If the
@ LE parameter does not specify a full path name, the file is sought in the
current search path.

Result

The result returned by Fi | eExi st is TRUE if the call is successful, FALSE if
an error occurs.

Examples
A condition or action of the form

Execute "FileExist" @TR NG=" @I LE=FI apdoo. dl e,
@RETURN=TheAnswer . Val ue";

will set TheAnswer . Val ue to TRUE if file FI apdoo. dl e exists in the
current search path, FALSE if it does not.

FindListElem Routine

Definition

The Execute routine Fi ndLi st El emfinds the largest or smallest objectin a
list according to the value of a designated property, and attaches it to a
specified frame (object or class).

Interactive Dialog

Fi ndLi st El emis chosen with the Select Execute popup menu command
in the Rule editor or Method editor, which automatically displays a special
dialog box for specifying the execute parameters interactively, rather than
by explicitly typing them in as listed below:

ricdlistElso |
Jr
Link To | @LINKTO
Rermove Link From | @REMOYE
List of 91012 | @ATOMID
l “MIn . Mox Help |
Dmeki rlion frame to which rerisval slemend iz to b stiachesd oK
Help —'l
Cancel |
Parameters

The @GATOM D parameter is a pattern specifying a list of slots (object
properties) whose values are to be searched.

214 Language Reference

FindListElem Routine

The @TRI NG parameter may include the following:

@.1 NKTO=destination Destination frame to which retrieved element is to
be attached.

@1 N (Optional) Find smallest value in list.

@mrx (Optional) Find largest value in list.

@REMOVE=parent_frame (Optional) Parent frame from which element is to
be detached.

Exactly one of the parameters @1 Nand @/AX must be specified. The
@REMOVE parameter, if present, must explicitly name a parent frame
because the elements may have more than one parent.

Effect

The list of slots specified by @GATOM D s searched for the minimum or
maximum value, as requested. The corresponding object is then attached to
the frame named by the @.1 NKTOparameter as an instance or component
(subobject). If a @GREMOVE parameter is specified, the object is detached from
the designated frame after being attached to the @.1 NKTOframe.

Result

The result returned by Fi ndLi st El emis TRUE if the call is successful,
FALSE if an error occurs.

Examples

Suppose the object Nephews has three components (subobjects) with the
following properties:

nephewl. name = " Huey" nephewl. capCol or = "red"
nephew2. nane = " Dewey" nephew2. capCol or = "green"
nephew3. nane = "Loui e" nephew3. capCol or = "bl ue"

Then a condition or action of the form

Execut e "Fi ndLi st El enf @ATOM D=<Nephews>. nane;
@TRI NG="M N, @Q.1 NKTO=SonmeDucks";

will attach nephew2 (the object with the smallest value for property nane)
as a component of the object SoneDucks, while
Execut e " Fi ndLi st El ent @ATOM D=<Nephews>. capCol or;
@TRI NG=" MAX, @Q.1 NKTO=SoneDucks,
@REMOVE=Nephew" ;
will instead attach nephewl (the object with the largest value for property
capCol or) as a component of SonmeDucks, and will also remove it as an
instance of class Nephew.

Note: The value types of the slots can be anything (STRI NG | NTEGER,
TI ME, DATE, etc.) and they will be compared accordingly. You don’t
need to specify the value types, however all the slots in the GATOM D
pattern must be the same type.

Related Topics

Execut e Operator
Patterns

Language Reference 215

Chapter

2

Execute Library Routines

GetListElem Routine

216

Definition

The Execute routine Get Li st El emretrieves elements from a list of frames
(objects or classes) and attaches them to another frame.

Interactive Dialog

Get Li st El emis chosen with the Select Execute popup menu command in
the Rule editor or Method editor, which automatically displays a special
dialog box for specifying the execute parameters interactively, rather than
by explicitly typing them in as listed below:

GotListElen |

] S—

GelRonk From | @RANKSET

LInk Ta | @LINKTO
Remave Link From [@REMOYI-E
Alom List | @ATOMID
Gal Atoma From Rank |@FROM To Rank |@To Help I
COptionel? Propsriy by wiich slements ars to be ranksd (17 I
Halp
Cancel |
Parameters

The @GATOM D parameter is a pattern specifying a list of frames (objects or
classes) whose elements are to be retrieved.

The @TRI NG parameter may include the following:

@.| NKTO=destination Destination frame to which retrieved elements are
to be attached.

@FROM-=start_index Index of first element to be retrieved. If start_index
is negative, then counting starts from the end of the
list.

@TO=end_index (Optional) Index of last element to be retrieved. If
end_index is negative, then counting starts from
the end of the list.

@RANKSET=rank_prop (Optional) Property by which elements are to be
ranked. Property must be the type INT.

@REMOVE=parent_frame
(Optional) Parent frame from which elements are
to be detached.

The @REMOVE parameter, if present, must explicitly name a parent frame
because the elements may have more than one parent.

Language Reference

GetListElem Routine

Effect

The elements found at the given indices in the list specified by @ATOMID
are attached as instances or components (subobjects) of the destination
frame designated by @LINKTO. If no @TO index is given, only the single
element at index @FROM is retrieved.

If either the @FROM or @TO parameters is negative, the counting starts
from the end of the list. For example, @QFROM = -1, @TO = -3 will get the
last element through the third-from-last.

If a @RANKSET parameter is present, it identifies an integer property
giving each list element’s ordinal rank according to some ranking criterion
(presumably assigned via an earlier call to the Execute routine RankList).
The @FROM and @TO indices then refer to this logical rank rather than to
the element’s physical position within the list.

If a @REMOVE parameter is specified, the list elements are detached from
the designated frame after being attached to the @LINKTO frame.

Result

The result returned by GetListElem is TRUE if the call is successful, FALSE
if an error occurs.

Examples

Suppose class Duck has five instances whose name properties are equal to
Donald, Daisy, Huey, Dewey, and Louie. Then a condition or action of the
form

Execute "GetlListElent

@ATOM D=<Duck>; @TRI NG=" @ ROMF2, @ O=4,
@.1 NKTO=SoneDucks";

will attach Dai sy, Huey, and Dewey (the second through fourth elements
of the list) as components of the object SoneDucks.

If a previous call to RankLi st has ranked the instances of Duck
alphabetically according to their name properties, setting

Dai sy. name_r ank 1
Dewey. name_r ank 2
Donal d. name_rank = 3
Huey. nane_rank = 4
Loui e. name_rank = 5

then

Execute "GetlListElent
@ATOM D=<Duck>; @TRI NG=" @ROMF2, @ O=4,

@1 NKTO=SoneDucks, @RANKSET=nane_r ank,

@REMOVE=Duck" ;
will instead attach Dewey, Donal d, and Huey (the second- through
fourth-ranked elements according to property nanme_r ank) as components
of SomreDucks, and will also remove them as instances of class Duck.

If you used the parameters in the above example, @ROVE- 1, @O=- 2, the
last through second to last elements, namely HUEY and LOUI E, are attached
to SomeDucks since the indices are negative.

Language Reference 217

Chapter

2

Execute Library Routines

Related Topics

Execut e Operator
Patterns
RankLi st Routine

GetMultiValue Routine

218

Definition

The Execute routine Get Mul t i Val ue extracts one or more elements from
a multi-value.

Interactive Dialog

Get Mul ti Val ue is chosen with the Select Execute popup menu command
in the Rule editor or Method editor, which automatically displays a special
dialog box for specifying the execute parameters interactively, rather than
by explicitly typing them in as listed below:

GotHualti¥alus |

Halp hote alamanio are to bo eoctroctad.

MultiValua Slot [@ATOMID of multi_val
List of Slotz [@ATOMID of retum_slot or retum_pak

Reiurn Slot | @RETURN 1 Lenygth

Indesx | @INDEX

@STRAT —— _i Sel Ualues _| Forward Ualues Help
Neme of a 3101 Cobject properiy2, camtel ring § mulil-vela eiri m UK I

Cancel I

Parameters
The @GATOM D parameter consists of one or two items:

= The name of aslot (object property), multi_val, containing a multi-value
string whose elements are to be extracted

m (Optional) A slot name, return_slot, or a pattern, return_pat, specifying
a list of slots to receive the extracted elements

The @TRI NG parameter may include the following:
@ NDEX=index_number (Optional) Index of desired element.

@Q.ENGTH (Optional) Requests number of elements in
multi-value.

@RETURN=length_slot (Optional) Slot in which to return number of
elements.

Language Reference

GetMultiValue Routine

@5TRAT=0ptions (Optional) Strategy options governing the
assignment (see Execute Library Overview for
details).

If Q.ENGTH is specified, then @GRETURN must be included as wvell.

Effect

If an @ NDEX parameter is given, the element at that index in multi_val is
returned as the value of return_slot. If the specified index exceeds the
number of elements in the multi-value, a warning will be posted to the
transcript, but the Execute routine itself will not fail.

If no @ NDEX parameter is given, all elements of multi_val are extracted and
assigned individually to the slots designated by return_pat.

If @Q.ENGTH is specified, the length of multi_val (the number of elements it
contains) is assigned as the value of length_slot.

Result

The result returned by Get Mul t i Val ue is TRUE if the call is successful,
FALSE if an error occurs.

Examples

Suppose the object Nephews has three components (subobjects) named
Huey, Dewey, and Loui e, each of which has a property named capCol or .
If TheCol or s. Val ue contains the multi-value r ed, gr een, bl ue, then

Execut e "Get Mul ti Val ue" @ATOM D=TheCol ors. Val ue,
<Nephews>. capCol or;

will assignr ed, gr een, and bl ue toHuey. capCol or, Dewey. capCol or,
and Loui e. capCol or, respectively.
Execut e "Get Mul ti Val ue"
@A\TOM D=TheCol ors. Val ue, Dewey. capCol or;
@TRI NG=" @ NDEX=2";
will set Dewey. capCol or to gr een, the second element of
TheCol ors. Val ue, and
Execut e "CGet Mul ti Val ue" @ATOM D=TheCol or s. Val ue;
@TRI NG=" @Q.ENGTH,
@RETURN=TheCol ors. | en";
will set TheCol or s. | en to 3, the number of elements in
TheCol ors. Val ue.

Note: If the number of elements in the multivalue does not match the
number of slots in ther et ur n_pat , a warning will be posted in the
transcript, but the Execute routine itself will not fail.

Related Topics

Execut e Operator
Multi-Values
Patterns

Language Reference 219

Chapter

2

Execute Library Routines

GetRelatives Routine

220

Definition

The Execute routine Get Rel at i ves stores the inheritance pathway class
and/or object names of a given frame in a string slot as a multi-value.

Interactive Dialog

Get Rel at i ves is chosen with the Select Execute popup menu command
in the Rule editor or Method editor, which automatically displays a special
dialog box for specifying the execute parameters interactively, rather than
by explicitly typing them in as listed below:

GatRolatives |

Retum Slot | @RETURN

Freme [@ATOMID
|7 Dbjects 1 Parents + Onelevel —
I” Classes + Children +~ EveryLevel |

Cancel I

(ATOMID) God pareata o' ohildren af 1hle Trams {01694 or objeat)

Help

Parameters

The @GATOM D parameter is the name of a frame whose inheritance pathway
is to be tested.

The @TRI NG parameter may include the following:

@NEL EVEL (Optional) Get only immediate parents or children.

@EVERYLEVEL (Optional) Get all parents or children up or down
from every level of inheritance.

@CH LDREN (Optional) Get descendants for class or object.

@PARENTS (Optional) Get ancestors for class or object.

@CLASSES (Optional) Report relatives that are classes.

@BJIECTS (Optional) Report relatives that are objects.

@RETURN=multi_val Name of slot in which to report results.

The parameters @H LDREN and @ARENTS are mutually exclusive, and
may not both be specified, as are GONELEVEL and @EVERYLEVEL. If
@CLASSES and @BJECTS are omitted then both classes and objects are
reported.

Language Reference

GetRelatives Routine

Effect

The target slot @GRETURN contains the names of the relatives of the specified
atom as a multi-value. Relatives are the objects and classes that form the
inheritance pathways of the specified atom (@GATOM D) . The relatives can
be the parents or children, classes and/or objects, immediate or all inclusive
depending on the @TRI NGoptions specified.

Result

The result returned by Get Rel at i ve is TRUEif the call is successful, FALSE
if an error occurs.

Example

Cl assAand d assBboth have children assc and Cl assD. Cl assc has
a child Obj Eand d assDhas a child Obj F like this:

o
SRS

Get Rel atives (@TRI NG=" @INELEVEL, @CHI LDREN,
@RETURN=answer . mul Val *; @ATOM D=Cl assA;)

This will return the multi-value d assC, Cl assDin answer . nul Val .

Get Rel atives (@TRI NG=" @EVERYLEVEL, @CHI LDREN,
@RETURN=answer . mul Val "; @GATOM D=Cl assB;)
This will return the multi-value C assC, C assD, Obj E, Obj Fin
answer . nmul Val .
Get Rel atives (@TRI NG=" @EVERYLEVEL, @cHI LDREN, @CLASSES,
@RETURN=answer . mul Val *; @ATOM D=Cl assB;)
This will return the multi-value C assC, d assDin answer . nmul Val .
Notice that Cbj E and Obj F are not included because we specified
@CLASSES only.
Get Rel atives (@TRI NG=" @GEVERYLEVEL,
@PARENTS, @RETURN=answer . mul ti Val ";
@\TOM D=(vj E;)
This will return the multi-value d assC, Cl assA, d assBin slot
answer . mul ti Val .

Language Reference 221

Chapter

2

Execute Library Routines

Journal Routine

222

Definition

The Execute routine Jour nal performs all of the Rules Element’s standard
journaling operations.

Interactive Dialog

Jour nal is chosen with the Select Execute popup menu command in the
Rule editor or Method editor, which automatically displays a special dialog
box for specifying the execute parameters interactively, rather than by
explicitly typing them in as listed below:

Journal]
Fila Nama | @FILE
@operations:
~ Stort Aecording - StertPloying - Sove State - Sove lalue
v Stop Illennllng v Step Fll“ll‘ln v Aeilore State
@PLAYSTEP @PLAYSKIPSHOYW @PLAYNOSCAN
Play : _{ S1ep By Step _| SkipShow _{ No Scan Help
| iomm'm'g_mmamourm fila ¢t eated 110 Stop Playirg and Stop oic
Hai u .-
Ccancel

Parameters
The @GATOM D parameter is ignored.
The @TRI NG parameter may include the following:

@peration Journaling operation to be performed (see
Operations below).

@1 LE=file_name (Optional) Name of journal file.

@PLAYSTEP (Optional) Replay step by step.

@PLAYSKI PSHOW (Optional) Skip Show operators.
@PLAYNOSCAN (Optional) Don’t scan file.

The @I LE parameter is not needed with the journaling operations
@RECORDSTOP and @LAYSTOR (see “Operations,” below), but is required
with all other operations. The last three parameters are meaningful only in
connection with the @PLAYSTART operation.

Operations

The operation specifier included in the @STRI NG parameter identifies the
journaling operation to be performed. It must consist of exactly one of the
following:

@RECORDSTART Start Recording
@RECORDSTOP Stop recording
@PLAYSTART Start playback

Language Reference

LinkMultiValue Routine

@PLAYSTOP Stop playback
@/ALUESSAVE Save slot values only
@TATESAVE Save complete state
@ TATERESTORE Restore complete state

All operations except @GRECORDSTOP and @PLAYSTOP require a @l LE
parameter to identify the journal file to be used. The @LAYSTART
operation may optionally be modified by including the additional
parameters @PLAYSTEP, @PLAYNOSCAN, or @PLAYSKI PSHOW

Effect
The journaling operation specified in the @GSTRI NG parameter is executed.

Result

The result returned by Jour nal is TRUE if the call is successful, FALSE if an
error occurs.

Examples

A condition or action of the form
Execute "Journal" @TRI NG=" @STATESAVE, @I LE=Sessi on. j ou";

will save the current state of the session in the journal file Sessi on. j ou;
thereafter,

Execute "Journal"
@5TRI NG=" @TATERESTORE, @ | LE=Sessi on. j ou";

will restore the session to the state previously saved.

Related Topics

Execut e Operator
Journaling

LinkMultiValue Routine

Definition

The Execute routine Li nkMul t i Val ue creates links from objects listed by
name in a list of multi-values to a specified class or object.

Language Reference 223

Chapter

224

2

Execute Library Routines

Interactive Dialog

Li nkMul ti Val ue is chosen with the Select Execute popup menu
command in the Rule editor or Method editor, which automatically displays
a special dialog box for specifying the execute parameters interactively,
rather than by explicitly typing them in as listed below:

LiokMaltiFalus |
3
'
Link Ta | @LINKTS
List of Hulli Yalues | @ATOMID

.| Create Dbjects Help

Hime of 8 frama <abject or clexs? to which im obyecty mmad DK

1n tha Lied of MUIHYRINE era 1o ba 11 nkad.
Cancel

Help

Parameters

The @GATOM D parameter is a list of multivalue slots which contain the
names of objects to be linked.

The @TRI NG parameter may include the following:

@.1 NKTO=atom_name Objects named in the multi-values are linked to
this frame (object or class).

@REATEOBJECTS (Optional) Ensures all objects named in the
multi-values are linked whether they already exist
or not.

If you omit the @CREATEOBJ ECTS parameter, you must ensure the names
in the multivalues are legitimate object names.

Effect

The values in the multivalue lists become objects linked to the specified
object or class. If the @REATEOBJECTS parameter is specified, new objects
are created; otherwise, the names in the multivalue lists must already exist
in the system as object names.

Result

The result returned by Li nkMul t i Val ue is TRUE if the call is successful,
FALSE if an error occurs.

Examples

Assume <Ml ass> contains three objects Cbj 1, Obj 2, and Obj 3 with a
string property nval for holding a multi-value. The current values are as
follows:

oj 1. nval = "al pha, beta, charlie"
oj 2. mval = "del ta, echo, f ox"
oj 3. mval = "gulf, hotel,india"

Language Reference

Message Routine

Assume that the objects al pha, bet a,charl i e,del t a,and echo already
exist.

Li nkMul ti Val ue (@TRI NG=" @Q.1 NKTO=nyFr ane"; @ATOM D=(bj 1. nval ;)
This will link all of the objects whose names are in Gbj 1. mval to the frame
nyFrame. So, al pha, bet a, and char | i e will all be linked to myFr ane.
Li nkMul ti Val ue (@TRI NG=" @Q.I NKTO=mnyFr anme";

@\TOM D=nbj 1. nval , Obj 2. mval ;)

This will link the objects in Cbj 1. nval and Cbj 2. nval to nyFr ane.
However, since f ox does not exist, it will not be created or linked.

Li nkMul ti Val ue (@TRI NG=" @Q.1 NKTO=nyFr ame, @REATEOBJECTS";
@A\TOM D=<M ass>. nval ;)

This will link all objects whose names are in all of the multi-values that are
in the class MOl ass to the frame my Fr ame. Since @CREATEOBJECTS is

specified, the objects that don’t exist yet (f ox, gul f ,hot el andi ndi a) will
be created.

Related Topics

Inheritance
Multi-Values
Execut e Operator
At omNane Routine

Message Routine

Definition

The Execute routine Message posts a message on the screen or sends one to
the banner or transcript handler.

Interactive Dialog

Message is chosen with the Select Execute popup menu command in the
Rule editor or Method editor, which automatically displays a special dialog
box for specifying the execute parameters interactively, rather than by
explicitly typing them in as listed below:

Hee=n |

Tent I @TEXT
Raturn 51n1| @RETURN

i 1| 5 ..~ YesNoCancel - . DECancel

+s Transcript . Banner Help |
Taxt of ne=saps 1o b prorbed oK I
Cancel |

Help

Language Reference 225

Chapter

226

2

Execute Library Routines

Parameters
The @GATOM D parameter is ignored.
The @TRI NG parameter may include the following:

@I EXT=text_string Text of message to be posted.

@RETURN=reply_slot (Optional) Name of slot in which to return user’s
reply.

@x (Optional) If present, use dialog box with one
button labeled OK.

(@KCANCEL (Optional) If present, use dialog box with two
buttons labeled OK and Cancel .

@/ESNOCANCEL (Optional) If present, use dialog box with three
buttons labeled Yes, No, and Cancel .

@BANNER (Optional) If present, send message to banner
handler.

@'RANSCRI PT (Optional) If present, send message to transcript
handler.

@BTRAT=0ptions (Optional) Strategy options governing assignment
to reply slot (see Execute Library Overview for
details).

The parameters @K, @DKCANCEL, @'ESNOCANCEL, @BANNER, and
@'RANSCRI PT are mutually exclusive; at most one may be specified. If
none is present, @X is assumed by default.

The @RETURN parameter is needed only with @DKCANCEL or
@ESNOCANCEL, and will be ignored if @K, @GBANNER, or @' RANSCRI PT is
specified.

Effect

If @K, @KCANCEL, or @'ESNOCANCEL is specified, the message given by
the @EXT parameter is displayed in a dialog box with the requested
number of buttons using the Alert Handler. The value returned in the
@RETURN parameter identifies the button the user used to dismiss the
dialog:

1 K or Yes
0 Cancel
-1 No

If @GBANNER or @ RANSCRI PT is specified, the message is sent to the banner
or transcript handler instead of an on-screen dialog box; no result value is
returned.

Result

The result returned by Message is TRUE if the call is successful, FALSE if an
error occurs.

Language Reference

Parse Routine

Examples
A condition or action of the form

Execute "Message" @BTRI NG=" @EXT=Do you want to continue?,
@XKCANCEL, @RETURN=answer . Val ue";

will post the message Do you want to conti nue? inadialog box with
two buttons labeled OK and Cancel . The contents of answer . Val ue will
be set to 1 or 0 to indicate whether the user clicked OK or Cancel .

A condition or action of the form

Execute "Message" @BTRI NG=" @EXT=Now entering rule 5,
@RANSCRI PT";

will post the message Now ent eri ng rul e 5 to the transcript.
Related Topics

Execut e Operator Multi-Values

Parse Routine

Definition

The Execute routine Par se separates a larger string into its component
parts and stores the next string token into a slot.

Interactive Dialog

Par se is chosen with the Select Execute popup menu command in the Rule
editor or Method editor, which automatically displays a special dialog box
for specifying the execute parameters interactively, rather than by explicitly
typing them in as listed below:

Parae |

Btring to Parea Slot | @ATOMID of CharStringSlot
Stariing Position Slat | @ATOMID of CharPosSlot
Return Sloi | @RETURN

I ~ Wards - Lists tep |
CATOMID) 511) 310t Cor MUITI - 41U} ta b8 P eed. ok |
Cancel |

Help

Language Reference 227

Chapter

228

2

Execute Library Routines

Parameters
The @GATOM D parameter consists of two parts:

m CharPosSlot: The character position from which to begin parsing is an
integer slot.

m CharStringSlot: The slot that contains the string to be parsed into
component strings.

The @TRI NG parameter may include the following:

@\ORDS (Optional) Search for string tokens separated by
spaces.

@l ST (Optional) Search for string tokens separated by
commas.

@RETURN=string_slot ~ Name of slot in which to return the next token after
the current character position.

If @VORDS and @I ST are omitted, the system uses the default @VORDS
mode. The destination specified by @RETURN must be a string slot.

Effect

This execute parses the @GATOM D string slot for either words or list
elements. In either @MORDS or @Q.1 ST mode, the ParseStringSlot will be
parsed starting from the character position in the integer slot CharPosSlot.
The next string token found will be returned in the StringSlot. If no token is
found, an empty string will be returned, and the CharPosSlot will be set to
-1. If a token is found, CharPosSlot will be advanced to the next character
position after the token. This enables you to set up a looping rule which
parses out each token one by one. (See examples.)

In @YORDS mode, a token is defined as a string of visible (non-blank)
characters separated by spaces. In this mode, acomma or an equals sign can
also separate two tokens. In that case, the comma or equals sign would be
considered as a separate token. For example, the following shows how a
string would be parsed in @ANORDS mode:

The string: "hello there a=b 1, 2"
Token 1: "hello"

Token 2 "t here"
Token 3: "a"
Token 4: "="
Token 5: "b"
Token 6 "l
Token 7 "

Token 8; "2"

In @Q.I ST mode, a token is defined as a string of characters separated by
commas. In this case, the commas are not considered tokens, just
separators. The leading and trailing blanks in a token are eliminated, but
embedded blanks are retained. Here is an example of parsing in @.1 ST
mode:

The string: "iteml, iteng, two words"
Token 1: "iteml"

Token 2: "itenR"

Token 3: "two words"

Language Reference

Parse Routine

Result

The result returned by Par se is TRUE if the call is successful, FALSE if an
error occurs.

Examples

The following example shows how to set up 2 rules which parse the words
out of a sentence:

Example 1

Rule 1:

If there is evidence of sonething

And "This is a sentence" is assigned to
ParseString. strVal

And 0 is assigned to CharPos.intVal

And there is no evidence of ParselLoop
Then Hypo

is confirmed.

Rule 2:

If CharPos.intVal is greater than or equal to O
And Execute "Parse" (@\TOM D=Char Pos. i ntVal ,
ParseString.strVval"; @TR NG=" @\ORDS,
@RETURN=Token. strVal ";)
And <...do sonething with Token.strVal here...>
Then ParselLoop
is confirmed.
And Reset ParselLoop

When Hypo is suggested, the string Thi s i s a sent ence is assigned to
Par seStri ng. strVal ,and Char Pos. i nt Val issetto zero. Then, the
next condition forces backward chaining to rule 2. That rule checks to see if
Char Pos. i nt Val is greater than or equal to zero. Since itis, it then
executes Par se. Par se will return the first token in

Par seStri ng. st rVal by setting Token. strVal toThi s. You can then
do whatever you want with that token. Par se also sets Char Pos. i nt Val
to the character position right after the token, which in this case would be 4
(since the count starts at 0). On the right hand side of the rule, the
hypothesis Par seLoop is reset which causes it to be executed again.

The next time Rule 2 is executed, Char Pos. i nt Val will be 4, so the token
returned by Par se will be i s. The loop continues in this manner until no

more tokens are found. Atthat point, Char Pos. i nt Val issetto-1, and the
hypothesis Par seLoop is rejected which then causes Hy po to be confirmed.

Examples 2 and 3

The following two examples show the difference between parsing in
@\ORDS mode and @.1 ST mode. For both examples, Char Pos. i nt Val
contains 0 and Par seSt ri ng. str Val contains the following string:
"Hell o there, Bob"

@PARSE (@BTRI NG=" @\ORDS, @RETURN=Token. strVal";
@A\TOM D=Char Pos.intVal, ParseString.strVval;)

After executing this, Token. st r Val will contain Hel | o, and

Char Pos. i nt Val will contain 5 since the token ends on character 4
(starting the count with 0). If this were executed again, the next time
Token. strVal would containt her e and Char Pos. i nt Val would

contain 11. The next time, Token. st r Val would contain ", " and

Language Reference 229

Chapter

2 Execute Library Routines

Char Pos. i nt Val would contain 12. Then, Bob and 16. Finally, on the
fifth try, the token would be empty, and Char Pos. i nt Val would be set to
-1 to indicate that there are no more tokens in the string.

@PARSE (@TRI NG=" @.I ST, @RETURN=Token. strVal ";
@ATOM D=Char Pos.intVal, ParseString.strVal;)

After executing this, Token. st r Val will containHel | o t here and
Char Pos. i nt Val will contain 11. Since we are in @Q.1 ST mode,
everything up to the comma is considered part of the token except for
leading and trailing blanks. If we execute this again, Token. st r Val will
contain Bob and Char Pos. i nt Val will contain 16. Finally, a third
execution will cause the token to be empty and Char Pos. i nt Val will be
-1. Notice in @Q.I ST mode, the comma was never returned as a token.

@1 ST mode is useful for parsing lists such as multi-values.

Related Topics
Execut e Operator

PatternMatcher Routine

Definition

The Execute routine Pat t er nMat cher compares a slot against a list of slots
and links a specified number of matches to a specified class.

Interactive Dialog

Pat t er niVat cher is chosen with the Select Execute popup menu
command in the Rule editor or Method editor, which automatically displays
a special dialog box for specifying the execute parameters interactively,
rather than by explicitly typing them in as listed below:

Pattomintcher |

Link Accepiled Frames To I @LINKTO

Link Rejected FromesTo | @LINKTESTED

Link Untested FromesTo | @LINKUNTESTED
List of Siots (Pattarn) |—@ATOMID of list of slots

Tast |58 ME N4> _IUK

Number of matches @NUMMTCH e ‘}v £= 5 3= Kelp
Aftach frames which pass the 1esf to this frame. 7 4'

Help @operation ——— l

Test Slot r@ATOMID

230

Language Reference

PatternMatcher Routine

Parameters

The @GATOM D parameter consists of two parts:
m The test slot that you want to compare to the list of slots.
m The list of slots that you perform the test on.

The @TRI NG parameter may include the following:

@I NKTO=destination Destination frame to which successfully tested
elements are attached.

@.| NKTESTED=testedFrame
(Optional) Frame to which tested but failed
elements are attached.

@.1 NKUNTESTED=untestedFrame
(Optional) Frame to which not yet tested elements
are attached.

@NUMVATCH=number (Optional) Continue test until specified number of
matches are found.

@peration (Optional) Test operation to be performed (see
Operations below).

If GN\UMVATCH is omitted, the system uses the default 1. Also if no test
operator keyword is supplied, the default is GEQUAL.

Operations

The operation specifier included in the @TRI NG parameter identifies the
operation to be performed on the pair of multi-values designated by
@ATOM Dand @/ALUE. It must consist of exactly one of the following:

@EQUAL All elements in ListOfSlots that have values equal
to the value of testSlot

@NOT_EQUAL All elements in ListOfSlots that have values that
are not equal to the value of testSlot

@ESS All elements in ListOfSlots that have values less
than the value of testSlot

@Q.ESS_EQUAL All elements in ListOfSlots that have values less
than or equal to the value of testSlot

@EREATER All elements in ListOfSlots that have values greater
than the value of testSlot

@EREATER _EQUAL All elements in ListOfSlots that have values greater
than or equal to the value of testSlot

Effect

The Pat t er nMat cher tests each of the slots in the Li st OF S| ot s against
the t est Sl ot according to one of the test operators. As soon as the
specified number of matches is found, Pat t er nMat cher stops checking.
For example, if the Li st OF Sl ot s has five slots that pass the test, but
@NUMVATCH was set to 3, only the first three successful tests will be linked
to the | i nkFr ane.

Language Reference 231

Chapter

232

2

Execute Library Routines

Optionally, you can also have all slots which were tested but don’t pass the
test condition attached to the t est edFr ane, and all slots which have yet to
be tested linked to the unt est edFr ane. If the actual number of matches is
less than the number specified in GNUMVATCH, then the whole list will be
searched and nothing will be linked to the unt est edFr ane.

Result

The result returned by Pat t er nMat cher is TRUE if the call is successful,
FALSE if an error occurs.

Examples

Assume <C ass1> hastwo propertieswei ght and col or and five objects
oj 1 through hj 5. The current values are as follows:

Ooj 1. wei ght = 10 oj 1. col or = bl ue
Ooj 2. wei ght = 20 bj 2. col or = green
Ooj 3. wei ght = 30 oj 3. col or = orange
oj 4. wei ght = 40 oj 4. color = red

oj 5. wei ght = 50 vj 5. col or = yel | ow

Another object t est er also has two properties pounds and f i ni sh with
values as follows:

tester.pounds = 25 tester.finish = "orange"

Also, we have three classes for attaching results: | i nkd ass,
t est edd ass, and unt est edCl ass.
Pat t er nvat cher (@TRI NG=" @Q.I NKTO=l i nkCl ass, @BREATER,

OGNUMVATCH=2" ;
@\TOM D=t est er . pounds, <O ass1>. wei ght ;)

This will match the first two objects in O ass1 whose weight is greater than
tester.pounds. So, in this case, Cbj 3 and Obj 4 will be linked to
i nkC ass.
Pat t er nMat cher (@TRI NG=" @Q.I NKTO=l i nkdl ass,
@.| NKTESTED=t est edCl ass,
@.1 NKUNTESTED=unt est edd ass,

@EREATER, @NUMMVATCH=2";
@\TOM D=t est er . pounds, <O ass1> wei ght;)

This is basically the same as the previous example, except that we are
linking the tested and untested objects to frames. So, in this case, Obj 1 and
oj 2 will be linked to t est edd ass, Obj 3 and Obj 4 will be linked to

I i nkd ass, and Obj 5 will be linked to unt est edd ass.

Pat t er nMat cher (@TRI NG=" @I NKTO=l i nkCl ass, @EQUAL";
@\TOM D=t ester.finish, <O assl>. color;)

This will find the first object in O ass1 whose color is equal to the finish in
tester. So, in this case, Obj 3 will be linked to | i nkd ass.

Related Topics

Patterns
Execut e Operator

Language Reference

PropagateValue Routine

PropagateValue Routine

Definition

The Execute routine Pr opagat eVal ue assigns the value of a specified
atom to atoms in the inheritance pathway that contain the same property.

Interactive Dialog

Pr opagat eVal ue is chosen with the Select Execute popup menu
command in the Rule editor or Method editor, which automatically displays
a special dialog box for specifying the execute parameters interactively,
rather than by explicitly typing them in as listed below:

PropagateValue |

Slot

| Objects - Children .~ OnelLevel
_I Classes . Parents - EveryLevel Help
(ATOMID) Propagate the value in this slot. 0K I
Help
Cancel I
Parameters

The @GATOM D parameter is the name of a slot whose properties you wish to
propagate.

The @TRI NG parameter may include the following:

@NELEVEL (Optional) Propagate only to immediate parents or
children.

@EVERYLEVEL (Optional) Propagate to all parents or children up
or down from @GATOM D.

@CH LDREN (Optional) Propagate down to descendants.

@PARENTS (Optional) Propagate up to ancestors.

@CLASSES (Optional) Propagate to relatives that are classes.

@BJECTS (Optional) Propagate to relatives that are objects.

The parameters @HI LDREN and @ARENTS are mutually exclusive, and
may not both be specified, as are GONELEVEL and @:VERYLEVEL. If
@CLASSES and @BJECTS are omitted then both classes and objects are
used.

Language Reference 233

Chapter

2

Execute Library Routines

Effect

The relatives that share the same property as the specified atom receive the
value of that atom. Relatives are the objects and classes that form the
inheritance pathways of the specified atom. The relatives can be the parents
or children, classes and/or objects, immediate or all inclusive depending on
the @TRI NGoptions specified.

Result

The result returned by Pr opagat eVal ue is TRUE if the call is successful,
FALSE if an error occurs.

Examples

A <C assA> and <Cl assB> both have subclasses <Cl assC> and
< assD>. <O assC> has a subobject Obj E. <Cl assD> has a subobject
oj F:

Pr opagat eVal ue (@GTRI NG=" @EVERYLEVEL, @CHI LDREN'; @ATOM D=Cl assA.intval ;)

This will propagate the current value in Cl assA. i nt val to all of the
children which have a property i nt val on all levels. So, whatever the
current value is C assA. i nt val is, that value will be propagated to

Cl assC.intval,C assD.intval,Obj E. i ntval and Qoj F.intval.

Propagat eVal ue (@GTRI NG=" @DNELEVEL, @PARENTS"; @ATOM D=Cl assC.intval;)

234

This will propagate the current value of O assC. i nt val to its parents,
G assA.intval and d assB. i ntval . If those objects do not have the
property i nt val , it will not be created and the value will not be
propagated.

Pr opagat eVal ue (@TRI NG=" @EVERYLEVEL, @CHI LDREN, @CLASSES";
@\TOM D=Cl assA.intval ;)

This will propagate the current value of O assA. i nt val to all of the
children classes (not objects). So, the value will be propagated to
G assC.intval andd assD. i ntval.

Related Topics

Patterns
Execut e Operator

Language Reference

RankList Routine

RankList Routine

Definition

The Execute routine RankLi st ranks a list of objects or classes according to
the value of a designated property.

Interactive Dialog

RankLi st is chosen with the Select Execute popup menu command in the
Rule editor or Method editor, which automatically displays a special dialog
box for specifying the execute parameters interactively, rather than by
explicitly typing them in as listed below:

FankLizt |
-
@STRAT
’
Frame List | @ATOMID
Sortby | @RANKBY
Put Rark In| @RANKSET
@INCREASING A Ascending Order 1 Set lalves Help
ATAMIDY Patiern epecififd ng & 11at arobJacie or ¢lesdee 10 be rankad. 4‘
Hal
=7 Canced I

Parameters

The @GATOM D parameter is a pattern specifying a list of objects or classes to
be ranked.

The @TRI NG parameter may include the following:
@RANKBY=rank_prop Property determining ranking.
@RANKSET=set_prop Property into which rank is to be stored.

@ NCREASI NG (Optional) If present, rank in increasing order.

@DECREASI NG (Optional) If present, rank in decreasing order.

@5TRAT=0ptions (Optional) Strategy options governing the
assignment (see Execute Library Overview for
details).

At most one of the parameters @ NCREASI NGand @ECREASI NG may be
specified; if neither is present, @ NCREASI NGis assumed by default.

Language Reference 235

Chapter

2

Execute Library Routines

Effect

The objects or classes specified by @GATOM D are ranked according to the
value of the property designated by @GRANKBY. The property designated by
@RANKSET is then set to the corresponding numerical rank, from 1 to the
length of the list.

If the @ NCREASI NG parameter is specified, a rank of 1 denotes the object
or class with the smallest value for the designated property; if
@DECREASI NG the one with the greatest value.

Therank_prop can be any type (STRI NG | NTEGER, Tl Mg, DATE, etc.) but
all of the objects or classes in the pattern must have this property. Also, the
set _prop must be | NTEGERtype and all of the objects or properties in the
pattern must have this property.

Result

The result returned by RankLi st is TRUE if the call is successful, FALSE if
an error occurs.

Examples

If class Duck has five instances whose namne properties are equal to Donal d,
Dai sy, Huey, Dewey, and Loui e, then

Execut e "RankLi st" @ATOM D=<Duck>; @TRI NG= " @RANKBY=nane,
@RANKSET=nane_r ank, @ NCREASI NG';

will rank the instances alphabetically by their nane fields, setting
Dai sy. nanme_r ank equal to 1, Dewey. nanme_r ank to 2,

Donal d. name_r ank to 3, Huey. nane_r ank to 4, and

Loui e. nane_r ank to 5, while

Execut e "RankLi st" @ATOM D=<Nephews>; @GTRI NG= " @RANKBY=nan®e,
@RANKSET=nane_r ank, @ECREASI NG';

will set Dai sy. name_r ank to 5, Dewey. nane_r ank to 4,
Donal d. narme_r ank to 3, Huey. nane_r ank to 2, and
Loui e. nane_rank to 1.

Related Topics

Patterns
Execut e Operator

ResetFrame Routine

236

Definition

The Execute routine Reset Fr ane resets all properties of one or more
frames (objects or classes) to UNKNOWN.

Language Reference

ResetFrame Routine

Interactive Dialog

Reset Fr ane is chosen with the Select Execute popup menu command in
the Rule editor or Method editor, which automatically displays a special
dialog box for specifying the execute parameters interactively, rather than
by explicitly typing them in as listed below:

HozotFraon |
List of Fromes | @ATOMID D
'
teip |
[ATOMID) My f3fi [objaci or daez) whm i iob
Halp | Fat,or o putarn apectryiupa lst ot swh frames. w |
Cancel I

Parameters

The @GATOM D parameter is the name of a frame (object or class) whose
properties are to be reset, or a pattern specifying a list of such frames.

The @TRI NG parameter is ignored.

Effect

All properties of each object or class designated by the GATOM D parameter
are reset to UNKNOWN.

Result

The result returned by Reset Fr ane is TRUE if the call is successful, FALSE
if an error occurs.

Examples

Suppose class Cube has two instances named cubel and cube?2 and three
properties named wi dt h, hei ght , and dept h. Then an action of the form
Execute "ResetFrane" @ATOM D=cubel;

will reset the properties

cubel. wi dth
cubel. hei ght
cubel. depth

to UNKNOWN, and
Execute "ResetFrane" @ATOM D=<Cube>;
will reset

cubel.width cube2.wi dth
cubel. hei ght cube2. hei ght
cubel.depth cube2.depth

Related Topics

Data Types
Patterns
Execut e Operator

Language Reference 237

Chapter 2 Execute Library Routines

SetMultiValue Routine

Definition

The Execute routine Set Mul t i Val ue adds or deletes elements from one or
more multi-values.

Interactive Dialog

Set Mul ti Val ue is chosen with the Select Execute popup menu command
in the Rule editor or Method editor, which automatically displays a special
dialog box for specifying the execute parameters interactively, rather than
by explicitly typing them in as listed below

SebthultiPalus |

MultiYalue 5101 | @ATOMID
Addveles | @ADD

Delate Yalussz | @DELETE

@CompP _ string . Flaal . Time @DUPLICATE or

.
@sTRAT |\ Integer . mate @NODUPLICATE

Help
_| Bel Ualuas _1i Forward Ualue¢ |7 No Duplicate —I

(ATOMID) Mame af a alot (objeet property) contsining a U_K.I

Help multi-valee string to e operelad on, or 8 pribarn apecifying 3

lizt of such 3lole. Cancel I

Parameters

The @GATOM D parameter is the name of a slot (object property) containing a
multi-value string to be operated on, or a pattern specifying a list of such
slots.

The @TRI NG parameter may include the following:
@\DD=value_list (Optional) List of elements to be added.

@DELETE=value_list (Optional) List of elements to be deleted.

@UPLI CATE (Optional) Allow duplicate occurrences of the
same element in a multi-value.

@NCODUPLI CATE (Optional) Avoid duplicate occurrences of the
same element in a multi-value.

@BTRAT=0ptions (Optional) Strategy options governing the
assignment (see Execute Library Overview for
details).

@COVP=value-type (Optional) Specifies the way in which the

individual values in the multivalues are to be
compared. (See Value Types below.)

238 Language Reference

SetMultiValue Routine

At most one of the parameters @UPLI CATE and @NODUPLI CATE may be
specified; if neither is present, GN\ODUPL| CATE is assumed by default.

Value Types

The comp specifier can be used for indicating how the individual values in
a multivalue are to be compared. Ifitis absent, STRING is the default. The
following types are valid: STRING, INT, FLOAT, DATE, and TIME.

For example, if one multivalue contains the element 1.0 and another
multivalue contains the element 1.00, these will be regarded as the same
value if @COVP=FLQAT is specified. However, if @OVP=STRI NGis
specified (the default), they are regarded as two different strings.

Effect

If an @ADD parameter is given, each individual element in the @GADD list is
added to the multi-value(s) designated by GATOM D. If @)UPLI CATE is
specified, elements already present in the multi-value will be included
again; if @NODUPLI| CATE, such additional occurrences will be suppressed.

If a @ELETE parameter is given, each individual element in the @XELETE
list is deleted from the multi-value(s) designated by GATOM D. If

@DUPLI CATE is specified, only the first occurrence of each element will be
deleted, leaving any additional occurrences intact; if @GNODUPLI| CATE, all
occurrences of each element will be deleted.

Both @\DDand @ELETE may be specified in a single SetMultiValue. In that
case, the deletes are done first.

Result

The result returned by Set Mul ti Val ue is TRUE if the call is successful,
FALSE if an error occurs.

Examples

If Duckbur g. r esi dent s contains the multi-value
Donal d, Dai sy, Dewey, a condition or action of the form

Execute "SetMilti Val ue" @\TOM D=Duckbur g. resi dent s;
@BTRI NG=" @\DD=Huey, Dewey, Loui e";

will assign the string Donal d, Dai sy, Dewey, Huey, Loui e as the new
value of Duckbur g. r esi dent s (since in the absence of any explicit
indication, the default behavior is @NODUPLI CATE). By contrast,
Execute "SetMilti Val ue" @\TOM D=Duckbur g. resi dent s;

@STRI NG=" @\DD=Huey, Dewey, Loui e,
@WUPLI CATE" ;

will set it to Donal d, Dai sy, Dewey, Huey, Dewey, Loui e, with the
element Dewey duplicated. Following this operation,

Execute "Set Ml ti Val ue" @A\TOM D=Duckbur g. resi dent s;
@TRI NG=" @ELETE=Dewey" ;

will set Duckbur g. r esi dent s to Donal d, Dai sy, Huey, Louie
(defaulting to @GNODUPLI CATE and deleting all occurrences of the element
Dewey), whereas

Language Reference 239

Chapter

2

Execute Library Routines

Execute "SetMilti Val ue" @\TOM D=Duckbur g. resi dent s;

@TRI NG=" @ELETE=Dewey, @UPLI CATE";

will set it to Donal d, Dai sy, Huey, Dewey, Loui e (deleting just the first
occurrence of Dewey).

Related Topics

Multi-Values
Patterns
Execut e Operator

SetValue Routine

240

Definition

The Execute routine Set Val ue stores a fixed value into one or more
designated slots (object properties).

Interactive Dialog

Set Val ue is chosen with the Select Execute popup menu command in the
Rule editor or Method editor, which automatically displays a special dialog
box for specifying the execute parameters interactively, rather than by
explicitly typing them in as listed below:

Set¥olus |
J
Yalue | @YALUE
List of atoree | @ATOMID
. sal Ualues .J Foruwsard Unlupgs Help
_
Vol ue to be stared
[
e o = |
@STRAT cancel I
Parameters

The @GATOM D parameter is a pattern specifying a list of objects or slots
whose values are to be set.

The @TRI NG parameter may include the following:
@/ALUE=new_value Value to be stored.

@5TRAT=0ptions (Optional) Strategy options governing the
assignment (see Execute Library Overview for
details).

The @Q/ALUE parameter may specify a value of any type.

Language Reference

TestMultiValue Routine

Effect

If GATOM Drepresents a list of object properties, then all of the designated
properties will be set to the value specified by @/ALUE. If GATOM D
represents a list of objects themselves, then all properties of each such object
will be set to the given value. Notice that this routine does not set the values
associated directly with the objects themselves; if this is what is needed, the
objects’ Val ue property must be specified explicitly.

If the type of a property doesn’t match that of the value to which it is to be
set, the value is automatically converted to the required type. Some such
conversions may not work properly, however (such as Dat e to Bool ean);
it is the application developer’s responsibility to ensure that the specified
assignments are meaningful.

Result

The result returned by Set Val ue is TRUE if the call is successful, FALSE if
an error occurs.

Examples

Suppose class Box has two instances named box1 and box2 and two
properties named wi dt h and hei ght. Then a condition or action of the
form

Execute "SetVal ue" @ATOM D=<Box>.wi dth; @TRI NG=" @/ALUE=10";
will assign the value 10 to the properties box1. wi dt h and box2. wi dt h,
Execute "SetValue" @ATOM D=<Box>; @TRI NG=" @/ALUE=10";

will assign it to box1. wi dt h, box1. hei ght, box2. wi dt h, and
box2. hei ght , and

Execute "SetVal ue" @ATOM D=<Box>. Val ue; @TRI NG=" @/ALUE=10";
will assign it directly to the objects box1 and box2 (that is, to the properties
box1. Val ue and box2. Val ue).

Related Topics

Execut e Operator
Data Types

Val ue Property
Patterns

TestMultiValue Routine

Definition

The Execute routine Test Mul t i Val ue compares multi-values for a variety
of possible relations.

Language Reference 241

Chapter

242

2

Execute Library Routines

Interactive Dialog

Test Mul ti Val ue is chosen with the Select Execute popup menu
command in the Rule editor or Method editor, which automatically displays
a special dialog box for specifying the execute parameters interactively,
rather than by explicitly typing them in as listed below:

@conditions

I\
List of Multi Yaluss | @ATOMID LN
Multi Yalue Tesi | @TEST S N
Raturn Alom | @RETURN

. 5e1 Dalwes -~ LT

Type & i : .
4P ABger al _| Fanward Values Help I

ATOMIDY Wam of 1 610t Sabjec] praperty) cantal ning & DK I
Help | ™0t -vel e atring o be tesied, 1 o patern apectrying o Hat of
auch sloks. cancad I

\

Parameters

The @GATOM D parameter is the name of a slot (object property) containing a
multi-value string to be tested, or a pattern specifying a list of such slots.

The @TRI NG parameter may include the following:

@'EST=test_val Slot containing multi-value to compare against.

@ondition Test to be applied (see Test conditions below).

@RETURN=answer Destination in which to return result of test.

@B5TRAT=0ptions (Optional) Strategy options governing the
assignment (see Execute Library Overview for
details).

@COVP=value-type (Optional) Specifies the way in which the

individual values in the multivalues are to be
compared. (See Value Types below.)

Language Reference

TestMultiValue Routine

The destination specified by @RETURN must be either a boolean-valued slot,
the name of a class, or the name of an object. If it is a boolean slot, then
@\TOM D must also designate a single slot (rather than a pattern matching
awhole list of slots).

Value Types

The comp specifier can be used for indicating how the individual values in
a multivalue are to be compared. If it is absent, STRING is the default. The
following types are valid: STRING, INT, FLOAT, DATE, and TIME.

For example, if one multivalue contains the element 1.0 and another
multivalue contains the element 1.00, these will be regarded as the same
value if @COVP=FLQAT is specified. However, if @OVWP=STRI NGis
specified (the default), they are regarded as two different strings.

Test conditions

The test condition included in the @TRI NGparameter specifies the type of
comparison to be performed on the multi-values. It consists of one of the

four keywords

M N Smallest element
MAX Largest element
ANY Any element

ALL All elements

followed by one of the six comparison operators

= Equal

<> Not equal

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

followed by another of the four keywords. The first keyword refers to the
multi-value specified by the GATOM D parameter, the second to that
specified by the @GI'EST parameter. Thus, for example, the test condition
@1 N>MAX tests whether the smallest element of GATOM D is greater than
the largest element of @ EST. Thus 96 test conditions are possible (though
some of them turn out to have the same meaning):

@MIN=MIN @MAX=MIN @ANY=MIN @ALL=MIN
@MIN=MAX @MAX=MAX @ANY=MAX @ALL=MAX
@MIN=ANY @MAX=ANY @ANY=ANY @ALL=ANY
@MIN=ALL @MAX=ALL @ANY=ALL @ALL=ALL
@MIN<>MIN @MAX<>MIN @ANY<>MIN @ALL<>MIN
@MIN<>MAX @MAX<>MAX @ANY<>MAX @ALL<>MAX
@MIN<>ANY @MAX<>ANY @ANY<>ANY @ALL<>ANY
@MIN<>ALL @MAX<>ALL @ANY<>ALL @ALL<>ALL

Language Reference

243

Chapter

244

2

Execute Library Routines

@MIN<MIN
@MIN<MAX
@MIN<ANY
@MIN<ALL
@MIN<=MIN
@MIN<=MAX
@MIN<=ANY
@MIN<=ALL
@MIN>MIN
@MIN>MAX
@MIN>ANY
@MIN>ALL
@MIN>=MIN
@MIN>=MAX
@MIN>=ANY
@MIN>=ALL

@MAX<MIN
@MAX<MAX
@MAX<ANY
@MAX<ALL
@MAX<=MIN
@MAX<=MAX
@MAX<=ANY
@MAX<=ALL
@MAX>MIN
@MAX>MAX
@MAX>ANY
@MAX>ALL
@MAX>=MIN
@MAX>=MAX
@MAX>=ANY
@MAX>=ALL

@ANY<MIN
@ANY<MAX
@ANY<ANY
@ANY<ALL
@ANY<=MIN
@ANY<=MAX
@ANY<=ANY
@ANY<=ALL
@ANY>MIN
@ANY>MAX
@ANY>ANY
@ANY>ALL
@ANY>=MIN
@ANY>=MAX
@ANY>=ANY
@ANY>=ALL

@ALL<MIN
@ALL<MAX
@ALL<ANY
@ALL<ALL
@ALL<=MIN
@ALL<=MAX
@ALL<=ANY
@ALL<=ALL
@ALL>MIN
@ALL>MAX
@ALL>ANY
@ALL>ALL
@ALL>=MIN
@ALL>=MAX
@ALL>=ANY
@ALL>=ALL

In addition, four special test conditions are recognized
@UBSET @BUPERSET @NOT_SUBSET @NOT_SUPERSET
making a total of 100 possible test conditions in all.

The following chart shows how many of the executes have related
meanings. The operators in the left column replace the asterisk (*) in the
expressions along the top row. All of the operations in a given box have the
same meaning. For example, the following three operations have the same
effect when used in TestMultiValue: MAX>MIN, ANY>MIN, MAX>ANY.

Language Reference

TestMultiValue Routine

In addition, these are the same as ANY>ANY, which is shown in the column

header.
M * ANY * ANY | ANY * ALL | ALL * ANY | ALL * ALL
OmOM/ OtoT/ OmOMm/ OmOM/ -
_ 0T, m=t | OmOM, t=m | 0OT, m=t | DT, m=t
- AND
SUPERSET SUBSET otaoT/
OmOM, t=m
OmOM/ OmOM/ 0aT/ OmOM /
- OtOT, met | OOT/nmet | OmOM, #m | OOT, met
NOT_SUBSET | NOT_SUPERSET
MAX>M N MAX>MAX M N>M N M N>MAX
> ANY>M N ANY>MAX ALL>M N ALL>MAX
MAX>ANY MAX>ALL M N>ANY M N>ALL
M N<MAX M N<M N MAX<MAX MAX<M N
< ANY<MAX ANY<M N ALL<MAX ALL<M N
M N<ANY M N<ALL MAX<ANY MAX<ALL

Effect

As noted above, if the @GRETURN parameter designates a boolean slot, then
@\TOM D must also be a single slot containing a multi-value string. The
multi-values specified by GATOM Dand @EST are compared according to
the given test condition, and the boolean result is stored into the slot
specified by @GRETURN.

If the @GRETURN parameter instead designates a class or an object, then
@\TOM D may be either a single slot containing a multi-value string or a
pattern matching a whole list of such slots. Each multi-value in turn is

compared with the one specified by the @ EST parameter, using the given
test condition. If @GRETURN s a class, all multi-values for which the result of

Language Reference 245

Chapter

246

2

Execute Library Routines

the test is TRUE are added to it as instances; if it is an object, they are
associated with it as components (subobjects).

Result

The result returned by Test Mul ti Val ue is TRUE if the call is successful,
FALSE if an error occurs.

Examples

In all of the following examples, TheAnswer is a boolean-valued object and
ABc, BCD, and CDE are instances of class Al phabet with the following
initial values:

ABC. nenbers = "al pha, beta, charlie"
BCD. menbers = "beta, charli e, dog"
CDE. nenbers = "charli e, dog, echo"
Example 1

A condition or action of the form

Execute "TestMultiValue" @ATOM D=ABC. nenbers;
@TRI NG=" @'EST=al pha, charli e, bet a,
@ALL=ALL, @GRETURN=TheAnswer . Val ue";

will set TheAnswer . Val ue to TRUE, since all elements in ABC. nenber s
equal all elements in @G'EST. (Notice that the order in which the elements
are given is unimportant.) However,

Execute "TestMiltiValue" @\TOM D=ABC. nenbers;

@TRI NG=" @'EST=al pha, bet a,
@\LL=ALL, GRETURN=TheAnswer . Val ue";

sets TheAnswer . Val ue to FALSE (since ABC. nenber s contains elements
that are not matched by those in @EST), and
Execute "TestMiltiValue" @\TOM D=ABC. nenbers;
@5TRI NG=" @'EST=al pha, bet a, ganma,
@\LL=ALL, @GRETURN=TheAnswer . Val ue";
also sets it to FALSE (since @ EST contains elements that don’t match those
in ABC. menber s).

Example 2

Execute "TestMuiltiValue" @\TOM D=ABC. nenbers;
@TRI NG=" @'EST=al pha, ganms,
@ANY=ANY, @GRETURN=TheAnswer . Val ue";
sets TheAnswer . Val ue to TRUE (since ABC. nenber s contains at least one
element that matches at least one element in @EST), but
Execute "TestMiltiValue" @\TOM D=ABC. nenbers;
@TRI NG=" @ EST=gammms, del t a,
@\NY=ANY, GRETURN=TheAnswer . Val ue";
sets it to FALSE (since ABC. nenber s and @EST have no elements in
common).

Example 3

Execute "TestMiltiValue" @A\TOM D=ABC. nenbers;
@5TRI NG=" @EST=al pha, del t a,
@\NY>ANY, @GRETURN=TheAnswer . Val ue";

Language Reference

TestMultiValue Routine

sets TheAnswer . Val ue to TRUE, since ABC. nenber s contains at least one
element (bet a) that is greater than at least one element in @ EST (al pha),
but

Execute "TestMiltiValue" @A\TOM D=ABC. nenbers;
@TRI NG=" @EST=al pha, del t a,
@\LL>ALL, @GRETURN=TheAnswer . Val ue";

sets it to FALSE, since not all elements in ABC. nenber s are greater than all
elements in @'EST.

Example 4

Execute "TestMiltiValue" @\TOM D=ABC. nenbers;
@5TRI NG=" @'EST=al pha, bet a, ganma,
@BX>M N, @GRETURN=TheAnswer . Val ue";
sets TheAnswer . Val ue to TRUE, since the largest element in
ABC. menber s (char | i e) is greater than the smallest element in @ EST
(al pha), but
Execute "TestMuiltiValue" @\TOM D=ABC. nenbers;
@TRI NG=" @'EST=al pha, bet a, gammm,
@1 N>MAX, @GRETURN=TheAnswer . Val ue";
sets it to FALSE, since the smallest element in ABC. menber s (al pha) is not
greater than the largest element in @EST (ganma), and
Execute "TestMiltiValue" @\TOM D=ABC. nenbers;
@TRI NG=" @'EST=al pha, bet a, gamma,
@AX<M N, GRETURN=TheAnswer . Val ue";
also sets it to FALSE, since the largest element in ABC. nenber s (charl i e)
is not less than the smallest element in @EST (al pha).

Example 5
Execute "TestMiltiValue" @\TOM D=ABC. nenbers;
@5TRI NG=" @'EST=al pha, bet a,

@UPERSET, @GRETURN=TheAnswer . Val ue";

sets TheAnswer . Val ue to TRUE (since ABC. nmenber s is a superset of
@rEST), and
Execute "TestMiltiValue" @\TOM D=ABC. nenbers;

@TRI NG=" @'EST=al pha, bet a, gamma, charl i e,
@UBSET, @GRETURN=TheAnswer . Val ue";

also sets it to TRUE (since ABC. nenber s is a subset of @'EST), but

Execute "TestMiltiValue" @\TOM D=ABC. nenbers;
@5TRI NG=" @EST=al pha, gammm,
@SUBSET, @GRETURN=TheAnswer . Val ue";

sets it to FALSE (since in this case ABC. nenber s is not a subset of @'EST).

Example 6

Execute "TestMiltiValue" @ATOM D=<Al phabet >. nenbers;
@TRI NG=" @'EST=appl e, candy,
@ANY<ANY, @GRETURN=TheAnswer " ;

associates the objects ABc and BCD as components (subobjects) of
TheAnswer , since they each contain at least one element that is less than at
least one element of the @ EST multi-value. However, CDE. nenber s
contains no such element, so CDE is not made a component of TheAnswer .

Language Reference 247

Chapter

2 Execute Library Routines

Execute "TestMiltiValue" @ATOM D=<Al phabet >. nenbers;
@TRI NG=" @EST=dog, SUPERSET,
@RETURN=TheAnswer " ;

makes BCD and CDE components of TheAnswer , since they are both
supersets of @ EST, but ABc is not.
Execute "TestMiltiValue" @ATOM D=<Al phabet>. nenbers;

@TRI NG=" @'EST=al pha, echo,
@\NY=ANY, GRETURN=TheAnswer " ;

makes ABc and CDE components of TheAnswer , since they each contain at
least one element (al pha and echo, respectively) that is equal to some
element of @EST. However, BCD. nenber s contains no such element, so
BCD is not made a component of TheAnswer .

Related Topics

Comparison Operators
Multi-Values

Patterns

Execut e Operator

Unify Routine

Definition
The Execute routine Uni f y compares specified properties of two lists of

frames (objects or classes) and finds those pairs that satisfy a stated
condition.

Interactive Dialog

Uni f y is chosen with the Select Execute popup menu command in the Rule
editor or Method editor, which automatically displays a special dialog box
for specifying the execute parameters interactively, rather than by explicitly
typing them in as listed below:

Onity |
LY
@conditions

¢

Lzt L1} @ATOMID of from_list

LISt L2 | @ATOMID of to_list

Propecty teat for: L1 @TESTFROM L2| @TESTTO

Propertyset for LI | @SETFROM L2| @SETTO

L1k L1 with | @FROMLINK Link L2 with | @TOLINK

Length of L1 [@ATOMID of Tact - v‘_ o — Help |

from_length M
[ATOMIDS Lid of frames bo b scompared apwine Tiel L2 [From_lizt). Ll
Halp cancel I

248

Language Reference

Unify Routine

Parameters
The @GATOM D parameter consists of the following items, separated by

commas:
from_length Number of frames in from_list.
from_list List of frames to be compared.
to_list List of frames to compare to.

The @TRI NG parameter may include the following:

@ ESTFROM=from_prop
Relevant property of from_list.

@ESTTO=to_prop Relevant property of to_list.
@ondition Test condition to be applied (see Test conditions
below).

@SETFROMEset_from_prop
(Optional) Property to copy from from_list.

@BETTO=set_to_prop
(Optional) Property to copy to in to_list.

@ROVLI NK=from_link_frame
(Optional) Frame in which to accumulate from_list
elements.

@Ol NK=to_link_frame
(Optional) Frame in which to accumulate to_list
elements.

The G'ESTFROMand @ESTTOparameters are required. All others are
optional, but the pairs @GSETFROW @ETTOand @-ROVLI NK/@OLI NK
must be specified together: that is, if one of the pair is present, the other
must be present as well.

Test Conditions

The test condition included in the @TRI NG parameter specifies the type of
comparison to be performed. It must consist of exactly one of the following:

EQUAL Equality
NOT_EQUAL Inequality

LESS Less-than

LESS EQUAL Less-than-or-equal
GREATER Greater-than

GREATER_EQUAL Greater-than-or-equal

If no test condition is specified, @EQUAL is assumed by default.

Effect

The value of property f r om pr op for each frameinfrom|i st is
compared with that of propertyt o_pr op foreach frameinto_l i st, using

Language Reference 249

Chapter

Execut e
<Trucks>;

250

2

Execute Library Routines

the stated test condition. If the condition holds and the parameters
@ETFROMand @ETTOare specified, then the value of property
set_frompropinthefrom.li st elementis copied to property

set _to_propintheto_li st element. Inaddition, if @ROVLI NKand
@Ol NK are specified, thenthefrom | i st element is attached to
from.|ink_frame asaninstance or component,andtheto_|i st
element is similarly attachedtot o_| i nk_frane.

This behavior is summarized by the following fragment of pseudo-code:

for each fromfranme in fromli st
for each to_frame in to_list
if fromframe.fromprop <condition>
to _frame.to_prop
assign fromfranme.set_fromprop to
to_frame.set_to_prop
attach fromframe to fromlink_franme
attach to_frame to to_link_frame
end if
end for
end for

Result

The result returned by Uni f y is TRUE if the call is successful, FALSE if an
error occurs.

Examples

Examplel: Suppose we have a class Pi anos with property wi dt h and a
class Door ways with property hei ght . Since a piano must be tilted on its
side to get through a door, the width of the piano must be less than the
height of the door. A condition or action of the form
Execute "Unify"
@A\TOM D=nunPi anos. Val ue, <Pi anos>, <Door ways>;
@BTRI NG=" @Q.ESS, @'ESTFROVEwI dt h,
@ESTTO=hei ght , GBETFROVENnDdel
@ETTO=accommodat es,
@ROMLI NK=Smal | _enough_pi anos,
@OLlI NK=Bi g_enough_door s";

will test the width of each piano against the height of each door to see if it
will fit. If, say, G-and_Pi ano. wi dt h is less than Fr ont _Door . hei ght,
then Gr and_Pi ano will become an instance of class

Smal | _enough_pi anos, Fr ont _Door will become an instance of

Bi g_enough_door s, and the value of G and_Pi ano. nodel (St ei nway,
for example) will be assigned to Fr ont _Door . accommodat es.

Example 2: Suppose we have aclass Tr uck_Dr i ver s with properties city
and name, and a class Tr ucks with properties location and driver. In order
for a truck to be driven, there must be an available driver in the same city.
A condition or action of the form:

"Uni fy" @\TOM D=nunmTr uckDri vers. Val ue, <Truck Drivers>,

@5TRI NG=" @EQUAL, @ESTFROMEcity, @ESTTO=l ocati on,
@BETFROVEnane, @BETTO=driver, @ROWINK=Can_Drive,
@COLl NK=can_go";
will test the city of each Tr uck_Dr i ver against the location of each Tr uck
to see if they match. If, for example, Chuck. ci ty and Ace. | ocati on are
both "Chicago”, then Chuck will become an instance of class Can_Dri ve,

Language Reference

WriteTo Routine

Ace will become an instance of class Can_Go, and the value of Chuck. nane
(Charl es Smit h, for example) will be assigned to Ace. Dri ver.

It is important to note that:

m The length of the first list (f r om | engt h) can be obtained in a
condition directly before the Uni f y execute by using the Lengt h
function.

m When a match is found in a Uni f y, the appropriate assignments take
place and no further matches are sought on that object! For example,
once we have found a driver for a truck, no further searching is done on
that truck, even if several drivers are available in the same city.

Related Topics

Patterns

Execut e Operator
Lengt h Function
Comparison Operators

WriteTo Routine

Definition

The Execute routine Wi t eTo writes a message to the transcript, a file, or
the terminal.

Interactive Dialog

Wit eTo is chosen with the Select Execute popup menu command in the
Rule editor or Method editor, which automatically displays a special dialog
box for specifying the execute parameters interactively, rather than by
explicitly typing them in as listed below:

FriteTo |
3
Checked if aname J
is supplied. 4
Texi | @TEXT /
List of Slots | @ATOMID /
Fila Nome | @FILE /

s < : | -+~ Add
[~ Transcript _| Terminal _| File . Help I
Text of mesange to be wriiten oK |

Concel

Help

Language Reference 251

Chapter

252

2

Execute Library Routines

Parameters

The GATOM D parameter is an optional list of slots (object properties) whose
values are to be appended to the message.

The @TRI NG parameter may include the following:

@I EXT=text_string Text of message to be written.

@'RANSCRI PT (Optional) If present, write message to transcript.

@ LE=file_name (Optional) If present, write message to specified
file.

@'ERM NAL (Optional) If present, write message to terminal.

@\DD (Optional) If present, append message to existing
file.

@NEW (Optional) If present, create new file.

Any combination of the parameters @ RANSCRI PT, @I LE, and
@ ERM NAL may be included, but at least one must be present. If neither
@A\DD nor @NEWis specified, @A\DD is assumed by default.

Effect

The message given by the @ EXT parameter is written to the transcript, a
file, and/or the terminal, as specified by the parameters. If a list of slots is
specified with @GATOM D, their names and current values are written after
the end of the message text.

The @GADDand @\EWoptions are meaningful only if a file name is given with
@1 LE. @\DD appends the message to the end of the designated file; if the
file does not exist, it is created automatically. @NEWforces creation of a new
file containing the specified message; if an old file already exists with the
same name, it is converted to a $$$backup file.

Result

The result returned by Wi t eTo is TRUE if the call is successful, FALSE if an
error occurs.

Examples
A condition or action of the form

Execute "WiteTo" @BTRI NG=" @EXT=Failure in Valve #3,
@RANSCRI PT";

will write the message Fai | ure i n Val ve #3 to the transcript.

A condition or action of the form

Execute "WiteTo" @BTRI NG=" @EXT=Tank pressures are ,
@'RANSCRI PT, @ LE=Sessi on. | og";
@\TOM D=<Tank>. pressure;

will append the message Tank pressures ar e to both the transcript and
the file Sessi on. | og, followed by the values of the property pr essur e
for all instances of class Tank.

Related Topics

Patterns
Execut e Operator

Language Reference

Chapter

Database Integration
Topics

This chapter describes the various procedures, key concepts, and general
principles of the Rules Element database interface. The topics appear in
alphabetical order.

Core Database Topics
New users should read these first for more detailed
information about the different ways the database
interface can be used and for specific information
about specific database types.

Database Interface Features
Identifies features of the Rules Element database
interface that you can use to extend the database
retrieve and write capabilities of your
knowledge-based application.

Rule Editor / Method Editor Windows
Lists topics related to setting up database retrieve
/ write operations in a rule or method.

Database Editor Windows
Lets you find descriptions of the Database Editor
windows’ various fields.

Database Interface Operations
The topics in this list identify optional as well as
required tasks of the retrieve / write operations.
This information supplements the Database Editor
Windows topics list.

Before looking up topics in this chapter read Chapter Seven, “Application
Data”in the Intelligent Rules Element User’s Guide.

Access String

General

When the Rules Element begins a retrieve or write operation, it first needs
to access the file or database server containing the data to be accessed.

The first argument of a Retrieve or Write command is a quoted string which
specifies the database access string used to establish communications with
the database. This string can be as simple as just a filename or something
more complex, for example containing one or more of the following fields:
username, password, server name, database name, network transport
mechanism, or computer node name. Typically, the more complicated
access strings are used by relational databases.

Language Reference 253

Chapter

3

Database Integration Topics

Related Topics

Access String Specification
Retrieve Operator
Write Operator

Access String Specification

254

General

To supply the database access string field enter the name of the file (for flat
file databases) or the database access string (for relational databases) as the
first argument of the Retrieve or Write operator. A quoted entry for this
field is required for the Rules Element to initiate the desired operation. To
pass a null string specify " (double quotes) as the first argument of the
Retrieve or Write operator.

The following example shows how the database access string would be
specified for a Retrieve operation. In this example, the access string "scott
tiger" appears as the Retrieve operator’s first argument in the Rule Editor
window.

Rule | R_Begin KB | xxx.tkb

Retrie]"scott/tiger"” eTYPE=] [’ | Begin

Actions

Then
Do

Comments |

why |

Inf. Priority Num.l 1 Inf. Priority Slot l

Figure 3-1 Specifying a Database Access String

Flat-File Databases

For flat-file databases, the string is interpreted as a file name, and is handled
like any other file name on your operating system. For flat-file databases
such as NXPDB and DBASE llI files, the access string must contain the

Language Reference

Access String Specification

filename of the data file or database. The filename extension is optional. If
it is not specified, the Rules Element uses the following default extensions:

. NXPNXP and NXPDB files
. SLKSYLK (Excel) files

. DBFDBase llI files

. WKSWKS files (Lotus 1-2-3)

Relational Databases

For relational databases such as Oracle, Sybase, and Ingres, the Rules
Element needs the access string used to sign on to the database manager.
The string you supply is passed to the database manager for interpretation.
Parameters in the connection string must be delimited by a space character.

You must not skip parameters within the access string, but you can omit the
last parameter in the string. If you need to, use a dummy name to supply a
connection parameter that is not used, but do not skip a parameter or
replace one by blanks. For example, in the case of Sybase, the connection
string might take the following form:

"scott tiger hyperion SYBASE HYPERI ON MyApp cust oner db”

In this example, the application name MyApp was supplied as a dummy
placeholder.

Details about specific database access string requirements are located in the
corresponding database name topic in this manual.

Pathname Specification

Absolute or relative pathnames can be used. The pathname syntax depends
on the underlying operating system:
For DOSA:\dirl\dir2\filel

For UNIX/dirl/dir2/filel
For VMB$disk:[dirl.dir2]filel

If arelative filename specification is used, the Rules Element will use its own
search path (the logical name ND_PATH on VMS, the shell variable
ND_PATH on UNIX, or the path specified in the Rules Element on the
Macintosh) to locate flat-file databases. The filename will be concatenated
to each of the directories in the search path until a file is found.

Environment Variables

On some systems (VMS & UNIX), the Rules Element will attempt to
construct the access string argument using environment variables. On VMS
systems, you can specify a VMS logical name. On UNIX systems, you can
use shell environment variables (setenv(1) or EXPORT variables). This
feature is particularly useful with ORACLE, as the account/password
information can be hidden in an environment variable.

Dynamic Values

It's possible to use Rules Element interpretations ("@V/(...)") in this field.
Instead of having a fixed value, the string can be constructed at runtime

Language Reference 255

Chapter

3

Database Integration Topics

from the string values of various object slots. The quoted string can contain
any of the following constructs:

@/(obj . prop) will be replaced by the current value of obj.prop

@BELF will be replaced by the name of the current object
(methods only)

@ROP will be replaced by the name of the current
property (methods only)

For example, when working with flat-file databases different cases can be
stored in files called fi | ecasel,fi |l ecase2, etc. If you specify
"@/(cur_case.filenanme)",andcur _case. fil enane currently
holds the value fi | ecase2, then the filef i | ecase2 will be used for the
transaction.

Note: Slot names used in @/(obj . pr op) constructs are not compiled
when the rule or method containing the retrieve or write statement is
compiled, they are interpreted at runtime. Usually, these slots exist
elsewhere in the knowledge base, but if you misspell a name in these
special constructs, the Rules Element will not create the
corresponding object or slot and you will get an error at runtime.

Related Topics

Write Operator Oracle
Retrieve Operator Sybase
Interpretations @(V...) Informix
Dynamic Values Ingres

Also, look up your database type for details about the exact syntax required.

Arguments Overview

256

The Retrieve and Write operators invoke a Database Editor window that
provides fields to specify the retrieve or write operation. The following two
lists give an overview of the fields for the Retrieve window and the Write
window.

Retrieve Arguments

The following table summarizes the various arguments available in a
Retrieve operation:

Database Type Always required. Indicates type of database to
retrieve from. The default type is machine
dependent.

Name Name of the object to be updated or created when

reading the current record. If the object already
exists, the record is retrieved (see the In filter) into
the object. If the object does not exist and
CreateObiject is checked, a dynamic object is
created. If the object does not exist and
CreateObiject is not checked, the record is skipped.
This field is not normally used for sequential
gueries or atomic queries.

Language Reference

Arguments Overview

Link To

Cursor

Begin

End

Create Object

Fields / Props List

Query

Retrieve Unknown

Retrieve Strategies

Language Reference

List of objects, classes, slots used to filter what is to
be retrieved. If empty list (the default), all fields
are retrieved. If non-empty list, only those fields
mapped to objects or slots in the lists are retrieved.
Pattern matching lists or interpretations can be
used. Used in grouped or atomic transactions.

List of classes or objects to which the new or
updated object should be linked. Pattern matching
lists or interpretations can be used.

For sequential retrieves, an atom of type integer
that represents the record number or the query
number. For atomic retrieves, it must be present,
but specified as UNKNOWN. For grouped
retrieves, it must be empty.

Box for the command starting the transaction of a
relational database. Executed only once for
sequential retrieves. Also used to hold the range
name for the SYLKDB (Excel) and WKSDB
(Lotus123) types.

Box for end of transaction command (typically
used for Write). End statement is only done the last
time during a sequential operation.

Enables the creation of dynamic objects when the
current Name doesn't exist in the KB. Valid for
grouped retrieve operations only.

Describes how to map the fields of each record to
the property-slots of the object in the Rules
Element. If the lists are empty, ALL property
names will be used as Field names. If the lists are
not empty, only the Fields / Properties specified
are affected. For atomic or sequential retrieves, the
Rules Element list should be slots (obj.prop).
Otherwise, a list of properties belonging to the
object being retrieved into should be provided.

Box for the actual database query. Look up your
database type for details. Query is used to select
the current record in sequential mode. The cursor
refers to a query id in that case.

Check this option to enable UNKNOWN values to
be read (string "Unknown" in the database or
spreadsheet). The default is to have the option off
so that only meaningful values are retrieved.

Specify the way values are propagated after a
Retrieve. Always Forward means values are used
in the forward chaining. Current Forward means
the current strategy of the rule is used (this is the
default). Do Not Forward means the values are
used without effects. Note that the If Change
methods are also triggered when new values are
retrieved.

257

Chapter

258

3

Database Integration Topics

Write Arguments

The following table summarizes the various arguments available in a Write

operation:
Database Type

Name

Cursor

SqlError

Fields / Props List

Create New Record

Insert Only

New File

Always required. Indicates type of database to
write to. The default type is machine dependent.

Name of the object to use for updating the current
record. If the object already exists, the record is
updated (see the In filter), otherwise the record is
skipped. This field is not normally used for
sequential queries or atomic queries.

Filters records to be written back. If empty list (the
default), all fields are updated. If non-empty list,
only those fields mapped to objects or slots in the
lists are written. All remaining atoms in the list
create new records (if Create Record selected).
Pattern matching lists or interpretations can be
used. Usually not used in sequential transactions.

An atom of type integer that represents the record
number or the query number. Typically used for
sequential write(s) following sequential retrieves.

Name of the slot in the knowledge base that you
want to use to trap Sql database server error
messages.

Describes how to map the fields of each record to
the property-slots of the object in the Rules
Element. If the lists are empty, ALL property
names will be used as Field names. If the lists are
not empty, only the Fields / Properties specified
are affected. For atomic or sequential writes, the
Rules Element list should be slots (obj.prop).
Otherwise, a list of properties belonging to the
object being written should be provided.

Enables the creation of new records with the atoms
in the In list not already used, otherwise updates
the records that already exist. Valid for grouped
write operations only.

Assumes no records exist in the database to
correspond to the atoms in the In list and enables
the creation of all new records. Not used for
sequential transactions.

Instead of updating an existing file, a new file is
created with a set of new records. Note that if the
In list is empty, each object of the KB is written in a
record. And if the Fields and Properties lists are
empty, all existing properties are used. Cannot be
used in sequential write or with relational
databases.

Language Reference

Atomic Retrieve

Begin Box for the command starting the transaction of a
relational database. Executed only once for
sequential transactions. Also used to hold the
range name for the SYLKDB (Excel) and WKSDB
(Lotus123) types.

Query Box for the actual database query. Look up your
database type for details. Query is used to select
the current record in sequential mode. The cursor
refers to a query id in that case.

End Box for end of transaction command (typically
used for Write). End statement is only done the last
time during a sequential operation.

Write Unknown Check this option to enable UNKNOWN values to
be written (string "Unknown" in the database or
spreadsheet). The default is to have the option off
so that only meaningful values are stored.

Related Topics

Database Editor Windows
Retrieve Operator
Write Operator

Also, look up individual arguments and your database type for more
detailed information.

Atomic Retrieve

General

Atomic retrieval can be used with both flat-file databases and relational
databases such as INGRES, Sybase, and Oracle.

An atomic retrieve operation reads the fields from one record (and only one
record) into slots in the Rules Element’s working memory. The slots
(object.property combinations) usually all belong to the same object, but it's
also possible to read the fields into slots belonging to two or more objects.

Atomic retrieves are used when the knowledge base needs to retrieve a
single, isolated bit of information about the problem at hand. For example,
an atomic read would be used to get a single car's Pri ce and Sporti ve
fields from the CARS database.

Atomic retrieves are also "isolated" from the standpoint that they don't need
any "surrounding” logic in the knowledge base or object network to support
them. A retrieve can be included in the LHS or RHS of any rule without
regard for it affecting other rules in the knowledge base. Of course, if the
retrieve is used in the LHS of a rule and it returns "False", then execution of
the LHS will be terminated and the rule's hypothesis will be set to "False".

Specification

The Rules Element recognizes atomic retrieves from the fact that a cursor
slot is provided in the database retrieve window, and it has the value
UNKNOWN when the retrieve is executed. If the cursor's value is NOT

Language Reference 259

Chapter

260

3

Database Integration Topics

unknown, the Rules Element will assume that the retrieve is sequential and
unpredictable results will occur.

To determine which record will be retrieved, a query is included in the
database retrieve window's Query field. The query should be specific
enough to return one, and only one record to the Rules Element. If the query
isn't specific enough and more than one record is returned, only the first
record is processed. For relational databases, you can use any query
accepted by the database manager (usually an ANSI SQL statement), for
flat-file databases, you can use the Rules Element Query Language to filter
the records.

If the query fails and no record is returned by the retrieve, the cursor slot is
set to -1. If the query succeeds and the record is retrieved, the cursor is set
to an arbitrary positive number.

Atomic retrieves always read the record’s fields into specific slots which
already exist when the retrieve is issued. As a rule, objects are not created
by atomic retrieves.

Fields

To build an atomic retrieve, complete the Retrieve screen in the Database
Editor window as follows.

m Ensure that the cursor slot which will be specified in the retrieve
window has an "Unknown" value. An easy way to do this is to include
a"Reset slot_name" (where "slot_name" is the cursor's slot name) before
the retrieve operation.

m Specify Retrieve as the operator for the LHS, RHS, if change, or order of
sources statement.

m As the first operand of the Retrieve, specify the database access string
for the relational database being accessed.

m In the database retrieve window, click on the appropriate selection in
the Database Type field for the database being retrieved from.

m The Begin field should contain whatever is appropriate for your
database.

m Inthe Query field specify the database table name and appropriate SQL
query OR the Rules Element query to select the record to be retrieved.

m The End field should contain whatever is appropriate for your database
to end a transaction.

= The Name field should be left blank.

m The Cursor field should contain the name of the slot to be used as the
cursor for this retrieve operation. This slot must be of the integer type,
and MUST have an "Unknown" value when the retrieve is issued. The
slot name may be specified as "object.property" or just "object”, which is
shorthand for "object.VValue".

m The In field should contain the name of the slot that will update the
database record field.

m The Link to field should be left empty

m Inthe Database Fields column, specify the names of the database fields
to be retrieved. In the corresponding Object Properties column, specify
the property slots into which the fields should be retrieved.

Language Reference

Atomic Write

m The Create Object option must be left unselected. Only grouped
retrieves can be used to create objects.

Related Topics

Cursor Slot Specification Retrieving from Databases
Access String Slot Specification for Retrieves
Query Retrieve Operations Object Names In Retrieve Operations

Database Editor Windows

Also, look up individual arguments and your database type for more
detailed information.

Atomic Write

General

Atomic write operations can be used with both flat-file databases and
relational databases such as INGRES, Sybase, and Oracle.

An atomic write takes the slots from one or more objects and writes them
out to fields in a database record. In the vast majority of the cases, the slots
are written to a single record, but it's also possible to update multiple
records with an atomic write operation. The fields can all be written from
slots which belong to the same object, or from slots belonging to several
objects. When all the slots are written from the same object, the
object-property relationship is, in effect, transformed into a record-field
relationship.

Atomic writes are used to write out a single piece of information from the

Rules Element’s working memory. For example, an atomic write could be
used in aslot's If Change actions to update a field in a database record when
a slot's value changes.

For example, a knowledge base which recalculates the Pr i ce properties of
cars (to apply a discount) could use an atomic write to update the CARS
database with new DB_PRI CE field values.

Atomic writes are "isolated" from the standpoint that they don't need any
"surrounding" logic in the knowledge base or object network to support
them. An atomic write can be included in the LHS or RHS of any rule
without regard for it affecting other rules in the knowledge base. Of course,
if the write is used in the LHS of a rule and it returns "False" (due to an
error), then execution of the LHS will be terminated and the rule's
hypothesis will be set to "False".

Specification

An atomic write is recognized by the fact that a cursor slot is provided in the
database write window, and it has an ‘UNKNOWN’ value when the write
is executed. If the cursor's value is NOT unknown, the Rules Element will
assume that the write is sequential and unpredictable results will occur.

To determine which record's fields will receive the slots, a query is included
in the database write window's Query field. It is very important that the
guery be specific enough to update ONLY the intended records. If the

Language Reference 261

Chapter

262

3

Database Integration Topics

guery is not specific enough, then many more records could be updated
than intended. For relational databases, you can use any query accepted by
the database manager (usually an ANSI SQL statement), for flat-file
databases, you can use the Rules Element Query Language to filter the
records.

The Rules Element implements atomic writes by building a SQL UPDATE
statement with a WHERE clause constructed from the Query field. For
example, if the Query field contained:

CARS WHERE DB _CAR NAME=' car _1'
the SQL statement would look like:
UPDATE CARS SET WHERE DB_CAR NAME=' car_1'

It's also possible to use a "parameterized query" which substitutes data from
the knowledge base into the query at execution time.

If the query fails and no records are updated, the cursor slot is set to -1. If
the query succeeds and record(s) are updated, the cursor is set to an
arbitrary positive number.

Atomic writes always update existing records. Atomic writes cannot be
used to add new records.

Fields

To build an atomic write, complete the Write screen in the Database Editor
window as follows.

m Ensure that the cursor slot which will be specified in the Write window
has an "Unknown" value. An easy way to do this is to include a "Reset
slot_name" (where "slot_name" is the cursor's slot name) before the
write operation.

m Specify Write as the operator in the LHS or RHS of the rule.

m As the first operand of the Write, specify the database access string for
the relational database being accessed.

m In the database write window, click on the appropriate selection in the
Database Type field for the database being retrieved from.

m The Begin field should contain whatever is appropriate for your
database. See the Beginning Database Operations topic for more
information.

m Inthe Query field specify the database table name and appropriate SQL
query OR the Rules Element query to select the record to be updated.

m The End field should contain whatever is appropriate for your database
to end a transaction. For almost all relational databases, either
"COMMIT" or "COMMIT RELEASE" should be specified.

m The Name field may be left blank or may contain an explicit object name
whose property slots will be written to the record's fields.

m The Cursor field should contain the name of the slot to be used as the
cursor for this write operation. This slot must be of the integer type, and
MUST have an "Unknown" value when the retrieve is issued. The slot
name may be specified as "object.property" or just "object”, which is
shorthand for "object.Value".

m The In and Link to fields should be left empty

Language Reference

Begin - (@BEGIN)

m Inthe Object Properties column, specify the property slots which are to
be written to the fields in the database. In the Database Fields column,
specify the corresponding field which is to receive each property slot.

m The Create New Record option must be left unselected. Only grouped
writes can be used to create records.

Related Topics

Cursor Slot Specification Slot Specification for Writes
Query Write Operations Access String

Database Editor Windows Beginning Database Operations
Write Unknown Ending Database Operations

Writing to Databases

Also, look up individual arguments and your database type for more
detailed information.

Begin - (@BEGIN)

Syntax

The formal syntax of the begin statement is:
@BEG N=quot ed_stri ng;
Note: When editing the Begin field in the retrieve or write dialog screens,

do not enclose the entry in double quotes; the Rules Element will
insert them.

Usage
The Begin argument is used in two different contexts:

m When using a relational database, the begin string will be sent to the
DBMS server before the query string is executed. It is most frequently
used to initiate write transactions. For example, an RDB transaction
might be initiated by specifying:

@BEG N="start_transaction read wite";

m A Sybase update transaction might be initiated by specifying:

@BEGQ N="begi n transaction change_price";

m The begin string can also be used to perform operations which are
neither retrieve nor write requests. It can be used for operations such
as deleting records, dropping or creating tables, and specifying a
timeout period. Look up your database type for more examples on how
this string can be used.

m When using SYLKDB spreadsheet databases, the begin string can be
used to specify a database range name. If no range is specified, the
Rules Element will use the default range Database. See the SYLKDB
topic for further details.

The special construct @/(obj . pr op) can be used in the begin field, as well
as @BELF, and @PROP when initiating retreive or write from a method.

For sequential queries the begin statement is performed only once, before
the retrieval of the first record.

Language Reference 263

Chapter

3

Database Integration Topics

Related Topics

Interpretations @V(...)
Dynamic Values
Beginning Database Operations

Also, look up your database type for more detailed information.

Beginning Database Operations

264

General

Before beginning a retrieve or write operation, the Rules Element executes
whatever statements have been included in the Begin field of the retrieve or
write window.

For the SYLKDB database type, the Begin field holds the database range
name. See the topic “SYLKDB” for more details.

For most relational databases, this field is not required. Some databases,
such as Sybase, require that you include a Begin Transaction or similar
statement in this field.

Actually, any valid SQL statement can be included in the Begin field since it
is passed "as-is" to the database manager. This is useful for executing SQL
DML (or data manipulation language) statements before retrieve or write
operations. For example, statements like CREATE TABLE, DROP TABLE,
and DELETE can be executed from the Begin field.

Note that the Rules Element doesn't make any effort to receive data from the
statement in the Begin field, so coding a SELECT would not be very useful.

For example, to delete all the records from the CARS table before beginning
a Write operation, a statement like the following could be included in the
Begin field:

DELETE FROM CARS

Multiple statements can be included in the Begin field by separating them
with semicolons (*;").

If the statements executed from the Begin field fail, the retrieve or write
operation will be terminated.

Note that for sequential retrieve operations, the Begin field is ONLY
executed before the first retrieve--it's not re-executed for each record.
Specification

To fill in the Begin field you just include the SQL statements you would like
executed before beginning the database operation. More than one
statement can be executed by separating the statements with semicolons.

Interpretations ("@V(...)") can be used in the Begin field.

Language Reference

Create New Record - (@FILL)

The following example shows a write operation using the Begin field to
delete all the records from the CARS table before beginning the write.

Databasze Retrieve

| -

-

Begin | DELETE FROM CARS Database Type

Query | CARS | | Oracle 7 Driver LI

End | ConmIT

Name [IDB_CAR_NAMEI In |

Cursar | Link To [cARS CLASS

SglError | ¥ Create Object
Database Flelds » Object Propertles ™ Retrieve Unknown

DB_FRICE Frice -

 Always Forward

& Current Forward
" Do Mot Forward

- (0]74 Cancel

Figure 3-2 Using the Begin Field to Delete Records

Related Topics

Interpretations @V(...)
Dynamic Values
Begin - (@Begin)

File Retrieves @F(...)

Also, look up your database type for more detailed information.

Create New Record - (@FILL)

Usage

The Create New Record setting is only meaningful in the context of a
grouped write only. Create New Record specifies whether new records
may be added to a database during a grouped write. The system first
updates existing records before creating new ones. If you already know that
the records do not exist, you can instead specify the Insert Only setting so
no update is attempted first.

In the write dialog screen this setting can be specified by clicking in the
Create New Record check box. In a text format knowledge base it will
appear as:

@1 LL=ADD;

When New File is selected, Create New Record is automatically implied.
The Insert Only setting is not compatible with either of these settings.

Language Reference 265

Chapter

3

Database Integration Topics

Related Topics

Grouped Write Arguments Overview
Database Editor Windows New File

Writing to Databases Insert Only
Spreadsheets

Create Object - (@FILL)

Usage

The Create Object setting is used in the context of a grouped retrieve only.
It controls whether or not dynamic objects are created during a retrieve
operation.

In the retrieve dialog screen this setting can be specified by clicking in the
Create Object check box. In a text format knowledge base it will appear as:
@ | LL=ADD;

If this setting is disabled, @I LL will not appear in the text format
knowledge base.

Related Topics

Grouped Retrieve Database Editor Windows
Arguments Overview Retrieving from Databases
Debugging Operations

Cursor Slot Specification

266

Purpose

The Rules Element uses a cursor to determine the type of database
transaction being requested. For sequential queries the cursor keeps track
of the last record retrieved.

The presence or absence of a cursor determines whether the transaction is a
grouped transaction:

Cursor absent Grouped transaction

Cursor present Atomic or Sequential transaction

If present, the value of the cursor slot immediately before the transaction
determines whether an atomic or sequential query is being requested:

m Ifthe value of the cursor slotis NON-NEGATIVE when a retrieve query
is requested, the Rules Element treats the transaction as a sequential
one.

m If the value of the cursor slot is UNKNOWN when a retrieve or write
query is requested, the Rules Element treats the transaction as an
atomic one.

Language Reference

Cursor Slot Specification

m If the value of the cursor slot is NEGATIVE or NOTKNOWN when a
retrieve or write query is requested, the Rules Element generates an
error message.

Typically, in the case of a sequential retrieve, once a record has been
retrieved a set of rules is fired to analyze the retrieved data. The cursor slot
is used to hold the current state of the transaction so that the Rules Element
knows how to resume its operation when another retrieve is executed to
fetch the next record.

Value

The value of the cursor slot has different meanings depending on the type
of database being accessed:

m For flat-file databases, the cursor holds the index of the last record
retrieved, and is incremented each time a new record is retrieved. If the
initial value of the cursor slot is 0, the retrieve will begin with the first
record in the file. By specifying a positive cursor slot value, the retrieve
can be started anywhere in the file. The cursor slot value can also be
changed by rules to skip records in the file.

m For relational databases, the cursor slot holds a stream number (RDB)
or an SQL cursor number (Oracle, Sybase, Ingres, ...). Itis not modified
when subsequent records are retrieved because the index in the virtual
table is maintained internally by the DBMS. If several sequential
transactions are active simultaneously, a unique cursor must exist for
each one. For relational databases, the cursor slot must be initialized to
0 for any sequential transaction. During the first retrieve, the cursor slot
will always be set to a positive value which will not be modified by
subsequent retrieves (except when the retrieve fails because of an error
or when all of the records have been retrieved). Consequently, the
cursor slot value must never be modified by rules which are fired
between retrieve transactions

When the retrieve encounters the end of a flat-file or the end of a virtual
table of records (end-of-fetch), the Rules Element will set the value of the
cursor slot to -1. The looping logic driving the application should test for
this value and exit the retrieve loop.

The cursor will also be set to -1 if a query cannot be processed successfully
for other reasons (data file not found, invalid field names, etc.). An error
message will also be written into the transcript window.

Sequential Operations

With relational databases, sequential writes are usually performed in
conjunction with sequential retrieves. A sequential write should use the
same cursor as its associated sequential retrieve to ensure that the last
record retrieved is updated. A sequential write does not modify the value
of the cursor slot.

With flat-file databases, a sequential write can be executed independently of
a sequential retrieve. In this case, the cursor value will directly index the
record to be updated, and will be incremented automatically.

Language Reference 267

Chapter

3

Database Integration Topics

Related Topics

Atomic Retrieve Atomic Write
Sequential Retrieve Sequential Write
Cursor Record Specification for Writes

Also, look up your database type for details about how the cursor slot
should be specified.

Cursor - (QCURSOR)

Usage

The cursor argument is only used in atomic and sequential transactions. If
this argument is omitted the query is evaluated as a grouped query.

For sequential queries the cursor keeps track of the last record retrieved.

For atomic queries the value of the cursor slot indicates whether the query
was successful.

In the retrieve or write dialog screens it is specified in the Cursor field. Ina
text format knowledge base it will appear as:

@CURSOR=s| ot ;

The cursor is an integer object slot typically defined as object.prop.
Examples:

m CurrentRecord.number

m TheCursor (shorthand for TheCur sor . Val ue)

The data type of a cursor slot must be integer.

The Cursor Slot Specification topic explains how the cursor is used in
database transactions.

Related Topics

Atomic Retrieve Atomic Write

Sequential Retrieve Sequential Write

Cursor Slot Specification Database Editor Windows
Arguments Overview Record Specification for Writes

Database Interface Concepts

268

General

The Rules Element database interface is used to transfer data between
external data sources and the Rules Element's object representation. In
many applications, the data is stored in an external file or database, where
its format is very different from the Rules Element's object representation.
The object representation - classes, objects, properties, and slots - is a
structure for data which the inference engine reasons over. The database
interface transforms and translates the data between its external format (a
file or database) and the Rules Element object representation.

Language Reference

Database Interface Concepts

From another perspective, the database interface allows one to manage
knowledge and facts separately in a Rules Element application:

m Knowledge is represented by rules describing the reasoning process,
and a set of classes, objects, and properties which represent the world
upon which the reasoning takes place.

m Knowledge is input by the application designers as they build the Rules
Element application.

m Facts represent the actual data which is being processed by the
knowledge base, and is represented in the Rules Element’s working
memory by classes, objects, and properties.

m In some applications, all of the facts are input by the user, in others
some or all of the facts are obtained from external files or databases.
The reasoning process can also produce new or altered facts, which can
in turn be saved on external files or databases.

The database interface provides for a clean separation of knowledge and
facts: knowledge is stored in knowledge bases (or KBs), facts are stored in
external files or databases. The database interface allows the application to
Retrieve data - or facts - from an external file or database, and Write the
results of its reasoning - new or altered facts - into an external file or
database. This approach has several advantages:

m The size of the knowledge base remains reasonable because only the
rules and the structural representation of the facts (classes, objects, etc)
are saved as knowledge. The facts or data are stored and retrieved
separately.

m The size of the data or facts may be very large and is managed (in the
case of relational databases) by powerful database managers which
provide services such as data integrity for shared data, fast indexing,
and so forth.

m Since they are stored in external data files or databases, data or facts can
be accessed or produced by other applications.

Features of the Database Interface

The Rules Element database interface has many features which make it a
good method for transferring data between the Rules Element and external
files or databases:

m The database interface is invoked using Rules Element rules or
methods. The database interface takes care of translating the
parameters on the Retrieve or Write statement into the appropriate
database access commands.

m Translation of data between the data's external representation (records,
rows, cells, etc) and the Rules Element’s object representation is
handled automatically by the database interface.

m During retrieve operations, you can control whether the database
interface should update existing Rules Element objects, or create new
objects to represent the external data. Likewise, during write
operations, the database interface can handle either updating existing
records or creating new ones.

m Since Rules Element knowledge bases are portable, the Rules Element
Retrieve and Write statements are also portable. Of course, the

Language Reference 269

Chapter

270

3

Database Integration Topics

portability of the application will be influenced by the portability of the
target databases(s). Applications which use platform specific databases
like ODBC will be less portable than those which use portable databases
like Oracle or flat files.

If the database changes, at the most only small modifications will have
to be made to the Rules Element knowledge base. For example,
changing a knowledge base to access a relational database instead of a
spreadsheet file requires only a few parameter changes in the Rules
Element knowledge base.

Of course, if by chance your database type is not supported by the Rules
Element, there are other methods for interfacing the Rules Element to
external files or databases. These include the following.

A program using the Rules Element Application Programming
Interface (API) could load a Rules Element knowledge base, read the
records from the database, and volunteer the information into the Rules
Element’s working memory. When the inferencing process was
complete, the program could use the Rules Element API again to extract
the information from the Rules Element’s working memory and write
it back out to the database.

A Rules Element Execute handler could be written, which is invoked
via an "execute" statement in a Rules Element rule or method. When
called, the handler would read data from the database and volunteer it
into the Rules Element’s working memory. The knowledge base can
pass a list of the objects to receive data from the database to the handler
in the "execute" statement. Another execute could be used to write the
data from the Rules Element’s working memory to the external file.
Since an execute handler only receives object identifiers, or Atomids,
the handler would still have to use the Rules Element API to extract the
actual data from the Rules Element’s working memory.

A program could also be written as a Rules Element "question handler”
to retrieve the data from the database. In this case, it would still have
to use the Rules Element API to volunteer the data into the Rules
Element, and would have the additional problem of determining
whether the Atomid passed to the question handler should even come
from a database (it could come from the user, or another data source).

If you use one of these methods for accessing your database, keep the
following considerations in mind:

The programs or handlers described are written in a high level
language which supports the Rules Element API.

The program or handler must do the transformation between the
database or file's format and the Rules Element’s object representation.

The programs or handler is responsible for all interaction with the
database or file's access methods.

If your Rules Element application is to be portable, special care must be
taken to ensure that the programs or handlers used to access the file or
database are also portable.

When possible, using the Rules Element database interface to access
external data bases and files is much easier than writing your own
program(s) to handle the transfer. Only in the rare occurrence where the
Rules Element doesn't support your external file type should it be necessary

Language Reference

Database Interface Concepts

for you to provide your own access. Refer to the Rules Element API
Programmer’s Reference Manual for details about the previously
mentioned handlers needed to interface the Rules Element with
unsupported databases.

Using the Rules Element Database Interface

Following are examples of applications which use the Rules Element
database interface. In each case, one or more of the rules use the database
interface to either get data from a database into Rules Element’s objects, or
take Rules Element objects and write them to a database:

Retrieving Records Sequentially

Assume that you have a Rules Element knowledge base to evaluate credit
applications to determine whether or not the applications should be
approved. The current application being processed is represented in the
Rules Element by the object cur rent _appl i cat i on, with the properties
appl i cant _nan®e, i ncone, pri or _bankr upt cy, and

appl i cati on_approved. Rules will evaluate whether or not the
application should be approved or denied, and the object's

appl i cati on_appr oved property updated as appropriate.

The credit applications themselves are stored in a relational database as
rows in a table - a format which is very different from the Rules Element’s
class and object organization.

To implement this, a rule would use the database interface to retrieve the
rows one at a time from the table. As each row is fetched, its column values
are "pasted" into the properties of the objectcurrent _appl i cati on. The
Rules Element then uses the rules created by the application designer to
determine whether or not to approve the application, and sets the

appl i cati on_appr oved property appropriately. Another rule would
use the database interface to write the object out to the appropriate row in
the database. During the write, the database interface will transform the
object's properties into the appropriate columns in the row.

Retrieving Records as a Group

Another example is a knowledge base to assist in projecting the budget for
acompany which is divided up into departments. The example company is
represented by objects in the class depar t ment , each of which has the
properties per sonnel _cost, over head, rent,i ncone,

depart ment _nane,andfi nal _budget. The rules evaluate the needs of
all the departments together, and update each department object’s
properties to reflect the final budget allocation.

The departmental information is stored in an EXCEL spreadsheet file. The
file's format is very different from the knowledge base's representation of
the data - it is organized in cells whereas the data in the knowledge base is
organized in classes, objects, and properties. Another characteristic of this
example is the requirement to process all the departments at once - in a
group as it were.

Here, a Rules Element rule uses the database interface to read in all the
department records from the spreadsheet, creating an object for each
department. The objects are created in the depart nent class, and the

Language Reference 271

Chapter

272

3

Database Integration Topics

database interface takes care of pasting the appropriate cells into each
object’s properties. The rules then develop a proposed budget and update
each object’s f i nal _budget property in the Rules Element’s working
memory. Another rule writes the updated objects out to the EXCEL
spreadsheet - with the database interface transforming the objects and
properties back into EXCEL’s cell-type organization.

Retrieving One Record at a Time

A system for configuring automobiles accepts input from a car buyer on the
features they would like to order with their car. Each feature is represented
by an object with the properties Feat ur e_Nane, Col or, Styl e, Pri ce,
Di nensi on, and St ock_Nurber . The user only selects the

Feat ur e_nane, col or and st yl e for each feature - the remaining
information - Pri ce, Di mensi on,and St ock_Nunber - must be retrieved
from a database. The records are accessed one at a time, as the features are
selected.

In this knowledge base, a rule would use the database interface to retrieve
the appropriate record from the database as each feature was selected by the
user. As each record is retrieved, the Rules Element would update the
object's Pri ce, Di nensi on, and St ock_Nunber properties with the
information from the database. The rest of the knowledge base evaluates
the feature's compatibility with other features (represented by previously
created objects) already on the car.

Summary

You can see that the database interface is very much like a "pipe" between
the Rules Element’s working memory and an external data source like a
database or a spreadsheet. However, the database interface does much
more than simply transfer data - it also transforms it between the Rules
Element’s class-object-property representation and the external data
source's format. You can also see that the database interface is capable of
different types of processing - retrieving all the records one at a time,
retrieving all records at once, and retrieving only one record. See the
Related Topics list for more information about these operations.

All of these examples use only one type of database, but it's possible to read
and write multiple database types from the same Rules Element knowledge
base. Since the database interface always reads into and writes from the
Rules Element objects, the Rules Element application doesn't have to be
concerned about conversions between different database types.

Related Topics

Databases Spreadsheets
Retrieving from Databases Writing to Databases
Database Editor Windows Arguments Overview

Language Reference

Database Editor Windows

Database Editor Windows

Usage

The retrieve and write dialog windows behave in a manner similar to that
of the other Rules Element editors like the Rule Editor and the Object Editor.
A cell can be selected by clicking on it with a mouse, or by using the
RETURN, TAB or DOWN ARROW keys to move forward through the
fields, or by using the UP ARROW or shift-TAB keys to move backwards
through the fields.

Database Retrieve

| s

cegin [N ooy

Query | | | DBF3 =l

End |

Marme | I |

Cursor | Link To |

S | [T Create Object
Database Flelds 3 Object Propertles ™ Rettieve Unknown

 Always Foreard

& Current Forward
¢ Do Mot Forward

- 0124 | Cancel |

Figure 3-3 Retrieve Dialog Screen

| -

-

Becin |

Query | |
End |
Mame | In |
Cursor |
Database Type
SglErar | [oeFa =

Database Flelds 4 Object Propertles

~| [Create New Recard
[T Wite Unknown
[Mew Fila
" Insert Only

- D124 Cancel

Figure 3-4 Write Dialog Screen

Language Reference 273

Chapter 3 Database Integration Topics

A DBMS can be selected by clicking on the desired name in the list of
database types.

The Copy property pop-up menus can be used while editing the Object
Properties list to avoid typing errors in atom names.

Note: : When editing the fields Begin, Query and End, do not add double
quotes. They will be inserted automatically by the Rules Element.

Each field and button in the write and retrieve windows has an associated
key word. The correspondence between the two is as follows:

Begin @EG N
Query (1st part of query cell) @QRUERY
Query arguments (2nd part of OARGS
query cell)

End @END
Name @NAVE
Cursor @curs

In @ATOVB
Link to @CREATE
Database Fields @l ELDS
Object Properties @ROPS or @LOTS
Database Type @r'YPE
Create Object (Retrieve) @l LL
Create New Record (Write) @l LL
Insert Only (Write) @l LL
New File (Write) @l LL
SqlError (Write) @ERROR
Retrieve Unknown (Retrieve) @INKNOWN
Write Unknown (Write) @UNKNOAN
Forward buttons @\V\RD
Saving Fields

When you are in one of the Database Editor windows and you click on the
OK button, the arguments you have entered are saved in the Rule or
Method Editor, prefixed by their keywords (see above). The entire
argument list of your Retrieve or Write can be viewed in the edit line at the
top of the Rule or Method Editor. To do this, you can either clear the

Ret ri eve from the first column and then click in the third column, or you
can click on the right side of the third column to bring up the pop-up, and
then move away from it, leaving the argument list displayed in the edit line.
A knowledge base saved in a text format can be edited with any standard
text editor.

274 Language Reference

Database Type - (@TYPE)

Related Topics

Arguments Overview
Retrieve Operator
Writing to Databases
Spreadsheets

Write Operator

Retrieving from Databases
Databases

Database Type

Debugging Operations

Also, look up individual arguments and your database type for more
detailed information about completing the Database Editor windows.

Database Type - (@TYPE)

Purpose

This keyword specifies the type of database to be accessed. It can take one
of the following values:

DAL_CL1
DB2

DBF3

| NFORM X

| NGRES
NONSTOP
NXP

NXPDB
ORACLE
RDB
RDBCDD
SQLBASE
SQLDS
SQLSERVER
SYBASE
SYLK
SYLKDB
VAX SQL
VKS

VKSDB

Apple's Data Access Language (formerly CL/1)
IBM's DB2 relational database

dBase IlI

Informix's SQL relational database

Ingres' SQL relational database

Tandem’s relational database

Rules Element’s spreadsheet

Rules Element’s database table

Oracle's SQL relational database

DEC RDB relational database (VAX/VMS only)
RDB installed with the CDD common dictionary
GUPTA's relational database

IBM's SQL/DS relational database

Sybase's OS/2 relational database

Sybase's SQL relational database

EXCEL spreadsheet

EXCEL database

Interface to RDB/VMS for DEc

Lotus 1-2-3 spreadsheet

Lotus 1-2-3 database

Note: : This list is continually growing and additional database interfaces
may be available that are not documented here. Contact Neuron
Data to determine the availability of any database interface not listed

above.

SQLSERVER is not supported on the PC.

NXP, NXPDB, SYLK, SYLKDB, WKS, WKSDB, and DBF3 are
available on all versions of the Rules Element, even if the spreadsheet
or database application is not available for that platform. These

Language Reference

275

Chapter

276

3

Database Integration Topics

formats are provided to ensure compatibility across platforms. For
example, a flat-file database created by dBase I11 on an IBM-PC can be
read by the Rules Element database interface on a VAX or UNIX
platform.

When opening flat-file databases, the Rules Element checks the file header
and will generate runtime errors if there is a mismatch between the database
type specified and the file header.

Related Topics

Database Editor Windows Arguments Overview
Databases Spreadsheets

DBF3 | NGRES

ORACLE RDBI NFORM X
SYBASE VKS

SYLK VAX SQL

Databases

The concept of databases describes a much more typical organization of
data which is common to all other database and file formats supported by
the Rules Element. Although the terminology varies widely among the file
types and products, the basic data structure is the same.

Terminology

In a database, data is grouped into logical entities which we will refer to as
records. A record represents an individual thing such as a transaction, an
inventory item, an event record, or a personnel record. The decision of what
goes into a record is completely up to the application designer.

Each record is divided up into fields, which represent individual data items
about the thing the record represents. For example, a car inventory record
could contain fields for the car's price and its model. Generally, records of
the same type contain the same fields, but this is not necessarily so.

Records of the same type are grouped together into files. Again, generally
all the records in a file contain the same fields, but some file or database
formats allow some fields to be omitted in some records.

File
Honda 15,000 Red
Records BMW 39,000 Black
Saab 50,000 Green
Fields

File formats like NXPDB, DBASE Ill, RDB, and others use the terms file,
record, and field to describe this organization. Relational databases such as

Language Reference

DBF3

ORACLE, INGRES, SYBASE, and Apple's DAL use the terms table, row,
and column, but the structure is exactly the same: tables (files) are composed
of rows (records), which in turn are made up of columns (fields).

Table «————» File

Row «—» Record
Column «————» Field

With relational databases, it is important to note that it is possible to access
rows from two or more tables in a single request using a JOIN. Nonetheless,
the Rules Element database interface always sees a single virtual table
which is the result of the join operation. No matter how many tables are
involved, the data is still presented to the Rules Element database interface
as a collection of columns, organized into rows, from a single table.

Related Topics

Database Type DBF3

I NGRES O acl e

RDB SYBASESYLK
VKS Spreadsheets

Retrieving from Databases
Writing to Databases

DBF3

General

DBF3 is the dBase Ill format. The Rules Element can read and write this
format on any platform, even if the data file can be used directly only by
dBase 11l on the IBM-PC.

Header names cannot exceed 10 characters according to DBF3 specification.
By default, new DBF3 files are created with the following field widths:

boolean 1 (Logical value)

integer 10

float 10 + <Current Precision in the Rules Element>
string, date, time 30

special property Value 30

The Rules Element Flat-File Format topic explains how you can define your
own field width and override these default values.

In dBase 11, boolean values are stored in a one-character field. By default,
the Rules Element uses the following formats for boolean values:

Language Reference 277

Chapter

3

Database Integration Topics

When writing into the DBF3 file

TRUE becomes y
FALSE becomes n
NOTKNOWN becomes *
UNKNOWN becomes ? when Write UnKnown is enabled,

(otherwise nothing is written).
When reading a DBF3 file

YAAN) are interpreted as TRUE

n,N,f,F are interpreted as FALSE

u,uU,? are interpreted as UNKNOWN
* is interpreted a NOTKNOWN

Note that data and time data types, as well as indices are not supported.

Related Topics

Databases

Retrieving from Databases
Writing to Databases

Rules Element Flat-File Format

Debugging Operations

278

This section contains information that might be of use when it comes to
debugging why your Retrieve or Write operation is not behaving exactly as
you had wanted. Among the topics covered are: using the Transcript
window, stand-alone query testing, and miscellaneous commonly
occurring errors.

Transcript Window

The Transcript window is probably the single most useful debugging tool
for debugging database interface problems. To cause the Rules Element to
write to the Transcript window when in the Development interface, you
should select the “Enable Write” option from the window’s popup menu.

Transcript Window Usage

When trying to debug a Retrieve or Write using the Transcript window, it is
agood idea to try to come up with a test case with only one or at most a few
rules. This avoids filling the transcript log with volumes of information not
relevant to the problem, and also makes the debugging go faster since the
entire KB is not being run. If this is not possible, a couple of other
possibilities exist. One possibility is to set the Rules Element breakpoints
before and after the database operation. You can enable the Transcript
window when the first breakpoint is reached, and disable it afterwards.
Another possibility is to add new conditions or actions just before and after
the database operation to enable and disable the Transcript writing.

Language Reference

Debugging Operations

Even in this case, a Retrieve and/or Write can still generate a significant
amount of information to the Transcript window. If this slows down the
application too much, you can select the Close option from the Transcript
window’s popup menu while the writing is going on. This should cause the
application to record the information, but run significantly faster, since the
window is not being updated (typically not a fast operation). When the
session ends, you can then bring the Transcript window up to browse
through the information reported by the Rules Element.

Database Messages

The Transcript window should now contain messages of the form: "xxx
Interface executing: ..." (or something along these lines), where "xxx" is the
specific database interface you have (e.g. Oracle, Sybase, etc). You should
try to find each occurrence of one of these lines and determine if they were
successfully executed. Any failure should be apparent by the appearance of
an error message following the executing message. These error messages
will usually have been generated by the specific database server, returned
to the Rules Element, and displayed in the Transcript window by the Rules
Element. Note that not all error messages are fatal: (e.g. warnings about
trying to drop tables that don't exist, etc). Other messages, however, will be
fatal (e.g. access failed because of invalid database access string, and field
name doesn't exist).

Error Slot

If you want to trap each error and test the value before proceeding, you can
use the SqlError field of the Database Editor window to create an error slot.
The error slot you specify will receive the error message or number
generated by the specific relational database server. If the database returns
either an error number or an error message at runtime, the transaction is
immediately halted, and the inference engine automatically sets the
left-hand side Retrieve or Write condition to FALSE. If no error slot is
specified, error messages that are generated at runtime can be viewed in the
Transcript window that you enable.

Query Syntax

You should also check that the "..." part of the executing message appears to
be valid query syntax (SQL, RDO or whatever) for your database. In many
cases, you can execute almost exactly the same query outside the Rules
Element environment by using an interface provided for the database. For
example, with RDB, you could use the RDO interface; with ORACLE, you
could use SQL*Plus; with SYBASE, you could use isql and so on.

Sometimes the problem may be with the presence (or absence) of quotes
around the information being passed to the database. The Rules Element
normally knows to transfer integer fields without quotes, string fields with
guotes, and so on (although this is not always the case). The Rules Element
does not normally know the datatype of the database field it is writing into
and might inappropriately provide (or not provide) quotes around the
database field value. This can be detected by the Transcript window error
message, and confirmed by a standalone query test.

In most places where quotes are required (in the Name field and in the
Fields list) it’s possible to provide a "hint" to the Rules Element to override

Language Reference 279

Chapter

280

3

Database Integration Topics

its default handling. The way to do this is to preface the database fieldname
with "{I}" (denoting integer-like, or more generally, numeric) or "{S}"
(denoting string, the normal default). Specifying something as a numeric
fieldname should force the Rules Element to omit putting quotes around the
field value. Likewise, specifying "{S}" should force quotes to be placed
around the field value. This syntax is documented under the Query
Language topic, and the datatypes / database interfaces that need this
syntax are documented under specific database types.

Rules Element Messages

The Transcript window could also indicate that the problem with the
database operation is not with the database server, but on the Rules Element
end of the transaction. For example, the field might exist, but there is no
object available to Retrieve the information into. Similarly on a Write, there
might not be an object from which to obtain information, or the Name field
might be causing the wrong database record to be updated.

A more common problem occurs with formats being incompatible between
the Rules Element default and the default for the appropriate database. See
your database topic in this chapter for a datatype compatibility table.
Typically this occurs with dates and times. The Transcript window again
should show the information being returned from the database and the
Rules Element format(s) which are being tried for a match.

Other Errors

A variety of other common errors may occur as follows.

Name Field

In a Write statement, you should never use a database field name in both the
Name and Field areas. This might work in some cases, but in other cases it
will lead to unpredictable results. It is acceptable to duplicate the database
field name in this manner in a Retrieve statement, however.

The Name field consists of a series of expressions like:
'rootl'lfield1!'root2'!field2! ... with a maximum of five root/field
combinations being allowed. On RETRIEVEs and WRITEs, typical field
names are strings and integers. Some other conversions may be done by the
Rules Element to retrieve into a proper object name, but the conversion is
not always reversed on a write operation.

Commit

Following a write operation or on the last write before the end of the session,
you should typically specify "commit" or "rollback" in the End field. You
should issue a "commit" if you are satisfied with what has been written;
"rollback" otherwise. The Rules Element does NOT automatically commit
for you (this would negate the advantages offered with commit/rollback).
However, you should be aware that when you do a RESTART, the Rules
Element automatically does a rollback. If you forget the commit, even
though all your database writes succeeded, the actions from this session will
be totally undone by the rollback.

Language Reference

Dynamic Values

No Fields Specified

A common mistake when coding a Grouped Retrieve is to omit the Fields
and Props from the retrieve, thinking this will retrieve all the properties of
the object(s) you are interested in. This, however, causes the Rules Element
to construct a query which attempts to select all the properties which the
Rules Element knows about from the database/table (using the property
names as field names). Even if the knowledge base is carefully constructed
to only include properties known to be present in the table, the Rules
Element has special properties (e.g. "Value") which probably won't be in the
table and will cause the query to fail. This should be noticeable if, again, you
look at the Transcript output and notice the names of the various database
fields that the Rules Element is trying to retrieve information from.

Create Object Not Specified

Another common mistake when coding a Grouped Retrieve is to neglect to
check the Create Object (@FILL=ADD) box in the Database Editor window.
In this case, the Rules Element only retrieves those rows whose names
match the names of existing objects as specified by the Name field. If no
Name field is specified, then the Rules Element uses a Name field in the
database to get an object name, and tries to find an existing object with that
name. If the field doesn't exist in the database, or the field exists, but there
is no object with that name, the Retrieve will succeed from the Rules
Element's perspective, but fail from yours. If a Name field has been
specified with roots and database field hames, then the Rules Element will
look for an existing object with that name. Again, if it doesn't exist, the
Retrieve will not return any information from the database.

Related Topics

Query Language Name

End Create Object

Retrieving from Databases Writing to Databases

Database Editor Windows Formats

Existence Filtering SqlError
Dynamic Values

You can use reserved words or arguments to tailor your query so that values
in the query are not determined until the query is evaluated.

Using Reserved Words

You can use two reserved words to tailor your queries:
m Use @/ to use the current value of the property slot.

m Use @ELF to use the current object whose property is being evaluated.
This is valid only when the Retrieve or Write is in an Order of Sources
or If Change.

For example, this query finds the value of MyFavori t eCol or. val ue. If
the value is blue, then the query retrieves all records where the color is blue:

cars where color contains @/(MFavoriteCol or.val ue)

Language Reference 281

Chapter

3

Database Integration Topics

This example uses the value of the current object to find all employees
whose salary is greater than that value:

enpl oyees where salary > @/(@ELF. anount)

Using Arguments

You can also use arguments to tailor your queries. To use arguments,
specify an identifier in the query. The Rules Element then checks the
contents of the Query Arguments field (second cell) to determine the value
of the identifier.

SQL identifiers use this format:

car gument

where ar gunent is a string that you supply.

RDB identifiers use this format:

I ar gunment

where ar gunent is a string that you supply.

This is an example of a query that uses an argument:
enpl oyees where salary > :vl

:v1 refers to the first value in the Query Arguments field. The Query
Arguments field contains this:

TooBi gSal ary. anmount
Related Topics

Query Retrieve Operations Query Write Operations
Writing to Databases Database Editor Windows
Query Language Interpretations @V(...)
Query Arguments

End - (@END)

282

Syntax
The formal syntax of the end statement is:
@ND=quot ed_stri ng;

When editing the end field in the retrieve or write dialog screens, do not
enclose the entry in double quotes; the Rules Element will insert them.

Usage

This argument is used only with relational databases. It contains a
statement which will be sent to the DBMS server just before the resources
involved in the transaction are released (after the last record has been
retrieved or updated). Typically, this string will contain Commit or
Rollback statements.

The special constructs @/(obj . prop) , @ELF, and @ROP can be used in
the End field.

Language Reference

Ending Database Operations

Note: For sequential queries the end statement is performed only once,
after the retrieval of the last record.

Related Topics

Database Editor Windows Debugging Operations
Arguments Overview Ending Database Operations
Interpretations @V(...) Dynamic Values

Ending Database Operations

Purpose

Once the database successfully completes a retrieve or write operation, it
executes whatever statement has been included in the End field of the
database retrieve or write window.

The End field is used ONLY with relational databases such as Oracle,
Informix, Sybase and INGRES. For most databases, this field is only used
for write operations, and in these cases will contain a SQL COMMIT or
COMMIT RELEASE statement.

The COMMIT statement is used to signal the database manager that all of
the updates to the database are complete, and should be made permanent.
Optionally, the word RELEASE can also be included to tell the Rules
Element to close its connection with the database manager.

It's a good practice to always include a COMMIT in the End field, since
different database managers have different default actions if an application
terminates without issuing a COMMIT or ROLLBACK statement. Some
databases will automatically commit the changes, other will assume that a
failure has occurred and will roll the changes back.

Actually, any valid SQL statement can be included in the End field since it
is passed as-is to the database manager. This is useful for executing SQL
DML (or data manipulation language) statements after retrieve or write
operations. For example, statements like CREATE TABLE, DROP TABLE,
and DELETE can be executed from the End field.

Note that the Rules Element doesn’t try to receive data from the statement
in the End field, so coding a SELECT wouldn’t make much sense.

Multiple statements can be included in the End field by separating them
with semicolons (}).

Specification

Filling in the End field is quite simple--you just include the SQL statements
you would like executed when the database operation is complete. The key
words COMMIT and ROLLBACK have been defined by a resource file with
the definition supported for each database. When the Rules Element parses
the End field and finds the keyword COMMIT or ROLLBACK, it will
convert it to the correct database SQL query. The resource file ensures that
these keywords can be used without regard to which database system is to
be accessed.

Language Reference 283

Chapter

3

Database Integration Topics

More than one statement can be executed by separating the statements with
semicolons. Interpretations @V(...) can be used in the End field.

The syntax of the COMMIT and ROLLBACK keywords for your database
are defined by the resource file nxda. dat . You can view and edit the
definitions in the Resource Browser by displaying the resource names
NxDa. Conmi t . DoNarme and NxDa. Rol | back. DoName (where DbName is the
name of the database supported or ANSI, in the case of the default ANSI
SQL). The Rules Element will try to execute the query as defined in the
resource file, if it doesn’t find a resource defined for a particular database, it
will use the ANSI SQL type.

The following example shows a write operation using the End field to
commit the changes after a write operation.

| S

Begin |
Query | CARS VWHERE DE_SPORTIVE = 'YES' |
End | commiT

Mame | IDE_DEALER! 1a_DB_MAME!| In | <cars_class>

Cursor |
Database Type

SqlError | |Orac|e? Driver =]

Datahase Flelds 4m Object Propertles

¥ Create New Recard

DBE_MODEL Maodel -

CE_MODEL _DATE Maodel_Date ™ Wifrite Unknown

DE_FRICE Price [~ Mew File

" Insert Only
= (0]24 Cancel

Figure 3-5 Filling in the End Field
Related Topics
Database Editor Windows Debugging Operations
Arguments Overview End
File Retrieves @F(...) Interpretations @V(...)

Dynamic Values

Existence Filtering Operations

284

Existence filtering is used in grouped retrieve operations which specify
specific objects to update. During the retrieve operation the Rules Element
determines if the specified objects exist to hold the record's fields. Itis
possible to use the object's existence as a final criteria for determining if the
record should be retrieved or not.

Language Reference

Existence Filtering Operations

Existence filtering cannot be used with sequential and atomic retrievals
because the slot names (object.property combinations) are always specified
explicitly for these operations. The Rules Element’s rule compiler requires
that explicitly named slots exist when the rule is compiled, thus the object
will always exist when the retrieve is executed.

Existence filtering can be used with grouped retrieval since the object may
not exist when the retrieve is executed. Existence filtering can be used to
bypass retrieving a record if the object doesn't already exist, or if the object
doesn't already exist in the In list. This section discusses how to use
existence filtering.

Usage

During aretrieve, the Rules Element builds an object name to identify which
object will hold the current record's fields. Existence filtering can then be
used to make the final determination of whether or not to retrieve the
record. Stated simply, existence filtering means:

m If the object doesn't already exist, then don't create it (and bypass the
record).

m Ifthe objectisn'tin the In list - a list of eligible objects and classes - then
bypass the record.

Existence filtering is a good way to update an existing set of objects from a
database, reading only those records which correspond to existing objects.

For example, assume that there are two objects in the Rules Element's
working memory - car _1 and car _2, and that the CARS table contains ten
recordsforcar _1thrucar _10. Inorder tofill in the property slots of car_1
and car _2, all of the CARrecords could be retrieved, but this would have
the undesirable side affect of creating objects for car _3, car _4, etc. By
using existence filtering, ONLY the fields from the car _1 and car _2
records could be retrieved, and the rest of the records bypassed (since no
objects exist to hold the record's fields).

Existence filtering can work on two levels--it can test to see if the object
exists anywhere in the Rules Element's working memory, or it can test to see
if an object is the member of an In list.

Check Memory

To test for object existence in all of the Rules Element's working memory,
the Create Objects box must NOT be checked in the Retrieve window. If this
box is not checked and the In field is empty, then the Rules Element will look
through all of its working memory for a matching object.

Check In List

The In list field can be used to restrict the search for a matching object to a
specific set of object names and/or class specifications. Both object names
and class specifications can appear in the In List.

Object names are used "as-is" by the Rules Element. The Rules Element
compares the object name generated for the record to the object names in the
list. Ifit's in the list, the record is considered to have passed the existence
test.

Language Reference 285

Chapter

286

3

Database Integration Topics

Specify a class name by enclosing it in angle brackets. For example, to match
the objects in car _cl ass against the generated object name,
<car _cl ass> should be specified in the In list.

Actually, <cl ass_nane> is an existential pattern matching operation with
no test, therefore all objects currently in the pattern matching list are used.
If this is the first time the particular <cl ass_nane> specification appears
in the LHS or RHS of the rule, then all the objects in the class will be used.
However, if previous pattern matching operations had trimmed the list,
then only those objects remaining in the list are matched against.

Using the In List in this fashion is useful for limiting the records retrieved
using a piece of data which is "known" to the Rules Element, but is not
contained in the database being retrieved from.

For example, assume that the objects in the class car _cl ass have a
property Color, which does NOT have a corresponding field in the CARS
database. Also, there are ten car _cl ass objects (car _1, car _2,car_3,
etc), and only two of them -- car _1 and car _5--have a Col or slot of Red.

To retrieve ONLY the records for Red cars would be difficult since the CARS
database has no Col or field to use as a reference. However, using pattern
matching, <car _cl ass> can be trimmed to contain only car _1 and

car _5, and existence filtering used to limit the records retrieved to only
those objects left in the list. To do this, include a statement like the following
in the LHS or RHS of the rule which issues the Retrieve:

= <car _cl ass>. Col or " Red"

Thiswill cause <car _cl ass>toyieldonlycar _1andcar _5 the nexttime
it is referenced in the LHS or RHS of the rule. By including <car _cl ass>
in the In list, records would only be retrieved for the objects in the list:
car_1orcar_5.

Specification

To use existence filtering, one or more of the following must be done when
filling in the Retrieve window:

m Make sure the Create Objects box is NOT checked.

m To further restrict the search for an object, specify an In list of object
and/or class specifications in the In field.

Do NOT check the Create Objects box and include names in the In field.
This can have undesirable side effects such as creating "ghost" objects which
are attached to no classes and have no properties.

Ensure Create Objects Box is NOT Checked

Checking the Create Obijects box tells the Rules Element NOT to use
existence filtering. This means that if the Rules Element does NOT find an
object to match the generated object name, the Rules Element will create an
object to hold the record’s contents.

If Create Objects is NOT checked and nothing is specified in the In List (the
In field in the Retrieve window), then the Rules Element will look at all
objects in its working memory for a matching object.

Language Reference

Field Name Specification

Specifying an In List

To limit the search for a matching object to a specific set of objects, specify a
list of object names and/or class names in the In field of the Retrieve
window, separated by commas. The class names are specified as

<cl ass_nane>, which is actually an existential pattern matching
operation. Remember that if <cl ass_nane> has been used previously in
the LHS or RHS of the rule, only those objects which passed the pattern
matching operation will be in the list when it is used by the Retrieve
operation.

Related Topics

Database Editor Windows Debugging Operations
Arguments Overview In Filtering List
Existence Filtering Example In List

Grouped Retrieve Create Object

Field Name Specification

Usage

To specify the field names to be retrieved or written, you fill in their names
in the left hand side of the Fields and Properties List - the double column list
box at the bottom of the Database Editor window. A field name may be
specified more than once in the list.

Usually, the field name is specified as a simple name (such as DB_MODEL,
DB_PRI CE, etc.), but additional information may be included for some
databases including field width or context names. Some relational
databases allow you to specify an expression like DB_PRI CE* 2 or
substr(DB_MODEL, 1, 7) asafield name.

Related Topics

Fields List

Retrieving from Databases

Writing to Databases

Object Names In Retrieve Operations
Database Editor Windows

For precise information on what is allowed for a given database type, look
up your database type.

Fields List - (QFIELDS)

Usage

The fields list can be specified in all types of transactions, except when using
spreadsheet files (NXP, SYLK and WKS). This list is edited under the
heading Dat abase Fi el ds, in the left side of the double list box at the
bottom of the retrieve and write dialog windows and is used to specify the
mapping between database fields and property slots of Rules Element
objects.

Language Reference 287

Chapter

3

Database Integration Topics

Additional information may be associated with each field name: in the case
of data files, field width; in the case of RDB, context variable; in the case of
some relational databases field names may be expressions . The precise
syntax of field names is specific to a particular database and is described in
more detail under specific database types.

In text knowledge bases, the field list is saved as a list of quoted strings. The
formal syntax is:

@ ELDS=l i st of quoted_strings

Note: : When editing the fields list do not add double quotes. They will be
inserted automatically by the Rules Element.

Related Topics

Databases

Database Editor Windows
Arguments Overview
Retrieving from Databases
Writing to Databases

For precise information on what is allowed for a given database type, look
up your database type.

File Retrieves - @F(...)

288

Usage

Recall that the Rules Element’'s @F(filename) syntax allows to you provide
the name of a file that is to be read into the Rules Element at that location.

In the Rules Element’s database interface, you can take advantageous of this
syntax in the BEGIN statement.

For example, you could have a BEGIN statement like:
@EG N= "@(nyfile.sql)";

that could contain some specific SQL statements pertaining to this
operation. The file could contain a specific start string to allow a read/write
transaction, or it could also contain SQL statements specific to
dropping/creating tables and deleting records for example. Many of the
examples provided with the Rules Element take advantage of this technique
for dropping and creating tables. This allows the knowledge base to be
relatively independent of the particular database interface, and the external
file contains the SQL specific to the database being used (SQL
implementations do vary from vendor to vendor). Some of the specific
database administration and maintenance operations possible in the BEGIN
statement are found under the Begin topic.

Note that you could combine @F and @V for additional flexibility by
specifying something like: @F(@V(slot)), which would let you choose the file
dynamically.

Related Topics

Database Editor Windows Interpretations @V(...)
Begin Dynamic Values
Beginning Database Operations

Language Reference

Formats

Formats

For mat =

General

Formats are used to describe how the values contained in the database cells
are mapped into the values of the Rules Element slots. These formats can be
attached to properties or to individual slots.

Usually the mapping of values is straight-forward. For example, textual
information is usually stored as character strings in the database and is
transferred without modifications to Rules Element string slots. The
mapping is less obvious in the case of dates, where different databases use
different formats for representing dates. Local conventions may also affect
the representation of dates.

Formats are described in more detail in Chapter One, “Application
Development Features”, but the most important points are:

m The first or the first two formats specify how the values will be
formatted for output. They define how values will be written to the
database.

m All the formats may be used to interpret input values. The Rules
Element tries to scan the incoming strings according to every format
specified until a match is found. If the external string does not match
any format, a warning message is displayed in the transcript and the
slot is set to NOTKNOWN.

m If you start a format description with an exclamation mark (!), then the
format will be ignored for database transactions.

Specific database type topics contain additional information on various
formats that are required for specific databases to be able to properly
retrieve various database datatypes into Rules Element slots. The following
examples illustrate the important role formats can play in database
transactions.

Example 1 Boolean format
Format = @&"*";@="?";1,0; T, F;

In this case, a NOTKNOWN value will be written as an asterisk (*), an
UNKNOWN value as a question mark (?),a TRUE value asa 1, and a FALSE
value as a 0. A cell containing the single letter T will be interpreted as a
TRUE value in a Retrieve operation, but the database cell will be updated
with a 1 or 0 in a Write operation.

This format allows you to store boolean values in a single character field.
An eight character field is required if you do not specify any format, because
any NOTKNOWN values are written as the NOTKNOAN keyword.

With this format, values will also be displayed as single characters in the
Object Network, reports, etc. You can avoid this and reserve single
characters for database operations. If a format description starts with an
exclamation mark (1), then the format will be ignored for database
transactions. To keep the ability to store single characters in database cells,
but display values as True and False, the above format could be changed to:

I @E" NOTKNOWN' ; | @J=" UNKNOWN' ; @\&="*"; @F="?"; ! True; ! Fal se; 1; O;

Language Reference 289

Chapter

3

Database Integration Topics

Example 2 Integer format
Format = d*;

This format can be used when your data is stored as floating point data in
the database, but you want to retrieve it in an integer Rules Element slot.
The decimal part of the database data will be ignored (the value is truncated,
not rounded to the nearest integer).

If you don't specify this integer format and your database data is formatted
as floating point numbers, the Rules Element will not be able to interpret the
database data and will set the slot values to NOTKNOWN. Of course, this
problem can also be avoided by using the f | oat datatype of the Rules
Element.

Related Topics

Debugging Operations

String to Numeric Conversion
Retrieving from Databases
Writing to Databases

Forwarding Strategy - (@QFWRD)

290

Purpose

The forward strategy setting is only used in retrieve operations. It specifies
whether the passing of values to property slots during retrieve operations
will cause the system to place hypotheses on the Rules Element agenda for
evaluation

This setting is specified with the three check buttons Always Forward,
Current Forward and Do Not Forward in the Retrieve dialog window. The
corresponding values in text knowledge bases are as follows:

Always Forward @FWRD=TRUE;
Do Not Forward @FWRD=FALSE;
Current Forward @FWRD string not specified

Always Forward specifies that database retrieves which affect the slot
values of the LHS conditions of any rule will always cause those rules to be
placed on the agenda for evaluation. Do Not Forward specifies that
database retrieves will never cause rules to be placed on the agenda.
Current Forward specifies that the forwarding strategy in effect when the
retrieve is executed will be used to determine whether rules are placed on
the agenda.

Related Topics

Database Editor Windows
Retrieving from Databases
Arguments Overview

Language Reference

Grouped Retrieve

Grouped Retrieve

General

Grouped retrieval can be used with both flat-file databases and relational
databases.

A grouped retrieve operation reads multiple records in one operation. As
the Rules Element processes each record, its fields are read into slots. All of
the fields from a given record are read into the same object's
slots--"transforming" the record-field relationship into an object-property
relationship.

A typical use of Grouped retrieve is to propagate a Rules Element class with
objects created from records in a database. The objects can then be used in
the Rules Element rules just as any other objects would be. Another use of
grouped retrieve is to update a set of objects from data in a database. In this
case, only the records are retrieved which have corresponding objects in the
Rules Element's working memory.

For example, a grouped retrieval could be used to read all the records from
the CARS database into the Rules Element working memory, creating an
object for each record and attaching it to the car s_cl ass class.

Grouped retrieves don't require supporting logic in other rules to retrieve
the records. However, the appropriate class and object definitions must
exist so that the Rules Element has a model for transforming the records and
fields into objects and slots (object.property combinations).

Specification

Grouped retrieves are recognized by the absence of a Cursor slot in the
Retrieve window.

A grouped retrieve does not have to retrieve all the records from the
database--in fact this is usually VERY undesirable since an object will
probably need to be created for each record in the database. To limit the
records retrieved, a query can be included to filter the records read. For
relational databases, you can use any query accepted by the database
manager (usually an ANSI SQL statement), for flat-file databases, you can
use the Rules Element's SQL-like query language to filter the records.

A grouped retrieve can either update existing objects, or create new objects
and attach them to one or more classes.

Another technique for filtering records to be retrieved is to qualify them
based on whether or not a corresponding object already exists to hold the
record's fields. The search for an existing object can be thru all of the Rules
Element's working memory, or confined to a specific list of objects and
classes.

Fields

To build a grouped retrieve, complete the Retrieve screen in the Database
Editor window as follows.

m Specify Retrieve as the operator in the LHS or RHS of the rule.

m Asthe first operand of the Retrieve, specify the database access string if
a relational database is being accessed. If a flat file database such as

Language Reference 291

Chapter 3 Database Integration Topics
NXPDB or DBASE 1l is being accessed, specify the file name. See the
Access String Specification topic for more information.

m In the database Retrieve window, click on the appropriate selection in
the Database Type field for the database being retrieved from.

m The Begin field should contain whatever is appropriate for your
database. See the Beginning Database Operations topic for more
information.

m For arelational database, specify the table name to be accessed in the
Query field. If you want to limit the records retrieved by the retrieve,
you can also include a SQL query (for relational databases) or a Rules
Element SQL-like query (for flat file databases). See the Query Retrieve
Operations topic for more information on the Query field.

m The End field should contain whatever is appropriate for your database
to end a transaction.

m The Name field is used to construct the slot names (object.property
combinations) into which the record fields will be read. The slot names
are built dynamically using data from the record. See the Slot
Specification for Retrieves topic for more information.

m The Cursor MUST be left empty

m The Infield is used to specify a list of objects (and/or their classes) in
which the object selected to hold the record's fields must exist in order
for the record to be processed. See the Existence Filtering Operations
topic for more information.

m If objects are to be created dynamically as the records are retrieved, the
Link to field should contain the name(s) of the classes to which the new
objects should be linked. The Create Record option must be selected if
objects are to be created dynamically. The In field must not be used in
this case to avoid creation of objects outside of the specified list.

m Inthe Database Fields column, specify the names of the database fields
to be retrieved. In the corresponding Object Properties column entries,
specify the property slots into which the fields should be retrieved. See
the Slot Specification for Retrieves topic for more information.

Related Topics

Object Names In Retrieve OperationsQuery Retrieve Operations

Database Editor Windows Slot Specification for Retrieves

Retrieving from Databases Link To

Name Field Name Specification

In Filtering List Existence Filtering Operations

Also, look up individual arguments and your database type for more

detailed information.

Grouped Write

General

Grouped writes can be used with both flat-file databases and relational

databases.

292 Language Reference

Grouped Write

A grouped write will write multiple object's slots in one operation. All of
the slots written to a given record come from the same object, transforming
the Rules Element's object-property relationship to a record-field
relationship in the database.

A typical use of grouped write is to write an entire class of objects out to a
database. It's also possible to write out every object in a list, or every object
in a list of classes, to the database.

For example, a grouped retrieval could be used to write all the objects from
the car s_cl ass into the CARS table, creating a row for each object in the
cars_cl ass. Aseach object is written, the appropriate slots
(object.property combinations) from the objects are written into the columns
of the new rows.

Grouped writes don't require supporting logic in other rules to write the
records.

Specification

Grouped writes are recognized by the Cursor field being left empty in the
database write window.

A grouped write does not have to write all the objects in the Rules Element's
working memory to the database. The In field allows an In list of objects
and/or classes to be specified which will be written to the database. The
class specifications are actually existential pattern matching operations,
which allows even finer filtering of the objects if desired.

To even further limit which records are updated or written, a WHERE
clause may be included in the Query field to select which records will be
updated based on their contents.

Finally, which objects are ultimately written can be controlled by whether
or not a record already exists to represent it. If the record doesn't exist, a
record can be created to hold it.

Fields

To build a grouped write, complete the Write screen in the Database Editor
window as follows.

m Specify Write as the operator

m Asthe first operand of the Write, specify the database access string if a
relational database is being accessed. If a flat file database is being
accessed, specify the file name. See the Access String Specification topic
for more information.

m Inthe database Write window, click on the appropriate selection in the
Database Type field for the database being written to.

m The Begin field should contain whatever is appropriate for your
database. See the Beginning Database Operations topic for more
information.

m For arelational database, specify the table name to be accessed in the
Query field. If you want to limit the records updated by the write, you
can also include a SQL query (for relational databases) or a Rules
Element SQL-like query (for flat file databases) in this field. See the
Query Write Operations topic for more information on filling in the
Quiery field.

Language Reference 293

Chapter

3

Database Integration Topics

m The End field should contain whatever is appropriate for your database
to end a transaction. For almost all relational databases, either
"COMMIT" or "COMMIT RELEASE" should be specified. See the
Ending Database Operations topic for more information.

m The Name field is used to construct record "keys" by which the objects
will be correlated with records in the database. The keys are built
dynamically using the object name. See Writing by Key under the
Record Specification for Writes topic for more information.

m The Cursor field MUST be left empty

m TheInfield is used to specify a list of objects and/or classes which will
be written to the database. See the Slot Specification for Writes topic for
more information.

m Ifrecords are to be added and it is not known whether a corresponding
record exists to hold an object, then the Create New Record box should
be checked.

m Ifrecords are to be added and it is known in advance that no
corresponding record exists to hold an object, then the Insert Only box
should be checked.

m Inthe Rules Element Properties column, specify the property slots
which are to be written to the fields in the database. In the database
fields column, specify the corresponding field which is to receive each
property slot. See the Slot Specification for Writes topic for more
information.

Related Topics

Writing to Databases In Filtering List

Name Field Name Specification

Slot Specification for Writes Record Specification for Writes
Beginning Database Operations Ending Database Operations
Create New Record Query Write Operations

Insert Only

Also, look up individual arguments and your database type for more
detailed information.

If Change Retrieves

294

Usage

A retrieve is mostly useful in "if change" actions as a side affect. For
example, a slot's change of value could be a "hint" that other data will be
needed, and a retrieve in its If Change actions could be use to retrieve that
data. Of course, this is a rather indirect approach - it may be more
appropriate to include the retrieve in the RHS of a rule or an order of
sources.

Remember that all statements in an if change action are ALWAYS executed,
so no matter what the results of the retrieve, execution of the If Change will
continue with the next statement.

Language Reference

If Change Writes

When the Rules Element begins a retrieve operation, it gets the database
access string from the first argument of the retrieve statement.

Related Topics

Arguments Overview Retrieve Operator

Access String Atomic Retrieve

Sequential Retrieve Group Retrieve

Left-Hand Side Retrieves Right-Hand Side Retrieves

Order of Sources Retrieves Retrieving from Databases
If Change Writes

Usage

Using a Write in a slot's If Change action is very interesting, since it allows
an application to immediately reflect a slot's change of value in an external
database. This can include the original database that the slot's value was
retrieved from, thus changes to a data item can be instantly reflected in the
original data source. If the database is shared among multiple users, the
change would be reflected to all users when the Rules Element updated the
slot's value.

In the car inventory example, a Write could be included in the if change
actions for the car's "price" property. If, during the course of the inferencing,
the price of a car changed, the write in the if change action would update
that car's price in its inventory record. Any subsequent retrieves from the
file or database would reflect the new car's price.

This technique has applications anywhere multiple users share data. It has
the capability of allowing multiple users to share the results of the Rules
Element's inferencing actions since changes to all data - including
hypotheses - can be reflected in an external database.

Again, ALL statements in an if change action are always executed, so no
matter what the result of the Write, the if change actions will continue
executing.

When the Rules Element begins a write operation, it gets the database access
string from the first argument of the write statement.

Related Topics

Arguments Overview Write Operator

Access String Atomic Write
Sequential Write Group Write

Left-Hand Side Writes Right-Hand Side Writes
Order of Sources Writes Writing to Databases

Language Reference 295

Chapter

3 Database Integration Topics

In List - (@ATOMS)

296

Usage

The In argument can be specified in grouped retrieve and write operations.
It specifies the list of objects or slots to be processed by the transaction.
Interpretations and pattern matching constructs can be included in the In
list. The items in the list must be separated by commas. In text knowledge
bases the formal syntax of the In list is:

@ATOVB=Il i st of generic_atons;
Examples:
m val vel; only the object valvel will be processed.

m val vel. st at e; only the object valvel will be processed and only its
property slot state will be retrieved or written.

m \theTank\. fl ui d; only one slot will be processed. The string
\theTank\ will be interpreted to yield the object to be processed.

m <sensor s>; all the objects in the list <sensors> will be processed. This
pattern matching list will be a subset of the objects in the class sensor s
if it results from the evaluation of one or more conditions in the rule in
which the Retrieve or Write statement appears.

m valvel, \theTank\.fluid, <sensors>; allthe objectsand slots
previously described will be processed.

Specification

For grouped write operations, the Rules Element takes a group of objects
and writes the same property slots from each object to the database. The
group of objects is specified in the In list, which can contain lists of object
names or class specifications. The properties are specified in the Fields and
Properties list in the write window.

Both object and class names may be used in the same operation.

When object names are specified, they are passed to the Rules Element
directly. For example, if the In list contained “car _1,car _2,car _3”, then
the objects car _1, car _2 and car _3 are passed to the Rules Element.

A class name is passed to the Rules Element database interface by enclosing
itin angle brackets. For example, to pass all the objectsin car _cl ass tothe
database interface, <car _cl ass> should be specified in the In list.

Actually, specifying <cl ass_nane> is an existential pattern matching
operation with no "test", therefore all objects currently in the pattern
matching list will be passed to the database interface. If this is the first time
the particular <cl ass_name> specification appears in the LHS or RHS of
the rule, then all the objects in the class will be passed. However, if previous
pattern matching operations had "trimmed" the list, then only those objects
remaining in the list will be passed.

For example, assume that the class car _cl ass contains three objects -
car _1, car_2,and car _3, and these objects have the string property
Sportive. Also,assume thatonly car _2’s Sporti ve property contains a
value of Yes.

Language Reference

In List - (@ATOMS)

In a rule where the LHS contains only a Write operation with an In list of
<car _cl ass>, ALL of the objects will be passed to the Rules Element, and
car_1,car_2,and car _3 will be written.

If the LHS has a statement like the following preceding the write:

= <car _cl ass>. Sportive" True"

Then ONLY car _2 will be passed to the database interface. This is because
the pattern match will have trimmed the list <car _cl ass> to only those
objects with a Spor ti ve property of Yes.

This capability is much like being able to do a query across the objects in the
Rules Element's working memory and passing only those objects which
meet the query criteria to the Rules Element.

How to Specify a List of Object or Class Names

The objects or classes (or, more precisely, the existential pattern matching
lists) are passed to the Rules Element in the In field of the database Write
window. The following example shows how the class <car _cl ass>
would be passed to the database interface in a grouped write operation:

| e

Begin |
Query | CARS |
End [
Mame | Inamel In | =cars_class>
Cursor |
Database Type
SqlEror | |Orac|e7’ Driver =)

Database Flelds 4=

Object Propertles

DB_MODEL Madel ~| [Create New Recaord
DE_MODEL_DATE Model_Date [Write Unknown
DE_FPRICE Price [~ Mew File
[Insert Only
- (0]74 Cancel

Figure 3-6 Writing All the Objectsin "car_class'

Related Topics

Database Editor Windows
Arguments Overview
Sequential Write
Sequential Retrieve
Dynamic Values

Language Reference

Existence Filtering Operations
Grouped Write

Grouped Retrieve
Interpretations @V(...)

297

Chapter 3

INFORMIX

298

Database Integration Topics

The Rules Element INFORMIX database interface is only available on
certain Unix platforms, and is not currently available under other operating
systems (i.e. Mac, PC, Mainframe, VAX/VMS).

INFORMIX-Online is the relational database product of Informix Software,
Inc. The query language of INFORMIX is the standard SQL (Structured
Query Language) language. This section assumes familiarity with the SQL
language and the INFORMIX product.

The Rules Element INFORMIX interface is available as a separate package.
An installation guide is provided with the software. It contains all the
information required to configure the system and install the database
interface.

The basic logic controlling the transactions has been described in the
Retrieve and Write topics in this chapter. This part will explain how the
SQL queries are constructed.

Database Access String

As explained in the Access String topic in this chapter, the first argument of
the Retrieve or Write operators contains the information required to
establish the connection with the database. In order to connect with the
Informix database server, you must specify the database name and
optionally the name of the server on which you wish to use it. The syntax
takes the form:

" Dat abaseNane@er ver nane"

For more information, please consult your database administrator or refer
to the section “Database Name” in the INFORMIX Guide to SQL Reference
December 1991 included in your INFORMIX 5 distribution.

On the PC several additional connection parameters are optional.

"Dat abaseNane@er ver name user name password host service
protocol "

For example,

"custonerdb@yperion scott tiger jupiter sqlexec tcp-ip"

Each parameter must be delimited by a blank space.

Note: Entering the username, password, host, service, and protocol
parameters in your connection string may have no effect on establishing the

connection. Consult your database adminstrator to determine whether
your database configuration uses these optional parameters.

You cannot be connected to several databases simultaneously. You can
nevertheless close a connection by issuing a RELEASE statement (see End
string description below) and open a connection to another database
afterwards.

Language Reference

INFORMIX

Query Syntax

Begin and End Strings

In these strings, you can specify any valid SQL statement which will be sent
to the DBMS server. If you want to send several SQL statements, you must
separate them by a semi-colon character ().

The Rules Element recognizes the special words COMMIT, ROLLBACK,
and RELEASE in the End statement because they need to be processed
differently by the INFORMIX connection module. If COMMIT is
encountered, the Rules Element commits the current transaction. If
ROLLBACK is encountered the transaction is rolled back and if RELEASE
is found, the Rules Element closes the connection with the database.

Usually, in the case of a Write transaction, the Begin statement contains a
BEGIN WORK and the End statement contains a COMMIT WORK. A
COMMIT will generally be translated to COMMIT WORK. Note that a
RELEASE or ROLLBACK assumes a BEGIN WORK has been done. If this
is not the case, INFORMIX will generate a warning. You should not be
concerned if you see this. You are most likely to encounter this warning
after selecting the Restart Session option (which does a ROLLBACK).

Query String

The query string contains one or several table names followed by an
optional where clause.

Let us take an example. Our database contains two tables:
m enpl oyees with the fields emp_id, name, dept_id, salary and bonus.
m depart nent s with the fields dept_id, name, budget.

You can retrieve all the employee records with the following query:

@UERY= "enpl oyees";

Note: In the Database Editor, you should not enclose your string in double
qguotes. You should type only the word “employees.”

You can express complex queries such as:

(a) @UERY= "enpl oyees where sal ary > 3000";
(b) @UERY= "enpl oyees, departnents where salary > 3000 and enpl oyee. dept _i d
= department. dept _id";

In the second case (b), the query will join the two tables employees and
departments.

The query string is not sent as is to the DBMS server (it is not a valid SQL
statement). The actual SQL query is built in the following way:

m IfaName is specified (grouped queries), the Rules Element extracts the
field1 and the optional field2...field5 information from the Name.

m Then the Rules Element builds the SELECT statement:

SELECT fieldl, field2,...field5, list_of fields FROM
query_string

where list_of fields is the list of fields specified in the left part of the double
list box of the Database Editor (@FIELDS).

The resulting string would be the string used with the INFORMIXi sql
utility. i sql displays the results of the query on the terminal but the Rules

Language Reference 299

Chapter 3

Database Integration Topics

Element needs to assign the retrieved values to some internal variables. Let
us consider our example query string (b). If the name slot of our Database
Editor contains ' enp_' ! enp_i d!, and the fields list contains the three
properties name, employees.dept_id and salary, then the following string
will be sent to the INFORMIX server:

SELECT enp_id, nane, enployees.dept_id, salary FROM enpl oyees, departments

WHERE sal ary > 3000 and enpl oyee. dept _id = departnent.dept _id

You must fully specify field names which are present in more than one
relation. In our example, dept_id must be prefixed by a table name (even if
the two tables contain the same value for this field as a result of our join
operation).

You can use the full power of the SQL language and specify expressions
instead of field names (i.e. write salary + bonus instead of salary) as long as
the SQL string which will be generated is a valid SELECT statement.

Writing Parameterized Queries

You can use either the @V(obj.prop) syntax or the query argument box to
parameterize your queries. If you use the query argument box, then you
should specify the parameters to be supplied to INFORMIX as "?". The
previous example can be transformed as follows:

@RUERY= "enpl oyees, departnents where salary > @/(@ELF. anount) and
enpl oyee. dept _id = depart ment. dept _i d";

or

@RUERY= "enpl oyees, departnents where salary > ? and enpl oyee.dept_id =
departnent. dept _id"; @\RGS= SELF. anount;

300

Note: SELF and interpretations are allowed in the right part of the
fields/properties list box (@SLOTYS) in the case of sequential or
atomic queries (grouped queries use a list of properties, not slots).
SELF is allowed only if the query is placed in methods.

Update and Insert Statements

UPDATE and INSERT statements are constructed in a similar way. INSERT
statements are generated only if the Create New Record option is selected
and will concern only the objects specified in the In list which do not already
have a matching record in the database.

The UPDATE statement is generated as follows:

UPDATE tables_from_query_string SET list_of fields/values WHERE
[field1l = value_of fieldl [AND field2 = value_of field2]...] [AND]
[where_clause_from_query_string]

The square brackets indicate optional strings. The field values are passed in
a special descriptor area, but their places are identified with "?". Let us take
our example (a) and suppose that the salary field needs to be updated and
that the Name cell contains 'emp'lemp_id!. The resulting SQL statement
will be:

UPDATE enpl oyees SET salary = ? WHERE enp_id = ? and salary >
3000

Note: In that example, the last part of the statement (and salary > 3000) is
probably useless.

Language Reference

INFORMIX

The INSERT statement is built from the following model:

INSERT INTO table_from_query_string ([fieldl,][field2, ...] list_of fields)
VALUES ([value_of fieldl, J[value_of field2,] ...)

Our update example becomes:
I NSERT | NTO enpl oyees (enp_id, salary) VALUES (?, ?)

The INSERT statement is limited to the first table specified in the query
string. You can insert records only into real tables, not into views.

Sequential Queries

In the current implementation, you cannot have more than three active
gueries simultaneously. You are limited to three active sequential queries
or one grouped or atomic query when two sequential queries are pending.

Sequential Write operations are not implemented. You can easily replace a
sequential write by an atomic write.

Error Reporting

The Rules Element will report any SQL error message generated by
INFORMIX in the transcript window (if this window is write enabled). It
will also generate error messages if it encounters problems while building
the SQL strings. You can consult the various INFORMIX manuals for a
detailed explanation of the messages.

Retrieve Datatype Mapping

The following table indicates how various INFORMIX datatypes may (or
may not) be retrieved into various Rules Element datatypes. The Rules
Element datatypes are listed (underlined) across the top; the INFORMIX
datatypes are listed in the column to the left. A"Y" means that the operation
works with no additional effort or concerns. A number means that the
operation is possible, but you should see the notes that appear below the
table for additional details. A "--" means that the operation is not possible.

Integer Float Boolean String Date
integer Y 1 5 --
smallint Y 1 5 Y -
float -- Y 5 Y --
real - Y 5 Y --
char(n) 2 2 5 Y 4
varchar(n) 2 2 5 Y 4
date - - 5 Y 3
long - - - - --
rowid - - - -- --
raw(n) - - - -- --

The following notes correspond to the table shown above.

Language Reference 301

Chapter

302

3

Database Integration Topics

Notes:

1.
2.

Conversion from integer to float will automatically take place.

If the string contains the proper numeric type requested, it will be
copied into the Rules Element property. Otherwise, formats will be
required.

Informix requires a special Rules Element format be defined in order to
retrieve this into a date property. Since the standard INFORMIX date
format is "mm/dd/yyyy", a Rules Element format that will accept this
format is 'm"/"d"/"yyyy'. This method makes the Rules Element
conform to the INFORMIX time format (note that information
concerning hours / minutes / seconds is not available).

If the string contains a valid date, the Rules Element will take it if
provided in the default Rules Element date format (‘Mmm dd yyyy
hh:mm:ss;mm dd yy hh:mm:ss;Mmm dd yyyy;mm dd yy;"). Ifin some
other format, a format may be attached to the property to allow its
acceptance (e.g. a format of 'mm"/"dd"/"yy" would accept "12/25/90").

Formats may be applied to treat most datatypes as booleans, though the
most obvious / preferred datatypes for this purpose are strings and
integers. A default property has been defined so that any string of the
form "True" or "False" (case-insensitive) will be converted to the
appropriate Rules Element boolean. For example, if you have integers
that are "0" for "False" and "1" for "True", you could assign a format of
'"True;False;1;0;' (which make it print out as True/False, even though it
comes in as 1/0). In another example, a Rules Element boolean could
be used to indicate all people born in 1990 by reading date fields from
the database using the format: 'True;False;*"/"*"/"1990;*".

The INFORMIX money type returns a dollar sign ("$") that must be
accounted for with a Rules Element format statement. A format that
will allow loading INFORMIX money into a Rules Element float is
"'$"0.0d'. To load INFORMIX money into a Rules Element integer, you
should use "'$"d*' (note that this will truncate the decimal/cents portion
of the field).

It is possible to do a "non-standard" retrieve from the various
INFORMIX datatypes into a Rules Element date slot. However it
requires use of the Rules Element formats, and typically results in a
peculiar mapping from INFORMIX type to the Rules Element type.
This mapping, while possible, is not a preferred way to read integer or
floating data from the database, or to load a Rules Element date slot.

For reference, formats that could be used are 'yyyy' or 'm"."yy', to load
from an integer or float field, respectively.

This is possible, but is not a preferred way to read a date from
INFORMIX or load a Rules Element float or integer, and does result in
loss of information. However, you might need to read an INFORMIX
date, and put the year directly into a Rules Element float. You could do
such a thing with the following format: *"/"*"/"0.0d'. The desired field
could equally well have been the month or day. To load an integer with
the year, you could use *"/""/"d".

In order to load any kind of INFORMIX floating point number into a
Rules Element integer, you must specify a format that will result in
truncation of the decimal portion of the number. A format that will
work is: 'd*'. Note that you do have to worry about overflow, since a

Language Reference

INFORMIX

Rules Element integer is a 32 bit signed quantity, and floating point
numbers can be larger than this.

Write Datatype Mapping

The following table indicates how various INFORMIX datatypes may (or
may not) be written into from various Rules Element datatypes. The Rules
Element datatypes are listed (underlined) across the top; the INFORMIX
datatypes are listed in the column to the left. A"Y" means that the operation
works with no additional effort or concerns. A number means that the
operation is possible, but you should see the notes that appear below the
table for additional details. A "--" means that the operation is not possible.

Integer Float Boolean String Date
Y 5 4 3 --
Y 5 4 3 -
\% \% 4 3 -
Y Y 4 3 -
Y Y Y Y Y
Y Y Y Y Y
-- - 4 2 1

The following notes correspond to the table shown above.

Notes:

1.

Language Reference

A special Rules Element format must be defined in order to write into
an INFORMIX date field. The standard INFORMIX date format is
"mm/dd/yyyy". A Rules Element format that will generate this format
is'mm"/"dd"/"yyyy'. This method makes the Rules Element conform
to the default INFORMIX time format (this date format does not
support the hours / minutes / seconds fields).

If the string contains a valid date, INFORMIX will take it if provided in
the standard INFORMIX date format (see note 1).

If the string contains the proper numeric type requested, it will be
copied into the Informix field. See also note 7.

Formats must be applied to treat booleans as non-string INFORMIX
datatypes. For example, you could write into an integer field if you use
a boolean format of '1;0; True;False’ (which accepts True/False, though
prints out as 1/0). The most obvious candidates to use for storing
booleans are string and integer datatypes. (Strings will directly receive
True/False with the default Rules Element format).

Floats will be truncated, as necessary, when stored in integer fields. See
also note 7.

This requires the use of special formats, and is not a preferred or
recommended way to store values into the specific INFORMIX fields.
For example, one would almost never use Rules Element dates to hold
INFORMIX integers, or vice versa. It could be done, but might place
restrictions on the values that may be stored.

303

Chapter 3

INGRES

304

Database Integration Topics

7. Overflow is possible in certain cases if the input field is larger than the
database datatype supports (e.g. storing a Rules Element integer into an
INFORMIX smallint). It is also possible to lose precision by, for
example, storing the Rules Element integers or floats (double precision)
into INFORMIX smallfloats (single precision).

Notes

The main differences between INFORMIX and the screen captures
documented in Appendix A, “Database Integration Examples” are as
follows:

® You must remember to specify INFORMIX in the Database Editor
window (or in the TKB, @TYPE=INFORMIX).

m You must specify parameterized queries as "?", rather than ":val".

Related Topics

Databases
Retrieving from Databases
Writing to Databases

INGRES is the relational database product of INGRES Corporation. The
query language of INGRES is the standard SQL (Structured Query
Language) language. This section assumes familiarity with the SQL
language and the INGRES product.

The Rules Element INGRES database interface is available as a separate
package. An installation guide is provided with the software. It contains all
the information required to configure the system and install the database
interface.

The basic logic controlling the transactions has been described under the
Retrieve and Write topics in this chapter. This part will explain how the
SQL queries are constructed.

Database Access String

As explained under the Access String topic, the first argument of the
Retrieve or Write operators contains the information required to establish
the connection with the database. In order to connect with the INGRES
database server, you must specify the virtual node, database name, and the
user name:

"virtual node database usernane options"
For example,
"sunl0 iidbdb scott”

Each parameter must be delimited by a blank space. You should consult
your database administrator or Ingres manuals for the exact information
about the connection parameters.

Language Reference

INGRES

You cannot be connected to several accounts simultaneously. You can,
however, close a connection by issuing a RELEASE statement (see End
string description below) and open a connection to another account
afterwards.

Query Syntax
Begin and End strings

In these strings, you can specify any valid SQL statement which will be sent
to the DBMS server. If you want to send several SQL statements, you must
separate them by a semi-colon character ().

The Rules Element recognizes the special words COMMIT, ROLLBACK,
and RELEASE in the End statement because they need to be processed
differently by the INGRES connection module. If COMMIT is encountered,
the Rules Element commits the current transaction. If ROLLBACK is
encountered the transaction is rolled back and if RELEASE is found, the
Rules Element closes the connection with the database via the
DISCONNECT statement.

Usually, the Begin statement is left empty and the End statement contains a
COMMIT in the case of a Write transaction. You could alternatively specify
ROLLBACK if you wish to undo the effects of your current transaction:

@ND= "commit";

@ND= "rol | back";

By default, the Rules Element does a ROLLBACK when a Restart Session is
done.

If the Rules Element is able to communicate with the INGRES database
server, but INGRES is unable to open the table (typically because it is locked
by some other user/application), the Rules Element will wait until access is
allowed. It is possible to use special syntax in the BEGIN field to cause
INGRES to give up after a specified time. The syntax for this is, for the first

query, to specify:
@BEG N= "set | ocknode session where tineout = n";

where "n" is the number of seconds you are willing to wait while trying to
establish the connection to the INGRES database.

It is also possible to use the BEGIN field to tell INGRES that you wish to
automatically do a COMMIT following each transaction:

@EG N= "set autoconmmit on";

Query string

The query string contains one or several table names followed by an
optional where clause.

Let us take an example. Our database contains two tables:

m enpl oyees with the fields emp_id, name, dept_id, salary and bonus.
m depart nent s with the fields dept_id, name, budget.

You can retrieve all the employee records with the following query:
@UERY= "enpl oyees";

Note: Inthe Database Editor, you should not enclose your string in double
qguotes. You should type only the word employees.

Language Reference 305

Chapter

3 Database Integration Topics

You can express complex queries such as:

(a8) GQUERY= "enpl oyees where sal ary > 3000";
(b) GQUERY= "enpl oyees, departnments where salary > 3000 and enpl oyee. dept _id

@UERY=

@UERY=

306

departnent. dept _id";

In the second case (b), the query will join the two tables employees and
departments.

The query string is not sent as is to the DBMS server (it is not a valid SQL
statement). The actual SQL query is built in the following way:

m IfaName is specified (grouped queries), the Rules Element extracts the
field1 and the optional field2...field5 information from the Name.

m Then the Rules Element builds the SELECT statement:

SELECT fieldl, field2,...,field5, list_of_fields FROM
query_string

where list_of fields is the list of fields specified in the left part of the double
list box of the Database Editor (@FIELDS).

The resulting string would be the string used with the SQL utility. SQL
displays the results of the query on the terminal but the Rules Element
needs to assign the retrieved values to some internal variables. Let us
consider our example query string (b). If the name slot of our Database
Editor contains 'emp_"lemp_id!, and the fields list contains the three
properties name, employees.dept_id and salary, then the following string
will be sent to the INGRES server:

SELECT enp_i d, nane, enpl oyees. dept_id, sal ary FROM enpl oyees,
departnents WHERE sal ary > 3000 and enpl oyee.dept_id =
departnent. dept_id

You must fully specify field names which are present in more than one
relation. In our example, dept_id must be prefixed by a table name (even if
the two tables contain the same value for this field as a result of our join
operation).

You can use the full power of the SQL language and specify expressions
instead of field names (i.e. write salary + bonus instead of salary) as long as
the SQL string which will be generated is a valid SELECT statement. The
INGRES SQL Reference Manual provides detailed information on SQL.

Writing parameterized queries

You can use either the @V(obj.prop) special syntax or the query argument
box to parameterize your queries. Our previous example can be
transformed as follows:

enpl oyees, departments where salary > @(@ELF. anount) and

enpl oyee. dept _id = department. dept _i d";

or

enpl oyees, departments where salary > :vl and enpl oyee.dept _id =

depart nent . dept _i d"; @\RGS= SELF. anount ;

Note: SELF and interpretations are allowed in the right part of the
fields/properties list box (@SLOTS) in the case of sequential or
atomic queries (grouped queries use a list of properties, not slots).
SELF is allowed only if the query is placed in methods.

Language Reference

INGRES

Update and Insert statements

UPDATE and INSERT statements are constructed in a similar way. INSERT
statements are generated only if the Create New Record option is selected
and will concern only the objects specified in the In list which do not already
have a matching record in the database.

The UPDATE statement is generated as follows:

UPDATE t abl es_from query_string SET |ist_of fields/val ues
WHERE [fieldl = value_of _fieldl [AND field2 =
value_of field2]...] [AND] [where_cl ause_from query_string]

The square brackets indicate optional strings. Let us take our example (a)
and suppose that the salary field needs to be updated and that the Name cell
contains 'emp'lemp_id!. The resulting SQL statement will be:

UPDATE enpl oyees SET salary = 5000 WHERE enp_id = '104' and
sal ary > 3000

Note: In this example, the new salary information and the emp_id is
obtained from the object identified by the Name field (e.g. 'emp104").
Also, the last part of the statement (and salary > 3000) is probably
useless.

The INSERT statement is built from the following model:

INSERT INTO table_from_query_string ([field1,][field2, ...] list_of _fields)
VALUES ([vall,]J[val2,] ...)

Our update example becomes:
I NSERT | NTO enpl oyees (enp_id, salary) VALUES ('105', 6500)

The INSERT statement is limited to the first table specified in the query
string. You can insert records only into real tables, not into views.

Sequential queries

In the current implementation, you cannot have more than three active
gueries simultaneously. You are limited to three active sequential queries
or one grouped or atomic query when two sequential queries are pending.

Sequential writes are not implemented. You can easily replace a sequential
write by an atomic write.

Error Reporting

The Rules Element will report any SQL error message generated by INGRES
in the transcript window (if this window is write enabled). It will also
generate error messages if it encounters problems while building the SQL
strings. You can also consult the appropriate INGRES manuals for a
detailed explanation of the INGRES messages.

Retrieve Datatype Mapping

The following table indicates how various INGRES datatypes may (or may
not) be retrieved into various Rules Element datatypes. The Rules Element
datatypes are listed (underlined) across the top; the INGRES datatypes are
listed in the column to the left. A "Y" means that the operation works with
no additional effort or concerns. A number means that the operation is

Language Reference 307

Chapter

308

3

Database Integration Topics

possible, but you should see the notes that appear below the table for
additional details. A "--" means that the operation is not possible.

Integer Float Boolean String Date
Y 5 4 3 -
Y 5 4 3 --
Y Y 4 3 --
Y Y 4 3 -
Y Y Y Y Y
Y Y Y Y Y
-- -- 4 2 1

The following notes correspond to the table shown above.

Notes

1.
2.

Conversion from an integer value to a float will take place.

If the string contains the requested numeric type, it will be copied into
the Rules Element property.

A special Rules Element format must be defined in order to retrieve this
field into a date property. A format that should work is
ldll_llmmmll_llyyyyll "h":"mm":"ssl_

If the string contains a valid date, the Rules Element will take it if
provided in the default Rules Element date format (‘Mmm dd yyyy
hh:mm:ss;mm dd yy hh:mm:ss;Mmm dd yyyy;mm dd yy;"). If in some
other format, a format may be attached to the property to allow its
acceptance (e.g. a format of ‘'mm"/"dd"/"yy' would accept a string
containing "12/25/90").

Formats may be applied to treat most datatype as booleans. By default,
the Rules Element will convert any string of the form "True" or "False"
(case-insensitive) to the appropriate Rules Element boolean. The most
obvious field types to read into booleans are the various strings and
integers. For example, if you have integers that are "0" for "False" and
"1" for "True", you could assign a format of ''True;!False;1;0;' (which
makes the Rules Element print it out as True/False, even though it
comes in as 1/0).

A special the Rules Element format is needed to accept this, which ends
up discarding the floating point portion (there will be problems if an
exponent is present). For example, you could use the following format:
'dx;".

Write Datatype Mapping

The following table indicates how various INGRES datatypes may (or may

not) be written into from various Rules Element datatypes. The Rules
Element datatypes are listed (underlined) across the top; the INGRES

datatypes are listed in the column to the left. A"Y" means that the operation

works with no additional effort or concerns. A number means that the

Language Reference

INGRES

operation is possible, but you should see the notes that appear below the
table for additional details. A "--" means that the operation is not possible.

Note that the Rules Element INGRES database interface needs to make

exte

nsive use of the "{I}" syntax for integer database field names in the Name

field and the Fields list. This instructs the database interface to not treat this

as a string, but rather as a numeric field (e.g. integer).

Integer Float Boolean String Date

int Y 1 1,4,5 1,5 1,4,5

smallint 1 1 1,4,5 1,5 1,4,5

tinyint 1 1 1,4,5 1,5 1,4,5

float 1 Y 1,4,5 1,5 1,4,5

char(n) -- -- Y Y Y

varchar(n) -- -- Y Y Y

bit 3 3 1,4,5 1,5 1,4,5

money 2 -- -- 1,5 1,4,5

date -- -- 4 1,5 Y

text -- -- -- -- --

binary(n) -- -- -- -- --

varbinary(n) -- -- -- -- --

image -- -- -- -- --

timestamp -- -- -- -- --

The following notes correspond to the table shown above.

Notes

1. Datatype conversion, as appropriate and if possible, will take place. For
example, a Rules Element integer can be placed into an INGRES
integerl (8 bits), but it must have a value in the allowed range. If the
number overflows the fieldwidth, INGRES will not always generate an
error, and the value written is not always predictable.

2. There are no "cents"” passed in. The integer is treated as an integer
number of dollars ("$").

3. Formats must be applied to treat booleans or dates as various INGRES
datatypes. For example, you could write a boolean into an integer field
if you use a boolean format of '1;0;True;False’ (which accepts
True/False, though prints out as 1/0). The most obvious candidates to
use for storing booleans are the various string and integer formats.
(Strings will directly receive True/False with the default Rules Element
format).

4. Since this INGRES field needs to be entered without quotes, but the

Language Reference

Rules Element, by default, will put quotes around the field values, the
"{I}" prefix syntax must be used for the database field name to indicate
that this is a numeric-like field and the Rules Element should not
provide quotes.

309

Chapter

3

Database Integration Topics

5. You must be sure to specify a date field that INGRES will accept.
Otherwise, with certain platforms and INGRES versions, the database
server has been known to crash. A format that is acceptable is:

'd"-"mmm®”-"yyyy" "h":"mm":"ss".

6. Typically not used in this manner, but possible if the integer contains,
for example, "mmddyy" (a valid INGRES date input format).

Notes

The main difference between INGRES and the screen captures documented
in Appendix A, “Database Integration Examples” are as follows:

1. You must remember to specify INGRES in the Database Editor
window (or in the TKB, @TYPE=INGRES).

2. When writing numeric fields, you must use the "{I}" syntax to let the
database interface know that it must not provide quotes around the
database field being sent from the Rules Element. For example (e.g.
ex02ing.tkb):

@FIELDS="{I}DB_PRICE","DB_MODEL_DATE","DB_SPORTIVE",

4. Inall of the examples where you are going to retrieve from a table, the
INGRES interface is generally exactly the same as the standard
examples.

Related Topics

Databases
Retrieving from Databases
Writing to Databases

Insert Only - (QFILL)

310

Usage

Insert Only specifies that a new record be created automatically without
first performing an update to existing records. This can be useful when you
know in advance that none of the records being written from the Rules
Element currently exist in the database. Duplicate records may result if an
insert is performed and the record already exists. However, using the Insert
Only setting instead of the Create New Record setting produces a significant
performance boost since there is no update to perform before inserting the
new records.

In the write dialog screen this setting can be specified by clicking in the
Insert Only check box. In a text format knowledge base it will appear as:

@ LL=I NSERT;
When Insert Only is selected, do not select Create New Record or New File
since these settings are mutually exclusive.

Related Topics

Grouped Write Arguments Overview
Database Editor Windows Create New Record
Writing to Databases New File

Language Reference

Interpretations - @V(...)

Interpretations - @V(...)

Usage

The Rules Element allows you to use the syntax @V(obj.prop) (or
equivalently @V(slot)) for more flexibility in parameterizing your
knowledge base. This syntax also proves to be very useful with the Rules
Element database interface.

As areminder, you can parameterize your query using a:val syntax ('val for
RDB) and specifying a Query Arguments list as in:

@QUERY= ' CARS WHERE MODEL = :vall AND PRICE < :val 2'; @\RGS=
car. nodel , car.price ;

where the values found in the Rules Element slots car . nodel and

car. pri ce will be used to select the appropriate record from the database.
For example, car . nodel could be a string slot containing a model name
like FORD, and car.price could be an integer slot containing a price like
12500. There is an implicit issue with quotes in the resulting query
statement generated and sent to the database sever. Some query
implementations are indifferent to quotes, while others want quotes only in
selected areas. Where quotes matter, the Rules Element will typically
provide (or not provide) quotes based on the Rules Element property type
(not the database type). For example, with RDB, integer and float values are
not quoted, but everything else is.

It is also possible for you to use @V to parameterize this query, as in:

@RUERY= ' CARS WHERE MODEL="@/(car.nodel)" AND PRI CE <
@/(car.price)';

With @V you do not provide the slots in the @ARGS keyword area. It is
important to note that the Rules Element does not provide the quotes
around the @V that will be required by most databases. Therefore, you
should remember to provide the quotes when dealing with database fields
like strings, but typically leave them off when dealing with numeric fields.

The choice of one method or the other is largely based on personal
preference. Using @V allows you to generate a query that looks more like
the normal query that would be generated (e.g. from an interactive SQL
interface), and you do not have to remember about @ARGS and :val. In
addition, @V gives you control over where quotes are provided and where
they are not. The drawback to @V is that the slot referenced is not
"compiled", so if an invalid slot is provided, it is not detected until you
actually run the application.

Another interesting way to use the @V syntax is as the 1st argument to the
Retrieve or Write: the database access string. In this case, your rule would
look something like:

RETRI EVE "@/(sLorn" [second_argunent (s)]

There are two advantages to using @V here. The main one is that a
password is frequently involved in providing access to a database. Using
@V means that this information does not have to be hard-coded in the
knowledge base itself (which could raise security issues). The password /
access string would still have to be provided by the slot, but it could be filled
by doing something more acceptable (e.g. prompting the user). The other
advantage is that this mechanism would allow you to totally switch your

Language Reference 311

Chapter

3

Database Integration Topics

database access strings to make a more portable application. You could
provide an ORACLE string on one system, and a SYBASE string on another.
Unfortunately the entire query cannot be totally parameterized. For
example, the @TYPE=database_type field must be fully specified in the
knowledge base.

Note that @V can also be used in the BEGIN and END statements in the
Retrieve or Write operation, with many of the same advantages listed
above. For example, you could have an END statement like:

@ND= "@/(commit)";

where you could have the slot commit contain "commit” for most databases,
but "commit transaction" for SYBASE. A similar technique could be applied
to the BEGIN statement. The BEGIN statement can provide a lot more
generic database access (e.g. creating/dropping tables, deleting records,
etc). See the Begin topic for details.

Related Topics

Dynamic Values Filename Retrieves @F(...)
Beginning Database Operations Begin

Ending Database Operations End

Retrieve Operation Write Operator

Access String Specification

Left-Hand Side Retrieves

312

Usage

In the left hand side (LHS) of a rule or method, a retrieve statement is used
to fetch data (or facts) relevant to the current rule or chain of reasoning
being followed. For example, if the Rules Element is evaluating a set of rules
for determining the evaluation of a car dealer's inventory, a retrieve could
be used in the LHS of a rule to get all of the car inventory records.

Remember that a retrieve will still return "True" even if no records are
fetched. A retrieve ONLY returns "False” when an error occurs.

Depending on the type of retrieve, different strategies can be used to
determine if any records were retrieved. For sequential and atomic
retrieves, the cursor will be set to a negative value when no records are
returned.

For grouped retrieves, there is no direct way to tell how many records were
retrieved. If the records were retrieved into a previously empty class, the
Length function can be used to determine how many objects are in the class
after the retrieve.

When the Rules Element begins a retrieve operation, it gets the database
access string from the first argument of the write statement.

Related Topics

Arguments Overview Retrieve Operator
Access String Atomic Retrieve

Language Reference

Left-Hand Side Writes

Sequential Retrieve Group Retrieve
Right-Hand Side Retrieves If Change Retrieves
Order of Sources Retrieves Retrieving from Databases

Left-Hand Side Writes

Usage

Write operations are used less often on the left hand side of a rule or
method, largely because a Write isn't an action normally taken when testing
for a condition or hypothesis.

Like a retrieve, a write only returns "False" if the write fails. You cannot, for
example, test to see if a write added or updated any records by testing to see
if the write returned "true” or "false". Since a write doesn't affect the objects
which are written, it's not possible to use indirect means to see which objects
were written, and which weren't.

When the Rules Element begins a write operation, it gets the database access
string from the first argument of the retrieve statement.

Related Topics

Arguments Overview Write Operator
Access String Atomic Write
Sequential Write Group Write
Right-Hand Side Writes If Change Writes
Order of Sources Writes Writing to Databases

Link To - (@CREATE)

Usage

The Link To argument is only used in the context of grouped retrieves. It
specifies a list of classes or objects to which the objects dynamically created
by the retrieve will be linked. Interpretations and pattern matching
constructs can be included in the Link To list. The items in the list must be
separated by commas. The formal syntax of the Link To list is:

@CREATE=l i st of generic_classes or generic_objects;
Example:
@CREATE=| sensor s| , new_obj ect;

The objects dynamically created by the retrieve will be linked to the class
sensor s and as sub-objects to the object new_obj ect .

Related Topics

Database Editor Windows
Grouped Retrieves
Arguments Overview

Language Reference 313

Chapter 3 Database Integration Topics

Name - (@QNAME)

Usage

The Name field is typically used in the context of grouped transactions. It
describes the mapping between Rules Element object names and database
field names.

During grouped retrieves, the Name field specifies how database field
values (! fi el dx!) and string constants (' r oot x') are to be concatenated
to yield names for the dynamic objects created by the query.

During grouped writes, the Name field specifies how Rules Element object
names are to be parsed to yield unique database key values for the
insert/update database transaction.

Syntax

There are several valid syntactic forms for the Name string:

@NAMVE="!fieldl!"
@NAVE=""root1' ! fieldl!"
@NAVE="!fieldl!" _"Ifield2!"

@WAMVE=""root1' I field1!" ' !field2!"

@NAVE=""root1' ! fieldl!'root2'!field2!"
...and so on up to a maximum of five root/field combinations

When editing the Name field in the retrieve or write dialog screens, do not
enclose the entry in double quotes; the Rules Element will insert them
automatically. Also,.do not exceed the 255 character limit for slot names
when specifying the Name string.

For example, if you want to use the second form described above, you type
"root1l'!fieldl!. Ther oot i'sarestring constants and thef i el di's are
field names. When processing one record (in Retrieve or Write), the Rules
Element will get the values of f i el di as strings. Then it will sequentially
go through the various r oot / f i el d combinations and concatenate the
string r oot i with the value of f i el di (those which are not specified in the
Name string are considered to be empty strings). The result of this
concatenation is the name or the object which is associated with the record.
Thus thefi el ds are the "keys" which define the mapping between records
and objects.

Note: String constants must be delimited by single quotes (' root x') .

Example 1:
@NAME=""' sensor' ' num.id!";
num.id (from dat abase) obj ect nane

1 sensorl
2 sensor2
3 sensor 3

Example 2:

@NAME=""part _'ltype!" _'lidl"; .

type (from database)id (from database) ObjeCt name
new 1 part_newl

used 2 part _used2

ol d 3 part _ol d3

314 Language Reference

New File - (@FILL)

As the Name information is used to associate objects and records, the fields
should be chosen so that they provide a unique key in the database (no two
records have the same fields combination). Otherwise, there will not be a
one to one mapping between objects and records and information may be
retrieved from one record, transferred to an object and written back to many
records by mistake. Providing additional information in the Query field
could reduce some of the ambiguity if the fields do not identify a unique
record, but you should be sure you understand the database contents if
using this approach.

Related Topics

Grouped Retrieve Grouped Write
Database Editor Windows Debugging Operations
Arguments Overview Object Names In Retrieve Operations

Record Specification for Writes

Also see the Grouped Retrieve/Write examples in Appendix A, “Database
Integration Examples” for further illustrations of the Name field.

New File - (@FILL)

Usage

The New File setting is only meaningful in the context of a grouped write to
a flat-file database. New File specifies whether a new spreadsheet file may
be created during a grouped write.

In the write dialog screen this setting can be specified by clicking in the New
File check box. In a text format knowledge base it will appear as:

@ LL=NEW

When New File is selected, Create New Record is automatically implied.
The Insert Only setting is not compatible with either of these settings.

New File cannot be used to automatically create a table in a relational
database during a grouped write. Tables must be explicitly created, either
in an external application, or in the Begin or End fields in a retrieve or write
operation. For flat-file databases, new files will be created according to the
format specified in the database type field. These files can then be accessed
by other applications like EXCEL, Lotus 1-2-3, or DBase IlI.

Related Topics

Grouped Write Arguments Overview
Database Editor Windows Create New Record
Writing to Databases Insert Only
Spreadsheets

Language Reference 315

Chapter

3 Database Integration Topics

NEXPERT Flat-File Formats

316

These custom Rules Element spreadsheet and database formats offer some
advantages:

m Simplicity and compatibility: the standard ascii data file can be used on
any platform, and simple custom programs can read or write in the
same format.

m Speed: the read and write access are much faster than with other data
files (SYLK, WKS, DBF3).

m Readability: the data file can be edited outside the Rules Element with
a text editor, or even printed as a report.

They should be used instead of SYLK, WKS, or DBF3 if you do not plan to
use your data file outside the Rules Element with an application program
(Excel, Lotus 1-2-3, dBaselll).

NXP File Format

Every slot is stored on a single line. Its name and value are written with the
following delimiters:

\obj.prop\="value"............

or:

\obj\="value"............

The second form is used to store obj.Val ue

The 12 dots represent 12 blank characters which are added when the cell is
created, so that the same cell can be updated later with a longer value
without altering the line length.

The file is terminated by a line of stars (*).

Example of a file with three slots:

\ pr obl em\ =" TRUE"
\'sensor. pressure\="200. 50"
\'sensor. | ocation\="bl ast _f urnace"

kkkkkkhkkkhkkkkk

Note: The objects are sorted alphabetically.

The termination of each line is machine dependent: Carriage Return
and/or Line Feed.

The Rules Element will not attempt to move data when it replaces a
short string value with a longer one. New values will be truncated if
they are more than 12 characters longer than the original values. You
can use other tools (i.e. sed on UNIX) to extend the lines on an
existing NXP file.

The NXP format can be demonstrated with the following rule. The resultis
more interesting if you add this rule to an existing set of rules (i.e.
primer.kb).

| f Yes Wite NXP file
Then hypo
And Wite "test.nxp" @ 'YPE=NXP; @ LL=NEW *)

(*) choose NXP in the database list and select the New File button in the
Database Editor.

Language Reference

NEXPERT Flat-File Formats

This rule will create a file called t est . nxp in your current directory. You
can open this file with a text editor to see all the slots of the knowledge base
(except those which are UNKNOWN) written line by line with their current
values.

NXPDB File Format

The records are stored with the following format:

fieldl] field2 field3| field4

R R R R EEESE]
val 11| val 12| val 13| val 14|
val 21| val 22| val 23| val 24|

Rk S O O R I

The main characteristics of the NXPDB format are the following:

m |tis an ASCII file and thus can be ported from one machine to another
(only the End-Of-Line character may differ).

m All the lines have the same length (fixed length record). This length is
computed when the file is created by adding the field widths (including
separators).

m Thefirsttwo lines are the file header and describe the fields of the table.
The first line contains all the field names separated by vertical bars. It
also defines the widths of the fields. The second line is filled with stars
*).

m The last line of stars indicates the end of the file. Any record written
after it will be ignored.

m Every line between the second and the last line represents a record. The
values are right-aligned in the columns, followed by vertical bars.

The NXPDB format can be demonstrated with the following rule. The result
is more interesting if you add this rule to an existing set of rules (eg.

primer.kb).
| f Yes Wite NXPDB file
Then hypo
And Wite "test.nxp" @ YPE=NXPDB; @I LL=NEW (*)

(*) choose NXPDB in the database list and select the New File button in the
Database Editor.

This rule will create a file test.nxp in the current directory. You can open
this file to see all the objects and classes of the knowledge base written line
by line in records. The two first fields are Nane and Val ue (30 characters
long), followed by the list of properties of the knowledge base. Each object
name is written, but only KNOWN values are pasted. The lines may
become very long and difficult to read if your knowledge base contains
many properties (especially if your text editor wraps lines). This NXPDB
file contains a complete dump of the object base.

Language Reference 317

Chapter

318

3

Database Integration Topics

Specifying Field Widths

NXPDB uses fixed width records and fields. The default field widths
depend on the data type of the property:

boolean Max (10, length of the field name)
integer, float Max(15, length of the field name)
string, date, time Max(30, length of the field name)

special property Value Max(30, length of the field name)

You can override these default values and specify field widths on a property
by property basis. The field width information can be edited in the left part
of the double list box of the Write Editor (list of fields, @FIELDS keyword).
You specify the field width as a number between parentheses after the name
of the field. This feature allows you to customize the layout of your NXPDB
files so they can be edited easily or printed as reports. You must carefully
choose your field widths because the Rules Element will truncate the strings
to fit in the space that you have reserved for them. If a string is larger than
its field, it will be truncated and some information will be lost. This may be
harmless if you want to use the NXPDB file only as a report but problems
will arise if the contents of the file are retrieved afterwards.

Examples

List of Fields List of Properties Notes
Job(15) Posi tion (a)
Sal ary(10) Sal ary (b)
SS_Number (10) SS_Nunber (b)
Marri ed(5) Marit al St at us (c)

(a) The Job field has a maximum width of 15 characters (default is 30 for
string, date and time). Your job descriptions must be less than 15 characters
wide.

(b) The Sal ary and SS_Nunber fields have a maximum width of 10
characters (default is 15 for integer and float). You must take into account
the formatting information associated with the property to compute the
field width. For example, the Salary property may be formatted as$ 3000
or 3000 dollars.

(c) The default width for booleans is 10 characters. Five is sufficient for
TRUE and FALSE. One character will be enough if your boolean format is
"T";"F"; (and if you are also using a 1 letter format for UNKNOWN and
NOTKNOWN values).

Notes

The Rules Element will never truncate the field names written in the header
of the file. If a field name contains 8 letters and if you specified a field width
of 5 characters for it, the Rules Element will use 8 as field width.

Field names are also used in the Name specification (@NAME) which defines
the mapping between records and objects (‘rootl'!field1!'root2'!field2!). You
can also specify a field width for field1 and field2 (i.e.
"enp_'lenmp_nane(12)!).

UNKNOWN and NOTKNOWN values are written as UNKNOWN (if
Write Unknown is selected) and NOTKNOWN unless you have specified a
special format for them (i.e. @N=*; @J=7?;). So, your fields should be at

Language Reference

Object Names In Retrieve Operations

least 8 characters wide if you expect NOTKNOWN or UNKNOWN values
and you have not defined a custom format.

Related Topics

Spreadsheets Writing to Databases
Database Editor Windows Retrieving from Databases
Arguments Overview

Object Names In Retrieve Operations

Explicit Object Names

In the simplest case, the Retrieve operation explicitly states which slots
(object.property combinations) will receive which fields from the database
records. This means that no matter what the records or fields contain, the
fields will always be mapped to the same slots.

For example, a Retrieve could be coded such that as a car record is retrieved,
the fields would be pasted into the slots MyCar . Name, MyCar . Pri ce, and
MyCar . Model . These are explicit names: EVERY car's record will be pasted
into the MyCar object's Nare, Pri ce, and Mbdel properties.

Explicit names are used when records are retrieved one by one, as in an
atomic or sequential retrieval. With explicit names, a knowledge base will
typically retrieve a record, process the slots, and (possibly) go on to retrieve
the next record into the same slots.

Explicit names cannot be used with grouped retrieval, since many records
are retrieved at once, and each succeeding record's fields would be written
over the previous fields in the slots (since only one set of slots can be
specified), and all but the last record's fields would be lost.

When a Retrieve operation uses explicit names, it is possible to split a
record's fields across several objects by merely specifying slot names
(object.property combinations) which are in different objects. For example,
a car record's fields could be retrieved into MyCar . Pri ce,

Your Car . Model , and Thei r Car . Mbdel _Dat e. However, as discussed
before, this is probably only useful in specialized applications since the
relationship of the fields is no longer reflected in the Rules Element's object
representation.

Constructed Object Names

It's also possible to use data from the record itself to construct the name of
the object which will receive the record's fields. All or a portion of the name
can be built using the actual data in one or more of the record's fields. If
desired, constant strings can be interspersed with the field data when
forming the object name.

Take, for example, a car inventory database containing a field DB_MODEL
and DB_CAR_NAME for each car. In this inventory there are four cars whose
DB_MODEL fields contain TOYOTA, HONDA, BMV and MERCEDES.

These records could be retrieved into four different objects by using the
DB_MODEL field used to build the name of each object. Thus, the records

Language Reference 319

Chapter

320

3

Database Integration Topics

could be retrieved into the objects named TOYOTA, HONDA, BMV and
MERCEDES. In this case, the object names are built directly from the
database field DB_MODEL. The object name is later combined with the
property names to form "object.property” combinations - slot names - to
receive the record's field values.

As the Rules Element forms the name for each object, it looks in its working
memory for an object with the same name. If the object is found, the Rules
Element will update its slots with the fields from the record. If the object is
NOT found, the Rules Element can either skip the record, or create a new
object for the record.

It is important that the fields and constants used to form the object names
result in unique names. If not, the data retrieved into some objects may be
lost as later records generate the same object name, and overlay the earlier
data. For example, if there were two HONDA records in the car inventory,
the data from the second HONDA record retrieved would overlay the first
record's data.

To avoid this, include at least one field in the object name whose value will
be unique, or combine two or more fields to form a unique value. For
example, the previous case could be made unique by using the
DB_CAR_NAME field for the object name, or combining the DB_MODEL and
DB _CAR_NAME to form the name.

Grouped Retrieve operations MUST use data from the record to construct
the object names. A grouped retrieve typically fetches more than one record
at once, and the Rules Element must have a way to build multiple object
names as the records are retrieved.

Constructing Object Names

You provide the model for constructing the object names in the Name field
of the Retrieve window. It is specified as a series of constants (or “"roots")
and/or field names to be used in constructing the object names. The root
fields should be enclosed in single quotes, and the field names in
exclamation points ("!I"). For example, to specify that the field "DB_MODEL"
is to be used as the object name, you would specify "! DB_MODEL! " in the
name field.

To combine the "make" field with the constant CAR _, you would specify:

" CAR ' ! DB_MODEL!

Even more complex constructs are possible: to combine the DB_MODEL and
DB_CAR_NAME field with two roots, you might specify:

"CAR _'!' DB _MODEL!'" _NAME_I S' | DB_CAR_NANE!

It's important to remember that the Name field is composed of field names,

not property names. The field names specified must be present in the
records being retrieved, otherwise an error will occur.

Field names which occur in the Name field may be repeated in the Fields
and Properties list.

Language Reference

ORACLE

ORACLE

Related Topics

Grouped Retrieve Cursor Slot Specification
Access String Slot Specification for Retrieves
Query Retrieve Operations Database Editor Windows
Retrieving from Databases Name

ORACLE is the relational database product of ORACLE Corporation. The
qguery language of ORACLE is the standard SQL (Structured Query
Language) language. This section assumes familiarity with the SQL
language and the ORACLE product.

The Rules Element ORACLE database interface is available as a separate
package. Aninstallation guide is provided with the software. It contains all
the information required to configure the system and install the database
interface.

The basic logic controlling the transactions has been described under the
Retrieve and Write topics in this chapter. This part will explain how the
SQL queries are constructed.

Database Access String

As explained under the Access String topic in this chapter, the first
argument of the Retrieve or Write operators contains the information
required to establish the connection with the database. In order to connect
with the Oracle 7 database server, you must specify the account name and
the password.

The syntax is the standard Oracle 7 syntax:

"username password host usefixed"

For example:
"scott tiger t:hyperion: H/PERI ONSI D'

Each parameter must be delimited by a blank space. The host name follows
any syntax supported by SQL*Net. Consult your database administrator or
Oracle manual for the exact information.

On the PC, Oracle users with SQL*Net 2.0 must provide the full network
information; aliases are not supported. On other platforms, aliases are
supported.

Note: The “usefixed” parameter controls whether the Oracle 7 CHAR (Type
96) is supported. The default is set to True in order to map fixed and variable
length character types as required by Oracle 7. You must set this parameter
to False for any connection that you establish to Oracle 6.

You cannot be connected to several accounts simultaneously. You can
nevertheless close a connection by issuing a RELEASE statement (see End
string description below) and open a connection to another account
afterwards.

Language Reference 321

Chapter 3 Database Integration Topics

Query Syntax

Begin and End Strings

In these strings, you can specify any valid SQL statement which will be sent
to the DBMS server. If you want to send several SQL statements, you must
separate them by a semi-colon character ().

The Rules Element recognizes the special words COMMIT, ROLLBACK,
and RELEASE in the End statement because they need to be processed
differently by the ORACLE connection module. If COMMIT is
encountered, the Rules Element commits the current transaction. If
ROLLBACK is encountered the transaction is rolled back and if RELEASE
is found, the Rules Element closes the connection with the database.

Usually, the Begin statement is left empty and the End statement contains a
COMMIT in the case of a Write transaction.

Query String

The query string contains one or several table names followed by an
optional where clause.

Let us take an example. Our database contains two tables:

m enpl oyees with the fields emp_id, name, dept_id, salary and bonus.
m depart nent s with the fields dept_id, name, budget.

You can retrieve all the employee records with the following query:
@UERY= "enpl oyees";

Note: Inthe Database Editor, you should not enclose your string in double
qguotes. You should type only the word employees.

You can express complex queries such as:

(@) @UERY= "enpl oyees where salary > 3000";

(b) @UERY= "enpl oyees, departnents where salary > 3000 and enpl oyee. dept _id =
depart nent. dept _id";
In the second case (b), the query will join the two tables employees and
departments.

The query string is not sent as is to the DBMS server (it is not a valid SQL
statement). The actual SQL query is built in the following way:

m IfaName is specified (grouped queries), the Rules Element extracts the
field1 and the optional field2...field5 information from the Name.

m Then the Rules Element builds the SELECT statement:

SELECT fieldl, field2,...field5, list_of fields FROM
query_string

where list_of fields is the list of fields specified in the left part of the double
list box of the Database Editor (@FIELDS).

The resulting string would be the string used with the SQL*Plus utility.
SQL*Plus displays the results of the query on the terminal but the Rules
Element needs to assign the retrieved values to some internal variables. In
fact, the Rules Element inserts an INTO clause before the FROM clause to
describe where the values should be returned (see the Pro*C manual for
details). Let us consider our example query string (b). If the name slot of
our Database Editor contains 'emp_'lemp_id!, and the fields list contains the

322 Language Reference

ORACLE

three properties name, employees.dept_id and salary, then the following
string will be sent to the ORACLE server:
SELECT enp_id, nanme, enployees.dept_id, salary INTO :nxpl, :nxp2, :nxp3,
:nxp4 FROM enpl oyees, departnents WHERE sal ary > 3000 and enpl oyee. dept _i d
=depart ment. dept _i d
The :nxpl, :nxp2 variable syntax is the standard SQL syntax. If you write
parameterized queries (see section below), you should choose variable
names which do not conflict with these names.

You must fully specify field names which are present in more than one
relation. In our example, dept_id must be prefixed by a table name (even if
the two tables contain the same value for this field as a result of our join
operation).

You can use the full power of the SQL language and specify expressions
instead of field names (i.e. write salary + bonus instead of salary) as long as
the SQL string which will be generated is a valid SELECT statement. The
SQL*Plus User's Guide provides detailed information on SQL.

Writing Parameterized Queries

You can use either the @V(obj.prop) special syntax or the query argument
box to parameterize your queries. Our previous example can be
transformed as follows:

@UERY= "enpl oyees, departnments where salary > @/(@ELF. anount) and
enpl oyee. dept _id = department. dept _i d";

or

@UERY= "enpl oyees, departnments where salary > :v1l and enpl oyee.dept_id =
depart nent . dept _i d"; @\RGS= SELF. anount ;

Note: SELF and interpretations are allowed in the right part of the
fields/properties list box (@SLOTS) in the case of sequential or
atomic queries (grouped queries use a list of properties, not slots).
SELF is allowed only if the query is placed in methods.

Update and Insert Statements

UPDATE and INSERT statements are constructed in a similar way. INSERT
statements are generated only if the Create New Record option is selected
and will concern only the objects specified in the In list which do not already
have a matching record in the database.

The UPDATE statement is generated as follows:

UPDATE tables_from_query_string SET list_of fields/values WHERE
[field1 = value_of_field1 [AND field2 = value_of_field2]...] [AND]
[where_clause_from_query_string]

The square brackets indicate optional strings. Let us take our example (a)
and suppose that the salary field needs to be updated and that the Name cell
contains 'emp'lemp_id!. The resulting SQL statement will be:

UPDATE enpl oyees SET salary = :nxpl WHERE enp_id = :nxprl and salary > 3000

In that example, the last part of the statement (and salary > 3000) is probably
useless.

Language Reference 323

Chapter

324

3

Database Integration Topics

The INSERT statement is built from the following model:

INSERT INTO table_from_query_string ([fieldl,][field2, ...] list_of fields)
VALUES ([:nxpVvl,][:nxpv2,] :nxpvi ...)

Our update example becomes:
I NSERT | NTO enpl oyees (enp_id, salary) VALUES (:nxpvl, :nxpv2)

The INSERT statement is limited to the first table specified in the query
string. You can insert records only into real tables, not into views.

Sequential Queries

In the current implementation, you cannot have more than three active
gueries simultaneously. You are limited to three active sequential queries
or one grouped or atomic query when two sequential queries are pending.

Sequential Write operations are not implemented. You can easily replace a
sequential write by an atomic write.

Error Reporting

The Rules Element will report any SQL error message generated by
ORACLE in the transcript window (if this window is write enabled). It will
also generate error messages if it encounters problems while building the
SQL strings. You can consult the ORACLE Error Messages and Code
manual for a detailed explanation of the ORACLE messages.

Retrieve Datatype Mapping

The following table indicates how various ORACLE datatypes may (or may
not) be retrieved into various Rules Element datatypes. The Rules Element
datatypes are listed (underlined) across the top; the ORACLE datatypes are
listed in the column to the left. A "Y" means that the operation works with
no additional effort or concerns. A number means that the operation is
possible, but you should see the notes that appear below the table for
additional details. A "--" means that the operation is not possible.

Integer Float Boolean String Date
signed word 1 1 1,2 1 1,2
signed longword Y 1 1,2 1 1,2
(scale)
signed longword (no Y 1 1,2 1 1,2
scale)
signed quadword Y 1 1,2 1 1,2
f_floating 1 1 1,2 1 1,2
g_floating 1 1 1,2 1 1,2
text Y Y Y Y Y
varying string Y Y Y Y Y
date 4 -- 1,2 1 3

segmented string -- --

Language Reference

ORACLE

Notes

1.
2.

Conversion, as appropriate and if possible, will take place.

If the string contains the proper numeric type requested, it will be
copied into the Rules Element property.

.Oracle requires a special Rules Element format be defined in order to
retrieve this into a date property. The "Standard ORACLE DATE"
format is "DD-MON-YY" (in Oracle terms). A Rules Element format
that will accept this format is ‘dd"-"mmm"-"yy'. This method makes the
Rules Element conform to the Oracle time format (costing loss of
information in the hours/minutes/seconds fields). An alternative isto
make Oracle conform to the Rules Element format. To do this requires
the user specify an Oracle conversion format. What you should realize
is that the retrieve request passes the fieldname listed in the FIELD box
on exactly as typed. The database will use this in its retrieve. Since
Oracle permits a conversion function in the retrieve, you could have
entered: TO_CHAR(date_fieldname,'MON DD YYYY HH24:MI:SS") ...
where "date_fieldname" is the name of the date field being retrieved.
This will cause the returned date field to be in a form that is directly
accepted by the Rules Element (plus it provides the additional time
information).

If the string contains a valid date, the Rules Element will take it if
provided in the default Rules Element date format (‘Mmm dd yyyy
hh:mm:ss;mm dd yy hh:mm:ss;Mmm dd yyyy;mm dd yy;"). Ifin some
other format, a format may be attached to the property to allow its
acceptance (e.g. a format of 'mm"/"dd"/"yy" would accept "12/25/90").

Formats may be applied to treat most datatypes as booleans. A default
property has been defined so that any string of the form "True" or
"False" (case-insensitive) will be converted to the appropriate Rules
Element boolean. For example, if you have integers that are "0" for
"False" and "1" for "True", you could assign a format of "True;False;1;0;'
(which make it print out as True/False, even though it comes in as 1/0).
The most obvious candidates to use for booleans are the various strings
and the various integers.

Write Datatype Mapping

The following table indicates how various ORACLE datatypes may (or may
not) be written into from various Rules Element datatypes. The Rules
Element datatypes are listed (underlined) across the top; the ORACLE
datatypes are listed in the column to the left. A"Y" means that the operation
works with no additional effort or concerns. A number means that the
operation is possible, but you should see the notes that appear below the
table for additional details. A "--" means that the operation is not possible.

Integer Float Boolean String Date
Y 5 4 3 -
Y 5 4 3 -
\% \% 4 3 -
Y Y 4 3 --
Y Y Y Y Y
Y Y Y Y Y

Language Reference

325

Chapter

3

Database Integration Topics

Notes

1. Oracle requires a special Rules Element format be defined in order to
write into an Oracle date field. The "Standard ORACLE DATE" format
is "DD-MON-YY" (in Oracle terms). A Rules Element format that will
generate this format is 'dd"-"mmm"-"yy'. This method makes the Rules
Element conform to the default Oracle time format (costing loss of
information in the hours/minutes/seconds fields).

2. If the string contains a valid date, Oracle will take it if provided in the
"Standard ORACLE DATE" format (see note 1).

3. If the string contains the proper numeric type requested, it will be
copied into the Oracle field.

4. Formats must be applied to treat booleans as non-string Oracle
datatypes. For example, you could write into an integer field if you use
a boolean format of '1;0;True;False' (which accepts True/False, though
prints out as 1/0). The most obvious candidates to use for storing
booleans are the various string and integer formats. (Strings will
directly receive True/False with the default Rules Element format).

5. Conversion, as appropriate and if possible, will take place.

Notes

The main difference between ORACLE and the screen captures
documented in Appendix A, “Database Integration Examples” are as
follows:

1. You must remember to specify ORACLE in the Database Editor
window (or in the TKB, @TYPE=ORACLE).

2. There are no differences between the ORACLE examples and the
general/generic database examples.

Related Topics

Databases
Retrieving from Databases
Writing to Databases

Order of Sources Retrieves

326

Usage

An Order of Sources method is an ideal place to use retrieve operations,
especially atomic retrieves. This allows you to fetch a slot's value from a
database only when it is needed (that is, when a slot is referenced and its
value is UnKnown).

For example, using the car inventory example again, the car object could
have a property called deal er _nane which is NOT included in the "cars"
inventory database, and thus remains unknown even if the object's

Language Reference

Order of Sources Writes

inventory record is retrieved. Including a retrieve operation in the
deal er _nane method's order of sources will cause the retrieve to be
executed ONLY if that slot is referenced.

Remember that no matter what the retrieve operation returns, the order of
sources will continue execution until a value has been found for the slot.
Thus, if the retrieve fails to get a value for the slot - due to an error OR a "no
records found" condition - the order of sources will continue execution with
the next statement. The statements that follow can pursue alternative
sources for the slot's value - including executing additional Retrieve
statements.

This behavior can lend itself to very interesting implementations, especially
in rich database environments. In the simplest case, multiple Retrieve
statements in an order of sources can be used to search a hierarchy of files
or databases for a slot’s value. This hierarchy could reflect the preferred
order of the retrieves since the Rules Element will execute the order of
sources top down. Therefore, the first retrieve could be from a table or file
with the most preferred data, the second in one with less confidence, and so
forth.

An even more interesting approach is possible in distributed database
environments - the first retrieve can attempt to access a remote file or
database, such as a very large database on a mainframe-type platform. If
this fails - due to a communications failure or other problems - subsequent
retrieves in the order of sources can access a local, "backup” file or database
to satisfy the request. This technique is very useful in applications like
credit authorization - which need some data source to complete
successfully.

When the Rules Element begins a retrieve operation, it gets the database
access string from the first argument of the retrieve statement.

Related Topics

Arguments Overview Retrieve Operator

Access String Atomic Retrieve

Sequential Retrieve Group Retrieve

Left-Hand Side Retrieves Right-Hand Side Retrieves

If Change Retrieves Retrieving from Databases
Order of Sources Writes

Usage

The main use for a Write operation in a method’s Order of Sources is as a
side affect of the Rules Element inquiring as to a slot's value. One possible
application of this could be a specialized logging mechanism for making a
record when a particular slot is referenced.

Since a write can NEVER change a slot’s value from UnKnown, an order of
sources will ALWAYS continue execution after a write.

When the Rules Element begins a write operation, it gets the database access
string from the first argument of the write statement.

Language Reference 327

Chapter

3

Database Integration Topics

Related Topics

Arguments Overview Write Operator

Access String Atomic Write
Sequential Write Group Write

Left-Hand Side Writes Right-Hand Side Writes
If Change Writes Writing to Databases

Properties List - (@QPROPS)

Usage

The properties list can be specified in all types of transactions except
operations on spreadsheet files. This list is edited in the right part of the
double list box at the bottom of the Database Editor windows.

In the case of a grouped transaction, the list is a list of properties (separated
by commas), and it is prefixed by the @PROPS keyword.

@PROPS=Il i st of properties;
This is very similar to the Slots List (@SLOTS) as described for that topic.

Related Topics

Database Editor Windows Slots List
Arguments Overview Retrieving from Databases

Query (@QUERY)

328

Usage

The query string contains the record selection statement which will be sent
to the Rules Element and/or the DBMS server. The query statements use
the query language provided by the underlying database architecture:

m RDO if using RDB
m SQL if using most relational databases
m the Rules Element Query Language if using a flat file

With RDB, the query string is a substring of the start_stream statement
which would be written in RDO.

With most relational databases, the query string is a substring of the select
statement which would be written in SQL with the appropriate SQL
user-interface.

The Rules Element Query Language used with flat files appears under the
Query Language topic.

The formal syntax of the query statement is:

@RUERY=quot ed_stri ng;

When you edit the query string with the database editor, you should not
enclose itin double quotes. They will be automatically inserted by the Rules
Element.

Language Reference

Query Language

The special constructs @/(obj . pr op) , @ELF, and @°ROP are allowed in
the query statement.

If the query string is an interpreted slot (@V(obj.prop)) to yield a formatted
date, it must be preceded by the DATE function: DATE(@V(obj.prop)).

Related Topics

Database Editor Windows Arguments Overview
Query Retrieve Operations Query Language
Query Arguments Query Example (Sequential Retrieve)

Query Write Operations

Specific database operations and database topics provide more details and
examples on how to use the query statement.

Query Language

This section describes how to use the Rules Element Query Language. You
can use the Query Language to query flat-file databases such as Lotus files,
NXPDB files, or Excel files. Without the Query Language, you cannot limit
the records like you can with relational databases that have their own query
languages. The Query Language is based on SQL's Select statement, and
you can use it in the Query field of the Retrieve or Write window.

An example of using the Query Language to limit records you retrieve from
or write to flat-file databases is given, followed by a description of the
structure of the language. This section contains the following topics:

m Example of a query

m Structure of a query

m Values

m Operators: Arithmetic, Relational, Boolean, and Others
m Functions: SUM, MIN, MAX, and Others

m Using Dynamic Values

m Wildcards

m Two Kinds of Errors.

Example of a Query

If you are familiar with other query languages, this query language is a
subset because the Rules Element constructs the full query from other
information you supply in the Retrieve or Write window. Using SQL
terminology, the Rules Element's Query Language consists of the WHERE
clause such as shown in this example:

sel ect serial _nunber, price, color fromcars where price
bet ween 12000 and 15000 or color like "red"

Specify the fields you are selecting, such as serial_number, price, and color,
in the Database Fields field.

Language Reference 329

Chapter

330

3

Database Integration Topics

Instead of specifying a table, such as cars in the above example, specify the
filename of the database you are using when you select the Retrieve or Write
operators.

Specify the where clause in the Query field of the Retrieve or Write window
using the Rules Element's Query Language that is described in this section.

The structure of the Rules Element's Query Language is summarized in the
next section.

Structure of a Query

This summarizes how to construct a query using the Rules Element's Query
Language:

search_criteria

or

search_criteria bool ean_operator search_criteria
where search_criteria is:

expressi on rel ati onal _operator expression

or

expression in x : vy

or

expressi on between x and y

or

expression in [x1, x2, x3]

expressi on isa field name, or field names with arithmetic operators.

bool ean_operat orsandrel ati onal _oper at or s are described in the
section Operators: Arithmetic, Relational, Boolean, and Others.

X, ¥y, X1, x2,and x3 are values, which are described in the section
Values.

Values

Values can be strings, numbers, booleans, dates, or times. Here are
examples of each:

Strings "red"
"Miata"
Numbers 15000
1990
19.90
Booleans True
1
False
0
Dates DATE(1990, 6, 15)

DATE(1990, 12, 25)

Times TIME(10, 45, 0)
TIME(22, 30, 0)

Language Reference

Query Language

Use values when you are selecting fields from the database based on their
value. For example, this query retrieves all records where the price is less
than $15,000 and the car has been sold:

price < 15000 and sold = True

This example selects all records where the date the car was made is later
than December 1, 1989:

model _date > DATE(1989, 12, 1)

This example selects all records where the time field is less than 1:15 p.m. or
the car is in stock:

time_stanp < TIME(13,15,0) or in_stock =1
Operators: Arithmetic, Relational, Boolean, and Others

Operators perform an action on values. These are examples of operators:

*

/

and
or

contains

Operators are arithmetic, relational, boolean, or other. The next four
sections describe the types of operators.

Arithmetic Operators: +, -, *, /

Use arithmetic operators to do arithmetic on values. This table lists the
arithmetic operators and their descriptions:

Arithmetic Operators Description
+ Addition
- Subtraction

* Multiplication
/ Division
Examples:

This query finds cars that generated a commission of more than $1,200:
(price * (comm ssion_rate/ 100)) > 1200

This query finds cars that, if prices were raised 8 percent, will cost more than
$18,000:

(price * 1.08) > 18000

Language Reference 331

Chapter

332

3

Database Integration Topics

Relational Operators: =, <, In, Contains, and Like

Relational operators compare the value of expressions. This table lists the
relational operators and their descriptions:

Relational Operators Description

= == eq Equal to

l= /= ne Not equal to

< It Less than

<= le Less than or equal to

> gt Greater than

>= ge Greater than or equal to
? like contains String contains a pattern
Using not:

You can use the modifier not with like, contains, and ? to negate the search
qguery. For example, this query looks for all cars which were not sold in
California:

city_and_state not contains "California"
Examples:
This query finds cars that cost more than 15000:
price > 15000
This query finds all cars that are not Volkswagens:
nodel != "Vol kswagen"
These queries finds salespeople whose name contains "John™:
sal esperson contains "John"
sal esperson |ike "John"
sal esperson ? "John"
Boolean Operators: And's, Or's, and Xor's

These boolean operators take two operands and form an expression that
evaluates to true or false. For example, this is an expression that contains
the boolean operator and:

(price < 15000) and (color = "red")

The first operand of and is (pri ce < 15000), and the second operand is
(color = "red").

This table lists the boolean operators and their descriptions:
Boolean Operators Description

and & Both operands being evaluated must be true for the
whole expression to be true.

or | Either operand or both operands being evaluated
must be true for the whole expression to be true.

xor # Either operand must be true but not both for the
whole expression to be true (exclusive-or).

Language Reference

Query Language

Examples:

This query finds cars that satisfy both of these criteria:

m sold by salesperson "Jan"

= cost more than or equal to $21,000

(sal esperson like "Jan") and (price ge 21000)

This query finds cars that satisfy one of these criteria:

m sold by salesperson "Jan"

m sold by salesperson "Kris"

(sal esperson ? "Jan") | (sal esperson ? "Kris")

This query finds all cars that are not Volkswagens or Mazdas:

(model = "Vol kswagen") xor (nodel = "Mazda")

Other Operators: In, Between

Use these operators to evaluate whether an expression is in a range of values
or a list of values. The values can be strings, numbers, dates, or times. For
example, this query evaluates whether price is greater than $10,000 and less
than $15,000:

price between 10000 and 15000
This table lists the other operators and their descriptions:

Other Operators Description

value between x andy Evaluates whether value is greater than x and less
thany.

valueinx : vy Evaluates whether value is greater than or equal to

x and less than or equal to y.

value in [x1, x2, x3] Evaluates whether value is one of the values listed
in brackets.

Using not:

You can use the modifier not with in and betwe
n to negate the search query. For example, this query looks for all cars with
a price not in the range of $13,000 and $18,000:

price not between 13000 and 18000
This query finds cars that are not Mazdas, Hondas, or Volkswagens:
nmake not in ["Mazda", "Honda", "Vol kswagen"]

Examples:

This query finds cars that were sold after January 1, 1990 and before June 30,
1990:

sol d_date between DATE(1990, 1, 1) and DATE(1990, 6, 30)
This query finds cars that cost more than $15,000 and less than $15,100:
price between 15000 : 15100

This query finds all cars sold by Alex, Jan, or Kris:

sal esperson in ["Alex", "Jan", "Kris"]

Language Reference 333

Chapter

334

3

Database Integration Topics

Functions: SUM, MIN, MAX, and Others

You can use functions in your query to a relational database (not supported
on other database types). This table lists the functions available in the Rules
Element's Query Language and the descriptions of the functions.

Function Description

AVG(expression) Compute the average value of all values described
by expression.

COUNT((fieldname) Counts the total number of occurrences of
fieldname.

MAX (expression) Computes the largest value of all the values
described by expression.

MIN (expression) Computes the smallest value of all the values
described by expression.

SUM(expression) Computes the total of all the values described by
expression.

Expressions are names of fields, or names of fields with arithmetic
operators.

Examples:

This query selects all the cars that cost more than the average price of all the
cars:

price > AVGE price)

Dynamic Values

You can use the current value of the property slot of an object in your query.
For example, this query finds the value of MyFavoriteColor.value, blue, and
uses it to retrieve all the records that describe a blue car:

col or contains “@/(MFavoriteCol or.val ue)”

This query finds the value of CurrentCity.value, San Francisco, and uses it

to find all records where the car was shipped to San Francisco:

shipped_city like “@(CurrentCity.val ue)”

Warning: For NXPDB, SYLKDB, DBF3, and WKSDB use field names that are
in the query, in the Database Fields column, or in the properties

list of the Retrieve or Write statement. When the @V contains a
character value, it must be enclosed in quotes.

Wildcards

You can use wildcards with strings. Wildcards allow you to specify a
pattern to match when doing the query. The Rules Element's Query
Language has two wildcards:

? Replaces one character.
* Replaces any string.
Examples:

This query finds all records that have an address in California:
city_and_state contains "*, California"

Language Reference

Query Field in Retrieve Operations

This query finds all records that have a 4-character serial number that ends
in0:

serial _nunber = "??2?0"

Two Kinds of Errors

When the Rules Element finds an error in the query, such as a misspelling,
no records are retrieved. Two errors are:

m Syntax
m Incompatible types

The Rules Element writes error messages to the transcript window. This is
an example of a syntax error, because contains is misspelled:

city_and_state contains "*, New York"

If you try and compare incompatible types, such as numbers and strings, the
Rules Element generates an error message. This is an example of
incompatible types because the field serial_number is a string:

serial _number > 2350

Related Topics

Query Retrieve Operations
Query Arguments

Query

Query Field in Retrieve Operations

This section discusses how to build the Query field for retrieve operations.
The Query allows you to filter incoming records based on the actual data in
the record's fields. Two kinds of queries can be used with the Rules
Element:

m For relational databases such as Oracle, INGRES, and Sybase, any
ANSI-standard SQL query supported by the database may be used. See
the appropriate database topic for details.

m For non-relational databases, the Rules Element’'s own SQL-like query
language can be used to filter records. See the Query Language topic
for more details.

Query Field

When retrieving records from a relational database such as INGRES,
Sybase, Oracle, or SQL/DS, the query is handled by the central database
manager or server. Therefore, the query can use whatever implementation
of the ANSI SQL standard is supported by the particular database being
used.

Keep in mind that using specialized features of a given database will mean
that the Retrieve may have to be changed if another database type is used.
Generally, if the query uses only those features defined by the ANSI SQL
standard, it will be portable across most, if not all, relational database
products.

Language Reference 335

Chapter

336

3

Database Integration Topics

The first thing in the query field must be the table name(s) to be accessed by
the retrieve operation. The names can be in any format legal for the
database being accessed. This flexibility is important for databases such as
SQL/DS which allow you to specify remote table names in a special format.
The Rules Element will use the table names "as-is" as it constructs the SQL
"SELECT" statement.

If ALL records are to be retrieved, then nothing except the table name
should be specified in the Query field.

The second part of the query field is the "WHERE" clause to be included in
the SQL "SELECT" statement, and MUST be preceded by the word
"WHERE". Itisalso included "as-is" in the "SELECT" statement constructed
by the database interface.

For example, to retrieve only the records from the CARS table in which the
DB_SPORTI VE column contains YES, the query field would contain the
following:

CARS WHERE DB_SPORTI VE = ' YES
More complex queries can be specified, such as:
CARS VHERE DB_SPORTI VE = ' YES' AND DB PRI CE > 10000

to retrieve only those records in which the DB_SPORTI VE field is YES and
the DB_PRI CE field is greater than 10000.

Schematically, the "SELECT" statement built by the Rules Element will look
something like this:

SELECT fiel d_names FROM tabl e_names WHERE query. ..
where:
m field _nanes are the fields specified in the "fields and columns" list

m tabl e_nanes are the names preceding the word WHERE in the Query
field

m Query is the string after the word WHERE in the query field.

The query field is also where a SQL join operation is built. A "join" takes the
data from two or more tables and unifies them into a single "result” table
based on the "WHERE" clause in the SQL statement. The Rules Element sees
the result of a join just as it would rows from a single table.

When coding a join in the query field, it's important to remember that the
field names are copied "as-is" from the Fields and Properties list into the
SQL select statement. In a join, it may not be sufficient to just code a simple
field name, since there could be ambiguity in which table fields come from.
Consider the following query:

CARS, DEALERS WHERE CARS. DB_MODEL = DEALERS. DB_MODEL
If DB_MODEL is specified in the fields and properties list, there will be
ambiguity since the database manager will not know which table - CARS or

DEALERS - to retrieve the field DB_MODEL from. To avoid this problem,
DB_MODEL should be specified as CARS.DB_MODEL or DEALERS.DB_MODEL .

Example

The Query - composed of the table names to be accessed and optionally
followed by the word "WHERE" and a SQL query clause - is specified in the
Query field of the database Retrieve window. The query should NOT be

Language Reference

Query Field in Write Operations

enclosed in quotes. The following example shows how to retrieve only
those records from the CARS table where the Spor ti ve field contains YES:

D atabasze Retrieve

| F

Begin | Database Type

Query }S VWHERE DE_SPORTIVE = 'YES' | | Oracle 7 Driver =]

End | commiT

Mame | IDB_CAR_NAME! In |

Cursor I Link Ta | <car_class>

SelEnor | W Create Ohject
Database Flelds » QObject Propertles ™ Retrieve Unknown

DB_FRICE Frice -

i Always Fonward

& Current Fanward
Do Mot Forward

- 0]34 Cancel

Figure 3-7 Using the Query Field to Retrieve Selected Records

Related Topics

Database Editor Windows Arguments Overview

Query Language Query Example (Sequential Retrieve)
Query Arguments Query Write Operations

Query

Specific database operations and database topics provide more details and
examples on how to use the query statement.

Query Field in Write Operations

This section discusses how to build the Query field for write operations.
The Query field supplies another level of criteria determining which records
will be written by writing to only those records whose fields contain certain
values. Two kinds of queries can be used with the Rules Element:

m For relational databases such as Oracle, INGRES, and Sybase, any
ANSI-standard SQL query supported by the database may be used. See
the appropriate database topic for details.

m For non-relational databases, the Rules Element's own SQL-like query
language can be used to filter records. Look up the Query Language
topic for more detail.

Language Reference 337

Chapter

338

3

Database Integration Topics

Query Field

The Query field is used in atomic and grouped write operations. In the case
of atomic writes, the query is used to uniquely identify the record(s) to be
updated by the write. See the Atomic Write Operations topic for more
information on this.

Using queries with grouped write operations is useful when not all the
information necessary to identify a record is available in the Rules Element's
working memory. Recall that the Name field uses the object name to
identify records in the database, but it may be that this is not sufficient to
limit the records written to the database.

For example, assume that there are three car objects - car _1, car_2, and
car _3 - and each object has the properties Model , Model _Dat e, Pri ce,
and Sportive. Assume that the Pri ce properties have been updated to
reflect a sale, but, due to a special promotion, only red cars will be marked
down, and therefore only the red car's database records should be updated.

If the car objects had a Col or property, then an existential pattern matching
operation could be used to select only those objects with a Col or property
of r ed to be written. In this example, however, there is no Col or to do the
pattern matching on.

Remember that the Name field constructs a record "key" based on the object
name and compares it to selected record fields. There's no way to use the
Name field to check for red cars in the database.

However, by including a SQL or SQL-like query in the Query field, you can
limit the database records updated to those which have Red in the
DB_COLORfield (assuming, of course, that there is a DB_COLOR field in the
database), by using a query like this:

VWHERE DB_COLOR = ' RED

This causes the Rules Element to consider ONLY those records which have
a DB_COLCRfield of RED. Note that the conditions specified in the Query
are "anded" with any conditions imposed by the Name field. For example,
recall that if the Name field is specified as IDB_CAR_NAME!, then the
following "WHERE" clause would be generated as the object "car _1" was
written:

WHERE DB_CAR NAME = 'car_1'

Combining this with the query example above, the generated "WHERE"
clause would look like this:

WHERE DB_CAR NAME = 'car_1' AND DB _COLOR = ' RED
This has the affect of updating car _1's record ONLY ifcar _1isred.

Caution must be exercised when the Create New Record box is checked in
the Write window and a query is specified in the Query field. In this case,
if no record is found to match the Query and Name criteria, the Rules
Element will add a record to the database for the object. However, since, in
this example, there's no Col or property in the cars objects, the DB_ COLOR
field can't be filled in when the record is written. This could generate
records whose contents are illogical or invalid.

Language Reference

Query Field in Write Operations

Specifying Queries for Relational Databases

When writing records to a relational database such as INGRES, Sybase,
Oracle, or SQL/DS, the query is handled by the central database manager
or server. Therefore, the query can use whatever implementation of the
ANSI SQL standard is supported by the particular database being used.

Keep in mind that using specialized features of a given database will mean
that the write operation may have to be changed if another database type is
used. Generally, if the query uses only those features defined by the ANSI
SQL standard, it will be portable across most, if not all, relational database
products.

The first thing in the query field must be the table name to be written by the
write operation. The name can be in any format legal for the database being
accessed.

If no query criteria are to be applied during the write, then nothing except
the table name should be specified in the Query field.

The second part of the query field is the "WHERE" clause to be included in
the SQL UPDATE statement, and MUST be preceded by the word
"WHERE". Itis also included "as-is" in the UPDATE statement constructed
by the Rules Element.

For example, to write only the records from the CARS table in which the
DB_SPORTI VE column contains YES, the query field would contain the
following:

CARS WHERE DB_SPORTI VE = ' YES
More complex queries can be specified, such as:
CARS WHERE DB_SPORTI VE = ' YES' AND DB PRI CE > 10000

to write only those records in which the DB_SPORTI VE field is YES and the
DB_PRI CE field is greater than 10000.

Schematically, the UPDATE statement built by the Rules Element will look
something like this:

UPDATE t abl e_name WHERE nane_col uim = obj ect _name AND query SET fi el d_nanme
= slot_value, field nane = slot_val ue,

where:

m tabl e_nane is the names preceding the word WHERE in the Query
field

m col unm_nan® is one of the column names specified in the Name field
between exclamation points (!).

m obj ect _nan® is the object name (or portion thereof) extracted to be
matched against col utm_nane

m query is the string after the word "WHERE" in the query field.

m field _nanmeandsl ot _val ue are the "Field and Property" pairs
specified in the Write window.

It is NOT possible to use a join operation during a write.

Example

The Query - composed of the table name to be accessed and optionally
followed by the word "WHERE" and a SQL query clause - is specified in the

Language Reference 339

Chapter

3

Database Integration Topics

Query field of the database Write window. The query should NOT be
enclosed in quotes. The following example shows how to write only those
records from the CARS table where the DB_SPORTI VE field contains YES:

| S

Begin |
Query | CARS WHERE DE_SPORTIVE = 'YES' |
End [commiT

MName IDEI_DEALER!'_1 a_DBE_MAMET In | <cars_class>

Cursor |
Database Type
SqlError I |0rac|e? Driver VI
Database Flelds 4m Qbject Propertles
DB_MODEL Model ~| ¥ Create Mew Record
CE_MODEL_DATE Madel_Date ™ Write Unknown
DE_FRICE Price [Mew File
[Insert Only
- (0]24 Cancel
Figure 3-8 Using aQuery in a Write Operation
Related Topics
Database Editor Windows Arguments Overview
Query Retrieve Operations Query Language
Query Arguments Query

Specific database operations and database topics provide more details and
examples on how to use the query statement.

Record Specification for Writes

340

After the Rules Element selects the slots (object.property combinations) to
be written, it writes them out to records (actually, fields within records) in
the database. This section discusses how the Rules Element determines
which records will receive the data.

Writing by Position

During sequential operations, the Rules Element stores its current position
(in the database) in the cursor slot specified in the retrieve or write window.
When a sequential write is issued, it writes the record at the position stored
in the cursor.

Thus, the logic in the knowledge base determines which records will be
written during a sequential write operation. For example, if the knowledge

Language Reference

Record Specification for Writes

base issues a sequential write after each read to the database, it will
effectively update every record in the database:

m For the first retrieve, the Rules Element will fetch record #1 in the
database, and leave the cursor positioned at the beginning of the first
record.

m When the sequential write is issued (using the cursor), it will overwrite
record #1, and position the cursor at record #2.

m The next retrieve will fetch record #2, and leave the cursor positioned at
the beginning of the record.

How to Write by Position

Write by position is supported ONLY for sequential write operations.
Remember that sequential write is NOT supported for most relational
databases such as Oracle, Sybase, and INGRES. To specify write by
position, you:

m Specify a cursor name in the Cursor field of the Write window.

m Ensure that the cursor value is 0 for the first sequential retrieve or write
operation.

m Ensure that the cursor is set to the position where you would like the
next record written when the Write is issued.

Specifying a cursor name

You specify the cursor name as a slot name (object.property combination) in
the Cursor field of the database write window. This slot must be an
"Integer” type.

Ensuring the cursor value is 0 for the first sequential operation

When the Rules Element begins a write operation in which a cursor is
specified, it first checks the value of the cursor to determine the type of
operation. If the value is 0, it's assumed to be the first sequential read or
write; if it's nonzero, it's assumed to hold the position of the next record to
be accessed.

It's very important to ensure that the cursor has the appropriate value before
the write is issued. Failure to set the cursor properly can result in the Rules
Element issuing an atomic write instead of a sequential write, or
encountering errors during the write operation.

Ensuring the cursor is set to the record position for subsequent operations

When attempting to add records to a database, or replace existing records,
you must ensure that the sequential write is properly coordinated with read
operations to ensure that the cursor is set to the proper value. This is done
by specifying the same slot name for both the retrieve and write operations.

Writing by Key

During a grouped write, the Rules Element takes the selected objects
(actually, object's slots) and writes them to the database in a single
operation. To determine which objects will be written to which records, the
Rules Element builds a record "key" to identify the record(s) which will
receive the object's slots.

Language Reference 341

Chapter

342

3

Database Integration Topics

The record key is built by taking the object name and comparing it to the
appropriate fields in the database records. Records whose field values
match the key (or keys) are considered to be a match for the object, and its
slots will be written to those records. If no matches are found, a record can
optionally be created.

How the object name is compared to the field(s) is very flexible: all of the
name can be compared to a single field, part of the name can be compared
to a single field, parts of the name can be compared to multiple fields, and
so forth.

Simple Keys

As asimple example, assume that there are four objects to be written whose
names are HONDA, Pl NTO, TOYOTA, and BMW/ The database records contain
a field called DB_MODEL which will be considered the "key" for this write
operation. As each object is written, the Rules Element searches the
database for a record where the value of the field DB_MODEL matches the
object's name. Thus, the HONDA object's slots will be written to the record
with the DB_MODEL field of HONDA the CHEVROLET object will be written to
the record whose model field contains CHEVROLET, and so forth. Figure 3-9
illustrates this example

| S

Begin |
Query | CARS |
End | commiT
Mame | IDE_MAME! In | <cars_class>
Cursor |
Database Type
SqlError I |Orac|e? Diriver 'I
Database Flelds 4m Ghbject Propertles
CE_MODEL Madel a p Create Mew Record
DE_MODEL_DATE Maodel_Date ™ Wifrite Unknown
DB_PRICE Frice ™ Mlew Fila
" Insert Only
- (0]34 | Cancel

Figure 3-9 Using an Explicit Field Name as the Record Key

Complex Keys

As amore complex example, assume the object names are CAR_TOYOTAand
CAR_HONDA, but the DB_MODEL fields still contain TOYOTA and HONDA. It's
possible to split the object names into two parts: the constant CAR _, and the
model name, and have only the model name matched against the

DB _MODEL field in the records.

The object name can also be matched across multiple fields. In this case,
assume that that object names are composed of the car's model, a constant,

Language Reference

Record Specification for Writes

and the car's name: HONDA i s_car _1, TOYOTA i s_car_2, and so forth.
The name can be divided into three parts: the model, a constant (*_is_"), and
the car name. The model and the name can then be used as "keys", and
matched against the DB_MODEL and DB_CAR_NAME fields in the database.
Figure3-10 illustrates this example.

| S

Begin |
Query | CARS |
End | commiT
Mame [MODEL' is_'DE_CAR_NAME! In | <cars_class>
Cursor |
Database Type
SqlError I |Orac|e? Driver 'I
Datahase Flelds 4m Object Propertles
DB_MGDEL Model +| ™ Create New Record
CE_MODEL _DATE Maodel_Date ™ Wifrite Unknown
DE_FRICE Price [~ Mew File
" Insert Only
= 0K | Cancel

Figure 3-10 Using a Constructed Field Name as the Record Key

Summary

When writing to relational databases such as INGRES, Sybase, Oracle, and
Informix, the Rules Element builds a SQL "UPDATE ... WHERE ..."
statement to update the proper rows using the "key" values. Using the
simplest car inventory example above, SQL statements like the following
would be built:

UPDATE CARS SET ... VWHERE DB_MODEL
UPDATE CARS SET ... WHERE DB_MODEL

' HONDA'
' CHEVROLET"

For the case where two columns are used as "key" fields:

UPDATE CARS SET ... VWHERE DB_MODEL ' HONDA' AND DB_CAR _NAME = 'car_1'
UPDATE CARS SET ... WHERE DB_MODEL ' CHEVROLET' AND DB_CAR NAME = 'car_2'

Note that any additional WHERE clauses specified in the Query field of the
Write window will be appended to these WHERE clauses.

In most cases, there will be a one-to-one correspondence between objects
and records in the database. In the case of the cars example, the key would
be constructed so that one car object would be written to exactly one
database record. If the car database contained only four records - one of
each car model - then the simple scheme of mapping the DB_MODEL field
directly to the object name would suffice. However, realistically, the
DB_MODEL field may not be enough to uniquely identify the records, and a
more complex scheme - such as using the model and car name - may be
necessary.

Language Reference 343

Chapter

344

3

Database Integration Topics

It's also possible to have one object written to MANY records. This is done
by constructing a key which is not unique to one record. In this case, the
object’s properties will be written to all records whose field value(s) match
the key. For example, in a realistic car inventory, many records would have
the same value in the DB_MODEL field. If the object names were mapped
directly to the DB_MODEL field, then each object would be written to
multiple records. Thus all of the records for HONDA cars would be updated
by the object named HONDA, and so forth. This technique is useful for
updating a group of records.

For example, if all the cars of the model TOYOTA were moved to a new
location, this type of key could be used to update all the records in a single
operation. Obviously, this type of write should specify only the properties
and fields which are to be set the same in all records. Writing out properties
which are not common to all records - such as DB_CAR_NAME - would not
be desirable since the DB_CAR_NAME in all records would receive the same
value!

How to Build Record Keys

When filling in the Write window, you build record keys from the object
name by specifying how the Rules Element is to construct the record’s
name, or key fields from the object name.

You provide the model for constructing the record key(s) in the Name field
of the Write window. It is specified as a series of constants (or "roots")
and/or field names. The Name field tells the Rules Element how to break
up the object name into separate parts to build the record's key, and what
fields in the record will be matched against what parts of the key.

The root fields should be enclosed in single quotes, and the field names in
exclamation points (“!’). For example, to specify that the entire object name
is to be matched against the field name nodel (thus making nodel the key
field), you would code the Name as ! nodel !'.

If the object names were prefixed by the constant CAR _, but only the portion
of the name following the constant was to be matched against the database
field DB_MODEL, you would code the Name field as' CAR ' ! DB_MODEL! .

Multiple fields can be used as record keys: if the object names were
composed of the car's model, aconstant _SERI AL _, and the car's name, then
the Name field would be specified as

DB MODEL!" _SERI AL_'! DB_CAR_NAME! . In this example, the record
fields DB_MODEL and DB_CAR_NAME are the record "keys".

When specifying a Name field which combines constants and/or multiple
fields, it is very important that the Name field is unambiguous. For
example, a Name field of | DB_DEALER! | DB_CAR_NANE! is ambiguous,
since the Rules Element has no way of telling which part of the object name
is to go in the DB_DEALER field and which is to go into the DB_ CAR_NAME
field.

The Name field must also be accurate: If Name is specified as

"A CAR '! DB_MODEL!, and the object names are all of the form
CAR_nodel , then the Rules Element won’t be able to match any of the object
names against the Name field, and no records will be written. See the Slot
Specification for Writes topic for more information on this.

Language Reference

Records Filtering

Remember that the Name field is composed of field names, not property
names. The field names specified must be present in the records being
retrieved, otherwise an error will occur.

Field names which occur in the name field must NOT be repeated in the
Fields and Properties list. The field names specified in the Name field are
the record’s "key", or name, and cannot be changed in the same operation in
which they are used to identify the record.

| e

Begin |
Query | CARS |
End [CommT
MName IEL!'_SERIAL_'!DEI_CAR_NAME! In | <cars_class>
Cursor |
Database Type
SqlEror | |Orac|e? Driver =)
Database Flelds 4= QObject Propertles
DB_MODEL Model ~| ¥ Create Mew Record
DE_MODEL_DATE Model_Date I~ Wvrite Unknown
DE_FRICE Frice [~ Mew Fila
[Insert Only
- (0]24 Cancel
Figure 3-11 Filling in the Name Field
Related Topics
Arguments Overview Create New Records
Name Slot Specification for Writes

Records Filtering

General

In most transactions, the Retrieve or Write operation does not process all the
records stored in the database, but only processes a limited subset. The
records are filtered by the transaction. There are two ways by which records
can be filtered:

m Records can be filtered by a selection criteria expressed in the Query
statement (QQUERY). For example, a query may retrieve only the
employee records which have a salary greater than $4000. This type of
filtering is possible only if a query language is available. For relational
databases, this query language is typically SQL (or RDO for RDB). For
flat database files, you can use the Rules Element Query Language.

m Records can be filtered by the fact that they match a set of existing
objects or slots in the working memory of the Rules Element. For

Language Reference 345

Chapter

3 Database Integration Topics

example, a query may retrieve the salary from the employee records for
which there is already an employee object (an instance of the employees
class) in the Rules Element object base. This type of filtering is
controlled by the In List (@ATOMS) and the slots/properties lists
(@SLOTS/@PROPS). This type of filtering can be performed only if the
Create Object setting (@QFILL=NEW:) is disabled.

Related Topics

Query

Create Objects
Query Language

Retrieve Operator

346

In List
Arguments Overview

The Ret ri eve operator is used in rules and methods to read information
from a database or spreadsheet.

Operands

The Ret r i eve operator takes two operands:

m The first operand is either a string constant or an interpretation to a
string constant specifying the name of the file containing the database
to be queried or the login name/access string for a DBMS.

m The second operand consists of a series of arguments defining the
specific retrieval operation to be performed.

Arguments

The second operand may include the following arguments:

@YPE
@EG N
@ND
@UERY
@RROR
@\RGS
@\TOVB
@AVE
@ ELDS
@ROPS
@LOTS
@l LL
@REATE
@INKNOWN
@V\RD
@URSOR

Type of database (creator software and file format)
Command string for opening transaction
Command string for closing transaction
Command string for querying database

Slot name to trap database error message
Argument list for query command

List of objects or properties affected
Correspondence between records and objects
List of field names to retrieve from

List of properties to retrieve to

List of slots to retrieve to

Create new objects

Classes or parents to link new objects to
Retrieve UNKNOWN values

Forward retrieved values

Current position for sequential retrieval

Language Reference

Retrieve Unknown - (@UNKNOWN)

When entering a Ret r i eve action in the Rule Editor or Method Editor,
clicking in the space for the second operand displays the Database Editor
window for specifying the retrieval arguments interactively, rather than by
explicitly typing them in as listed above.

Note: Itis valid to have an empty second operand. When this occurs, the
Rules Element will determine the type of database from the filename
extension specified in the firstargument, and will default to the SYLK
type if no extension is specified. Only simple spreadsheet files can be
accessed in this case. This operating mode has been maintained to
ensure compatibility with earlier versions of the Rules Element.

Effect

The requested information is retrieved from the specified database to the
Rules Elementthe Rules Element knowledge base for further processing.

Result

When used in a condition on the left-hand side of a rule, the Ret ri eve
operator always produces a TRUE result, even if no records are retrieved
satisfying the given query. The only exception is if an error occurs while
attempting to open the database or transmit the query, in which case the
result is FALSE.

Related Topics

Access String Left-Hand Side Retrieves
Access String Specification Right-Hand Side Retrieves
Arguments Overview Order of Sources Retrieves
Database Editor Window If Change Retrieves

Interpretations @V(...)

Look up the following topics in Chapter One, “Application Development
Features” for information related to the Ret r i eve operator.

Rules Classes
Methods Properties
Actions String Constants
Objects

Retrieve Unknown - (@QUNKNOWN)

Usage

The Retrieve Unknown setting is meaningful in all types of transactions. It
controls whether or not UNKNOWN values should be retrieved by the
transaction.

Language Reference 347

Chapter

3

Database Integration Topics

This setting is specified with the Retrieve Unknown check button in the
Database Editor windows. In the text form of the knowledge base, it is
saved as:

@INKNOWN=TRUE;
or
@INKNOAN=FAL SE;

Related Topics

Database Editor Windows
Retrieving from Databases
Arguments Overview

Retrieving from Databases

348

General

During most retrieve operations, the Rules Element selects a single object to
receive each record’s fields, and the fields are read into the object’s slots.
Thus, the contents of a record are represented by an object, and the fields in
the record are represented by the object's property slots. This has the affect
of transforming the record-field relationship into an object-property
relationship in the Rules Element’s working memory.

rHonda
MyCar.Model
Honda 15,000 Red | Red
MyCar.Color
15,000
MyCar.Price

For example, take the case of a car inventory file. Each car is represented by
a record with the fields DB_MODEL, DB_MODEL_DATE, and DB_PRI CE. In
the knowledge base, a car is represented by an object with the properties
Model , Model _dat e, and Pri ce. The Retrieve operation in the

Language Reference

Retrieving from Databases

knowledge base specifies the mapping between the record’s fields and
Rules Element properties

DB_MODEL DB_MODEL_DATE DB_PRICE
PRICE
EEE—
MODEL

Datahase Flelds p Object Propertles

DE_MODEL Model -
DE_MODEL_DATE Model_Date
DE_FRICE Price

In this example, all of the fields from a car's record are mapped into one
object's slots, and thus a car's record is "transformed" into a car object.

Depending on the type of retrieval, records can be retrieved one by one and
mapped into the same object, or many records retrieved and mapped into
many different objects. In either case, as the records are retrieved, the Rules
Element is capable of either updating existing objects, or creating new
objects to hold the records.

For example, the car records could be retrieved one by one into the same car
object, or many cars records could be retrieved at once into many different
car objects.

With sequential and atomic retrieval, it's also possible to retrieve a record's
fields into slots belonging to two or more objects, in effect “scattering” a
record’s contents across several different objects.

Of course, it’s not always necessary to retrieve all the records in the external
file or database. The Rules Element therefore provides several ways of
filtering the records which are actually read into its working memory.
This filtering occurs in three stages:

m A SQL or SQL-like query can be used to select a subset of the records
from the database based on the data in the record fields themselves.

Language Reference 349

Chapter

3

Database Integration Topics

m Anobject or object’s slots (object.property combinations) are selected to
hold the record’s fields.

m Existence filtering determines if the selected object exists, and if it does,
checks to see if it exists in a specified list of objects or classes. If it
doesn’t exist, or doesn’t exist in the list, the record can either be
bypassed or a new object created to hold it.

Related Topics

Databases Spreadsheets

Grouped Retrieve Sequential Retrieve

Atomic Retrieve Retrieve Operator

Query Retrieve Operations Existence Filtering Operations

Object Names In Retrieve OperationsSlot Specification for Retrieves
String to Numeric Conversion Retrieve Unknown

Create Object Debugging Operations
Forwarding Strategy Formats

Return Errors

350

Like all Rules Element operations, retrieve and write return a "true" or
"false" value depending on the results of the operation.

Flat-Files

Retrieve and Write operations always return "true" unless an error occurs.
For flat-file type databases such as spreadsheets, NXPDB, NXP, and
DBASES3 files, some of these errors include:

m The file could not be found

m An operating system error occurred while opening the file
m You don't have the authority to access the file

m The file's format was invalid for the database type

m Syntax error in the Query field

Relational Databases

For relational databases such as Oracle, Sybase, INGRES, Oracle, Informix,
possible errors include:

m The account specified for the access was rejected by the database
m The table name(s) specified in the Query argument was invalid
m The syntax of the query was invalid for the database

m A column name specified in the query did not exist

m An operating system or database error occurred

It is especially important to note that for all database types, a "record not
found" condition is NOT considered an error, and therefore will not
invalidate the condition on the LHS of a rule. Thus, a retrieve or write can

Language Reference

Right-Hand Side Retrieves

return "True" but NO records will have been read or written. Examples of
when this can occur include:

m No records met the criteria of the Query argument

m Duringaretrieve, no records could be mapped to existing object names
and "fill" was specified as "no", therefore no new objects could be
created and no rows were retrieved.

m Duringawrite, no objects could be mapped to existing records and "fill"
was specified as "no", therefore no new records could be created and no
records were written.

When designing your knowledge base, you should ensure that it can handle
acondition where no records are accessed, yet a"True" condition is returned
by the Retrieve or Write operation.

Related Topics

Databases Spreadsheets
Retrieve Operator Write Operator
Left-Hand Side Retrieves Query Argument
Left-Hand Side Writes Access String

Debugging Operations

Right-Hand Side Retrieves

Usage

A retrieve statement can also be used in the RHS of a rule or method, but
here it's not as useful because it's impossible to test if the Retrieve operation
failed, and therefore if there is any valid data to process.

When the Rules Element begins a retrieve operation, it gets the database
access string from the first argument of the retrieve statement.

Related Topics

Arguments Overview Retrieve Operator

Access String Atomic Retrieve
Sequential Retrieves Group Retrieve
Left-Hand Side Retrieves Atomic Retrieve Example

Retrieving from Databases

Right-Hand Side Writes

Usage

In the right hand side of a rule or method, a write statement is usually used
to reflect the consequence of a hypothesis being found "true” in a database.

In the case of the car inventory example, if the LHS of a rule determines that
a car was sold, then the RHS of the rule could contain a write statement to

update the inventory.

Language Reference 351

Chapter

3

Database Integration Topics

Remember that even if the write fails due to an error and returns "False", the
RHS will continue execution until all RHS statements have been executed.

When the Rules Element begins a write operation, it gets the database access
string from the first argument of the write statement.

Related Topics

Arguments Overview Write Operator
Access String Atomic Write
Sequential Write Group Write
Left-Hand Side Writes If Change Writes
Order of Sources Writes Writing to Databases

Sequential Retrieve

352

General

Sequential retrieval can be used with both flat-file databases and relational
databases such as INGRES, Sybase, and Oracle.

The sequential retrieve operation reads the fields from multiple records, one
record at a time, into slots in the Rules Element's working memory. The
slots (object.property combinations) usually all belong to the same object,
but it's also possible to read the fields into slots belonging to two or more
objects.

Typically, a knowledge base will use a sequential retrieval to read a record's
fields, do some reasoning over the record, "loop back" to retrieve another
record, reason over it, and so on. It's also possible to include a sequential
write in this loop (for some database types) to write out an updated copy of
the record after each reasoning step.

For example, a sequential retrieval could be used to read each record from
a "CARS" database into an object's properties, compute a discounted price
for the car, and write out an updated record to the database. In this
example, each record is processed independently of the next one.

Sequential retrieves require that you provide the logic in your knowledge
base to "loop" thru the retrieve until all the records have been retrieved. One
approach is to create rules like the following:

m Rule #1 tests the value of the cursor in the LHS to ensure that it's not
negative.

m Ifthecursorisn't negative, Rule #1 issues a Retrieve (in the LHS or RHS)
to retrieve the next record's fields into a fixed set of slots.

m Subsequent rules process the slots.

m When the record has been completely processed, the hypothesis of Rule
#1 is reset, forcing the next record to be retrieved.

The processing associated with the record can also include a sequential
write (using the same cursor slot), which will update the record just
retrieved. Remember however, that sequential writes are NOT supported
for most database types.

Language Reference

Sequential Retrieve

Specification

Sequential retrieves are recognized by the fact that a Cursor slot is provided
in the database retrieve window, and it has a positive (0 is defined as a
positive number) value when the Retrieve is issued.

For relational databases, the cursor must be set to 0 for the first retrieve, and
the Rules Element set to an arbitrary positive number for subsequent
retrieves. When all the records have been retrieved, the cursor will be set to
-1. The cursor's value must NOT be changed by the knowledge base once
the retrieve begins--doing so will cause errors and/or unpredictable results.

For flat-file databases, the Rules Element will read the "Cursor+1"-th record
in the database. For example, if the cursor slot has a value of 23 when the
retrieve is executed, then the 24th will be retrieved.

A sequential retrieve does not necessarily have to retrieve all the records
from the database. It is possible to limit which records are retrieved by
supplying a query with the retrieve. For relational databases, you can use
any query accepted by the database manager (usually an ANSI SQL
statement), for flat-file databases, you can use the Rules Element Query
Language to filter the records.

If no records meet the query criteria, then the cursor will be set to -1 on the
first retrieve.

A sequential retrieve reads the record fields into specific slots which already
exist when the retrieve is issued.

Fields

To build a sequential retrieve, complete the Retrieve screen in the Database
Editor window as follows.

m If the Retrieve is to a relational database such as Oracle, Sybase, or
INGRES, ensure that the Cursor slot specified in the Retrieve window
is 0 before the first retrieve is executed.

m Usually, in the LHS of the rule issuing the Retrieve, a test is specified to
ensure that the Cursor slot has not gone negative, which indicates that
the last record has been retrieved.

m Specify Retrieve as the operator in the LHS or RHS of the rule.

m Asthefirst operand of the Retrieve, specify the database access string if
a relational database is being accessed. If a flat file database such as
NXPDB or DBASE lll is being accessed, specify the file name. See the
Access String Specification Topic for more information.

m In the database Retrieve window, click on the appropriate selection in
the Database Type field for the database being retrieved from.

m The Begin field should contain whatever is appropriate for your
database. See the Beginning Database Operations topic for more
information. Flat-file databases use this field to specify a range name,
see the Begin topic for details.

m For arelational database, specify the table name to be accessed in the
Query field. If you want to limit the records retrieved by the retrieve,
you can also include a SQL query (for relational databases) or a Rules
Element SQL-like query (for flat file databases) in this field. See the
Query Retrieve Operations topic for more information on filling in the
Query field.

Language Reference 353

Chapter

3

Database Integration Topics

m The End field should contain whatever is appropriate for your database
to end a transaction.

m The slot names (object.property combinations) to receive each record’s
fields are specified explicitly. See the Slot Specification for Retrieves
topic for more information.

m The Cursor field should contain the name of the slot to be used as the
cursor for this retrieve operation. This slot must be of the integer type,
and MUST have a value of 0 when the retrieve is issued from a
relational database. The slot name may be specified as
"object.property" or just "object", which is shorthand for "object.VValue".

m Inthe Database Fields column, specify the names of the database fields
to be retrieved. In the corresponding Object Properties column entries,
specify the property slots into which the fields should be retrieved. See
the Slot Specification for Retrieves topic for more information.

m The Create Object option must be left unselected. Only grouped
retrieves can be used to create objects.

Related Topics

Cursor Slot Specification Query Retrieve Operations
Database Editor Windows Slot Specification for Retrieves
Object Names In Retrieve Operations Query Example

Sequential Retrieve Example Query Language

Also, look up individual arguments and your database type for more
detailed information.

Sequential Write

354

General

Sequential Write operations can be used ONLY with RDB RDO or with
flat-file databases such as NXPDB and DBASE Ill. It can NOT be used with
relational databases (other than RDB RDO).

The Sequential write operation writes a set of slots into database fields one
record at atime. The slots (object.property combinations) usually all belong
to the same object, but it's also possible to write slots belonging to two or
more objects to each record. Each record is written from the same set of slots
which are presumably updated in the logic between the executions of the
Write statement.

Typically, a knowledge base will use a sequential write to rewrite updated
records during a sequential read operation. For example, a knowledge base
would use a sequential read to reach a record, rules would reason over its
contents, possibly change some slot values, and a sequential write would
replace the record in the database.

Sequential writes can also be used in a standalone fashion (not in
conjunction with a sequential retrieve), in which case the Cursor field is
used to position the database to the correct record before each write
operation.

Language Reference

Sequential Write

A sequential write requires that some logic be built around the write
operations to support them. The amount of logic required depends on
whether the write is used in conjunction with a sequential read.

If the sequential write is NOT used in conjunction with a sequential read,
then the logic in the knowledge base must set and maintain the cursor's
value to correspond to the record number to be written.

If the write is associated with a sequential read, then the read operations will
take care of setting and maintaining the cursor value once the retrieve
begins. See the Sequential Retrieve operations topic for more information.

Specification

Sequential writes are recognized by the fact that a Cursor slot is provided in
the database retrieve window, and it has a positive (0 is defined as a positive
number) value when the Write is issued.

The Rules Element will write the Cursor-th record in the database. For
example, if the cursor slot has a value of 23 when the write is executed, then
record 23 will be written.

A sequential write cannot add records to a database, it can only update
existing records.

Fields

To build a sequential write, complete the Write screen in the Database
Editor window as follows.

m Ensure that the cursor slot's value is a positive value (0 is considered
positive) before the write is issued.

m Specify Write as the operator.

m As the first operand of the Write specify the file name to be accessed.
See the Access String Specification topic for more information.

m Inthe database Write window, click on the appropriate selection in the
Database Type field for the database being written. Remember that
sequential writes can NOT be used with most relational databases.

m The Begin and Query fields should be left blank.

m The End field should contain whatever is appropriate for your database
to end a transaction. For almost all relational databases, either
"COMMIT" or "COMMIT RELEASE" should be specified. See the
Ending Database Operations topic for more information.

m The Name field may be left blank or may contain an explicit object name
whose property slots will be written to each record's fields. See the Slot
Specification for Writes topic for more information.

m The Cursor field should contain the name of the slot to be used as the
cursor for this write operation. This slot must be of the integer type, and
MUST have a positive value when the retrieve is issued. The slot name
may be specified as "object.property" or just "object", which is
shorthand for "object.Value".

m The In and Link to fields should be left empty.

Language Reference 355

Chapter

3

Database Integration Topics

m Inthe Rules Element Properties column, specify the property slots
which are to be written to the fields in the database. In the database
fields column, specify the corresponding field which is to receive each
property slot. See the Slot Specification for Writes topic for more
information.

m The Create New Record option must be left unselected. Only grouped
writes can be used to create records.

Related Topics

Cursor Slot Specification Sequential Retrieve

Also, look up individual arguments and your database type for more
detailed information.

Slot Specification for Retrieves

356

As the Rules Element retrieves a record or records, it takes the data from the
fields and places it in the property slots of one or more objects. Usually, a

given record's fields are almost always read into a single object's slots - thus
preserving the record and field relationship as objects and properties.

Remember that property slots are identified as "object.property", where
"object" is the object name, and "property" is the property name. The
property names are always specified explicitly in the database Retrieve
window (in the right hand side of the Fields and Properties list). The object
names can be determined in a number of ways, including from the data in
the records themselves. This section describes how object names are built
during Retrieve operations.

Using Explicit Object Names

There are two ways to specify the slots which will receive the fields from the
records:

m You explicitly state each "object.property” name in the right hand side
of the fields and properties list, opposite the corresponding field
specification. The Name field is left empty.

= You list only the property name(s) in the right hand side of the double
column list, and specify the object name in the Name field. As the
records are retrieved, the Rules Element uses these fields together to
form the slot names.

Both techniques are equally valid, and in almost all circumstances, there's
no advantage to using one technique over another. One exception is that
listing the "object.property" combinations explicitly allows you to split a
record's fields among two or more objects.

Language Reference

Slot Specification for Retrieves

The following illustrations show how to use each of these techniques to
retrieve the fields DB_MODEL, DB_CAR_NAME, and DB_PRICE in object
MyCar 's Model , Nane, and Pr i ce properties.

Database Retrieve

| a

I«

Begin | Database Type
Qluery | CARS | Oracle 7 Driver =]
End |
Mame | In |
Cursor [Cursor_Object. Cursor_Slot Link To [cars_cLASS
SqlEror | " Create Object
Database Flelds » Object Propertles ™ Retrieve Unknown
DB_MODEL My Zar.Model - . Sliis Fam
DBE_MIDEL_MAME MyCarModel_Marme ¥
DE_FRICE MyCar.Frice @ Current Forward
Do Mot Forward
| | - Ok Cancel

Figure 3-12 Using Slot Names in Properties List

Database Retrieve

| -

L«

Begin I Database Type
Query | CARS | | Oracle 7 Driver =]
End |

Mame | My Car' In |

Cursor [Cursor_Object. Cursor_Slot Link To [CARS CLASS

SelEror | [T Craate Object

Database Flelds » Object Propertles ™ Retrieve Unknown

DE_MODEL Model -
DE_MODEL_NAME
DE_FRICE Price

© Always Forward

Model_Marne

@ Current Forward
Do Mot Forward

ik | Cancel |

Figure 3-13 Using Property Names Only in the Properties List

In the first example, we have listed the "target"” slots My Car . Model ,

My Car . nane, and MyCar . Pri ce explicitly in the right hand side of the
fields and properties list, across from their corresponding fields
DB_CAR_NAME, DB_MODEL, and DB_PRICE.

The second example shown accomplishes the same thing, except that only
the properties are listed in the fields and properties list, and the object name
- MyCar - is listed explicitly in the Name field.

Language Reference 357

Chapter

3

Database Integration Topics

Using Constructed Object Names

Constructed object names are used only with grouped retrieve operations.
To specify the slots to receive the fields, you list only the property name(s)
in the right hand side of the double column list. As the records are retrieved,
the Rules Element combines the generated name for the object with these
property names to form the actual slot names to receive the records’ data.

The following illustration shows how to build object names from record
data. The object names are formed using the DB_MODEL and
DB_CAR_NAME fields. The fields DB_MODEL, DB_MODEL_DATE, and
DB_PRICE are retrieved into the property slots Model, Model_Date, and
Price.

Databasze Retrieve

| -

Begin | Database Type

Query | CARS | | Oracle 7 Driver =]

End |

Marme | MyCar' In |

Cursar I Link To I CARS CLASS

SelEnar | V¥ Create Object
Database Flelds » QObject Propertles ™ Retriewe Unknown

DB_MODEL Modal -

 Always Forward
DB_MODEL_DATE Model_Dats

DBE_FRICE Frice

@ Current Farward
Do Mot Forward

- (0]74 Cancel

Figure 3-14 Building Slot Names from Record Data

Related Topics

Retrieving Databases
Name
Object Names In Retrieve Operations

Also see the Grouped Retrieve example in Appendix A, “Database
Integration Examples” for further illustrations of the Name field.

Slot Specification for Writes

358

When a write operation is requested, the Rules Element first selects the slots
(object.property combinations) which are to be the source of the write
operation. There are two ways to specify the slots to be written:

m As an explicit list of "object.property” combinations

m Asa list of object names or classes along with a list of properties to be
written from them.

This section describes these techniques in detail.

Language Reference

Slot Specification for Writes

Using Explicit "Obj.Prop” Combinations

For sequential and atomic write operations, you specify a list of
"object.property” combinations to be written to each record. In this case, the
fields are always written from the same slots. Usually, all of the slots are
from the same object, but it's also possible to specify slots from two or more
different objects.

With atomic write operations, the use of this technique is quite simple: the
logic in the knowledge base fills in the slots, and the slots are written to the
fields in the database. A slot name can be specified more than once in the
list.

The slots to be written can be specified by listing them as explicit
"object.property” combinations, or by specifying the object name and listing
the properties in the Fields and Properties list. Both techniques are equally
valid. If slots from two or more different objects are to be written, the first
technique must be used.

Specifying explicit object.property combinations

To specify explicit slot names, list them in the Properties column of the
Fields and Properties list , opposite the fields which the slots will be written
to. The following example shows how the slots in object MyCar could be
written to the database:

-

Begin |
Query | CARS |
End |
Mame | In |
Cursor C Object. C Slot
| ursar_Ohbject. Cursor_Slo Database Type
SqlError I |Orac|e? Diriver 'I
Database Flelds +m Object Propertles
DE_MCDEL MyCarMadel <] ™ Create New Record
DE_MODEL_DATE MyCarModel_Date ™ Wifrite Unknown
DB_PRICE MyCar.Price ™ Mlew Fila
" Insert Only
- (0]34 Cancel

Figure 3-15 Using Slot Names in the Properties List

Using "Obj.Prop" Combinations

There are two ways to specify the slot names:
m Asexplicit "object.property" combinations.
m Asan object name and a list of properties.

Language Reference 359

Chapter 3

Database Integration Topics

Specifying an object name and list of properties

To use this technique, specify the object name (enclosed in single quotes) in
the Name field of the Write window, and the properties in the Properties
column of the Fields and Properties list opposite the corresponding
database fields. The following examples show how to write MyCar s’s slots
to the database.

| F

Begin |
Query | CARS |
End |
Mame | MyCar In |
Cursar |
Database Type
StEion I IOracIe?’ Diriver 'I
Database Flelds 4m Object Propertles
DE_MODEL Maodel ~| W Create Mew Record
DB_MODEL_DATE Model_Date [WWrite Unknown
DBE_FPRICE Price [Mew File
[Insert Only
- 0124 Cancel

Slots List -

360

Figure 3-16 Using Property Names Only in Properties List
Related Topics
Name Writing to Databases

Record Specification for Writes Arguments Overview

Also see the Grouped Write example in Appendix A, “Database Integration
Examples” for further illustrations of the Name field.

(@SLOTS)

General

The slots list can be specified in all types of transactions except operations
on spreadsheet files. This listis edited in the right part of the double list box
at the bottom of the Database Editor windows.

In the case of sequential or atomic transactions, the list is a list of slots
(separated by commas), and it is prefixed by the @SLOTS keyword.

@LOrS=li st of slots;
This is very similar to the Properties List (@QPROPS) described for that topic.

Language Reference

Spreadsheets

Related Topics

Database Editor Windows Slot Specification for Writes

Arguments Overview Slot Specification for Retrieves
Spreadsheets

General

The spreadsheet files have formats associated with spreadsheet programs
such as Lotus 1-2-3, EXCEL, and the Rules Element's own spreadsheet
format (also referred to as "NXP"). In these formats, each spreadsheet cell is
treated as a unique data item, completely unrelated to other cells in the file.

In a spreadsheet, individual cells are usually addressed by row and column
like "A1", "C23", "KK16". This works well in the context of a user interface,
butitis not very convenient when it comes to identifying data items in afile.
Not only is there no "dictionary” of which cells represent which data items,
there is the problem that insertion of a row or column shifts the row-column
coordinates of many other cells, and invalidates any references to their old
positions (inserting a column between column "A" and "B" means that what
was in position "B1" is now in "C1", etc);

Therefore, to use a spreadsheet file with the Rules Element database
interface, the cells which will be accessed from the Rules Element must have
a Name or "definition” attached to them. This Name is stored by the
spreadsheet software with the spreadsheet, and provides a consistent
reference for a particular datum no matter how its position changes.

Although the ability to read and write spreadsheet format files is useful for
accessing existing information from LOTUS 1-2-3 or EXCEL files, it is not so
useful as an application "database”. The spreadsheet's simple nature makes
it difficult to group data together into logical entities. For example, there is
no built in way to state that "cells Al, A2, A3, and A4 represent CAR_1's
price, model, model date, and sportiness”, and "cells B1, B2, B3, and B4 are
CAR_2's price, model, model date... ", and so forth.

Related Topics

Retrieving from Databases Writing to Databases
Query Language WKS
SYLK Arguments Overview

Rules Element Flat-File Formats

SqlError - (@ERROR)

Usage

The database server that you initiate transactions with may generate error
messages or error numbers that you can trap at runtime. The SqglError field
of the Database Editor window lets you specify a slot that you create for this
purpose. If an error occurs, the message generated is stored as the value of
the slot and the transaction is immediately halted.

Language Reference 361

Chapter

3

Database Integration Topics

Your knowledge base might use an if change method to test the value of the
error slot each time its value changes. At runtime, if the database returns
either an error number (the slot should be of type Integer) or an error
message (the slot should be of type String), the transaction is immediately
halted, and the inference engine automatically sets a left-hand side Retrieve
or Write condition to FALSE. If no error slot is specified, error messages that
are generated at runtime can be viewed in the Transcript window that you
enable.

In text knowledge bases, the field list is saved as a list of quoted strings. The
formal syntax is:

@RROR=sl| ot nane

Note: If the slot name is specified in the Database Editor window, the Rules
Element automatically creates the slot for the knowledge base.

Related Topics

Debugging Operations
Database Editor Windows
Arguments Overview
Retrieving from Databases
Writing to Databases

For precise information on what is allowed for a given database type, look
up your database type.

String to Numeric Conversion {x}

362

General

The "{x}" syntax is used with relational database queries to provide a "hint"
to the Rules Element as to the datatype of the corresponding database field.

Depending on the particular database interface being used and the current
availability of the database server and table(s) being accessed, the Rules
Element has some, little, or no knowledge of the datatypes of the fields
being referenced (retrieved or written) in the database table. In particular,
the problem being addressed with this syntax is the case where numeric
field values are not being provided without the quotes typically associated
with strings. Some databases (e.g. ORACLE) will automatically do most
string to numeric conversion. Some of the Rules Element database
interfaces (e.g. SYBASE) have some understanding of the Rules Element
property type and will generally do the right thing with fields (quoting as
appropriate). Other databases need some help, though.

This syntax is used immediately before the database field name in the Field
list or in the Name field, with "x" set to be "S" for string, “F” for float, or "I"
for integer (i.e. numeric). Only a single character is permitted, and it must
be exactly as specified (it is case-sensitive). This syntax should only be used
when, for example, use of the Transcript indicates an inappropriate use of
quotes by the Rules Element.

Language Reference

SYBASE

SYBASE

Example

As an example, suppose we are using the SYBASE database interface and
have two Rules Element properties of type string (st r _noney and

st r_i nt) that we wish to write into two SYBASE fields of type money and
int with field names of db_noney and db_i nt, respectively. For a normal
transaction involving integers or strings, the SYBASE database interface
would not need the "{I}" syntax, but in this case we are dealing with money
(a type unknown to the Rules Element) and a string we are forcing into an
integer field. Using this syntax, the properties and fields lists would look
like:

@PROPS= str_noney, str_int;

@ ELDS= "{1}db_roney","{1}db_int";

In a similar manner, staying with the SYBASE example, the db_i nt field
may actually be part of the object name derived from the Name field as in:

@AVE= "'root_'!{I}db_int!";

In this case, the Rules Element is obtaining the value of db_i nt from a
string (part of the object name) and would normally provide the value
inside quotes, which SYBASE would not accept. By using the "{I}" syntax
again, we have forced a numeric handling.

In many cases, this additional syntax is not required, and it should only be
used where the Rules Element is obviously providing a form that the
database server will not accept. The database topics contain additional
details for the various Rules Element database interfaces on when and
where this syntax is required.

Related Topics

Database Editor Windows
Formats
Arguments Overview

SYBASE is the relational database product of SYBASE, Inc. The query
language of SYBASE is the standard SQL (Structured Query Language)
language. This section assumes familiarity with the SQL language and the
SYBASE product.

The Rules Element SYBASE database interface is available as a separate
package. An installation guide is provided with the software. It contains all
the information required to configure the system and install the database
interface.

The basic logic controlling the transactions has been described under the
Retrieve and Write topics in this chapter. This part will explain how the
SQL queries are constructed.

Database Access String

As explained in the Access String topic in this chapter, the first argument of
the Retrieve or Write operators contains the information required to
establish the connection with the database. In order to connect with the

Language Reference 363

Chapter

364

3

Database Integration Topics

SYBASE database server, you must specify the user name and password
with which to connect. You may additionally be required to specify a server
name and database. You may optionally specify a host name and
application name. The correct order for specifying these connection
parameters is as follows:

"user name password hostnanme severnane applicati onnanme
dat abase"

You must not skip parameters within the connection string. If you need to,
use a dummy name to supply a connection parameter that is not used, but
do not skip a parameter or replace one by blanks. For example, the above
connection parameters might take the following connection string:

"scott tiger hyperion SYBASE HYPERI ON MyApp custonerdb”
In this example, the application name MyApp was supplied as a dummy
placeholder. Each parameter must be delimited by a blank space.

You cannot be connected to several accounts simultaneously. You can,
however, close a connection by issuing a RELEASE statement (see End
string description below) and open a connection to another account
afterwards.

Query Syntax

Begin and End strings

In these strings, you can specify any valid SQL statement which will be sent
to the DBMS server. If you want to send several SQL statements, you must
separate them by a semi-colon character ().

The Rules Element recognizes the special word RELEASE in the End
statement because it needs to be processed differently by the SYBASE
connection module. If RELEASE is found, the Rules Element closes the
connection with the database.

Usually, the Begin statement is left empty for Retrieves. In the case of a
Write, however, the Begin statement must be of the form:

@EGQ N= "begin transaction transaction_nanme";

where t ransact i on_nane is a name of the user's choosing. Also, for a
Write operation, the End statement will typically be one of the following:

@ND= "commt transaction";
@ND= "rol | back transaction";

depending on whether the actions performed during the transaction are to
be kept or discarded, respectively. By default, the Rules Element will do a
rollback when a Restart Session is done.

Another frequently used Begin statement is
@EGQ N= "use dat abase_nane";
to select a database other than from the default database area.

Query string

The query string contains one or several table names followed by an
optional where clause.

Language Reference

SYBASE

Let us take an example. Our database contains two tables:

m enpl oyees with the fields emp_id, name, dept_id, salary and bonus.
m depart ment s with the fields dept_id, name, budget.

You can retrieve all the employee records with the following query:
@UERY= "enpl oyees";

Note: In the Database Editor, you should not enclose your string in double
qguotes. You should type only the word employees.

You can express complex queries such as:

(8) G@UERY= "enpl oyees where sal ary > 3000";
(b) @UUERY= "enpl oyees, departments where salary > 3000 and enpl oyee.dept _id =
departnent. dept _i d";
In the second case (b), the query will join the two tables employees and
departments.

The query string is not sent as is to the DBMS server (it is not a valid SQL
statement). The actual SQL query is built in the following way:

m IfaName is specified (grouped queries), the Rules Element extracts the
field1 and the optional field2...field5 information from the Name (see
Name topic for details).

m Then the Rules Element builds the SELECT statement:
seLect fieldd, field2,... fields, list_of fields Frov query_string

where list_of fields is the list of fields specified in the left part of the double
list box of the Database Editor (@FIELDS).

The resulting string would be the string used with the "isql" program. SQL
displays the results of the query on the terminal but the Rules Element
needs to assign the retrieved values to some internal variables. Let us
consider our example query string (b). If the name slot of our Database
Editor contains 'emp_"lemp_id!, and the fields list contains the three
properties name, employees.dept_id and salary, then the following string
will be sent to the SYBASE server:

SELECT enp_id, nane, enployees.dept_id, salary FROM enpl oyees, departnents

WHERE sal ary > 3000 and enpl oyee. dept _id = departnent. dept_id
You must fully specify field names which are present in more than one
relation. In our example, dept_id must be prefixed by a table name (even if
the two tables contain the same value for this field as a result of our join
operation).

You can use the full power of the SQL language and specify expressions
instead of field names (i.e. write salary + bonus instead of salary) as long as
the SQL string which will be generated is a valid SELECT statement. The
Transact-SQL User's Guide and the Transact-SQL Commands Reference
manual provide detailed information on SQL.

Writing parameterized queries

You can use either the @V(obj.prop) special syntax or the query argument
box to parameterize your queries. Our previous example can be
transformed as follows:

@RUERY= "enpl oyees, departnents where salary > @/(@ELF. anount) and
enpl oyee. dept _id = depart ment. dept _i d";

Language Reference 365

Chapter

3 Database Integration Topics

or

@UERY= "enpl oyees, departnments where salary > :vl and enpl oyee.dept_id =

depart nent. dept _id";

@\RGS= SELF. anpunt ;

Note: SELF and interpretations are allowed in the right part of the
fields/properties list box (@SLOTS) in the case of sequential or
atomic queries (grouped queries use a list of properties, not slots).
SELF is allowed only if the query is placed in methods.

Update and Insert statements

UPDATE and INSERT statements are constructed in a similar way. INSERT
statements are generated only if the Create New Record option is selected
and will concern only the objects specified in the In list which do not already
have a matching record in the database.

The UPDATE statement is generated as follows:

UPDATE tables_from_query_string SET list_of fields/values WHERE
[field1 = value_of_field1 [AND field2 = value_of_field2]...] [AND]
[where_clause_from_query_string]

The square brackets indicate optional strings. Let us take our example (a)
and suppose that the salary field needs to be updated and that the Name cell
contains 'emp'lemp_id!. The resulting SQL statement will be:

UPDATE enpl oyees SET salary = 5000 WHERE enp_id = '104' and salary > 3000

366

Note: In this example, the new salary information and the emp_id is
obtained from the object identified by the Name field (e.g. 'emp104").
Also, the last part of the statement (and salary > 3000) is probably
useless.

The INSERT statement is built from the following model:

INSERT INTO table_from_query_string ([fieldZ,][field2, ...] list_of fields)
VALUES ([vall,][val2,] ...)

Our update example becomes:

I NSERT | NTO enpl oyees (enp_id, salary) VALUES ('105', 6500)

The INSERT statement is limited to the first table specified in the query
string. You can insert records only into real tables, not into views.

Sequential queries

In the current implementation, you are not limited in the number of active
sequential queries you have at any time.

Sequential writes are not implemented. You can easily replace a sequential
write by an atomic write.

Error Reporting

The Rules Element will report any SQL error message generated by SYBASE
in the transcript window (if this window is write enabled). It will also
generate error messages if it encounters problems while building the SQL
strings. You can consult the SYBASE System Administration Guide for a
detailed explanation of the SYBASE messages. Additional error messages
are explained in the Open Client DB-Library Reference Manual.

Language Reference

SYBASE

Retrieve Datatype Mapping

The

following table indicates how various SYBASE datatypes may (or may

not) be retrieved into various Rules Element datatypes. The Rules Element
datatypes are listed (underlined) across the top; the SYBASE datatypes are
listed in the column to the left. A "Y" means that the operation works with
no additional effort or concerns. A number means that the operation is
possible, but you should see the notes that appear below the table for
additional details. A "--" means that the operation is not possible.

Integer Float Boolean String Date

integer (not scaled) Y 5 4 3 6

integer (scaled) Y 5 4 3 6

smallint 7 5 4 3 6

quadword Y 5 4 3 6

tinyint 7 5 4 3 6

real Y 8 4 3 6

double precision Y 8 4 3 6

char(n) Y Y Y Y Y

varchar(n) Y Y Y Y Y

date 6 6 4 2 1

Notes

1. Conversion from an integer value to a float will take place.

2. If the string contains the proper numeric type requested, it will be
copied into the Rules Element property.

3. SYBASE puts an "AM" or "PM" stamp on times retrieved from the
database, requiring a special Rules Element format be defined in order
to retrieve this into a date property. A format that should work is
'AMmMm" "*d" "yyyy" "h":"mm*P". The first wildcard match is for single
or double date returns (with one or two blanks). The last ™" is
dependent on your version of SYBASE which may or may not return
seconds (you could add ":ss' to get them) and thousandths of seconds
(which the Rules Element won't accept).

4. If the string contains a valid date, the Rules Element will take it if
provided in the default Rules Element date format (‘Mmm dd yyyy
hh:mm:ss;mm dd yy hh:mm:ss;Mmm dd yyyy;mm dd yy;"). Ifinsome
other format, a format may be attached to the property to allow its
acceptance (e.g. a format of 'mm"/"dd"/"yy' would accept "12/25/90").

5. Formats may be applied to treat most datatype as booleans. A default

Language Reference

property has been defined so that any string of the form "True" or
"False" (case-insensitive) will be converted to the appropriate Rules
Element boolean. For example, if you have integers that are "0" for
"False" and "1" for "True", you could assign a format of "True;False;1;0;'
(which make it print out as True/False, even though it comes in as 1/0).
The most obvious candidates to use for booleans are the various strings,
the various integers, and "bit".

367

Chapter

368

3

Database Integration Topics

Write Datatype Mapping

The following table indicates how various SYBASE datatypes may (or may
not) be written into from various Rules Element datatypes. The Rules
Element datatypes are listed (underlined) across the top; the SYBASE
datatypes are listed in the column to the left. A"Y" means that the operation
works with no additional effort or concerns. A number means that the
operation is possible, but you should see the notes that appear below the
table for additional details. A "--" means that the operation is not possible.

The Rules Element SYBASE database interface needs to use the "{I}" syntax
for integer database field names in the Name field. This instructs the Rules
Element to not treat this as a string, but rather as a numeric field (e.g.
integer).

Integer Float Boolean String Date
int Y 1 1,4,5 15 1,45
smallint 1 1 1,45 15 1,45
tinyint 1 1 1,45 15 145
float 1 Y 1,4,5 15 1,45
char(n) - - Y Y Y
varchar(n) - - Y Y Y
bit 3 3 1,4,5 15 1,45
money 2 -- -- 15 1,4,5
date - - 4 15 Y
text - - - - -
binary(n) - - - -- --
varbinary(n) - - - -- --
image - - - - -
timestamp -- - - - -
Notes

1. Datatype conversion, as appropriate and if possible, will take place. For
example, a Rules Element integer can be placed into a SYBASE tinyint
(8 bits), but it must have a value in the allowed range or SYBASE wiill
generate an error and the entire write operation will fail.

2. There are no "cents" passed in. The integer is treated as an integer
number of dollars ("$").

3. A Rules Element integer or float value of "0" will be "0" in the bit field;
any other number will be stored as a "1".

4. Formats must be applied to treat booleans as non-string SYBASE
datatypes. For example, you could write into an integer field if you use
a boolean format of '1;0;True;False' (which accepts True/False, though
prints out as 1/0). The most obvious candidates to use for storing
booleans are the various string and integer formats. (Strings will
directly receive True/False with the default Rules Element format).

Language Reference

SYLK

SYLK

5. Since this SYBASE field needs to be entered without quotes, but the
Rules Element, by default will put quotes around non-numeric fields,
the "{I}" prefix syntax must be used for the database field name to
indicate that this is a numeric-like field and should not have quotes
provided by the Rules Element.

Notes

The main difference between SYBASE and the screen captures documented
in Appendix A, “Database Integration Examples” are as follows:

1. You must remember to specify SYBASE in the Database Editor window
(or in the TKB, @TYPE=SYBASE).

2. Inall of the examples where you are going to write to a table, you must
specify a BEGIN statement that starts a "named" transaction, and an
END statement that, for example, commits the transaction. This syntax
is slightly different from the standard examples. For example (e.g.
ex01syb.tkb):

@EGQ N= "begin transaction wite_table";

@ND= "commit transaction";

3. Inall of the examples where you are going to retrieve from a table, the
SYBASE interface is generally exactly the same as the standard
examples.

Related Topics

Databases
Retrieving from Databases
Writing to Databases

SYLK is a standard data format used by several commercial spreadsheet
software packages, including Excel on the Macintosh and the IBM-PC. The
maximum number of fields which can be contained in a SYLK data file is
10,000.

SYLK

When the SYLK type is specified, the data file is processed as a spreadsheet
by the Rules Element. As explained previously, each cell of the spreadsheet
containing a value must be named with a unique corresponding slot name
obj.prop. In Excel this is done with the Define Name command in the
Formula menu.

Example: to modify an existing spreadsheet so that it contains the slot value
Expenses.Total, select the cell where you want to put the value and enter the
string Expenses.Total in the Define Name dialog. You can repeat the
operation for other cells and other slot names. The unnamed cells of the
spreadsheet will be ignored by the Rules Element during a Retrieve or
Write. The Rules Element may or may not dynamically create new objects
when it encounters a named cell (see the Create Object topic for details).

When you create a new SYLK file, the Rules Element automatically names
the cells with the corresponding slot names. New cells are created in the

Language Reference 369

Chapter

WKS

370

3

Database Integration Topics

first column of the spreadsheet, but you can modify the layout of the
spreadsheet later, provided you keep the correct cell names.

SYLKDB

SYLKDB is used when the Excel spreadsheet file (or a portion of it) is treated
as adatabase. The Excel documentation describes how to select a set of rows
and columns (a range) and define it as a database with the Set Database
command. In this case, cells are not named individually, but the selected
range constitutes a database: rows are records and columns are fields.

This format is more functional than the NXP format for storing structured
objects and their slots. You can specify a database name in the Begin
(@BEGIN) statement of your query. The Rules Element will search for this
database name in the spreadsheet file, and will use the range associated
with this database name to locate the records and fields. If you leave the
Begin statement empty, the Rules Element will use the word Database as the
database name.

You can have several databases in a single spreadsheet file. You can define
them with different names in Excel and access them as separate tables from
the Rules Element (you must use the Begin statement to identify your
database range).

Note: The only database range that you can create directly from the Rules
Element is “Database”; all other ranges must be pre-defined in the
Excel file. Also, when adding records, you must pre-size the range to
contain at least one row.

Related Topics

Spreadsheets Retrieving from Databases
Writing to Databases Query Language

Begin

Description

WKS and WKSDB are used to query and update files which follow the WKS
format defined by the Lotus 1-2-3 program on the IBM-PC.

Descriptions of SYLK and SYLKDB hold in the case of WKS and WKSDB.
The main points are:

m WKS is a spreadsheet format. The cells must be named in Lotus 1-2-3
to be accessible by the Rules Element.

WKSDB is a Lotus 1-2-3 spreadsheet viewed as a database. You must
select a database range in Lotus 1-2-3, and assign a name to it. You must
specify the database name in the Begin statement of your transaction.

Note: Transfer of data files between the VAX and PC's (in both directions)
should not cause any special problem except in the case of WKS files.
In the current version, WKS files created on the VAX (with a RHS
Write) can be read on the VAX but not on the PC if they contain
numeric data (because of differences in the floating point format),

Language Reference

Write Operator

and files created on the PC cannot be read on the VAX because of
RMS file format incompatibilities (you cannot transfer them with
Kermit-32 because the records are too long; if you transfer them with
the VAXmate PC Server, you create RMS files with unterminated
records which cannot be converted properly by the CONVERT VMS
utility).

Related Topics

Spreadsheets Retrieving from Databases
Writing to Databases Query Language
SYLK Begin
Write Operator
The Wi t e operator is used in rules and methods to write information to a
database.
Operands

The Wi t e operator takes two operands:

m The first operand is either a quoted string constant or an interpretation
evaluating to a string constant specifying the name of the file containing
the database to be updated or the login name/password for a DBMS.

m The second operand consists of a series of arguments defining the
specific update operation to be performed.

Arguments

The second operand may include the following arguments:

@'YPE Type of database (creator software and file format)
@EG N Command string for opening transaction
@ND Command string for closing transaction
@UERY Command string for updating database
@ERROR Slot name to trap database error message
@ARGS Argument list for update command

@ATOVS List of objects or properties affected

@NAMVE Correspondence between objects and records
@ | ELDS List of field names to update

@PROPS List of properties to update from

@BLOTS List of slots to update from

@l LL Create new records or files

@INKNOWN Write UNKNOWN values

@CURSOR Current position for sequential update

Language Reference 371

Chapter 3 Database Integration Topics

Note: It is valid to have an empty second operand. When this occurs, the
Rules Element will determine the type of database from the filename
extension specified in the firstargument, and will default to the SYLK
type if no extension is specified. Only simple spreadsheet files can be
accessed in this case. This operating mode has been maintained to
ensure compatibility with earlier versions of the Rules Element.

When enteringa W i t e action in the Rule Editor or Method Editor, clicking
in the space for the second operand displays the Database Editor dialog box
for specifying the update arguments interactively, rather than by explicitly
typing them in as listed above.

Effect

The designated information is written to the specified database from the
Rules Element knowledge base.

Related Topics

Access String Left-Hand Side Writes
Access String Specification Right-Hand Side Writes
Arguments Overview Order of Sources Writes
Database Editor Window If Change Writes

Interpretations @V(...)

Look up the following topics in the Chapter One, “Application
Development Features” for information related to the Wi t e operator.

Rules Classes
Methods Properties
Actions String Constants
Objects

Write Unknown - (@QUNKNOWN)

Usage

The Write Unknown setting is meaningful in all types of transactions. It
controls whether or not UNKNOWN values should be written by the
transaction.

This setting is specified with the Write Unknown check button in the
Database Editor windows. In the text form of the knowledge base, it is
saved as:

@INKNOAN=TRUE;
or
@INKNOAN=FAL SE;

Related Topics

Database Editor Windows Writing to Databases
Arguments Overview

372 Language Reference

Writing to Databases

Writing to Databases

General

During write operations, the database takes slots and writes them out to the
fields in a database record. In most cases, all of the slots are from the same
object, thus transforming the Rules Element’s object-property relationship
into a record-field relationship in the database.

Post Scri pt error (undefined, x6)

For example, take the case of a car inventory file. Each car is represented by
a record with the fields DB_MODEL, DB_ MODEL _DATE, and DB_PRI CE. In
the knowledge base, a car is represented by an object with the properties
Model , Model _dat e, and Pri ce. The Write operation in the knowledge
base specifies the mapping between the Rules Element properties and the
record's fields:

DB_MODEL DB_MODEL_DATE DB_PRICE

PRICE

<«

MODEL

Language Reference 373

Chapter

374

3 Database Integration Topics

Database Flelds 4= Object Propertles

DE_MODEL Maodel -
DE_MODEL_DATE Model_Date
DE_FRICE Frice

Each car object's Nane, Pri ce, Model , Model _dat e, and Sporti ve
property slots could be written into a car record's DB_CAR _NAME,

DB_PRI CE, DB_MODEL, DB_MODEL_DATE, and DB_SPORTI VE fields,
respectively. This effectively "transforms" each car object into a car record.

In specialized cases, it's also possible to write the slots from different objects
into a record's fields.

Depending on the type of write operation, records can be written one by one
from the same slots (with logic in the knowledge base updating the slots
before each write), or multiple objects can be written in one operation to
many records. During the write, the Rules Element can either update
existing records or create new ones.

In most applications, it's not necessary to write all of the slots
(object.property combinations) in the Rules Element's working memory to
the database. The Rules Element therefore provides several ways of
filtering the slots which are actually written from its working memory to the
database.

Filtering occurs in several stages:

m Alist of slot, object, or class names are provided to the database
interface to initially represent the slots to be written. For atomic and
sequential writes, the slots are named explicitly; for grouped writes a
list of objects or classes is provided from which the slots will be written.

m For grouped writes, existence filtering can be used to determine if a
record already exists in the database for the corresponding object. The
correlation between a record and an object is established by building a
record "key" using the object's name.

Related Topics

Databases Spreadsheets

Grouped Write Sequential Write

Atomic Write Write Operator

Query Write Operations Slot Specification for Writes
Write Unknown Create New Record
Debugging Operations Record Specification for Writes

Language Reference

__Appendix

Database Integration

Examples

This appendix provides examples of the various ways to use the Intelligent
Rules Element database interface.

Example 1 - Grouped Write

Description

In this example data from the slots of two objects is written to the database

in a single operation. Each object is written as an individual record.

Although this example is oriented towards relational databases, it is also

applicable to flat-file databases.

This example uses the following objects and records:

m Theclass |cars_class| contains two objects: Newcar_1 and

Newcar_2. Values have been assigned to their property slots using the
InitValue operator in the Order of Sources field.

m Each object has the properties Model, Model_date, Price and

Sportive.

m The table CARS contains the columns DB_CAR_NAME, DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

m There are no rows in the table where the column DB_CAR_NAME

contains the value Newcar_1 or Newcar_2.

Operation

Figure A-1 shows the rule that will invoke the grouped write:

O]l =

Rule | Load Table

KD | eeOlorn ik

0]
)
LE'
Il

.
s

¢

Commaents |

[

» [=egin

Actions

AL
reted” LT

AsdrepTasie |

Wk crmirethd’ |@LEVEL

Wi 7 | dh st $TYPLS

way |

Ind Prierity 'ml| 1

Wl Priaritg St

Figure A-1 Rule Invoking a Grouped Write

Language Reference

375

Appendix A Database Integration Examples

376

The rule shown above is evaluated as follows:

The LHS of the rule will always be true.

The first statement of the RHS (Assign db_access_string...) will
prompt the user for the database access string. Look up your database
type in Chapter Three, “Database Integration Topics” for details.

The LoadKB, Assign DropTable, and UnloadKB statements will drop,
recreate and reload the CARStable in the database. This will ensure that
the CARS table is reset to its initial state each time the example is run.

A Write operation will be invoked. The argument
@V (db_access_string) will be evaluated to yield the user-specified
database access string.

Becin |

Query [CARS |

-

-

End | cormmit
Mame | IDB_CAR _MAME! In | =|cars_class|=
Cursar |
Databasze Type
SglErrar I IOracIe 7 Driver 'I
Database Flelds 4m Object Propertles

DB_MGDEL Modal ~| ¥ Create New Record
DB_MODEL_DATE Model_date ™ Write Linknown
DB_FRICE Frice ™ Mew File
DE_SPORTIVE Sportive " Insert Only

- Ok Cancel

Figure A—2 Write Screen for a Grouped Write

Figure A-2 shows the database interface write screen:

The object names Newcar_1 and Newcar_2 will be used as keys in the
update query.

The database will try to update those records where the column
DB_CAR_NAME contains the values Newcar_1 or Newcar_2. Since
there are no rows in the table which satisfy this criteria and Create New
Record has been selected, two rows will be inserted into the table CARS
using the object names as keys.

For each of the two objects, the values in property slots Model,
Model_date, Price and Sportive will be written to the columns
DB_MODEL, DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE,
respectively.

If all of the rows are written successfully, a Commit will be passed to
the database.

Language Reference

Example 1 - Grouped Write

Reference

Field descriptions for this Write operation follow.

Database Type
An Oracle database is being used in this example.

Begin

For most databases this field is to be left blank for grouped write operations.
Some databases, such as Sybase, require a statement here. Look up your
database type in Chapter Three, “Database Integration Topics” for details.

Query

This field specifies the database table to which the records are to be written
(in this example the table CARS). For flat-file databases this field must be
left blank .

End

For Oracle and most other relational databases, this field should contain a
Commit statement to make the changes to the table permanent if all rows
are written successfully. Look up your database type in Chapter Three,
“Database Integration Topics” for details.

Name

This field indicates that the object names are to be used as keys in the
DB_CAR_NAME field.

In

Specifying a value of <|class_cars|> indicates that the Rules Element is to
write all of the objects in the class |class_cars| to the database.

Cursor

This field must be left blank to indicate a grouped write.

Database Fields / Rules Properties

These columns specify that the values in the property slots Model,
Model_date, Price and Sportive are to be written to the columns
DB_MODEL, DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE
respectively. Although in this example all of the object's property slots are
to be written out, this does not necessarily have to be the case.

Create New Record

This is selected to indicate that a new row should be inserted into the table
if the update query generated by the Name field fails.Related Topics

Grouped Write Cursor Slot Specification
Access String Slot Specification for Writes
Query Write Operations Database Editor Windows

Also, look up individual arguments and your database type for more
detailed information.

Language Reference 377

Appendix A Database Integration Examples

Example 2 - Grouped Write with a Complex Name

378

Description

In this example data from the slots of two objects is written to the database
in asingle operation. Each object is written as an individual record. Unlike
the previous example where the object names could be used in the database
as a single-column key to uniquely identify a record, in this example the
object names must be parsed into two strings and compared with two
database columns in order to determine which records to update. Although
this example is oriented towards relational databases, it is also applicable to
flat-file databases.

This example uses the following objects and records:

m Theclass|cars_class| contains two objects: Newcar_1 A Lexusand
Newcar_2_ A _Infiniti. Values have been assigned to their property
slots using the InitValue operator in the Order of Sources field.

m Each object has the properties Model, Model_date, Price and
Sportive.

m The table CARS contains the columns DB_CAR_NAME, DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

m There are no rows in the table where the columns DB_ CAR_NAME and
DB_MODEL contain the values car_1 and Lexus, or car_2 and
Infiniti.

Operation

Figure A-3 shows the rule which will invoke the grouped write.

Windows

Rule | Load_Table KB | ex02ora.tkb

= | < wp [Begin

Actions

Then |ussig{db_access_string [db_acce:

Do LoadK] “carsora.tkb" @LEVEL]
AssiglDropTable DropTal
Unloaf “carsora.tkb" @LEVEL
Writd" @Y {db_access_st{ ®TYPES

@]
I
E

Comments |

why |

Inf. Priority Num.l 1 Inf. Priority Slot I

Figure A-3 Rule Invoking a Grouped Write

Language Reference

Example 2 - Grouped Write with a Complex Name

The rule shown above is evaluated as follows:

The LHS of the rule will always be true.

The first statement of the RHS (Assign db_access_string...) will
prompt the user for the database access string. Look up your database
type for the exact syntax.

The LoadKB, Assign DropTable, and UnloadKB statements will drop,
recreate and reload the CARStable in the database. This will ensure that
the CARS table is reset to its initial state each time the example is run.

A Write operation will be invoked. The argument
@V (db_access_string) will be evaluated to yield the user-specified
database access string.

sein

Query | CARS |

-

-

End | cornmit
Mame | CAR_MAME!' A 1DB_MODEL! In | <lcars_class|>
Cursor |
Database Type
SqlError | |Orac|e T Oriver ;I
Database Flelds 4m Chject Propertles
DB_MODEL_DATE Model_date - I Create New Record
DE_FRICE Price I~ Write Unknaown
DB_SFORTIVE Sportive [Mew Fila
" Insert Only
- Ok Cancel

Figure A-4 Write Screen for a Grouped Write Using Name

Figure A-4 shows the Rules Element Write screen:

Language Reference

The object names will be parsed to yield the values which will be used
as keysinthe update query. The object Newcar_1 A Lexuswillyield
the values car_1 and Lexus, and the object Newcar_2_A_Infiniti
will yield the values car_2 and Infiniti.

The database will try to update those records where the columns
DB_CAR_NAME and DB_MODEL contain the values car_1 and
Lexus, or car_2 and Infiniti. Since there are no rows in the table
which satisfy this criteria and Create New Record has been selected,
two rows will be inserted into the table CARS using the parsed values
as keys.

For each of the two objects, the values in property slots Model_date,
Price and Sportive will be written to the columns
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE, respectively.

If all of the rows are written successfully, a Commit will be passed to
the database.

379

Appendix A Database Integration Examples

380

Reference
Field descriptions for this Write operation follow.

Database Type
An Oracle database is being used in this example.

Begin

For most databases this field is to be left blank for grouped write operations.
Some databases, such as Sybase, require a statement here. Look up your
database type for the exact syntax.

Query

This field specifies the database table to which the records are to be written
(in this example the table CARS). For flat-file databases this field must be
left blank . Look up your database type for the exact syntax.

End

For Oracle and most other relational databases, this field should contain a
Commit statement to make the changes to the table permanent if all rows
are written successfully. Look up your database type for the exact syntax.

Name

This field indicates how the object names are to be parsed and in which
database columns they will be used as keys. In this example,
'New'IDB_CAR_NAME!"_A_''DB_MODEL! specifies that the write query
is to search for records where the column DB_CAR_NAME contains the
substring delimited by New and _A_ and where the column DB_MODEL
contains the substring which begins after _A_.

In

Specifying a value of <|class_cars|> indicates that the Rules Element is to
write all of the objects in the class |class_cars| to the database.

Cursor
This field must be left blank to indicate a grouped write.

Database Fields / Rules Properties

These columns specify that the values in the property slots Model_date,
Price and Sportive are to be written to the columns DB_MODEL_DATE,
DB_PRICE and DB_SPORTIVE respectively. Although in this example all
of the object's property slots are to be written out, this does not necessarily
have to be the case.

Create New Record

This is selected to indicate that a new row should be inserted into the table
if the update query generated by the Name field fails.

Related Topics

Grouped Write Writing to Databases
Access String Slot Specification for Write
Query Write Operations Database Editor Windows

Record Specification for Writes

Language Reference

Example 3 - Atomic Write

Also, look up individual arguments and your database type for more
detailed information.

Example 3 - Atomic Write

Description

In this example one record in a database is updated with the data from the
slots of a single object. Although this example is oriented towards relational
databases, it is also applicable to flat-file databases.

This example uses the following objects and records:

m Theclass |cars_class| contains one object: MyCar. Values have been
assigned to its property slots using the InitValue operator in the Order
of Sources field.

m The object MyCar has the properties Model, Model_date, Price and
Sportive.

m The object dummy_object has a single property, dummy_cursor.

m The table CARS contains the columns DB_CAR_NAME, DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

m The table CARS contains ten records, each of which can be uniquely
identified by the values car_1, car_2, car_3,... in the field
DB_CAR_NAME.

Operation

Figure A-5 shows the rule which will invoke the atomic write.

Rule | Load_Table KB | ex03ora.tkb

= |1 = wp [Begin

Actions

Then |4 ig|db_access_string |db_acce

Do LoadK| “carsora.tkb" @LEYEL|
A3sig| DropTable DropTal
Unloa| “carsora.tkb™ @LEYEL|
Reset|dummy—object.dum
Writq"@V{db_access_st @TYPES

Comments |

why |

Inf. Priority Num.| 1 Inf. Priority Slot I

Figure A-5 Rule Invoking an Atomic Write

Language Reference 381

Appendix A Database Integration Examples

382

The rule shown above is evaluated as follows:

m The LHS of the rule will always be true.

m The first statement of the RHS (Assign db_access_string...) will
prompt the user for the database access string. Look up your database
type in Chapter Three, “Database Integration Topics” for details.

m The LoadKB, Assign DropTable, and UnloadKB statements will drop,
recreate and reload the CARStable in the database. This will ensure that
the CARS table is reset to its initial state each time the example is run.

m Reset dummy_object.dummy_cursor will set the value of
dummy_object.dummy_cursor to UNKNOWN. This will signal the
Rules Element that an atomic write will be performed.

m A Write operation will be invoked. The argument

@V(db_access_string) will be evaluated to yield the user-specified
database access string.

-

-

e |

Query | CARS where DB_CAR_NAME like %car_1%'

End | commit

Marre |

Cursaor

| dummy_object.dummy_cursor

Database Type

SqlErrar |

Databhase Flelds

Object Propertles

| Oracle 7 Driver =]

DBE_MCoDEL MyCarMaodel [~ Create MNew Record
DB_MODEL_DATE MyCarModel_date ™ Write Unknown
DE_FPRICE MyCar.Price I Mew File
DEB_SFORTIVE MyC ar.Spartive [Insert Only

-]34 Cancel

Figure A-6 Write Screen for an Atomic Write

Figure A-6 shows the Rules Element Write screen:

m Data from the slots MyCar.Model, MyCar.Model_date, MyCar.Price
and MyCar.Sportive will update the fields DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE in the record
where DB_CAR_NAME is car_1.

m If the row is written successfully, a Commit will be passed to the
database.

Reference

Field descriptions for this Write operation follow.

Database Type

An Oracle database is being used in this example.

Language Reference

Example 4 - Grouped Retrieve

Begin

For most databases this field should be left blank for atomic write
operations. Some databases, such as Sybase, require a statement here. Look
up your database type in Chapter Three, “Database Integration Topics” for
details.

Query

This field specifies which database table is to be updated (in this example
the table CARS), and the criteria to be used to select the record to be updated
(where DB_NAME like...).

End

For Oracle and most other relational databases, this field should contain a
Commit statement to make the changes to the table permanent, if the row is
updated successfully. Look up your database type in Chapter Three,
“Database Integration Topics” for details.

Name

This field must be empty for atomic writes. Object names are stated
explicitly in the Database Fields / Rules Properties list.

In

This field must be empty for atomic writes.

Cursor

This field specifies the name of an integer property slot (in this example
dummy_object.dummy_cursor) which, in order to specify an atomic
write, MUST contain the value UNKNOWN.

Database Fields / Rules Properties

These columns specify that the values in the property slots Model,
Model_date, Price and Sportive of the object MyCar are to be written to
the columns DB_MODEL, DB_MODEL_DATE, DB_PRICE and
DB_SPORTIVE.

Create New Record

This must NOT be selected. New records cannot be added to the database
with atomic or sequential writes.Related Topics

Atomic Write Cursor Slot Specification
Access String Slot Specification for Writes
Query Write Operations Database Editor Windows

Also, look up individual arguments and your database type for more
detailed information.

Example 4 - Grouped Retrieve
Description

In this example data from multiple records in the database is retrieved into
the property slots of a group of objects in a single operation. Although this
example is oriented towards relational databases, it is also applicable to
flat-file databases.

Language Reference 383

Appendix A Database Integration Examples

This example uses the following objects and records:

m Initially, the class |cars_class| contains no objects. Objects in
|cars_class| will have the properties Model, Model_date, Price and
Sportive.

m The table CARS contains the columns DB_CAR_NAME, DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

m The table CARS contains ten records, each of which can be uniquely
identified by the values car_1, car_2, car_3,... in the field
DB_CAR_NAME.

Operation

Figure A-7 shows the rule which will invoke the grouped retrieve.

Rule | Lost_Teole K8 | ex0durated
o = o [

ACl098
Thes [Logfm e

(P e (1
horg | DropTatie |sreqty
Ul ®LIVEL
Ll Bt L LAl

o
(&
[
[
i

f

Comments |

way [

Inf Priceity Wem [3 Int, Pricrtiy Siot |

Figure A-7 Rule Invoking a Grouped Retrieve

The rule shown above is evaluated as follows:
m The LHS of the rule is always true.

m The first statement of the RHS (Assign db_access_string...) will
prompt the user for the database access string. Look up your database
type in Chapter Three, “Database Integration Topics” for details.

m The LoadKB, Assign DropTable, and UnloadKB statements will drop,
recreate and reload the CARStable in the database. This will ensure that
the CARS table is reset to its initial state each time the example is run.

384 Language Reference

Example 4 - Grouped Retrieve

m A Retrieve operation will be invoked. The argument
@V(db_access_string) will be evaluated to yield the user-specified
database access string.

(Database Retieve |

| -

Begin [N .oy

Query | CARS | | Oracle 7 Driver =]

End |

Mame [IDB_CAR_NAME! In |

Cursor | Link To | |cars_class]

SalEmor | ¥ Create Object
Database Flelds * CGbject Propertles " Retrieve Unknown

DE_MODEL Model -

 Always Forward

DE_MODEL_DATE Model_date
DE_FRICE e~ Current Forward
DE_SPORTIVE Sportive Do Mot Forard

- 8] Cancel

Figure A-8 Retrieve Screen for a Grouped Retrieve

Figure A-8 shows the Rules Element Retrieve screen:

m Aseach record in the table CARS is retrieved, the Rules Element will
search the knowledge base for an object whose hame matches the
current value of the field DB_CAR_NAME. Since no object will be
found, a dynamic object with this name will be created and linked to the
class |car_class].

m As each object is created values from the database fields DB_ MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE will be passed to
the property slots Model, Model_date, Price and Sportive.

Reference

Field descriptions for this Retrieve operation follow.

Database Type
An Oracle database is being used in this example.

Begin

For most databases this field should be left blank for grouped retrieve
operations. Some databases require a statement here. Look up your
database type in Chapter Three, “Database Integration Topics” for details.

Query

This field specifies from which table records are to be retrieved. This field
can also contain a where clause to limit the records to be retrieved.

Language Reference 385

Appendix A Database Integration Examples

386

End

For most relational databases, this field should be left blank. Some
databases may require a statement here. Look up your database type in
Chapter Three, “Database Integration Topics” for details.

Name

This field specifies that for each record retrieved from the database the value
of the field DB_CAR_NAME is to be used to build the object name in which
the database values will be stored.

In

This field specifies the list of objects and/or classes to be searched to
determine if an object exists whose hame matches the value specified by the
Name field. If this field is left blank, as in this example, then all of the objects
in the knowledge base will be searched.

Cursor
This field must be empty for grouped retrieves.

Link To

This field specifies the class to which new objects created by the retrieve are
to be linked. In this example, new objects will be linked to the class
|cars_class|.

Database Fields / Rules Properties

These columns specify that data from the columns DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE are to be passed to the
property slots Model, Model_date, Price and Sportive .

Create New Record

This is selected to indicate that if an object with a name specified by the
Name field doesn't already exist, it is to be created. If this is not selected,
data will only be retrieved into objects which already exist in the knowledge
base.

Current Forward

This is selected to indicate that the retrieval of any data into property slots
will place hypotheses on the agenda according to the current RHS
forward-chaining strategy.

Related Topics

Grouped Retrieve Cursor Slot Specification
Access String Slot Specification for Retrieves
Object Name Specification Query Retrieve Operations

Database Editor Windows

Also, look up individual arguments and your database type for more
detailed information.

Language Reference

Example 5 - Grouped Retrieve with a Complex Name

Example 5 - Grouped Retrieve with a Complex Name

Description

This is an example of a grouped retrieve in which field values from two
table columns are combined with a constant string to form the object names.
Although this example is oriented towards relational databases, it is also
applicable to flat-file databases.

This example uses the following objects and records:

Initially, the class |cars_class| contains no objects. Objects in
|cars_class]| will have the properties Model, Model_date, Price and
Sportive.

The table CARS contains the columns DB_CAR_NAME, DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

The table CARS contains ten records, each of which can be uniquely
identified by the values car_1, car_2, car_3,... in the field
DB_CAR_NAME.

The table CARS contains ten records, each of which can be uniquely
identified by the values car_1, car_2, car_3,... in the column
DB_CAR_NAME. The column DB_MODEL contains values like
Toyota, Honda and BMW.

Operation

Figure A-9 shows the rule which will invoke the grouped retrieve.

Edit App ers Windows

Rule | Load_Table KB | ex0Sora.tkb

Actions

Then |, ig|db_access_string |db_acce:
Do

LoadK] “carsora.tkb” @LEVEL|
Assig|DropTable DropTal
Unloa| “carsora.tkb” @LEVEL|
Retri{"@V{db_access_st ®TYPES

\
If [T; = mp [Begin
\

Comments |

why |

Inf. Priority Num.| 1 Inf. Priority Slot I

Figure A-9 Rule Invoking a Grouped Retrieve

Language Reference

387

Appendix A Database Integration Examples

388

The rule shown above is evaluated as follows:

The LHS of the rule is always true.

The first statement of the RHS (Assign db_access_string...) will
prompt the user for the database access string. Look up your database
type for the exact syntax.

The LoadKB, Assign DropTable, and UnloadKB statements will drop,
recreate and reload the CARStable in the database. This will ensure that
the CARS table is reset to its initial state each time the example is run.

A Retrieve operation will be invoked. The argument
@V (db_access_string) will be evaluated to yield the user-specified

database access string.

segin

Database Type

|:—JLIEI’}' I CARS

| Qracle 7 Driver 'I

End I

Name [-aR NAMEI A_IDB_MODELI Ui |
Cursor Link To
| | Icars_class|
SqlErmor | ¥ Create Object

Database Flelds

» Ohbject Propertles

DB_SFORTIVE

Sportive

[" Retrieve Unknown

DB_MODEL Modsl
= Always Forward

DB_MODEL_DATE Model_date

DE_FRICE Frice & Current Forward

Do Mot Forward

-

-

-]34 Cancel

Figure A-10 Retrieve Screen for a Grouped Retrieve Using Name

Figure A-10 shows the Rules Element Retrieve screen:

As each record in the table CARS is retrieved, the Rules Element will
combine the value of the field DB_CAR_NAME with the string _A_ and
the value of the field DB_MODEL to create an object name. The Rules
Element will then search the knowledge base for an object with this
name. Since no object will be found, a dynamic object with this name
will be created and linked to the class |car_class|.

As each object is created values from the database fields
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE will be passed to
the property slots Model_date, Price and Sportive.

Reference

Field descriptions for this Retrieve operation follow.

Database Type

An Oracle database is being used in this example.

Language Reference

Example 5 - Grouped Retrieve with a Complex Name

Begin

For most databases this field should be left blank for grouped retrieve
operations. Some databases require a statement here. Look up your
database type for the exact syntax.

Query

This field specifies from which table records are to be retrieved. This field
can also contain a where clause to limit the records to be retrieved.

End

For most relational databases, this field should be left blank. Some
databases may require a statement here. Look up your database type for the
exact syntax.

Name

This field specifies that for each record retrieved from the database the value
of the field DB_CAR_NAME, the string _A_ and the value of the field
DB_MODEL will be combined to form the object name in which the
database values will be stored.

In

This field specifies the objects and/or classes of objects to be searched to
determine if an object exists whose name matches the value of the database
field(s) specified in the Name field. If this field is left blank, as in this
example, then all of the objects in the knowledge base will be searched.

Cursor
This field must be empty for grouped retrieves.

Link To

This field specifies the class to which new objects created by the retrieve are
to be linked. In this example, new objects will be linked to the class
|cars_class|.

Database Fields / Rules Properties

These columns specify that data from the columns DB_MODEL_DATE,
DB_PRICE and DB_SPORTIVE are to be passed to the property slots
Model_date, Price and Sportive.

Create New Record

This is selected to indicate that if an object with a name specified by the
Name field doesn't already exist, it is to be created. If this is not selected,
data will only be retrieved into objects which already exist in the knowledge
base, and any other records ignored.

Current Forward

This is selected to indicate that the retrieval of any data into property slots
will place hypotheses on the agenda according to the RHS forward-chaining
strategy currently in effect.

Language Reference 389

Appendix A Database Integration Examples

Related Topics

Grouped Retrieve Cursor Slot Specification
Access String Slot Specification for Retrieves
Object Name Specification Query Retrieve Operations

Database Editor Windows

Also, look up individual arguments and your database type for more
detailed information.

Example 6 - Grouped Retrieve with Existence Filtering

390

Description

This is an example of a grouped retrieve in which database values are only
passed to those objects specified by the In field which already exist in the
knowledge base. Although this example is oriented towards relational
databases, it is also applicable to flat-file databases.

This example uses the following objects and records:

m Theclass |cars_class| contains two objects, car_1 and car_2. These
objects have the properties Model, Model_date, Price and Sportive
Initially, all of these property slots are set to UNKNOWN for both
objects.

m The table CARS contains the columns DB_CAR_NAME, DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

m The table CARS contains ten records, each of which can be uniquely
identified by the values car_1, car_2, car_3,... in the field
DB_CAR_NAME.

Operation
Figure A-11 shows the rule which will invoke the grouped retrieve.

Reports Windo:

KB | exO6ora.tkb

1 B | Begin

Actions

Then |, ig{db_access_string |db_acce:

Do LoadK] “carsora.tkb" @LEVEL|
Assig|DropTable DropTal
Unloa| “carsora.tkb” @LEVEL|
Retri{"@V{db_access_st @TYPES

Comments |

why |

Inf. Priority Num.l 1 Inf. Priority Slot |

Figure A-11 Rule Invoking a Grouped Retrieve

Language Reference

Example 6 - Grouped Retrieve with Existence Filtering

The rule shown above is evaluated as follows:
m The LHS of the rule is always true.

m The first statement of the RHS (Assign db_access_string...) will
prompt the user for the database access string. Look up your database
type for details on how to specify this for other DBMSs.

m The LoadKB, Assign DropTable, and UnloadKB statements will drop,
recreate and reload the CARStable in the database. This will ensure that
the CARS table is reset to its initial state each time the example is run.

m A Retrieve operation will be invoked. The argument
@V (db_access_string) will be evaluated to yield the user-specified
database access string.

Database Retrieve

Sean N O:tabac: Type

Query I CARS I I Oracle 7 Driver 'I
End |
Marne In
| IDB_CAR MAME! | =|cars_class|=

Cursor | Link Ta |
SqlEror | [T Create Objact

Database Flelds » Object Propertles ™ Retrigve Unknown
EESWODER fods| = Abways Forward
DE_MODEL_DATE Model_date
DB_FRICE S & Current Forward
DB_SFORTIVE Sportive Do Mot Forward

- 0]54 Cancel

Figure A-12 Retrieve Screen for a Grouped Retrieve Using In Field

Figure A-12 shows the Rules Element retrieve screen:

m Aseach record in the table CARS is retrieved, the Rules Element will
search the objects in the class <|cars_class|> (as specified by the In
field) for an object whose name matches the current value of the field
DB _CAR_NAME.

= Only two records will have values in the field DB_CAR_NAME which
match the name of an object in the class <] cars_class|>.

m For the two objects car_1 and car_ 2, the values from the database
fields DB_MODEL, DB_ MODEL_DATE, DB_PRICE and
DB_SPORTIVE will be passed to the property slots Model,
Model_date, Price and Sportive. Data from other records retrieved
will be ignored.

Reference

Field descriptions for this Retrieve operation follow.

Language Reference 391

Appendix A Database Integration Examples

392

Database Type
An Oracle database is being used in this example.

Begin

For most databases this field should be left blank for grouped retrieve
operations. Some databases require a statement here. Look up your
database type for details.

Query

This field specifies from which table records are to be retrieved. This field
can also contain a where clause to limit the records to be retrieved.

End

For most relational databases, this field should be left blank. Some
databases may require a statement here. Look up your database type for the
exact syntax for your database.

Name

This field specifies that for each record retrieved, the Rules Element is to
search for objects whose name matches the value of the field
DB_CAR_NAME.

In

This field specifies the list of objects and/or classes of objects to be searched
to determine if an object exists whose name matches the value specified by
the Name field. In this example, data will only be passed to existing objects
in the class <] cars_class|>.

Cursor

This field must be empty for grouped retrieves.

Link To
Since no objects are to be created by this retrieve, this field is left empty.

Database Fields / Rules Properties

These columns specify that data from the columns DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE are to be passed to the
property slots Model, Model_date, Price and Sportive .

Create New Record

Since this is not selected, data will only be retrieved into objects which
already exist in the knowledge base. Any other records will be ignored.
Current Forward

This is selected to indicate that the retrieval of any data into property slots
will place hypotheses on the agenda according to the current RHS
forward-chaining strategy.

Related Topics

Grouped Retrieve Cursor Slot Specification
Access String Slot Specification for Retrieves

Language Reference

Example 7 - Grouped Retrieve with Content Filtering

Object Name Specification Query Retrieve Operations
Database Editor Windows Existence Filtering Operations

Also, look up individual arguments and your database type for more
detailed information.

Example 7 - Grouped Retrieve with Content Filtering

Description

This is an example of a grouped retrieve in which the records retrieved are
limited by a database query. Although this example is oriented towards
relational databases, it is also applicable to flat-file databases.

This example uses the following objects and records:

m Initially, the class |cars_class| contains no objects. Objects in
|cars_class| will have the properties Model, Model_date, Price and
Sportive.

m The table CARS contains the columns DB_CAR_NAME, DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

m The table CARS contains ten records, each of which can be uniquely
identified by the values car_1, car_2, car_3,... in the field
DB_CAR_NAME. Five records have a Sportive field with a value of
Yes: car_1, car_4, car_5, car_7 and car_8.

Operation

Figure A-13 shows the rule which will invoke the grouped retrieve.

Reports Windows Rule

Rule | Load_Table KB | exO7ora.tkb

1 = wp [Begin

Actions

Then |4 ig{db_access_string [db_acce:

Do LoadK] "carsora.tkb” @LEVEL]
Assig|DropTable DropTal
Unloa| “carsora.tkb” @LEYVEL|
Retri{"@V{db_access_st @ TYPES

Comments |

why |

Inf. Priority Num.l 1 Inf. Priority Slot |

Figure A-13 Rule Invoking a Grouped Retrieve

Language Reference 393

Appendix A Database Integration Examples

394

The rule shown above is evaluated as follows:

The LHS of the rule is always true.

The first statement of the RHS (Assign db_access_string...) will
prompt the user for the database access string. Look up your database
type for information on how to specify this for other DBMSs.

The LoadKB, Assign DropTable, and UnloadKB statements will drop,
recreate and reload the CARStable in the database. This will ensure that
the CARS table is reset to its initial state each time the example is run.

A Retrieve operation will be invoked. The argument
@V (db_access_string) will be evaluated to yield the user-specified
database access string.

Database Retrieve

S | O<':tx<: Ty

Query I Oracle 7 Driver vl

[ARS where DB_SPORTIVE="fes' |
End |
Marne in

I I

Cursaor | IDB_CAR_NAMEI Link Ta I

[| Icars_class|

¥ Create Object
SglError | :
atabase rielas -y el Froperues ™ Retrieve Unknown
BESWEDED o] = Abways Forward
DE_MODEL_DATE Model_date
DB_FRICE S & Current Forward
DBE_SFORTIVE Sportive Do Mot Forward
- Ok Cancel

Figure A-14 Retrieve Screen for a Grouped Retrieve Using Link To

Figure A-14 shows the Rules Element retrieve screen:

Since the SQL query CARS where DB_SPORTIVE = 'Yes' has been
specified, the DBMS wiill return only those records which satisfy this
condition.

As each record in the table CARS is retrieved, the Rules Element will
search the knowledge base for an object whose name matches the
current value of the field DB_CAR_NAME. Since no object will be
found, a dynamic object with this name will be created and linked to the
class |car_class|.

As each object is created values from the database fields DB MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE will be passed to
the property slots Model, Model_date, Price and Sportive.

Reference

Field descriptions for this Retrieve operation follow.

Language Reference

Example 7 - Grouped Retrieve with Content Filtering

Database Type
An Oracle database is being used in this example.

Begin

For most databases this field should be left blank for grouped retrieve
operations. Some databases require a statement here. Look up your
database type for details.

Query

This field specifies from which table records are to be retrieved and the
criteriato be used to select the desired records. Inthisexample, only records
which have a Yes value in the field DB_SPORTIVE will be retrieved.

End

For most relational databases, this field should be left blank. Some
databases may require a statement here. Look up your database type for the
exact syntax for your database.

Name

This field specifies that for each record retrieved from the database the value
of the field DB_CAR_NAME is to be used to build the object name in which
the database values will be stored.

In

This field specifies the list of objects and/or classes to be searched to
determine if an object exists whose hame matches the value specified by the
Name field. If this field is left blank, as in this example, then all of the objects
in the knowledge base will be searched.

Cursor

This field must be empty for grouped retrieves.

Link To

This field specifies the class to which new objects created by the retrieve are
to be linked. In this example, new objects will be linked to the class
|cars_class|.

Database Fields / Rules Properties

These columns specify that data from the columns DB_ MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE are to be passed to the
property slots Model, Model_date, Price and Sportive .

Create New Record

This is selected to indicate that if an object with a name specified by the
Name field doesn't already exist, it is to be created. If this is not selected,
data will only be retrieved into objects which already exist in the knowledge
base.

Current Forward

This is selected to indicate that the retrieval of any data into property slots
will place hypotheses on the agenda according to the current RHS
forward-chaining strategy.

Language Reference 395

Appendix A Database Integration Examples

Related Topics

Grouped Retrieve Query Retrieve Operations
Database Editor Windows Slot Specification for Retrieves
Object Name Specification

Also, look up individual arguments and your database type for more
detailed information.

Example 8 - Atomic Retrieve

396

Description

In this example the property slots of a single object are passed values from
a single database record. Although this example is oriented towards
relational databases, it is also applicable to flat-file databases.

This example uses the following objects and records:

m Theclass |cars_class| contains one object: MyCar. It has the
properties Model, Model_date, Price and Sportive.

m The object dummy_object has a single property, dummy_cursor.

m The table CARS contains the columns DB_CAR_NAME, DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

m The table CARS contains ten records, each of which can be uniquely
identified by the values car_1, car_2, car_3,... in the field
DB _CAR_NAME.

Operation

Figure A-15 shows the rule which will invoke the atomic retrieve

Rule | Load_Table KB | exOSora.tkb

= 1 E 3 | Begin

Actions

Then |assigldb_access string [db_acce

Do LoadK] “carsora.tkb" @LEVEL
AssigDropTable DropTal
Unloa| “carsora.tkb” ®@LEVEL
Reset|dummuy_object.dum
Retri{"@V{db_access_sty ®TYPES

Comments |

why |

Inf. Priority Num.l 1 Inf. Priority Slot I

Figure A-15 Rule Invoking an Atomic Retrieve

Language Reference

Example 8 - Atomic Retrieve

The rule shown above is evaluated as follows:
m The LHS of the rule is always true.

m Thefirststatement of the RHS (Assi gn db_access_string. ..)will
prompt the user for the database access string. Look up your database
type for information on how to specify this for other DBMSs.

m The LoadKB, Assi gn DropTabl e, and Unl oadKB statements will
drop, recreate and reload the CARS table in the database. This will
ensure that the CARS table is reset to its initial state each time the
example is run.

m Resetdummy_obj ect . dummy_cur sor will set the value of
dunmmy_obj ect . dunmmy_cur sor to UNKNOAN. This will signal the
Rules Element that an atomic retrieve will be performed.

m A Retrieve operation will be invoked. The argument
@/(db_access_stri ng) will be evaluated to yield the user-specified
database access string

Database Retrieve

e | U:'cbac Ty

CQluery I Oracle 7 Driver 'I

RS where DE_CAR_MAME="car 1' |
End
Marne in
Cursor I Link To I

| durrny_object. durmmy_cursor |

[T Create Object
SglError | :
atabase rielas mp uRjecL FIroperuas ™ Rettieve Unknown
DE_MODEL MyCar.Model = - Always Egmaid
DB_MODEL_DATE MyCarModel_date
DE_FRICE MyCar.Price & Current Forward
DE_SPORTIVE My Car. Sportive ¢ Do Mat Fareard
- 0K Cancel

Figure A-16 Retrieve Screen for an Atomic Retrieve

Figure A-16 shows the Rules Element retrieve screen:

m Since the SQL query CARS where DB_CAR_NAME ="car_1"has been
specified, the DBMS wiill return the record which satisfies this
condition.

m The values from the database fields DB_ MODEL, DB_ MODEL_DATE,
DB_PRICE and DB_SPORTIVE will be passed to the property slots
Model, Model_date, Price and Sportive of the object MyCar.

Reference

Field descriptions for this Retrieve operation follow.

Language Reference 397

Appendix A Database Integration Examples

398

Database Type
An Oracle database is being used in this example.

Begin

For most databases this field should be left blank for atomic retrieve
operations. Some databases require a statement here. Look up your
database type for details.

Query

This field specifies from which table records are to be retrieved and the
criteria to be used to select the desired records. In this example, only the
record which has the value car_1 in the field DB_CAR_NAME will be
retrieved. If, for an atomic retrieve, the query specified returns more than
one record, only the first one will be used; all of the others will be ignored.
End

For most relational databases, this field should be left blank. Some
databases may require a statement here. Look up your database type for
details.

Name

This field must be empty for atomic retrieves. Object names are stated
explicitly in the Database Fields / Rules Properties list.

In

This field is left empty.

Cursor

This field specifies the name of an integer property slot (in this example
dummy_object.dummy_cursor) which, in order to specify an atomic
retrieve, MUST contain the value UNKNOWN. Upon successful completion
of the retrieve, the cursor will be set to 1. It must be reset to UNKNOWN,
before another atomic retrieve can be performed.

Link To
This field is left empty.

Database Fields / Rules Properties

These columns specify that data from the columns DB_ MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE are to be passed to the
property slots Model, Model_date, Price and Sportive of the object
MyCar.

Current Forward

This is selected to indicate that the retrieval of any data into property slots
will place hypotheses on the agenda according to the current RHS
forward-chaining strategy.

Related Topics

Atomic Retrieve Cursor Slot Specification
Database Editor Windows Slot Specification for Retrieves

Language Reference

Example 9 - Sequential Retrieve

Object Name Specification Query Retrieve Operations
Retrieving from Databases

Also, look up individual arguments and your database type for more
detailed information.

Example 9 - Sequential Retrieve

Description

In this example data from multiple database records is passed to the
property slots of a single object one record at a time. The retrieve is invoked
once for each record in the table. Although this example is oriented towards
relational databases, it is also applicable to flat-file databases.

This example uses the following objects and records:

m Theclass |cars_class| contains one object: MyCar. It has the
properties Model, Model_date, Price and Sportive.

m The object dummy_object has a single property, dummy_cursor.

m The table CARS contains the columns DB_CAR_NAME, DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

m The table CARS contains ten records, each of which can be uniquely
identified by the values car_1, car_2, car_3,... in the field
DB_CAR_NAME.Operation

Figure A-17 shows the rule which will invoke the sequential retrieve.

Rule | Set_Up KB | ex09ora.tkb

= 1 = mp [Begin

Actions
Then |, ig|db_access_string [db_accei
Do LoadK] “carsora.tkb” ®@LEYEL|
AssiglDropTable DropTal
Unloal “carsora.tkb” @LEYEL|
Assig(0 d y
Assig{ReadTable ReadTab|

Comments |

why |

Inf. Priority Num.l 1 Inf. Priority Slot I

Figure A-17 Rule Initializing a Sequential Retrieve

Language Reference 399

Appendix A Database Integration Examples

400

The rule shown above is evaluated as follows:

m The LHS of the rule is always true.

m The first statement of the RHS (Assign db_access_string...) will
prompt the user for the database access string. Look up your database
type in Chapter Three, “Database Integration Topics” for details.

m The LoadKB, Assign DropTable, and UnloadKB statements will drop,
recreate and reload the CARStable in the database. This will ensure that
the CARS table is reset to its initial state each time the example is run.

m Assign dummy_object.dummy_cursor O will set the value of
dummy_object.dummy_cursor to zero. This will signal the Rules
Element that a sequential retrieve will be performed.

m The "Assign ReadTable ReadTable" will invoke the rule which will
perform the sequential retrieve.

Rule Editor | [O] x|
File Edit Expert Browszers Heport: ‘Windows Rule
I =-b
c-d
Rule | Get_Table KB | exD3ora.tkb o
|y durnmy_object.durmid = ’ I ReadTahle g-h
Retrief'@(db_access_stri@TvFPES Actions
ThenReseReadTable = -
Do kel
Else o =P
Do —
q-r
= = =-t
Comments | —
Why |
Y-z
Inf. Priarity Murn. I 1 Inf. Pricrity Slot I

Figure A-18 Rule Invoking a Sequential Retrieve

FigureA-18 shows the rule which will invoke the sequential retrieve. It is
evaluated as follows:

The LHS tests to see if the value of dummy_object.dummy_cursor is
greater than or equal to 0. This will be true until the Retrieve fetches
the last record, at which point it will be set to -1. At that point, the test
will fail and execution will end.

The second statement of the LHS will invoke the retrieve.

Reset ReadTable will cause this rule to be re-executed. This, in turn,
will re-test the cursor's value, and re-execute the Retrieve until all
records have been retrieved.

Language Reference

Example 9 - Sequential Retrieve

Note that each time the Retrieve is invoked, it overlays the property slots
with the data from the current record. In a real knowledge base, there
would undoubtedly be some intermediate processing of the slots before the
hypothesis ReadTable is reset and the next retrieve is issued.

Database Retrieve

Database Type

.

Query I Oracle 7 Driver 'I
[CARS |
End |
Marne In
Cursor I Link TDI
| durnmy_object dummy_cursor |
[Create Objact
SolErmor |

atabase rieas =y unjecL Froperues ™ Retrieve Unknown

DB_SFORTIVE

My Zar.Sportive

DB_MODEL My Zar.Model ~ Always Eamard
DE_MODEL_DATE MyCar.Model_date
DB_PRICE MyCar.Price & Curent Forward

¢ Do Mot Forward

Language Reference

- 0]54 Cancel

Figure A-19 Retrieve Screen for a Sequential Retrieve

Figure A-19 hows the Rules Element retrieve screen:

m The DBMS will retrieve all of the records in the table CARS one record
at a time.

m Each time the retrieve is invoked, the values from the database fields
DB_MODEL, DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE of
the current record will be passed to the property slots Model,
Model_date, Price and Sportive of the object MyCar.

Reference

Field descriptions for this Retrieve operation follow.

Database Type
An Oracle database is being used in this example.

Begin

For most databases this field should be left blank for sequential retrieve
operations. Some databases require a statement here. Look up your
database type in Chapter Three, “Database Integration Topics” for details.

Query

This field specifies from which table records are to be retrieved and the
criteria to be used to select the desired records. In this example, all of the
records in the table CARS will be retrieved.

401

Appendix A Database Integration Examples

End

For most other relational databases, this field should be left blank. Some
databases may require a statement here. Look up your database type in
Chapter Three, “Database Integration Topics” for details.

Name

This field must be empty for sequential retrieves. Object names are stated
explicitly in the Database Fields / Rules Properties list.

In

This field is left empty.

Cursor

This field specifies the name of an integer property slot (in this example
dummy_object.dummy_cursor) which, in order to specify a sequential
retrieve, MUST contain the value O before the retrieve is invoked for the
first time. Each time arecord is successfully retrieved, the cursor will be set
to 1. When all records have been retrieved, or, if an error has occurred, the
cursor will be set to -1.

Link To
This field is left empty.

Database Fields / Rules Properties

These columns specify that data from the columns DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE are to be passed to the
property slots Model, Model_date, Price and Sportive of the object
MyCar.

Current Forward

This is selected to indicate that the retrieval of any data into property slots
will place hypotheses on the agenda according to the current RHS
forward-chaining strategy.

Related Topics

Sequential Retrieve Cursor Slot Specification
Access String Slot Specification for Retrieves
Object Name Specification Query Retrieve Operations

Database Editor Windows

Also, look up individual arguments and your database type for more
detailed information.

Example 10 - Sequential Retrieve with a Parameterized Query

402

Description

In this example data from multiple database records is passed to the
property slots of a single object one record at atime. The retrieve is invoked
once for each record in the table. Unlike the previous example, this retrieve
employs a query which contains slot values as parameters. Although this

Language Reference

Example 10 - Sequential Retrieve with a Parameterized Query

example is oriented towards relational databases, it is also applicable to
flat-file databases.

This example uses the following objects and records:

m Theclass |cars_class| contains one object: MyCar. It has the
properties Model, Model_date, Price and Sportive.

m The object dummy_object has a single property, dummy_cursor.

m The object ref_object has two properties, ref_price and
ref_sportive. The values 30000 and Yes have been assigned to the
property slots using the InitValue operator in the Order of Sources
field.

m The table CARS contains the columns DB_CAR_NAME, DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

m The table CARS contains ten records, each of which can be uniquely
identified by the values car_1, car_2, car_3,... in the field
DB_CAR_NAME.

Operation

Figure A- 20 shows the rule which will invoke the sequential retrieve.

KB | ex10ora.tkb

1 = w [Begin

Actions
Then |4 igndb_access_string |db_acce
Do LoadK| “carsora.tkb” @LEVEL
Assig DropTable DropTal
Unloa{ “carsora.tkb™ @LEVEL
Assign0 d

Comments |

why |

Inf. Priority Num.l 1 Inf. Priority Slot |

Figure A-20 Rule Initializing a Parameterized Sequential Retrieve

The rule shown above is evaluated as follows:

Language Reference

The LHS of the rule is always true.

The first statement of the RHS (Assign db_access_string...) will
prompt the user for the database access string. Look up your database
type in Chapter Three, “Database Integration Topics” for details.

403

Appendix A Database Integration Examples

m The LoadKB, Assign DropTable, and UnloadKB statements will drop,
recreate and reload the CARStable in the database. This will ensure that
the CARS table is reset to its initial state each time the example is run.

m Assign dummy_object.dummy_cursor O will set the value of
dummy_object.dummy_cursor to zero. This will signal the Rules
Element that a sequential retrieve will be performed.

m The "Assign ReadTable ReadTable" will invoke the rule which will
perform the sequential retrieve.

Rule Editor M= E3

File Edit Ezpert Browsers Heports “Windows FRule
| |
c-d
@‘ Rule | Load_Table KB | ex10ora.tkb .
If |-= durny_object.durni(d = * I ReadTahle g-h
Fetrief'i@(db_access_stri@TF ES Actions
ThenReseReadTable = -
Do k-l
i Else - o-p
[l Do =
q-r
L u
- - =-1
Comments |
W=
Withy |
¥z
Inf. Priority Mum. I 1 Inf. Priority Slot I

Figure A-21 Rule Invoking a Parameterized Sequential Retrieve

Figure A-21 shows the rule which will invoke the parameterized sequential
retrieve. Itis evaluated as follows:

404

The LHS tests to see if the value of dummy_object.dummy_cursor is
greater than or equal to 0. This will be true until the Retrieve fetches
the last record, at which point it will be set to -1. At that point, the test
will fail and execution will end.

The second statement of the LHS will invoke the retrieve.

Reset ReadTable will cause this rule to be re-executed. This, in turn,
will re-test the cursor's value, and re-execute the Retrieve until all
records have been retrieved.

Language Reference

Example 10 - Sequential Retrieve with a Parameterized Query

Note that each time the Retrieve is invoked, it overlays the property slots
with the data from the current record. In a real knowledge base, there
would undoubtedly be some intermediate processing of the slots before the
hypothesis ReadTable is reset and the next Retrieve is issued

Database Retrieve

| -

Begin | Database Type

Cluery FTIVE = i@(ref_object.ref_sportive)’ | | Oracle 7 Driver x|

end

Mame | In [

Cursor | dummy_object. dummy_cursor Link To |

e | [" Create Object
Database Flelds » ObJect Propertles " Retrieve Unknown

DBE_MODEL MyCarModel - ‘o Alas Eome

DE_MODEL_DATE MyCar.Maodel_date !

DB_FRICE MyCar.Price & Current Forward

DBE_SPORTIVE My C ar.Sportive Do Mot Forward

- (B]%4 | Cancel |

Figure A-22 Retrieve Screen for a Sequential Retrieve Using Query

Figure A-22 shows the Rules Element retrieve screen:

m The variables @V(ref_object.ref_price) and
@V (ref_object.ref _sportive) in the query will be replaced by the
value of the slots 30000 and Yes respectively. The four records in the
table CARS which satisfy this query will be passed to the object MyCar
one record at a time.

m Each time the retrieve is invoked, the values from the database fields
DB_MODEL, DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE of
the current record will be passed to the property slots Model,
Model_date, Price and Sportive of the object MyCar.

Reference

Field descriptions for this Retrieve operation follow.
Database Type

An Oracle database is being used in this example.
Begin

For most databases this field should be left blank for sequential retrieve
operations. Some databases require a statement here. Look up your
database type in Chapter Three, “Database Integration Topics” for details.

Language Reference 405

Appendix A Database Integration Examples

406

Query

This field specifies from which table records are to be retrieved and the
criteria to be used to select the desired records. Slot values can be used as
guery parameters; they can be specified in the query as @v(object.property).
Note that the interpretation must be placed in single quotes if it has a value
of type string. See the Query field of Figure A-22 for examples.

End

For most other relational databases, this field should be left blank. Some
databases may require a statement here. Look up your database type in
Chapter Three, “Database Integration Topics” for details.

Name

This field must be empty for sequential retrieves. Object names are stated
explicitly in the Database Fields / Rules Properties list.

In

This field is left empty.

Cursor

This field specifies the name of an integer property slot (in this example
dummy_object.dummy_cursor) which, in order to specify a sequential
retrieve, MUST contain the value O before the retrieve is invoked for the
first time. Each time a record is successfully retrieved, the cursor will be set
to 1. When all records have been retrieved, or, if an error has occurred, the
cursor will be set to -1.

Link To
This field is left empty.

Database Fields / Rules Properties

These columns specify that data from the columns DB_MODEL,

DB _MODEL_DATE,DB_PRICE and DB_SPORTIVE are to be passed to the
property slots Model, Model_date, Price and Sportive of the object
MyCar.

Current Forward

This is selected to indicate that the retrieval of any data into property slots
will place hypotheses on the agenda according to the current RHS
forward-chaining strategy.

Related Topics

Sequential Retrieve Cursor Slot Specification
Access String Slot Specification for Retrieves
Object Name Specification Query Retrieve Operations
Database Editor Windows Retrieving from Databases

Also, look up individual arguments and your database type for more
detailed information.

Language Reference

Example 11 - Grouped Retrieve with a SQL Join

Example 11 - Grouped Retrieve with a SQL Join

Description

This is an example of a grouped retrieve in which records are retrieved from
more than one database table use an SQL join query. Since ajoin isaconcept
which only applies to relational databases, this example is not applicable to
flat-file databases.

This example uses the following objects and records:

Initially, the class |cars_class| contains no objects. Objects in
|cars_class| will have the properties Model, Model_date, Price,
Sportive and Dealer_name.

The table CARS contains the columns DB_CAR_NAME, DB_MODEL,
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE.

The table CARS contains ten records, each of which can be uniquely
identified by the values car_1, car_2, car_3,... in the field
DB_CAR_NAME.

The table DEALERS contains the columns DB_DEALER_NAME and
DB_DEALER_MODEL.

The table DEALERS contains eight records which relate dealer names
and models.

Operation

Figure A-23 shows the rule which will invoke the grouped retrieve

Pale | So_Teti KB | exllaratn

Pt o4 e mce at gl e TYREY |

Cammants |
why |
nf Priarity Mnl | Wt Prigrity sml

Figure A-23 Rule Invoking a Grouped Retrieve

Language Reference

407

Appendix A Database Integration Examples

408

The rule shown above is evaluated as follows:

The LHS of the rule is always true.

The first statement of the RHS (Assign db_access_string...) will
prompt the user for the database access string. Look up your database
type in Chapter Three, “Database Integration Topics” for details.

The LoadKB, Assign DropDEALERSTable, and UnloadKB statements
will drop, recreate and reload the DEALERS table in the database. This
will ensure that the DEALERS table is reset to its initial state each time
the example is run.

The LoadKB, Assign DropTable, and UnloadKB statements will drop,
recreate and reload the CARStable in the database. This will ensure that
the CARS table is reset to its initial state each time the example is run.

A Retrieve operation will be invoked. The argument
@V(db_access_string) will be evaluated to yield the user-specified
database access string

egn [N oo

Y

Query B_MODEL = DEALERS.DE_MODEL | | Oracle 7 Driver =]
End [
MNarne IE!'_A_'!DEALERS.DB_MODEL! In |
Cursor | Link To | |cars_class|
SqlEmor | W Create Object

Database Flelds B Object Propertles ™ Rettiewe Unknown
DEALERS.DEH_DEALER_MAM| Dealer_name - ‘s Always Eamend
CARS.DE_MODEL_DATE Model_date
CARE.DE_FRICE Frice ¢ Current Forward
CARS DE_SPORTIVE Sportive " Do Mot Forward

- 8134 | Cancel

Figure A-24 Retrieve Screen for a Grouped Retrieve Using SQL Join

Figure A-24 shows the Rules Element Retrieve screen:

The query CARS, DEALERS where CARS.DB_MODEL =
DEALERS.DB_MODEL specifies that records from the tables CARS and
DEALERS which have common DB_MODEL values are to be combined
into one result table.

As each record in the table CARS s retrieved, the database interface will
combine the string my with the value of the field DB_CAR_NAME with
the string _A_ and the value of the field DB_ MODEL to create an object
name. The database interface will then search the knowledge base for
an object with this name. Since no object will be found, a dynamic
object with this name will be created and linked to the class
|car_class].

Language Reference

Example 11 - Grouped Retrieve with a SQL Join

m As each object is created values from the database fields
DB_MODEL_DATE, DB_PRICE and DB_SPORTIVE in the table CARS
will be passed to the property slots Model_date, Price and Sportive.
Values from the database field DB_ DEALER NAME in the table
DEALERS will be passed to the property slot Dealer_name.

Reference

Field descriptions for this Retrieve operation follow.

Database Type
An Oracle database is being used in this example.

Begin

For most databases this field should be left blank for grouped retrieve
operations. Some databases require a statement here. Look up your
database type in Chapter Three, “Database Integration Topics” for details.

Query

This field specifies from which table(s) records are to be retrieved. This field
can also contain a where clause to limit the records to be retrieved or to
specify the criteria used to join two or more tables into one result table.

End

For most relational databases, this field should be left blank. Some
databases may require a statement here. Look up your database type in
Chapter Three, “Database Integration Topics” for details.

Name

This field specifies that for each record retrieved from the database the
string my, the value of the field DB_CAR_NAME, the string _A_and the
value of the field DB_MODEL will be combined to form the object name in
which the database values will be stored.

In

This field specifies the objects and/or classes of objects to be searched to
determine if an object exists whose hame matches the value of the database
field(s) specified in the Name field. If this field is left blank, as in this
example, then all of the objects in the knowledge base will be searched.

Cursor
This field must be empty for grouped retrieves.

Link To

This field specifies the class to which new objects created by the retrieve are
to be linked. In this example, new objects will be linked to the class
|cars_class|.

Database Fields / Rules Properties

These columns specify that data from the columns
CARS.DB_MODEL_DATE, CARS.DB_PRICE, CARS.DB_SPORTIVE and
DEALERS.DB_DEALER_NAME are to be passed to the property slots
Model_date, Price, Sportive and Dealer_name. Note that in order to

Language Reference 409

Appendix A Database Integration Examples

410

avoid ambiguity the database field names must be prefixed by the
appropriate table name.

Create New Record

This is selected to indicate that if an object with a name specified by the
Name field doesn't already exist, it is to be created. If this is not selected,
data will only be retrieved into objects which already exist in the knowledge
base, and any other records ignored.

Current Forward

This is selected to indicate that the retrieval of any data into property slots
will place hypotheses on the agenda according to the RHS forward-chaining
strategy currently in effect.

Related Topics

Grouped Retrieve Database Editor Windows
Access String Slot Specification for Retrieves
Object Name Specification Query Retrieve Operations

Also, look up individual arguments and your database type for more
detailed information.

Language Reference

Index

Symbols

@ATOMS 296
@BEGIN 263
@CREATE 313
@CURSOR 268
@END 282
@F 288
@FIELDS 287
@FILL
ADD 265, 266
INSERT 310
NEW 315
@FWRD 290
@NAME 314
@PROP
access string 255
Begin field 263
End field 282
Query field 328
@PROPS 328
@QUERY 328
@SELF
access string 255
Begin field 263
End field 282
Query field 281
@SLOTS 360
@TYPE 275
@UNKNOWN 347, 372
@V
access string 255
Begin field 263
End field 282
Link Tofield 313
Query field 281

A

ABSfunction 1
access string

environment variables 255
interpretations 255
pathnames 255
specification 254
usage 253

accessing databases 253, 254-256

ACOS function 2

actions 2

AddFile command 211
agenda 5

Align Column command 210

Language Reference

Always Forward field 290

AND 16

API 270

application programming interface vii
application programming interface see AP
arguments

keywords 274
overview 256-259
arithmetic operators 331

ASIN function 6
AskQuestion Operator 7
Assign operator 8
ATAN function 10
AtomExist Routine 197
atomic operations

atomic retrieves
example 396-399
specification 259261
atomic writes
example 381-383
specification 261263
cursor slot 266
explicit slots 319
AtomNameV aue Routine 198

AVERAGE function 11

B

backward chaining 12
Backward operator 13
Begin field 263-265
retrieving files 288
beginning database operations 264
BOOL2STR function 14
boolean constants 15
boolean expressions 16
boolean formats 17
Boolean operators 332—333

C

CEIL function 19

Center command 210
CHARFIND function 19
CharWrap command 210
classes 20

column 276

comment attribute 22
commit 280, 283
COMPARE function 23
comparison operators 24
ComputeM ultiValue Routine 200
conditions 26

content filtering 393
context links 28

context variable 287

411

Index

Control Session Routine 202
CopyFrame Routine 204
COS function 29
COSH function 30
Create New Record field 265, 338
Create Object field 266, 281, 286
CreateObject operator 30
CreateObjects Routine 205
CreateReport Routine 207
Current Forward field 290
Cursor field 268
cursor slot

atomic retrieves 259

atomic writes 261

error setting 267

sequentia retrieves 353

sequential writes 341, 355
specification 266-268

D

DAL see data manipulation language
data manipulation language 264, 283
data types 32
data validation 33
database editor windows

arguments overview 256

description 273
database interface 268272
databases
access 253, 254
accessing created files 315
basics 276, 348, 373
beginning operations 264
ending database operations 283
ending operations 283
format of data 289
grouped retrieve 291
grouped writes 292
multiple user 295
multiple-user 295
range names 263, 282
return errors 350
sequential retrieves 352
sequential writes 354
supported 275
unsupported 270
see also flat-file databases, relational data-
bases
datatype
conversion 362
specifying 289
date 38, 289
Informix 303
Ingres 308
Oracle 302, 325, 326
Date command 211

date formats 35
DATE2FLOAT function 39

412

DATE2STR function 40

DAY function 41

dBaselll 277

DBF3 277

debugging operations 278-281, 350
DeleteObject operator 42

Do Not Forward field 290

dynamic data exchange (DDE) 43

dynamic objects 47

dynamic values see @V, @SELF, @PROP

E

End field 280, 282284
end of file 267
environment variables 255
€rror messages
cursor slot setting 267
general 279
possible 350
trapping 279
error slot 279, 361
examples
atomic retrieve 396
atomic writes 381
database interface usage 271
existence filtering 390
grouped retrieves 383, 387, 393, 407
grouped writes 375, 378
sequential retrieves 399, 402
Excel see SYLK
execute library routines 50
Execute operator 48
execute routines 50
existence filtering

defined 284-287
example 390

EXP function 53

expressions 54, 287

F

FALSE 15

field width 318

fields
defined 276
mapping from properties 373
mapping to properties 348
selection 314, 319
specification 287
width 287

Fieldslist 287

file creation 315
fileretrieves 288

FileExist Routine 213
filtering records 296, 338
filtering retrieves 284, 335
FindListElem Routine 214

Language Reference

Index

flat-file databases
access string 254
atomic retrieves 259
atomic writes 261
basics 361
last record retrieved 267
opening 276
guery language 329-335
return errors 350
Rules Element formats 316
sequentia retrieves 352
sequential writes 354
supported 275
SYLK format 369
terminology 276
FLOAT2DATE function 56
FLOAT2INT function 56
FLOAT2TIME function 58
floating point constants 59
floating point formats 60
FLOOR function 63
FOAT2STR function 57
Footer commands 209
format attribute 64
format errors 280
formats 64, 289-290
forward chaining 66, 140
forwarding strategy 290
functions 334

G

gates 140
GetListElem Routine 216
GetMultiValue Routine 218
GetRel atives Routine 220
grouped operations
cursor slot specification 266
naming objects 314, 320
naming records 314
record naming 344
grouped retrieves
creating new objects 266
errors 281
example 383-386, 387-390, 390-392,
393-396, 407-410
existence filtering 284
linking objects 313
specification 291292
grouped writes
creating afile 315
creating new records 265
example 375-377, 378-381
inserting arecord 310
object filtering 296
guery operations 338
record selection 341
specification 292

Language Reference

H

Header commands 209
HOUR function 68
hypotheses 69

identifiers 70

If Change method 71, 294, 295
InList field 285, 286, 296-297
Include command 211
inference 73

inference priority 74
inference slot 75

inference strategy 76
Informix interface 298-304
Ingres operations 304-310
inheritability strategy 79
inheritance 81

inheritance priority 82
inheritance slot 83
inheritance strategy 84
InhMethod operator 86
InhV aueDown operator 87
InhValueUp operator 88
Init Value attribute 89
Insert 310

Insert Only check box 310
INT2STR function 90
integer constants 91

integer conversion 362
integer formats 91
interfacing to databases 270
interpretations 94

access string 255
Begin field 263
End field 282
InList field 296
Query field 281
query language 334
usage 311

Interrupt operator 95

J

join example 407
join operation 336
Journal Routine 222

K

key seerecord key

keywords 273

knowledge representation features vii
KNOWN 15

413

Index

L

LeftAlign command 210
LENGTH function 96

LHS conditions 312, 313
Link Tofield 313
LinkMultiValue Routine 223
LN function 97

LoadK B operator 98

LOG function 100

logical operators 212

M

Margin commands 209
MAX function 101
Member operator 102
M essage Routine 225
meta-slots 103

Method Editor window

argument keywords 274

If Change method 294, 295

Order of Sources 326, 327
methods 104

MIN function 107
MINUTE function 109
MOD function 109
MONTH function 110
multiple retrieves 327, 352
multiple user databases 295
multiple writes 354
multi-values 111

N

Name field 314

retrieve operations 280, 320
write operations 341
New File field 315

NewFile command 211

No operator 112
NoFormFeed command 211
Nolnherit operator 113
NOT 16

NOTKNOWN 15
NotMember operator 113
NOW function 114

null string 254
NXP file format 316

O

object 115

as part of dot 319
creation 266
filtering 296

414

object (continued)
linking 313
naming 314, 319
updating 284
operators 331-333
OR 16
Oracle operations 255, 321-326
Order of Sources method 117, 326, 327

P

PageBreak commands 210
Pagel ength command 209
PageWidth command 209
Parse Routine 227

password see access string
pattern matching 296, 313
pattern matching filtering 286
PatternMatcher Routine 230
patterns 120

portability 269, 275, 339
POW function 123
priorities 33, 74, 82

private slots 150

PROD function 124

prompt line attribute 125
PropagateV alue Routine 233
properties list 328

property 126

ProtoDB file format 317
public slots 150

Q

query
cannot be processed 267
errors 279
filtering example 393, 402
for flat-file databases 329-335
for relational databases 335-336
join operations 336
Query Argumentsfield 282
Query field
@V 311
arguments 281
atomic retrieves 260
atomic writes 261
flat-file databases 329
grouped writes 338
relational databases 335
sequentia retrieves 353
statements 328
where clause 336, 339
Query Language
operators 331, 333
query language
example 329
functions 334

Language Reference

Index

guery language (continued)
interpretations 334
operators 330-333
values 330
wildcards 334

question window attribute 127

quotes

around interpretations 311
infields 279

R

RAND function 128
RANDOM function 129
RANDOMMAX function 130
RANDOMSEED function 130
range name 263, 282

RankList Routine 235

RDB seerelational databases
record keys 341-342

record naming 314, 344
records

defined 276
filtering 284, 345
inserting only 310
mapping from objects 373
mapping to objects 348
position 266
retrieving multiple 291
writing 292, 340
relational databases
access string 255
atomic retrieves 259
atomic writes 261
beginning operations 264
context variable 287
cursor specification 267
datatype specification 362
ending operations 283
expressionsin field names 287
field width 287
join operations 277
query operations 335, 336
return errors 350
sequential retrieves 352
stream number 267
supported 275
terminology 276
relational operators 332
reports

logical operators 212
reserved words 131

Reset operator 132
ResetFrame Routine 236
Retrieve operator 133, 346
retrieve operator

access string 253
arguments 256
null string 254

Language Reference

Retrieve window 273
retrieving
dates 289
field specification 287
files 288
forwarding data 290
general 348
in If Change method 294
in LHS conditions 312
in Order of Sources method 327
in RHS actions 351
join operations 336
methods 271
multiple records 291
multiple retrieves 327, 352
sequentia records 352
single record 259
slot specification 356—-358
to constructed slots 319
to existing objects 284
to explicit slots 319
unknown values 347
with queries 335, 337
return errors 350
RHS actions 351
RightAlign command 210
rollback 280, 283
ROUND function 135
row 276
Rule Editor window
access string example 254
argument keywords 274
LHS conditions 312, 313
RHS actions 351
rules 136

RunTimeVaue operator 137

S

SECOND function 138
SELF 139

semantic gates 140

SendM essage operator 141
sequential operations

cursor slot 267, 341
explicit slots 319
retrieve example 399402, 402-406
retrieves 352
writes 340, 354
Set Column command 210

SetMultiValue Routine 238
SetVaue Routine 240
Show operator 145

SIGN function 148

sign-on see access string
SIN function 148

SINH function 149

slot list 360

415

Index

slots 150

constructed names 319, 358, 360
constructed names example 378
explicit name 319
explicit names 356, 359
for retrieves 356-358
for writes 358-360
value changes 295
spreadshests see flat-file databases

SQL commit 283
SQL cursor number 267
SQL statements 264, 283, 288
SQL-like queries 329-335
SQRT function 152
STDEV function 153
STR2BOOL function 164
STR2DATE function 165
STR2FLOAT function 166
STR2INT function 167
STR2TIME function 168
strategy 154
Strategy operator 155
STRCAT function 157
stream number 267
STRFIND function 158
string constants 159
string formats 160
string to integer conversions 362
STRLEN function 162
STRLOWER function 162
strong link 140
STRUPPER function 163
SUBSTRING function 169
SUM function 170
Sybase
beginning database operations 264
ending database operations 283
operations 363-369
SYLK operations 369

SYLKDB operations 370
system attributes 103

T

table 276

Tabs command 210

TAN function 171

TANH function 172
terminology 276
TestMultiValue Routine 241
text file

file commands 211
AddFile command 211
Include command 211
NewFile command 211
NoFormFeed command 211

416

text file (continued)

screen layout commands 209
Footer commands 209
Header commands 209
LeftMargin command 209
PageBreak command 210
Pagel_ength command 209
PageWidth command 209
RightMargin command 209

text commands 210
Align Column command 210
Center command 210
CharWrap command 210
Date command 211
LeftAlign command 210
RightAlign command 210
Set Column command 210
Tabs command 210
WordWrap command 210

text formatting

commands (See aso text file)
time 174

time formats 173
TIME2FLOAT function 175
TIME2STRING function 176
Transcript window 278
TRUE 15

U

Unify Routine 248
UNIX 255
Unix
Informix interface 298-304
UNKNOWN 15
unknown values
retrieving 347
writing 372
UnloadK B operator 177
updating records 292

Vv

value changes 295
Value property 179
VAR function 180
VAX issues 370
VMS 255

wW

warning message 289
WEEKDAY function 181
where clause 336, 339
why attribute 182
wildcards 334

WKS operations 370
WordWrap command 210

Language Reference

Index

Write operator 183, 371
write operator

access string 253

arguments 258

null string 254
Write window 273

WriteT o Routine 251
writing
by key 341
by position 340
creating afile 315

field specification 287

general 373

in If Change method 295
in LHS conditions 313
in Order of Sources method 327

in RHS actions 351

inserting arecord 310
logging slot activity 327

multiple records 292
multiple writes 354

object specification 296
record specification 340
sequential records 354

single record 261

slot specification 358-360

unknown values 372
with queries 337-340

Language Reference

Y

Y EAR function 184
YEARDAY function 185
Y es operator 186

417

FrameMaker has det ected one or nore
Post Script errors in this docunent.
(Jack Godwi n)

Pl ease check your output.

Post Scri pt error (--nostringval--, --nostringval--)

	Contents
	Preface
	Purpose of this Manual
	Description
	Audience
	How to Use this Manual
	Organization
	Related Manuals

	Application Development Features
	ABS Function
	ACOS Function
	Actions
	Agenda
	ASIN Function
	AskQuestion Operator
	Assign Operator
	ATAN Function
	AVERAGE Function
	Backward Chaining
	Backward Operator
	BOOL2STR Function
	Boolean Constants
	Boolean Expressions
	Boolean Formats
	CEIL Function
	CHARFIND Function
	Classes
	Comment Attribute
	COMPARE Function
	Comparison Operators
	Conditions
	Context Links
	COS Function
	COSH Function
	CreateObject Operator
	Data Types
	Data Validation Attribute
	Date Formats
	DATE Function
	DATE2FLOAT Function
	DATE2STR Function
	DAY Function
	DeleteObject Operator
	Dynamic Data Exchange
	Dynamic Objects
	Execute Operator
	Execute Routines
	EXP Function
	Expressions
	FLOAT2DATE Function
	FLOAT2INT Function
	FLOAT2STR Function
	FLOAT2TIME Function
	Floating Point Constants
	Floating Point Formats
	FLOOR Function
	Format Attribute
	Formats
	Forward Chaining
	HOUR Function
	Hypotheses
	Identifiers
	If Change Method
	Inference
	Inference Priority Attribute
	Inference Slot Attribute
	Inference Strategy
	Inheritability Strategy
	Inheritance
	Inheritance Priority Attribute
	Inheritance Slot Attribute
	Inheritance Strategy
	InhMethod Operator
	InhValueDown Operator
	InhValueUp Operator
	Init Value Attribute
	INT2STR Function
	Integer Constants
	Integer Formats
	Interpretations
	Interrupt Operator
	LENGTH Function
	LN Function
	LoadKB Operator
	LOG Function
	MAX Function
	Member Operator
	Meta-Slots
	Methods
	MIN Function
	MINUTE Function
	MOD Function
	MONTH Function
	Multi-Values
	No Operator
	NoInherit Operator
	NotMember Operator
	NOW Function
	Objects
	Order of Sources Method
	Patterns
	POW Function
	PROD Function
	Prompt Line Attribute
	Properties
	Question Window Attribute
	RAND Function
	RANDOM Function
	RANDOMMAX Function
	RANDOMSEED Function
	Reserved Words
	Reset Operator
	Retrieve Operator
	ROUND Function
	Rules
	RunTimeValue Operator
	SECOND Function
	SELF
	Semantic Gates
	SendMessage Operator
	Show Operator
	SIGN Function
	SIN Function
	SINH Function
	Slots
	SQRT Function
	STDEV Function
	Strategy
	Strategy Operator
	STRCAT Function
	STRFIND Function
	String Constants
	String Formats
	STRLEN Function
	STRLOWER Function
	STRUPPER Function
	STR2BOOL Function
	STR2DATE Function
	STR2FLOAT Function
	STR2INT Function
	STR2TIME Function
	SUBSTRING Function
	SUM Function
	TAN Function
	TANH Function
	Time Formats
	TIME Function
	TIME2FLOAT Function
	TIME2STR Function
	UnloadKB Operator
	Value Property
	VAR Function
	WEEKDAY Function
	Why Attribute
	Write Operator
	YEAR Function
	YEARDAY Function
	Yes Operator

	Execute Library Routines
	Execute Library Overview
	Using The Execute Library
	AtomExist Routine
	AtomNameValue Routine
	ComputeMultiValue Routine
	ControlSession Routine
	CopyFrame Routine
	CreateObjects Routine
	CreateReport Routine
	Formatting Commands
	Conditional Statements
	Include Command

	FileExist Routine
	FindListElem Routine
	GetListElem Routine
	GetMultiValue Routine
	GetRelatives Routine
	Journal Routine
	LinkMultiValue Routine
	Message Routine
	Parse Routine
	PatternMatcher Routine
	PropagateValue Routine
	RankList Routine
	ResetFrame Routine
	SetMultiValue Routine
	SetValue Routine
	TestMultiValue Routine
	Unify Routine
	WriteTo Routine

	Database Integration Topics
	Access String
	Access String Specification
	Arguments Overview
	Atomic Retrieve
	Atomic Write
	Begin - (@BEGIN)
	Beginning Database Operations
	Create New Record - (@FILL)
	Create Object - (@FILL)
	Cursor Slot Specification
	Cursor - (@CURSOR)
	Database Interface Concepts
	Database Editor Windows
	Database Type - (@TYPE)
	DBF3
	Debugging Operations
	Dynamic Values
	End - (@END)
	Ending Database Operations
	Existence Filtering Operations
	Field Name Specification
	Fields List - (@FIELDS)
	File Retrieves - @F(...)
	Formats
	Forwarding Strategy - (@FWRD)
	Grouped Retrieve
	Grouped Write
	If Change Retrieves
	If Change Writes
	In List - (@ATOMS)
	INFORMIX
	INGRES
	Insert Only - (@FILL)
	Interpretations - @V(...)
	Left-Hand Side Retrieves
	Left-Hand Side Writes
	Link To - (@CREATE)
	Name - (@NAME)
	New File - (@FILL)
	NEXPERT Flat-File Formats
	Object Names In Retrieve Operations
	ORACLE
	Order of Sources Retrieves
	Order of Sources Writes
	Properties List - (@PROPS)
	Query (@QUERY)
	Query Language
	Query Field in Retrieve Operations
	Query Field in Write Operations
	Record Specification for Writes
	Records Filtering
	Retrieve Operator
	Retrieve Unknown - (@UNKNOWN)
	Retrieving from Databases
	Return Errors
	Right-Hand Side Retrieves
	Right-Hand Side Writes
	Sequential Retrieve
	Sequential Write
	Slot Specification for Retrieves
	Slot Specification for Writes
	Slots List - (@SLOTS)
	Spreadsheets
	SqlError - (@ERROR)
	String to Numeric Conversion {x}
	SYBASE
	SYLK
	WKS
	Write Operator
	Write Unknown - (@UNKNOWN)
	Writing to Databases

	Database Integration Examples
	Example 1 - Grouped Write
	Example 2 - Grouped Write with a Complex Name
	Example 3 - Atomic Write
	Example 4 - Grouped Retrieve
	Example 5 - Grouped Retrieve with a Complex Name
	Example 6 - Grouped Retrieve with Existence Filter...
	Example 7 - Grouped Retrieve with Content Filterin...
	Example 8 - Atomic Retrieve
	Example 9 - Sequential Retrieve
	Example 10 - Sequential Retrieve with a Parameteri...
	Example 11 - Grouped Retrieve with a SQL Join

	Index

