

Neuron Data Elements Environment
Intelligent Rules Element

V e r s i o n 4 . 1

C Programmer’s Guide

© Copyright 1986–1997, Neuron Data, Inc. All Rights Reserved.

This software and documentation is subject to and made available only
pursuant to the terms of the Neuron Data License Agreement and may be
used or copied only in accordance with the terms of that agreement. It is
against the law to copy the software except as specifically allowed in the
agreement. This document may not, in whole or in part, be copied
photocopied, reproduced, translated, or reduced to any electronic medium
or machine-readable form without prior consent, in writing, from Neuron
Data, Inc.

Use, duplication, or disclosure by the U.S. Government is subject to
restrictions set forth in the Neuron Data License Agreement and in
subparagraph (c)(1) of the Commercial Computer Software-Restricted
Rights Clause at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013;
subparagraph (d) of the Commercial Computer Software—Licensing clause
at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does
not represent a commitment on the part of Neuron Data. THE SOFTWARE
AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION,
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. FURTHER, NEURON DATA DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS
REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE
SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Open Interface Element™, Data Access Element™, Intelligent Rules
Element™, and Web Element™ are trademarks of, and are developed and
licensed by Neuron Data, Inc., Mountain View, California. NEXPERT
OBJECT® and NEXPERT® are registered trademarks of, and are developed
and licensed by, Neuron Data, Inc., Mountain View, California.

Other brand or product names are the trademarks or registered trademarks
of their respective holders.

Contents

Preface
Purpose of this Manual ... vii
Description.. vii
Audience .. viii
Organization .. viii
Documentation Conventions .. ix
Related Manuals.. ix

1. API Overview
Introduction ... 1

About the Format ...1
About nxpdef.h.. 1

What nxpdef.h Contains ...2
Using nxpdef.h Macros ...2
How nxpdef.h Declares Functions ..2

Calling In and Calling Out .. 3
Calling Into the Rules Element ..3
How the Rules Element Calls Routines ..4

A Note about Atoms... 5
What is an Atom? ...5
Properties and Property Slots ..5
Property Slots and Data ..5
Using Atoms with Atom ids ..6
Atom ids Aren’t Memory Pointers ..7

2. C Primer
Introduction ... 9
About the Examples.. 10

Working Directory ...10
Using the Examples ...10

Specifying Header Files.. 11
Starting Small - hello1.c.. 11

Compiling, Linking, and Executing ..12
Using the Line-mode Interpreter .. 12
Writing Routines that the Rules Element Calls .. 13

Displaying a Message (hello1) ...14
Passing a String to an Execute Routine (hello2) ..15
Passing a List of Atoms to an Execute Routine (hello3) ...16
Retrieving Atoms by Name with NXP_GetAtomId (hello4);17

Writing Programs that Call the Rules Element .. 18
Starting the Development Environment (hello5) ..18
Loading a Knowledge Base and Running a Session (hello6)19
Writing the Interpreter (hello7) ...20
Using Question Handlers (hello8) ...21
C Programmer’s Guide i

For More Advanced Programmers;.. 22

Accessing the Working Memory ...22
Creating Objects and Assigning Slot Values (hello9 - Part 1)22
Investigating the Object Base (hello9 - Part 2) ...24
Remarks on NXP_GetAtomInfo ..26

Advanced Control... 27
Interrupting a Session (hello10 - Part 1) ...27
Non-modal Questions (hello10 - Part 2) ...31
Entering Values During a Session ...32

Customizing the User Interface .. 33
Using Communication Handlers ...33
Writing in the Transcript (hello11) ..35
Trapping Transcript Messages (hello12) ..36
Compiling and Editing Knowledge Bases ...37
Monitoring a Session ...37

3. The C Library
C Library Calls List ... 39
NXP_BwrdAgenda ... 40
NXP_Compile .. 41
NXP_Control.. 42
NXP_CreateObject .. 45
NXP_DeleteObject... 47
NXP_Edit.. 49
NXP_Error.. 50
NXP_ErrorIndex.. 52
NXP_GetAtomId... 53
NXP_GetAtomInfo.. 55
NXP_GetAtomValueArray.. 56
NXP_GetAtomValueLengthArray ... 58
NXP_GetAtomValueLengthList ... 60
NXP_GetAtomValueList.. 61
NXP_GetHandler .. 62
NXP_GetHandler2 .. 64
NXP_GetMethodId ... 65
NXP_GetStatus .. 67
NXP_Journal .. 68
NXP_LoadKB... 70
NXP_SaveKB.. 71
NXP_SendMessage ... 73
NXP_SendMessageArray... 75
NXP_SetAtomInfo .. 76
NXP_SetClientData... 77
NXP_SetData ... 79
NXP_SetHandler ... 81
NXP_SetHandler2 ... 84
NXP_SetHandler (2) / NXP_PROC_ALERT .. 87
NXP_SetHandler (2) / NXP_PROC_APROPOS... 89
NXP_SetHandler (2) / NXP_PROC_CANCEL... 90
NXP_SetHandler (2) / NXP_PROC_ENDOFSESSION... 92
NXP_SetHandler (2) / NXP_PROC_EXECUTE ... 93
NXP_SetHandler (2) / NXP_PROC_GETDATA.. 95
ii C Programmer’s Guide

NXP_SetHandler (2) / NXP_PROC_GETSTATUS .. 96
NXP_SetHandler (2) / NXP_PROC_MEMEXIT... 98
NXP_SetHandler (2) / NXP_PROC_NOTIFY .. 99
NXP_SetHandler (2) / NXP_PROC_PASSWORD... 101
NXP_SetHandler (2) / NXP_PROC_POLLING ... 102
NXP_SetHandler (2) / NXP_PROC_QUESTION .. 104
NXP_SetHandler (2) / NXP_PROC_QUIT ... 105
NXP_SetHandler (2) / NXP_PROC_SETDATA... 107
NXP_SetHandler (2) / NXP_PROC_VALIDATE... 108
NXP_SetHandler (2) / NXP_PROC_VOLVALIDATE .. 110
NXP_Strategy .. 113
NXP_Suggest ... 115
NXP_UnloadKB... 116
NXP_Volunteer ... 118
NXP_VolunteerArray... 122
NXP_VolunteerList... 124
NXP_WalkNodes .. 127
NXPGFX_Control.. 129

4. NXP_GetAtomInfo Routine
NXP_GetAtomInfo.. 131
Information Codes List... 133
Information Codes by Categories ... 136
NXP_GetAtomInfo Macros.. 139
NXP_GetAtomInfo / NXP_AINFO_AGDVBREAK.. 141
NXP_GetAtomInfo / NXP_AINFO_BREADTHFIRST ... 142
NXP_GetAtomInfo / NXP_AINFO_BWRDLINKS ... 143
NXP_GetAtomInfo / NXP_AINFO_CACTIONS .. 145
NXP_GetAtomInfo / NXP_AINFO_CACTIONSON.. 146
NXP_GetAtomInfo / NXP_AINFO_CACTIONSUNKNOWN 148
NXP_GetAtomInfo / NXP_AINFO_CHILDCLASS.. 149
NXP_GetAtomInfo / NXP_AINFO_CHILDOBJECT.. 151
NXP_GetAtomInfo / NXP_AINFO_CHOICE.. 152
NXP_GetAtomInfo / NXP_AINFO_CLIENTDATA... 154
NXP_GetAtomInfo / NXP_AINFO_COMMENTS.. 155
NXP_GetAtomInfo / NXP_AINFO_CONTEXT .. 156
NXP_GetAtomInfo / NXP_AINFO_CURRENT .. 157
NXP_GetAtomInfo / NXP_AINFO_CURRENTKB... 159
NXP_GetAtomInfo / NXP_AINFO_DEFAULTFIRST.. 160
NXP_GetAtomInfo / NXP_AINFO_DEFVAL ... 161
NXP_GetAtomInfo / NXP_AINFO_EHS.. 162
NXP_GetAtomInfo / NXP_AINFO_EXHBWRD... 164
NXP_GetAtomInfo / NXP_AINFO_FOCUSPRIO... 166
NXP_GetAtomInfo / NXP_AINFO_FORMAT .. 167
NXP_GetAtomInfo / NXP_AINFO_FWRDLINKS ... 168
NXP_GetAtomInfo / NXP_AINFO_HASMETA ... 170
NXP_GetAtomInfo / NXP_AINFO_HYPO .. 171
NXP_GetAtomInfo / NXP_AINFO_INFATOM .. 172
NXP_GetAtomInfo / NXP_AINFO_INFBREAK ... 174
NXP_GetAtomInfo / NXP_AINFO_INFCAT .. 175
NXP_GetAtomInfo / NXP_AINFO_INHATOM ... 176
NXP_GetAtomInfo / NXP_AINFO_INHCAT ... 178
NXP_GetAtomInfo / NXP_AINFO_INHCLASSDOWN ... 179
NXP_GetAtomInfo / NXP_AINFO_INHCLASSUP ... 180
C Programmer’s Guide iii

NXP_GetAtomInfo / NXP_AINFO_INHDEFAULT... 181
NXP_GetAtomInfo / NXP_AINFO_INHDOWN .. 181
NXP_GetAtomInfo / NXP_AINFO_INHOBJDOWN ... 182
NXP_GetAtomInfo / NXP_AINFO_INHOBJUP ... 183
NXP_GetAtomInfo / NXP_AINFO_INHUP .. 184
NXP_GetAtomInfo / NXP_AINFO_INHVALDEFAULT .. 185
NXP_GetAtomInfo / NXP_AINFO_INHVALDOWN.. 186
NXP_GetAtomInfo / NXP_AINFO_INHVALUP.. 187
NXP_GetAtomInfo / NXP_AINFO_KBID.. 188
NXP_GetAtomInfo / NXP_AINFO_KBNAME.. 190
NXP_GetAtomInfo / NXP_AINFO_LHS.. 191
NXP_GetAtomInfo / NXP_AINFO_LINKED .. 193
NXP_GetAtomInfo / NXP_AINFO_METHODS ... 195
NXP_GetAtomInfo / NXP_AINFO_MOTSTATE.. 196
NXP_GetAtomInfo / NXP_AINFO_NAME... 198
NXP_GetAtomInfo / NXP_AINFO_NEXT... 200
NXP_GetAtomInfo / NXP_AINFO_PARENT ... 203
NXP_GetAtomInfo / NXP_AINFO_PARENTCLASS... 204
NXP_GetAtomInfo / NXP_AINFO_PARENTFIRST .. 206
NXP_GetAtomInfo / NXP_AINFO_PARENTOBJECT .. 207
NXP_GetAtomInfo / NXP_AINFO_PFACTIONS... 209
NXP_GetAtomInfo / NXP_AINFO_PFELSEACTIONS ... 210
NXP_GetAtomInfo / NXP_AINFO_PFMETHODACTIONS 211
NXP_GetAtomInfo / NXP_AINFO_PFMETHODELSEACTIONS............................. 213
NXP_GetAtomInfo / NXP_AINFO_PREV ... 214
NXP_GetAtomInfo / NXP_AINFO_PROCEXECUTE .. 216
NXP_GetAtomInfo / NXP_AINFO_PROMPTLINE ... 217
NXP_GetAtomInfo / NXP_AINFO_PROP... 219
NXP_GetAtomInfo / NXP_AINFO_PTGATES.. 220
NXP_GetAtomInfo / NXP_AINFO_PWFALSE... 221
NXP_GetAtomInfo / NXP_AINFO_PWNOTKNOWN.. 222
NXP_GetAtomInfo / NXP_AINFO_PWTRUE .. 223
NXP_GetAtomInfo / NXP_AINFO_QUESTWIN.. 225
NXP_GetAtomInfo / NXP_AINFO_RHS ... 225
NXP_GetAtomInfo / NXP_AINFO_SELF .. 227
NXP_GetAtomInfo / NXP_AINFO_SLOT ... 229
NXP_GetAtomInfo / NXP_AINFO_SOURCES ... 230
NXP_GetAtomInfo / NXP_AINFO_SOURCESCONTINUE 232
NXP_GetAtomInfo / NXP_AINFO_SOURCESON... 233
NXP_GetAtomInfo / NXP_AINFO_SUGGEST ... 235
NXP_GetAtomInfo / NXP_AINFO_SUGLIST... 236
NXP_GetAtomInfo / NXP_AINFO_TYPE.. 237
NXP_GetAtomInfo / NXP_AINFO_VALIDENGINE_ACCEPT................................. 239
NXP_GetAtomInfo / NXP_AINFO_VALIDENGINE_OFF ... 241
NXP_GetAtomInfo / NXP_AINFO_VALIDENGINE_ON .. 242
NXP_GetAtomInfo / NXP_AINFO_VALIDENGINE_REJECT................................... 244
NXP_GetAtomInfo / NXP_AINFO_VALIDEXEC .. 245
NXP_GetAtomInfo / NXP_AINFO_VALIDFUNC ... 246
NXP_GetAtomInfo / NXP_AINFO_VALIDHELP .. 247
NXP_GetAtomInfo / NXP_AINFO_VALIDUSER_ACCEPT 247
NXP_GetAtomInfo / NXP_AINFO_VALIDUSER_OFF... 249
NXP_GetAtomInfo / NXP_AINFO_VALIDUSER_ON.. 250
NXP_GetAtomInfo / NXP_AINFO_VALIDUSER_REJECT .. 252
NXP_GetAtomInfo / NXP_AINFO_VALUE.. 254
iv C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_VALUELENGTH... 258
NXP_GetAtomInfo / NXP_AINFO_VALUETYPE.. 260
NXP_GetAtomInfo / NXP_AINFO_VERSION.. 262
NXP_GetAtomInfo / NXP_AINFO_VOLLIST... 263
NXP_GetAtomInfo / NXP_AINFO_WHY.. 264
NXP_GetAtomInfo / Examples.. 265

5. NXP_SetAtomInfo Routine
NXP_SetAtomInfo .. 267
NXP_SetAtomInfo Codes List... 268
NXP_SetAtomInfo Codes By Categories ... 268
NXP_SetAtomInfo / NXP_SAINFO_AGDVBREAK... 268
NXP_SetAtomInfo / NXP_SAINFO_CURRENTKB.. 270
NXP_SetAtomInfo / NXP_SAINFO_DISABLESAVEKB.. 271
NXP_SetAtomInfo / NXP_SAINFO_INFBREAK.. 272
NXP_SetAtomInfo / NXP_SAINFO_INKB .. 273
NXP_SetAtomInfo / NXP_SAINFO_MERGEKB... 275
NXP_SetAtomInfo / NXP_SAINFO_PERMLINK ... 276
NXP_SetAtomInfo / NXP_SAINFO_PERMLINKKB.. 277

6. NXP_Edit Functions
Introduction ... 279
Compatibility with Previous Releases ... 279
Technical Overview .. 280
NxpEditRec Structure... 280
AtomType .. 281
Error Handling .. 284
Setting up the Edit API... 285

NXP_EditDispose ..285
NXP_EditNew ..285
NXP_EditReset ...286

Receiving Error and Dependency Information .. 286
NXP_EditInfoNew ...286
NXP_EditInfoDispose ...287
NXP_EditInfoReset ..287

Editing Capabilities .. 287
NXP_EditCreate ...287
NXP_EditDelete ...288
NXP_EditFill ...289
NXP_EditModify ...289

Setting and Querying the Atom Definition... 291
NXP_EditFindInstance ..291
NXP_EditGetNthStr ..291
NXP_EditGetStr ...292
NXP_EditRemoveNthStr ..292
NXP_EditRemoveStr ...293
NXP_EditSetAtomType ..293
NXP_EditSetNthStr ...294
NXP_EditSetStr ..294
C Programmer’s Guide v

7. NXP_Context Functions
Introduction ... 295
Audience .. 295
Specific Features.. 295
Context Switching Overview .. 296
Context API.. 299

Debugging API ...301
Examples Description... 301
A Simple Example cntx1.c ... 302

Overview ...302
cntx1.c listing ..303
cntx1.ms makefile listing ..305

Using a Question Handler: cntx2.c... 306
Overview ...306
cntx2.c listing ..306
cntx2.ms makefile listing ..309
cntx2_a.tbk listing ..309
cntx2_b.tbk listing ..309

A Polling Example: cntx3.c ... 310
cntx3.c listing ..310
cntx3.ms makefile listing ..315

A. Retrieving Rules Element Information
C Language .. 317

Index .. 321
vi C Programmer’s Guide

Preface 1

Purpose of this Manual
When designing a knowledge-based application that uses the Intelligent
Rules Element, you may need some features that a rule- and object-based
tool such as the Rules Element may not provide. For example, you may
want to use a math library for numerically-intensive computations. Or you
may want to write an interface for your knowledge-based application. With
this manual, you can write C language routines to provide features that the
Rules Element doesn’t provide, and you can write programs such as an
interface to your application. You can write routines and programs that do
these tasks by using the routines described in this manual.

Description
Using the Rules Element C Application Programming Interface (API), you
can write programs that call the Rules Element or routines for the Rules
Element to call. The application programming interface is the application
programmable interface of the Rules Element. It consists of a set of routines
inside the Rules Element that you can call from a program or a routine.
Using the routines, you can do tasks such as start the Rules Element’s
inference engine, find the value of a property slot, and suggest hypotheses.
Anything you can do with the graphical user interface of the Rules Element,
you can do with the application programming interface. Here are some
examples of tasks you can accomplish using this manual and the application
programming interface:

■ Extend the processing capabilities of the Rules Element. For example,
you can embed calls to a math library or to external routines within the
Rules Element.

■ Write an interface for an application that uses the Rules Element. For
example, if you develop an application for the Macintosh and use the
Standalone Runtime version of the Rules Element, you can write an
interface on top of the Rules Element with the application
programming interface.

■ Link the Rules Element to databases not supported by the Rules
Element. For example, you may have written your own database
management system that you want to link to the Rules Element.

■ Communicate with and control other processes using the Rules
Element. For example, you can tell the Rules Element to trigger the fire
alarm whenever it concludes that there is a fire.

■ Monitor real-time processes. For example, you can use the Rules
Element in a data-acquisition system.

■ Embed the Rules Element’s reasoning capabilities in other applications.
For example, your CAD/CAM application can call the Rules Element
as a subroutine to solve a problem.
C Programmer’s Guide vii

Chapter

Preface

1

Audience
This manual is designed for people who understand programming
concepts, the C language, and the Rules Element. If you don't understand
programming concepts, you may need to review an introductory
programming book before you use the API because the interface is used by
writing programs and routines. In this manual, the examples are written in
C, so it helps if you are familiar with the C language to read through the
examples. If you don’t understand the Rules Element, you may need to
review the Getting Started manual.

Organization
The first several times you use this manual, you will probably just read
Chapter One, “Overview” and Chapter Two, “Primer.” They help you
understand how to use the API. After you are familiar with the API, use
Chapter Three, “C Library,” Chapter Four, “NXP_GetAtomInfo,” and
Chapter Five, “NXP_SetAtomInfo” as a reference to remind you of syntax.
Chapter Six, “Edit Functions” teaches you how to use API routines to
modify object/class relationships in a knowledge base. Chapter Seven,
“Context Functions” shows how to use the context switching API to invoke
an independent session of the Rules Element.

Here are more details on the contents of each chapter:

Chapter One, “Overview” gives you an overview of the application
programming interface without going into the details of how to use the
Rules Element API. It does the following:

■ Introduces the icons for each platform.
■ Explains the system requirements to run the Rules Element.
■ Describes the interfaces that are available

and how they affect the Rules Element API.
■ Describes the format for the Rules Element’s interface on each platform.
■ Introduces the contents of the required #include file.

■ Reviews Rule Element atoms and discusses how they relate to the Rules
Element API.

Chapter Two, “C Primer” uses examples to teach you the fundamentals of
using the application programming interface. It starts with a program,
hello.c, to call the Rules Element. hello.c is used to illustrate the
components required of every program. It is also used to describe how to
compile and link on each platform. Then, the chapter uses variations of
hello.c to illustrate various tasks using the application programming
interface. For more advanced programmers, the last section describes more
advanced features of the application programming interface.

Chapter Three, “C Library” is a reference for all the C routines in the
application programming interface. They are organized alphabetically
within the chapter. The beginning of the chapter gives you an overview of
the purpose of each routine.

Chapter Four, “NXP_GetAtomInfo” is a reference on the most
commonly-used routine, NXP_GetAtomInfo, which can obtain any
viii C Programmer’s Guide

Documentation Conventions

information about any atom. Macros and constants are provided to help
you use this routine, and they are organized alphabetically within the
chapter. The beginning of the chapter gives you an overview of the macros
and constants.

Chapter Five, “NXP_SetAtomInfo” describes the features available for the
application development effort that let the developer implement
knowledge structures in the Rules Element environment.

Chapter Six, “Edit Functions” teaches you how to use NXP_CreateObject
and NXP_DeleteObject to modify object/class relationships in a knowledge
base. It also describes other routines you can use to access the editors in the
Rules Element.

Chapter Seven, “Context Functions” teaches you how to use the context
switching API to invoke an independent session of the Rules Element while
already in a session, and not have the knowledge bases / name spaces
collide. For example, an application may be in a question handler, and in
order to answer the question, it may be necessary to run another KB to get
the answer.

Documentation Conventions
Throughout the manual, we use the following formatting conventions.

% user action Text preceded by a system prompt and in this
typeface indicates a command that you must enter
exactly as shown.

% run filename Text in this typeface and in italics indicates names
that you supply, such as file names.

source code Text in this monospaced typeface indicates program
examples.

filenames Text in this typeface are file names or directories.

In the rest of this manual, the Intelligent Rules Element is called the Rules
Element.

Related Manuals
The library of manuals for the Intelligents Rules Element is designed to help
you do different tasks. This table helps you understand which manual you
need:

If you want to do this Then read this manual
Learn about the Rules Element. Getting Started
Learn about the Rules Element agenda,
knowledge representation, and inference
engine control.

Language Programmer’s Guide

Learn to use the Rules Element through
the graphical interface.

User’s Guide

Look up encyclopedic information about
the Rules Element.

Language Reference

Exchange data between your database
and a the Rules Element knowledge base.

Language Reference
C Programmer’s Guide ix

Chapter

Preface

1

Users who receive the Intelligent Rules Element packaged with other
Neuron Data products, including the Open Interface Element and the Data
Access Element, will have other documents in addition to the Rules Element
documents described above.

Learn to use Open Editor’s main
windows to create GUI libraries and
modules.

Open Interface User’s Guide

Look up widget editor information. Open Interface User’s Guide
x C Programmer’s Guide

Chapter

1 API Overview 1

This chapter describes the hardware platforms supported by the Intelligent
Rules Element Application Programming Interface (API), the supplied
#include file called nxpdef.h, and the concepts of calling in and calling out.

Introduction
After reading this chapter, you will understand how the Rules Element API
and your hardware platform are related. You will also understand the
format of the API on your platform and how to access the API using the
supplied #include file. The following list identifies questions that this
chapter provides answers to.

About nxpdef.h
■ What is the nxpdef file?

■ What does it contain?

■ How do I use nxpdef macros?

■ How does the nxpdef file declare API routines?

Calling In and Calling Out
■ How do I call the Rules Element?

■ How can the Rules Element call routines?

About the Format

Generally, the API consists of a library of C-language routines. With one
exception, the version of the Rules Element doesn’t affect how much of the
API you can use. The exception is NXPGFX_Control. NXPGFX_Control
allows you to initialize, start, and end the graphical interface. For example,
if you are using the API and your program initializes the graphical interface
with this routine:

NXPGFX_Control(NXPGFX_CTRL_INIT);

you are put into the development interface - what you see when you start
the development system version of the Rules Element, complete with
windows and icons. To return to your program, use the Quit command in
the development interface.

About nxpdef.h
To use the API, you need to use an include file supplied by Neuron Data
called nxpdef.h. Include this file in a C or C++ program like this:

#include <stdio.h>
#include <nxpdef.h>
C Programmer’s Guide 1

Chapter

API Overview

1

main()
{
 .
 .
 .

nxpdef.h contains definitions that you need in order to use the API. For
example, it declares all the API routines as external functions that return an
integer. This allows you to compile your file, using API routines in the code,
without receiving undeclared function errors. The references to the API
routines are resolved when you link your program to the object library of
the Rules Element.

What nxpdef.h Contains

nxpdef.h contains type definitions, constant definitions, macros, and
function declarations.

The type definitions include definitions for types such as AtomId, which is
a value that identifies an atom.

The constant definitions include definitions such as NXP_ERR_INVATOM,
which is an error code that indicates an invalid atom.

The macros define an easier way to use the API because they make it easier
to use NXP_GetAtomInfo. The macros in nxpdef.h are described in the
next section.

The function declarations define the C routines of the API. They are
described later in this chapter in the section, “How nxpdef.h Declares
Functions”

Using nxpdef.h Macros

NXP_GetAtomInfo is a routine that retrieves any information about an
atom. To simplify retrieving the most commonly requested information,
macros are defined in nxpdef.h. For example, NXP_GETNAME is a
macro that uses NXP_GetAtomInfo to retrieve the name of an atom, and
you only need to specify three arguments instead of the seven that
NXP_GetAtomInfo requires. For more information on the macros in
nxpdef.h, see the section on NXP_GetAtomInfo in Chapter Four,
“NXP_GetAtomInfo.” Every time you can substitute a macro for a
NXP_GetAtomInfo routine, that section tells you.

How nxpdef.h Declares Functions

The function declarations in nxpdef.h declare the C routines of the API.
nxpdef.h also provides a way for you to perform type checking on the
arguments of the routines, if your compiler supports function prototypes.
Function prototypes allow functions declarations to type, and optionally
name, their arguments.

Macintosh Note: In special cases, Macintosh programmers need to add the
following extra argument NXP_ExtTable *TablePtr; For more
information, see the Macintosh API manual.
2 C Programmer’s Guide

Calling In and Calling Out
Calling In and Calling Out
Calling in and calling out refers to what has control when using the API: the
Rules Element or your program. Calling in and calling out describes the two
basic ways that the Rules Element and a program interact through the API.

This section gives you an overview of calling in and calling out, describes
how to call in, and describes how to call out.

Calling in: your program controls the sequence of events, and uses API
routines to interact with the Rules Element.

Calling out: your routines are embedded inside the Rules Element.

Calling in means your program has control and it interacts with the Rules
Element according to the algorithms you’ve defined in your program.

Calling out means the Rules Element has control and it interacts with your
program whenever it finds an EXECUTE statement or an event occurs and
you've installed a routine to handle that event. For example, an event occurs
when the Rules Element asks a question or sends you an alert message.

You can call in and call out in the same program. For example, your
program can initialize the Rules Element, load a knowledge base, suggest a
hypothesis, and instruct the Rules Element to knowcess. Up until now, your
program has control and you've called in to the Rules Element. With the
command to knowcess, control passes to the Rules Element. It processes
information until it reaches a question, when it checks to see if you've
defined a routine to respond to questions. If so, it calls the routine. The
Rules Element is calling out. When the Rules Element finishes knowcessing,
control returns to your program.

Calling Into the Rules Element

Call into the Rules Element with the Rules Element's C library routines. For
a complete description of C library routines, see Chapter Three, “The C
Library.”

You can call in to the Rules Element for several reasons:

■ To investigate working memory.

■ To modify working memory.

■ To control the inference engine of the Rules Element.

For example, this routine investigates working memory by obtaining
information about an atom's value:

NXP_GetAtomInfo(theAtom, NXP_AINFO_VALUE, 0, 0, NXP_DESC_STR,
string_value, 255);

This routine modifies working memory by changing the value of an atom's
slot:

NXP_Volunteer(theAtom, NXP_DESC_STR, thePtr, priority);

This routine controls the inference engine by instructing the Rules Element
to knowcess:

NXP_Control(NXP_CTRL_KNOWCESS);
C Programmer’s Guide 3

Chapter API Overview1
How the Rules Element Calls Routines

You can tell the Rules Element to call out by embedding a routine name in
an EXECUTE statement in the Rules Element and installing that routine as
a handler. Handlers are routines that respond to predefined events. The
Rules Element has predefined events for which you can install your own
handlers:

Event When does the handler for this event get called?
Alert Called when the Rules Element needs to send an alert message

to the user or ask the user to confirm something.
Apropos Called when the Rules Element encounters a Show operator.
Decrypt Called when the Rules Element needs to decrypt an encrypted

knowledge base.
Encrypt Called when the Rules Element needs to encrypt a knowledge

base.
Execute Called when the Rules Element encounters an Execute

statement in a rule or a method. The Execute statement
specifies the name of the routine to call, so you can install many
routines as Execute handlers.

A window in the Rules Element can be thought of as a box that sends and
receives information. Some graphical interfaces represent windows as
rectangles with scrollable text.

GetData Called when the Rules Element receives data from a window.
GetStatus Called when the Rules Element checks the availability of an

interface. For example, you can check if the Transcript is on or
off.

Notify Called when the state of the knowledge base changes. For
example, a value changes when an atom is created and
therefore the state of the knowledge base changes.

Password Called when the Rules Element needs the password of an
encrypted knowledge base.

Polling Called after each inference cycle of the Rules Element.
Question Called when the Rules Element needs to ask a question to get

the value of a slot.
SetData Called when the Rules Element needs to display a message or

send data to a window.

For more information, see the description of NXP_SetHandler and
NXP_SetHandler2 in Chapter Three, “The C/C++ Library.”

When one of these events occurs, the Rules Element checks to see if you
installed your own handler to respond to it. If not, the Rules Element calls
its own default handler for that event.

To install one of your routines as a handler, use the NXP_SetHandler or
NXP_SetHandler2 routines. For example, this routine installs the routine
MyQuestions to be called whenever the Rules Element needs to ask a
question:

NXP_SetHandler(NXP_PROC_QUESTION, MyQuestion, 0);
4 C Programmer’s Guide

A Note about Atoms
A Note about Atoms
When using the API, most programming errors are caused by confusing
atom types. Therefore, we include this section as a programmer's review of
atoms.

What is an Atom?

An atom in the Rules Element can be any of the following:

■ Class

■ Object (for example, an instance of a class)

■ Property slot of an object (for example, object.property)

■ Knowledge Base

A right-hand side (RHS) action is the action in an "If x, then perform action
y else perform action z" statement. RHS stands for right-hand side. EHS
stands for the else right-hand side.

■ Hypothesis

■ Data

■ Property

■ Rule

■ Condition

■ RHS action

■ EHS action

■ Method (such as Order of Sources, or If Change)

This illustration helps show the relationship of the above items:

For example, a data is a property slot, but a property slot is not necessarily
a data.

Properties and Property Slots

A property holds the characteristics of the property. Characteristics are
items such as boolean, floating point, integer, date, time, or string. A
property itself does not have a value.

A property slot is attached to an object or a class and does have a value. For
example, pressure and value are properties, while tank1.pressure
and alert.value are property slots.

Property Slots and Data

A data is a type of property slot. Data are property slots that are used
explicity in LHS or RHS of a rule or meta-slot. A property slot is any slot
attached to an object.

For example, tank1.pressure is a data if it appears in a condition such as:

tank1.pressure > 100

If pressures are always tested and set, and not used in the left-hand side
(LHS) or right-hand side (RHS or EHS) of a rule or method,
C Programmer’s Guide 5

Chapter API Overview1
tank1.pressure is a property slot. This is an example of tank1.pressure
as a property slot:

<tanks>.pressure > 100

Hypotheses and data are always property slots, even if the default property
name is omitted in the notebooks, the rule editor, and the network. For
example, if you write a rule with the word alert as the hypothesis, an
object named alert is created with property slot value. The hypothesis is
actually the propert slot alert.value, not the object alert, but it is
displayed by the Rules Element as alert.

Using Atoms with Atom ids

Every atom is identified by a value called the atom id. You can get the id of
an atom with NXP_GetAtomId by specifying the atom name.

If you have the id of an atom, then you can get information about the atom
with NXP_GetAtomInfo. The following table summarizes how to get
information about an atom. In the table, the id of an atom is specified with
theAtom:

type, such as class, object or property slot
NXP_GetAtomInfo(theAtom, NXP_AINFO_TYPE, optAtom, optInt, desc,
 thePtr, len);

value type, such as boolean, floating point, or integer (property slots only)
NXP_GetAtomInfo(theAtom, NXP_AINFO_VALUETYPE, optAtom, optInt, desc,
 thePtr, len);

value (property slots only)
NXP_GetAtomInfo(theAtom, NXP_AINFO_VALUE, optAtom, optInt, desc,
 thePtr, len);

range of possible values (string slots only)
NXP_GetAtomInfo(theAtom, NXP_AINFO_CHOICE, optAtom, optInt, desc,
 thePtr, len);

parent classes (objects and classes only)
NXP_GetAtomInfo(theAtom, NXP_AINFO_PARENTCLASS, optAtom, optInt, desc,
 thePtr, len);

subclasses (classes only)
NXP_GetAtomInfo(theAtom, NXP_AINFO_CHILDCLASS, optAtom, optInt, desc,
 thePtr, len);

subobjects (for objects) or instances (for classes)
NXP_GetAtomInfo(theAtom, NXP_AINFO_CHILDOBJECT, optAtom, optInt, desc,
 thePtr, len);

property slots (objects and classes only)
NXP_GetAtomInfo(theAtom, NXP_AINFO_SLOT, optAtom, optInt, desc,
 thePtr, len);
6 C Programmer’s Guide

A Note about Atoms
links to classes or objects (objects and classes only)
NXP_GetAtomInfo(theAtom, NXP_AINFO_LINKED, optAtom, optInt, desc,
 thePtr, len);

hypotheses (property slots only)
NXP_GetAtomInfo(theAtom, NXP_AINFO_HYPO, optAtom, optInt, desc,
 thePtr, len);

LHS or RHS (rules only)
NXP_GetAtomInfo(theAtom, NXP_AINFO_LHS, optAtom, optInt, desc, thePtr, len);

(or substitute NXP_AINFO_RHS for NXP_AINFO_LHS)

methods (property slots only)

for Order of Sources methods attached to theAtom, use:

NXP_GetAtomInfo(theAtom, NXP_AINFO_SOURCES, optAtom, optInt, desc,
 thePtr, len);

or for If Change actions methods attached to theAtom, substitute
NXP_AINFO_CACTIONS for NXP_AINFO_SOURCES

You can also use NXP_GetAtomInfo to retrieve the list of all the hypotheses,
rules, data, methods, objects, classes, and properties in the knowledge base
(with NXP_AINFO_NEXT) or information about the current focus of the
inference engine (with NXP_AINFO_CURRENT).

Atom ids Aren’t Memory Pointers

Atom ids have a data type of AtomId, which is defined in nxpdef.h. An
AtomId is a value that identifies an atom, but it is not a memory pointer. To
use atom ids, use the API routines. The routines check if the AtomIds are
valid and therefore help to maintain the integrity of the knowledge base. It
also ensures that your programs will be compatible with different versions
of the Rules Element.
C Programmer’s Guide 7

Chapter API Overview1
8 C Programmer’s Guide

Chapter
2 C Primer 2

This primer teaches you how to use the Intelligent Rules Element
application programming interface (API) routines. It starts with very small
examples and progressively builds up to more complex examples. For a
complete reference to the application programming interface routines, see
Chapters Three, Four, Five, Six and Seven.

Introduction
This chapter assumes you are familiar with the Rules Element and with
programming concepts. It also helps if you are familiar with C because the
examples are written in C. This table summarizes the information in each
section of this chapter:

About the examples
■ What directory do the examples assume that I’m in?

■ How do I specify header files so my programs find it?

Starting small with hello.c
■ What is the basic structure of an application programming interface

program?

■ How do I compile, link, and execute hello.c?

Using the line-mode interpreter
■ Why should I use the Rules Element 's line-mode interpreter?

■ How do I use the line-mode interpreter?

Writing routines that the Rules Element calls

How do I...

■ Pass a string from the Rules Element to a routine?

■ Pass a list of atoms from the Rules Element to a routine?

■ Retrieve atoms by name from the Rules Element ?

Writing programs that call the Rules Element

How do I...

■ Start the development environment?

■ Load a knowledge base and run a Rules Element session?

■ Write an interpreter for the Rules Element ?

■ Use the question handler?
C Programmer’s Guide 9

Chapter C Primer2
For the advanced programmer

How do I...

■ Create objects and assign slot values?

■ Investigate the object base?

■ Interrupt a session?

■ Ask non-modal questions?

■ Provide values to the Rules Element during a session?

■ Use communication handlers?

■ Write to the transcript window?

■ Trap transcript messages?

■ Compile and edit knowledge bases?

■ Monitor a session?

About the Examples
This section provides some information about the examples in this chapter.

Working Directory

If you would like to review the examples in the primer as you read through
the primer, you can change your working directory to the Rules Element
examples directory, which contains all of the source code for the examples
in the primer. The examples directory is created when you install the Rules
Element. You can put the examples wherever you want.

The rest of this chapter uses variations of an example called hello.c to
illustrate tasks you can do with the application programming interface. The
components of an application programming interface program are shown
and an example of how to compile, link, and execute hello.c on each
platform is given.

You are also introduced to a tool that helps you quickly start interacting
with the Rules Element without having to write a lot of code. It is a
primitive interface called the Rules Element line-mode interpreter. The rest
of the examples build on the Rules Element line-mode interpreter and
gradually get more complicated.

Using the Examples

Neuron Data supplies the examples in this primer as files. They are called
the Hello examples. For all the examples that follow, two files are provided:
helloN.c and helloN.tkb where N is a number between 1 and 12.
helloN.c contains the source code, and helloN.tkb contains the
knowledge base to test the source code. (The Macintosh version contains
also the resource files helloN.r, helloN.π.rsrc and the THINK project
files helloN.π)
10 C Programmer’s Guide

Specifying Header Files
Specifying Header Files
On Unix and VAX platforms the installation procedure should put all the
header files in the correct directory, but you may have to move it or you may
need to set up a special definition. On some platforms, you can specify the
location in the makefile.

Starting Small - hello1.c
In this simple example, we introduce the components of a program that uses
the application programming interface. The program initializes the
application programming interface, loads a knowledge base, and exits.

#define ERR_LIB NEXPERT
#include <nxppub.h>
#include "nxpinter.h"

#define ND_GUI 0
#define ND_IR 1
#include <nd.h>

/**/

Int hello L3(Str, theStr, Int, nAtoms, AtomId*, theAtoms)
{

printf("hello world!\n");
return 1;

}

Int main L2(Int, argc, Str*, argv)
{

HELLO_Init("hello1")

ND_Init(argc, argv);
NXP_SetHandler(NXP_PROC_EXECUTE, (NxpIProc)hello, "hello");
NXPLine_Main();
ND_Exit();

return EXIT_OK;
}

Here is an explanation of the program:

#include <nxppub.h>

This is the include file supplied by Neuron Data that you need to include in
order to use the application programming interface.

HELLO_Init(“hello1”);

This routine performs operating system-specific initializations for
console-based I/O.

ND_Init(argc, argv);

This routine performs Elements Environment initializations for the
specified elements such as ND_IR and ND_GUI.

NXPLine_Main();

This routine invokes a simple command interpreter as described later in this
chapter.

ND_Exit();

This routine performs Elements Environment termination and clean-up.
C Programmer’s Guide 11

Chapter C Primer2
Compiling, Linking, and Executing

Neuron Data supplies you with files to make compiling, linking, and
executing easier. On most platforms, a makefile is supplied. See the
ReadMe file supplied with the examples.

Using the Line-mode Interpreter
Neuron Data supplies a line-mode interpreter as one of the examples which
is invoked by calling NXPLine_Main. Using the line-mode interpreter, you
can start interacting with the Rules Element through the application
programming interface with only a few lines of code.

For example, in the previous section, we used hello1.c to load a
knowledge base but we didn’t do anything with it. We could have used
more application programming interface routines to do tasks such as:

■ Suggest a hypothesis

■ Volunteer a slot value

■ Start a session

However, we would have had to write more code to do all those things. The
line-mode interpreter has all of the application programming interface
routines embedded in it that are available as the menu commands in the
development system version of the Rules Element. In hello1.c, we could
have loaded a knowledge base and then called the line-mode interpreter to
test whether we loaded it correctly.

You can use the line-mode interpreter as a learning tool. As you learn more
about the application programming interface, you’ll write more of your
own routines to perform testing. You'll use the line-mode interpreter less
and less until you won’t need it at all. It is a quick way of learning how to
use the application programming interface routines.

Our examples are designed for the runtime library of the Rules Element.
The first several examples in this section do not contain the code to load a
knowledge base and control a session. Instead, these examples start the
line-mode interpreter by calling a procedure called NXPLine_Main. The
complete source code of the interpreter is in the file nxpinter.c and is
partially described in this primer.

The NXPLine_Main() statement gives control to the line-mode interpreter.
It returns only when you exit the interpreter with the exit command.

You can compile and link this program. For more information, see the
examples on compiling, linking, and executing in the previous section.

After you compile, link, and execute hello.c, you’ll see the following
prompt on your terminal:

NXP>
12 C Programmer’s Guide

Writing Routines that the Rules Element Calls
This prompt is the prompt of the line-mode interpreter. You can type a
question mark (?) to get the list of commands provided by the interpreter.
The main commands are:

Command Purpose

load filename Loads the knowledge base filename

suggest hypo Suggests the hypothesis hypo

volunteer slot value Volunteers value into slot

run Starts the inference engine

restart Restarts the session

show atom atomname Displays information about the atom atomname

show hypo Displays the list of hypotheses

show data Displays the list of data

show objects Displays the list of objects

show classes Displays the list of classes

? Displays commands

show ? Displays show subcommands

You can load some of your knowledge bases or the example knowledge
bases and run sessions with this interpreter. Here is an example with the
satfault.tkb knowledge base:

NXP> load satfault.tkb
NXP> suggest possible_leak
NXP> run
Do the two displays (CRT and KDU) agree or disagree?
Enter value: AGREE
During which task did the problem occur?
Enter value: ?

ATTACHING
FLUID-TRANSFER
TESTING

Enter value: TESTING
NXP> show atom possible_leak
Type: Property Slot, Hypothesis
Value Type: Boolean
Value: FALSE
NXP> exit

Writing Routines that the Rules Element Calls
For the rest of the examples in this chapter, we use the Unix platform.

Keep the following in mind while working with these examples:

■ To compile a file, use the command line declared in the file MAKEFILE.

■ The environment variables described in the Installation Guide should
be properly set up. Verify them before running any hello examples.

■ The examples are console-oriented. On the PC, the examples must be
run under Windows and a “pseudo-console” will be started.

Hello5 and Hello11 require the development libraries to run the graphics.
NXPGFX routines are not available with the RunTime libraries (default
libraries linked within the MAKEFILE).
C Programmer’s Guide 13

Chapter C Primer2
Makefiles are provided to recompile all files. Refer to the Readme file
provided with the examples.

Displaying a Message (hello1)

This example illustrates how to call out from the Rules Element. From a
rule, we want to call a C procedure that displays the message "hello world"
on the screen.

The example knowledge base contains the following rule:

(@RULE= R1
(@LHS=(Execute ("hello"))
)
(@HYPO= test_hello)

)

When the Execute ("hello") condition is evaluated by the inference
engine, the Rules Element calls a hello function that you have written and
installed as a handler. Of course, if you do not write a hello function but try
to run the preceding knowledge base with the standard development
system, you receive an error message such as the following:

Cannot execute hello, no handler installed

Our hello function displays hello world on the screen. The C source code is
the following:

int hello()
{

printf("hello world!\n");
return 1;

}

printf displays the message "hello world!".

Our hello function returns an integer value of 1. The returned value is only
meaningful if the Execute is called from the LHS of a rule. It determines the
logical state of the condition. If your function returns 0, the condition is
evaluated as FALSE, otherwise the condition is set to TRUE.

Writing the hello function is not sufficient. We must also install this
function inside the Rules Element kernel so that the inference engine can call
it when needed. This operation is done by calling NXP_SetHandler in our
main procedure just after the initialization of the Rules Element kernel. You
need to add the following line:

NXP_SetHandler(NXP_PROC_EXECUTE, (NxpIProc)hello, "hello");

This routine tells the Rules Element kernel that the hello procedure, the
second argument, should be called whenever an Execute "hello" statement
is encountered.

Note: The name specified in the third argument may be different from the
C procedure name. For example, we could pass "HelloWorld" as the
third argument in which case our knowledge base must be modified
(Execute "hello" becomes Execute "HelloWorld") but we can keep
hello as the procedure name in our C source file.
14 C Programmer’s Guide

Writing Routines that the Rules Element Calls
The complete listing of our hello1.c program is now:

#define ERR_LIB NEXPERT
#include <nxppub.h>
#include "nxpinter.h"

#define ND_GUI 0
#define ND_IR 1
#include <nd.h>

/**/

Int hello L3(Str, theStr, Int, nAtoms, AtomId*, theAtoms)
{

printf("hello world!\n");
return 1;

}

Int main L2(Int, argc, Str*, argv)
{

HELLO_Init("hello1")

ND_Init(argc, argv);
NXP_SetHandler(NXP_PROC_EXECUTE, (NxpIProc)hello, "hello");
NXPLine_Main();
ND_Exit();

return EXIT_OK;
}

This code is contained in the example file hello1.c.

You can compile and link hello1.c as described previously. Then you can
run the modified version. When you get the NXP> prompt, you can test the
program with the hello.tkb knowledge base:

NXP> load hello1.tkb
NXP> suggest test_hello
NXP> run
hello world!
NXP> show atom test_hello.value
Type: Property Slot, Hypothesis
Value Type: Boolean
Value: TRUE
NXP> exit

The hello world! message is printed when we run the session.

Passing a String to an Execute Routine (hello2)

Our first hello routine works but is too specialized. It is impractical to write
one routine for every message that we want to output. We can convert our
hello routine into a generic routine that displays any string. Instead of being
hard-coded in the C routine, the "hello world!" message is coded in the
knowledge base. The modified hello.tkb contains the following Execute
condition:

(Execute ("hello") (@STRING="hello world!";))
C Programmer’s Guide 15

Chapter C Primer2
Note: If you are editing your rules with the development system, the Rules
Element prompts you with a special dialog when you click into the
second argument of the Execute condition in the Rule editor. In this
dialog you must fill the String box with the hello world! message
(without quotes). The Rules Element automatically generates the
corresponding @STRING statement.

The hello function becomes:

Int hello L3(Str, theStr, Int, nAtoms, AtomId*, theAtoms)
{

printf("%s\n", theStr);
return 1;

}

Int main L2(Int, argc, Str*, argv)
{

HELLO_Init("hello2")

ND_Init(argc, argv);
NXP_SetHandler(NXP_PROC_EXECUTE, (NxpIProc)hello, "hello");
NXPLine_Main();
ND_Exit();

return EXIT_OK;
}

The first argument, theStr, receives the string specified with the @STRING
statement in the rule.

The second and third arguments allow you to pass a list of atoms, such as
objects, classes, and slots, to an external routine. They are ignored in this
example but will be useful for our next example.

You can compile and link the hello2.c program. Running the program
with the hello2.tkb knowledge base gives the same results as before.

Passing a List of Atoms to an Execute Routine (hello3)

In our previous example, the hello world! message was hard coded in the
rules. In many cases, it would be more interesting to pass an object slot
rather than a fixed string to the Execute routine. The value of the slot can be
assigned by rules and displayed by the Execute routine. Let us modify our
example so that our hello routine displays the contents of the message slot
of our knowledge base.

The LHS of our rule becomes:

(@LHS=
(Assign ("hello world!")(message))
(Execute ("hello") (@ATOMID= message.Value;))

)

We must modify our hello routine. Instead of receiving the “hello world!”
string as first argument, the hello routine will receive a list of atoms. In this
case, the list contains only one atom, the Value slot of the message object.
The hello routine receives the number of atoms as second argument and a
pointer to an array of atoms as third argument. The code of the hello routine
becomes:

Int hello L3(Str, theStr, Int, nAtoms, AtomId*, theAtoms)
{

Char locStr[255];
16 C Programmer’s Guide

Writing Routines that the Rules Element Calls
/* theStr is ignored in that case */
if (nAtoms != 1) {

printf("Error: hello called with %d atoms\n", nAtoms);
return 0;

}
if (!NXP_GetAtomInfo(theAtoms[0], NXP_AINFO_VALUE, (AtomId)0, 0,

NXP_DESC_STR, locStr, 255)) {
printf("Error: hello cannot get value\n");
return 0;

}
printf("%s\n", locStr);
return 1;

}

Int main L2(Int, argc, Str*, argv)
{

HELLO_Init("hello3")

ND_Init(argc, argv);
NXP_SetHandler(NXP_PROC_EXECUTE, (NxpIProc)hello, "hello");
NXPLine_Main();
ND_Exit();

return EXIT_OK;
}

This routine prints an error message and returns 0 if the number of atoms is
not 1. Then it calls NXP_GetAtomInfo to obtain the value of the first atom
in the array theAtoms.

Note: The NXP_GetAtomInfo routine should not fail in our example, but
it will fail if theAtoms[0] is not the id of a slot. For example, if we
write @ATOMID= message instead of @ATOMID= message.Value
in our rule, theAtoms[0] will be the id of the object message, not
the id of the Value slot of the object message. Object slots have
values (see discussion on atoms in Chapter One, “Overview”), but
objects as such do not have values, and thus the NXP_GetAtomInfo
routine will fail if we pass message instead of message.Value.

The fifth argument passed to NXP_GetAtomInfo is NXP_DESC_STR,
because we pass a string buffer as a sixth argument. In the last argument,
we indicate how many bytes have been allocated for the buffer.

Once the value of the slot has been obtained by the NXP_GetAtomInfo, it
is output to the screen with a printf statement and a success code is
returned.

Retrieving Atoms by Name with NXP_GetAtomId (hello4);

Instead of passing the id of message.Value to the hello routine, we could
get the id of message.Value from the hello routine. Our Execute
condition becomes:

(Execute ("hello") (@ATOMID=message.Value;))

The hello routine is modified as follows:

Int hello L3(Str, theStr, Int, nAtoms, AtomId*, theAtoms)
{

AtomId msgSlot;
Char locStr[255];
C Programmer’s Guide 17

Chapter C Primer2
if (!NXP_GetAtomId("message.Value", &msgSlot,
NXP_ATYPE_SLOT)) {

printf("Error: hello cannot get id\n");
return 0;

}
if (!NXP_GetAtomInfo(msgSlot, NXP_AINFO_VALUE, (AtomId)0,

0, NXP_DESC_STR, locStr, 255)) {
printf("Error: hello cannot get value\n");
return 0;

}
printf("%s\n", locStr);
return 1;

}

Int main L2(Int, argc, Str*, argv)
{

HELLO_Init("hello4")

ND_Init(argc, argv);
NXP_SetHandler(NXP_PROC_EXECUTE, (NxpIProc)hello, "hello");
NXPLine_Main();
ND_Exit();

return EXIT_OK;
}

The NXP_GetAtomId routine is described in detail in Chapter Three, “The
C Library.”

This version is more specific than the previous one because
message.Value is hard coded in the hello routine. It is also less efficient
because NXP_GetAtomId does a search by name in the working memory.
Before, the id of message.Value was determined at compile time and
passed directly to the Execute routine.

Writing Programs that Call the Rules Element
The different versions of our hello program use the Rules Element
interpreter (they call NXPLine_Main). We will now modify the program so
that it does not need the line mode interpreter.

Starting the Development Environment (hello5)

If you are working with a development system on PC (with Windows or
Presentation Manager), Mac, UNIX or OpenVMS (with X Windows
graphics), you can launch the development environment instead of starting
the line mode interpreter. You must replace the NXPLine_Main routine by
the two following lines:

NXPGFX_Control(NXPGFX_CTRL_INIT);
NXPGFX_Control(NXPGFX_CTRL_START);
NXPGFX_Control(NXPGFX_CTRL_EXIT);

The first call to NXPGFX_Control initializes the graphics data structures.
The second one displays the splash screen, opens the Rules Element main
window, and then processes all the interface events (clicks and keystrokes)
until you select the Quit option from the system menu.

Note: If you are using a runtime system instead of a development system,
NXPGFX_Control is unavailable.
18 C Programmer’s Guide

Writing Programs that Call the Rules Element
Starting the graphics environment allows you to test your Execute routines
in the development system. You can load knowledge bases, run sessions,
modify rules and objects, and browse the networks as usual. Moreover,
when you edit an Execute statement in the rule or meta-slots editor, the first
argument popup contains a “Copy Execute” option which allows you to
choose among the Execute routines that you have declared with the
NXP_SetHandler routine.

Loading a Knowledge Base and Running a Session (hello6)

Instead of giving control to the line mode interpreter (or to the development
environment), this new version of our program will load the hello.tkb
knowledge base, suggest the test_hello hypothesis, and run the session.
Only the main routine needs to be modified:

Int main L2(Int, argc, Str*, argv)
{

AtomId testHypo;
KBId testKB;

HELLO_Init("hello6")

ND_Init(argc, argv);
NXP_SetHandler(NXP_PROC_EXECUTE, (NxpIProc)hello, "hello");

printf("loading hello6.tkb\n");
if (!NXP_LoadKB("hello6.tkb",&testKB)) {

printf("Main: error %d while loading KB\n",
NXP_Error());
return EXIT_FAIL;

}
if (!NXP_GetAtomId("test_hello", &testHypo, NXP_ATYPE_SLOT)) {

printf("Main: error %d in get hypo id\n",
NXP_Error());
return EXIT_FAIL;

}
if (!NXP_Suggest(testHypo, NXP_SPRIO_SUG)) {

printf("Main: error %d in suggest\n",
NXP_Error());
return EXIT_FAIL;

}
printf("Starting session\n");
NXP_Control(NXP_CTRL_KNOWCESS);
ND_Exit();

return EXIT_OK;
}

The code should be self explanatory. You can read the NXP_Suggest and
NXP_Control descriptions in Chapter Three, “The C Library.” The last
NXP_Control routine will return when the knowcess is complete.

This example also illustrates the error handling mechanism. The NXP_
routines (except NXP_Error) return 1 on success and 0 on failure. If a
routine fails, you can call NXP_Error which will return a code describing
the error more precisely. In our example, the error code returned by
NXP_Error is included in the error message (formatted by printf).

This new program is not interactive; it loads the knowledge base, suggests
test_hello, runs the session (and thus prints the hello world!
message) and then exits.
C Programmer’s Guide 19

Chapter C Primer2
Writing the Interpreter (hello7)

At this point, we can write a very simple interpreter which will allow us to
control our hello example interactively. The main routine becomes:

Int main L2(Int, argc, Str*, argv)
{

int running= 1;
AtomId testHypo;
KBId testKB;

HELLO_Init("hello7")

/* startup: same as before without error handling */
ND_Init(argc, argv);
NXP_SetHandler(NXP_PROC_EXECUTE, (NxpIProc)hello, "hello");

printf("loading hello7.tkb");
if (!NXP_LoadKB("hello7.tkb",&testKB)) {

printf("Main: error %d while loading KB\n", NXP_Error());
ND_Exit();
return EXIT_FAIL;

}

if (!NXP_GetAtomId("test_hello", &testHypo, NXP_ATYPE_SLOT)) {
printf("Main: error %d in get hypo id\n", NXP_Error());
ND_Exit();
return EXIT_FAIL;

}

while (running) {
/* display prompt */

#if (defined(MAC) || defined(IBMC2))
/* Must return to line because of MPW shell: */
printf("\nNXP> \n");

#else
printf("\nNXP> ");

#endif /* MAC */
/* dispatch character */
switch (getfirstchar()) {
case '\n':

continue;
case 's':

NXP_Suggest(testHypo, NXP_SPRIO_SUG);
break;

case 'k':
NXP_Control(NXP_CTRL_KNOWCESS);
break;

case 'r':
NXP_Control(NXP_CTRL_RESTART);
break;

case 'q':
running = 0;
break;

case '?':
printf("\ns: suggest\nk: knowcess");
printf("\nr: restart\nq: quit");
printf("\n?: help");
break;

default:
printf("invalid command");
break;

}
}

20 C Programmer’s Guide

Writing Programs that Call the Rules Element
ND_Exit();

return EXIT_OK;
}

getfirstchar() is a simple C routine which returns the first character of
the next line you type:

char getfirstchar L0()
{

char c;
c = getchar();
if (c != '\n') {

/* eat characters until end of line */
while (getchar() != '\n';

}
return c;

}

With this new version, you can run sessions with a sequence of suggest (s),
knowcess (k), and restart session (r). You can quit (q) at any time.

Using Question Handlers (hello8)

With some knowledge of the C programming language, you could easily
modify our basic interpreter to handle a more complex (but still simple)
command language like:

load kb_name
suggest hypo_name
...

Problems will arise if the inference engine needs to ask a question during the
session. If you do not provide a question procedure (or handler), the Rules
Element uses its default question handler.

You can try this by modifying the hello7.tkb knowledge base. You can
replace the Assign ("hello world!") (message) condition by
Assign (message) (message). As message is UNKNOWN when you
start the session, the Rules Element needs to get the value of message in
order to assign it with the Assign operator.

Writing a question handler is fairly simple. The question handler receives
two arguments: the id of the slot whose value is needed by the Rules
Element and the prompt line associated with this slot. The code of our
question handler will be the following:

Int MyQuestion L2(AtomId, slot, Str, prompt)
{

Char answer[255];
Char c;
Int i;

/* display the prompt line */
printf(prompt);

#if (defined (MAC) || defined(IBMC2))
/* Must return to line because of MPW shell: */
printf("\nEnter value: \n");

#else
printf("\nEnter value: ");

#endif

/* get a line of text from the terminal */
for (i = 0; i < 254; i++) {
C Programmer’s Guide 21

Chapter C Primer2
c = getchar();
/* exit loop if new line */
if (c == '\n') break;
answer[i] = c;

}
/* terminate the string with a NULL character */
answer[i] = '\0';

/* volunteer the answer */
NXP_Volunteer(slot, NXP_DESC_STR, answer, NXP_VSTRAT_QFWRD);

/* return 1 - the question has been processed */
return 1;

}

Merely writing the question procedure is not a sufficient modification. We
must install our question procedure as a handler with a NXP_SetHandler
routine. The following line must be inserted in our main procedure after the
initialization of the Rules Element ND_Init(argc, argv):

NXP_SetHandler(NXP_PROC_QUESTION, (NxpIProc)MyQuestion,
(Str)0);

Now, our simple interpreter can ask questions, and we can run the modified
knowledge base with Assign (message) (message). A sample session
will look like:

NXP> s
NXP> k
What is the Value of message?
Enter value: hello world!
message.Value = hello world!
NXP>

For More Advanced Programmers;

Now that you’re comfortable with using application programming interface
routines, we can try more advanced tasks.

Accessing the Working Memory

The NXP_GetAtomInfo function of the application programming interface
allows a program to retrieve any information about the contents of the
working memory. In this section we do not intend to give a complete
description of the NXP_GetAtomInfo routine. We will instead
demonstrate with a few examples the mechanisms by which the working
memory can be investigated. We will also describe how the working
memory can be modified by a program (creation and deletion of objects or
links).

Creating Objects and Assigning Slot Values (hello9 - Part 1)

Let us modify our hello routine so that it creates objects inside the working
memory instead of displaying a message.

The new routine will be:

Int hello L3(Str, theStr, Int, nAtoms, AtomId*, theAtoms)
{

Int i;
22 C Programmer’s Guide

For More Advanced Programmers;
Char name[255];
AtomId myObject;
AtomId myClass;
AtomId rankProp;
AtomId rankSlot;

if (!NXP_GetAtomId("test_class", &myClass, NXP_ATYPE_CLASS)) {
printf("test_class does not exist\n");
return 0;

}

if (!NXP_GetAtomId("rank", &rankProp, NXP_ATYPE_PROP)) {
printf("rank property does not exist\n");
return 0;

}

for (i = 1; i <= 10; i++) {

/* generate object name: obj_0, obj_1, ... */
sprintf(name, "obj_%02d", i);

/* create object and link it to test_class */
NXP_CreateObject((AtomId)0, name, myClass, &myObject, 0);

/* get the id of the rank slot of myObject */
if (!NXP_GetAtomInfo(myObject, NXP_AINFO_SLOT,

rankProp, 0, NXP_DESC_ATOM, (char*)&rankSlot,0)) {
printf("rank slot was not created\n");
return 0;

}
/* set rank to i */
NXP_Volunteer(rankSlot, NXP_DESC_INT, (Str)&i,

NXP_VSTRAT_CURFWRD);
}
return 1;

}

To run this example, you must create a class called test_class with one
integer slot called rank. This new hello routine will create 10 objects called
obj_0, obj_1, ..., obj_9. The NXP_CreateObject routine will also
attach the newly created objects to the test_class class. Therefore, the
new objects will inherit a rank slot from their parent class (unless you
disable the downward inheritability of test_class.rank).

This routine also assigns the values of the rank slots. For example,
obj_5.rank receives the value 5. This is achieved by calling
NXP_GetAtomInfo with the appropriate parameters to obtain the id of the
rank slot of the new object and then calling NXP_Volunteer to assign a
value to this slot.

Note: By default, values assigned with NXP_Volunteer are not set
immediately. They are queued and set only when the inference
engine starts or resumes its processing. As a result, calling
NXP_GetAtomInfo with the NXP_AINFO_VALUE code to get the
value just after it has been assigned with NXP_Volunteer will
return the old value of the slot, not the new one. Nevertheless, you
can set the NXP_VSTRAT_SET bit in the fourth argument of
NXP_Volunteer if you want the value to be set immediately. You
should read the description of the NXP_Volunteer routine in the C
library chapter for more information.
C Programmer’s Guide 23

Chapter C Primer2
The hello9.c example file also contains the code described in the next
section so that you can display the objects which have been created by this
hello Execute routine.

Investigating the Object Base (hello9 - Part 2)

Now let us improve our interpreter and add two commands:

o To list all the objects in the working memory. The
temporary objects will be prefixed by a plus (+)
sign. Each object is followed by the list of its slots
with their current value.

c To display the classes and their instances.

We must add two cases in our main switch statement:

switch (getfirstchar()) {
case '\n':

continue;
case 'c':

ListClasses();
break;

case 'o':
ListObjects();
break;

/* continues as before */
case 's':

...

The code for the new functions is the following:

/**
ListSlots - lists slots of one object with their values

***/

void ListSlots L1(AtomId, obj)
{

Int len;
Int i;
AtomId slot;
Char buf[255];

/* get number of slots */
NXP_GetAtomInfo(obj, NXP_AINFO_SLOT, (AtomId)0, -1,

NXP_DESC_INT, (Str)&len, 0);

for (i = 0; i < len; i++) {

/* get ith instance */
NXP_GetAtomInfo(obj, NXP_AINFO_SLOT, (AtomId)0, i,

NXP_DESC_ATOM, (Str)&slot, 0);

/* get its name and print it */
NXP_GetAtomInfo(slot, NXP_AINFO_NAME, (AtomId)0, 0,

NXP_DESC_STR, buf, 255);
printf("\n\t%s", buf);

/* get its value and print it */
NXP_GetAtomInfo(slot, NXP_AINFO_VALUE, (AtomId)0, 0,

NXP_DESC_STR, buf, 255);
printf(" = %s", buf);

}
}

24 C Programmer’s Guide

For More Advanced Programmers;
/**
ListObjects - lists objects followed by their slot values

***/

void ListObjects L0()
{

AtomId obj;
Int type;
Char buf[255];

NXP_GetAtomInfo((AtomId)0, NXP_AINFO_NEXT, (AtomId)0,
NXP_ATYPE_OBJECT, NXP_DESC_ATOM, (Str)&obj, 0);

while (obj) {

/* get object name */
NXP_GetAtomInfo(obj, NXP_AINFO_NAME, (AtomId)0, 0,

NXP_DESC_STR, buf, 255);

/* is it a temporary object */
NXP_GetAtomInfo(obj, NXP_AINFO_TYPE, (AtomId)0, 0,

NXP_DESC_INT, (Str)&type, 0);

/* print the object */
if (type & NXP_ATYPE_TEMP) printf("\n+ %s", buf);
else printf("\n%s", buf);

ListSlots(obj);

/* get next object */
NXP_GetAtomInfo(obj, NXP_AINFO_NEXT, (AtomId)0,

NXP_ATYPE_OBJECT, NXP_DESC_ATOM, (Str)&obj, 0);
}

}

/**
ListInstances - displays list of instances of a class
Called by ListClasses

***/

void ListInstances L1(AtomId, class)
{

Int len;
Int i;
AtomId obj;
Char buf[255];

/* get number of instances */
NXP_GetAtomInfo(class, NXP_AINFO_CHILDOBJECT, (AtomId)0, -1,

NXP_DESC_INT, (Str)&len, 0);

for (i = 0; i < len; i++) {
/* get ith instance */
NXP_GetAtomInfo(class, NXP_AINFO_CHILDOBJECT, (AtomId)0, i,

NXP_DESC_ATOM, (Str)&obj, 0);

/* get its name and print it */
NXP_GetAtomInfo(obj, NXP_AINFO_NAME, (AtomId)0, 0,

NXP_DESC_STR, buf, 255);
printf("\n\t%s", buf);

}
}

C Programmer’s Guide 25

Chapter C Primer2
/**
ListClasses - lists classes with their instances

***/

void ListClasses L0()
{

AtomId class;
Char buf[255];

NXP_GetAtomInfo((AtomId)0, NXP_AINFO_NEXT, (AtomId)0,
NXP_ATYPE_CLASS, NXP_DESC_ATOM,(Str)&class, 0);

while (class) {

/* get class name and print it */
NXP_GetAtomInfo(class, NXP_AINFO_NAME, (AtomId)0, 0,

NXP_DESC_STR, buf, 255);
printf("\n%s", buf);

/* display list of instances */
ListInstances(class);

/* get next class */
NXP_GetAtomInfo(class, NXP_AINFO_NEXT, (AtomId)0,

NXP_ATYPE_CLASS, NXP_DESC_ATOM, (Str)&class, 0);
}

}

To test this version, you can display the list of classes and list of objects
before and after having run a session which calls the hello Execute routine.
You should see the dynamic objects created by the hello routine. You can
also check that dynamic objects are deleted when the session is restarted.

This example illustrates the two ways to access the elements of a list.

■ With the first protocol (NXP_AINFO_NEXT), a NULL atom is passed as
input to the first routine. The first atom in the list is returned by the first
routine. Then the current atom id is passed as input to
NXP_GetAtomInfo which returns the next atom id in the list or NULL
if the end of list has been reached.

■ With the second protocol (NXP_AINFO_CHILDOBJECT,
NXP_AINFO_SLOT), NXP_GetAtomInfo is first called with -1 as the
fourth parameter. This first routine returns the number of atoms in the
list. Then an integer i ranging from 0 to len-1 (where len is the number
of atoms returned by the first routine) is passed as the fourth argument
and the id of the (i+1)th atom is returned.

Remarks on NXP_GetAtomInfo

You can experiment with other NXP_GetAtomInfo codes and increase the
power of our interpreter. As exercises, you can write a routine which will
delete all the instances of a class (provided that they are dynamic objects),
or a routine which recursively displays the subclasses, instances, subobjects,
and slots of a given class or object (full right expand in the object network,
but displayed as text with different indentation levels). You can also try to
display the text of rules, the meta-slot information, the strategy settings, etc.

The NXP_GetAtomInfo routines take seven arguments and are thus
difficult to read and write. The nxppub.h file contains macro definitions
26 C Programmer’s Guide

Advanced Control
for the most useful NXP_GetAtomInfo routines. Our last example
hello12.c uses the macros instead of NXP_GETATOMINFO routines.

Using NXP_GetAtomInfo with other information codes should not raise
any special problems. Confusing the different atom id types (classes,
objects, properties, slots, hypotheses, data, etc.) causes most of the problems
encountered by developers during early stages of their development. You
should refer to Chapter One, “Overview” for a precise classification of the
atom ids. The most common sources of confusion are:

■ Slots (hypotheses or data are slots) and objects. Slots have values
(obtained with NXP_AINFO_VALUE), but objects do not have values.
For example, the slot tank1.pressure has a value, but the object
tank1 does not have one. The risk of confusion is greater with a slot
name like check_tank1 (which may be a hypothesis). The slot is in
fact check_tank1.Value (even if it is usually displayed without the
.Value part), not the object check_tank1 which does not have a
value.

■ Slots and properties. Slots have values, properties do not have values.
For example tank1.pressure is a slot but pressure is a property.

It is also important to remember that NXP_GetAtomInfo retrieves the
current information from the working memory. It never triggers the
inference or inheritance mechanisms. For example the order of sources
methods are not triggered when you call NXP_GetAtomInfo with the
NXP_AINFO_VALUE code.

Advanced Control
With the material described in the previous sections of this primer, you
should be able to write external routines and to control simple applications:
load a knowledge base, suggest or volunteer, start the inference engine, and
then obtain the final results.

In complex applications, you may need to interrupt the inference engine
and resume processing afterwards. This section should allow you to
understand how you can control the inference engine in the context of an
embedded application. The problem of inputting values (i.e. from a data
acquisition program) during a session will also be addressed in this section.

Interrupting a Session (hello10 - Part 1)

When you call NXP_Control(NXP_CTRL_KNOWCESS) to start a session
your NXP_Control routine starts the inference engine and returns to its
caller only when the session is finished (the agenda of the inference engine
is empty) unless you interrupt the session with a
NXP_Control(NXP_CTRL_STOPSESSION) during the session.

Since the caller of NXP_Control(NXP_CTRL_KNOWCESS) doesn’t receive
control until the knowcess is complete, you can only stop the session from a
handler that you have set and that will be called by the inference engine.

The execution of a simple application that does not interrupt the session is
described by the following flow chart (in this example, the inference engine
C Programmer’s Guide 27

Chapter C Primer2
calls one Execute routine and asks only one question during the whole
session):

If you want to interrupt the session, call NXP_Control with the
NXP_CTRL_STOPSESSION code from the execute routine. The execution
flow becomes:

Initialization: load kb, suggest, install
question and execute handlers

Start the inference engine:
NXP_Control(NXP_CTRL_KNOWCESS)

End of Session: agenda is empty.
Get results and print report.

Process the Agenda

Execute: call execute handler

Process the Agenda

Question: call Question Handler

Process the Agenda

Initialization: load kb, suggest, install
question and execute handlers

Start the inference engine:
NXP_Control(NXP_CTRL_KNOWCESS)

End of Session: agenda is empty.
Get results and print report.

Process the Agenda

Execute: call execute handler which calls
NXP_Control(NXP_CTRL_STOPSESSION)

Terminate processing loop

Question: call Question Handler

Process the Agenda

Resume Session:
NXP_Control(NXP_CTRL_CONTINUE)

Process the Agenda
28 C Programmer’s Guide

Advanced Control
We can demonstrate the use of NXP_CTRL_STOPSESSION with the
following Execute routine and rule:

Int hello L3(Str, theStr, Int, nAtoms, AtomId*, theAtoms)
{

while (1) {
#ifdef MAC

/* Must return to line because of MPW shell: */
printf("\nDo you want to interrupt the session (y or n)? : \n");

#else
printf("\nDo you want to interrupt the session (y or n)? : ");

#endif /* MAC */
switch (getfirstchar()) {
case 'y':

NXP_Control(NXP_CTRL_STOPSESSION);
return 1;

case 'n':
return 1;

case '\n':
break;

default:
printf("\nInvalid answer");
break;

}
}

}

(@RULE=test_rule
(@LHS=

(Execute ("hello"))
(Assign (message)(message))

)
(@HYPO=test_hello)

)

If you answer y when you are prompted by the hello routine, the Rules
Element will not prompt you for the value of message.

Now, we need to modify the main routine so that we can resume the session
after the interruption. One way would be to bind a new command character
to the NXP_Control(NXP_CTRL_CONTINUE) routine. We can also reuse
the k character. Typing k will start or resume the session, as appropriate.
The main routine becomes (the new code is in bold typeface):

Int main L2(Int, argc, Str*, argv)
{

int running= 1;
int restarted = 1;
AtomId testHypo;
KBId testKB;

HELLO_Init("hello10")

/* startup: same as before without error handling */
ND_Init(argc, argv);

NXP_SetHandler(NXP_PROC_EXECUTE, hello, "hello");
NXP_SetHandler(NXP_PROC_QUESTION, MyQuestion, (Str)0);

printf("loading hello10.tkb");
if (!NXP_LoadKB("hello10.tkb",&testKB)) {

printf("Main: error %d while loading KB\n", NXP_Error());
ND_Exit();
return EXIT_FAIL;

}

C Programmer’s Guide 29

Chapter C Primer2
if (!NXP_GetAtomId("test_hello", &testHypo, NXP_ATYPE_SLOT)) {
printf("Main: error %d in get hypo id\n", NXP_Error());
ND_Exit();
return EXIT_FAIL;

}

while (running) {
/* display prompt */

#ifdef MAC
/* Must return to line because of MPW shell: */
printf("\nNXP> \n");

#else
printf("\nNXP> ");

#endif /* MAC */
/* dispatch character */
switch (getfirstchar()) {
case '\n':

continue;
case 'c':

ListClasses();
break;

case 'o':
ListObjects();
break;

case 's':
NXP_Suggest(testHypo, NXP_SPRIO_SUG);
break;

case 'k':
if (restarted) {

restarted = 0;
NXP_Control(NXP_CTRL_KNOWCESS);

} else {
NXP_Control(NXP_CTRL_CONTINUE);

}
break;

case 'r':
NXP_Control(NXP_CTRL_RESTART);
restarted = 1;
break;

case 'q':
running = 0;
break;

case '?':
printf("\nc: classes\no: objects");
printf("\ns: suggest\nk: knowcess");
printf("\nr: restart\nq: quit");
printf("\n?: help");
break;

default:
printf("invalid command");
break;

}
}
ND_Exit();

return EXIT_OK;
}

With these modifications, you can interrupt the session when you are
prompted by the hello routine. At this point, you can list the objects and
the classes, and then resume the session by typing k. The inference engine
will resume its processing and prompt you for the value of message.
30 C Programmer’s Guide

Advanced Control
Non-modal Questions (hello10 - Part 2)

Our current question handler is modal, which means that when the question
handler prompts the user, the user must answer the question. The user
cannot examine the list of objects and values before answering, nor can he
decide to restart the session. A non-modal question handler allows the user
to delay answering the question and gives him access to all the commands
of the interpreter.

One solution to this problem would be to call a command dispatcher (like
our main switch statement) from the question handler. This would make
the program behave as expected but introduces a major design flaw in the
program. If your question handler dispatcher lets the user restart the
session, suggest a hypothesis and start a session, you may end up with a
stack of routines like:

Gray lines indicate that the Rules Element kernel procedures are pushed on
the stack. The problem is that myQuestion is called recursively. The inner
NXP_Control(NXP_CTRL_KNOWCESS) routine will never receive a
meaningful answer from its question handler (if the latter ever returns)
because another session has been started in the meantime. The end result is
that we have pushed procedures uselessly on the stack and nothing
prevents the user from stacking more
NXP_Control(NXP_CTRL_KNOWCESS) routines.

The remedy is to have the question handler interrupt the session and return
TRUE without having volunteered an answer. Then the initial
NXP_Control(NXP_CTRL_KNOWCESS) routine will return to its caller (the
command dispatcher). The question will be asked again later when the user
resumes the session with our k command.

The code of the non-modal question handler is the following:

Int MyQuestion L2(AtomId, slot, Str, prompt)
{

char answer[255];
char c;
Int i;

/* display the prompt line */
printf(prompt);

main()

NXP_Control(NXP_CTRL_KNOWCESS)

myQuestion()

NXP_Control(NXP_CTRL_KNOWCESS)

myQuestion()
C Programmer’s Guide 31

Chapter C Primer2
#if (defined (MAC) || defined(IBMC2))
/* Must return to line because of MPW shell: */
printf("\nEnter value: \n");

#else
printf("\nEnter value: ");

#endif /* MAC */

/* get a line of text from the terminal */
for (i = 0; i < 254; i++) {

c = getchar();
if (i == 0 && c == '!') {

/* eat characters till end of line */
while (getchar() != '\n');
NXP_Control(NXP_CTRL_STOPSESSION);
return 1;

}
/* exit loop if new line */
if (c == '\n') break;
answer[i] = c;

}
/* terminate the string with a NULL character */
answer[i] = '\0';

/* volunteer the answer */
NXP_Volunteer(slot, NXP_DESC_STR, answer, NXP_VSTRAT_QFWRD);

/* return 1 - the question has been processed */
return 1;

}

The changes are indicated in bold. The user can escape to the main
command dispatcher by typing ! instead of answering the question. In the
main command dispatcher, the user can resume his session by typing k.

Entering Values During a Session

In a real time environment, such as process control, your Rules Element
application receives data values or notifications (alerts) while a session is
running. You must be able to process these incoming events.

The easiest case is when values are entered synchronously. This happens if
your application needs to poll a serial port in order to get its data. You can
install a polling handler which will be called by the inference engine at each
inference cycle.

Sample code would look like:

int MyPolling()
{

Char theStr[MAXDATASIZE];

while (GetStringFromPort(theStr)) {
/* data is present on the input line */
/* GetStringFromPort will copy it into theStr */

/* eventually use NXP_CreateObject to create */
/* a new object */
NXP_CreateObject(...);

/* volunteer theStr into a slot (dynamic or not) /*
/* with appropriate strategy */
NXP_Volunteer(...);

}
return 1;

}

32 C Programmer’s Guide

Customizing the User Interface
The polling procedure must be installed in the initialization part of your
program:

NXP_SetHandler(NXP_PROC_POLLING, (NxpIProc)MyPolling, (Str)0);

If the polling procedure returns TRUE, the Rules Element will not call its
default polling procedure after MyPolling. The default polling procedure
is a NO OP (no operation) in the runtime version, but it is used to check the
interrupt button of the session control window in the development version
of the Rules Element. In this latter case, returning TRUE will disable the
interrupt mechanism.

If the values are input by an asynchronous mechanism (interrupts, ASTs on
VMS, signals on UNIX), you should not create objects or set values
asynchronously (in the interrupt handler or the AST routine) because this
may create an inconsistent inference state and corrupt the working memory.
Instead, you should set up an internal queue, queue the values
asynchronously, and let the inference engine process them synchronously
from the polling handler. The code of a typical polling handler will be very
similar to the synchronous case described earlier, the
GetStringFromPort routine being replaced by a GetDataFromQueue
routine.

Customizing the User Interface
You may also need to customize the user interface of the Rules Element (i.e.
to integrate the Rules Element with the existing interface of your application
in the case of a fully embedded application). This section will explain how
you can use NXP_SetHandler to control the interaction between the
inference engine and its interface.

Using Communication Handlers

The user interface of a Rules Element application can be completely
customized with the application programming interface. The
communication between the Rules Element kernel and the user interface is
controlled by the following handlers:

■ NXP_PROC_ALERT

■ NXP_PROC_APROPOS

■ NXP_PROC_DECRYPT

■ NXP_PROC_ENCRYPT

■ NXP_PROC_GETDATA

■ NXP_PROC_GETSTATUS

■ NXP_PROC_NOTIFY

■ NXP_PROC_PASSWORD

■ NXP_PROC_QUESTION

■ NXP_PROC_SETDATA

The Question handler has already been described in this primer.
C Programmer’s Guide 33

Chapter C Primer2
The Alert handler is called by the Rules Element kernel when an error
occurs, or if the user needs to confirm an action (in the development
environment an alert dialog appears on the screen).

The Apropos handler is called by the inference engine when a Show
statement is executed.

These three handlers (Question, Alert, Apropos) are very specialized. The
last four handlers are much more general, and handle all the other
communications between the kernel and its interface: sending text to the
transcript, getting text from the rule editor window in order to compile a
rule, controlling the "select a data type for ..." window during a compilation,
. . .). There are, in fact, two bidirectional communication channels between
the kernel and the interface:

■ A control channel which notifies (NXP_PROC_NOTIFY) the interface
when atoms are modified in the working memory. In the other
direction, the kernel can query the status of an interface window
(NXP_PROC_GETSTATUS).

■ A data channel which allows the kernel to send information to a
window (NXP_PROC_SETDATA), and to request information from a
window (NXP_PROC_GETDATA). These could occur, for example, when
outputting text into the transcript in the first case, and when compiling
a rule in the second case.

The role of the communication handlers is summarized in the following
diagram:

To customize the user interface, you must install your own communication
handlers. The description of NXP_SetHandler in the C library manual
provides information about the arguments of the different handlers and the
valid combinations of arguments which a user program is allowed to
process. In this primer, we will illustrate the use of the communication
handlers with a couple of examples.

A I

KERNAL

USER

INTERFACE

Question

Alert

Apropos

Notify

GetStatus

SetData

GetData

Control Channel Data Channel
34 C Programmer’s Guide

Customizing the User Interface
Writing in the Transcript (hello11)

In this example, we will use one of the existing communication channels.
We will write an execute routine that writes a message to the transcript
window. This example is relevant only if you are programming with a
development version of the Rules Element. The source code is the
following:

#define ERR_LIB NEXPERT

#include <nxppub.h>
#include "nxpinter.h"

#define ND_GUI 1
#define ND_IR 1
#include <nd.h>

/**
hello: Execute routine

***/

Int hello L3(Str, theStr, Int, nAtoms, AtomId*, theAtoms)
{

NXP_SetData(NXP_WIN_TRAN, NXP_ITEM_NONE, -2, theStr);
return 1;

}

/**
main

***/

Int main L2(Int, argc, Str*, argv)
{

HELLO_Init("hello11")

ND_Init(argc, argv);
NXP_SetHandler(NXP_PROC_EXECUTE, hello, "hello");

/*
 * MAC VERSION CANNOT LAUNCH GRAPHIC ENVIRONMENT FROM A
 * COMMAND-LINE PROGRAM. You must relink the entire rules
 * development system in order to use the graphic environ.
 */

#if !defined(MAC) && ND_GUI
NXPGFX_Control(NXPGFX_CTRL_INIT);
NXPGFX_Control(NXPGFX_CTRL_START);
NXPGFX_Control(NXPGFX_CTRL_EXIT);

#endif
ND_Exit();

return EXIT_OK;
}

This program starts the interactive interface. From the expert menu, you
can load the hello11.tkb knowledge base, suggest test_hello and start the
session. If your transcript window is open, the hello world message should
be logged along with the trace information when we run the session.

Note: If you want to write your message only to the transcript, you should
pass -1 instead of -2 as the third argument to NXP_Notify (the
transcript must still be enabled).
C Programmer’s Guide 35

Chapter C Primer2
Trapping Transcript Messages (hello12)

In the previous example, we did not really customize the user interface of
the Rules Element. Instead, we used the existing user interface (transcript
window) to display one of our messages.

Now, let us suppose that we run the Rules Element from a character based
terminal and that we want to trap the transcript messages in order to
display them on the screen. Instead of using one of the communication
channels (SetData channel), we want to provide our own communication
channel which will output the messages on the screen. This is achieved by
installing a custom SetData handler. The code of our SetData handler is
the following:

Int MySetData L4(Int, winId, Int32, ctrlId, Int32, index, Str, thePtr)
{

if (winId != NXP_WIN_TRAN) return 0;
if (thePtr == 0) return 0;
prinf("\n%s", thePtr);
return 1;

}

If your handler returns FALSE, the Rules Element will call its default
SetData handler afterwards. You must remember that the Rules Element
uses the SetData handler for all its communication with the user interface.
It is thus very important to return FALSE if your SetData handler does not
process the routine, especially if your program has started the development
interface with the NXPGFX_Control call. In this example, our handler
returns TRUE. As a result the Rules Element will not log the messages in
the transcript window. If we modify MySetData and let it return FALSE in
any case, transcript messages will be displayed onto the screen by our
SetData handler and logged into transcript by the default SetData
handler which is called afterwards by the Rules Element kernel.

We must install this handler with a NXP_SetHandler routine in the
initialization of our program:

NXP_SetHandler(NXP_PROC_SETDATA, (NxpIProc)MySetData, (Str)0);

This code could seem sufficient to trap the transcript messages. In fact, it
will only work if we are running from the development interface with the
transcript enabled. The reason is that before running a session, the Rules
Element queries the interface to know if the transcript window is enabled or
not. This refinement has been introduced to avoid formatting useless
messages and thus speed up the inference engine when the trace
information is not requested.

The interface is queried with the GetStatus handler. In order to make our
example work, we must also provide our own version of the GetStatus
handler:

Int MyGetStatus L3(Int, winId, Int32, code, Str, thePtr)
{

if (winId != NXP_WIN_TRAN || code != NXP_GS_ENABLED)
return 0;

*(IntPtr)thePtr = 1;
return 1;

}

We must also install this handler in the initialization of our program:
36 C Programmer’s Guide

Customizing the User Interface
NXP_SetHandler(NXP_PROC_GETSTATUS, (NxpIProc)MyGetStatus,
(Str)0);

Compiling and Editing Knowledge Bases

With the application programming interface, you could also rewrite the
development environment of the Rules Element and, for example, provide
rule or object editors which run on character based terminals. You can also
use the compilation function to compile rules which have been generated
automatically by a program.

The NXP_Edit and NXP_Compile routines are described in Chapter Six,
“NXP_Edit Functions.”

With the NXP_Compile function, if you can guarantee that your input
buffer is syntactically correct and complete, you do not need to install
communication handlers. Otherwise you must provide handlers which will
treat the errors and the ambiguities (i.e. a data type which cannot be
determined from the context).

With the NXP_SaveKB routine, you can save knowledge bases which have
been created or modified by your program.

Monitoring a Session

You can also install communication handlers to monitor a session. The most
interesting handler in that case is the Notify handler. The Rules Element
kernel sends notification to the user interface when atoms are created or
deleted, when links are modified, and when values are changed. By tapping
into the control channel from the kernel to the interface, you can monitor the
modifications of the working memory during a session.

Your Notify handler should only process notifications intended for the
NXP_WIN_DDE window. It should return FALSE for notifications directed
to other windows so that they will be processed by the default Notify
handler which guarantees the integrity of the development interface. The
nxpmon example (nxpmon.c and nxpmon.tkb) demonstrates this
capability.
C Programmer’s Guide 37

Chapter C Primer2
38 C Programmer’s Guide

Chapter
3 The C Library 3

This chapter describes the C library calls as follows.

C Library Calls List
Following is the list of the Rules Element C library calls in alphabetical
order. The four most complex functions are decribed in a different chapter:
NXP_GetAtomInfo (Chapter Four), NXP_SetAtomInfo (Chapter Five),
NXP_Edit (Chapter Six), and NXP_Context (Chapter Seven).

Library Call Short Description
NXP_BwrdAgenda Allows for the queueing of events on the backward agenda.

NXP_Compile Compiles a text buffer of KB definitions.

NXP_Control Controls the inference engine.

NXP_CreateObject Creates objects and/or links between objects and classes.

NXP_DeleteObject Deletes objects and/or links between objects and classes.

NXP_Edit Initiates the compilation of an atom through the editor protocol (see
chapter 6).

NXP_Error Returns the error code of the last API call.

NXP_GetAtomId Returns the atom Id from a name.

NXP_GetAtomInfo Returns different pieces of information about an atom or a knowledge
base (see chapter 4).

NXP_GetHandler Gets procedures set with NXP_SetHandler.

NXP_GetHandler2 Gets procedures set with NXP_SetHandler2.

NXP_GetStatus Queries the status of the interface.

NXP_Journal Controls the journaling.

NXP_LoadKB Loads a knowledge base.

NXP_SaveKB Saves a knowledge base.

NXP_SetAtomInfo Provides some control over knowledge bases (see chapter 5).

NXP_SetClientData Associates client information with an atom.

NXP_SetData Sends data to the interface.

NXP_SetHandler Installs user-written procedures.

NXP_SetHandler2 Installs user-written procedures.

NXP_Strategy Changes the inference strategy.

NXP_Suggest Puts a hypothesis on the agenda.

NXP_UnloadKB Unloads or disables a knowledge base.

NXP_Volunteer Changes the value of a slot.

NXP_WalkNodes Allows the application of a user-defined function at each node along
the inheritance links of an atom.

NXPGFX_Control Controls the interactive interface of the Rules Element.
C Programmer’s Guide 39

Chapter The C Library3
NXP_BwrdAgenda
Purpose

This allows for the queueing of events on the Backward agenda. Currently,
only slots (data, hypotheses, etc.) can be queued for immediate evaluation.
This function will force the processing of the Order of Sources of the atom
by the inference engine. This occurs immediately after you give control
back to the Rules Element. If you are using the agenda monitor, the slot
appears in the current evaluation list.

C Format

The C format is as follows:

NXP_BwrdAgenda (atom, code, from);

Arguments

The following list shows the valid arguments:

AtomId atom;
int code;
AtomId from;

atom is the slot Id to be queued on the agenda.

code specifies the placement of the queuing of the backward chaining event.
It can be set to NXP_CTRL_ATTOP or NXP_CTRL_ATBOTTOM. The
default is NXP_CTRL_ATTOP.

from is not used at this time and should be set to 0.

Return Codes

NXP_BwrdAgenda returns 1 on success and 0 on error. In case of error,
more information about the error is obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error returns one of the
following codes:

Examples

The following example shows a generic Execute procedure to force the
Order of Sources of a slot. You can call this procedure from a rule passing
a slot (or a list of slots):

Execute "ForceOS" @ATOMID=Object.Prop (or <Class>.Prop)

Warning: You cannot get the value of a slot that is still unknown by forcing
the engine to execute the OS methods "right away" with
NXP_BwrdAgenda. The execute routine must return to the Rules
Element first before you can have a chance to call
NXP_GetAtomInfo / NXP_AINFO_VALUE to get the value.

int ForceOS(theStr, nAtoms, theAtoms)
Str theStr;
int nAtoms;
AtomId *theAtoms;

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a valid slot Id.

NXP_ERR_NOERR Call was successful.
40 C Programmer’s Guide

NXP_Compile
{
AtomId theSlot;
int err, ret;

/* We treat the case of 1 atom argument here (nAtoms=1) */
theSlot = theAtoms[0];
ret = NXP_BwrdAgenda(theSlot, 0, (AtomId)0);

if(ret == 0) {
 err = NXP_Error();
 /* Must not be a valid slot */
 ...
 return FALSE;

}
return TRUE; /* Execute successful */

}

See Also

NXP_Compile
Purpose

NXP_Compile compiles a text buffer containing knowledge base
definitions. The text buffer must have the format .TKB (see the Text KB
Syntax in the User’s Guide or look at text knowledge bases generated by the
Rules Element).

C Format

The C format is as follows:

int NXP_Compile(theStr);

Arguments

The following list shows the valid arguments:

Str theStr;

theStr points to the buffer which contains the knowledge base definitions.

Notes

The compilation takes place in working memory. The atoms created by
NXP_Compile become part of the current knowledge base. Use
NXP_GetAtomInfo to get information on a KB and NXP_SetAtomInfo to
change the current KB. Use NXP_SaveKB to save the knowledge base file if
you want your changes to be permanent.

Compilation error messages will typically be passed to you through the
Alert mechanism. You can provide an Alert handler to intercept any
messages, if desired, see NXP_SetHandler. You will also need a GetData
handler to provide a type of property or a nature of object if it is undefined
during the compilation.

NXP_GetAtomInfo /
NXP_AINFO_FOCUSPRIO

Returns the priority of an hypothesis on the agenda
C Programmer’s Guide 41

Chapter The C Library3
Return Codes

NXP_Compile returns 1 on success and 0 on error. In case of error, more
information about the error is obtained by calling NXP_Error immediately
after the call which has failed. NXP_Error returns one of the following
codes:

Examples

The following example illustrates how to compile a hard-coded rule
explicitly provided in a C string. Note that the double backslash is required
to pass on the interpretation ("\\n\\") since the backslash is an escape
sequence in C, and the backslash continuation character at the end of a line
indicates that the string is not finished. A complete compilation unit must
be sent to the Rules Element this way. A partial text with only the LHS or
HYPO, for example, would be incorrect. The example is as follows:

NXP_Compile(
 "(@RULE= R1 \
 (@LHS= (>= (n) (0)) (CreateObject ('obj_'\\n\\) (|c|))) \
 (@HYPO= h) \
 (@RHS= (Reset (h)) (Assign (n+1) (n))))");

You could use the following example if the string theStr contained TKB
information (for example, independently read in elsewhere):

NXP_Compile(theStr);

The Text KB syntax is described in an appendix of the User’s Guide manual.
You should also look at the text KB files generated by the Rules Element.

See Also

NXP_Control
Purpose

NXP_Control controls the inference engine of the Rules Element.

C Format

The C format is as follows:

NXP_Error() Return Code Explanation
NXP_ERR_ABORT Compilation was aborted by user or because the description was

incomplete and no interface was provided to prompt the user.

NXP_ERR_INTERNAL Some internal consistency check failed.

NXP_ERR_INVARG1 theStr is NULL.

NXP_ERR_NOERR Call was successful.

NXP_ERR_NOMEMORY Memory allocation failed.

NXP_ERR_SYNTAX The text buffer contained a syntax error.

NXP_CreateObject Create dynamic objects and links.

NXP_SaveKB Save a knowledge base to a file.

NXP_SetAtomInfo / NXP_SAINFO_CURRENTKB Set the current knowledge base.

NXP_PROC_GETDATA handler Used during NXP_Compile in case the Rules
Element needs more information.
42 C Programmer’s Guide

NXP_Control
int NXP_Control(code);

Arguments

The following list shows the valid arguments:

int code;

code can be one of the following values:

code can also be a combination of the following to effect ONLY the current
evaluation stack:

Code Description
NXP_CTRL_CLEARKB Clears ALL knowledge bases from the Rules Element’s memory.

This is the same as the "Clear All" command from the Development
System’s Expert Menu

NXP_CTRL_CONTINUE Restarts a session which had been stopped by a
NXP_CTRL_STOPSESSION code. (Same as
NXP_CTRL_KNOWCESS)

NXP_CTRL_EXIT Notifies the Rules Element that the application does not need to
communicate anymore. The Rules Element will clean up any
structures allocated.

NXP_CTRL_INIT Initializes the Rules Element’s working memory. This call should be
done once, before any other call to the Rules Element library.

NXP_CTRL_KNOWCESS Starts the inference engine. The call will return only at the end of
session or after an execute routine or a non-modal question handler
has stopped the session with the NXP_CTRL_STOPSESSION code.

NXP_CTRL_RESTART Restarts the session by resetting to UNKNOWN all the slots in the
knowledge base.

NXP_CTRL_STOPSESSION Suspends the current engine execution. The session can be restarted
with a NXP_CTRL_CONTINUE code. This code can be used to
implement a non modal question handler (see the Hello10 example
in the Primer).

Code Description
NXP_CTRL_SETSTOP Places a special "stop" context in the engine queue (the exact placement in

the stack is defined by the codes below). When the engine processes this
context, it will stop just as if a NXP_CTRL_STOP had been called. Doing
a KNOWCESS will cause the system to resume where it left off. If
NXP_CTRL_SETSTOP is used by itself, NXP_CTRL_ATTOP is assumed.

NXP_CTRL_ATTOP Specifies where the actions NXP_CTRL_SETSTOP or
NXP_CTRL_SAVESTRAT will get placed. ATTOP makes it the next item
to be processed (unless more items get queued in front of it).

NXP_CTRL_ATBOTTOM Specified where the actions NXP_CTRL_SETSTOP or
NXP_CTRL_SAVESTRAT will get placed. ATBOTTOM makes it the last
item to be processed in the current evaluation stack of the engine.

NXP_CTRL_SAVESTRAT Causes a special "save strategies" context to be saved on the queue by the
engine at the placement in the current evaluation stack specified by the
two codes mentioned above. The Agenda Monitor will display in the
current evaluation stack a NXP_CTRL_SAVESTRAT mark. This allows
the developer to modify the engine strategies with NXP_Strategy for
instance. However, when the engine re-encounters this context "mark"
during its processing, the strategies will be restored to what they were at
the time the save context was executed. If NXP_CTRL_SAVESTRAT is
used by itself, NXP_CTRL_ATTOP is assumed.
C Programmer’s Guide 43

Chapter The C Library3
Notes

NXP_CTRL_CLEARKB unload all knowledge bases. Use NXP_UnloadKB
to unload knowledge bases selectively.

NXP_CTRL_CONTINUE and NXP_CTRL_KNOWCESS will return only
after the session is stopped (it can be either during a non-modal question, at
the end of session, during a break-point or after an execute routine has
called NXP_CTRL_STOPSESSION).

NXP_CTRL_STOPSESSION is not a blocking call, it doesn’t stop the session
right away! It raises a flag that tells the engine to stop at the next inference
cycle. So the session is actually stopped only after your routine returns to
the Rules Element, and then the Rules Element returns to the caller of
NXP_CTRL_CONTINUE or NXP_CTRL_KNOWCESS.

NXP_CTRL_SAVESTRAT applies to the “current strategies,” not the
“default strategies.”

Return Codes

NXP_Control returns 1 on success and 0 on error. In case of error, more
information about the error can be obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error will return one of
the following codes:

Examples

The following example shows how to initialize the Rules Element and start
a session with NXP_Control. See the Hello programs in the Primer for
example using other codes and to get more information on the flow of
control during a session.

KBId theKBId;
AtomId theAtom;
int ret;
/* Initialize the Rules Element, always the first call! */
ret = NXP_Control (NXP_CTRL_INIT);
if(ret == 0) { ... error ... };
/* Load a knowledge base */
NXP_LoadKB ("Primer.KB", &theKBId);
/* suggest the first hypothesis in the KB */
NXP_GetAtomInfo ((AtomId)NULL, NXP_AINFO_NEXT, (AtomId)NULL,

NXP_ATYPE_HYPO, NXP_DESC_ATOM, (Str)&theAtom, 0);
NXP_Suggest(theAtom, NXP_SPRIO_SUG);
/* Start the session
 * This call will return when the session is stopped
 * (during a non-modal question for instance)
 */
NXP_Control(NXP_CTRL_KNOWCESS);

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 Invalid code.

NXP_ERR_INVSTATE code is NXP_CTRL_KNOWCESS but the engine was already started.

code is NXP_CTRL_STOPSESSION but the engine was not started.

code is NXP_CTRL_CONTINUE but the engine was not stopped.

NXP_ERR_MATHERROR A floating point error occurred.

NXP_ERR_NOERR Call was successful.
44 C Programmer’s Guide

NXP_CreateObject
The following example updates the agenda to execute the message
"Execute_Schedule" and stops right after.

int MyExecute()
{

AtomId schedulerId;
NXP_Control(NXP_CTRL_SETSTOP);
NXP_GetAtomId("Scheduler", &schedulerId,

NXP_ATYPE_CLASS);
NXP_SendMessage("Execute_Schedule", schedulerId,

(VoidPtr *)NULL, (int *)NULL, 0,
NXP_CTRL_ATTOP);

NXP_CreateObject
Purpose

NXP_CreateObject creates dynamic objects in the working memory and/or
creates links between objects and other objects or classes (same effect as the
operator CreateObject in a rule).

C Format

The C format is as follows:

int NXP_CreateObject(theAtom, objName, parentAtom, newId, flags);

Arguments

The following list shows the valid arguments:

AtomId theAtom;
Str objName;
AtomId parentAtom;
AtomId C_FAR* newId;
int flags;

theAtom is either the atom id of an existing object or class or NULL.

If theAtom is NULL, then an object will be created. In that case, objName
must be specified and will be the name of the new object (objName must be
a valid object name).

If theAtom is NULL and there is already an object with the name objName,
no object will be created and the call will perform as if the object id had been
passed in theAtom (it is more efficient to pass the object id in theAtom than
to pass NULL in theAtom and the object name in objName).

If theAtom is not NULL, objName is ignored.

parentAtom is the id of a class or an object to which the (eventually new)
object will be linked to. If parentAtom is NULL, the object will not be
attached to any new class or object.

If newId is not NULL, it should be pointing to a memory AtomId space
where the id of the newly created object will be returned.

flags is reserved for future use, and should be set to 0.

Notes

Objects and links created with NXP_CreateObject are dynamic (versus
permanent). They belong to the special knowledge base temporary.kb
C Programmer’s Guide 45

Chapter The C Library3
and will be removed at the next restart session (they have a + in front of their
name in the interface). You can avoid that by merging temporary.kb with
your current knowledge base and by making the links permanent: use the
call NXP_SetAtomInfo with code NXP_SAINFO_MERGEKB,
NXP_SAINFO_PERMLINKKB or NXP_SAINFO_PERMLINK.

You cannot create a class with NXP_CreateObject. Use NXP_Compile or
NXP_Edit.

When a new object is created, it will inherit slots only if it is linked to a class
or another object (parentAtom not NULL) and the downward inheritability
is enabled for these slots (this is the default for slots inherited from classes,
not for slots inherited from parent objects). When NXP_CreateObject is
used to create a link between an existing object and a class or a parent object,
the Rules Element also creates the new slots which are inherited
downwards along the new link.

Return Codes

NXP_CreateObject returns 1 on success and 0 on error. In case of error,
more information about the error can be obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error will return one of
the following codes:

Examples

An example that uses the call follows.

AtomId ChildObject;
AtomId ParentObject;
AtomId theClass;

/*
 * create two new objects ViewPoint and SubViewPoint.
 */
NXP_CreateObject((AtomId)NULL, "ViewPoint", (AtomId)NULL,
 &ParentObject, 0);
NXP_CreateObject((AtomId)NULL, "SubViewPoint", ParentObject,
 &ChildObject, 0);

/* attach SubViewPoint to ViewPoint and ViewPoint to
 * the class of ViewPoints.
 */
NXP_GetAtomId("ViewPoints", &theClass, NXP_ATYPE_CLASS)
NXP_CreateObject(ParentObject, (Str)NULL, theClass,
 (AtomId C_FAR *)NULL, 0);

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a valid class or object id.

NXP_ERR_INVARG2 theAtom and objName are NULL or ObjName is an
invalid atom name.

NXP_ERR_INVARG3 parentAtom is not a valid class or object id.

NXP_ERR_NOERR Call was successful.
46 C Programmer’s Guide

NXP_DeleteObject
See Also

NXP_DeleteObject
Purpose

NXP_DeleteObject deletes objects in the working memory and/or deletes
links between objects and other objects or classes (same effect as the
DeleteObject operator in the interface).

C Format

The C format is as follows:

int NXP_DeleteObject(theAtom, parentAtom);

Arguments

The following list shows the valid arguments:

AtomId theAtom;
AtomId parentAtom;

theAtom must be a valid object id.

If parentAtom is NULL and if the object is a temporary object (created during
the session) it will be removed from the knowledge base. Otherwise only
the link between theAtom and parentAtom will be destroyed.

If the link between theAtom and parentAtom is a permanent link (part of
the knowledge base), the link is only temporarily unlinked. During the
session, theAtom is not considered as belonging to parentAtom any more,
but the link will be restored at restart session.

Notes

You cannot delete a class with NXP_DeleteObject. You must use NXP_Edit.

Calling NXP_GetAtomInfo with NXP_AINFO_CHILDOBJECT to query
link information for the children objects of an object or class returns
permanent links of any deleted objects as well as intact permanent links. To
check the type of link, call NXP_GetAtomInfo with NXP_AINFO_LINKED.

Return Codes

NXP_DeleteObject returns 1 on success and 0 on error. In case of error,
more information about the error can be obtained by calling NXP_Error

NXP_DeleteObject Delete an object or a link.

NXP_Compile Compile KB definition.

NXP_SetAtomInfo /
NXP_SAINFO_MERGEKB,
NXP_SAINFO_PERMLINK

Create permanent objects or links.
C Programmer’s Guide 47

Chapter The C Library3
immediately after the call which has failed. NXP_Error will return one of
the following codes:

Examples

The following example deletes all the subobjects of theClass. The links
which are deleted are always the links indexed by 0. This is possible since
the links are deleted immediately.

AtomId theAtom;
AtomId ParentClass;/* atom id of theClass */
int Count;

/* Get the atom id */
NXP_GetAtomId("theClass", &ParentClass, NXP_ATYPE_CLASS);

/* Get the number of children */
NXP_GetAtomInfo(ParentClass, NXP_AINFO_CHILDOBJECT,

(AtomId)NULL, -1, NXP_DESC_INT, (Str)&Count, 0);

/* loop for all children, delete the link */
while (--Count >= 0) {

NXP_GetAtomInfo(ParentClass, NXP_AINFO_CHILDOBJECT,
 (AtomId)NULL, 0, NXP_DESC_ATOM, (Str)&theAtom, 0);

NXP_DeleteObject(theAtom, ParentClass);
}
NXP_GetAtomInfo(ParentClass, NXP_AINFO_CHILDOBJECT,

 (AtomId)NULL, -1, NXP_DESC_INT, (Str)&Count, 0);
if (Count != 0) {

/* there was a problem */
}

/* WARNING !
 * as the links are deleted immediately,
 * the following would be incorrect
 */
for (i = 0; i < Count; i++) {
 /*
 * WARNING
 * for i > Count / 2, the number of sub objects
 * of theClass will be less than Count / 2 because
 * of the links just deleted. Therefore
 * NXP_GetAtomInfo will return an error.
 */

NXP_GetAtomInfo(ParentClass, NXP_AINFO_CHILDOBJECT,
(AtomId)NULL, i, NXP_DESC_ATOM, (Str)&theAtom, 0);

NXP_DeleteObject(theAtom, ParentClass)
}
/* but the following would work as expected */
for(i = Count - 1; i >= 0; i--) {

NXP_GetAtomInfo(ParentClass, NXP_AINFO_CHILDOBJECT,
(AtomId)NULL, i, NXP_DESC_ATOM, (Str)&theAtom, 0);

NXP_DeleteObject(theAtom, ParentClass);
}

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a valid class or object id.

NXP_ERR_INVARG2 parentAtom is not NULL and is not a
valid class or object id.

NXP_ERR_NOERR Call was successful.
48 C Programmer’s Guide

NXP_Edit
See Also

NXP_Edit
Purpose

NXP_Edit allows a program to edit (create, modify, or delete) objects,
classes, rules, or meta-slots. It is maintained in this version mostly to ensure
compatibility with Version 1.0. See a full description in Chapter Six.

NXP_Edit can still be used to delete atoms, but NXP_Compile should be
called instead to create new atoms. Also, NXP_Edit creates permanent
(rather than temporary) objects, attached to a knowledge base. To create
temporary objects, use NXP_CreateObject.

C Format

The C format is as follows:

int NXP_Edit(winId, inAtom, outAtom, mode);

Arguments

The following list shows the valid arguments:

int winId;
AtomId inAtom;
AtomId C_FAR* outAtom;
int mode;

winId describes which editor is invoked. It is one of the following codes:

inAtom is either NULL or a valid AtomId.

outAtom is a pointer on a valid memory location where the created or
modified AtomId will be returned.

mode is one of the following constants:

NXP_Edit is described in more detail in chapter Six of this manual.

NXP_CreateObject Create dynamic objects or links.

Code Description
NXP_WIN_CLASSEDIT To edit a class.

NXP_WIN_CNTXEDIT To edit contexts.

NXP_WIN_METAEDIT To edit meta-slots.

NXP_WIN_OBJEDIT To edit an object.

NXP_WIN_PROPEDIT To edit a property.

NXP_WIN_RULEDIT To edit a rule.

Code Description
NXP_EDIT_COPY Identical to NXP_EDIT_NEW.

NXP_EDIT_DELETE To delete an existing atom.

NXP_EDIT_MODIFY To modify an existing atom.

NXP_EDIT_NEW To create a new atom.
C Programmer’s Guide 49

Chapter The C Library3
Return Codes

NXP_Edit returns 1 on success and 0 on error. In case of error, more
information about the error can be obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error will return one of
the following codes:

NXP_Error
Purpose

Returns an error code indicating why the last call to the Rules Element
library failed.

C Format

The C format is as follows:

int NXP_Error();

Arguments

None.

Notes

The Rules Element API calls do not return a specific error code, they return
1 on success and 0 on error. It is your responsability to check this returned
value and if it is 0 to call NXP_Error to get more information. (In
"debugging mode" it is recommended to check systematically all the error
codes and display messages with printf, NXP_Alert, etc., to help you solve
problems. In "production mode" you should judge how much error
checking is needed in your application).

NXP_Error() Return Code Explanation
NXP_ERR_ABORT Compilation was aborted by user or because the description was

incomplete and no interface was provided to prompt the user.

NXP_ERR_COMPILEPB Compilation of new atom did not succeed but the error was not
reported correctly.

NXP_ERR_INTERNAL Some internal consistency check failed.

NXP_ERR_INVARG1 Editor Id is invalid.

NXP_ERR_INVARG2 Input atom is invalid or has the wrong type.

NXP_ERR_INVARG3 outAtom is NULL and a value should be returned.

NXP_ERR_NOMEMORY Memory allocation failed.

NXP_ERR_SYNTAX One string received from the interface contained a syntax error.
50 C Programmer’s Guide

NXP_Error
Return Codes

NXP_Error returns the error code of the last called function (apart from any
calls to NXP_Error). It returns one of the following values defined in the file
nxpdef.h:

NXP_ERR_NOERR means the last called function was successful (the last
called function had returned TRUE). NXP_ERR_INVARG[1,2,3,4,5,6]
indicates that one argument was incorrect. The other error codes are
function dependent. See the description of individual functions for detail.

Example

Example for reporting errors:

int err;

if(NXP_Control(NXP_CTRL_INIT) == 0) {
err = NXP_Error();
printf("Error initializing the Rules Element, NXP_Error

= %d", err)
}

NXP_Error() Return Code Explanation
NXP_ERR_ABORT Compilation was aborted by user or because the description was

incomplete and no interface was provided to prompt the user.

NXP_ERR_COMPILEPB Compilation of new atom did not succeed and the error was not
reported correctly.

NXP_ERR_FILEEOF End of file encountered unexpectedly.

NXP_ERR_FILEOPEN File could not be opened.

NXP_ERR_FILEREAD Error reading the file.

NXP_ERR_FILESEEK Error seeking the file.

NXP_ERR_FILEWRITE Error writing the file.

NXP_ERR_FORMATERROR File header is invalid.

NXP_ERR_INTERNAL Some internal consistency check failed.

NXP_ERR_INVARG1 First argument of routine is invalid.

NXP_ERR_INVARG2 Second argument of routine is invalid.

NXP_ERR_INVARG3 Third argument of routine is invalid.

NXP_ERR_INVARG4 Fourth argument of routine is invalid.

NXP_ERR_INVARG5 Fifth argument of routine is invalid.

NXP_ERR_INVARG6 Sixth argument of routine is invalid.

NXP_ERR_INVATOM Some atoms saved in the file are invalid.

NXP_ERR_INVSTATE Argument is in an invalid state.

NXP_ERR_MATHERROR A floating point error occurred.

NXP_ERR_NOERR Call was successful.

NXP_ERR_NOMEMORY Memory allocation failed.

NXP_ERR_NOTFOUND No atom of the right type was found.

NXP_ERR_NOTKNOWN The value of the atom is NOTKNOWN.

NXP_ERR_SYNCERROR The parser lost its synchronization. The contents of the file may be
corrupted.

NXP_ERR_SYNTAX The text file contains a syntax error.

NXP_ERR_UNKNOWN The value of the atom is UNKNOWN.
C Programmer’s Guide 51

Chapter The C Library3
See Also

NXP_ErrorIndex
Purpose

If an API call which gets passed either an array or a list of items fails,
NXP_ErrorIndex in conjunction with NXP_Error can be used to determine
exactly which argument is invalid.

C Format

The C format is as follows:

int NXP_ErrorIndex();

Arguments

None.

Return Codes

For the functions NXP_GetAtomValueArray, NXP_SendMessageArray,
NXP_GetAtomValueLengthArray, and NXP_VolunteerArray,
NXP_ErrorIndex will return the array index of the invalid argument passed.
The index counter starts at 1, not 0, so if 1 is returned by NXP_ErrorIndex,
this means the first element of the array is invalid.

Example: If a call to NXP_GetAtomValueArray fails, NXP_Error returns
NXP_ERR_INVARG3 and NXP_ErrorIndex returns 2 this means that in the
AtomId array (i.e. the third argument passed to
NXP_GetAtomValueArray), the second element is invalid.

For the functions NXP_GetAtomValueList,
NXP_GetAtomValueLengthList, and NXP_VolunteerList, NXP_ErrorIndex
will return the index into the list which has an invalid element.

Example: If a call to NXP_VolunteerList fails, NXP_Error returns
NXP_ERR_INVARG4 and NXP_ErrorIndex returns 2, this will mean that in
the desc list (the fourth type of argument in the argument list) the second
element is invalid.

NXP_ErrorIndex Returns the index of the array or list argument which
failed.
52 C Programmer’s Guide

NXP_GetAtomId
See Also

NXP_GetAtomId
Purpose

NXP_GetAtomId returns the atom Id of an atom given its name and type.
Atom Ids are used in all other functions of the Rules Element API.

C Format

The C format is as follows:

int NXP_GetAtomId(atomName, theAtom, type);

Arguments

The following list shows the valid arguments:

Str atomName;
AtomId C_FAR* theAtom;
int type;

atomName is the name of the Atom to be found (or a knowledge base file
when type is NXP_ATYPE_KB).

theAtom is a pointer to a valid memory location where the Id of theAtom will
be returned.

type is an integer which designates what kind of AtomId should be returned
in case there are any conflicts, e.g. if an object and a property had the same
name, the call wouldn’t know whose AtomId to return without the type
argument.

type can be any of the following codes:

NXP_GetAtomValueArray Getting the info array of atoms.

NXP_SendMessageArray Sends a message to a list.

NXP_GetAtomValueLengthArray Getting the value lengths of an array of atoms.

NXP_VolunteerArray Volunteering an array of values.

NXP_GetAtomValueList Getting the info list of atoms.

NXP_GetAtomValueLengthList Getting the value lengths of a list of atoms.

NXP_VolunteerList Volunteering a list of values.

Code Description
NXP_ATYPE_CLASS The AtomId of a class with the name atomName will be returned in

theAtom.

NXP_ATYPE_DATA The AtomId of a Datum (visible in the DATA notebook) will be returned.

NXP_ATYPE_HYPO The AtomId of a Hypothesis (visible in the HYPOTHESIS notebook) will be
returned.

NXP_ATYPE_KB The AtomId of a knowledge base will be returned. The string passed in
atomName should be the knowledge base name (the file name as it was
passed to LoadKB).

NXP_ATYPE_NONE The Rules Element will first look for an Object or a Class, then for a Slot, and
finally for a Property with the name atomName. This option should not be
used by applications as they should know what kind of AtomId they are
looking for. The search may be slower if this code is used.
C Programmer’s Guide 53

Chapter The C Library3
Notes

NXP_GetAtomId does not create the atom if it is not in the working
memory, (i.e. if it doesn’t exist in any of the knowledge bases loaded).
Creating atoms can be done with NXP_CreateObject or NXP_Compile.

The id of an atom is a logical reference of a structure used internally by the
Rules Element. It is not necessarily a pointer or a handle, so you should not
try to use it as a pointer to anything meaningful. Values can be assigned
only with the NXP_Volunteer call.

Usually you need to call NXP_GetAtomId only once while working on an
atom. In all subsequent calls to the Rules Element you will use the atomId
of this atom. However an atomId is not guaranteed to remain valid during
the whole session since the atom can be destroyed with DeleteObject,
UnloadKB, etc. AtomIds of dynamic objects are not persistent across
sessions because dynamic objects are deleted during a restart session.

Return Codes

NXP_GetAtomId returns 1 if *theAtom is a valid AtomId (success), 0
otherwise (in this case, *theAtom is NULL). In case of error, more
information about the error can be obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error will return one of
the following codes:

Examples

Here are several examples:

AtomId theAtom, theRule, theKB; /* atomIds to be returned */
NXP_GetAtomId("Sensors", &theAtom, NXP_ATYPE_CLASS)

returns in theAtom the Id of the class Sensors (or NULL if it does not exist
in the knowledge base).

NXP_GetAtomId("Sensor1", &theAtom, NXP_ATYPE_OBJECT)

returns in theAtom the Id of the object Sensor1.

NXP_GetAtomId("Sensor1.Pressure", &theAtom, NXP_ATYPE_SLOT)

returns in theAtom the id of the slot Pressure of the object Sensor1. theAtom
is then referring to a slot (it can be boolean, float, string, date, ...).

NXP_GetAtomId("Sensor1.Pressure", &theAtom, NXP_ATYPE_DATA)

NXP_ATYPE_OBJECT The AtomId of an object will be returned.

NXP_ATYPE_PROP The AtomId of a Property will be returned.

NXP_ATYPE_RULE The AtomId of a rule will be returned. The GetAtomId() function matches
on rule names when searching for a rule id.

NXP_ATYPE_SLOT The id of a slot (includes data and hypotheses) will be returned.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG3 The type argument is invalid.

NXP_ERR_NOTFOUND No Atom of the right type was found.

NXP_ERR_NOERR Call was successful.

Code Description
54 C Programmer’s Guide

NXP_GetAtomInfo
returns in theAtom the id of the slot Pressure of the object Sensor1 only if
this slot is a datum in the knowledge base, i.e. it is used in a rule or in a meta
slot. theAtom will be NULL even if Sensor1.Pressure exists but is not a
datum.

NXP_GetAtomId("Sensor1", &theAtom, NXP_ATYPE_SLOT)

returns in theAtom the id of the slot Value of the object Sensor1
(Sensor1.Value). Value is a special property that can be omitted in the name.

NXP_GetAtomId("Pressure", &theAtom, NXP_ATYPE_PROP)

returns in theAtom the id of the property Pressure.

NXP_GetAtomId(theStr, &theRule, NXP_ATYPE_RULE)

returns in theRule the Id or rule named "foo" if theStr equals "foo". If theStr
equals "myRule", it returns the Id of rule myRule in theRule.

NXP_GetAtomId("Primer.kb", &theKB, NXP_ATYPE_KB)

returns in theKb the Id of the knowledge base Primer.kb if it is loaded.
theKB can be used later in calls handling KBs such as NXP_SetAtomInfo +
NXP_AINFO_CURRENTKB. Note: you may need to include a directory
name within the file name, depending on how the file was loaded.

NXP_GetAtomInfo
Purpose

NXP_GetAtomInfo is a multi-purpose call giving access to any type of
information stored in the working memory related to a particular atom.
Almost everything visible in the Development System interface can be
returned by NXP_GetAtomInfo.

See Chapter Four for a detailed description of this function.

C Format

The C format is as follows:

int NXP_GetAtomInfo(theAtom, code, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments:

AtomId theAtom;
int code;
AtomId optAtom;
Int32 optInt;
int desc;
Str thePtr;
int len;

theAtom specifies the atom you want information about. theAtom is an
atomId obtained by a previous call to NXP_GetAtomId or by another call to
NXP_GetAtomInfo or received as an argument by an Execute routine.

code specifies which type of information is requested. The different values
for code are described in Chapter Four.

optAtom is an additional argument with different meanings depending on
the value of code.
C Programmer’s Guide 55

Chapter The C Library3
optInt is an additional argument with different meanings depending on the
value of code.

desc is a code which describes the return data type expected by the caller
(pointed to by thePtr). It must be one of the NXP_DESC_XXX codes defined
in nxpdef.h: NXP_DESC_INT, NXP_DESC_FLOAT,
NXP_DESC_DOUBLE, NXP_DESC_STR, NXP_DESC_ATOM, etc.

thePtr should point to a valid memory location where the information will
be returned.

len is the maximum number of characters that can be returned in thePtr
when it is pointing to a string (desc = NXP_DESC_STR). len is not used
otherwise.

NXP_GetAtomValueArray
Purpose

NXP_GetAtomValueArray allows the user to obtain the values of an array
of Atoms. The Atoms whose values will be obtained can be specified as
either an array of AtomId’s or an array of character strings which contain
the atom names. In the latter case, the character string should contain a slot
name.

C Format

The C format is as follows:

int NXP_GetAtomValueArray(count, type, atoms, descs, ptrs, lens);

Arguments

The following list shows the valid arguments:

int count;
int type;
VoidPtr atoms;
int *descs;
VoidPtr *ptrs;
int *lens;

count is the number of atoms whose values should be returned (size of the
array).

type indicates whether atoms is an array of AtomIds or an array of atom
names. NXP_DESC_ATOM if atoms points to an array of AtomId’s;
NXP_DESC_STR if atoms points to an array of character string pointers.

atoms is either an array of AtomId’s, or an array of character string pointers.

descs is an array of descriptors for the data being retrieved --
NXP_DESC_INT, NXP_DESC_STR, etc.

Code Description
NXP_DESC_DATE This is a new descriptor to speed up the volunteering (and retrieval) of dates in

the Rules Element. It describes an array of 6 integers and contains Month, Day,
Year (19xx), Hour, Minute, and Second. Obviously, patterns are not involved.
Internally, the Rules Element stuffs the integers into a DateRec and calls
DateFix() to fill in the day-of-week stuff.
56 C Programmer’s Guide

NXP_GetAtomValueArray
ptrs is an array of pointers to where the values will be returned.

lens is an array of integers for the length of the buffers where the string
values will be returned. If some values returned are not strings the
matching values in the array len should be set to 0.

Return Codes

NXP_GetAtomValueArray returns 1 on success and 0 on error. In case of
error, more information about the error is obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error returns one of the
following codes:

If the invalid argument is arg 3,4, 5,or 6 NXP_ErrorIndex (see above) may be
used as an index into the array to determine which element was invalid.

Examples

The following example gets the length of string values to allocate memory
for an array of buffers to retrieve the string values to.

/* Example of NXP_GetAtomValueArray */
static int ReportValues (char *theStr, intnAtoms, AtomId*theAtoms)
{
 int i;
 int *theDescs;
 int *theLens;
 char **newPtrs;
 theLens = (int *)PTR_New(sizeof(int)*nAtoms);
 theDescs = (int *)PTR_New(sizeof(int)*nAtoms);
 /* Get the value lengths of some string slots */

 for (i=0;i<nAtoms;i++)
 theDescs[i]= NXP_DESC_INT;

 NXP_GetAtomValueLengthArray(nAtoms,NXP_DESC_ATOM,
theAtoms, theDescs, theLens);

 theLens[2]= theLens[3]= theLens[4]= theLens[5]=255;
 /* Allocate the memory for the returned strings*/
 newPtrs = (char **)PTR_New(sizeof(char *)*nAtoms);
 for (i=0;i<nAtoms;i++) {
 theDescs[i]= NXP_DESC_STR;

 newPtrs[i]= (char *)PTR_New(theLens[i]);
 }
NXP_GetAtomValueArray(nAtoms,NXP_DESC_ATOM,(VoidPtr)theAtoms,

theDescs, (VoidPtr *)newPtrs,theLens);
}

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 count was invalid - less than zero

NXP_ERR_INVARG2 Neither NXP_DESC_ATOM nor NXP_DESC_STR was
passed for type.

NXP_ERR_INVARG3 atoms was invalid or the wrong type - not a string slot.

NXP_ERR_INVARG4 descs was invalid.

NXP_ERR_INVARG5 ptrs was invalid or a conversion problem occurred with
the data passed.

NXP_ERR_INVARG6 lens was invalid.
C Programmer’s Guide 57

Chapter The C Library3
See Also

NXP_GetAtomValueLengthArray
Purpose

NXP_GetAtomValueLengthArray allows the user to obtain the value
lengths of an array of Atoms. The Atoms whose value lengths will be
obtained can be specified as either an array of AtomId’s or an array of
character strings which contain the atom names. In the latter case, the
character string should contain a slot name.

Note: The value length includes the null terminator character.

C Format

The C format is as follows:

int NXP_GetAtomValueLengthArray(count, type, atoms, descs, ptrs);

Arguments

The following list shows the valid arguments:

int count;
int type;
VoidPtr atoms;
int *descs;
VoidPtr *ptrs;

count is the number of atoms whose value length should be returned (size of
the array).

type indicates whether atoms is an array of AtomIds or an array of atom
names. NXP_DESC_ATOM if atoms points to an array of AtomId’s;
NXP_DESC_STR if atoms points to an array of character string pointers.

atoms is either an array of AtomId’s, or an array of character string pointers.

descs is an array of Ints describing the format of the program’s data. Should
be NXP_DESC_INT.

ptrs is an array of integer pointers where the lengths will be returned. This
array can then be used when calling NXP_GetAtomValueArray.

Return Codes

NXP_GetAtomValueLengthArray returns 1 on success and 0 on error. In
case of error, more information about the error is obtained by calling

NXP_GetAtomValueLengthList Getting the value lengths of a list.

NXP_GetAtomValueLengthArray Getting the value lengths of an array of atoms.

NXP_GetAtomValueList Getting the info list of atoms.

NXP_GetAtomInfo Getting the info of an atom.
58 C Programmer’s Guide

NXP_GetAtomValueLengthArray
NXP_Error immediately after the call which has failed. NXP_Error returns
one of the following codes:

If the invalid argument is arg 3,4,or 5, NXP_ErrorIndex (see above) may be
used as an index into the array to determine which element was invalid.

Examples

The following example gets the length of string values to allocate memory
for an array of buffers to retrieve the string values to.

/* Example of NXP_GetAtomValueLengthArray */
static int ReportValues (char *theStr, int nAtoms, AtomId* theAtoms)
{
 int i;
 int *theDescs;
 int *theLens;
 char **newPtrs;

 if (nAtoms != 5) return 0;
theLens = (int *)PTR_New(sizeof(int)*nAtoms);

 theDescs = (int *)PTR_New(sizeof(int)*nAtoms);
 /* Get the value lengths of some string slots */

 for (i=0;i<nAtoms;i++)
 theDescs[i]= NXP_DESC_INT;

 NXP_GetAtomValueLengthArray(nAtoms,NXP_DESC_ATOM, theAtoms,
theDescs,

theLens);
 theLens[2]= theLens[3]= theLens[4]= theLens[5]=255;
 /* Allocate the memory */
 newPtrs = (char **)PTR_New(sizeof(char *)*nAtoms);
 for (i=0;i<nAtoms;i++) {
 theDescs[i]= NXP_DESC_STR;

newPtrs[i]= (char *)PTR_New(theLens[i]);
 } NXP_GetAtomValueArray(nAtoms,NXP_DESC_ATOM, (VoidPtr)theAtoms,

theDescs, (VoidPtr *)newPtrs,theLens);
}

See Also

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 count was invalid - less than zero

NXP_ERR_INVARG2 Neither NXP_DESC_ATOM not NXP_DESC_STR
was passed for type.

NXP_ERR_INVARG3 atoms was invalid or the wrong type - not a string
slot.

NXP_ERR_INVARG4 descs was invalid.

NXP_ERR_INVARG5 ptrs was invalid or a conversion problem occurred
with the data passed.

NXP_GetAtomValueLengthList Getting the value lengths of a list.

NXP_GetAtomValueArray Getting the info array of atoms.

NXP_GetAtomValueList Getting the info list of atoms.

NXP_GetAtomInfo Getting the info of an atom.
C Programmer’s Guide 59

Chapter The C Library3
NXP_GetAtomValueLengthList
Purpose

NXP_GetAtomValueLengthList allows the user to obtain the value lengths
of a list of atoms. The atoms whose value lengths will be obtained can be
specified as either a list of AtomId’s or a list of character strings which
contain the atom names. In the latter case, the character string should
contain a slot name.

C Format

The C format is as follows:

int NXP_GetAtomValueLengthList(count, type, atom1, desc1, ptr1, atom2, desc2, ptr2, ...);

Arguments

The following list shows the valid arguments:

int count;
int type;
void atomx;
int descx;
VoidPtr ptrx;

count is the number of atoms to be volunteered.

type is NXP_DESC_ATOM if atoms will be passed as AtomId’s.
NXP_DESC_STR if atoms will be passed as character strings.

atomx (where x is 1, 2 ,3,...) is the AtomId, or the string name of an Atom,
whose value length will be retrieved, depending on whether
NXP_DESC_ATOM or NXP_DESC_STR was passed in the type.

descx is the descriptor for the data being received, should be
NXP_DESC_INT.

ptrx is a pointer to an integer where the length is to be returned.

Return Codes

NXP_GetAtomValueLengthList returns 1 on success and 0 on error. In case
of error, more information about the error is obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error returns one of the
following codes:

If the invalid argument is arg 3,4,5, or 6, NXP_ErrorIndex (see above) may
be used as an index into the list to determine which item was invalid.

Examples

The following example gets the value length of two slots before allocating
buffer size and retrieving their values.

/* Example of NXP_GetAtomValueLengthList */
Str ptr1, ptr2;
int len1, len2;
Char *str1 = "valve_1.problem";

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 count was invalid - less than zero
60 C Programmer’s Guide

NXP_GetAtomValueList
Char *str2 = "valve_2.problem";
NXP_GetAtomValueLengthList(2, NXP_DESC_STR, str1, NXP_DESC_INT,

 &len1, str2, NXP_DESC_INT, &len2);
if ((len1 ==0) && (len2 ==0) return 0;
ptr1 = PTR_New(len1);
ptr2 = PTR_New(len2);
NXP_GetAtomValueList(2, NXP_DESC_STR, str1, NXP_DESC_STR,

(VoidPtr)ptr1, len1, str2, NXP_DESC_STR, (VoidPtr)ptr2, len2);
...

See Also

NXP_GetAtomValueList
Purpose

NXP_GetAtomValueList allows the user to obtain the values of a list of
atoms. The atoms whose values will be obtained can be specified as either
a list of AtomId’s or a list of character strings which contain the atom names.
In the latter case, the character string should contain a slot name.

C Format

The C format is as follows:

int NXP_GetAtomValueList(count, type, atom1, desc1, ptr1, len1, atom2, desc2, ptr2,
len2, ...);

Arguments

The following list shows the valid arguments:

int count;
int type;
VoidPtr atomx;
int descx;
VoidPtr ptrx;
int lenx;

count is the number of atoms to be volunteered.

type is NXP_DESC_ATOM if atoms will be passed as AtomId’s.
NXP_DESC_STR if atoms will be passed as character strings.

atomx (where x is 1, 2, 3 ...) is the AtomId, or the string name of an Atom,
whose value length will be retrieved, depending on whether
NXP_DESC_ATOM or NXP_DESC_STR was passed in the type.

descx is the descriptor for the data being received, should be
NXP_DESC_INT.

ptrx is a pointer to an integer where the length is to be returned.

lenx is the descriptor for the length of the buffer ptrx where the data is being
received, and should be set to 0 if the value is not a string.

NXP_GetAtomValueLengthArray Getting the value lengths of an array.

NXP_GetAtomValueArray Getting the info array of atoms.

NXP_GetAtomValueList Getting the info list of atoms.

NXP_GetAtomInfo Getting the info of an atom.
C Programmer’s Guide 61

Chapter The C Library3
Return Codes

NXP_GetAtomValueList returns 1 on success and 0 on error. In case of
error, more information about the error is obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error returns one of the
following codes:

If the invalid argument is arg 3,4,5, or 6, NXP_ErrorIndex (see above) may
be used as an index into the list to determine which item was invalid.

Examples

The following example gets the value length of two slots before allocating
buffer size and retrieving their values.

/* Example of NXP_GetAtomValueList */
Str ptr1, ptr2;
int len1, len2;
Char *str1 = "valve_1.problem";
Char *str2 = "valve_2.problem";
NXP_GetAtomValueLengthList(2, NXP_DESC_STR, str1,

NXP_DESC_INT, (VoidPtr)&len1, str2, NXP_DESC_INT,
 (VoidPtr)&len2);

if ((len1 ==0) && (len2 ==0) return 0;
ptr1 = PTR_New(len1);
ptr2 = PTR_New(len2);
NXP_GetAtomValueList(2, NXP_DESC_STR, str1, NXP_DESC_STR,

(VoidPtr)ptr1, len1, str2, NXP_DESC_STR, (VoidPtr)ptr2, len2);
...

See Also

NXP_GetHandler
Purpose

NXP_GetHandler returns a handler procedure previously set by
NXP_SetHandler. It can be used in conjunction with NXP_SetHandler to
temporarily change a handler (NXP_GetHandler gets the old handler,
NXP_SetHandler is called twice: first to set the new handler and then to
restore the old one). See NXP_SetHandler for more information on
handlers.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 count was invalid - less than zero

NXP_GetAtomValueLengthArray Getting the value lengths of an array.

NXP_GetAtomValueArray Getting the info array of atoms.

NXP_GetAtomValueLengthList Getting the value lengths of a list of
atoms.

NXP_GetAtomInfo Getting the info of an atom.
62 C Programmer’s Guide

NXP_GetHandler
C Format

The C format is as follows:

int NXP_GetHandler(theCode, theProc, theName);

Arguments

The following list shows the valid arguments:

Int theCode;
NxpIProc C_FAR* theProc;
Str theName;

theCode is one of the NXP_PROC codes described in the NXP_SetHandler
call description.

theProc is a pointer to a procedure which will receive the result (the handler).

theName is the name of the execute handler if theCode is
NXP_PROC_EXECUTE, NULL otherwise.

Return Codes

NXP_GetHandler returns 1 on success and 0 on error. In case of error, more
information about the error can be obtained by calling NXP_Error
immediately after the code which has failed. NXP_Error will return one of
the following codes:

Examples

The following example illustrates how to retrieve the current Alert handler
so you can install your own. You can call NXP_SetHandler() later to restore
the first one:

NxpIProc fcn;

/* get the Alert handler */
NXP_GetHandler(NXP_PROC_ALERT, &fcn, 0);
/* change it with our own alert function */
NXP_SetHandler(NXP_PROC_ALERT, myAlert, 0);

/* change it back to the original function */
NXP_SetHandler(NXP_PROC_ALERT, fcn, 0);

The following example illustrates how to retrieve an Execute handler
having the name "myExecute":

NxpIProc fcn;

NXP_GetHandler(NXP_PROC_EXECUTE, &fcn, "myExecute");

See Also

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theCode is not a valid code.

NXP_ERR_INVARG2 theProc is NULL.

NXP_ERR_NOERR Call was successful.

NXP_GetHandler2 Gets handlers set with NXP_SetHandler2.

NXP_SetHandler2 Installs handlers.
C Programmer’s Guide 63

Chapter The C Library3
NXP_GetHandler2
Purpose

NXP_GetHandler2 returns a handler procedure set with NXP_SetHandler2.
NXP_GetHandler2 has the same functionalities as NXP_GetHandler except
that it takes two additional arguments, type and arg.

C Format

The C format is as follows:

int NXP_GetHandler2(theCode, theProc, theName, type, arg);

Arguments

The following list shows the valid arguments:

int theCode;
NxpIProc *theProc;
Str theName;
int *type;
unsigned long C_FAR *arg;

theCode is one of the NXP_PROC codes described in the NXP_SetHandler or
NXP_SetHandler2 call description.

theProc is a pointer to a procedure where the address of the handler will be
returned.

theName is used only if theCode equals NXP_PROC_EXECUTE. It is the
name of the Execute handler to get information from (after calling
NXP_GetAtomInfo with NXP_AINFO_PROCEXECUTE to get the list of
Execute handler names, for instance).

type is a pointer to an integer where the type of handler will be returned (as
set with NXP_SetHandler2). Your application usually will not need this
information.

arg is a pointer to an unsigned long where the custom information passed to
NXP_SetHandler2 will be returned.

Notes

If you have installed a handler using NXP_SetHandler and then use
NXP_GetHandler2 on it, *type will be set to NXP_HDLTYPE_SETHANDLER
and *theProc will NOT be set to your function pointer. It is recommended
that you call back using NXP_GetHandler to get the correct *theProc value.

Return Codes

NXP_GetHandler2 returns 1 on success and 0 on error. In case of error,
more information about the error can be obtained by calling NXP_Error
immediately after the code which has failed. NXP_Error will return one of
the following codes:

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theCode is not a valid code.

NXP_ERR_INVARG2 theProc is NULL.
64 C Programmer’s Guide

NXP_GetMethodId
Examples

The following example shows how to install an Execute handler and get it
back with NXP_GetHandler2.

/* generic Execute function */
int myExecute(arg, str, nAtoms, atoms)
ULong arg;
Str str;
int nAtoms;
AtomId C_FAR* atoms;
{

...
}

/* install myExecute as a user handler with the name doThis */
NXP_SetHandler2(NXP_PROC_EXECUTE, myExecute, "doThis",

NXP_HDLTYPE_USER, (unsigned long)0);

/* use NXP_GetHandler2 to get back the "doThis" handler */

NxpIProc theProc; /* function address */
int type; /* type of handler */
unsigned long arg; /* custom argument */

NXP_GetHandler2(NXP_PROC_EXECUTE, &theProc,"doThis", &type, &arg);
/* theProc will be set to myExecute */
/* type will be set to NXP_HDLTYPE_USER = 0x0100 */
/* arg will be set to 0 */

See Also

NXP_GetMethodId
Purpose

NXP_GetMethodId returns the atom Id of a method given the atom it is
attached to and its type. Atom Ids are used in most functions of the Rules
Element API.

C Format

The C format is as follows:

int NXP_GetMethodId(methodName, theMethod, theAtom, type);

Arguments

The following list shows the valid arguments:

Str methodName;
AtomId C_FAR* theMethod;

NXP_ERR_NOTFOUND The Execute handler was not found
(theCode was equal to
NXP_PROC_EXECUTE and no Execute
was installed with name theName.

NXP_GetHandler Gets handlers set with NXP_SetHandler

NXP_SetHandler2 Installs handlers.

NXP_Error() Return Code Explanation
C Programmer’s Guide 65

Chapter The C Library3
AtomId theAtom;
int type;

methodName is the name of method to be found.

theMethod is a pointer to a valid memory location where the Id of theMethod
will be returned.

theAtom is the AtomId of the atom theMethod is attached to.

type is an integer which designates what kind of methods should be
returned in case there are any conflicts, (for example, when there is a public
and a private method).

type can be any of the following codes:

Notes

NXP_GetMethodId does not create the method if it is not in the working
memory, (i.e. if it doesn’t exist in any of the knowledge bases loaded).
Creating a method can be done with NXP_Compile.

The id of a method is a logical reference of a structure used internally by the
Rules Element. It is not necessarily a pointer or a handle, so you should not
try to use it as a pointer to anything meaningful.

Usually you need to call NXP_GetMethodId only once while working on a
method. In all subsequent calls to the Rules Element you can use the atomId
of this method. However an atomId is not guaranteed to remain valid
during the whole session since the method can be destroyed with
UnloadKB, etc.

Return Codes

NXP_GetMethodId returns 1 if *theMethod is a valid AtomId (success), 0
otherwise (in this case, *theMethod is NULL). In case of error, more
information about the error can be obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error will return one of
the following codes:

Examples

The following example returns the atomid of the public method called
"Execute_Schedule" attached to the class "scheduler".

Code Description
NXP_AINFO_PRIVATE theMethod is private and not inheritable by any

relative.

NXP_AINFO_PUBLIC theMethod is public and inheritable by any child.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 methodName was invalid.

NXP_ERR_INVARG2 methodId was a NULL pointer.

NXP_ERR_INVARG3 TheAtom is not a valid atom - not a slot, an object, a
class or a property.

NXP_ERR_INVARG4 The type argument is invalid.

NXP_ERR_NOTFOUND No Method of the right type was found.

NXP_ERR_NOERR Call was successful.
66 C Programmer’s Guide

NXP_GetStatus
/* Example of NXP_GetMethodId */
AtomId atom, methodId;
NXP_GetAtomId("scheduler", &atom, NXP_ATYPE_CLASS);
NXP_GetMethodId("Execute_Schedule", &methodId, atom,
NXP_AINFO_PUBLIC);

See Also

NXP_GetStatus
Purpose

NXP_GetStatus queries the status of the interface. This call is valid only
with the development system version (the runtime library doesn’t have an
interface).

C Format

The C format is as follows:

int NXP_GetStatus(winId, code, thePtr);

Arguments

The following list shows the valid arguments:

Int winId;
Int32 code;
IntPtr thePtr;

winId is the id of the window to which data is sent.

code is an integer describing which information is requested.

thePtr is a pointer to a memory location where the information will be
returned.

NXP_GetStatus can be used to query the "write mode" of the following
windows (other values of winId are reserved for Neuron Data’s internal
use):

For these windows, code must be NXP_GS_ENABLED. thePtr must point
to an integer which will be set to 1 if the window is write enabled, 0
otherwise.

Notes

Typically you would call NXP_GetStatus before you decide to write a
message into the Transcript (see the example below).

NXP_VolunteerArray Volunteering an array of values.

NXP_Volunteer Volunteering a single value.

Window Code
Transcript winId = NXP_WIN_TRAN

Current rule winId = NXP_WIN_RULE

Current hypothesis winId = NXP_WIN_HYPO

Conclusions winId = NXP_WIN_CONC
C Programmer’s Guide 67

Chapter The C Library3
You can send information to a window with NXP_SetData even if the
window is disabled. By calling NXP_GetStatus first, you gain some speed
in case the window is disabled because you do not need to format the
message before sending it.

Return Codes

NXP_GetStatus returns 1 on success and 0 on error. In case of error, more
information about the error can be obtained by calling NXP_Error
immediately after the code which has failed. NXP_Error will return the
following:

Examples

This example shows how to check the Transcript’s status before sending the
string.

int enabled = 0;

/* query the status of the transcript window */
NXP_GetStatus(NXP_WIN_TRAN, NXP_GS_ENABLED, &enabled);

if (enabled) {
/* write a message to the transcript */
NXP_SetData (NXP_WIN_TRAN, NXP_CELL_NONE, -1, "This is

a test");
}

NXP_Journal
Purpose

NXP_Journal controls the journaling mechanism of the Rules Element. For
more information see the description of the Journal window in the Users
Guide and Reference manuals.

C Format

The C format is as follows:

int NXP_Journal(code, theAtom, theStr);

Arguments

The following list shows the valid arguments:

int code;
AtomId theAtom;
Str theStr;

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 winId is invalid.

NXP_ERR_INVARG2 code is invalid.

NXP_ERR_INVARG3 thePtr is NULL.

NXP_ERR_NOERR Call was successful.
68 C Programmer’s Guide

NXP_Journal
code describes the journaling action:

Return Codes

NXP_Journal returns 1 on success and 0 on error. In case of error, more
information about the error can be obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error will return one of
the following codes:

Code Description
NXP_JRNL_PLAYEVENT Reserved for Neuron Data’s internal use.

NXP_JRNL_PLAYSTART Starts a replay. theStr is the filename specification of the input
journal file. theAtom is ignored.

This code can be combined with NXP_JRNL_PLAYSTEP to indicate
a step by step replay.

NXP_JRNL_PLAYSKIPSHOW to indicate that Show conditions
should be skipped.

NXP_JRNL_PLAYNOSCAN to disable the scanning of the file for
each value.

NXP_JRNL_PLAYSTOP Stops the replaying of the current file. theStr and theAtom are
ignored.

Code Description

NXP_JRNL_RECORDEVENT Reserved for Neuron Data’s internal use.

NXP_JRNL_RECORDSTART Starts recording. theStr is the filename specification of the file into
which the session will be recorded. theAtom is ignored.

NXP_JRNL_RECORDSTOP Stops the current recording. theStr and theAtom are ignored.

NXP_JRNL_STATERESTORE Restores the state from a file. The state should have been saved
previously with a NXP_JRNL_STATESAVE call or from the
journaling interface. theStr is the filename specification of the file
from which the state will be restored. theAtom is ignored.

NXP_JRNL_STATESAVE Saves the current state in a machine dependent file. theStr is the
filename specification of the file into which the state will be saved.
theAtom is ignored.

NXP_JRNL_VALUESSAVE Saves all the current working memory values in the order they were
set in a NXP format file. theStr is the filename specification of the file
into which the values will be saved. theAtom is ignored.

NXP_Error() Return Code Explanation
NXP_ERR_FILEEOF End of file encountered unexpectedly.

NXP_ERR_FILEOPEN File could not be opened.

NXP_ERR_FILEREAD Error reading the file.

NXP_ERR_FILESEEK Error seeking the file.

NXP_ERR_FILEWRITE Error writing the file.

NXP_ERR_FORMATERROR File header is invalid.

NXP_ERR_INVARG1 code is invalid.

NXP_ERR_INVARG2 theAtom is not NULL and is not a valid slot id.

NXP_ERR_INVATOM Some atoms saved in the file are invalid
(NXP_JRNL_STATERESTORE only).

NXP_ERR_NOERR Call was successful.

NXP_ERR_SYNCERROR The parser lost its synchronization. The contents
of the file may be corrupted.
C Programmer’s Guide 69

Chapter The C Library3
Examples

The following example illustrates how to save a state in a file (myfile.sta
in this case):

NXP_Journal(NXP_JRNL_STATESAVE, (AtomId)0, "myfile.sta");

Here is how to restore from a state file:

NXP_Journal(NXP_JRNL_STATERESTORE, (AtomId)0, "myfile.sta");

Here is how to replay a journal file step by step:

NXP_Journal(NXP_JRNL_PLAYSTART | NXP_JRNL_PLAYSTEP,
(AtomId)0, "myJournal");

NXP_LoadKB
Purpose

NXP_LoadKB loads a knowledge base file.

C Format

The C format is as follows:

int NXP_LoadKB(kbName, theKBId);

Arguments

The following list shows the valid arguments:

Str kbName;
KBId C_FAR *theKBId;

kbName is a knowledge base file name.

If theKBId is not NULL, it must be a pointer to a KBId where the id of the
knowledge base will be returned.

Notes

If you are not interested by the KBId you can pass 0. You can get the id later
with NXP_GetAtomId and kbName, or with NXP_GetAtomInfo and an
atom belonging to the KB.

The Rules Element must be able to find the file kbName in order to load it.
If you don’t use a full pathname kbName must be located in one of the
PATHS directories.

You can trap errors - file I/O error or compilation error - by installing an
Alert handler.

Return Codes

NXP_LoadKB returns 1 on success and 0 on error. In case of error, more
information about the error can be obtained by calling NXP_Error
70 C Programmer’s Guide

NXP_SaveKB
immediately after the code which has failed. NXP_Error will return one of
the following codes:

Examples

The following code gives a simple example:

KBId theKBId;
int ret;

/* loads the primer knowledge base */
ret = NXP_LoadKB("primer.kb", &theKBId);
if(ret == 0) {

printf("Error while loading primer.kb, NXP_Error = %d
\n", NXP_Error());
}

See Also

NXP_SaveKB
Purpose

NXP_SaveKB saves a knowledge base into a file.

C Format

The C format is as follows:

int NXP_SaveKB(kbId, theStr, mode);

NXP_Error() Return Code Explanation
NXP_ERR_ABORT Compilation was aborted by user or because the

description was incomplete and no interface was
provided to prompt the user.

NXP_ERR_FILEEOF End of file encountered unexpectedly.

NXP_ERR_FILEOPEN File could not be opened.

NXP_ERR_FILEREAD Error reading the file.

NXP_ERR_FILESEEK Error seeking the file.

NXP_ERR_FORMATERROR File header is invalid.

NXP_ERR_INTERNAL Some internal consistency check failed.

NXP_ERR_INVARG1 kbName is NULL or points to an empty string.

NXP_ERR_NOERR Call was successful.

NXP_ERR_NOMEMORY Memory allocation failed.

NXP_ERR_SYNCERROR Compiler lost its synchronization. The contents of
the file may be corrupted.

NXP_ERR_SYNTAX The text file contained a syntax error.

NXP_UnloadKB Unload a knowledge base.

NXP_SaveKB Save a knowledge base into a file.
C Programmer’s Guide 71

Chapter The C Library3
Arguments

The following list shows the valid arguments:

KBId kbId;
Str theStr;
int mode;

kbId is the id of the knowledge base to save (see the notes below).

theStr is the filename specification of the knowledge base file.

mode describes saving options. If mode equals 0, the knowledge base is
saved in text format without comments. The following bits can be set in the
mode argument (see the example below):

Notes

There are several ways of getting the kbId of a knowledge base:

■ If the knowledge base was loaded with NXP_LoadKB, its kbId was
returned by this function.

■ If the knowledge base already exists and you know its name use
NXP_GetAtomId.

■ If you know an atom belonging to this knowledge base use
NXP_GetAtomInfo with NXP_AINFO_KBID.

■ The special knowledge base undefined.kb containing all the atoms
referenced but not defined yet has a kbId equals to 0.

■ The special knowledge base temporary.kb containing all the atoms
created dynamically has a kbId equals to 1.

■ The special knowledge base untitled.kb containing all the atoms
created before any other KB was loaded has a kbId equals to 2.

theStr must be a valid filename for the operating system. If you use a partial
pathname (such as "foo.tkb") the file will be saved in the current directory.
You can also use full pathnames to save the file in another directory.

NXP_SaveKB will fail if Save has been disabled previously with
NXP_SetAtomInfo + NXP_SAINFO_DISABLESAVEKB (useful if you are
delivering a protected knowledge base and don’t want it saved after your
application decrypts it).

Return Codes

NXP_SaveKB returns 1 on success and 0 on error. In case of error, more
information about the error can be obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error will return one of
the following codes:

Code Description
NXP_MODE_COMMENTS Knowledge base saved with comments.

NXP_MODE_COMPILED Knowledge base saved in compiled form.

NXP_Error() Return Code Explanation
NXP_ERR_FILEOPEN File could not be opened.

NXP_ERR_FILESEEK Error seeking the file.

NXP_ERR_FILEWRITE Error writing the file.
72 C Programmer’s Guide

NXP_SendMessage
Examples

Example of saving the knowledge base "mykb" with various options (we
suggest to use the .tkb extensions for the text format and the .ckb
extension for the compiled format):

KBId myKB;

/* saves the KB in text format without the comments */
NXP_SaveKB(myKB, "mykb.tkb", 0);

/* saves the KB in text format with the comments */
NXP_SaveKB(myKB, "mykb.tkb", NXP_MODE_COMMENTS);

/* save the KB in compiled format without the comments */
NXP_SaveKB(myKB, "mykb.ckb", NXP_MODE_COMPILED);

/* save the KB in compiled format with the comments */
NXP_SaveKB(myKB, "mykb.ckb", NXP_MODE_COMPILED |
NXP_MODE_COMMENTS);

Saving the internal KB "temporary.kb" containing all the atoms created
dynamically (after a Retrieve or a CreateObject for instance):

NXP_SaveKB(1, "newObjects.tkb", 0);

See Also

NXP_SendMessage
Purpose

This call is updating the engine current evaluation stack with a message to
an addressee with eventually an array of parameters. The SendMessage
action is executed when the inference engine hits this action in the stack.

C Format

The C format is as follows:

int NXP_SendMessage(messageName, addresseeId, args, argTypePtr, num, strat);

Arguments

The following list shows the valid arguments:

Str messageName;
AtomId addresseeId;
VoidPtr *args;
int *argTypePtr;

NXP_ERR_INVARG1 kbId is not a valid knowledge base Id.

NXP_ERR_SAVEDISABLED KB cannot be saved because Save has
been disabled

NXP_ERR_NOERR Call was successful.

NXP_LoadKB Loads a knowledge base file.

NXP_AINFO_KBID Gets the id of a KB to which an atom belongs.

NXP_Error() Return Code Explanation
C Programmer’s Guide 73

Chapter The C Library3
int num;
int strat;

messageName is a string containing the name of the method to trigger.

addresseeId is the atom Id to which the message is sent.

args is an array of pointers to the arguments (which can be a string, a float,
an integer, an atomid, and so forth).

argTypePtr is an array of the types of the arguments. The types are one of
the following: NXP_DESC_STR, NXP_DESC_INT, NXP_DESC_ATOM,
NXP_DESC_FLOAT, NXP_DESC_DOUBLE, NXP_DESC_LONG,
NXP_DESC_DATE and NXP_DESC_TIME.

num number of arguments

strat is the placement of the SendMessage in the current evaluation stack of
the inference engine. The placements are one of the following:
NXP_CTRL_ATTOP, and NXP_CTRL_ATBOTTOM. The default is
NXP_CTRL_ATTOP.

Return Codes

NXP_SendMessage returns 1 on success and 0 on error. In case of error,
more information about the error is obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error returns one of the
following codes:

Examples

The following example

/* Example of NXP_SendMessage */
AtomId atom;
int argInt = 5;
VoidPtrargs[100];
int types[100] = {NXP_DESC_INT};
NXP_GetAtomId("c.p", &atom, NXP_ATYPE_SLOT);
NXP_GetAtomId("o.p", &atom, NXP_ATYPE_SLOT);
args[0] = &argInt;
NXP_SendMessage("factorial", atom, (VoidPtr *)args,

types, 1,
NXP_CTRL_ATTOP);

...

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 messageName was invalid (empty or non existing).

NXP_ERR_INVARG2 addresseeId was invalid or the wrong type - not a
slot, an object, a class or a property.

NXP_ERR_INVARG7 strat1 was invalid.
74 C Programmer’s Guide

NXP_SendMessageArray
See Also

NXP_SendMessageArray
Purpose

This call is updating the engine current evaluation stack with a message to
several addressees with eventually an array of parameters. The
SendMessage action is executed when the inference engine hits this action
in the stack.

C Format

The C format is as follows:

int NXP_SendMessageArray(messageName, addresseesIdsArray, numAtoms, args,
argTypePtr, num, strat);

Arguments

The following list shows the valid arguments:

Str messageName;
AtomId *addresseeIdsArray;
int numAtoms;
VoidPtr*args;
int *argTypePtr;
int num;
int strat;

messageName is a string containing the name of the method to trigger.

addresseeIds is an array to the atom Ids of the addressees to which the
message is sent.

num Atoms number of atoms in addresseeIds array.

args is a C array of pointers to the arguments to be sent with the message
(which can be a string, a float, an integer, an atomid, and so forth).

ArgTypePtr is an array of the types of the arguments. The types are one of
the following: NXP_DESC_STR, NXP_DESC_INT, NXP_DESC_ATOM,
NXP_DESC_FLOAT, NXP_DESC_DOUBLE, NXP_DESC_LONG,
NXP_DESC_DATE and NXP_DESC_TIME.

num number of arguments.

strat is the placement of the SendMessage in the current evaluation stack of
the inference engine. The placements are one of the following:
NXP_CTRL_ATTOP, and NXP_CTRL_ATBOTTOM. The default is
NXP_CTRL_ATTOP.

Return Codes

NXP_VolunteerArray returns 1 on success and 0 on error. In case of error,
more information about the error is obtained by calling NXP_Error

NXP_SendMessageArray Sends a message to a list.
C Programmer’s Guide 75

Chapter The C Library3
immediately after the call which has failed. NXP_Error returns one of the
following codes:

Examples

The following example is sending the message to compute a series of
factorials, the list of factorials to be computed being passed as an argument
of the Execute.

/* Example of NXP_SendMessageArray */
int MyExecute(char *theStr, int nAtoms, AtomId, *theAtoms)

{
int argInt = 5;
VoidPtrargs[100];
int types[100] = {NXP_DESC_INT};
args[0] = &argInt;
NXP_SendMessageArray("factorial", theAtoms, nAtoms,

(VoidPtr*)args, types, 1, NXP_CTRL_ATTOP);
...
}

See Also

NXP_SetAtomInfo
Purpose

NXP_SetAtomInfo provides some control over knowledge bases allowing
you to change information associated with individual atoms or entire
knowledge bases. This function is the opposite of NXP_GetAtomInfo
(although all possible codes are not implemented yet).

See Chapter Five, “The NXP_SetAtomInfo Routine”.

C Format

The C format is as follows:

int NXP_SetAtomInfo(atom, code, optAtom, optInt, desc, ptr);

Arguments

The following list shows the valid arguments:

AtomId atom;
int code;
AtomId optAtom;

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 messageName was invalid - empty or message

doesn’t exist

NXP_ERR_INVARG2 The list of Atoms is NULL or there is at least one
atom of wrong type -not a slot, object, class or
property.

NXP_ERR_INVARG3 The first atomid or atom name in the list pointed to
by atoms was invalid, or the wrong type.

NXP_ERR_INVARG7 The strategy pointed to by strats is invalid.

NXP_SendMessage Sends a message to a single atom.
76 C Programmer’s Guide

NXP_SetClientData
int optInt;
int desc;
Str ptr;

atom is the Id of an atom or a knowledge base.

optAtom, optInt, desc, ptr are additional parameters whose meaning depends
on the value of code.

code: the codes used by NXP_SetAtomInfo are categorized as follows:

These codes are described in detail in Chapter Five, “The NXP_SetAtomInfo
Routine.”

NXP_SetClientData
Purpose

NXP_SetClientData allows you to associate a longword of information with
any Rules Element atom. This information can be retrieved later with the
NXP_GetAtomInfo call and the NXP_AINFO_CLIENTDATA code. For
example, if you want to interface the Rules Element with a graphic package
you can associate pointers to a data structure representing a graphic object
with Rules Element objects and use this information in an If Change Execute
routine to update the graphic object as the Rules Element value changes.

Controlling the knowledge bases
NXP_SAINFO_CURRENTKB This sets the current (or "default")

knowledge base.

NXP_SAINFO_DISABLESAVEKB This disables the saving of knowledge
bases from the Application
Programming Interface.

NXP_SAINFO_INKB This sets the knowledge base that an
atom belongs to.

Controlling the knowledge bases
NXP_SAINFO_MERGEKB This merges two knowledge bases into

one.

Setting/unsetting break points
NXP_SAINFO_AGDVBREAK This sets/unsets agenda break points on

hypotheses.

NXP_SAINFO_INFBREAK This sets/unsets inference break points
on atoms.

Changing permanent/temporary links
NXP_SAINFO_PERMLINK This changes the links of an atom to

permanent.

NXP_SAINFO_PERMLINKKB This changes all links in a knowledge
base to permanent.
C Programmer’s Guide 77

Chapter The C Library3
C Format

The C format is as follows:

int NXP_SetClientData(theAtom, theInfo);

Arguments

The following list shows the valid arguments:

AtomId theAtom;
unsigned long theInfo;

theAtom is the id of a class, an object, a slot, a property, a rule, a condition or
an action (RHS, Order of Sources, If Change).

theInfo can take any 4 byte value.

Notes

The ClientData longword is initialized to 0 when an atom is created.

Return Codes

NXP_SetClientData returns 1 on success and 0 on error. In case of error,
more information about the error can be obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error will return one of
the following codes:

Examples

Assume you are using a graphic package with routines: CreateDial,
UpdateDial, ...

AtomId slot;
Dial dial; /* longword variable of your application */

/* create dial with your application */
dial = CreateDial(10, 10, 50, 50, "tank1");

/* associate dial with slot tank1.pressure */
NXP_GetAtomId("tank1.pressure, &slot, NXP_ATYPE_SLOT);
NXP_SetClientData(slot, (unsigned long)dial);

/* Assume that the If Change of tank1.pressure is the action:
 * Execute "UpdateInterface" @ATOMID=SELF.pressure;
 *
 * Here is how you could code the UpdateInterface routine
 */

int UpdateInterface(str, natoms, atoms)
Str str;
int natoms;
AtomId C_FAR * atoms;
{

DialPtr dial = 0;
double dval;

if(natoms != 1) { /* error... */ return 0; }

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is invalid.

NXP_ERR_NOERR Call was successful.
78 C Programmer’s Guide

NXP_SetData
/* retrieve dial associated with atoms[0].
 * Note: sizeof(unsigned long) == sizeof(DialPtr) == 4 bytes.
 */
NXP_GetAtomInfo(atoms[0], NXP_AINFO_CLIENTDATA, (AtomId)0, 0,

NXP_DESC_LONG, (Str)&dial, 0);
 if(dial == 0) { /* error... */ return 0; }

/* Get the double value of the dial slot */
NXP_DOUBLEVAL(atoms[0], &dval);

/* Update the dial in your application */
UpdateDial(dial, dval);

return 1;/* Execute routine was successful */
}

NXP_SetData
Purpose

NXP_SetData sends information to the interface. This call is valid only
when the development system is up and running because the runtime
library doesn’t have any interface.

C Format

The C format is as follows:

int NXP_SetData (winId, ctrlId, index, thePtr);

Arguments

The following list shows the valid arguments:

Int winId;
Int32 ctrlId;
Int32 index;
Str thePtr;

winId is the id of the window to which data is sent.

ctrlId is an integer describing which sub part of the window is involved.

index is an additional integer whose meaning depends on winId and ctrlId.

thePtr is a pointer to a memory location where the information is stored.

NXP_SetData can be used to write text in the following windows:

Other values of winId are reserved for Neuron Data’s internal use.

Banner messages are messages which appear on the screen while a
knowledge base is being loaded, and disappear automatically, as opposed

Window Code
Transcript winId = NXP_WIN_TRAN

Current rule winId = NXP_WIN_RULE

Current hypothesis winId = NXP_WIN_HYPO

Conclusions winId = NXP_WIN_CONC

Banner (messages) winId = NXP_WIN_BANNER
C Programmer’s Guide 79

Chapter The C Library3
to dialog windows where the user must click OK to have the window
disappear.

For the first four windows, Transcript, Rule, Hypothesis, Conclusions, ctrlId
is ignored. If thePtr is NULL, the previous content of the window is cleared.
Otherwise thePtr must point to a null terminated string. The third
parameter index controls where the string will be written. If index is -1 or
-2, the string will be written at the end of the existing text; if 0, it will be
inserted at the beginning of the existing text. If the window is write
disabled, the text will not be written unless index equals -2.

In the case of the banner window, index is ignored. If thePtr is NULL, the
banner is removed from the screen. Otherwise, thePtr must point to a null
terminated string. ctrlId specifies where the string will be written. It can
take the following values:

If the banner is not open and thePtr is not NULL, the call will cause the
banner window to appear on the screen.

Return Codes

NXP_SetData returns 1 on success and 0 on error. In case of error, more
information about the error can be obtained by calling NXP_Error
immediately after the code which has failed. NXP_Error will return one of
the following codes:

Examples

Example of writing text to the Transcript:

/* message will be written at the end of transcript
 * only if the transcript is write enabled
/*
NXP_SetData(NXP_WIN_TRAN, NXP_CELL_NONE, -1, "Testing NXP_SetData with -1");

/* message will be written at the end of transcript
 * even if transcript is not write enabled
/*
NXP_SetData(NXP_WIN_TRAN, NXP_CELL_NONE, -2, "Testing NXP_SetData with -2");

Example of controlling the banner:

/* bring up banner with message */
NXP_SetData(NXP_WIN_BANNER, NXP_CELL_COL1, 0,

"Computing Fast Fourier Transform");

Code Description
NXP_CELL_COL1: Top line of the banner window

NXP_CELL_COL2: Left part of the bottom line

NXP_CELL_COL3: Right part of the bottom line.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 winId is invalid.

NXP_ERR_INVARG2 ctrlId is invalid

NXP_ERR_INVARG3 index is invalid

NXP_ERR_INVARG4 thePtr is NULL.

NXP_ERR_NOERR Call was successful.
80 C Programmer’s Guide

NXP_SetHandler
ComputeFFT(); /* will take a few seconds */

/* remove banner */
NXP_SetData(NXP_WIN_BANNER, NXP_CELL_NONE, 0, (Str)0);

See Also

NXP_SetHandler
Purpose

NXP_SetHandler allows you to install user-written procedures to be called
by the Rules Element (call out). They will either replace built-in procedures,
like the Question handler, or become new Execute procedures. These
procedures are usually installed with NXP_SetHandler during the
initialization of the application so that they can be called later by the
inference engine. The most frequent use of the NXP_SetHandler call is with
the NXP_PROC_EXECUTE code. Procedures installed with this code can
be called from Execute statements in rules or methods.

NXP_SetHandler can also install the procedures which allow the Rules
Element kernel to communicate with its interface. The most obvious
example is the Question procedure: you can use a user-defined procedure
to prompt the user when a question arises during a session. You could for
example prompt an operator on a remote terminal or display the question
in a custom graphic environment.

The Rules Element uses some built-in procedures to communicate with its
interface (i.e. a default question procedure which prompts in the session
control window). When you install a custom handler other than an Execute
with NXP_SetHandler, your handler will be called instead of the built-in
procedure. If your handler returns FALSE (0), the default built-in procedure
will be called after your handler. Otherwise, your handler should return
TRUE (1) and it will completely override the built-in procedure. In the case
of an Execute handler, the returned value is used only if the Execute is in the
LHS of a rule (conditions). The condition is FALSE if your routine returns
0, and TRUE otherwise.

See also NXP_SetHandler2 for additional information. It is similar to
NXP_SetHandler except that it takes two additional arguments that allow
you to store your own information and get it back when the Rules Element
calls your procedure.

Note: You cannot install the same type of handler twice using
NXP_SetHandler and NXP_SetHandler2. There can be only one
Question handler, one Alert handler, etc (except for Execute
handlers).

NXP_SetHandler / NXP_PROC_GETDATA Installs the GetData handler.

NXP_SetHandler / NXP_PROC_SETDATA Installs the SetData handler.
C Programmer’s Guide 81

Chapter The C Library3
C Format

The C format is as follows:

int NXP_SetHandler(code, theProc, theName);

Arguments

The following list shows the valid arguments:

Int code;
NxpIProc theProc;
Str theName;

NxpIProc type is defined as follows (see file nxpdef.h) :

typedefi nt (C_FAR *NxpIProc)();

code describes which procedure will be trapped. It is one of the following:

These codes and the arguments received by the handlers are described in
detail in the following sections.

theProc is the address of the procedure which will be called. If theProc is
NULL, any handler previously installed with the same code is removed and
the Rules Element kernel will call its built-in procedure.

Note: The handler theProc should process the exact same parameters as the
default Rules Element function and always return an integer. It
returns FALSE if the default Rules Element function should be called
anyway, and TRUE if the event was entirely handled by the handler.

theName is used to specify the name of Execute handlers (first argument of
the Execute statements inside rules or methods). It is ignored if code is not
NXP_PROC_EXECUTE.

Code Description
NXP_PROC_ALERT Alert box brought on the screen.

NXP_PROC_APROPOS Show action.

NXP_PROC_CANCEL Interrupt handler.

NXP_PROC_ENDOFSESSION Called upon the end of a session.

NXP_PROC_EXECUTE "Execute" routine.

NXP_PROC_FORMINPUT Get control before a form is open.

NXP_PROC_GETDATA Gets data from the interface.

NXP_PROC_GETSTATUS Checks the availability of an interface.

NXP_PROC_MEMEXIT Exits when no more memory is available.

NXP_PROC_NOTIFY Notifies the interface when something changes in the working
memory.

NXP_PROC_PASSWORD Prompts for an encrypted knowledge base password.

NXP_PROC_POLLING Polling procedure called at each inference engine cycle.

NXP_PROC_QUESTION Question asked by the engine.

NXP_PROC_QUIT Called when the Rules Element is going to exit.

NXP_PROC_SETDATA Sends data to the interface.

NXP_PROC_VALIDATE Supplies your data validation function from the meta-slot editor.

NXP_PROC_VOLVALIDATE Supplies your data validation function. These codes and the
arguments received by the handlers are described in detail
hereafter.
82 C Programmer’s Guide

NXP_SetHandler
Notes

Use NXP_GetHandler to get back a handler previously set by
NXP_SetHandler.

If NXP_SetHandler is called twice with the same code, only the last entry
will be kept (except for Execute handlers which are differentiated by
theName).

Macintosh Users: The handler routine theProc will receive the extra
argument ExtInfo just like external routines the Rules Element calls. For
more information, see the Macintosh API manual.

Examples

The following example illustrates handler installations at the beginning of
an application to modify the Rules Element’s interface:

/* first call to the Rules Element */
NXP_Control(NXP_CTRL_INIT);
...
/* Set up a custom Question handler */
NXP_SetHandler(NXP_PROC_QUESTION, (NxpIProc)myQuestion, (Str)0);

/* Set up a custom Apropos handler */
NXP_SetHandler(NXP_PROC_APROPOS, (NxpIProc)myShow, (Str)0);

/* Set up a custom Alert handler */
NXP_SetHandler(NXP_PROC_ALERT, (NxpIProc)myAlert, (Str)0);

/* Set up 2 Execute handlers */
NXP_SetHandler(NXP_PROC_EXECUTE, (NxpIProc)doThisExec, "doThis");
NXP_SetHandler(NXP_PROC_EXECUTE, (NxpIProc)doThatExec, "doThat");

myQuestion, myAlert, myShow, doThis, and doThat represent the
addresses of custom procedures that you must define elsewhere in your
application. As long as no other NXP_SetHandler calls are made, the Rules
Element uses its default handlers (default behavior of the interface).

Although it is generally the case, it is not required to install handlers during
application initialization. It can be done at any point before the time they
are actually used (before the beginning of a session, for instance). You can
also control the installation of handlers through Execute procedures to be
called from the rules.

For instance, while using the Development System, you may want to
deinstall your Question handler at some point during the session and
reinstall it later (maybe because your Question handler does not know how
to process some questions and you want to take advantage of the default
Question window of the Rules Element’s interface. You cannot do this if
you are just using the runtime library since there is no "default" question
handler). The following examples illustrate this:

Step 1: Set up two Execute procedures, one to install your Question handler
and one to deinstall it:

NXP_SetHandler(NXP_PROC_EXECUTE, (NxpIProc)InstallQuestion,
"InstallQuestion");

NXP_SetHandler(NXP_PROC_EXECUTE, (NxpIProc)DeinstallQuestion,
"DeinstallQuestion");

InstallQuestion()
{

C Programmer’s Guide 83

Chapter The C Library3
NXP_SetHandler(NXP_PROC_QUESTION, (NxpIProc)myQuestion,
(Str)0);

return TRUE;
}

DeinstallQuestion()
{

NXP_SetHandler(NXP_PROC_QUESTION, (NxpIProc)0, (Str)0);
return TRUE;

}

Step 2: Call "EXECUTE InstallQuestion" in a rule of a meta-slot’s method
whenever you want to install your custom question.

Step 3: Call "EXECUTE DeinstallQuestion" in a rule of a meta-slot’s method
whenever you want to remove your custom question and use the Rules
Element’s default question.

Note: You could also use only one Execute procedure, with a string or atom
argument as a flag for Install/Deinstall. See NXP_PROC_EXECUTE
for more information.

Another way to handle the previous example is to leave your Question
handler installed and simply have it return FALSE when it does not know
how to process a question. As explained previously, a user handler
returning FALSE forces the Rules Element to immediately call its default
handler.

You can use the following technique to temporarily replace a handler with
another one:

NxpIProc oldQuestion, newQuestion;

/* Get the address of the current Question handler */
NXP_GetHandler(NXP_PROC_QUESTION, (NxpIProc C_FAR *)&oldQuestion, (Str)0);

/* Change to a new handler */
NXP_SetHandler(NXP_PROC_QUESTION, (NxpIProc)newQuestion, (Str)0);

/* ... later on in the application, restore the old handler */
NXP_SetHandler(NXP_PROC_QUESTION, (NxpIProc)oldQuestion, (Str)0);

See the individual SetHandler calls and the chapter “Primer” for more
examples.

See Also

NXP_SetHandler2
Purpose

NXP_SetHandler2 allows you to install user-written procedures. It has the
same functionalities as NXP_SetHandler except it takes two additional
arguments, an intteger and an unsigned long integer. The int is kept in
memory as the "type" of handler. The unsigned long is passed back to the
handler unchanged by the Rules Element.

NXP_GetHandler Get handlers set with NXP_SetHandler.

NXP_GetHandler2 Get handlers set with NXP_SetHandler2.

NXP_SetHandler2 Install handlers with additional arguments.
84 C Programmer’s Guide

NXP_SetHandler2
Each SetHandler has its own SetHandler2 equivalent. You cannot install the
same type of handler twice using NXP_SetHandler and NXP_SetHandler2.
There can only be one Question handler, one Alert handler, and so on.

C Format

The C format is as follows.

int NXP_SetHandler2(code, theProc, theName, type, arg);

Arguments

The following list shows the valid arguments.

int code;
NxpIProc theProc;
Str theName;
int type;
ULong arg;

code describes which procedure will be trapped. It is one of the following:

These codes and the arguments received by the handlers are described in
detail in the following sections.

theProc is the address of the procedure which will be called. If theProc is
NULL, any handler previously installed with the same code is removed and
the Rules Element kernel will call its built-in procedure.

theName is used to specify the name of Execute handlers (first argument of
the Execute statements inside rules or methods). It is ignored if code is not
NXP_PROC_EXECUTE.

Code Description
NXP_PROC_ALERT Alert box brought on the screen.

NXP_PROC_APROPOS Show action.

NXP_PROC_CANCEL Interrupt handler.

NXP_PROC_ENDOFSESSION Called upon the end of a session.

NXP_PROC_EXECUTE "Execute" routine.

NXP_PROC_FORMINPUT Get control before a form is open.

NXP_PROC_GETDATA Gets data from the interface.

NXP_PROC_GETSTATUS Checks the availability of an interface.

NXP_PROC_MEMEXIT Exits when no more memory is available.

NXP_PROC_NOTIFY Notifies the interface when something changes in
the working memory.

NXP_PROC_PASSWORD Prompts for an encrypted knowledge base
password.

NXP_PROC_POLLING Polling procedure called at each inference engine
cycle.

NXP_PROC_QUESTION Question asked by the engine.

NXP_PROC_QUIT Called when the Rules Element is going to exit.

NXP_PROC_SETDATA Sends data to the interface.

NXP_PROC_VALIDATE Supplies your data validation function from the
meta-slot editor.

NXP_PROC_VOLVALIDATE Supplies your data validation function.
C Programmer’s Guide 85

Chapter The C Library3
type is the type of handler. This information is kept in memory and is not
passed to the handler. It is returned by NXP_GetHandler2. Usually, your
application won’t need this information so use the predefined constant
NXP_HDLTYPE_USER = 0x0100. Codes from 0x0000 to 0x00FF are
reserved for the Rules Element’s internal use, for when handlers are
installed by the Rules Element itself (reserved constants
NXP_HDLTYPE_xxx are defined in the nxpdef.h file).

arg is not interpreted by the Rules Element. It can contain any information
your application wishes (a pointer to a buffer, a pointer to a custom
structure, etc.).

Notes

A type information can be useful if you wish to display handler information
in a client/server application. It is also useful if you are installing handlers
in several languages (C, Pascal, Fortran, etc.) and need to know the language
when the handlers are called.

theProc has the same interface as the corresponding handler installed with
NXP_SetHandler, except for the extra parameter arg passed as first
argument. theProc should return 1 to prevent the Rules Element from
calling its default handler afterward, or 0 otherwise. See the following
sections for a description of each type of handler, installed with
NXP_SetHandler or NXP_SetHandler2.

Return Codes

NXP_SetHandler2 returns 1 on success and 0 on error. In case of error, more
information about the error can be obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error will return one of
the following codes:

Examples

Example of installing a Question handler with NXP_SetHandler2.
myQuestion is the procedure that will be called during a question. It
receives the extra argument arg unmodified by the Rules Element.

int myQuestion(arg, atom, str)
ULong arg;
AtomId atom;
Str str;
{

...
}

NXP_SetHandler2(NXP_PROC_QUESTION, myQuestion, (Str)NULL,
NXP_HDLTYPE_USER, arg)

Example of installing an Execute handler with NXP_SetHandler2. We pass
the pointer myStructPtr to NXP_SetHandler2 so that the Execute routine
receives the same argument when it is called by the Rules Element.

int doThisExec(myStructPtr, theStr, nAtoms, theAtoms)
unsigned long myStructPtr;
Str theStr;

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theCode is an invalid number.
86 C Programmer’s Guide

NXP_SetHandler (2) / NXP_PROC_ALERT
int nAtoms;
AtomId C_FAR*theAtoms;
{

...
}

NXP_SetHandler2(NXP_PROC_EXECUTE, doThisExec, "doThis",
NXP_HDLTYPE_USER, myStructPtr)

See Also

NXP_SetHandler (2) / NXP_PROC_ALERT
Purpose

The Alert handler is called each time an alert box is brought on the screen.
It can be either an error message with an OK button or a dialog box with 2
or 3 choices (Ok-Cancel or Yes-No-Cancel). The Alert handler is very useful
for reporting compilation or runtime errors while using the Rules Element
library which doesn’t have a default interface. It is called with the
arguments described below.

C Format

The C format is as follows if the handler is installed with NXP_SetHandler:

int NxpAlert (code, theStr, ret);

or as follows if it is installed with NXP_SetHandler2:

int NxpAlert (arg, code, theStr, ret);

Arguments

The following list shows the valid arguments:

ULong arg;
int code;
Str theStr;
IntPtr ret;

arg is passed to the procedure as it was passed to NXP_SetHandler2. It can
contain any information your application wishes.

code is one of the following:

theStr is the message normally displayed in the text part of the dialog box.

NXP_GetHandler Get handlers set with NXP_SetHandler.

NXP_GetHandler2 Get handlers set with NXP_SetHandler2.

NXP_SetHandler Install handlers without additional arguments.

Code Description
NXP_ALRT_OK The alert box called just has an OK button.

NXP_ALRT_OKCANCEL The alert box has an OK and a CANCEL button.

NXP_ALRT_YESNOCANCEL The alert box has YES, NO and CANCEL buttons.
C Programmer’s Guide 87

Chapter The C Library3
ret is a pointer to an integer where the code of the button clicked on should
be returned. The possible return values are:

■ NXP_RET_CANCEL, NXP_RET_NO, NXP_RET_OK, NXP_RET_YES

For alerts with just the OK button the value returned in ret is not used. For
alerts with 2 or 3 buttons this value will be used by the Rules Element to take
the proper action after the alert.

Return Codes

Your Alert handler should return FALSE if you want the Rules Element’s
default alert box to be displayed afterwards. It should return TRUE
otherwise.
(This only matters in the Development System since the Runtime library
doesn’t have any default interface).

Examples

Since the runtime library doesn’t have any interface you should install an
Alert handler to report compilation or runtime errors:

/* Example of Alert handler */
int myAlert(code, theStr, ret)
int code;
Str theStr;
IntPtr ret;
{

if(code == NXP_ALRT_OK) {
/* Print message to console and doesn't stop */
printf("ALERT: %s\n", theStr);
ret = NXP_RET_OK;/ not really necessary... */

/* Note: On a graphical window system you could open
your own modal dialog box to display the message */

}
else if(code == NXP_ALRT_OKCANCEL) {

/* Ask the user to enter OK or CANCEL
to answer the question */

...
*ret = ...;

}
else if(code == NXP_ALRT_YESNOCANCEL) {

/* Ask the user to enter OK or CANCEL
to answer the question */

...
*ret = ...;

}
return TRUE;/* avoid the Rules Element's default Alert */

}

/* Installation of the handler */
NXP_SetHandler(NXP_PROC_ALERT, (NxpIProc)myAlert, (Str)0);

The Alert handler traps all the error messages so you can also use it to filter
some of these messages and let your application deal with the error. For
instance your application could detect a "file not found..." error and take
further steps to fix the problem or find a work-around.
88 C Programmer’s Guide

NXP_SetHandler (2) / NXP_PROC_APROPOS
NXP_SetHandler (2) / NXP_PROC_APROPOS
Purpose

This handler is called each time an Apropos call is done (Show operator in
a condition or an action) . It is called with the arguments described below.

C Format

The C format is as follows if the handler is installed with NXP_SetHandler:

int NxpApropos(fileName, wait, keep, or, ext);

or as follows if it is installed with NXP_SetHandler2:

int NxpApropos(arg, fileName, wait, keep, or, ext);

Arguments

The following list shows the valid arguments.

ULong arg;
Str fileName;
int wait;
int keep;
NXP_PtRec C_FAR* or;
NXP_PtRec C_FAR* ext;

where NXP_PtRec is a point record:

typedef struct NXP_PtRec {
 int x;
 int y;
} NXP_PtRec;

arg is passed to the procedure as it was passed to NXP_SetHandler2. It can
contain any information your application wishes.

fileName is the name of the file to be displayed.

wait is TRUE if the called function should wait for user input before
returning (corresponds to the wait option in the Show dialog box).

keep is TRUE if the displayed file should remain on the screen (corresponds
to the keep option in the Show dialog box).

or is a pointer to a NXP_PtRec structure describing the top left point where
the drawing should be positioned (corresponds to the left and top
parameters in the Show dialog box). or is NULL if the file should be
displayed at the default location.

ext is a pointer to a NXP_PtRec structure representing the diagonal extent of
the image (corresponds to the width and height parameters in the Show
dialog box). ext is NULL if the default size should be used.

Return Codes

Your Apropos handler should return FALSE if you want the Rules
Element’s default Apropos function to be used afterwards. It should return
TRUE otherwise.
(This only matters for the Development System since the Runtime library
doesn’t have any default interface).
C Programmer’s Guide 89

Chapter The C Library3
Notes

The Rules Element’s default Apropos function displays ascii text and
graphic files (graphic format depends on your platform). You can use the
Apropos handler to add support for other formats.

wait , keep , or and ext are options used in the development system
interface. You don’t have to use them in your own Apropos handler. or and
ext coordinates are in pixels.

Examples

Simple Apropos handler that prints the filename to the console:

int myApropos(fileName, wait, keep, or, ext)
Str fileName;
int wait;
int keep;
NXP_PtRec C_FAR *or;
NXP_PtRec C_FAR *ext;
{

printf("Show file %s\n", fileName);
return TRUE;

}

/* Installation of the handler */
NXP_SetHandler(NXP_PROC_APROPOS, (NxpIProc)myApropos, (Str)0);

NXP_SetHandler (2) / NXP_PROC_CANCEL
Purpose

This handler is called during time consuming operations of the Rules
Element. Its purpose is to allow you to cancel the current operation: loading
or saving a knowledge base, performing a database access (Retrieve or
Write), doing a full expansion of the rule or object network.

If no handler is installed the development version uses its default procedure
which traps Control-\ on Unix and VAX, Control-Alt on PC and
Command-<period> on Macintosh, and brings up an alert box where the
user must confirm the cancellation (the Runtime library doesn’t have a
default Cancel procedure). By installing your own handler you can
customize this procedure, change the keyboard binding or avoid the alert
box.

C Format

The C format is as follows if the handler is installed with
NXP_SetHandler:

int NxpCancel(prompt, retVal);

or as follows if it is installed with NXP_SetHandler2:

int NxpCancel(arg, prompt, retVal);
90 C Programmer’s Guide

NXP_SetHandler (2) / NXP_PROC_CANCEL
Arguments

The following list shows the valid arguments.

ULong arg;
int prompt;
IntPtr retval;

arg is passed to the procedure as it was passed to NXP_SetHandler2. It
can contain any information your application wishes.

prompt is TRUE if the Rules Element expects a confirmation dialog.

retval is a pointer to an integer where TRUE or FALSE should be returned.
Setting retval to TRUE tells the Rules Element to cancel the current
operation. Setting retval to FALSE allows the Rules Element to continue
where it was stopped.

Return Codes

Your Cancel handler should always return TRUE otherwise the Rules
Element’s default Cancel function will be used afterwards.

Notes

A Cancel handler is called by the Rules Element only during a limited set of
operations:

■ Load and Save KB.

■ Database access (grouped Retrieve and Write).

■ full extension of the rule or object network.

You cannot use a Cancel handler to interrupt the inference engine during a
session. For that you must install a Polling handler and call NXP_Control
with NXP_CTRL_STOPSESSION.

Examples

Simple Cancel handler detecting when the mouse is pressed:

int myCancel(prompt, retval)
Str prompt;
IntPtr retval;
{

/*
 * Button() is the Mac toolbox call to check if the
 * mouse is pressed. Change it for other platforms
 */

#ifdef MAC
if (Button())*retval = TRUE;
else *retval = FALSE;

#endif
return TRUE;

}

/* Installation of the handler */
NXP_SetHandler(NXP_PROC_CANCEL, (NxpIProc)myCancel, (Str)0);
C Programmer’s Guide 91

Chapter The C Library3
See Also

NXP_SetHandler (2) / NXP_PROC_ENDOFSESSION
Purpose

.This handler is called at the end of a session, when there is nothing left to
process.

The end of a session does not signify an exit from the Rules Element; you can
still perform actions and call the Rules Element from your application when
the inference session is over (particularly, you can investigate the Rules
Element’s working memory with NXP_GetAtomInfo to get results). Use the
NXP_PROC_QUIT handler if you want to be notified when the Rules
Element is going to exit.

C Format

The C format is as follows if the handler is installed with NXP_SetHandler:

int MyEndOfSession();

or as follows if it is installed with NXP_SetHandler2:

int MyEndOfSession(arg);

Arguments

The following list shows the valid arguments.

unsigned long arg;

arg is passed to the procedure as it was passed to NXP_SetHandler2. It can
contain any information your application wishes.

Examples

The following example illustrates how to get the value of hypothesis H
when the session is over and display it in the Transcript window:

int MyEndOfSession()
{

AtomId hypoId;
Char hypoValue[20];

/* Get AtomId of hypothesis "H" */
NXP_GetAtomId("H", &hypoId, NXP_ATYPE_HYPO);

/* Get value as a string, "TRUE", "FALSE", "UNKNOWN", or "NOTKNOWN" */
NXP_GetAtomInfo(hypoId, NXP_AINFO_VALUE, (AtomId)0, 0,

NXP_DESC_STR, hypoValue, 20);

/* Send this string to the Transcript */
NXP_SetData(NXP_WIN_TRAN, 0, -1, hypoValue);

}

You must install the EndOfSession handler with the following call (the last
argument, name, is ignored for codes other than NXP_PROC_EXECUTE):

NXP_SetHandler(NXP_PROC_ENDOFSESSION, (NxpIProc)MyEndOfSession, (Str)0);

NXP_PROC_POLLING Polling handler.

NXP_Control / NXP_CTRL_STOPSESSION Stops a session.
92 C Programmer’s Guide

NXP_SetHandler (2) / NXP_PROC_EXECUTE
See Also

NXP_SetHandler (2) / NXP_PROC_EXECUTE
Purpose

Execute handlers are called when the inference engine processes Execute
statements placed in rules or methods. They are called with the string and
atom arguments described below.

C Format

The C format is as follows if the handler is installed with NXP_SetHandler:

int NxpExecute (theStr, nAtoms, theAtoms);

or as follows if it is installed with NXP_SetHandler2:

int NxpExecute (arg, theStr, nAtoms, theAtoms);

Arguments

The following list shows the valid arguments.

ULong arg;
Str theStr;
int nAtoms;
AtomId C_FAR* theAtoms;

arg is passed to the procedure as it was passed to NXP_SetHandler2. It can
contain any information your application wishes.

The other arguments are directly related to the 2nd argument of the Execute
operator. The format of an Execute statement is the following:

Execute proc_name arguments_description

proc_name must match the name under which the Execute handler was
registered with the NXP_SetHandler or NXP_SetHandler2 call (theName
argument of NXP_SetHandler).

The arguments_description describes the arguments which will be passed to
the Execute handler. Two types of arguments can be specified: a string
and/or a list of atoms. When the knowledge base is edited with the rule or
meta-slot editors, this information is entered in a special dialog. When the
text of the knowledge base is edited directly, this information is prefixed by
two keywords: @STRING for the string and @ATOMID for the list of atoms.

The first argument (theStr) passed to the execute handler corresponds to the
@STRING string. If a string was specified with the @STRING keyword in
the Execute statement, theStr points to this string (null-terminated buffer of
characters), otherwise, theStr is a NULL pointer.

nAtoms and theAtoms correspond to the @ATOMID atom list. The atom list
is passed as an array of AtomIds to the Execute handler. nAtoms is the
number of elements in the array and theAtoms is the pointer to the first

NXP_Control / NXP_CTRL_KNOWCESS Start a session.

NXP_SetHandler / NXP_PROC_QUIT Be notified when the Rules Element
exits.
C Programmer’s Guide 93

Chapter The C Library3
element in the array. If the second argument of the Execute statement did
not specify an @ATOMID list, nAtoms is 0 and theAtoms is a NULL pointer.

Return values

When the Execute is called from the Left Hand Side of a rule, the value
returned by the Execute handler is used to set the Execute condition to
TRUE (1) or FALSE (0). If the Execute is called from the RHS of a rule or
from methods, its return value is ignored by the Rules Element.

Notes

The atoms passed in the list theAtoms can have different types (class, object,
slot, ...) and that the Value slot of an object must be passed as "object.value"
in the interface. For instance if N is an integer the statement:

Execute myFunction @ATOMID=N;

will pass the atom id of the object N and not the slot N.value to the handler!
One must write explicitly N.Value. In the same way one should write
H.Value for a hypothesis H which has a boolean slot Value (your handler
can check that common mistake, see the example below). Value is a special
property in the Rules Element; in most places it can be ignored because no
confusion is possible, in the Execute interface it is necessary to distinguish
the object name from its value slot.

Interpretations in the arguments @STRING and @ATOMID are expanded
before the Execute handler is called. For instance if the string argument is
"The color of the car is @V(car.color)" and the value of car.color is "red"
when the Execute handler is called, theStr will contain "The color of the car
is red". If the atoms argument contains \object.prop\.color and the
value of object.prop is "car", then the atom id of car.color will be passed to
the handler.

Examples

(The following examples report errors with the printf() function. While
running in the development system you could use NXP_SetData() to write
the messages into the Transcript).

This is an example of an Execute handler accepting only one atom
argument. It checks the type and number of arguments and gets the Value
slot of objects.

int myExecute(theStr, nAtoms, theAtoms)
Str theStr;
int nAtoms;
AtomId C_FAR* theAtoms;
{

int type;
AtomId theSlot = theAtoms[0];/* first atom */
AtomId valueProp; /* Value property */
AtomId theObject;

if(nAtom != 1 || theStr != 0) {
printf("Wrong arguments in myExecute: pass only one atom"

" and no string");
return FALSE;

}

/* check the type of atom */
94 C Programmer’s Guide

NXP_SetHandler (2) / NXP_PROC_GETDATA
ret = NXP_GETINTINFO(theSlot, NXP_AINFO_TYPE, &type);
if(ret == 0) {

printf("Error in myExecute while getting type of 1st atom,
NXP_Error = %d \n", NXP_Error());

return FALSE;
}
/* must mask the type to get only the last bits */
switch(type & NXP_ATYPE_MASK) {

case NXP_ATYPE_SLOT: /* good type */
break;

case NXP_ATYPE_CLASS: /* user forgot the ".value" */
case NXP_ATYPE_OBJECT: /* we'll add for him! */

theObject = theSlot;
printf("Warning in myExecute, argument is a class or an

object. Taking Value slot instead"\n);
/* get the Id of the special Value property */
NXP_GetAtomId("Value", &valueProp, NXP_ATYPE_PROP);
/* get the Id of slot object.value or class.value */
NXP_GetAtomInfo(theObject, NXP_AINFO_SLOT, valueProp,

(AtomId)0, NXP_DESC_ATOM, (Str)&theSlot, 0);
break;

default:
printf("Error in myExecute, argument has wrong type = %x \n",

 type);
return FALSE;

}

/* perform some custom code */
....

return TRUE; /* Execute successful */
}

NXP_SetHandler (2) / NXP_PROC_GETDATA
Purpose

This handler is called when the Rules Element gets data from a window.
You need to set a GetData handler only if you are using the NXP_Compile
call or the NXP_Edit call. Only advanced Rules Element programmers
should use GetData. See Chapter Six, “Edit Functions” for details.

C Format

The C format is as follows if the handler is installed with NXP_SetHandler:

int NxpGetData(winId, ctrlId, index, thePtr);

or as follows if it is installed with NXP_SetHandler2:

int NxpGetData(arg, winId, ctrlId, index, thePtr);

Arguments

The following list shows the valid arguments.

ULong arg;
Int winId;
Int32 ctrlId;
C Programmer’s Guide 95

Chapter The C Library3
Int32 index;
Str thePtr;

arg is passed to the procedure as it was passed to NXP_SetHandler2. It can
contain any information your application wishes.

winId is the id of the window from which data is requested.

ctrlId is an integer describing which sub part of the window is involved.

index is an additional integer whose meaning depends on winId and ctrlId.

thePtr is a pointer to a memory location where the information should be
returned.

Return Values

The GetData handler should return TRUE if it processed the call. It should
return FALSE if you want the default GetData function to be called
afterward, for instance if winId is the id of a window you don’t want to
process.

NXP_SetHandler (2) / NXP_PROC_GETSTATUS
Purpose

This GetStatus handler is called when the Rules Element checks the
availability of an interface. For example when starting or resuming a
session it calls the GetStatus handler to find out whether the Transcript is
enabled or not so that it can avoid formatting the strings when the
Transcript is disabled.

C Format

The C format is as follows if the handler is installed with NXP_SetHandler:

int NxpGetStatus(winId, code, ret);

or as follows if it is installed with NXP_SetHandler2:

int NxpGetStatus(arg, winId, code, ret);

Arguments

The following list shows the valid arguments.

ULong arg;
Int winId;
Int32 code;
IntPtr ret;

arg is passed to the procedure as it was passed to NXP_SetHandler2. It can
contain any information your application requires.

winId identifies which window the Rules Element is querying.

code describes which status information the kernel needs to get from the
interface.

ret is a pointer to an integer where the state of the window will be returned.

Your GetStatus handler should test the second argument (code). If the
second argument is different from NXP_GS_ENABLED, the handler must
96 C Programmer’s Guide

NXP_SetHandler (2) / NXP_PROC_GETSTATUS
return FALSE. Otherwise the kernel is querying whether or not the window
winId is enabled for output. Your handler can then test the value of winId
and set the value of *ret to TRUE (1) or FALSE (0) if it is one of the following
codes:

It should return TRUE if winId is one of these codes and FALSE otherwise.

Notes

It is important that the function returns FALSE if it cannot process the call
(i.e. code is not NXP_GS_ENABLED or winId is not one of the previous
windows) so that the Rules Element uses its internal GetStatus handler.
Failing to do so will produce unpredictable results in the interface.

The GetStatus handler is not called every time the Rules Element wants to
format a string for the Transcript or another window (for obvious
performance issues)! It is called only once after a Knowcess or Continue
call, i.e. when a session starts or after an interruption due to a question or a
breakpoint. It means that you cannot use a GetStatus handler to modify the
status of the Transcript while the engine is running.

The Rules Element’s kernel calls the GetStatus handler even if there is no
interface, such as in the Runtime library. Although the text windows
(Transcript, Current Rule, Current Hypothesis and Conclusions) do not
exist as such in the runtime version, you can trap the messages with the
SetData handler to display them the way you want.

Examples

Here is how to use the GetStatus handler in conjunction with the SetData
handler to trap Transcript strings. Notice that if you forget to install a
GetStatus handler that enables the Transcript, the SetData handler won’t
receive any Transcript strings at all since the Rules Element will think it is
not write-enabled.

/* Install the SetData and GetStatus handler to trap Transcript
*/

NXP_SetHandler(NXP_PROC_SETDATA, SetDataHandler, (char *)0);
NXP_SetHandler(NXP_PROC_GETSTATUS, GetStatusHandler, (char *)0);

/* GetStatus handler */
int GetStatusHandler(winId, code, ret)
Int winId;
Int32 code;
IntPtr ret;
{

/*
 * Check first that GetStatusHandler is called for
 * Transcript's status otherwise it MUST return 0 to let
 * the Rules Element do its own business!
 */
if(code != NXP_GS_ENABLED || winId != NXP_WIN_TRAN)

return 0;
/*

Code Description
NXP_WIN_TRAN Transcript window

NXP_WIN_CONC Conclusions text window

NXP_WIN_HYPO Hypothesis text window

NXP_WIN_RULE "Current rule" window
C Programmer’s Guide 97

Chapter The C Library3
 * Set the "enabled" status code to TRUE to get the Transcript
 * strings then return 1 to avoid the default handler
 */
*ret = TRUE;
return 1;

}
/* SetData handler */

int SetDataHandler(windId, ctrlId, index, str)
Int winId;
Int32 ctrlId;
Int32 index;
Str str; /* string sent to Transcript */
{

/* doesn't handle other windows than transcript */
if(winId != NXP_WIN_TRAN) return 0;

/* your code to display or use the string str */
...

return 1;
}

See Also

NXP_SetHandler (2) / NXP_PROC_MEMEXIT
Purpose

This handler is called when a Rules Element memory allocation request
fails. By default, when this occurs a message indicating that no more
memory is available is displayed and the Rules Element exits. You may
specify an alternate procedure to call under this circumstance. This
procedure takes no arguments (except arg when installed with
NXP_SetHandler2).

C Format

The C format is as follows if the handler is installed with NXP_SetHandler:

void NxpMemExit ();

or as follows if it is installed with NXP_SetHandler2:

void NxpMemExit (arg);

Arguments

The following list shows the valid arguments.

unsigned long arg;

arg is passed to the procedure as it was passed to NXP_SetHandler2. It can
contain any information your application wishes.

NXP_PROC_SETDATA Trap strings for the Transcript and other windows.

NXP_SetData Send strings to the Transcript and other windows.
98 C Programmer’s Guide

NXP_SetHandler (2) / NXP_PROC_NOTIFY
Notes

You can use this procedure for putting up an error message, finding a way
to release more memory, cleaning up your environment, and other related
purposes.

Your actions during this procedure are limited because anything requiring
additional memory is likely to fail (unless you find a way to free up some
memory).

If your handler returns 0, the Rules Element will put up its own message
and exit. It returns 1, the Rules Element will call it back unless enough
memory was freed to continue.

Examples

The following example illustrates how to set up a memory exit handler:

NXP_SetHandler(NXP_PROC_MEMEXIT, myMemExit, 0);
void myMemExit()/* MemExit handler */
{

/*
* free up memory ...if possible
* maybe close files/databases/network links gracefully
* then exit
*/
printf("memory exhaustion cleanup/exit triggered\n");
exit(0);

}

In the case of a type 2 handler, the syntax would be as follows:

void MemExitHandler(arg)
ULong arg;
/* private info, see NXP_SetHandler2 */
{
...
}

NXP_SetHandler2(NXP_PROC_MEMEXIT, MemExitHandler, (Str)0,
 NXP_HDLTYPE_USER, arg);

NXP_SetHandler (2) / NXP_PROC_NOTIFY
Purpose

The notify handler is called each time something changes in the working
memory (values, creation and deletion of objects or links). The default
notify handler uses this information to keep the consistency of the user
interface.

C Format

The C format is as follows if the handler is installed with NXP_SetHandler:

int NxpNotify(winId, code, theAtom);

or as follows if it is installed with NXP_SetHandler2:
C Programmer’s Guide 99

Chapter The C Library3
int NxpNotify(arg, winId, code, theAtom);

Arguments

The following list shows the valid arguments:

ULong arg;
Int winId;
Int32 code;
AtomId theAtom;

arg is passed to the procedure as it was passed to NXP_SetHandler2. It can
contain any information your application wishes.

winId identifies the window to which the notification is addressed.

code describes the nature of the notification.

theAtom describes which Atom is involved in the change.

Your Notify handler should first test the value of winId. If winId is different
from NXP_WIN_DDE, your handler must return FALSE to let the Rules
Element use its default Notify function. Not returning FALSE in that case
could lead to serious interface problems! NXP_WIN_DDE is a reserved
code for your program to receive notifications. All the other codes represent
windows of the interface and they must be handled by the Rules Element.

The second and third arguments passed to your notify handler describe the
notification. code can take the following values:

Examples

Using the code NXP_NF_UPDATE a demon can check for changes in slot
values. This example detects changes in the pressure of tank objects:

int myNotify(winId, code, theAtom)
Int winId;
Int32 code;
AtomId theAtom;

Code Description
NXP_NF_CREATE If theAtom is NULL you are notified that a knowledge base was loaded.

Otherwise you are notified that theAtom has just been created. theAtom can
be an object, class, property, slot or rule id.

NXP_NF_DELETE If theAtom is NULL you are notified that the knowledge base was cleared.
Otherwise you are notified that theAtom will be deleted and should no longer
be referenced (the id becomes invalid). theAtom can be an object, class,
property, slot or rule id.

NXP_NF_MODIFY This notification informs you that a structural change occurred in the object
base. theAtom is the id of the parent atom involved in the change. You will
be notified every time a link is created or deleted in the object base. For
example when an object is attached to a class or removed from a class, the
notification handler is called with the id of the class as third argument. It is
also called when subobjects are created or deleted (the third argument is the
parent object in that case).

NXP_NF_REDRAW This notification is sent every time the system is interrupted or pauses for a
question.

NXP_NF_RESTART The session has been restarted.

NXP_NF_UPDATE This notification informs you that the value of a slot has changed. theAtom is
the id of the slot whose value has changed. This notification differs from an If
Change method because it is done even if the session is not running (when you
volunteer values interactively) or if the value is reset to UNKNOWN.
100 C Programmer’s Guide

NXP_SetHandler (2) / NXP_PROC_PASSWORD
{
AtomId prop, atomProp;

/* Let the Rules Element do its own business with other
windows */

if(winId != NXP_WIN_DDE) return 0;

if(code != NXP_NF_UPDATE)return 1;

/* Check that the property is Pressure */
/* (prop could be a global computed before) */
NXP_GetAtomId("Pressure", &prop, NXP_ATYPE_PROP);
NXP_GETATOMINFO(theAtom, NXP_AINFO_PROP, &atomProp);
if(atomProp != prop) return 1;

/* ... more code ... */
return 1;

}

NXP_SetHandler (2) / NXP_PROC_PASSWORD
Purpose

This handler is called each time the Rules Element needs to get a password
because it is loading an encrypted knowledge base. By default, the Rules
Element prompts the user for this password (special dialog window in the
Development System).

Your password handler can provide the password directly, query the user
for it, or do whatever you prefer. The procedure is called with a
255-character buffer (descriptor for Fortran), and the user should return the
password in this buffer. It must be NULL or "0" terminated.

C Format

The C format is as follows if the handler is installed with NXP_SetHandler:

int NxpPassword(fileName, buf);

or as follows if it is installed with NXP_SetHandler2:

int NxpPassword(arg, fileName, buf);

Arguments

The following list shows the valid arguments.

ULong arg;
Str fileName;
Str buf;

arg is passed to the procedure as it was passed to NXP_SetHandler2. It can
contain any information your application wishes.

fileName is the name of the knowledge base needing a password. It is
passed to the handler and must not be modified.

buf is the character string being passed to the routine, and in which the
routine returns the password.
C Programmer’s Guide 101

Chapter The C Library3
Examples

To set up a Password handler use the following call:

NXP_SetHandler(NXP_PROC_PASSWORD, myPassword, 0);

The following password handler provides a hard-coded password and then
disables the SaveKB function so that nobody can save the decrypted KB:

int myPassword(filename, password)
Str filename;
Str password;
{

printf("providing password for: %s\n", filename);
strcpy(password, "hello");

NXP(SetAtomInfo((AtomId)0, NXP_SAINFO_DISABLESAVEKB,
(AtomId)0, 0, 0, 0);

return 1;/* success */
}

In the above example, the filename is merely printed out for information.
Other possibilities include using it to derive the password or to simply
ignore it. The password is hard-coded here to be the string "hello". Other
options include basing it on the filename, getting it from an environment
variable, retrieving it from a database, etc.

This example is not "secure" in that someone may be able to browse the
executable image, notice the word "hello", and take steps to break your
password. This example, although it illustrates the principle, is not ideal if
high security levels are desired.

In the case of a type 2 handler, the syntax would be as follows:

int PasswordHandler(arg, filename, buf)
ULong arg;
Str filename;
Str buf;
{
...
}

NXP_SetHandler2(NXP_PROC_PASSWORD, (NxpIProc)PasswordHandler,
 (char *)0, NXP_HDLTYPE_USER, arg);

See Also

NXP_SetHandler (2) / NXP_PROC_POLLING
Purpose

The Polling handler is called after each inference engine cycle. The
processing done by the inference engine can be viewed as a succession of
processing cycles. Between two cycles, the engine is in a stable state and
information can be exchanged with the outside (read by the interface
program with the NXP_GetAtomInfo code or modified with
NXP_Volunteer, NXP_Suggest, NXP_CreateObject, ...).

NXP_SetAtomInfo /
NXP_SAINFO_DISABLESAVEKB

Disable the saving of KBs.
102 C Programmer’s Guide

NXP_SetHandler (2) / NXP_PROC_POLLING
C Format

The C format is as follows if the handler is installed with NXP_SetHandler:

int NxpPolling();

or as follows if it is installed with NXP_SetHandler2:

int NxpPolling(arg);

Arguments
ULong arg;

arg is passed to the procedure as it was passed to NXP_SetHandler2. It can
contain any information your application wishes.

Return Value

The handler should return FALSE if you want the default polling procedure
to be called afterwards, TRUE otherwise. In the development system, the
default procedure checks if a click occurred in the interrupt button of the
session control window. The runtime library doesn’t have any default
polling.

Notes

The Polling handler can call any Rules Element function. It can interrupt the
engine by calling NXP_Control with the code NXP_CTRL_STOPSESSION.
Remember that the more time consuming the handler is the more the engine
will be slowed down.

An inference cycle is a basic operation of the inference engine like changing
the status of a variable or performing one internal step in the evaluation of
an expression (for instance the expression "ASSIGN N+1 N" contains
internally several steps). It can’t be described and timed precisely, it all
depends on the current operation and the speed of the CPU. The best way
for you to know how fast these ticks happen in your application running on
your computer is to write a small polling handler that just counts how many
times it is called! The result can only be interpreted as an average: the Rules
Element doesn’t guarantee any particular frequency. Neither are there
possibilities of timeout for inferences.

In order to "synchronize" the engine with a realtime clock, a possible (but
non ideal) solution is the following:

1. Evaluate the maximum delay between two inference ticks while
running your application without file I/O operations (see warning
below). Let’s say it is K ticks per second.

2. Write a Polling handler that does nothing but wait until the current tick
takes 1/K second.

Warning: This should work fairly well if your evaluation in (1) was good,
except during file I/O operations such as Loading a KB and Retrieving data
from a database. During those operations the engine is not running per se
and thus the polling handler is not called. However, these file I/O
operations call repeatedly the "Cancel" handler, so you could install your
own Cancel handler to perform the same code as the Polling handler during
the inference.
C Programmer’s Guide 103

Chapter The C Library3
Examples

Monitoring of a (fast) changing value.

AtomId SlotAtom; /* global variable */

/* polling handler reads the value of slotAtom at every cycle */
int myPollingFct()
{

float theFloat;

NXP_GetAtomInfo(SlotAtom, NXP_AINFO_VALUE, (AtomId)NULL, 0,
NXP_DESC_FLOAT, (Str)&theFloat, 0);

...
/* code could draw the current value on a graphic ... */
...
return(FALSE) /* default polling function will be called */

}

main()
{

NXP_GetAtomId("Ferrari.Speed", &SlotAtom, NXP_ATYPE_SLOT);
NXP_SetHandler(NXP_PROC_POLLING, (NxpIProc)myPollingFct, (Str)0);
...

}

NXP_SetHandler (2) / NXP_PROC_QUESTION
Purpose

The Question handler is called each time a new question is asked by the
inference engine. It is one of the most important handlers to install in your
application because, generally, it provides the main part of the end-user
interface.

C Format

The C format is as follows if the handler is installed with NXP_SetHandler:

int NxpQuestion(qAtom, qStr);

or as follows if it is installed with NXP_SetHandler2:

int NxpQuestion(arg, qAtom, qStr);

Arguments

The following list shows the valid arguments.

ULong arg;
AtomId qAtom;
Str qStr;

arg is passed to the procedure as it was passed to NXP_SetHandler2. It can
contain any information your application wishes.

qAtom is the id of the slot on which the current question is asked.

qStr is the question prompt. It is either the prompt line string entered in the
meta-slot of qAtom, the prompt-line inherited from a parent object or class,
or the default the Rules Element prompt-line "What is the <property> of
<object>?".
104 C Programmer’s Guide

NXP_SetHandler (2) / NXP_PROC_QUIT
Return Value

The question procedure should return TRUE if it has set the value asked for
(with NXP_Volunteer), and FALSE if you want the Rules Element to bring
up the default question. The default question comes in the Session Control
window in the development system. There is no default question in the
runtime library so you must provide a Question handler!

Notes

The value of qAtom should be set with the NXP_Volunteer call and the
NXP_VSTRAT_QFWRD priority (forward with the current priority).

A modal question handler is a handler that doesn’t return to the Rules
Element until the value is volunteered (either the value was found
"automatically" by the program or it was entered by the user in a modal
dialog window).

The question can be made non modal by calling NXP_Control with code
equal to NXP_CTRL_STOPSESSION and returning 1 to the Rules Element
(See examples in the Primer). The session stops, the Rules Element returns
from the initial NXP_Control(NXP_CTRL_KNOWCESS) call, and your
application gets the control (if the application is the Rules Element itself, it
comes back to the main event loop of the interface). After the user or the
application finds an answer to the question you can call NXP_Volunteer to
set the value and then call NXP_Control(NXP_PROC_CONTINUE) to
resume the session, until the next question or the end of session.

If the question handler returns 1 without answering to the question it will
loop and come back with the same question.

A Rules Element question is always for one slot at a time. For instance if 10
properties of an object must be known by the system it will call the question
handler 10 times with a different slot qAtom each time. You may want to
provide the end-user with only one form containing 10 fields to be filled.
One way to do this is to bring up that form at the first question and then to
volunteer the 10 values before returning from the question. The Rules
Element won’t call you back with the 9 other questions now that the values
are set.

Examples

See the Hello examples of Chapter Two, “Primer”.

NXP_SetHandler (2) / NXP_PROC_QUIT
Purpose

This handler is called when the Rules Element is going to exit.

This handler is useful if your application needs to do some cleaning up
when the Rules Element quits. It can also be used in a client-server type of
application, where you need to be notified of the status of the server (the
Rules Element). If the server quits, you can close the connection gracefully.

C Format

The C format is as follows if the handler is installed with NXP_SetHandler:
C Programmer’s Guide 105

Chapter The C Library3
int NxpQuit(thePtr);

or as follows if it is installed with NXP_SetHandler2:

int NxpQuit(arg, thePtr);

Arguments

The following list shows the valid arguments.

ULong arg;
IntPtr thePtr;

arg is passed to the procedure as it was passed to NXP_SetHandler2. It can
contain any information your application wishes.

thePtr is a pointer to an integer. It should be set to TRUE (1) if the Rules
Element is allowed to quit, and to FALSE (0) if not (for instance, if a
transaction controlled from your code was still active).

The function should return TRUE if it processes the call, and FALSE if not
(in which case, the Rules Element’s default Quit handler is used and it
allows the Rules Element to exit).

Notes

This handler can only be called from the interface where there is a Quit
command. If your application is linked with the runtime library, such a
Quit event will not come from the Rules Element. Conversely, you must call
NXP_Control / NXP_CTRL_EXIT if your application does not need the
Rules Element anymore.

Examples

The following example illustrates a standard Quit handler:

int QuitHandler(ret)
IntPtr ret;
{
 /* If some transaction is still active, etc., don't allow the
Rules Element to quit */

*ret = FALSE;
return TRUE;

/* Else clean up stuff or close connection */
...
/* and let the Rules Element exit */
*ret = TRUE;
return TRUE;

}

You must install the Quit handler with the following call (the last argument,
name, is ignored for codes other than NXP_PROC_EXECUTE):

NXP_SetHandler(NXP_PROC_QUIT, QuitHandler, (char *)0);

In the case of a type 2 handler, the syntax would be as follows:

int QuitHandler(arg, ret)
ULong arg; /* private info, see NXP_SetHandler2 */
IntPtr ret;
{
...
}
NXP_SetHandler2(NXP_PROC_QUIT, (NxpIProc)QuitHandler, (Str)0,
NXP_HDLTYPE_USER, arg);
106 C Programmer’s Guide

NXP_SetHandler (2) / NXP_PROC_SETDATA
See Also

NXP_SetHandler (2) / NXP_PROC_SETDATA
Purpose

This handler is called when the Rules Element sends data to a window. It
can be used mainly to trap Transcript or Banner strings, or in conjunction
with the GetData handler to perform complex edit functions (see Chapter
Six).

C Format

The C format is as follows if the handler is installed with NXP_SetHandler:

int NxpSetData(WinId, CtrlId, Index, thePtr);

or as follows if it is installed with NXP_SetHandler2:

int NxpSetData(arg, WinId, CtrlId, Index, thePtr);

Arguments

The following list shows the valid arguments.

ULong arg;
Int winId;
Int32 ctrlId;
Int32 index;
Str thePtr;

arg is passed to the procedure as it was passed to NXP_SetHandler2. It can
contain any information your application wishes.

winId is the id of the window to which the message is sent.

ctrlId is an integer describing which sub part of the window the message is
sent to.

index is an additional integer describing how the information should be
displayed.

thePtr is a pointer to a string where the string being sent is stored.

NXP_Control / NXP_CTRL_EXIT Notify the Rules Element that an
application does not need to
communicate anymore.

NXP_Control / NXP_CTRL_INIT Initialize the Rules Element.

NXP_PROC_ENDOFSESSION To be notified of the end of a session.
C Programmer’s Guide 107

Chapter The C Library3
This handler can do some processing and return TRUE in the following
cases:

For any other value of winId, this handler should return FALSE, otherwise
you will have serious interface problems.

Examples

See the example in the GetStatus handler section. In order to trap Transcript
strings you must first install a GetStatus handler to tell the Rules Element
that the Transcript is write-enabled.

See also

NXP_SetHandler (2) / NXP_PROC_VALIDATE
Purpose

The Validate handler is called when the inference engine is triggering the
data validation of the Atom which has a user-defined routine for data
validation. It is called with the arguments described below after the boolean
data validation expression defined in the meta-slot editor if any has been
triggered (whether it has been satisfied or not).

Note: Do not call NXP_Volunteer on the Atom being evaluated.

C Format

The C format is as follows if the handler is installed with NXP_SetHandler:

Code Description
winId = NXP_WIN_BANNER A new string should be displayed in the banner window. This

window is used for temporary messages requiring no user
interaction (It is called for displaying the "Load Knowledge Base"
"Clear Knowledge base" "Retrieving from..." messages).

The default window is divided into three parts corresponding to
three different values for code & NXP_CELL_MASK.

It is the work of the called procedure to put up the banner on the
screen at the first call. When the Rules Element is done with the
messages, it will call NxpSetData with CtrlId & H_CELL_MASK
equal to H_CELL_NONE and thePtr equal to NULL. The banner
window should then be removed.

winId = NXP_WIN_TRAN A new string is sent to the Transcript window. If index is -1 or -2, the
string should be pasted at the end of the window. If index is 0, the
string should be pasted at the beginning of the window.

winId = NXP_WIN_CONC Same as NXP_WIN_TRAN except that the message is sent to the
conclusion text window.

winId = NXP_WIN_HYPO Same as NXP_WIN_TRAN except that the message is sent to the
hypothesis text window.

winId = NXP_WIN_RULE Same as NXP_WIN_TRAN except that the message is sent to
the"current rule" window.

NXP_PROC_GETDATA GetData handler.

NXP_PROC_GETSTATUS GetStatus handler.
108 C Programmer’s Guide

NXP_SetHandler (2) / NXP_PROC_VALIDATE
int NxpValidate (dataType, Atom, *Ptr, Status);

or as follows if it is installed with NXP_SetHandler2:

int NxpValidate (arg, dataType, Atom, *Ptr, Status);

Arguments

The following list shows the valid arguments:

ULong arg;
int dataType;
AtomId Atom;
VoidPtr Ptr;
IntPtr Status;

arg is passed to the procedure as it was passed to NXP_SetHandler2. It can
contain any information your application wishes.

dataType is the type of Atom. Potential values are: NXP_DESC_INT,
NXP_DESC_FLOAT, NXP_DESC_STR, NXP_DESC_DOUBLE,
NXP_DESC_LONG.

Atom is the slot on which the data validation is done. It should be a valid
slot Id.

Ptr is a pointer to the value the user/engine is trying to assign to Atom.

Status is a pointer to an integer containing the current decision based on the
decision from the boolean data validation expression or
NXP_ERROR_NOERROR in case of no boolean data validation expression.
Potential values are:

Return Codes

Your Validate handler returns:

Examples

Here is how to use Validate handler to systematically reject string values
which are within the slot options list:

/* Example of Validate handler */
int MyValidate(int dataType, AtomId atom, VoidPtr ptr, IntPtr status)
{

int n, i;
Char str[256];

Status Description
NXP_ERR_NOERROR If the value was satisfied by the boolean data validation

expression or if the boolean data validation expression couldn’t
be completely evaluated and the strategy was set to
ON/ACCEPTED.

NXP_ERR_VALIDATEMISSING If the expression could not be evaluated due to missing
information, and the strategy was not ON/ACCEPT.

NXP_ERR_VALIDATEERROR If the boolean data validation expression would cause the
validation to fail.

NXP_ERR_VALIDATEUSER If the value proposed by the user is rejected (boolean data
validation expression not satisfied).

NXP_ERR_NOERROR If the value should be accepted.

NXP_ERR_VALIDATEUSER If the value is rejected.
C Programmer’s Guide 109

Chapter The C Library3
if (dataType != NXP_DESC_STR) return = 1;
*status = NXP_ERR_VALIDATEUSER;
NXP_GETLISTLEN(atom, NXP_AINFO_CHOICE, &n);
for (i=0; i < n; i++) {

NXP_GETLISTELTSTR(atom, NXP_AINFO_CHOICE, i, str, 255);
if (STR_Cmp(str, ptr) == BOOL_TRUE) *status = NXP_ERR_NOERROR;

}
return 1;

}

NXP_SetHandler (2) / NXP_PROC_VOLVALIDATE
Purpose

This handler lets you supply your data validation function, which is
application-dependent. (VOLVALIDATE stands for Volunteer-Validate.)

This handler is called from the Rules Element during a Volunteer with the
same first four parameters (atom, desc, ptr, prio) that are passed to
NXP_Volunteer. There is one additional argument, ret, to return the result
of the data validation.

C Format

The C format is as follows if the handler is installed with NXP_SetHandler:

int NxpVolValidate(theAtom, desc, thePtr, prio, ret);

or as follows if it is installed with NXP_SetHandler2:

int NxpVolValidate(arg, theAtom, desc, thePtr, prio, ret);

Arguments

The following list shows the valid arguments.

ULong arg;
AtomId theAtom;
int desc;
Str thePtr;
int prio;
IntPtr ret;

arg is passed to the procedure as it was passed to NXP_SetHandler2. It can
contain any information your application wishes.

The VolValidate handler does not trap the internal setting of values as the
inference engine would. It is intended to trap the calls to NXP_Volunteer
made from the interface (Question window) or any program using the
Application Programming Interface. The first four arguments received by
the handler are the ones that were just passed to the NXP_Volunteer call
being trapped:

theAtom is the slot Id being modified.

desc describes the format of the value referenced by thePtr. desc can be one
of the following codes: NXP_DESC_DOUBLE, NXP_DESC_FLOAT,
NXP_DESC_INT, NXP_DESC_NOTKNOWN, NXP_DESC_STR, or
NXP_DESC_UNKNOWN.

thePtr is a pointer to the new value associated with theAtom.
110 C Programmer’s Guide

NXP_SetHandler (2) / NXP_PROC_VOLVALIDATE
prio describes the priority to be used by the inference engine when
forwarding the new value.

See NXP_Volunteer for more information on the previous four arguments.

ret is a pointer to an integer where the result of the data validation will be
returned. *ret should be set to TRUE (1) if the value is considered valid, and
set to FALSE (0) if it is invalid.

If the handler recognizes the value as invalid, NXP_Volunteer won’t modify
theAtom’s value and will return FALSE. NXP_Error() subsequently returns
NXP_ERR_VOLINVAL.

If you find an invalid value and wish to modify the value in your
VolValidate handler, you should call NXP_Volunteer (see the following
example). Warning: In this case, your VolValidate handler will have been
called a second time within the NXP_Volunteer call, so the function should
be made reentrant!

Return Value

This handler returns TRUE if it processes the data validation, and returns
FALSE otherwise. If the handler returns FALSE to indicate that it does not
process the data validation, the Rules Element’s default handler
automatically validates the value (so this is equivalent to setting *ret to
TRUE and returning TRUE).

Examples

The following example shows how your VolValidate handler can handle
different cases:

int MyVolValidate(atom, desc, ptr, prio, ret)
AtomId theAtom;
int desc;
Str thePtr;
int prio;
IntPtr ret;
{

/* returns immediately for atoms not being checked */
...
return FALSE;
/* code to check whether the value for atom is correct */
...

/* case 1: value correct and will be volunteered */
*ret = TRUE;
return TRUE;

/* case 2: value is incorrect and don't volunteer */
*ret = FALSE;
return TRUE;

/* case 3: modify the value, don't volunteer current one
*/

NXP_Volunteer(atom, newDesc, newPtr, newPrio);
*ret = FALSE;
return TRUE;

}

Additionally, you could use the ClientData information to store the valid
values with each atom and see whether or not an atom needs to be checked
(see NXP_SetClientData, NXP_GetAtomInfo /
C Programmer’s Guide 111

Chapter The C Library3
NXP_AINFO_CLIENTDATA). You can also keep this information as global
data in your program, or pass it to the VolValidate handler by using
NXP_SetHandler2 (see the following example).

You must install the VolValidate handler with the following call (the last
argument, name, is ignored for codes other than NXP_PROC_EXECUTE):

NXP_SetHandler(NXP_PROC_VOLVALIDATE, MyVolValidate, (char
*)0);

Using NXP_SetHandler2 to pass additional information to the VolValidate
handler, you can get the list of atoms that needs to be checked and the list of
valid values. The following example shows a fixed list of N atoms of type
integer and K possible values for each of them:

struct myInfo {
AtomId atomsToCheck[N];
int validValues[K];
int validPrio;

} *structPtr;

int MyVolValidate2(arg, atom, desc, ptr, prio, ret)
ULong arg;
AtomId atom;
int desc;
Str thePtr;
int prio;
IntPtr ret;
{

struct myInfo *structPtr = arg;
int i;

/* See if atom needs to be checked */
for(i = 0; i < N; i++) {
if(structPtr->atomsToCheck[i] == atom)
goto checkIt;
}
return FALSE;

checkIt:
/* check that it is volunteered as an integer */
if(desc != NXP_DESC_INT) {

*ret = FALSE;
return TRUE;

}

/* check that it is volunteered with the right priority
*/

if(prio != structPtr->validPrio) {
*ret = FALSE;

return TRUE;
}

/* check that it has one of the K possible values */
for(i = 0; i < K; i++) {

if(*(int *)ptr == structPtr->validValues[i]) {
*ret = TRUE;
return TRUE;

}
}
*ret = FALSE;
return TRUE;

}

112 C Programmer’s Guide

NXP_Strategy
NXP_SetHandler2 also allows you to install the MyVolValidate handler and
pass the pointer structPtr as shown in the following example (the default
value NXP_HDLTYPE_USER is used for type, which is not important here):

NXP_SetHandler2(NXP_PROC_VOLVALIDATE, MyVolValidate, (char *)0,
NXP_HDLTYPE_USER, structPtr);

See Also

NXP_Strategy
Purpose

NXP_Strategy changes the strategy of the inference engine. You can change
either the default strategy saved with the knowledge base or the current
strategy of the inference engine.

C Format

The C format is as follows.

int NXP_Strategy(code, bool);

Arguments

The following list shows the valid arguments.

int code;
int bool;

code corresponds to the multiple options of the Strategy window in the
development system. It is one of the following:

NXP_Volunteer Volunteer the value of a slot.

Code Description
NXP_AINFO_BREADTHFIRST Breadth first versus depth first strategy.

NXP_AINFO_CACTIONSON If Change methods enabled or not.

NXP_AINFO_CACTIONSUNKNOWN If Change methods will be executed when the slot is set to
UNKNOWN.

NXP_AINFO_EXHBWRD Exhaustive evaluation of the backward chaining.

NXP_AINFO_INHCLASSDOWN Downward inheritability of class slots.

NXP_AINFO_INHCLASSUP Upward inheritability of class slots.

NXP_AINFO_INHOBJDOWN Downward inheritability of object slots.

NXP_AINFO_INHOBJUP Upward inheritability of object slots.

NXP_AINFO_INHVALDOWN Downward inheritability of the value of a slot.

NXP_AINFO_INHVALUP Upward inheritability of the value of a slot.

NXP_AINFO_PARENTFIRST Parent first versus class first strategy.

NXP_AINFO_PFACTIONS Forward LHS/RHS actions from rules.

NXP_AINFO_PFELSEACTIONS Forward Else actions from rules.

NXP_AINFO_PTGATES Forwarding through gates.

NXP_AINFO_PFMETHODACTIONS Forward LHS/RHS actions from methods.

NXP_AINFO_PFMETHODELSEACTIONS Forward Else actions from methods.

NXP_AINFO_PWFALSE Context propagation on FALSE hypotheses.
C Programmer’s Guide 113

Chapter The C Library3
If the NXP_AINFO_CURSTRAT bit is set in code, the current strategy is
modified, otherwise, the default strategy (saved with the knowledge base)
is modified.

If bool is 0, the strategy setting is turned off, otherwise, it is turned on.

Current strategies can be examined through various NXP_AINFO_XXX
codes dealing with strategies (See Chapter Four "NXP_GetAtomInfo
Routine").

Return Codes

NXP_Strategy returns 1 on success and 0 on error. In case of error, more
information about the error can be obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error will return one of
the following codes:

Examples

The following example reads the current strategy concerning the
forwarding through gates and turns the forwarding off if it was on. It resets
the current strategy later.

int code = NXP_AINFO_PTGATES | NXP_AINFO_CURSTRAT;
int curStrat;

NXP_GETINTINFO((AtomId)0, code, &curStrat);
if(curStrat == TRUE)

NXP_SetStrategy (NXP_AINFO_PTGATES, FALSE);

NXP_AINFO_PWNOTKNOWN Context propagation on NOTKNOWN hypotheses.

NXP_AINFO_PWTRUE Context propagation on TRUE hypotheses.

NXP_AINFO_SOURCESCONTINUE Order of Sources methods will be fully executed.

NXP_AINFO_SOURCESON Order of Sources methods enabled or not.

NXP_AINFO_VALIDENGINE_ACCEPT Validation of value set by the engine enabled and the value
accepted automatically if the validation expression is
incomplete.

NXP_AINFO_VALIDENGINE_OFF Validation of value set by the engine disabled.

NXP_AINFO_VALIDENGINE_ON Validation of value set by the engine enabled.

NXP_AINFO_VALIDENGINE_REJECT Validation of value set by the engine enabled and the value
rejected automatically if the validation expression is
incomplete.

NXP_AINFO_VALIDUSER_ACCEPT Validation of value entered by the end user enabled and the
value accepted automatically if the validation expression is
incomplete.

NXP_AINFO_VALIDUSER_OFF Validation of value entered by the end user disabled.

NXP_AINFO_VALIDUSER_ON Validation of value entered by the end user is enabled.

NXP_AINFO_VALIDUSER_REJECT Validation of value entered by the end user enabled and the
value rejected automatically if the validation expression is
incomplete.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 code is invalid.

NXP_ERR_NOERR Call was successful.

Code Description
114 C Programmer’s Guide

NXP_Suggest
/* some code ... */

if(curStrat == TRUE)
NXP_SetStrategy (NXP_AINFO_PTGATES, curStrat);

See Also

NXP_Suggest
Purpose

NXP_Suggest suggests a hypothesis (i.e. puts it in the Suggest list of the
agenda).

C Format

The C format is as follows.

int NXP_Suggest(theAtom, prio);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int prio;

NXP_Suggest suggests further evaluation of the atom pointed to by
theAtom with the priority prio. If theAtom was already queued with a
priority less than prio it will be rescheduled with the higher priority.

theAtom must be a valid hypothesis Id.

prio describes when theAtom will be processed. The possible codes are:

Return Codes

NXP_Suggest returns 1 on success and 0 on error. In case of error, more
information about the error can be obtained by calling NXP_Error

NXP_GetAtomInfo / NXP_AINFO_XXX Information codes on strategies.

Code Description
NXP_SPRIO_CNTX theAtom will compete with the contexts.

NXP_SPRIO_DATAISL theAtom is queued in the current knowledge island with a priority less
than NXP_SPRIO_HYPISL. All the hypotheses queued with
NXP_SPRIO_HYPISL will be investigated before any of those queued
with NXP_SPRIO_DATAISL.

NXP_SPRIO_FORCE theAtom is forced for immediate evaluation. The current tasks are saved
and will be resumed once theAtom has been evaluated. This code is not
implemented.

NXP_SPRIO_HYPISL theAtom is queued in the current knowledge island.

NXP_SPRIO_SUG theAtom is queued for evaluation with the same priority as if it was
suggested from the interface through a pop up menu or through the
Suggest global menu. The current atom being investigated is evaluated
and then control switches to theAtom.

NXP_SPRIO_UNSUG theAtom will be removed from the agenda.
C Programmer’s Guide 115

Chapter The C Library3
immediately after the code which has failed. NXP_Error will return one of
the following codes:

Examples

This example checks if a hypothesis is already suggested and if not suggests
it:

AtomId HypoId;
int IsSuggested;
int ret;

/* Get the id of Hypo1 */
ret = NXP_GetAtomId("Hypo1", &HypoId, NXP_ATYPE_HYPO)
if (ret == 0) {

/* error message... */
}

/* Check if the Hypo is already suggested */
ret = NXP_GETINTINFO(HypoId, NXP_AINFO_SUGGEST, &IsSuggested);

if (IsSuggested == FALSE) {
/* Suggest the hypo */
ret = NXP_Suggest(HypoId, NXP_SPRIO_SUG)

/* Check again... */
ret = NXP_GETINTINFO(HypoId, NXP_AINFO_SUGGEST, &IsSuggested);

if (IsSuggested != TRUE) {
/* something is wrong... */

} else {
/* Hypo1 was correctly suggested... */

}
}

See Also

NXP_UnloadKB
Purpose

NXP_UnloadKB controls the knowledge bases loaded by NXP_LoadKB. It
can unload, disable, or reenable a knowledge base.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a valid hypothesis Id.

NXP_ERR_INVARG2 prio is not one of the valid priority codes.

NXP_ERR_NOERR Call was successful.

NXP_GetAtomInfo / NXP_AINFO_SUGGEST To know if hypothesis is
suggested.

NXP_GetAtomInfo / NXP_AINFO_FOCUSPRIO Get focus priority of the
hypothesis.
116 C Programmer’s Guide

NXP_UnloadKB
C Format

The C format is as follows.

int NXP_UnloadKB(theKBId, level);

Arguments

The following list shows the valid arguments.

KBId theKBId;
int level;

theKBId must be a valid knowledge base id (as returned by a previous call
to NXP_LoadKB or NXP_GetAtomId).

level must be one of the following constants:

Notes

Disabling a knowledge base with NXP_XLOAD_DISABLEWEAK or
NXP_XLOAD_DISABLESTRONG and reenabling it later with
NXP_XLOAD_ENABLE are very fast operations (resetting or setting a flag
in memory). On the contrary, when a knowledge base is deleted
(NXP_XLOAD_DELETE or NXP_XLOAD_WIPEOUT), the delete operation
is not as fast and the knowledge base must be reloaded from a file if its rules
or methods are required later during the session (in this case, theKBId
becomes invalid after the NXP_UnloadKB call).

If there is only one knowledge base loaded using NXP_XLOAD_WIPEOUT
has the same effect as calling NXP_Control(NXP_CTRL_CLEARKB).

Return Codes

NXP_UnloadKB returns 1 on success and 0 on error. In case of error, more
information about the error can be obtained by calling NXP_Error
immediately after the code which has failed. NXP_Error will return one of
the following codes:

Code Description
NXP_XLOAD_DELETE The knowledge base is disabled, its rules, hypotheses, methods

are removed from the agenda of the inference engine and the data
structures associated with rules and methods are released in
memory so that the memory space that they occupied can be
reused for other rules, objects or for other applications. The
objects and classes belonging to the knowledge base remain in
memory.

NXP_XLOAD_DISABLESTRONG The knowledge base is disabled and its rules, hypotheses,
methods are removed from the agenda of the inference engine.

NXP_XLOAD_DISABLEWEAK The knowledge base is disabled but the agenda of the inference
engine is not modified.

NXP_XLOAD_ENABLE The knowledge base is enabled.

NXP_XLOAD_WIPEOUT Same as NXP_XLOAD_DELETE but the data structures
associated with the objects and classes are also released.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theKBId is not a valid knowledge base id.

NXP_ERR_INVARG level is invalid.

NXP_ERR_NOERR Call was successful.
C Programmer’s Guide 117

Chapter The C Library3
Examples

In the following example kb1 and kb2 share the same objects and classes, so
we unload kb1 with NXP_XLOAD_DELETE to remove only the rules.

KBId kb1, kb2;

/* loads a first knowledge base */
NXP_LoadKB("kb1.tkb", &kb1);

/* suggest, knowcess, ... */

/* unload kb and release its memory */
NXP_UnloadKB(kb1, NXP_XLOAD_DELETE);

/* load a different kb using the same classes */
NXP_LoadKB("kb2.tkb", &kb2);

/* suggest, knowcess, ... */

In an execute routine, you can disable or reenable a knowledge base (the
knowledge base id was obtained by a previous call to NXP_LoadKB or
NXP_GetAtomId):

/* disabling a kb */
NXP_UnloadKB(kb, NXP_XLOAD_DISABLEWEAK);

/* reenabling kb later */
NXP_UnloadKB(kb, NXP_XLOAD_ENABLE);

These operations are very fast. NXP_XLOAD_DELETE followed by a
NXP_LoadKB would be much slower, but you would have more memory
available while the knowledge base is unloaded.

See Also

NXP_Volunteer
Purpose

NXP_Volunteer volunteers the value of a slot.

C Format

The C format is as follows.

int NXP_Volunteer(theAtom, desc, thePtr, prio);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int desc;
Str thePtr;
int prio;

NXP_LoadKB Load a knowledge base.

NXP_Control / NXP_CTRL_CLEARKB Clear all knowledge bases.
118 C Programmer’s Guide

NXP_Volunteer
NXP_Volunteer will change the value associated with theAtom. Values can
be passed in different formats (as text, as numbers). Priorities describe how
the new value should be forwarded in the inference network.

theAtom should be a valid slot id. It is not possible to set rule or condition
values directly.

thePtr is a pointer to the new value.

desc describes the format of *thePtr. desc can be one of the following codes:

prio describes the priority to be used by the inference engine when
forwarding the new value. It can be any of the following codes:

Code Description
NXP_DESC_DOUBLE Same as NXP_DESC_INT except that thePtr should be a pointer to a double

(64 bit IEEE standard on AT, DFloat on VAX).

NXP_DESC_FLOAT Same as NXP_DESC_INT except that thePtr should be a pointer to a float
(32 bit IEEE standard on AT, FFloat on VAX). If theAtom is a string value,
the float will be converted to a string and that string value will be assigned
to theAtom.

NXP_DESC_INT thePtr should be a pointer to an integer. If theAtom is a boolean value, any
value not NULL of *thePtr will set theAtom to TRUE, otherwise to FALSE.
If theAtom is a numeric value, *thePtr will be transferred into theAtom. If
theAtom is a string value, the integer will be converted into a string and
that string value will be assigned to theAtom.

NXP_DESC_LONG thePtr should be a pointer to a long. If theAtom is a boolean value, any
value not NULL of *thePtr will set theAtom to TRUE, otherwise to FALSE.
If theAtom is a numeric value, *thePtr will be transferred into theAtom. If
theAtom is a string value, the long will be converted into a string and that
string value will be assigned to theAtom.

NXP_DESC_NOTKNOWN theAtom will be set to NOTKNOWN. thePtr should be NULL.

NXP_DESC_STR thePtr should be a pointer to a string which will be used for determining
the new value of theAtom. For boolean values the string can be TRUE or
FALSE (case independent), for numeric values the string will be converted
using the Rules Element’s default formats (unless user-provided formats
are available), and for string values the string will be transferred as is.

NXP_DESC_UNKNOWN theAtom will be set back to UNKNOWN. thePtr should then be NULL. In
this case, if prio is equal to NXP_VSTRAT_RESET and if theAtom is a
hypothesis, the backward chaining from theAtom will be reset (having the
same effect as a reset in a rule). Otherwise prio must be equal to
NXP_VSTRAT_NOFWRD.

NXP_DESC_VALUE Not implemented in this version.

Code Description
NXP_VSTRAT_CURFWRD Same as NXP_VSTRAT_VOLFWRD except that the global strategy

setting "Forward Action Effects" will be checked first. If it is off, the
value will not be forwarded.

NXP_VSTRAT_NOFWRD The new value will not be forwarded in the rule network. It will just
be pasted in the value slot and will not influence the inference process,
unless the slot was explicitly volunteered.

NXP_VSTRAT_QFWRD This priority should be used when sending the answer to the current
question. A continue session message would be needed anyway if the
question handler had called stop session (in case one wants non modal
questions).

NXP_VSTRAT_RESET Used for resetting the backward chaining on a hypothesis. The value
will be set back to UNKNOWN with its backward chaining.
C Programmer’s Guide 119

Chapter The C Library3
Notes

The strings UNKNOWN and NOTKNOWN (case independent) are also
recognized correctly by the Rules Element. Therefore, passing the string
NOTKNOWN is the same as passing desc =NXP_DESC_NOTKNOWN.
When the value is passed as a string, The Rules Element uses the format
information associated with theAtom to convert the string into the internal
data type representation.

Return Codes

NXP_Volunteer returns 1 on success and 0 on error. In case of error, more
information about the error can be obtained by calling NXP_Error
immediately after the code which has failed. NXP_Error will return one of
the following codes:

Examples

Several examples of NXP_Volunteer follow:

AtomId BoolAtom;
AtomId NumbAtom;
AtomId StringAtom;
int theBool;
float theFloat;

/* set the value of Sensor1.Setup to TRUE and forward it as a RHS */
NXP_GetAtomId("Sensor1.Setup", &BoolAtom,NXP_ATYPE_SLOT)

theBool = 1;
NXP_Volunteer(BoolAtom, NXP_DESC_INT, (Str)&theBool, NXP_VSTRAT_RHSFWRD);

/* set the Pressure of Sensor1 to 9.789 but do not forward it */
NXP_GetAtomId("Sensor1.Pressure", &NumbAtom, NXP_ATYPE_SLOT);
theFloat = 9.789;
NXP_Volunteer(NumbAtom, NXP_DESC_FLOAT, (Str)&theFloat, NXP_VSTRAT_NOFWRD);

/* answer to the question about the Manufacturer of Sensor1 */
NXP_GetAtomId("Sensor1.Manufacturer", &StringAtom, NXP_ATYPE_SLOT);
NXP_Volunteer(StringAtom, NXP_DESC_STR, "Martin_Marietta",

NXP_VSTRAT_RHSFWRD The new value will be forwarded in the rule network as if it was set
from inside a RHS. The engine will not examine all the possible
pattern matching rules (selective forward) but will investigate the
strong links.

NXP_VSTRAT_VOLFWRD The new value will be forwarded in the rule network as if it was
volunteered manually from the interface with a global or local menu.
This option is recommended when trying to propagate all the
consequences of a new value. It is better to use this option at the
beginning of a session.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a valid slot id.

NXP_ERR_INVARG2 desc is not a valid NXP_DESC_... code.

NXP_Error() Return Code Explanation

NXP_ERR_INVARG3 desc is equal to NXP_DESC_STR but the string is empty.

NXP_ERR_INVARG4 prio is not a valid NXP_VSTRAT_... code.

NXP_ERR_NOERR Call was successful.

Code Description
120 C Programmer’s Guide

NXP_Volunteer
NXP_VSTRAT_QFWRD);

/* reset all the rules leading to hypo1 */
NXP_GetAtomId("hypo1", &BoolAtom, NXP_ATYPE_HYPO);
NXP_Volunteer(BoolAtom, NXP_DESC_UNKNOWN, (Str)NULL, NXP_VSTRAT_RESET);

Advanced Users

When setting a new value, the Rules Element can force the value
immediately into the slot or queue the value which will be processed and
forwarded later. The consequences of this are that if you queue a value and
read the slot value immediately after, the old value might still be there. This
is because the new value is still in the forwarding queue waiting to be
processed by the engine. Sometimes one wants the value to be forced in the
slot immediately, for example when volunteering values from the interface
and then browsing the data notebook. The extra codes NXP_VSTRAT_SET
and NXP_VSTRAT_QUEUE give better control over this matter. If none of
those codes is specified, then NXP_VSTRAT_QUEUE will be assumed.

Specifying NXP_VSTRAT_SET forces the new value in the slot
immediately, but doesn’t forward it. NXP_VSTRAT_QUEUE will also
queue the new value with the forwarding priority. The value will be then
set when control is passed back to the engine (return from the call and call
to Knowcess).

NXP_VSTRAT_SETQUEUE (=NXP_VSTRAT_SET |
NXP_VSTRAT_QUEUE) will both set the value immediately and forward it
later.

Note: The forwarding queue is a first in, first out queue.

An advanced example follows. It illustrates the usage of
NXP_VSTRAT_SET and NXP_VSTRAT_QUEUE.

NXP_GetAtomId("Sensor1.Temperature", &NumbAtom, NXP_ATYPE_SLOT);

/* force the value in the slot immediately */
NXP_Volunteer(NumbAtom, NXP_DESC_STR,
"0.987",NXP_VSTRAT_NOFWRD|NXP_VSTRAT_SET);
NXP_GetAtomInfo(NumbAtom, NXP_AINFO_VALUE, 0, (AtomId)NULL,
 NXP_DESC_FLOAT, (Str)&theFloat, 0);

if (theFloat != 0.987) {
/* something is very wrong */
....

}

/* queues the value without setting it immediately */
NXP_Volunteer(NumbAtom, NXP_DESC_STR, "123.456",
NXP_VSTRAT_VOLFWRD|NXP_VSTRAT_QUEUE);
NXP_GetAtomInfo(NumbAtom, NXP_AINFO_VALUE, 0,

 (AtomId)NULL, NXP_DESC_FLOAT, (Str)&theFloat, 0);

/* the value should still be equal to 0.987 */
if (theFloat != 0.987) {

...
}

/* suppose the inference engine does not change that value.
 * Give control back to the inference engine and try reading value later
 */
C Programmer’s Guide 121

Chapter The C Library3
NXP_GetAtomInfo(NumbAtom, NXP_AINFO_VALUE, 0,
 (AtomId)NULL, NXP_DESC_FLOAT, (Str)&theFloat, 0);

/* the value should have been changed to 123.456 */
if (theFloat != 123.456) {

/* problem... */
}

NXP_VolunteerArray
Purpose

This allows you to group in one call the volunteer of several data items of
different types provided within an array.

C Format

The C format is as follows:

int NXP_VolunteerArray(count, type, atoms, descs, ptrs, strats);

Arguments

The following list shows the valid arguments:

int count;
AtomSpecEnum type;
VoidPtr atoms;
int *descs;
VoidPtr *ptrs;
int *strats;

count is the number of atoms to be volunteered.

type indicates whether atoms is an array of AtomIds or an array of atom
names. Probably declared as an Enum of either NXP_DESC_ATOM or
NXP_DESC_STR.

atoms is an array of either AtomIds (if NXP_DESC_ATOM was specified for
type) or strings representing atom names (if NXP_DESC_STR) was passed.

descs is an array of ints describing the format of the program’s data --
NXP_DESC_INT, NXP_DESC_STR, etc. See NXP_DESC_DATE below for
information on a new date descriptor.

ptrs points to an array of pointers to the data to be volunteered.

Code Description
NXP_DESC_DATE This is a new descriptor to speed up the volunteering (and retrieval) of dates

in the Rules Element. It describes an array of 6 integers and contains Month,
Day, Year (19xx), Hour, Minute, and Second. Obviously, patterns are not
involved. Internally, the Rules Element stuffs the integers into a DateRec and
calls DateFix() to fill in the day-of-week stuff.
122 C Programmer’s Guide

NXP_VolunteerArray
strats points to an array of ints indicating the NXP_VSTRAT_XXX settings
for each atom. See NXP_VSTRAT_NOCHECK below for information on a
new volunteering strategy.

■ NO notifications for the change (especially transcript)

■ NO If Change actions will be honored

■ NO patterns will be searched for String Slots

■ NXP_DESC_STR fields being volunteered to integer or long slots will
be converted by "atoi()" or "atol()", and are subject to the same
restrictions.

■ NXP_DESC_STR fields being volunteered to float or double slots will
be converted by "atof()" and are subject to the same restrictions.

■ NXP_DESC_VALUE is not supported (but this doesn’t have to be true).

Notes

You have to use the NXP_DateRec structure to store the date information to
use with Volunteer and the priority NXP_VSTRAT_NOCHECK:

typedef struct NXP_DateRec
{
 unsigned int Month;
 unsigned int Day;
 unsigned int Year;
 unsigned int Hour;
 unsigned int Min;
 unsigned int Sec;
} NXP_DateRec, *NXP_DatePtr;

Return Codes

NXP_VolunteerArray returns 1 on success and 0 on error. In case of error,
more information about the error is obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error returns one of the
following codes:

Code Description
NXP_VSTRAT_NOCHECK This is a NEW strategy which can be used with NXP_VolunteerArray

and NXP_VolunteerList to speed up volunteering information into the
Rules Element. It is much like NXP_VSTRAT_SET, except that it has
other restrictions:

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 count was invalid - less than zero

NXP_ERR_INVARG2 Neither NXP_DESC_STR not NXP_DESC_ATOM was passed for type.

NXP_ERR_INVARG3 One of the atomids or atom names in the list pointed to by atoms was
invalid. Call NXP_ErrorIndex() to find out which atom is invalid.

NXP_ERR_INVARG4 One of the desc in the list pointed to by descs is invalid. Call
NXP_ErrorIndex() to find out which atom is invalid.

NXP_ERR_INVARG5 One of the ptr in the list pointed to by ptrs is invalid, or a conversion
problem occurred with the data passed. Call NXP_ErrorIndex() to find
out which atom is invalid.

NXP_ERR_INVARG6 One of the strategies in the list pointed to by strats is invalid. Call
NXP_ErrorIndex() to find out which atom is invalid.
C Programmer’s Guide 123

Chapter The C Library3
Examples

The following example shows how to volunteer string slots and a date slot.

/* Example of NXP_VolunteerArray */
typedef struct _NXP_DateRec {

int Month;
int Day;
int Year;
int Hour;
int Min;
int Sec;

}NXP_DateRec;
static NXP_DateRec DateA;
static Char *S_ValuesA[]= { "this is a string", "this is string 2", "1234",
 "FALSE", "12.5", (Str)&DateA};
int i;
int desc[6], strats[6];
char SlotNames[6];
for (i=0;i<6;i++) {
descs[i]= NXP_DESC_STR;
strats[i]= NXP_VSTRAT_NOCHECK;
}
descs[5]= NXP_DESC_DATE;
DateA.Month = 11; DateA.Day = 12; DateA.Year = 91;
DateA.Hour = 0; DateA.Min = 0; DateA.Sec = 0;
SlotNames[0]= "testobj.propstr";
SlotNames[1]= "testobj.propstr1";
SlotNames[2]= "testobj.propint";
SlotNames[3]= "testobj.propbool";
SlotNames[4]= "testobj.propfloat";
SlotNames[5]= "testobj.propdate";
NXP_VolunteerArray(6,NXP_DESC_STR,(VoidPtr) SlotNames,descs,
 S_ValuesA, strats);

See Also

NXP_VolunteerList
Purpose

This allows you to group in one call the volunteer of a couple of data items
of different types.

C Format

The C format is as follows:

int NXP_VolunteerList(count, type, atom1, desc1, ptr1, strat1, atom2, desc2, ptr2, strat2, ...);

Arguments

The following list shows the valid arguments:

int count;
int type;
atomid atomx;
int descx;

NXP_VolunteerList Volunteering a list of values.

NXP_Volunteer Volunteering a single value.
124 C Programmer’s Guide

NXP_VolunteerList
VoidPtr ptrx;
int stratx;

count is the number of atoms to be volunteered.

type indicates whether atomx is an array of AtomIds or an array of atom
names. Specify either NXP_DESC_ATOM or NXP_DESC_STR.

atomx is the AtomId, or pointer to the name of an atom, to be volunteered,
depending on whether NXP_DESC_ATOM or NXP_DESC_STR was
passed.

descx the descriptor for the data being passed -- NXP_DESC_INT,
NXP_DESC_STR, etc. See NXP_DESC_DATE below for information on a
new date descriptor.

ptrx points to the data to be volunteered.

stratx is the strategy for the atom to be volunteered. See
NXP_VSTRAT_NOCHECK below for information on a new volunteering
strategy.

■ NO notifications for the change (especially transcript)

■ NO If Change actions will be honored

■ NO patterns will be searched for String Slots

■ NXP_DESC_STR fields being volunteered to integer or long slots will
be converted by "atoi()" or "atol()", and are subject to the same
restrictions.

■ NXP_DESC_STR fields being volunteered to float or double slots will
be converted by "atof()" and are subject to the same restrictions.

■ NXP_DESC_VALUE is not supported (but this doesn’t have to be true).

Notes

You have to use the NXP_DateRec structure to store the date information to
use with Volunteer and the priority NXP_VSTRAT_NOCHECK:

typedef struct NXP_DateRec
{
 unsigned int Month;
 unsigned int Day;
 unsigned int Year;
 unsigned int Hour;
 unsigned int Min;

Code Description
NXP_DESC_DATE This is a new descriptor to speed up the volunteering (and retrieval) of

dates in the Rules Element. It describes an array of 6 integers and contains
Month, Day, Year (19xx), Hour, Minute, and Second. Obviously, patterns
are not involved. Internally, the Rules Element stuffs the integers into a
DateRec and calls DateFix() to fill in the day-of-week stuff.

Code Description
NXP_VSTRAT_NOCHECK This is a NEW strategy which can be used with NXP_VolunteerArray and

NXP_VolunteerList to speed up volunteering information into the Rules
Element. It is much like NXP_VSTRAT_SET, except that it has other
restrictions:
C Programmer’s Guide 125

Chapter The C Library3
 unsigned int Sec;
} NXP_DateRec, *NXP_DatePtr;

Return Codes

NXP_VolunteerList returns 1 on success and 0 on error. In case of error,
more information about the error is obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error returns one of the
following codes:

Examples

The following example shows how to volunteer 6 slots of different types
provided in a list.

/* Example of NXP_VolunteerList */
static NXP_DateRec DateB;
static char *S_ValuesB[]= {"this 2 is a string", "this 2 is string 2",
"1235", "TRUE", "123.5", (char *)&DateB};
int MyExecute(char *theStr, int nAtoms, AtomId *theAtoms)
{
int i;
int theDescs[6], strats[6];
if (nAtoms != 6) return 0;
for (i=0;i<6;i++) {
theDescs[i]= NXP_DESC_STR;
strats[i]= NXP_VSTRAT_NOCHECK;
}
theDescs[5]= NXP_DESC_DATE;
DateB.Month = 12; DateB.Day = 12; DateB.Year = 91;
DateB.Hour = 0; DateB.Min = 0; DateB.Sec = 0;
NXP_VolunteerList(6,NXP_DESC_ATOM,

theAtoms[0],theDescs[0],(VoidPtr)S_ValuesB[0],strats[0],
theAtoms[1],theDescs[1],(VoidPtr)S_ValuesB[1],strats[1],
theAtoms[2],theDescs[2],(VoidPtr)S_ValuesB[2],strats[2],
theAtoms[3],theDescs[3],(VoidPtr)S_ValuesB[3],strats[3],
theAtoms[4],theDescs[4],(VoidPtr)S_ValuesB[4],strats[4],
theAtoms[5],theDescs[5],(VoidPtr)S_ValuesB[5],strats[5]);

}

See Also

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 count was invalid - less than zero

NXP_ERR_INVARG2 Neither NXP_DESC_STR not NXP_DESC_ATOM was passed for type.

NXP_ERR_INVARG3 atomi was invalid or the wrong type. Call NXP_ErrorIndex() to find out
which atom is invalid.

NXP_ERR_INVARG4 desci was invalid. Call NXP_ErrorIndex() to find out which atom is
invalid.

NXP_ERR_INVARG5 ptri was invalid or a conversion problem occurred with the data passed.
Call NXP_ErrorIndex() to find out which atom is invalid.

NXP_ERR_INVARG6 strati was invalid. Call NXP_ErrorIndex() to find out which atom is
invalid.

NXP_VolunteerArray Volunteering an array of values.

NXP_Volunteer Volunteering a single value.
126 C Programmer’s Guide

NXP_WalkNodes
NXP_WalkNodes
Purpose

NXP_WalkNodes allows you to apply a user-defined function at each node
along the inheritance links of an atom.

NXP_WalkNodes goes through the inheritance links starting at atom, up or
down depending on code, and calls the function fct at each node with three
arguments: arg, node, and property.

C Format

The C format is as follows.

int NXP_WalkNodes(atom, code, fct, arg);

Arguments

The following list shows the valid arguments.

AtomId atom;
int code;
NxpIProc fct;
unsigned long arg;

atom must be a valid slot, object, or class Id. It is the starting point of the
WalkNode algorithm.

code must be NXP_WALKN_UP or NXP_WALKN_DOWN. UP means
going through the parent links, and DOWN means going through the
children links.

arg is an unsigned long argument that will be passed unchanged to function
fct. You can use it to store some custom information (pointer to a buffer, to
a structure, etc.).

fct is the address of a function returning an integer that will be called at each
node along the links. It is not called when node = atom. It has the following
syntax:

int fct(arg, node, property)
unsigned longa rg;
AtomId node;
AtomId property;

arg is the argument passed to NXP_WalkNodes. node is the atomId of the
current node (it is the only argument that changes every time fct is called).
property is the property Id of atom if atom is a slot, or NULL if atom is an
object of a class.

Your function fct must return one of the following:

Warning

For internal reasons, it is dangerous to call NXP_Volunteer within fct. If you
do so, do not use the priority masks NXP_VSTRAT_SET or

Code Description
NXP_WALKN_CONT Returned if you want the inheritance to continue.

NXP_WALKN_END Returned to terminate the inheritance immediately.

NXP_WALKN_STOP Returned to stop the inheritance along the current link.
C Programmer’s Guide 127

Chapter The C Library3
NXP_VSTRAT_SETQUEUE that force the value to be set immediately. The
default mask, NXP_VSTRAT_QUEUE is fine. See NXP_Volunteer for more
information.

Return Codes

NXP_WalkNodes returns 1 on success and 0 on error. In case of error, more
information about the error can be obtained by calling NXP_Error
immediately after the code which has failed. NXP_Error will return one of
the following codes:

Examples

The following examples illustrate how to get the names of all the children
objects of a class and display them in the Transcript:

/* Function called at each node.
 * checks that the node is an object and displays its name.
 */
int getName(arg, node, property)
unsigned long arg; /* ignored here */
AtomId node;
AtomId property; /* ignored here */
{

int theType;
char theName[255];

/* Get the type of node and return if its not an object */
NXP_GETINTINFO(node, NXP_AINFO_TYPE, &theType);
theType = theType & NXP_ATYPE_MASK;

if(theType != NXP_ATYPEOBJECT)
return NXP_WALKN_CONT;

/* Get the name of the object */
NXP_GETNAME(node, theName, 255);

/* Write it in Transcript */
NXP_SetData(NXP_WIN_TRAN, 0, -1, theName);

/* Let it go to the next node */
return NXP_WALKN_CONT;

}

NXP_WalkNodes(theClass, NXP_WALKN_DOWN, getName, (unsigned
long) 0);

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 atom is not a valid slot, object, or class Id.

NXP_ERR_INVARG2 code is not equal to NXP_WALKN_UP or
NXP_WALKN_DOWN.

NXP_ERR_INVARG3 fct is NULL.
128 C Programmer’s Guide

NXPGFX_Control
NXPGFX_Control
Purpose

NXPGFX_Control controls the interactive interface of the Rules Element. It
is implemented in the development versions of Unix and VAX/VMS
versions (in the runtime library, NXPGFX_Control is just a stub). On the PC
development version, it is always automatically enabled, while with the
embedded DLL, and Mac NDL, this call is just a stub.

C Format

The C format is as follows.

int NXPGFX_Control(code);

Arguments

The following list shows the valid arguments.

int code;

code can be one of the following values:

Return Codes

NXPGFX_Control returns 1 on success and 0 on error. In case of error, more
information about the error can be obtained by calling NXP_Error
immediately after the code which has failed. NXP_Error will return one of
the following codes:

Code Description
NXPGFX_CTRL_EXIT Exits the interactive interface. The NXPGFX_Control call which

started the interface (NXPGFX_CTRL_STARTKNOWCESS or
NXPGFX_CTRL_START) will return to its caller. All the
windows currently opened will be closed.

NXPGFX_CTRL_INIT Initializes the Rules Element’s interface. This call should be done
before any other NXPGFX_Control call.

NXPGFX_CTRL_START Starts the interactive interface. The call will return when the user
selects the "Quit" command in the interface or after a call to
NXPGFX_Control with the NXPGFX_CTRL_EXIT code (i.e.
issued from an execute routine).

NXPGFX_CTRL_STARTKNOWCESS Starts the interactive interface and starts the inference engine.
The call will return when the user selects the "Quit" command in
the interface or after a call to NXPGFX_Control with the
NXPGFX_CTRL_EXIT code (i.e. issued from an execute routine).

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 code is invalid.

NXP_ERR_INVSTATE code is NXPGFX_CTRL_START or
NXPGFX_CTRL_STARTKNOWCESS but the
interface was already started.

NXP_ERR_NOERR Call was successful.
C Programmer’s Guide 129

Chapter The C Library3
Examples

The following code is in the Rules Element.c file of the development
version, that’s how the Rules Element is launched!

/* Initialize and start the graphics development environment */
NXPGFX_Control(NXPGFX_CTRL_INIT);
NXPGFX_Control(NXPGFX_CTRL_START);
130 C Programmer’s Guide

Chapter
4 NXP_GetAtomInfo Routine 4

This chapter describes the NXP_GetAtomInfo routine and the information
codes you can call with it.

NXP_GetAtomInfo
Purpose

NXP_GetAtomInfo is a multi-purpose call giving access to any type of
information attached to an atom or a knowledge base. Almost everything
visible in the development system interface can be returned by this function.

The information returned is what is stored in the Rules Element working
memory. NXP_GetAtomInfo is a "read-only" call, it doesn't modify
anything nor trigger any inheritance or inference mechanisms.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, code, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code;
AtomId optAtom;
int optInt;
int desc;
Str thePtr;
int len;

theAtom specifies the atom or knowledge base you want information about.
theAtom is an atomId obtained by a previous call to NXP_GetAtomId, by
another call to NXP_GetAtomInfo or received as argument in an Execute
routine.

code specifies which type of information is requested. The different values
for code will be described in detail in this chapter. See a short description
and a list by categories in the following pages.

optAtom is an additional argument with different meanings depending on
the value of code.

optInt is an additional argument with different meanings depending on the
value of code.

desc is a code which describes the return data type expected by the caller
(pointed to by thePtr). It must be one of the NXP_DESC_XXX codes defined
in nxpdef.h: NXP_DESC_INT, NXP_DESC_FLOAT,
NXP_DESC_DOUBLE, NXP_DESC_STR, NXP_DESC_ATOM, etc.
C Programmer’s Guide 131

Chapter NXP_GetAtomInfo Routine4
thePtr should point to a valid memory location where the information will
be returned.

len is the maximum number of characters that can be returned in thePtr
when it is pointing to a string (desc = NXP_DESC_STR). len is not used
otherwise.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. More information
about errors can be obtained by calling NXP_Error() immediately after the
failed call. Error codes returned by NXP_Error() take the values
NXP_ERR_INVARG1, NXP_ERR_INVARG2, ..., NXP_ERR_INVARG6 to
show invalid arguments. More information on these values can be found
within each call description.

C Macros

In many cases NXP_GetAtomInfo calls can be simplified with the help of the
macros defined in nxpdef.h. Instead of passing all seven arguments you
just pass what is really used by the call. It also prevents making mistakes!
For instance getting the integer value of an atom is the simple call

NXP_GETINTVAL(atom, ptr)

instead of

NXP_GetAtomInfo(atom, NXP_AINFO_VALUE, (AtomId)0, 0,
NXP_DESC_INT, ptr, 0)

Following the description of each information code, we will indicate which
macro can be used instead of an NXP_GetAtomInfo call. We also use
macros in the examples, they are easy to spot with their name written in
capital letters. See the section "NXP_GetAtomInfo macros" for the list of
macros.

Macintosh Warning

When using the THINK C environment on the Macintosh, int should be
replaced by long . THINK C handles int as short integer (16 bits) whereas
the Rules Element uses 32-bit integers (int and long are equivalent in MPW
C). Therefore, the arguments of NXP_GetAtomInfo code, optInt, desc, and
len must be declared as long and numeric constants must end with L, such
as in 0L. This applies to all other API functions as well. See the Macintosh
API manual for more information.
132 C Programmer’s Guide

Information Codes List
See Also

Information Codes List
Following is the complete list of NXP_GetAtomInfo codes in alphabetical
order. Each code is described in detail in the following sections.

NXP_SetAtomInfo Changing information in an atom or KB.

NXP_GetAtomId Getting the AtomId of an atom from its name.

Code Short Description
NXP_AINFO_AGDVBREAK Returns whether a specific hypothesis has an agenda break

point set for it.

NXP_AINFO_BREADTHFIRST Returns whether the inheritance search for theAtom is done
in a breadth first or depth first manner.

NXP_AINFO_BWRDLINKS Returns the backward links from a hypothesis to its rules.

NXP_AINFO_CACTIONS Returns the text of the If Change actions attached to
theAtom.

NXP_AINFO_CACTIONSON Returns whether or not If Change actions are enabled.

NXP_AINFO_CACTIONSUNKNOWN Returns whether or not If Change methods will also be
executed when the slot is set to UNKNOWN.

NXP_AINFO_CURRENTKB Returns the atomid of the current knowledge base
containing a specified atom.

NXP_AINFO_CHILDCLASS Returns information about the children classes of a class.

NXP_AINFO_CHILDOBJECT Returns information about the children objects of a class or
object.

NXP_AINFO_CHOICE Returns the choice of values (as displayed in the session
control window) for a given slot.

NXP_AINFO_CLIENTDATA Returns the client or user information attached to an atom.

NXP_AINFO_COMMENTS Returns the comments attached to theAtom.

NXP_AINFO_CONTEXT Returns the hypotheses that are in the context of a given
hypothesis.

NXP_AINFO_CURRENT Returns information about the current atom ids in the
inference engine.

NXP_AINFO_DEFAULTFIRST Returns whether or not the inheritance strategy for theAtom
follows the default (global strategy).

NXP_AINFO_DEFVAL Returns the init value for the slot (if any) as a string.

NXP_AINFO_EHS Returns information about the Else actions (Right-hand side)
of a rule or a method.

NXP_AINFO_EXHBWRD Returns whether or not exhaustive backward chaining is
enabled.

NXP_AINFO_FOCUSPRIO Returns the priority of the hypothesis on the agenda.

NXP_AINFO_FORMAT Returns the format information attached to theAtom.

NXP_AINFO_FWRDLINKS Returns the forward links from a slot to the conditions.

NXP_AINFO_HASMETA Returns whether or not a slot has meta-slots defined for it.

NXP_AINFO_HYPO Returns the hypothesis of a rule.

NXP_AINFO_INFATOM Returns the inference priority atom attached to theAtom.

NXP_AINFO_INFBREAK Returns whether a specific rule, condition, method, slot,
object, class, or property has an inference break point set on
it.
C Programmer’s Guide 133

Chapter NXP_GetAtomInfo Routine4
NXP_AINFO_INFCAT Returns the inference priority attached to theAtom.

NXP_AINFO_INHATOM Returns the inheritance priority atom attached to theAtom.

NXP_AINFO_INHCAT Returns the inheritance priority attached to theAtom.

NXP_AINFO_INHCLASSDOWN Returns whether or not class slots are inheritable
downwards.

NXP_AINFO_INHCLASSUP Returns whether or not class slots are inheritable upwards.

NXP_AINFO_INHDEFAULT Returns whether or not the slot inheritability of theAtom
follows the default (global strategy).

NXP_AINFO_INHDOWN Returns whether or not the slot theAtom is downward
inheritable.

NXP_AINFO_INHOBJDOWN Returns whether or not object slots are inheritable
downwards.

NXP_AINFO_INHOBJUP Returns whether or not object slots are inheritable upwards.

NXP_AINFO_INHUP Returns whether or not the slot theAtom is upward
inheritable.

NXP_AINFO_INHVALDEFAULT Returns whether or not the inheritability of the value of
theAtom follows the default (global strategy).

NXP_AINFO_INHVALDOWN Returns whether or not the value of theAtom is downward
inheritable.

NXP_AINFO_INHVALUP Returns whether or not the value of theAtom is upward
inheritable.

NXP_AINFO_KBID Returns the identifier of the knowledge base to which the
atom belongs.

NXP_AINFO_KBNAME Returns the name of a knowledge base from its atomid.

NXP_AINFO_LHS Returns information about the conditions of a rule or
method.

NXP_AINFO_LINKED Returns information about the type of link between a class or
an object and another class or object.

NXP_AINFO_METHODS Returns the list of methods attached to theAtom.

NXP_AINFO_MOTSTATE Returns information about the current state of the inference
engine.

NXP_AINFO_NAME Returns the string name of the atom described by theAtom.

NXP_AINFO_NEXT Returns information about the lists of atoms stored in the
working memory.

NXP_AINFO_PARENT Returns information about the parent of an atom.

NXP_AINFO_PARENTCLASS Returns information about the parent classes of a class or an
object.

NXP_AINFO_PARENTFIRST Returns whether the inheritance search for theAtom should
begin by searching the parent objects of theAtom or the
classes to which theAtom belongs.

NXP_AINFO_PARENTOBJECT Returns information about the parent objects of an object.

NXP_AINFO_PFACTIONS Returns whether or not the assignments done in the RHS of
rules or in method actions are forwarded.

NXP_AINFO_PFELSEACTIONS Returns the value to which the forward Else actions strategy
is set.

NXP_AINFO_PFMETHODACTIONS Returns the value to which the forward LHS/RHS actions
from methods strategy is set.

NXP_AINFO_PFMETHODELSEACTIONS Returns the value to which the forward Else actions from
methods strategy is set.

NXP_AINFO_PREV Returns information about the lists of atoms stored in the
working memory.

Code Short Description
134 C Programmer’s Guide

Information Codes List
NXP_AINFO_PROCEXECUTE Returns the number of execute routines installed or the name
of the execute handler.

NXP_AINFO_PROMPTLINE Returns the prompt line information attached to theAtom.

NXP_AINFO_PROP Returns the property id of the slot in thePtr.

NXP_AINFO_PTGATES Returns whether or not forward chaining through gates is
enabled.

NXP_AINFO_PWFALSE Returns whether or not the context propagation is enabled
on FALSE hypotheses.

NXP_AINFO_PWNOTKNOWN Returns whether or not the context propagation is enabled
on NOTKNOWN hypotheses.

NXP_AINFO_PWTRUE Returns whether or not the context propagation is enabled
on TRUE hypotheses.

NXP_AINFO_QUESTWIN Returns the Smart Elements question window name
attached to theAtom.

NXP_AINFO_RHS Returns information about the true actions (Right-hand side)
of a rule or method.

NXP_AINFO_SELF Returns the name or atomId of the current SELF atom.

NXP_AINFO_SLOT Returns information about the slots of a class or an object.

NXP_AINFO_SOURCES Returns the text of the Order of Sources methods attached to
theAtom.

NXP_AINFO_SOURCESCONTINUE Returns whether or not Order of Sources methods will be
fully executed even after a value is determined.

NXP_AINFO_SOURCESON Returns whether or not Order of Sources methods are
enabled.

NXP_AINFO_SUGGEST Returns whether or not a hypothesis is suggested.

NXP_AINFO_SUGLIST Returns the list of hypotheses kept in the suggest selection.

NXP_AINFO_TYPE Returns the type of theAtom in thePtr.

NXP_AINFO_VALIDENGINE_ACCEPT Returns whether or not the validation of value set by the
engine is enabled and the value accepted automatically if the
validation expression is incomplete.

NXP_AINFO_VALIDENGINE_OFF Returns whether or not the validation of value set by the
engine is disabled.

NXP_AINFO_VALIDENGINE_ON Returns whether or not the validation of value set by the
engine is enabled.

NXP_AINFO_VALIDENGINE_REJECT Returns whether or not the validation of value set by the
engine is enabled and the value rejected automatically if the
validation expression is incomplete.

NXP_AINFO_VALIDEXEC Returns the validation external routine name attached to
theAtom.

NXP_AINFO_VALIDFUNC Returns the validation expression string attached to
theAtom.

NXP_AINFO_VALIDHELP Returns the validation error string attached to theAtom.

NXP_AINFO_VALIDUSER_ACCEPT Returns whether or not the validation of value entered by the
end user is enabled and the value accepted automatically if
the validation expression is incomplete.

NXP_AINFO_VALIDUSER_OFF Returns whether or not the validation of value entered by the
end user is disabled.

NXP_AINFO_VALIDUSER_ON Returns whether or not the validation of value entered by the
end user is enabled.

NXP_AINFO_VALIDUSER_REJECT Returns whether or not the validation of value entered by the
end user is enabled and the value rejected automatically if
the validation expression is incomplete.

Code Short Description
C Programmer’s Guide 135

Chapter NXP_GetAtomInfo Routine4
Information Codes by Categories
The pieces of information which can be obtained with the
NXP_GetAtomInfo code can be categorized as follows:

NXP_AINFO_VALUE Returns information in thePtr about the value of theAtom.

NXP_AINFO_VALUETYPE Returns information in thePtr about the data type of the
value of theAtom.

NXP_AINFO_VERSION Returns the names and version numbers of the software
components included in the package used.

NXP_AINFO_VOLLIST Returns the list of slots kept in the volunteer selection.

NXP_AINFO_WHY Returns the why information attached to theAtom.

Generic atom information:
NXP_AINFO_CLIENTDATA Client or user data associated with an atom

NXP_AINFO_CURRENTKB Atomid of the kb associated with an atom

NXP_AINFO_KBID Knowledge base to which the atom is attached

NXP_AINFO_KBNAME KB name to which the atom is attached

NXP_AINFO_NAME Atom name

NXP_AINFO_TYPE Atom type (object, class, property, slot, rule, method, ...)

NXP_AINFO_VALUE Value of a slot, rule or condition

NXP_AINFO_VALUETYPE Data type of a slot (boolean, integer, float, . . .)

Global lists of atoms:
NXP_AINFO_NEXT Next atom in a list (next object, data, rule, . . .)

NXP_AINFO_PREV Previous atom in a list

NXP_AINFO_SUGLIST List of hypotheses selected for Suggest

Pre-suggested hypotheses:
NXP_AINFO_VOLLIST List of data slots selected for Volunteer

Relations between atoms:
NXP_AINFO_CHILDCLASS Children classes of a class

NXP_AINFO_CHILDOBJECT Children objects of an object or a class

NXP_AINFO_LINKED Type of link between theAtom and optAtom

NXP_AINFO_PARENT Parent object or parent class of a slot

NXP_AINFO_PARENTCLASS Parent classes of an object or a class

NXP_AINFO_PARENTOBJECT Parent objects of an object

NXP_AINFO_PROP Property corresponding to a slot

NXP_AINFO_SLOT Slots of an object or a class

Rule and context information:
NXP_AINFO_CONTEXT List of hypos in context of another hypo

NXP_AINFO_COMMENTS Comments associated with a slot, rule, or method.

NXP_AINFO_EHS Else actions of a rule (right-hand side).

Code Short Description
136 C Programmer’s Guide

Information Codes by Categories
NXP_AINFO_HYPO Hypothesis of a rule

NXP_AINFO_LHS Conditions of a rule (Left-hand-side)

NXP_AINFO_RHS True actions of a rule (Right-hand-side)

NXP_AINFO_WHY Why text associated with a slot, rule, or method.

Meta-slots - General:
NXP_AINFO_HASMETA Whether or not a slot has meta-slots defined

Meta-slots - Categories:
NXP_AINFO_INFATOM Inference atom of a slot or a rule

NXP_AINFO_INFCAT Inference priority of a slot or a rule

NXP_AINFO_INHATOM Inheritance atom (dynamic priority) of a slot

NXP_AINFO_INHCAT Inheritance priority of a slot

Meta-slots - Inheritability set-
tings:
NXP_AINFO_INHDEFAULT Does the inheritability of a slot follow the default?

NXP_AINFO_INHDOWN Downward inheritability of a slot

NXP_AINFO_INHUP Upward inheritability of a slot

NXP_AINFO_INHVALDEFAULT Does the inheritability of a slot's value follow the default?

NXP_AINFO_INHVALDOWN Downward inheritability of a slot's value

NXP_AINFO_INHVALUP Upward inheritability of a slot's value

Meta-slots - Inheritance strategy:
NXP_AINFO_BREADTHFIRST Breadth first versus depth first strategy

NXP_AINFO_DEFAULTFIRST Does the inheritance strategy for a slot follow the default?

NXP_AINFO_PARENTFIRST Object first versus class first strategy

Meta-slots - Text information:
NXP_AINFO_CHOICE Set of possible values (string slot only)

NXP_AINFO_COMMENTS Comments associated with a slot, rule, or method

NXP_AINFO_DEFVAL Init value of a slot (public or private)

NXP_AINFO_FORMAT Format information for a slot or a property

NXP_AINFO_PROMPTLINE Prompt line associated with a slot

NXP_AINFO_QUESTWIN Smart Elements question window name attached to theAtom

NXP_AINFO_VALIDEXEC Validation external routine name attached to theAtom

NXP_AINFO_VALIDFUNC Validation expression string attached to theAtom

NXP_AINFO_VALIDHELP Validation error string attached to theAtom

NXP_AINFO_WHY Why text associated with a slot, rule, or method

Methods:
NXP_AINFO_CACTIONS If Change actions of a slot (public or private).

NXP_AINFO_COMMENTS Comments associated with a slot, rule, or method.

NXP_AINFO_EHS Else actions of method (Right-hand side).

NXP_AINFO_LHS Conditions of method (Left-hand-side).

Rule and context information:
C Programmer’s Guide 137

Chapter NXP_GetAtomInfo Routine4
NXP_AINFO_METHODS List of methods attached to an atom

NXP_AINFO_RHS True actions of method (Right-hand-side).

NXP_AINFO_SOURCES Order of Sources of a slot (public or private).

NXP_AINFO_WHY Why text associated with a slot, rule, or method.

Inference state:
NXP_AINFO_CURRENT Current rule, condition, action or slot being evaluated

NXP_AINFO_MOTSTATE State of the inference engine ("motor").

NXP_AINFO_SUGGEST Whether or not a hypothesis is suggested

Inference strategies:
NXP_AINFO_EXHBWRD Exhaustive evaluation of backward chaining

NXP_AINFO_PFACTIONS Forwarding on actions

NXP_AINFO_PFELSEACTIONS Value to which the forward Else actions strategy is set.

NXP_AINFO_PFMETHODACTIONS Value to which the forward LHS/RHS actions from methods
strategy is set.

NXP_AINFO_PFMETHODELSEACTIONS Value to which the forward Else actions from methods
strategy is set.

NXP_AINFO_PTGATES Forwarding through gates

NXP_AINFO_PWFALSE Context propagation on FALSE hypo

NXP_AINFO_PWNOTKNOWN Context propagation on NOTKNOWN hypo

NXP_AINFO_PWTRUE Context propagation on TRUE hypotheses

NXP_AINFO_VALIDENGINE_ACCEPT Whether or not the validation of value set by the engine is
enabled and the value accepted automatically if the
validation expression is incomplete.

NXP_AINFO_VALIDENGINE_OFF Whether or not the validation of value set by the engine is
disabled.

NXP_AINFO_VALIDENGINE_ON Whether or not the validation of value set by the engine is
enabled.

NXP_AINFO_VALIDENGINE_REJECT Whether or not the validation of value set by the engine is
enabled and the value rejected automatically if the validation
expression is incomplete.

NXP_AINFO_VALIDUSER_ACCEPT Whether or not the validation of value entered by the end
user is enabled and the value accepted automatically if the
validation expression is incomplete.

NXP_AINFO_VALIDUSER_OFF Whether or not the validation of value entered by the end
user is disabled.

NXP_AINFO_VALIDUSER_ON Whether or not the validation of value entered by the end
user is enabled.

NXP_AINFO_VALIDUSER_REJECT Whether or not the validation of value entered by the end
user is enabled and the value rejected automatically if the
validation expression is incomplete.

Inheritance strategies:
NXP_AINFO_BREADTHFIRST Breadth first versus depth first strategy

NXP_AINFO_CACTIONSON If Change enabled or not.

NXP_AINFO_CACTIONSUNKNOWN If Change will be executed when the slot is set to
UNKNOWN.

NXP_AINFO_INHCLASSDOWN Downward inheritability of class slots.

Methods:
138 C Programmer’s Guide

NXP_GetAtomInfo Macros
These information codes are described in detail in the following sections.

NXP_GetAtomInfo Macros
The NXP_GetAtomInfo routine takes seven arguments and, in most cases,
several arguments are unused. To facilitate program development, C
macros are provided in the nxpdef.h header file. The macros are the
following:

General Purpose Macros

Use the macros of type NXP_GETXXXINFO when optAtom and optInt are not
used:

NXP_AINFO_INHCLASSUP Upward inheritability of class slots.

NXP_AINFO_INHOBJDOWN Downward inheritability of object slots.

NXP_AINFO_INHOBJUP Upward inheritability of object slots.

NXP_AINFO_INHVALDOWN Downward inheritability of the value of a slot.

NXP_AINFO_INHVALUP Upward inheritability of the value of a slot.

NXP_AINFO_PARENTFIRST Parent first versus class first strategy.

NXP_AINFO_SOURCESCONTINUE Order of Sources will be fully executed.

NXP_AINFO_SOURCESON Order of Sources enabled or not.

Agenda and break-points information:
NXP_AINFO_AGDVBREAK Whether a specific hypothesis has an agenda break point set

on it.

NXP_AINFO_BWRDLINKS The backward links from a hypo to its rules.

NXP_AINFO_FOCUSPRIO The priority of the hypothesis on the agenda.

NXP_AINFO_FWRDLINKS The forward links from a slot to the conditions.

NXP_AINFO_INFBREAK Whether a specific rule, condition, method, slot, object, class,
or property has an inference break point set on it.

SELF atom information:
NXP_AINFO_SELF Information about the current SELF atom.

Execute handler information:
NXP_AINFO_PROCEXECUTE The number of Execute procedures installed or the name of the

Execute Handler.

Software components information:
NXP_AINFO_VERSION Names and version numbers of the software components

included in the package used.

Macro Description
NXP_GETATOMINFO Returns information of type Atom in thePtr.

(atom, code, ptr)

NXP_GETINTINFO Returns information of type int in thePtr.
(atom, code, ptr)

Inheritance strategies:
C Programmer’s Guide 139

Chapter NXP_GetAtomInfo Routine4
Get Values Macros

Use the macros of type NXP_GETXXXVAL to get values of a specific type:

Get Name Macro

Use the following macro to get names of atoms in thePtr:

List Access Macros

Use the macros of type NXP_GETLISTXXX to access lists of atoms (for
example, the list of children objects in a class):

Following the description of each information code, we will indicate which
macro can be used instead of an NXP_GetAtomInfo call.

NXP_GETDOUBLEINFO Returns information of type double in thePtr.
(atom, code, ptr)

NXP_GETSTRINFO Returns information of type string in thePtr, limited by the length len.
(atom,code,ptr,len)

Macro Description
NXP_GETINTVAL Returns an int value in thePtr.

(atom, ptr)

NXP_GETDOUBLEVAL Returns a double value in thePtr.
(atom, ptr)

NXP_GETSTRVAL Returns a string value in thePtr.
(atom, ptr)

NXP_GETUNKNOWNVAL Tells if the value is Unknown.
(atom, ptr)

NXP_GETNOTKNOWNVAL Tells if the value is Notknown.
(atom, ptr)

Macro Description
NXP_GETNAME Returns the name of the atom in thePtr, limited by the length len.

(atom, ptr, len)

Macro Description
NXP_GETLISTLEN Returns the length of the list described by code.

(atom, code, ptr)

NXP_GETLISTELT Returns the atom element of index i in the list.
(atom, code, i, ptr)

NXP_GETLISTELTSTR Returns the string element of index i in the list,
(atom,code,i,ptr,len) limited by length len.

NXP_GETLISTFIRST Returns the first atom of type type.
(type, ptr)

NXP_GETLISTNEXT Returns the next element after atom in the list.
(atom, type, ptr)

Macro Description
140 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_AGDVBREAK
NXP_GetAtomInfo / NXP_AINFO_AGDVBREAK
Purpose

This returns whether a specific hypothesis has an agenda break point set.

Agenda break points can be set with the NXP_SetAtomInfo function or
through the agenda monitor window in the interface. They stop the engine
when the focus of a hypothesis changes (whereas inference break-points
stop the engine after the evaluation of an atom).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_AGDVBREAK, optAtom, optInt, desc,
 thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_AGDVBREAK */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

theAtom must be a valid hypothesis.

code is equal to NXP_AINFO_AGDVBREAK.

desc must equal NXP_DESC_INT.

thePtr must point to an integer. *thePtr will be set to 1 if a break point is set,
and set to 0 otherwise.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO macro:

NXP_GETINTINFO(theHypo, NXP_AINFO_AGDVBREAK, thePtr)

Examples

The following example illustrates how to automatically unset all the break
points in your knowledge base that have been set through the Development
interface. A rule could call an Execute routine containing this code:

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid hypothesis.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.
C Programmer’s Guide 141

Chapter NXP_GetAtomInfo Routine4
int hasBreak;
AtomId firstHypo, theHypo, nextHypo;

/* Get the first hypothesis in alphabetical order */
NXP_GETLISTFIRST(NXP_ATYPE_HYPO, &firstHypo);

/* Loop to get the following hypotheses */
if(firstHypo != NULL) {

theHypo = firstHypo;
while(theHypo != NULL) {

/* Check if theHypo has an agenda break point set */
/* If yes, use NXP_SetAtomInfo to unset it */
NXP_GETINTINFO(theHypo, NXP_AINFO_AGDVBREAK,

&hasBreak);
if(hasBreak) {

NXP_SetAtomInfo(theHypo, NXP_SAINFO_AGDVBREAK,
(AtomId)0, 0, 0, 0);

}
/* Get the next Hypo in the list */
NXP_GETLISTNEXT(theHypo, NXP_ATYPE_HYPO, &nextHypo);
theHypo = nextHypo;

}
}

See Also

NXP_GetAtomInfo / NXP_AINFO_BREADTHFIRST
Purpose

This returns whether the inheritance search is done in a breadth first or
depth first manner. It can be used to get the global strategy (current or
default) or the strategy for a particular atom.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_BREADTHFIRST, optAtom, optInt,
desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code;
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

theAtom must be a valid slot or value id, or NULL. If theAtom is NULL, the
call returns the global strategy setting for breadth first versus depth first
inheritance. If theAtom is not NULL, the call returns the strategy for that
atom.

NXP_SetAtomInfo / NXP_SAINFO_AGDVBREAK Set/unset break points from a program.

NXP_AINFO_INFBREAK Information on inference break points.
142 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_BWRDLINKS
code must be NXP_AINFO_BREADTHFIRST if theAtom is not NULL or if it
is NULL and you want to get the global default strategy. code must be
NXP_AINFO_BREADTHFIRST | NXP_AINFO_CURSTRAT to get the
global current strategy ("Or" operation sets the "current" bit).

desc must equal NXP_DESC_INT.

thePtr must be a pointer to an integer which will be set to 1 if the search is
breadth first, and set to 0 if the search is depth first.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_BREADTHFIRST, thePtr)

Examples

The following code gives a simple example.

AtomId atom;
int breadth;

/* returns the breadth-first strategy for atom in breadth */
NXP_GETINTINFO(atom, NXP_AINFO_BREADTHFIRST, &breadth);

/* returns the global default breadth-first strategy */
NXP_GETINTINFO((AtomId)0, NXP_AINFO_BREADTHFIRST, &breadth);

/* returns the global current breadth-first strategy */
NXP_GETINTINFO((AtomId)0,

 NXP_AINFO_BREADTHFIRST|NXP_AINFO_CURSTRAT, &breadth);

See Also

NXP_GetAtomInfo / NXP_AINFO_BWRDLINKS
Purpose

This returns the backward links from a hypothesis to its rules. Use this code
to get the list of rules pointing to a particular.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a valid atom.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_Strategy Change the default or current strategy.
C Programmer’s Guide 143

Chapter NXP_GetAtomInfo Routine4
C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_BWRDLINKS, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_BWRDLINKS */
AtomId optAtom; /* ignored */
int optInt;
int desc;
Str thePtr;
int len; /* ignored */

theAtom must be a valid atom id.

code must be NXP_AINFO_BWRDLINKS.

If optInt equals -1, desc must be NXP_DESC_INT and the number nRules of
rules is returned as an integer in thePtr. Otherwise, optInt should be a
number between 0 and nRules -1. In this case, desc must be
NXP_DESC_ATOM, thePtr must be a pointer to an atomId memory location,
and the rule id with the index optInt in the list is returned.

Notes

The list of rules is returned in no special order. Once you have the atomId
of a rule, you can get the rule name using NXP_AINFO_NAME.

If theAtom is not a hypothesis this call returns an empty list (nRules = 0).

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

For the first call use the NXP_GETLISTLEN(atom, code, ptr) macro to get
the number nRules of rules in the list:

NXP_GETLISTLEN(theHypo, NXP_AINFO_BWRDLINKS, &nRules)

Then use the NXP_GETLISTELT(atom, code, index, ptr) macro, with
indexbetween 0 and nRules-1, to get each element in the list:

NXP_GETLISTELT(theHypo, NXP_AINFO_BWRDLINKS, i, thePtr)

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid atom id.

NXP_ERR_INVARG5 optInt is equal to -1 but desc is not equal to
NXP_DESC_INT.

optInt is between 0 and n-1 but desc is not equal to
NXP_DESC_ATOM.

NXP_ERR_INVARG6 thePtr is NULL.
144 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_CACTIONS
See Also

NXP_GetAtomInfo / NXP_AINFO_CACTIONS
Purpose

This returns the atom ids of the If Change actions attached to a slot (methods
specified as an If Change type in the method editor).

The text can be obtained later with NXP_AINFO_NAME.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_CACTIONS, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code;
AtomId optAtom; /* ignored */
int optInt;
int desc;
Str thePtr;
int len; /* ignored */

theAtom must be valid slot id.

code must be NXP_AINFO_CACTIONS to get the public If Change actions.
It must be NXP_AINFO_CACTIONS | NXP_AINFO_PRIVATE ("Or"
operation sets the "private" bit) to get the private If Change actions, i.e.
methods that can't be inherited (they appear with a * in the editor). It must
be NXP_AINFO_CACTIONS | NXP_AINFO_MLHS to get the conditions
of the If Change. It must be NXP_AINFO_CACTIONS |
NXP_AINFO_MRHS to get the right-hand side (Then) actions of the If
Change. And it must be NXP_AINFO_CACTIONS | NXP_AINFO_MEHS
to get the Else actions of the If Change.

If optInt is equal to -1, desc should be equal to NXP_DESC_INT and the
number nActions of If Change actions is returned as an integer in thePtr.
Otherwise, optInt should be a number between 0 and nActions -1. In this
case, desc should be equal to NXP_DESC_ATOM and the If Change action
with the index optInt is returned in thePtr.

Once you have the atomId of an action you get get its text with calls to
NXP_GetAtomInfo / NXP_AINFO_NAME. See the example given for
NXP_AINFO_LHS.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()

NXP_AINFO_FWRDLINKS Forward links from a slot to its
conditions.

NXP_AINFO_HYPO Get the hypothesis of a rule.
C Programmer’s Guide 145

Chapter NXP_GetAtomInfo Routine4
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

For the first call, use the NXP_GETLISTLEN(atom, code, ptr) macro:

NXP_GETLISTLEN(theAtom, NXP_AINFO_CACTIONS, &nActions)

then use the NXP_GETLISTELT(atom, code, index, ptr) macro:

NXP_GETLISTELT(theAtom, NXP_AINFO_CACTIONS, index, thePtr)

Examples

The following code gives a simple example.

int i, nActions;
AtomId atom, cActions;

/* returns the public If Change actions of atom */
NXP_GETLISTLEN(atom, NXP_AINFO_CACTIONS, &nActions);
for (i = 0; i < nActions; i++) {

NXP_GETLISTELT(atom, NXP_AINFO_CACTIONS, i, &cActions);
...

}

/* returns the private If Change actions */
NXP_GETLISTLEN(atom, NXP_AINFO_CACTIONS|NXP_AINFO_PRIVATE, &nActions);
for (i = 0; i < nActions; i++) {

NXP_GETLISTELT(atom, NXP_AINFO_CACTIONS|NXP_AINFO_PRIVATE,
 &cActions);

...
}
/* Use NXP_AINFO_NAME to get the text of the methods, see the example in
NXP_AINFO_LHS */

See Also

NXP_GetAtomInfo / NXP_AINFO_CACTIONSON
Purpose

This returns whether or not the If Change actions are enabled (Enable If
Change actions option of the Strategy dialog window).

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid slot id.

NXP_ERR_INVARG4 The value of optInt is not between -1 and n-1.

NXP_ERR_INVARG5 optInt equals -1 but desc does not equal
NXP_DESC_INT, or optInt does not equal -1 and
desc does not equal NXP_DESC_ATOM.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_AINFO_LHS Get the list of conditions of a rule or a method.

NXP_AINFO_RHS Get the list of actions of a rule or a method.

NXP_AINFO_EHS Get the list of Else actions of a rule or a method.

NXP_AINFO_SOURCES Get the list of Order of Sources methods.
146 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_CACTIONSON
C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_CACTIONSON, optAtom,optInt, desc,
thePtr, len);

Arguments
AtomId theAtom; /* ignored */
int code;
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_CACTIONSON to get the default strategy. It
must be NXP_AINFO_CACTIONSON | NXP_AINFO_CURSTRAT to get
the current strategy ("Or" operation sets the "current" bit).

desc must equal NXP_DESC_INT.

thePtr must point to an integer which will be set to 1 if the If Change actions
are enabled, and set to 0 otherwise.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO((AtomId)0, NXP_AINFO_CACTIONSON, thePtr).

Examples

The following code gives a simple example.

int cactionson;

/* returns in cactionson the default strategy.
 * cactionson = 1 if If Change actions are enabled,
 * 0 if they are disabled
 */
NXP_GETINTINFO((AtomId)0, NXP_AINFO_CACTIONSON, &cactionson);

/* returns in cactionson the current strategy */
NXP_GETINTINFO((AtomId)0,

 NXP_AINFO_CACTIONSON | NXP_AINFO_CURSTRAT, &cactionson);

See Also

NXP_Error() Return Code Explanation
NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_Strategy Change the default or current strategy.
C Programmer’s Guide 147

Chapter NXP_GetAtomInfo Routine4
NXP_GetAtomInfo / NXP_AINFO_CACTIONSUNKNOWN
Purpose

This returns whether or not the If Change actions are triggered also when
theAtom is set to UNKNOWN (ON/UNKNOWNIf Change actions option
of the Strategy dialog window).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_CACTIONSUNKNOWN, optAtom, optInt,
desc, thePtr, len);

Arguments
AtomId theAtom; /* ignored */
int code;
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_CACTIONSUNKNOWN to get the default
strategy. It must be NXP_AINFO_CACTIONSUNKNOWN |
NXP_AINFO_CURSTRAT to get the current strategy ("Or" operation sets
the "current" bit).

desc must equal NXP_DESC_INT.

thePtr must point to an integer which will be set to 1 if the If Change actions
are triggered also when theAtom is set to UNKNOWN, and set to 0
otherwise.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO((AtomId)0, NXP_AINFO_CACTIONSUNKNOWN, thePtr)

NXP_Error() Return Code Explanation
NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.
148 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_CHILDCLASS
Examples

The following code gives a simple example.

int cactionsunknown;

/* returns in cactionsunknown the default strategy.
 * cactionson = 1 if If Change actions are enabled,
 * 0 if they are disabled
 */
NXP_GETINTINFO((AtomId)0, NXP_AINFO_CACTIONSUNKNOWN,

&cactionsunknown);

/* returns in cactionsunknown the current strategy */
NXP_GETINTINFO((AtomId)0,

NXP_AINFO_CACTIONSUNKNOWN|
NXP_AINFO_CURSTRAT,

&cactionsunknown);

See Also

NXP_GetAtomInfo / NXP_AINFO_CHILDCLASS
Purpose

This returns information about the children classes of a class.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_CHILDCLASS, optAtom, optInt, desc,
 thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_CHILDCLASS */
AtomId optAtom; /* ignored */
int optInt;
int desc;
Str thePtr;
int len; /* ignored */

theAtom must be a valid class id.

code is NXP_AINFO_CHILDCLASS.

optInt is an integer between -1 and N-1. optInt = -1 will return in thePtr the
number of children classes which are numbered from 0 to N-1.

desc must be NXP_DESC_INT when optInt is -1, and NXP_DESC_ATOM
otherwise.

thePtr must be a pointer to an integer when optInt is -1, and a pointer to an
AtomId otherwise.

NXP_Strategy Change the default or current strategy.
C Programmer’s Guide 149

Chapter NXP_GetAtomInfo Routine4
The mechanism used to retrieve this list uses the following sequence of calls:

■ In your first call, you pass a value of -1 in the optInt argument. In
return, thePtr is set to the number N of atoms in the list (thePtr must be
a pointer to an integer).

■ Then you call NXP_GetAtomInfo with optInt set to any value between
0 and N-1. The id of the (optInt+1)th atom in the list will be returned in
thePtr (thePtr must be a pointer to an AtomId).

Notes

The ordering of the list is not defined and can change during a session (i.e.
links to children classes are created or deleted dynamically).

This call will return permanent links that have been temporarily deleted. To
check the type of link, call NXP_GetAtomInfo with NXP_AINFO_LINKED.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

For the first call, use the NXP_GETLISTLEN(atom, code, ptr) macro:

NXP_GETLISTLEN(theAtom, NXP_AINFO_CHILDCLASS, &N).

Then use the NXP_GETLISTELT(atom, code, index, ptr) macro:

NXP_GETLISTELT(theAtom, NXP_AINFO_CHILDCLASS, i, thePtr);

Examples

The following code gives a simple example.

AtomId class, childclass;
int i, N;

/* Get the number of children classes */
NXP_GETLISTLEN(class, NXP_AINFO_CHILDCLASS, &N);

/* loop to get each child class */
for (i = 0; i < N; i++) {

NXP_GETLISTELT(class, NXP_AINFO_CHILDCLASS, i, &childclass);
/* ...more code ... */

}

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid class id.

NXP_ERR_INVARG4 optInt is not equal to -1 or is not a valid child class
index.

NXP_ERR_INVARG5 optInt is equal to -1 and desc is not equal to
NXP_DESC_INT.

optInt is a valid child class index,
but desc is not equal to
NXP_DESC_ATOM.
150 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_CHILDOBJECT
NXP_GetAtomInfo / NXP_AINFO_CHILDOBJECT
Purpose

This returns information about the children objects of an object or a class.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_CHILDOBJECT, optAtom, optInt, desc,
 thePtr, len);

Arguments
AtomId theAtom;
int code; /* = NXP_AINFO_CHILDOBJECT */
AtomId optAtom; /* ignored */
int optInt;
int desc;
Str thePtr;
int len; /* ignored */

theAtom must be a valid object or class id.

code is NXP_AINFO_CHILDOBJECT.

optInt is an integer between -1 and N-1. optInt = -1 will return in thePtr the
number of children objects which are numbered from 0 to N-1.

desc must be NXP_DESC_INT when optInt is -1, and NXP_DESC_ATOM
otherwise.

thePtr must be a pointer to an integer when optInt is -1, and a pointer to an
AtomId otherwise.

The mechanism used to retrieve this list uses the following sequence of calls:

■ In your first call, you pass a value of -1 in the optInt argument. In
return, thePtr is set to the number N of atoms in the list (thePtr must be
a pointer to an integer).

■ Then you can call NXP_GetAtomInfo with optInt set to any value
between 0 and N-1. The id of the (optInt+1)th atom in the list will be
returned in thePtr.

Notes

The ordering of the list is not defined and can change during a session (i.e.
links to children objects are created or deleted dynamically).

This call returns permanent links of any deleted objects (ones that have been
unlinked) as well as intact permanent links. To check the type of link, call
NXP_GetAtomInfo with NXP_AINFO_LINKED.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
C Programmer’s Guide 151

Chapter NXP_GetAtomInfo Routine4
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

For the first call, use the NXP_GETLISTLEN(atom, code, ptr) macro:

NXP_GETLISTLEN(theAtom, NXP_AINFO_CHILDOBJECT, &N)

Then use the NXP_GETLISTELT(atom, code, index, ptr) macro:

NXP_GETLISTELT(theAtom, NXP_AINFO_CHILDOBJECT, i, thePtr)

Examples

The following code gives a simple example.

AtomId atom, childobject;
int i, N;

NXP_GETLISTLEN(atom, NXP_AINFO_CHILDOBJECT, &N);

/* loop to get each child object */
for (i = 0; i < N; i++) {

NXP_GETLISTELT(atom, NXP_AINFO_CHILDOBJECT, i,
&childobject);

/* ... more code ... */
}

NXP_GetAtomInfo / NXP_AINFO_CHOICE
Purpose

This returns the choice of values for a given slot (as displayed in the session
control window during a question for that slot).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_CHOICE, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_CHOICE */
AtomId optAtom; /* ignored */
int optInt;
int desc;
Str thePtr;
int len;

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid object or class id.

NXP_ERR_INVARG4 optInt is not equal to -1 or is not a valid child object
index.

NXP_ERR_INVARG5 optInt is equal to -1 and desc is not equal to
NXP_DESC_INT.

optInt is a valid child object index,
but desc is not equal to NXP_DESC_ATOM.
152 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_CHOICE
theAtom must be a valid slot id.

code is equal to NXP_AINFO_CHOICE.

If optInt is -1, desc should be equal to NXP_DESC_INT and the number n of
choices will be returned as an integer in thePtr. Otherwise, optInt should be
a number between 0 and n-1. In this last case, desc should be equal to
NXP_DESC_STR and the choice with the index optInt will be returned in
thePtr.

thePtr is a pointer to an integer (first call) or to a buffer of length len.

If optInt is -1, len is ignored. Otherwise, len is the maximum number of
characters which can be written in buffer thePtr.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

For the first call use the NXP_GETLISTLEN(atom, code, ptr) macro:

NXP_GETLISTLEN(theAtom, NXP_AINFO_CHOICE, &N)

then use the NXP_GETLISTELTSTR macro to get individual elements:

NXP_GETLISTELTSTR(theAtom, NXP_AINFO_CHOICE, i, thePtr, len)

Examples

The following example shows how to get the choice list for a slot. It could
be used for instance in a question handler to present the possible values in
your custom interface.

AtomId slot;
int i, N;
Char str[255];

/* Get number of choices */
NXP_GETLISTLEN(slot, NXP_AINFO_CHOICE, &N);

/* loop to get the list of string choices */
for (i = 0; i < N; i++) {

NXP_GETLISTELTSTR(slot, NXP_AINFO_CHOICE, i, str, 255);
...
/* code to display the value str */

}

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid slot id.

NXP_ERR_INVARG4 optInt is not a valid index.

NXP_ERR_INVARG5 optInt equals -1 but desc does not equal
NXP_DESC_INT, or optInt does not equal -1 and
desc does not equal NXP_DESC_STR.
C Programmer’s Guide 153

Chapter NXP_GetAtomInfo Routine4
NXP_GetAtomInfo / NXP_AINFO_CLIENTDATA
Purpose

This returns the "client" information attached to an atom, as it was set by
NXP_SetClientData.

NXP_SetClientData lets you associate a longword of information with any
atom (i.e. a pointer to some private data structure of your program). You
can retrieve this information later with NXP_AINFO_CLIENTDATA.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_CLIENTDATA, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_CLIENTDATA */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_LONG */
Str thePtr;
int len; /* ignored */

theAtom can be any class, object, property, slot, rule, method, condition, RHS
action, EHS action.

code is NXP_AINFO_CLIENTDATA.

desc must be NXP_DESC_LONG (32 bits information).

thePtr must be a valid longword pointer which will receive the longword of
information.

Notes

Associating client or user information with atoms is very useful in building
interface programs. For instance, you can associate with the objects or slots
the address of graphic objects which will represent them on the screen.
Then, you can use generic execute routines to control your display.

The client data longword is initialized with 0 when the atom is created.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or not equal to a class, object,

property, slot, rule, method, condition, RHS action,
EHS action.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_LONG.

NXP_ERR_INVARG6 thePtr is NULL.
154 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_COMMENTS
Macros

None.

Examples

The following code gives a simple example.

AtomId atom;
unsigned long info;

NXP_GetAtomInfo(atom, NXP_AINFO_CLIENTDATA, (AtomId)0, 0,
NXP_DESC_LONG, (Str)&info, 0);

See Also

NXP_GetAtomInfo / NXP_AINFO_COMMENTS
Purpose

This returns the Comments string attached to a slot, method, or rule (string
entered in the Comments field of the meta-slot editor, method editor, or rule
editor).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_COMMENTS, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_COMMENTS */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_STR */
Str thePtr;
int len;

theAtom must be a valid slot, method or rule id.

code is equal to NXP_AINFO_COMMENTS.

desc must be NXP_DESC_STR.

thePtr must point to a buffer of size len where the comment string will be
returned.

len is the maximum number of characters that can be written to thePtr.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()

NXP_SetClientData Set the client data longword.
C Programmer’s Guide 155

Chapter NXP_GetAtomInfo Routine4
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETSTRINFO(atom, code, ptr, len) macro:

NXP_GETSTRINFO(theAtom, NXP_AINFO_COMMENTS, thePtr, len)

Examples

The following code gives a simple example.

AtomId atom;
Char str[255];

NXP_GETSTRINFO(atom, NXP_AINFO_COMMENTS, str, 255);

NXP_GetAtomInfo / NXP_AINFO_CONTEXT
Purpose

This returns the hypotheses that are in the context of a given hypothesis (list
displayed in the Context editor).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_CONTEXT, optAtom, optInt,desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_CONTEXT */
AtomId optAtom; /* ignored */
int optInt;
int desc;
Str thePtr;
int len; /* ignored */

theAtom is a valid hypothesis slot id.

code is equal to NXP_AINFO_CONTEXT.

If optInt is equal to -1, desc should be equal to NXP_DESC_INT and the
number N of contexts will be returned as an integer in thePtr. Otherwise,
optInt should be a number between 0 and N-1. In this last case, desc should
be equal to NXP_DESC_ATOM and the context with the index optInt will
be returned in thePtr.

The contexts are listed in the order they appear in the context editor.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or not a valid rule, method or slot id.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_STR.

NXP_ERR_INVARG6 thePtr is NULL.
156 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_CURRENT
Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

For the first call, use the NXP_GETLISTLEN(atom, code, ptr) macro:

NXP_GETLISTLEN(theAtom, NXP_AINFO_CONTEXT, &N).

then use the NXP_GETLISTELT(atom, code, index, ptr) macro:

NXP_GETLISTELT(theAtom, NXP_AINFO_CONTEXT, optInt, thePtr)

Examples

The following code gives a simple example.

AtomId hypo, context;
int N, i;

/* number of hypotheses in the context of hypo */
NXP_GETLISTLEN(hypo, NXP_AINFO_CONTEXT, &N);

/* loop to get each hypothesis id */
for (i = 0; i < len; i++) {

NXP_GETLISTELT(hypo, NXP_AINFO_CONTEXT, i, &context);
...

}

NXP_GetAtomInfo / NXP_AINFO_CURRENT
Purpose

This returns the current atom ids in the inference engine. This code is useful
in the middle of a session only.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_CURRENT, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_CURRENT */

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid hypothesis id.

NXP_ERR_INVARG4 optInt is not -1 nor a valid context index.

NXP_ERR_INVARG5 optInt is equal to -1 but desc is not equal to
NXP_DESC_INT.

optInt is a valid context index but desc is not equal to
NXP_DESC_ATOM.

NXP_ERR_INVARG6 thePtr is NULL.
C Programmer’s Guide 157

Chapter NXP_GetAtomInfo Routine4
AtomId optAtom; /* ignored */
int optInt;
int desc; /* = NXP_DESC_ATOM */
Str thePtr;
int len; /* ignored */

code is equal to NXP_AINFO_CURRENT.

optInt defines which atom is wanted. It can be one of the following:

desc must equal NXP_DESC_ATOM.

thePtr must be a pointer to an AtomId where the requested current atom will
be returned.

You should always test if the value returned in thePtr is not NULL before
using it! There are cases, even in while the engine is running, where the
current atom of a certain type is not defined.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

None.

Examples

The following code gives a few simple examples.

AtomId currentrule, currentcond, currentslot;

/* stores the current rule AtomId in currentrule */
NXP_GetAtomInfo((AtomId)0, NXP_AINFO_CURRENT, (AtomId)0,

NXP_ATYPE_RULE, NXP_DESC_ATOM, (Str)¤trule, 0);

NXP_GetAtomInfo((AtomId)0, NXP_AINFO_CURRENT, (AtomId)0,
NXP_ATYPE_LHS, NXP_DESC_ATOM, (Str)¤tcond, 0);

Code Description
NXP_ATYPE_EHS The current else actions of a rule or a method.

NXP_ATYPE_KB The current knowledge base atom.

NXP_ATYPE_LHS The current conditions of a rule or a method are returned.

NXP_ATYPE_METHOD The current method atom.

NXP_ATYPE_RHS The current right hand side actions of a rule or a method.

NXP_ATYPE_RULE The current rule id is returned in thePtr.

NXP_ATYPE_SLOT The current slot is returned. If this call is done in the
middle of a question, the id returned is the same as the
question's slot id passed to the question handler.

NXP_Error() Return
Code

Explanation

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_ATOM.

NXP_ERR_INVARG6 thePtr is NULL.
158 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_CURRENTKB
NXP_GetAtomInfo((AtomId)0, NXP_AINFO_CURRENT, (AtomId)0,
NXP_ATYPE_SLOT, NXP_DESC_ATOM, (Str)¤tslot, 0);

/* Test for 0 before going further! */
if(currentslot != (AtomId)0) {

...
}

NXP_GetAtomInfo / NXP_AINFO_CURRENTKB
Purpose

This returns the atomid of the current knowledge base. Usually it is the last
KB loaded, unless changed by a call to NXP_SetAtomInfo with
NXP_AINFO_CURRENTKB.

Note: New permanent objects or rules created in the editors belong to the
current Knowledge Base.

C Format

The C format is as follows:

int NXP_GetAtomInfo(theAtom, NXP_AINFO_CURRENTKB, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments:

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_CURRENTKB */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_ATOM */
Str thePtr;
int len; /* ignored */

desc must be NXP_DESC_ATOM.

thePtr must point to an AtomId where the id of the current knowledge base
will be returned.

All the other arguments are ignored.

Note: Once you have the KBId you can use the code NXP_AINFO_KBNAME
(or NXP_AINFO_NAME after type-casting the KBId into an AtomId)
to get the name of the Knowledge Base.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error,
more information about the error is obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error returns one of the
following codes:

NXP_Error() Return Code Explanation
NXP_ERR_INVARG5 desc is not a NXP_DESC_ATOM.

NXP_ERR_INVARG6 thePtr is null.

NXP_ERR_NOERR Call was successful.
C Programmer’s Guide 159

Chapter NXP_GetAtomInfo Routine4
Macros

You can use the NXP_GETATOMINFO macro:

NXP_GETATOMINFO((AtomId)0, NXP_AINFO_CURRENTKB, thePtr)

Examples

The following example shows how to save the current KB or get its name:

AtomId curKBid;
int err, ret;
char theStr[255];

/* get the id of the current KB */
ret = NXP_GETATOMINFO((AtomId)0, NXP_AINFO_CURRENTKB,
&curKBid);
if (ret == 0)

{ err = NXP_Error(); ... /* error code */ }
/* save the KB into a file "foo.ckb" */
ret = NXP_SaveKB(curKBid, "foo.ckb", NXP_MODE_COMPILED);
if (ret == 0)

{ err = NXP_Error(); ... /* error code */ }
/* get the KB name (DO NOT USE NXP_AINFO_NAME !) */
ret = NXP_GETSTRINFO(curKBid, NXP_AINFO_KBNAME, theStr, 255);
if (ret == 0)

{ err = NXP_Error(); ... /* error code */ }

See Also

NXP_GetAtomInfo / NXP_AINFO_DEFAULTFIRST
Purpose

This returns whether or not the slot's behavior is to follow the current global
inheritance path strategy (class vs object first, depth vs breadth first). This
is true by default when the slot is created or if you have clicked in the root
box of the inheritance tree, this is false if you have set a strategy for that slot.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_DEFAULTFIRST, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_DEFAULTFIRST */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

NXP_GetAtomInfo / NXP_AINFO_KBNAME returns the name of a knowledge base.

NXP_SetAtomInfo / NXP_AINFO_CURRENTKB sets the current knowledge base.

NXP_GetAtomInfo / NXP_AINFO_NAME returns the name of an atom.
160 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_DEFVAL
theAtom is a valid slot id.

code is NXP_AINFO_DEFAULTFIRST.

desc must be NXP_DESC_INT.

thePtr must be a pointer to an integer which will be set to 1 if the slot's
inheritance follows the default strategy, and set to 0 otherwise.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_DEFAULTFIRST, thePtr)

Examples

The following code gives a simple example.

AtomId slot;
int default;
NXP_GETINTINFO(slot, NXP_AINFO_DEFAULTFIRST, &default);

NXP_GetAtomInfo / NXP_AINFO_DEFVAL
Purpose

This returns the text of the init value of a slot , i.e. the initial value field in
the meta-slot editor (DEFVAL stands for "default value").

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_DEFVAL, optAtom, optInt, desc,thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code;
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_STR */
Str thePtr;
int len;

theAtom must be a valid slot id.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or not a valid slot id.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.
C Programmer’s Guide 161

Chapter NXP_GetAtomInfo Routine4
code must be NXP_AINFO_DEFVAL to return the public init value , or it
must be NXP_AINFO_DEFVAL | NXP_AINFO_PRIVATE to return the
private initvalue.

desc must equal NXP_DESC_STR.

thePtr must point to a string buffer of length len.

len is the maximum number of characters that will be written to thePtr.

If theAtom does not have any init value defined for it, an empty string is
returned in thePtr.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETSTRINFO(atom, code, ptr, len) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_DEFVAL, thePtr, len)

Examples

The following code gives a simple example.

AtomId slot;
char str[255];

/* returns the InitValue for slot in str */
NXP_GETSTRINFO(slot, NXP_AINFO_DEFVAL, str, 255);
if(str[0] == (char)'\0') {

/* empty string means no initvalue for that slot */
}

/* returns the private InitValue for slot in str */
NXP_GETSTRINFO(slot, NXP_AINFO_DEFVAL|NXP_AINFO_PRIVATE, str,
255);

NXP_GetAtomInfo / NXP_AINFO_EHS
Purpose

This returns information about the Else actions of a rule or a method (the
false right-hand side actions). Each action's atomId is returned in thePtr and
then you can get the text of the action using NXP_AINFO_NAME.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid slot or value id.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_STR.

NXP_ERR_INVARG6 thePtr is NULL.
162 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_EHS
C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_EHS, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_EHS */
AtomId optAtom; /* ignored */
int optInt;
int desc;
Str thePtr;
int len; /* ignored */

theAtom must be a valid rule or method id (as returned by NXP_GetAtomId,
for instance).

code is equal to NXP_AINFO_EHS.

If optInt is equal to -1, desc should be equal to NXP_DESC_INT and the
number of Else right hand side actions will be returned as an integer in
thePtr. Otherwise, optInt should be a number between 0 and n-1. In this last
case, desc should be equal to NXP_DESC_ATOM and the Else right hand
side actions with the index optInt will be returned in thePtr.

thePtr must be a pointer or an integer if optInt equals -1. Otherwise it must
be a pointer to an atomId.

The Else right hand side actions are listed in the natural rule or method
order (as they appear in the rule or method editor).

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

For the first call, use the NXP_GETLISTLEN(atom, code, ptr) macro:

NXP_GETLISTLEN(theAtom, NXP_AINFO_EHS, thePtr)

then use the NXP_GETLISTELT(atom, code, index, ptr) macro:

NXP_GETLISTELT(theAtom, NXP_AINFO_EHS, optInt, thePtr)

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid rule or method id.

NXP_ERR_INVARG4 optInt is not -1 nor a valid Else action index.

NXP_ERR_INVARG5 optInt is equal to -1 but desc is not equal to
NXP_DESC_INT.

optInt is a valid EHS action index but desc is not equal
to NXP_DESC_ATOM.

NXP_ERR_INVARG6 thePtr is NULL.
C Programmer’s Guide 163

Chapter NXP_GetAtomInfo Routine4
Examples

The following examples illustrate how to get the text of a rule's Else actions
using NXP_AINFO_EHS and NXP_AINFO_NAME:

AtomId ruleId, actionId;
int nActions, i;
char *ruleName, col1str[20], col2str[1000], col3str[1000];

/* First get the rule's atomId in ruleId */
NXP_GetAtomId(ruleName, ruleId, NXP_ATYPE_RULE);
/* get the number of conditions in nCond */
NXP_GETLISTLEN(ruleId, NXP_AINFO_EHS, &nActions);

/* loop to get each condition's atomId and then its text */
for(i = 0; i < nActions, i++) {

NXP_GETLISTELT(ruleId, NXP_AINFO_EHS, i, &actionId);

/* get the text of the 1st column (operator) in col1str */
NXP_GetAtomInfo(actionId, NXP_AINFO_NAME, (AtomId)0,

NXP_CELL_COL1, NXP_DESC_STR, col1str, 20);

/* get the text of the 2nd column in col2str */
NXP_GetAtomInfo(actionId, NXP_AINFO_NAME, (AtomId)0,

NXP_CELL_COL2, NXP_DESC_STR, col2str, 1000);

/* get the text of the 3rd column in col3str */
NXP_GetAtomInfo(actionId, NXP_AINFO_NAME, (AtomId)0,

NXP_CELL_COL3, NXP_DESC_STR, col3str, 1000);
}

See Also

NXP_GetAtomInfo / NXP_AINFO_EXHBWRD
Purpose

This returns whether or not exhaustive backward chaining is enabled
(option "Exhaustive evaluation" in the Strategy window of the interface).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_EXHBWRD, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list identifies all valid arguments.

AtomId theAtom; /* ignored */
int code;
AtomId optAtom; /* ignored */

NXP_AINFO_CACTIONS Getting the If Change methods

NXP_AINFO_PARENT Getting the rule or method id from the LHS, RHS or
EHS

NXP_AINFO_LHS Getting the left hand side actions.

NXP_AINFO_RHS Getting the right hand side actions.

NXP_AINFO_SOURCES Getting the Order of Sources methods.
164 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_EXHBWRD
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must ve NXP_AINFO_EXHBWRD to return the default strategy, or it
must be NXP_AINFO_EXHBWRD | NXP_AINFO_CURSTRAT to return
the current strategy ("Or" operation sets the "current" bit).

desc must be NXP_DESC_INT.

thePtr must point to an integer which will be set to 1 if exhaustive backward
chaining is on, and set to 0 otherwise.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_EXHBWRD, thePtr)

Examples

The following code gives a simple example.

int exhbwrd;

/* returns in exhbwrd the global strategy default */
NXP_GETINTINFO((AtomId)0, NXP_AINFO_EXHBWRD, &exhbwrd);
....
/* returns in exhbwrd the current strategy default */
NXP_GETINTINFO((AtomId)0, NXP_AINFO_EXHBWRD | NXP_AINFO_CURSTRAT,
 &exhbwrd);

NXP_Error() Return
Code

Explanation

NXP_ERR_INVARG2 code is invalid.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.
C Programmer’s Guide 165

Chapter NXP_GetAtomInfo Routine4
See Also

NXP_GetAtomInfo / NXP_AINFO_FOCUSPRIO
Purpose

This returns the priority of the hypothesis on the focus agenda
(corresponding to the current list in the Agenda monitor window in which
the hypothesis appears).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_FOCUSPRIO, optAtom, optInt, desc,
 thePtr, len);

Arguments

The following list identifies all valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_FOCUSPRIO */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

theAtom must be a valid hypothesis slot.

code is equal to NXP_AINFO_FOCUSPRIO.

desc must equal NXP_DESC_INT.

thePtr must be a pointer to an integer which will be between 0 and 31. The
lower the number, the higher the hypothesis’ priority on the focus agenda.
A value of 30 = No Focus (i.e. Hypothesis not used by the engine).

Advanced Users: The focus priority can be interpreted as follows: 0 =
Suggest, 1-2 = Forward from Suggest Hypothesis, 3-6 = Subgoal Forward,
7-10 = Gates RHS/EHS, 11-15 = Context, 16-29 = Delayed Focus, 30-31 =
Unscheduled or No Focus (in other words, the hypothesis is not evaluated
by the rule engine).

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()

NXP_AINFO_PFACTIONS Forward chaining through actions.

NXP_AINFO_PTGATES Forward chaining through gates.

NXP_AINFO_PWFALSE Context propagation on False hypotheses.

NXP_AINFO_PWNOTKNOWN Context propagation on Notknown hypos.

NXP_AINFO_PWTRUE Context propagation on True hypotheses.

NXP_Strategy Change the inference strategy.
166 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_FORMAT
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_FOCUSPRIO, thePtr)

Examples

The following code gives a simple example.

AtomId hypo;
int prio;

NXP_GETINTINFO(hypo, NXP_AINFO_FOCUSPRIO, &prio);

See Also

NXP_GetAtomInfo / NXP_AINFO_FORMAT
Purpose

This returns the format information attached to a slot or a property (string
edited in the format field of the meta-slot or property editor).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_FORMAT, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_FORMAT */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_STR */
Str thePtr;
int len;

theAtom is a valid slot or property id.

code is NXP_AINFO_FORMAT.

desc must be NXP_DESC_STR.

thePtr must point to a buffer where the format string will be returned.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid hypothesis.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_AINFO_SUGGEST Whether or not a hypothesis is suggested.

NXP_BwrdAgenda Forces Order of Sources of an atom.
C Programmer’s Guide 167

Chapter NXP_GetAtomInfo Routine4
len is the maximum number of characters that can be written to thePtr.

See the Intelligent Rules Element Reference Manual for more information
on formats.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETSTRINFO(atom, code, ptr, len) macro:

NXP_GETSTRINFO(theAtom, NXP_AINFO_FORMAT, thePtr, len)

Examples

The following code gives a simple example.

AtomId atom;
Char str[255];

NXP_GETSTRINFO(atom, NXP_AINFO_FORMAT, str, 255);

NXP_GetAtomInfo / NXP_AINFO_FWRDLINKS
Purpose

This returns the forward links from a slot to its conditions (i.e. conditions
where the slot is used and which will be put on the agenda by the forward
chaining mechanism).

A list of condition atom ids is returned, the text can be obtained later with
NXP_AINFO_NAME.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_FWRDLINKS, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_FWRDLINKS */
AtomId optAtom; /* ignored */
int optInt;
int desc;

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a valid slot or property id. Also,

theAtom cannot be the id for special property Value.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_STR.

NXP_ERR_INVARG6 thePtr is NULL.
168 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_FWRDLINKS
Str thePtr;
int len; /* ignored */

theAtom is a valid atom id.

code is equal to NXP_AINFO_FWRDLINKS.

If optInt is equal to -1, desc must be equal to NXP_DESC_INT and the
number n of conditions is returned as an integer in thePtr. Otherwise,
optInt should be a number between 0 and n-1. In this case, desc must be
equal to NXP_DESC_ATOM, thePtr must be a pointer to an atomId memory
location, and the condition id with the index optInt in the list is returned.

Note: The list of conditions is returned in no special order. Once you have
the atomId of a condition, you can get the text of the condition using
NXP_AINFO_NAME as shown in the example below.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

For the first call use the NXP_GETLISTLEN(atom, code, ptr) macro to get
the number nCond of conditions in the list:

NXP_GETLISTLEN(theSlot, NXP_AINFO_FWRDLINKS, &nCond)

Then use the NXP_GETLISTELT(atom, code, index, ptr) macro, with i
between 0 and nCond-1, to get each element in the list:

NXP_GETLISTELT(theAtom, NXP_AINFO_FWRDLINKS, i, thePtr)

Examples

The following examples show how to get the text of a rule's conditions using
NXP_AINFO_FWRDLINKS and NXP_AINFO_NAME:

AtomId slotId, condId;
int nCond;
char col1str[20], col2str[1000], col3str[1000];

/* Get the number of conditions in nCond */
NXP_GETLISTLEN(slotId, NXP_AINFO_FWRDLINKS, &nCond);

/* loop to get each condition's atomId and then its text */
for(i = 0; i < nCond, i++) {

NXP_GetAtomInfo(slotId, NXP_AINFO_FWRDLINKS, (AtomId)0, i,
NXP_DESC_ATOM, (Str)&condId, 0);

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid atom id. 0 (not

an error condition) is returned if theAtom is not a
valid hypothesis.

NXP_ERR_INVARG5 optInt is equal to -1 but desc is not equal to
NXP_DESC_INT.

optInt is between 0 and n-1 but desc is not equal to
NXP_DESC_ATOM.

NXP_ERR_INVARG6 thePtr is NULL.
C Programmer’s Guide 169

Chapter NXP_GetAtomInfo Routine4
/* get the text of the 1st column (operator) in col1str */
NXP_GetAtomInfo(condId, NXP_AINFO_NAME, (AtomId)0,

NXP_CELL_COL1, NXP_DESC_STR, col1str, 20);

/* get the text of the 2nd column in col2str */
NXP_GetAtomInfo(condId, NXP_AINFO_NAME, (AtomId)0,

NXP_CELL_COL2, NXP_DESC_STR, col2str, 1000);

/* get the text of the 3rd column in col3str */
NXP_GetAtomInfo(condId, NXP_AINFO_NAME, (AtomId)0,

NXP_CELL_COL3, NXP_DESC_STR, col3str, 1000);
...

}

See Also

NXP_GetAtomInfo / NXP_AINFO_HASMETA
Purpose

This returns whether or not a slot has meta-slots defined for it (i.e. if
anything is defined in the meta-slot editor for that slot).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_HASMETA,optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_HASMETA */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

theAtom is a valid slot id.

code is equal to NXP_AINFO_HASMETA.

desc must be NXP_DESC_INT.

thePtr is a pointer to an integer.

A value of 1 will be returned in thePtr if theAtom has meta-slots, and 0 if it
doesn't.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()

NXP_AINFO_BWRDLINKS Backward links from a hypo to its rules.

NXP_AINFO_LHS Conditions of a rule or method (LHS).
170 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_HYPO
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_HASMETA, thePtr)

Examples

The following code gives a simple example.

AtomId slot;
int hasmeta;

NXP_GETINTINFO(slot, NXP_AINFO_HASMETA, &hasmeta);
if(hasmeta) {

/* use other GetAtomInfo codes to get the meta-slots
...*/
}

NXP_GetAtomInfo / NXP_AINFO_HYPO
Purpose

This returns the hypothesis of a rule.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_HYPO, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_HYPO */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_ATOM */
Str thePtr;
int len; /* ignored */

theAtom must be a valid rule id.

code is equal to NXP_AINFO_HYPO.

desc must be NXP_DESC_ATOM.

thePtr must be a pointer to an AtomId where the hypothesis id will be
returned.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid slot id.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.
C Programmer’s Guide 171

Chapter NXP_GetAtomInfo Routine4
Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETATOMINFO(atom, code, ptr) macro:

NXP_GETATOMINFO(theAtom, NXP_AINFO_HYPO, thePtr)

Examples

The following code gives a simple example.

AtomId rule, hypo;
Char hypoStr[255];

/* Get the atom id of the hypothesis */
NXP_GETATOMINFO(rule, NXP_AINFO_HYPO, &hypo);

/* Get its name */
NXP_GETNAME(hypo, hypoStr, 255);

See Also

NXP_GetAtomInfo / NXP_AINFO_INFATOM
Purpose

This returns the inference priority atom attached to a rule or a slot (as edited
in the Inf Priority Slot field of the rule or meta-slot editor).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_INFATOM, optAtom, optInt,
 desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_INFATOM */
AtomId optAtom; /* ignored */

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid rule id.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_ATOM.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_AINFO_BWRDLINKS Backward links from a hypo to its rules.

NXP_AINFO_LHS Conditions of a rule or a method.

NXP_AINFO_RHS Actions of a rule or a method.

NXP_AINFO_EHS Else actions of a rule or a method.
172 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_INFATOM
int optInt; /* ignored */
int desc; /* = NXP_DESC_ATOM */
Str thePtr;
int len; /* ignored */

theAtom is a valid rule or slot id.

code is equal to NXP_AINFO_INFATOM.

desc must be NXP_DESC_ATOM.

thePtr must be a pointer to an AtomId which will receive the id of the
inference priority atom of theAtom . It is a slot of type float or integer.

If no priority atom has been defined for theAtom thePtr is set to 0. In that
case you can use NXP_AINFO_INFCAT to get the inference priority
number.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETATOMINFO(atom, code, ptr) macro:

NXP_GETATOMINFO(theAtom, NXP_AINFO_INFATOM, thePtr)

Examples

The following code gives a simple example.

AtomId atom, infatom;
int valType;
int intVal;
double doubleVal;

/* returns the Inference Priority slot of atom into the
 * variable infatom. infatom is set to (AtomId)0 if no
 * Inference Priority slot is defined for atom
 */
NXP_GETATOMINFO(atom, NXP_AINFO_INFATOM, &infatom);

/* Get the type and value of the inference priority */
if(infatom != (AtomId)0) {

NXP_GETINTINFO(infatom, NXP_AINFO_VALUETYPE, &valType);
if(valType == NXP_VTYPE_LONG)

NXP_GETINTVAL(infatom, &intVal);
else if(valType == NXP_VTYPE_DOUBLE)

NXP_GETDOUBLEVAL(infatom, &doubleVal);
else /* error ! */ ;

}
else { /* priority atom doesn't exist: get priority number */

NXP_GETINTINFO(atom, NXP_AINFO_INFCAT, &intVal);
}

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid rule or slot id.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_ATOM.

NXP_ERR_INVARG6 thePtr is NULL.
C Programmer’s Guide 173

Chapter NXP_GetAtomInfo Routine4
See Also

NXP_GetAtomInfo / NXP_AINFO_INFBREAK
Purpose

This returns whether a specific rule, condition, method, slot, object, class, or
property has an inference break point set on it. It does not return whether a
method has a filtered break.

Inference break points can be set with the NXP_SetAtomInfo function or
with the stop icon in the network windows in the interface. They stop the
inference engine after the evaluation of an atom (whereas agenda
break-points stop the engine when the focus of a hypothesis changes).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_INFBREAK, optAtom, optInt, desc,
 thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_INFBREAK */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

theAtom must be a valid atomId.

code is equal to NXP_AINFO_INFBREAK.

desc must equal NXP_DESC_INT.

thePtr must point to an integer. *thePtr will be set to 1 if a break point is set,
and set to 0 otherwise.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

NXP_AINFO_INFCAT Get the inference priority number.

NXP_AINFO_INHATOM Get the inheritance priority atom.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a valid id of an atom, rule, condition,

method, slot, object, class, or property.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.
174 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_INFCAT
Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_INFBREAK, thePtr)

Examples

See NXP_AINFO_AGDVBREAK for an example of how to unset all break
points through an execute routine.

See Also

NXP_GetAtomInfo / NXP_AINFO_INFCAT
Purpose

This returns the inference priority number attached to a rule or a slot (as
edited in the Inf Priority Number of the rule or meta-slot editor).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_INFCAT, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_INFCAT */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

theAtom is a valid rule or slot id.

code is equal to NXP_AINFO_INFCAT.

desc must be NXP_DESC_INT.

thePtr must be an integer pointer which will receive the inference priority of
theAtom.

By default the Rules Element sets the priority number to 1. See the
Reference manual for more information on the different priority ranges.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()

NXP_SetAtomInfo / NXP_SAINFO_INFBREAK Setting/unsetting break
points from a program.

NXP_AINFO_AGDVBREAK Information on agenda
break-points
C Programmer’s Guide 175

Chapter NXP_GetAtomInfo Routine4
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_INFCAT, thePtr)

Examples

The following code gives a simple example.

AtomId atom;
int infcat;

/* Get the inference priority number.
 * Normally you should check first that there is no
 * inference priority atom defined for that atom
 * (see the example with NXP_AINFO_INFATOM)
 */
NXP_GETINTINFO(atom, NXP_AINFO_INFCAT, &infcat);

See Also

NXP_GetAtomInfo / NXP_AINFO_INHATOM
Purpose

This returns the inheritance priority atom attached to a slot (as edited in the
Inh Priority Slot field of the meta-slot editor).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_INHATOM, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_INHATOM */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_ATOM */
Str thePtr;
int len; /* ignored */

theAtom is a valid slot id.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid rule or slot id.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_AINFO_INFATOM Get the inference priority atom.

NXP_AINFO_INHCAT Get the inheritance priority number.
176 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_INHATOM
code is equal to NXP_AINFO_INHATOM.

desc must equal NXP_DESC_ATOM.

thePtr must be a pointer to an AtomId which will receive the id of the
inheritance priority atom of theAtom. It is a slot of type float or integer.

If no priority atom has been defined for theAtom thePtr is set to 0. In that
case you can use NXP_AINFO_INHCAT to get the inheritance priority
number.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETATOMINFO(atom, code, ptr) macro:

NXP_GETATOMINFO(theAtom, NXP_AINFO_INHATOM, thePtr)

Examples

The following code gives a simple example.

AtomId slot, inhatom;
int valType;
int intVal;
double doubleVal;

/* returns the Inheritance priority slot of atom into the
 * variable inhatom. inhatom is set to (AtomId)0 if no
 * Inheritance priority slot is defined for atom
 */
NXP_GETATOMINFO(slot, NXP_AINFO_INHATOM, &inhatom);

/* Get the type and value of the inference priority */
if(inhatom!= (AtomId)0) {

NXP_GETINTINFO(inhatom, NXP_AINFO_VALUETYPE, &valType);
if(valType == NXP_VTYPE_LONG)

NXP_GETINTVAL(inhatom, &intVal);
else if(valType == NXP_VTYPE_DOUBLE)

NXP_GETDOUBLEVAL(inhatom, &doubleVal);
else /* error ! */ ;

}
else { /* priority atom doesn't exist: get priority number */

NXP_GETINTINFO(atom, NXP_AINFO_INHCAT, &intVal);
}

See Also

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid slot id.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_ATOM.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_AINFO_INHCAT Get the inheritance priority number.

NXP_AINFO_INFATOM Get the inference priority atom.
C Programmer’s Guide 177

Chapter NXP_GetAtomInfo Routine4
NXP_GetAtomInfo / NXP_AINFO_INHCAT
Purpose

This returns the inheritance priority attached to a slot (as edited in the Inh
Priority Number of the meta-slot editor).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_INHCAT, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_INHCAT */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

theAtom is a valid slot id.

code is equal to NXP_AINFO_INHCAT.

desc must be NXP_DESC_INT.

thePtr must be an integer pointer which will receive the inheritance priority
of theAtom.

By default the Rules Element sets the priority number to 1. See the
Reference manual for more information on the different priority ranges.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_INHCAT, thePtr)

Examples

The following code gives a simple example.

AtomId atom;
int inhcat;

/* Get the inheritance priority number.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid slot id.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.
178 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_INHCLASSDOWN
 * Normally you should check first that there is no
 * inheritance priority atom defined for that atom
 * (see the example with NXP_AINFO_INFATOM)
 */
NXP_GETINTINFO(atom, NXP_AINFO_INHCAT, &inhcat);

See Also

NXP_GetAtomInfo / NXP_AINFO_INHCLASSDOWN
Purpose

This returns whether or not class slots are inheritable downwards (down
arrow selected or not underneath the class button of the Strategy window).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_INHCLASSDOWN, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_INHCLASSDOWN */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_INHCLASSDOWN to get the default strategy. If
code is NXP_AINFO_INHCLASSDOWN | NXP_AINFO_CURSTRAT the
current strategy is returned ("Or" operation with the "current" bit).

desc must be NXP_DESC_INT.

thePtr must point to an integer which will be set to 1 if class slots are
inheritable downwards, and set to 0 otherwise.

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_INHCLASSDOWN, thePtr).

Examples

The following code gives a simple example

int prio;

/* default strategy */
NXP_GETINTINFO(0, NXP_AINFO_INHCLASSDOWN, &prio);

/* current strategy */
NXP_GETINTINFO(0, NXP_AINFO_INHCLASSDOWN | NXP_AINFO_CURSTRAT, &prio);

NXP_AINFO_INHATOM Get the inheritance priority atom.

NXP_AINFO_INFCAT Get the inference priority number.
C Programmer’s Guide 179

Chapter NXP_GetAtomInfo Routine4
See Also

NXP_GetAtomInfo / NXP_AINFO_INHCLASSUP
Purpose

This returns whether or not class slots are inheritable upwards (up arrow
selected or not above the class button of the Strategy window).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_INHCLASSUP, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_INHCLASSUP */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_INHCLASSUP to get the default strategy. If
code is NXP_AINFO_INHCLASSUP | NXP_AINFO_CURSTRAT the
current strategy is returned ("Or" operation with the "current" bit).

desc must be NXP_DESC_INT.

thePtr must point to an integer which will be set to 1 if the class slots are
inheritable upwards, and set to 0 otherwise.

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_INHCLASSUP, thePtr)

Examples

The following code gives a simple example

int prio;

/* default strategy */
NXP_GETINTINFO(0, NXP_AINFO_INHCLASSUP, &prio);

/* current strategy */
NXP_GETINTINFO(0, NXP_AINFO_INHCLASSUP| NXP_AINFO_CURSTRAT,
&prio);

See Also

NXP_Strategy Change the default or current strategy.

NXP_AINFO_INHXXX Other inheritance codes

NXP_Strategy Change the default or current strategy.

NXP_AINFO_INHXXX Other inheritance codes
180 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_INHDEFAULT
NXP_GetAtomInfo / NXP_AINFO_INHDEFAULT
Purpose

This returns whether or not the slot inheritability of a slot follows the default
global strategy (Slot button set to default or not in the meta-slot editor).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_INHDEFAULT, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_INHDEFAULT */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

theAtom is a valid slot id.

code is equal to NXP_AINFO_INHDEFAULT.

desc must be NXP_DESC_INT.

thePtr must be a pointer to an integer which will be set to 1 if the slot
inheritability follows the default, and set to 0 otherwise.

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_INHDEFAULT, thePtr)

Examples

The following code gives a simple example

AtomId atom;
int prio;

NXP_GETINTINFO(atom, NXP_AINFO_INHDEFAULT, &prio);

See Also

NXP_GetAtomInfo / NXP_AINFO_INHDOWN
Purpose

This returns whether or not a slot is downward inheritable (down arrow
selected or not, underneath the Slot button of the meta-slot editor).

NXP_Strategy Change the default or current strategy.

NXP_AINFO_INHXXX Other inheritance codes
C Programmer’s Guide 181

Chapter NXP_GetAtomInfo Routine4
C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_INHDOWN, optAtom, optInt, desc, thePtr);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_INHDOWN */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

theAtom is a valid slot id.

code is equal to NXP_AINFO_INHDOWN.

desc must be NXP_DESC_INT.

thePtr must be a pointer to an integer which will be set to 1 if the slot is
downward inheritable, and set to 0 otherwise.

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_INHDOWN, thePtr)

Examples

The following code gives a simple example

AtomId atom;
int prio;

NXP_GETINTINFO(atom, NXP_AINFO_INHDOWN, &prio);

See Also

NXP_GetAtomInfo / NXP_AINFO_INHOBJDOWN
Purpose

This returns whether or not object slots are inheritable downwards (down
arrow selected or not underneath the object button of the Strategy window).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_INHOBJDOWN, optAtom, optInt, desc,
thePtr, len)

NXP_Strategy Change the default or current strategy.

NXP_AINFO_INHXXX Other inheritance codes
182 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_INHOBJUP
Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_INHOBJDOWN */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_INHOBJDOWN to get the default strategy. If
code is NXP_AINFO_INHOBJDOWN | NXP_AINFO_CURSTRAT the
current strategy is returned ("Or" operation with the "current" bit).

desc must equal NXP_DESC_INT.

thePtr must point to an integer which will be set to 1 if the strategy is on, and
set to 0 otherwise.

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_INHOBJDOWN, thePtr)

Examples

The following code gives a simple example

int prio;

/* default strategy */
NXP_GETINTINFO(0, NXP_AINFO_INHOBJDOWN, &prio);

/* current strategy */
NXP_GETINTINFO(0, NXP_AINFO_INHOBJDOWN | NXP_AINFO_CURSTRAT, &prio);

See Also

NXP_GetAtomInfo / NXP_AINFO_INHOBJUP
Purpose

This returns whether or not the object slots are inheritable upwards (up
arrow selected or not above the object button of the Strategy window).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_INHOBJUP, optAtom, optInt, desc,
thePtr, len)

NXP_Strategy Change the default or current strategy.

NXP_AINFO_INHXXX Other inheritance codes
C Programmer’s Guide 183

Chapter NXP_GetAtomInfo Routine4
Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_INHOBJUP */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_INHOBJUP get the default strategy. If code is
NXP_AINFO_INHOBJUP | NXP_AINFO_CURSTRAT the current strategy
is returned ("Or" operation with the "current" bit).

desc must be NXP_DESC_INT.

thePtr must point to an integer which will be set to 1 if the object slots are
inheritable upwards, and set to 0 otherwise.

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_INHOBJUP, thePtr).

Examples

The following code gives a simple example

int prio;

/* default strategy */
NXP_GETINTINFO(0, NXP_AINFO_INHOBJUP, &prio);

/* current strategy */
NXP_GETINTINFO(0, NXP_AINFO_INHOBJUP| NXP_AINFO_CURSTRAT, &prio);

See Also

NXP_GetAtomInfo / NXP_AINFO_INHUP
Purpose

This returns whether or not a slot is upward inheritable (up arrow selected
or not, above the Slot button of the meta-slot editor).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_INHUP, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_INHUP */

NXP_Strategy Change the default or current strategy.

NXP_AINFO_INHXXX Other inheritance codes
184 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_INHVALDEFAULT
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

theAtom is a valid slot id.

code is equal to NXP_AINFO_INHUP.

desc must be NXP_DESC_INT.

thePtr must be a pointer to an integer which will be set to 1 if the slot is
upward inheritable, and set to 0 otherwise.

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_INHUP, thePtr)

Examples

The following code gives a simple example

AtomId atom;
int prio;

NXP_GETINTINFO(atom, NXP_AINFO_INHUP, &prio);

See Also

NXP_GetAtomInfo / NXP_AINFO_INHVALDEFAULT
Purpose

This returns whether or not the inheritability of the value of a slot follows
the default global strategy (Value button set to default or not in the
meta-slot editor).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_INHVALDEFAULT, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_INHVALDEFAULT */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

theAtom is a valid slot id.

NXP_Strategy Change the default or current strategy.

NXP_AINFO_INHXXX Other inheritance codes
C Programmer’s Guide 185

Chapter NXP_GetAtomInfo Routine4
code is equal to NXP_AINFO_INHVALDEFAULT.

desc must be NXP_DESC_INT.

thePtr must be a pointer to an integer which will be set to 1 if the value's
inheritability follows the default, and set to 0 otherwise.

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_INHVALDEFAULT, thePtr).

Examples

The following code gives a simple example

AtomId atom;
int prio;

NXP_GETINTINFO(atom, NXP_AINFO_INHVALDEFAULT, &prio);

See Also

NXP_GetAtomInfo / NXP_AINFO_INHVALDOWN
Purpose

This returns whether or not the value of a slot is downward inheritable
(down arrow selected or not underneath the Value button in the meta-slot
editor or in the Strategy window).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_INHVALDOWN, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_INHVALDOWN */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

theAtom is a valid slot id. If theAtom is NULL, the call returns the global
strategy setting for downward inheritance of values. If theAtom is not
NULL, the call returns behavior for that atom (combined with the global
default).

code must be NXP_AINFO_INHVALDOWN to get the default strategy. If
code is NXP_AINFO_INHVALDOWN | NXP_AINFO_CURSTRAT the
current strategy is returned ("Or" operation with the "current" bit).

NXP_Strategy Change the default or current strategy.

NXP_AINFO_INHXXX Other inheritance codes
186 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_INHVALUP
desc must be NXP_DESC_INT.

thePtr must be a pointer to an integer which will be set to 1 if the value of the
slot is inheritable, and set to 0 otherwise.

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_INHVALDOWN, thePtr)

Examples

The following code gives a simple example

AtomId atom;
int prio;

/* get the strategy for atom */
NXP_GETINTINFO(atom, NXP_AINFO_INHVALDOWN, &prio);

/* get the global default strategy */
NXP_GETINTINFO(0, NXP_AINFO_INHVALDOWN, &prio);

/* get the global current strategy */
NXP_GETINTINFO(0, NXP_AINFO_INHVALDOWN| NXP_AINFO_CURSTRAT,
&prio);

See Also

NXP_GetAtomInfo / NXP_AINFO_INHVALUP
Purpose

This returns whether or not the value of a slot is upward inheritable (up
arrow selected or not above the Value button in the meta-slot editor or in the
Strategy window).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_INHVALUP, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_INHVALUP */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

NXP_Strategy Change the default or current strategy.

NXP_AINFO_INHXXX Other inheritance codes
C Programmer’s Guide 187

Chapter NXP_GetAtomInfo Routine4
theAtom is a valid slot id. If theAtom is NULL, the call returns the global
strategy setting for upward inheritance of values. If theAtom is not NULL,
the call returns behavior for that atom (combined with the global default).

code must be NXP_AINFO_INHVALUP to get the default strategy. If code
is NXP_AINFO_INHVALUP | NXP_AINFO_CURSTRAT the current
strategy is returned ("Or" operation with the "current" bit).

desc must be NXP_DESC_INT.

thePtr must be a pointer to an integer which will be set to 1 if the value of the
slot is for upward inheritance, and set to 0 otherwise.

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_INHVALUP, thePtr)

Examples

The following code gives a simple example

AtomId atom;
int prio;

/* get the strategy for atom */
NXP_GETINTINFO(atom, NXP_AINFO_INHVALUP, &prio);

/* get the global default strategy */
NXP_GETINTINFO(0, NXP_AINFO_INHVALUP, &prio);

/* get the global current strategy */
NXP_GETINTINFO(0, NXP_AINFO_INHVALUP | NXP_AINFO_CURSTRAT,
&prio);

See Also

NXP_GetAtomInfo / NXP_AINFO_KBID
Purpose

This returns the identifier of the knowledge base to which the atom belongs.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_KBID, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_KBID */
AtomId optAtom; /* ignored */
int optInt; /* ignored */

NXP_Strategy Change the default or current strategy.

NXP_AINFO_INHXXX Other inheritance codes
188 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_KBID
int desc; /* = NXP_DESC_ATOM */
Str thePtr;
int len; /* ignored */

theAtom can be a class, an object, a property, a slot , a method or a rule.

code is equal to NXP_AINFO_KBID.

desc must equal NXP_DESC_ATOM.

thePtr must point to a valid memory location where the knowledge base
identifier, which is an unsigned long integer, will be returned.

Notes

There are several other ways of getting the Id of a knowledge base:

■ If the knowledge base was loaded with NXP_LoadKB, its kbId was
returned by this function.

■ If the knowledge base already exists and you know its name you can
use NXP_GetAtomId.

■ There are three special knowledge bases identified by an id of 0, 1 or 2:

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETATOMINFO(atom, code, ptr) macro:

NXP_GETATOMINFO(theAtom, NXP_AINFO_KBID, thePtr).

Examples

The following code gives a simple example

AtomId theRule, kbId;

/* Get the KB id where theRule is defined */

Identifier Description
0 Corresponds to undefined.kb. This knowledge base contains all the objects, classes

and properties which are referenced but are not defined in any of the knowledge bases
which are currently loaded. It also contains all the slots which do not have any
meta-slots or contexts. Usually, undefined.kb should contain only slots. Nevertheless,
objects, classes and properties may be attached to undefined.kb if the knowledge base
is split in several files and one of the files has not been loaded by mistake (in that case,
warning messages are displayed in the Transcript during the loading).

1 Corresponds to temporary.kb. This knowledge base contains the dynamic objects
which are created at runtime. It can only contain objects and it is cleared at each restart
session.

2 Corresponds to untitled.kb. This knowledge base contains all the atoms created before
any other KB was loaded.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a valid atom id.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_ATOM.
C Programmer’s Guide 189

Chapter NXP_GetAtomInfo Routine4
NXP_GETATOMINFO(theRule, NXP_AINFO_KBID, &kbId);

/* Save the KB in compiled format */
NXP_SaveKB(kbId, "toto.tkb", NXP_MODE_COMPILED)

See Also

NXP_GetAtomInfo / NXP_AINFO_KBNAME
Purpose

This returns the name of a knowledge base (KB) once you know its atomid.
(You can now use NXP_AINFO_NAME with KB ids if you typecast the KBId
to an atomId).

C Format

The C format is as follows:

int NXP_GetAtomInfo(theAtom, NXP_AINFO_KBNAME, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments:

AtomId theAtom;
int code; /* = NXP_AINFO_KBNAME */
AtomId optAtom; /* ignored */
int optInt;
int desc; /* = NXP_DESC_STR */
Str thePtr;
int len;

theAtom is the atomid of the knowledge base.

optInt is a flag. If optInt is not null the full pathname is returned, otherwise
only the short name of the file is returned.

desc must be NXP_DESC_STR.

thePtr is a pointer to a buffer of size len where the string will be returned.

len is the maximum number of characters that can be returned.

You can get a KB atomid from the following calls: NXP_GetAtomId(),
NXP_LoadKB(), NXP_GetAtomInfo / NXP_AINFO_CURRENTKB,
NXP_GetAtomInfo / NXP_AINFO_KBID.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error,
more information about the error is obtained by calling NXP_Error

NXP_SaveKB Saves a knowledge base.

NXP_LoadKB Loads a knowledge base.
190 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_LHS
immediately after the call which has failed. NXP_Error returns one of the
following codes:

Macros

You can use the NXP_GETSTRINFO macro if you need only the short name
of the knowledge base (optInt is set to 0):

NXP_GETSTRINFO(kbId, NXP_AINFO_KBNAME, thePtr, len)

Examples

The following example shows how to use NXP_AINFO_KBNAME:

AtomId curKBid;
int err, ret;
char theStr[255];

/* get the id of the current KB */
ret = NXP_GETATOMINFO((AtomId)0, NXP_AINFO_CURRENTKB, &curKBid);
if (ret == 0)

{ err = NXP_Error(); ... /* error code */ }
/* get the short KB name */
ret = NXP_GETSTRINFO(curKBid, NXP_AINFO_KBNAME, theStr, 255);
if (ret == 0)

{ err = NXP_Error(); ... /* error code */ }
/* get the full pathname of the same KB */
ret = NXP_GetAtomInfo(curKBid, NXP_DESC_STR, (AtomId)0, 1,

NXP_AINFO_KBNAME, theStr, 255);
if (ret == 0)

{ err = NXP_Error(); ... /* error code */ }

See Also

NXP_GetAtomInfo / NXP_AINFO_LHS
Purpose

This returns the conditions of a rule or a method (the left-hand side). Each
condition's atomId is returned in thePtr, and then you can get the text of the
condition using NXP_AINFO_NAME.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a valid knowledge base id.

NXP_ERR_INVARG5 desc is not a NXP_DESC_STR.

NXP_ERR_INVARG6 thePtr is null.

NXP_ERR_NOERR Call was successful.

NXP_GetAtomId /NXP_ATYPE_KB Returns the atomid of a knowledge base.

NXP_GetAtomInfo / NXP_AINFO_CURRENTKB Returns the atomid of the current knowledge
base.

NXP_GetAtomInfo / NXP_AINFO_KBID Returns the atomid of the KB to which an atom
is attached.

NXP_LoadKB Loads a knowledge base.

NXP_SaveKB Saves a knowledge base.

NXP_GetAtomInfo / NXP_AINFO_KBNAME Returns the name of a knowledge base.

NXP_GetAtomInfo / NXP_AINFO_NAME Returns the name of an atom.
C Programmer’s Guide 191

Chapter NXP_GetAtomInfo Routine4
C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_LHS, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_LHS */
AtomId optAtom; /* ignored */
int optInt;
int desc;
Str thePtr;
int len; /* ignored */

theAtom must be a valid rule or method id (as returned by NXP_GetAtomId
for instance).

code is equal to NXP_AINFO_LHS.

If optInt is equal to -1, desc should be equal to NXP_DESC_INT and the
number of conditions will be returned as an integer in thePtr. Otherwise,
optInt should be a number between 0 and n-1. In this last case, desc should
be equal to NXP_DESC_ATOM and the condition with the index optInt will
be returned in thePtr.

thePtr must be a pointer or an integer if optInt equals -1. Otherwise it must
be a pointer to an atomId.

The conditions are listed in the natural rule order (as they appear in the rule
editor notebook).

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

For the first call, use the NXP_GETLISTLEN(atom, code, ptr) macro:

NXP_GETLISTLEN(theAtom, NXP_AINFO_LHS, thePtr)

then use the NXP_GETLISTELT(atom, code, index, ptr) macro:

NXP_GETLISTELT(theAtom, NXP_AINFO_LHS, optInt, thePtr).

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid rule or method

id.

NXP_ERR_INVARG4 optInt is not -1 nor a valid LHS condition index.

NXP_ERR_INVARG5 optInt is equal to -1 but desc is not equal to
NXP_DESC_INT.

optInt is a valid LHS condition index but desc is
not equal to NXP_DESC_ATOM.

NXP_ERR_INVARG6 thePtr is NULL.
192 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_LINKED
Examples

The following examples show how to get the text of a rule's conditions using
NXP_AINFO_LHS and NXP_AINFO_NAME:

AtomId ruleId, condId;
int nCond, i;
char *ruleName, col1str[20], col2str[1000], col3str[1000];

/* First get the rule's atomId in ruleId */
NXP_GetAtomId(ruleName, ruleId, NXP_ATYPE_RULE);
/* get the number of conditions in nCond */
NXP_GETLISTLEN(ruleId, NXP_AINFO_LHS, &nCond);

/* loop to get each condition's atomId and then its text */
for(i = 0; i < nCond, i++) {

NXP_GETLISTELT(ruleId, NXP_AINFO_LHS, i, &condId);

/* get the text of the 1st column (operator) in col1str */
NXP_GetAtomInfo(condId, NXP_AINFO_NAME, (AtomId)0,

NXP_CELL_COL1, NXP_DESC_STR, col1str, 20);

/* get the text of the 2nd column in col2str */
NXP_GetAtomInfo(condId, NXP_AINFO_NAME, (AtomId)0,

NXP_CELL_COL2, NXP_DESC_STR, col2str, 1000);

/* get the text of the 3rd column in col3str */
NXP_GetAtomInfo(condId, NXP_AINFO_NAME, (AtomId)0,

NXP_CELL_COL3, NXP_DESC_STR, col3str, 1000);
}

See Also

NXP_GetAtomInfo / NXP_AINFO_LINKED
Purpose

This returns information about the type of link between a class or an object
and another class or object.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_LINKED, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_LINKED */
AtomId optAtom;
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */

NXP_AINFO_CACTIONS Get the If Change methods

NXP_AINFO_PARENT Get the rule or method id from the LHS, EHS or RHS

NXP_AINFO_RHS Get the right hand side actions.

NXP_AINFO_EHS Get the Else right hand side actions.

NXP_AINFO_SOURCES Get the Order of Sources methods
C Programmer’s Guide 193

Chapter NXP_GetAtomInfo Routine4
Str thePtr;
int len; /* ignored */

theAtom and optAtom should both be valid class or object ids, theAtom being
the id of the parent and optAtom the id of the child.

code is equal to NXP_AINFO_LINKED.

desc must equal NXP_DESC_INT.

*thePtr is a pointer to an integer representing the type of link. It can take the
following values:

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

None.

Examples

This tests the type of link between myClass and myObject (both are
atomIds):

int link;

NXP_GetAtomInfo(myClass, NXP_AINFO_LINKED, myAtom, 0, NXP_DESC_INT,
 (Str)&link, 0);

switch(link) {
case NXP_LINK_NOLINK:
...;
case NXP_LINK_PERMLINK:
...;
case NXP_LINK_TEMPLINK:
...;
 case NXP_LINK_TEMPUNLINK:
...;

}

See Also

Code Description
NXP_LINK_NOLINK no link.

NXP_LINK_PERMLINK permanent link (i.e. kept in the knowledge base)

NXP_LINK_TEMPLINK temporary link (dynamically created in rules,
methods or by external calls).

NXP_LINK_TEMPUNLINK temporarily deleted link (permanent links deleted in
rules, methods or by external calls).

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or not a valid class or object id.

NXP_ERR_INVARG3 optAtom is NULL or not a valid class or object id.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_AINFO_CHILDOBJECT Get the children objects of a class.

NXP_AINFO_PARENTCLASS Get the parent class of an object.
194 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_METHODS
NXP_GetAtomInfo / NXP_AINFO_METHODS
Purpose

This returns information about the methods attached to a slot, an object, a
class or a property.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_METHODS, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_METHODS */
AtomId optAtom; /* ignored */
int optInt;
int desc;
Str thePtr;
int len; /* ignored */

theAtom must be a valid object or class id.

code must equal NXP_AINFO_METHODS.

optInt is an integer between -1 and n-1.

desc must be NXP_DESC_INT when optInt is -1, and NXP_DESC_ATOM
otherwise.

thePtr must be a pointer to an integer when optInt is -1, and a pointer to an
AtomId otherwise.

Notes

The mechanism used to retrieve this list uses the following sequence of calls:

■ In your first call, you pass a value of -1 in the optInt argument. In
return, thePtr is set to the number n of atoms in the list (thePtr must be
a pointer to an integer).

■ Then you can call NXP_GetAtomInfo with the
NXP_AINFO_METHODS code and optInt set to any value between 0
and n-1 where n is the value returned by the first call. The id of the
(optInt+1)th atom in the list will be returned in thePtr (which must be a
pointer to an AtomId).

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
C Programmer’s Guide 195

Chapter NXP_GetAtomInfo Routine4
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

For the first call, use the NXP_GETLISTLEN(atom, code, ptr) macro:

NXP_GETLISTLEN(theAtom, NXP_AINFO_METHODS, &len).

then use the NXP_GETLISTELT(atom, code, index, ptr) macro:

NXP_GETLISTELT(theAtom, NXP_AINFO_METHODS, i, thePtr)

Examples

The following example illustrates how to get the list of methods of theObj
using the macros:

NXP_GETLISTLEN(theObj, NXP_AINFO_METHODS, &nMethods);
for(i = 0; i < nMethods; i++){

NXP_GETLISTELT(theObj, NXP_AINFO_METHODS, i,
theMethod);
 ...
}

See Also

NXP_GetAtomInfo / NXP_AINFO_MOTSTATE
Purpose

This returns information about the current state of the inference engine.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_MOTSTATE, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_MOTSTATE */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid class, object, slot or

property id.

NXP_ERR_INVARG4 optInt is not equal to -1 or is not a valid method index.

NXP_ERR_INVARG5 optInt is equal to -1 and desc is not equal to
NXP_DESC_INT.optInt is a valid method index, but
desc is not equal to NXP_DESC_ATOM.

NXP_AINFO_CHILDCLASS The children classes of a class.

NXP_AINFO_CHILDOBJECT The children objects of a class.
196 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_MOTSTATE
Str thePtr;
int len; /* ignored */

code is equal to NXP_AINFO_MOTSTATE.

desc must equal NXP_DESC_INT.

thePtr must be a pointer to an integer where one of the following codes will
be returned:

Notes

If you make this call within a Question handler, thePtr is set to
NXP_STATE_QUESTION.

If you make this call within another handler (Execute, Polling, Apropos,
etc.), thePtr is set to NXP_STATE_RUNNING.

If you call NXP_CTRL_STOPSESSION within your Question handler to
make the question non-modal, the state becomes NXP_STATE_STOPPED.
You must call NXP_CTRL_CONTINUE to resume the session, but you
should first answer the current question with NXP_Volunteer. Otherwise,
the same question will return when the engine restarts.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO((AtomId)0, NXP_AINFO_MOTSTATE, thePtr).

Examples

The following code gives a simple example

int theState;

/* get the state of the engine */
NXP_GETINTINFO((AtomId)0, NXP_AINFO_MOTSTATE, &theState);

/* restart the session after the end of session */

Code Description
NXP_STATE_DONE The state after the end of a session.

NXP_STATE_QUESTION A question is pending. The engine is stopped, waiting
for a value.

NXP_STATE_RUNNING The inference engine is running (i.e. when executing
an "Execute" routine).

NXP_STATE_STOPPED The session has been interrupted (by clicking in the
interrupt button or by calling NXP_Control with the
NXP_CTRL_STOPSESSION code.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.
C Programmer’s Guide 197

Chapter NXP_GetAtomInfo Routine4
if(theState == NXP_STATE_DONE)
NXP_Control(NXP_CTRL_RESTART);

See Also

NXP_GetAtomInfo / NXP_AINFO_NAME
Purpose

This returns the string name of an atom from its id (The opposite function
is NXP_GetAtomId).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_NAME, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* NXP_AINFO_NAME */
AtomId optAtom; /* ignored */
int optInt;
int desc; /* = NXP_DESC_STR */
Str thePtr;
int len;

theAtom is the id of the atom which name will be returned. theAtom can be
any of the following types:

NXP_SetHandler /NXP_PROC_ENDOFSESSION Handler called at the end of a
session.

NXP_PROC_POLLING Handler called at each
inference cycle while the
engine is running.

NXP_PROC_QUESTION Handler called during a
question.

NXP_Control Controls the engine.

Code Description
NXP_ATYPE_CLASS See NXP_ATYPE_SLOT below.

NXP_ATYPE_OBJECT See NXP_ATYPE_SLOT below.

NXP_ATYPE_PROP See NXP_ATYPE_SLOT below.

NXP_ATYPE_SLOT The Object, Class, Property, or Slot Name as displayed in
the notebooks will be returned. For a slot with a .value
property, the .value will NOT be present in the returned
string.

NXP_ATYPE_RULE The rule name will be returned as a string.

NXP_ATYPE_KB The knowledge base.

NXP_ATYPE_CACTIONS See NXP_ATYPE_SOURCE below.

NXP_ATYPE_LHS See NXP_ATYPE_SOURCE below.

NXP_ATYPE_RHS See NXP_ATYPE_SOURCE below.

NXP_ATYPE_EHS See NXP_ATYPE_SOURCE below.
198 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_NAME
code is equal to NXP_AINFO_NAME.

optInt is unused except when the atom type is NXP_ATYPE_CACTIONS,
NXP_ATYPE_LHS, NXP_ATYPE_RHS, NXP_ATYPE_EHS or
NXP_ATYPE_SOURCE (see example below).

desc must equal NXP_DESC_STR.

thePtr is a pointer to the string returned. thePtr must point to a buffer of at
least len characters.

len is the maximum number of characters that can be returned.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETNAME(atom, ptr, len) macro:

NXP_GETNAME(theAtom, thePtr, len).

Examples

The following examples illustrate two ways of getting the name of slot
"object.property" using the atomIds of the object theObj and the property
theProp.

The first solution is to get the names of theProp and theObj and then
concatenate them with a dot in the middle:

AtomId theProp, theObj, theSlot;
char objStr[255], propStr[255], slotStr[255];

NXP_GETNAME(theProp, propStr, 255);
NXP_GETNAME(theObj, objStr, 255);

/* build "object.property" */
sprintf(slotStr, "%s.%s", objStr, propStr);

NXP_ATYPE_SOURCE These types mean that theAtom is the id of a condition of
a rule or of a method.

In this case optInt can have any of the following values:
NXP_CELL_COL1, NXP_CELL_COL2,
NXP_CELL_COL3.

The string returned corresponds to the first, second, and
third column as they are displayed in the rule editor or
in the method editor (operator, first argument, second
argument). The operator string returned is the one used
in the network display.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a valid atom id.

NXP_ERR_INVARG4 optInt is invalid.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_STR.

Code Description
C Programmer’s Guide 199

Chapter NXP_GetAtomInfo Routine4
Another solution is to get the atomId of the slot first and then get its name:

NXP_GetAtomInfo(theObj, NXP_AINFO_SLOT, theProp, 0,
NXP_DESC_ATOM, theSlot, 0);

NXP_GetAtomInfo(theSlot, NXP_AINFO_NAME, (AtomId)0, 0,
NXP_DESC_STR, slotStr, 255);

Note: In the above case, ".Value" is not added to the slot's name if theProp
is the special property Value.

The following examples illustrate how to get the text of a rule's conditions
using NXP_AINFO_LHS and NXP_AINFO_NAME:

AtomId ruleId, theCond;
char col1str[20], col2str[1000], col3str[1000];

/* First get the rule's atomId in ruleId */
NXP_GetAtomInfo(ruleName, ruleId, NXP_ATYPE_RULE);

/* get the number of conditions in nCond */
NXP_GETLISTLEN(ruleId, NXP_AINFO_LHS, &nCond);

/* loop to get each condition's atomId and then its text */
for(i = 0; i < nCond, i++){

NXP_GETLISTELT(ruleId, NXP_AINFO_LHS, i, &theCond);

/* get the text of the 1st column (operator) in col1str */
NXP_GetAtomInfo(theCond, NXP_AINFO_NAME, (AtomId)0,

NXP_CELL_COL1, NXP_DESC_STR, col1str, 20);

/* get the text of the 2nd column in col2str */
NXP_GetAtomInfo(theCond, NXP_AINFO_NAME, (AtomId)0,

NXP_CELL_COL2, NXP_DESC_STR, col2str, 1000);
/* get the text of the 3rd column in col3str */
NXP_GetAtomInfo(theCond, NXP_AINFO_NAME, (AtomId)0,

NXP_CELL_COL3, NXP_DESC_STR, col3str, 1000);
}

See Also

NXP_GetAtomInfo / NXP_AINFO_NEXT
Purpose

This code allows you to retrieve lists of atoms stored in the working
memory.

You can get the list of all the classes, objects, properties, methods, data,
hypotheses, rules or knowledge bases by successive calls using
NXP_AINFO_NEXT. See also NXP_AINFO_PREV to go through the lists in
the other direction. In each list, atoms are ordered as they appear in the
editors or notebooks.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_NEXT, optAtom, optInt, desc, thePtr, len);

NXP_GetAtomId Get the atomId from an atom name.
200 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_NEXT
Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_NEXT */
AtomId optAtom; /* ignored */
int optInt;
int desc; /* = NXP_DESC_ATOM */
Str thePtr;
int len; /* ignored */

The general mechanism to retrieve these lists is the following:

■ In your first call you pass NULL in theAtom and the first element in the
list will be returned in thePtr.

■ Then you pass the atom returned by the previous call in theAtom and
the next element in the list will be returned in thePtr. When the end of
the list is reached, NULL is returned in thePtr.

theAtom can be NULL in which case the first atom of the list will be returned.
Otherwise theAtom should be a valid atom id belonging to the same list as
specified in optInt. If theAtom is the last one in the list, NULL will be
returned.

code is equal to NXP_AINFO_NEXT.

desc must be NXP_DESC_ATOM.

thePtr must be a valid pointer to a memory location where the id of the next
atom will be returned.

optInt can take the following values:

Code Description
NXP_ATYPE_CLASS If theAtom is NULL, thePtr will hold the id of the first class (in alphabetical

order). Otherwise, theAtom should be a valid class id, and thePtr will hold
the class following theAtom in alphabetical order. The order is the same as
displayed in the class notebook.

NXP_ATYPE_DATA If theAtom is NULL, thePtr will hold the id of the first data (in alphabetical
order). Otherwise, theAtom should be a valid data id, and thePtr will hold
the data following theAtom in alphabetical order. The order is the same as
displayed in the data notebook. In this case, theAtom should not only be a
slot, but it should also belong to the list of data if it isn't NULL.

NXP_ATYPE_HYPO If theAtom is NULL, thePtr will hold the id of the first hypothesis (in
alphabetical order). Otherwise, theAtom should be a valid hypothesis id,
and thePtr will hold the hypothesis following theAtom in alphabetical
order. The order is the same as displayed in the hypotheses notebook.

NXP_ATYPE_KB If theAtom is NULL, thePtr will hold the id of the first knowledge base (in
alphabetical order). Otherwise, theAtom should be a valid knowledge base
id, and thePtr will hold the knowledge base following theAtom in
alphabetical order.

NXP_ATYPE_METHOD If theAtom is NULL, thePtr will hold the id of the first method (in
alphabetical order). Otherwise, theAtom should be a valid method id, and
thePtr will hold the method following theAtom in alphabetical order. The
order is the same as displayed in the method notebook. The methods are
sorted alphabetically by method name.

NXP_ATYPE_OBJECT If theAtom is NULL, thePtr will hold the id of the first object (in
alphabetical order). Otherwise, theAtom should be a valid object id, and
thePtr will hold the object following theAtom in alphabetical order. The
order is the same as displayed in the object notebook.
C Programmer’s Guide 201

Chapter NXP_GetAtomInfo Routine4
Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

For the first call use the NXP_GETLISTFIRST(type, ptr) macro:

NXP_GETLISTFIRST(listType, nextAtom)

then use the NXP_GETLISTNEXT(atom, type, ptr) macro:

NXP_GETLISTNEXT(currentAtom, listType, nextAtom)

Examples

This illustrates how to get the list of all objects loaded in memory:

AtomId theObj, nextObj, firstObj;

/* get the first object in alphabetical order */
NXP_GETLISTFIRST(NXP_ATYPE_OBJECT, &firstObj);

/* loop to get the following objects */
if(firstObj != NULL){

theObj = firstObj;
while(theObj != NULL) {

NXP_GETLISTNEXT(theObj, NXP_ATYPE_OBJECT,
&nextObj);

theObj = nextObj;
...

}
}

See Also

NXP_ATYPE_PROP If theAtom is NULL, thePtr will hold the id of the first property (in
alphabetical order). Otherwise, theAtom should be a valid property id, and
thePtr will hold the property following theAtom in alphabetical order. The
order is the same as displayed in the property notebook.

NXP_ATYPE_RULE If theAtom is NULL, thePtr will hold the id of the first rule (in alphabetical
order). Otherwise, theAtom should be a valid rule id, and thePtr will hold
the rule following theAtom in alphabetical order. The order is the same as
displayed in the rule notebook. The rules are sorted alphabetically by rule
names and then by hypothesis names if they do not have a rule name.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not of the right type (as specified by

optInt).

NXP_ERR_INVARG4 optInt is not a valid code.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_ATOM.

NXP_AINFO_PREV Get the previous atom in a list.

Code Description
202 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_PARENT
NXP_GetAtomInfo / NXP_AINFO_PARENT
Purpose

This returns information about the parent of a slot, a condition, a right-hand
side action, or an Else (right-hand side) action that appears in a rule or
method. Can also return for the method name.

Note: Here PARENT does not refer to the class-object or object-object
relation. See NXP_AINFO_PARENTCLASS and
NXP_AINFO_PARENTOBJECT.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_PARENT, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_PARENT */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_ATOM */
Str thePtr;
int len; /* ignored */

theAtom must a valid slot, condition (LHS), action (RHS or EHS) of a rule or
a method. If theAtom is a slot id the parent object or class is returned. If
theAtom is a LHS, RHS or EHS the id returned is the rule or method id. If
theAtom is a method, the AtomId of the atom to which the method is
attached is returned.

code is equal to NXP_AINFO_PARENT.

desc must equal NXP_DESC_ATOM.

thePtr must be a pointer to an AtomId where the id of the parent atom will
be returned.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETATOMINFO(atom, code, ptr) macro:

NXP_GETATOMINFO(theAtom, NXP_AINFO_PARENT, thePtr).

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a valid id or is NULL.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_ATOM.
C Programmer’s Guide 203

Chapter NXP_GetAtomInfo Routine4
Examples

The following examples illustrate two ways of getting the name of the
parent object of a slot.

One way is to use NXP_AINFO_PARENT to get the id of the object, and
then use NXP_AINFO_NAME to get its name:

NXP_GetAtomInfo(theSlot, NXP_AINFO_PARENT, (AtomId)0, 0,
NXP_DESC_ATOM, (Str)&theObj, 0);

NXP_GetAtomInfo(theObj, NXP_AINFO_NAME, (AtomId)0, 0,
NXP_DESC_STR, objName, 255);

Another way is to get the name of the slot and remove the ".property" part
(if any):

NXP_GetAtomInfo(theSlot, NXP_AINFO_NAME, (AtomId)0, 0,
NXP_DESC_STR, slotName, 255);

strcpy(objName, slotName);
for(i = 0; objName[i] != (char)'\0'; i++){

if(objName[i] == (char)'.'){
objName[i] = (char)'\0'; /*cut string at the dot*/
break;

}
}

See Also

NXP_GetAtomInfo / NXP_AINFO_PARENTCLASS
Purpose

This returns information about the parent classes of a class or an object.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_PARENTCLASS, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_PARENTCLASS */
AtomId optAtom; /* ignored */
int optInt;
int desc;
Str thePtr;
int len; /* ignored */

NXP_AINFO_CACTIONS Get the If Change methods.

NXP_AINFO_EHS Get the Else actions.

NXP_AINFO_LHS Get the left hand side conditions.

NXP_AINFO_METHODS Get the method’s attached to atom.

NXP_AINFO_PARENTCLASS Get the parent in the class structure.

NXP_AINFO_PARENTOBJECT Get the parent in the object structure.

NXP_AINFO_RHS Get the right hand side actions.

NXP_AINFO_SOURCES Get the Order of Sources methods.
204 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_PARENTCLASS
theAtom must be a valid object or class id.

code must equal NXP_AINFO_PARENTCLASS.

optInt is an integer between -1 and n-1.

desc must be NXP_DESC_INT when optInt is -1, and NXP_DESC_ATOM
otherwise.

thePtr must be a pointer to an integer when optInt is -1, and a pointer to an
AtomId otherwise.

The mechanism used to retrieve this list uses the following sequence of calls:

■ In your first call, you pass a value of -1 in the optInt argument. In
return, thePtr is set to the number n of atoms in the list (thePtr must be
a pointer to an integer).

■ Then you can call NXP_GetAtomInfo with the
NXP_AINFO_PARENTCLASS code and optInt set to any value
between 0 and n-1 where n is the value returned by the first call. The id
of the (optInt+1)th atom in the list will be returned in thePtr (which
must be a pointer to an AtomId).

Notes

The ordering of the list is not defined and can change during a session (i.e.
links to parent classes are created or deleted dynamically).

For the parent class of a slot use NXP_AINFO_PARENT (a slot has only one
parent class or object).

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

For the first call, use the NXP_GETLISTLEN(atom, code, ptr) macro:

NXP_GETLISTLEN(theAtom, NXP_AINFO_PARENTCLASS, &len).

then use the NXP_GETLISTELT(atom, code, index, ptr) macro:

NXP_GETLISTELT(theAtom, NXP_AINFO_PARENTCLASS, i, thePtr)

Examples

The following example illustrates how to get the list of parent classes of
theObj using the macros:

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid class id.

NXP_ERR_INVARG4 optInt is not equal to -1 or is not a valid parent class
index.

NXP_ERR_INVARG5 optInt is equal to -1 and desc is not equal to
NXP_DESC_INT.

optInt is a valid parent class index, but desc is not
equal to NXP_DESC_ATOM.
C Programmer’s Guide 205

Chapter NXP_GetAtomInfo Routine4
NXP_GETLISTLEN(theObj, NXP_AINFO_PARENTCLASS, &nClass);
for(i = 0; i < nClass; i++){

NXP_GETLISTELT(theObj, NXP_AINFO_PARENTCLASS, i,
theClass);
 ...
}

See Also

NXP_GetAtomInfo / NXP_AINFO_PARENTFIRST
Purpose

This returns whether the inheritance search for a slot should begin by
searching the parent objects of the slot or the classes to which the slot
belongs (strategy displayed in the Strategy window or in the meta-slot
editor for a slot).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_PARENTFIRST, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_PARENTFIRST */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

theAtom must be a valid slot id. If theAtom is NULL, the call returns the
global strategy setting for parent first versus class first inheritance. If
theAtom is not NULL, the call returns behavior for that atom (combined
with the global default).

code must be NXP_AINFO_PARENTFIRST to get the default strategy. it
must be NXP_AINFO_PARENTFIRST | NXP_AINFO_CURSTRAT to get
the current strategy ("Or" operation with the "current" bit).

desc must equal NXP_DESC_INT.

thePtr must be a pointer to an integer which will be set to 1 if the parent
objects are searched first, and set to 0 if the parent classes are searched first.

NXP_AINFO_CHILDCLASS The children classes of a class.

NXP_AINFO_CHILDOBJECT The children objects of a class.

NXP_AINFO_LINKED The type of link between a class or object and
another class or object.

NXP_AINFO_PARENT The parent class or object of a slot.

NXP_AINFO_PARENTOBJECT The parent objects of an object.
206 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_PARENTOBJECT
Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_PARENTFIRST, thePtr).

Examples

The following example illustrates the inheritance strategy for theSlot:

int strat;

NXP_GETINTINFO(theSlot, NXP_AINFO_PARENTFIRST, &strat);
if(strat == 1)
 /* Parent objects are used first */
else
 /* Parent classes are used first */

See Also

NXP_GetAtomInfo / NXP_AINFO_PARENTOBJECT
Purpose

This returns the parent objects of an object.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_PARENTOBJECT, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_PARENTOBJECT */
AtomId optAtom; /* ignored */
int optInt;
int desc; /* = NXP_DESC_ATOM */
Str thePtr;
int len; /* ignored */

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid slot id.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_AINFO_BREADTHFIRST Breadth first or depth first strategy.

NXP_AINFO_DEFAULTFIRST Default strategy

NXP_Strategy Change default or current strategy.
C Programmer’s Guide 207

Chapter NXP_GetAtomInfo Routine4
theAtom must be a valid object id.

code is equal to NXP_AINFO_PARENTOBJECT.

optInt is an integer between -1 and n-1.

desc must be NXP_DESC_INT when optInt is -1, and NXP_DESC_ATOM
otherwise.

thePtr must be a pointer to an integer when optInt is -1, and a pointer to an
AtomId otherwise.

The mechanism used to retrieve this list uses the following sequence of calls:

■ In your first call, you pass a value of -1 in the optInt argument. In
return, thePtr is set to the number n of atoms in the list (thePtr must be
a pointer to an integer).

■ Then you can call NXP_GetAtomInfo with the
NXP_AINFO_PARENTOBJECT code and optInt set to any value
between 0 and n-1 where n is the value returned by the first call. The id
of the (optInt+1)th atom in the list will be returned in thePtr (which
must be a pointer to an AtomId).

Notes

The ordering of the list is not defined and can change during a session (i.e.
links to parent objects are created or deleted dynamically).

For the parent object of a slot use NXP_AINFO_PARENT (a slot has only
one parent class or object).

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

For the first call, use the NXP_GETLISTLEN(atom, code, ptr) macro:

NXP_GETLISTLEN(theAtom, NXP_AINFO_PARENTOBJECT, &len).

Then use NXP_GETLISTELT(atom, code, index, ptr) macro:

NXP_GETLISTELT(theAtom, NXP_AINFO_PARENTOBJECT, i, thePtr)

Examples

The following example illustrates how to get the list of parent objects of
theObj using the macros:

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid object id.

NXP_ERR_INVARG4 optInt is not equal to -1 or is not a valid parent
object index.

NXP_ERR_INVARG5 optInt is equal to -1 and desc is not equal to
NXP_DESC_INT.

optInt is a valid parent object index but desc is not
equal to NXP_DESC_ATOM.
208 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_PFACTIONS
int nObject;
AtomId theObj;
NXP_GETLISTLEN(theObj, NXP_AINFO_PARENTCLASS, &nObject);
for(i = 0; i < nObject; i++){

NXP_GETLISTELT(theObj, NXP_AINFO_PARENTCLASS, i,
theObj);
 ...
}

See Also

NXP_GetAtomInfo / NXP_AINFO_PFACTIONS
Purpose

This returns whether or not the assignments done in the right-hand-side of
rules or in methods are forwarded (PF = Propagate Forward).

It corresponds to the Forward Action Effects option in the strategy window.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_PFACTIONS, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_PFACTIONS */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_PFACTIONS to get the default strategy. It must
be NXP_AINFO_PFACTIONS | NXP_AINFO_CURSTRAT to get the
current strategy ("Or" operation with the "current" bit).

desc must equal NXP_DESC_INT.

thePtr must point to an integer which will be set to 1 if the action effects are
forwarded, and set to 0 if they are not forwarded.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()

NXP_AINFO_CHILDCLASS The children classes of a class.

NXP_AINFO_CHILDOBJECT The children objects of a class.

NXP_AINFO_LINKED The type of link between a class or object and
another class or object.

NXP_AINFO_PARENTCLASS The parent classes of an object.
C Programmer’s Guide 209

Chapter NXP_GetAtomInfo Routine4
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_PFACTIONS, thePtr)

See Also

NXP_GetAtomInfo / NXP_AINFO_PFELSEACTIONS
Purpose

This returns whether or not the assignments done in the Else actions of rules
are forwarded (PF = Propagate Forward).

It corresponds to the Else Forward Action Effects option in the strategy
window.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_PFELSEACTIONS, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_PFELSEACTIONS */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_PFELSEACTIONS to get the default strategy. It
must be NXP_AINFO_PFELSEACTIONS | NXP_AINFO_CURSTRAT to
get the current strategy ("Or" operation with the "current" bit).

desc must equal NXP_DESC_INT.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG2 code is invalid.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_AINFO_EXHBWRD Exhaustive backward chaining.

NXP_AINFO_PTGATES Forward chaining through gates.

NXP_AINFO_PWFALSE Context propagation on False hypotheses.

NXP_AINFO_PWNOTKNOWN Context propagation on Notknown hypos.

NXP_AINFO_PWTRUE Context propagation on True hypotheses.

NXP_Strategy Change the inference strategy.
210 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_PFMETHODACTIONS
thePtr must point to an integer which will be set to NXP_FSTRAT_ON if the
action effects are forwarded, NXP_FSTRAT_OFF if they are not forwarded,
and NXP_FSTRAT_GLOBAL if they are set to global forward actions
strategy.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_PFELSEACTIONS, thePtr)

See Also

NXP_GetAtomInfo / NXP_AINFO_PFMETHODACTIONS
Purpose

This returns whether or not the assignments done in the left-hand-side and
right-hand-side of methods are forwarded (PF = Propagate Forward).

It corresponds to the Methods Forward Action Effects option in the strategy
window.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_PFMETHODACTIONS, optAtom, optInt,
desc, thePtr, len);

NXP_Error() Return Code Explanation
NXP_ERR_INVARG2 code is invalid.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_AINFO_EXHBWRD Exhaustive backward chaining.

NXP_AINFO_PTGATES Forward chaining through gates.

NXP_AINFO_PFMETHODELSEACTIONS Forward chaining from else actions of a method.

NXP_AINFO_PFMETHODACTIONS Forward chaining from righthand-side and right-hand-side
actions of a method.

NXP_AINFO_PFACTIONS Forward chaining from lefthand-side and right-hand-side
of a rule.

NXP_AINFO_PWFALSE Context propagation on False hypotheses.

NXP_AINFO_PWNOTKNOWN Context propagation on Notknown hypos.

NXP_AINFO_PWTRUE Context propagation on True hypotheses.

NXP_Strategy Change the inference strategy.
C Programmer’s Guide 211

Chapter NXP_GetAtomInfo Routine4
Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_PFMETHODSACTIONS */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_PFMETHODACTIONS to get the default
strategy. It must be NXP_AINFO_PFMETHODACTIONS |
NXP_AINFO_CURSTRAT to get the current strategy ("Or" operation with
the "current" bit).

desc must equal NXP_DESC_INT.

thePtr must point to an integer which will be set to NXP_FSTRAT_ON if the
action effects are forwarded, set to NXP_FSTRAT_OFF if they are not
forwarded, and set to NXP_FSTRAT_GLOBAL if they are set to global
forward actions strategy.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_PFMETHODACTIONS, thePtr).

See Also

NXP_Error() Return Code Explanation
NXP_ERR_INVARG2 code is invalid.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_AINFO_EXHBWRD Exhaustive backward chaining.

NXP_AINFO_PTGATES Forward chaining through gates.

NXP_AINFO_PFMETHODELSEACTIONS Forward chaining from else actions of a method.

NXP_AINFO_PFELSEACTIONS Forward chaining from else actions of a rule.

NXP_AINFO_PFACTIONS Forward chaining from lefthand-side and righthand-side
of a rule.

NXP_AINFO_PWFALSE Context propagation on False hypotheses.

NXP_AINFO_PWNOTKNOWN Context propagation on Notknown hypos.

NXP_AINFO_PWTRUE Context propagation on True hypotheses.

NXP_Strategy Change the inference strategy.
212 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_PFMETHODELSEACTIONS
NXP_GetAtomInfo / NXP_AINFO_PFMETHODELSEACTIONS
Purpose

This returns whether or not the assignments done in the Else actions of
methods are forwarded (PF = Propagate Forward).

It corresponds to the Methods Else Forward Action Effects option in the
strategy window.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_PFMETHODELSEACTIONS, optAtom,
optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_PFMETHODSACTIONS */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_PFMETHODELSEACTIONS to get the default
strategy. It must be NXP_AINFO_PFMETHODELSEACTIONS |
NXP_AINFO_CURSTRAT to get the current strategy ("Or" operation with
the "current" bit).

desc must equal NXP_DESC_INT.

thePtr must point to an integer which will be set to NXP_FSTRAT_ON if the
action effects are forwarded, NXP_FSTRAT_OFF if they are not forwarded,
and NXP_FSTRAT_GLOBAL if they are set to global forward actions
strategy.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_PFMETHODELSEACTIONS,
thePtr).

NXP_Error() Return Code Explanation
NXP_ERR_INVARG2 code is invalid.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.
C Programmer’s Guide 213

Chapter NXP_GetAtomInfo Routine4
See Also

NXP_GetAtomInfo / NXP_AINFO_PREV
Purpose

This code allows you to retrieve lists of atoms stored in the working
memory.

You can get the list of all the classes, objects, properties, data, hypotheses,
methods, rules or knowledge bases by successive calls using
NXP_AINFO_PREV. See also NXP_AINFO_NEXT to go through the lists in
the other direction. In each list, atoms are ordered as they appear in the
editors or notebooks.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_PREV, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; * = NXP_AINFO_PREV */
AtomId optAtom; /* ignored */
int optInt;
int desc;/ * = NXP_DESC_ATOM */
Str thePtr;
int len; /* ignored */

The general mechanism to retrieve these lists is the following:

■ In your first call, you pass NULL in theAtom and the last element in the
list will be returned in thePtr.

■ Then you pass the atom returned by the previous call in theAtom and
the previous element in the list will be returned in thePtr. When the end
of the list is reached, NULL is returned in the Ptr.

theAtom can be NULL in which case the last atom of the list will be returned.
Otherwise, theAtom should be a valid atom id belonging to the same list as
specified in optInt. If theAtom is the first one in the list, NULL will be
returned.

NXP_AINFO_EXHBWRD Exhaustive backward chaining.

NXP_AINFO_PTGATES Forward chaining through gates.

NXP_AINFO_PFMETHODACTIONS Forward chaining from left-hand-side and right-hand-side
actions of a method.

NXP_AINFO_PFELSEACTIONS Forward chaining from else actions of a rule.

NXP_AINFO_PFACTIONS Forward chaining from left-hand-side and right-hand-side of
a rule.

NXP_AINFO_PWFALSE Context propagation on False hypotheses.

NXP_AINFO_PWNOTKNOWN Context propagation on Notknown hypos.

NXP_AINFO_PWTRUE Context propagation on True hypotheses.

NXP_Strategy Change the inference strategy.
214 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_PREV
code is equal to NXP_AINFO_PREV.

desc must be NXP_DESC_ATOM.

thePtr must be a valid pointer to a memory location where the id of the next
atom will be returned.

optInt can take one of the following values:

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Code Description
NXP_ATYPE_CLASS If theAtom is NULL, thePtr will hold the id of the last class (in alphabetical

order). Otherwise, theAtom should be a valid class id, and thePtr will
hold the class preceding theAtom in alphabetical order. The order is the
same as displayed in the class notebook.

NXP_ATYPE_DATA If theAtom is NULL, thePtr will hold the id of the last data (in alphabetical
order). Otherwise, theAtom should be a valid data id, and thePtr will hold
the data preceding theAtom in alphabetical order. The order is the same
as displayed in the data notebook. In this case, theAtom should not only
be a slot, but it should also belong to the list of data if it isn't NULL.

NXP_ATYPE_HYPO If theAtom is NULL, thePtr will hold the id of the last hypothesis (in
alphabetical order). Otherwise, theAtom should be a valid hypothesis id,
and thePtr will hold the hypothesis preceding theAtom in alphabetical
order. The order is the same as displayed in the hypotheses notebook.

NXP_ATYPE_KB If theAtom is NULL, thePtr will hold the id of the last knowledge base (in
alphabetical order). Otherwise, theAtom should be a valid knowledge
base id, and thePtr will hold the knowledge base preceding theAtom in
alphabetical order.

NXP_ATYPE_METHOD If theAtom is NULL, thePtr will hold the id of the last method (in
alphabetical order). Otherwise, theAtom should be a valid method id, and
thePtr will hold the method preceding theAtom in alphabetical order. The
order is the same as displayed in the method notebook. The methods are
sorted alphabetically by method name.

NXP_ATYPE_OBJECT If theAtom is NULL, thePtr will hold the id of the last object (in
alphabetical order). Otherwise, theAtom should be a valid object id, and
thePtr will hold the object preceding theAtom in alphabetical order. The
order is the same as displayed in the object notebook.

NXP_ATYPE_PROP If theAtom is NULL, thePtr will hold the id of the last property (in
alphabetical order). Otherwise, theAtom should be a valid property id,
and thePtr will hold the property preceding theAtom in alphabetical
order. The order is the same as displayed in the property notebook.

NXP_ATYPE_RULE If theAtom is NULL, thePtr will hold the id of the last rule (in alphabetical
order). Otherwise, theAtom should be a valid rule id, and thePtr will hold
the rule preceding theAtom in alphabetical order. The order is the same
as displayed in the rule notebook. The rules are sorted alphabetically by
rule names and then by hypothesis names if they do not have a rule name.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not of the right type (as specified by

optInt).

NXP_ERR_INVARG4 optInt is not a valid code.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_ATOM.
C Programmer’s Guide 215

Chapter NXP_GetAtomInfo Routine4
Macros

None are defined in nxpdef.h but you can add your own macros on the
model of NXP_GETLISTFIRST and NXP_GETLISTNEXT.

Examples

This illustrates how to go through the list of all rules in reverse order:

AtomId theRule, prevRule, lastRule;

/* get the last rule in alphabetical order */
NXP_GetAtomInfo((AtomId)0, NXP_AINFO_PREV, (AtomId)0,

NXP_ATYPE_RULE, NXP_DESC_ATOM, (Str)&lastRule,
0);

/* loop to get the preceding objects */
if(lastRule != NULL){

theRule = lastRule;
while(theRule != NULL) {

NXP_GetAtomInfo(theRule, NXP_AINFO_PREV,
(AtomId)0,

NXP_ATYPE_RULE,NXP_DESC_ATOM, (Str)&prevRule, 0)
theRule= prevRule;
...

}
}

See Also

NXP_GetAtomInfo / NXP_AINFO_PROCEXECUTE
Purpose

This returns either the number of execute handlers installed or the name of
a execute handler.

Execute handlers are returned in the order they were installed. For more
information see NXP_SetHandler / NXP_PROC_EXECUTE.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_PROCEXECUTE, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_PROCEXECUTE */
AtomId optAtom; /* ignored */
int optInt;
int desc;
Str thePtr;
int len;

code is equal to NXP_AINFO_PROCEXECUTE.

NXP_AINFO_NEXT Get the next atom in a list.
216 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_PROMPTLINE
If optInt is equal to -1, the number n of execute routines installed is returned
in the order they were installed. In this case, desc is equal to
NXP_DESC_INT and thePtr should be a pointer to an integer.

Otherwise, optInt is the index of the Execute (a number between 0 and n-1)
and the name of the Execute Handler is returned. In this case, desc is equal
to NXP_DESC_STR and the string is returned in thePtr.

len is the maximum number of characters that can be returned in thePtr if
desc is equal to NXP_DESC_STR.

Once you have the name of an Execute procedure, you can call
NXP_GetHandler to get more information on this procedure (or call
NXP_GetHandler2 if the procedure was installed with NXP_SetHandler2).

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

For the first call use the NXP_GETLISTLEN(atom, code, ptr) macro to get
the number of Execute handlers:

NXP_GETLISTLEN((AtomId)0, NXP_AINFO_PROCEXECUTE, thePtr)

Then use the NXP_GETLISTELTSTR(atom, code, index, ptr, len) macro to
get the individual names:

NXP_GETLISTELTSTR((AtomId)0, NXP_AINFO_PROCEXECUTE, i, thePtr,
len)

See Also

NXP_GetAtomInfo / NXP_AINFO_PROMPTLINE
Purpose

This returns the prompt line string attached to a slot. This is the string used
during a question about the value of this slot (or when you change the value
with Volunteer/Modify in the interface). This attribute is edited in the
Prompt Line text field of the meta-slot editor.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG4 desc is equal to NXP_DESC_STR but the value of

optInt is not between 0 and n-1.

NXP_ERR_INVARG5 optInt is equal to -1 but desc is not equal to
NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_GetHandler, NXP_GetHandler2 Getting Execute handlers.

NXP_SetHandler, NXP_SetHandler2 Setting Execute handlers.
C Programmer’s Guide 217

Chapter NXP_GetAtomInfo Routine4
C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_PROMPTLINE, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* NXP_AINFO_PROMPTLINE */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_STR */
Str thePtr;
int len;

theAtom must be a slot.

code is equal to NXP_AINFO_PROMPTLINE.

desc must be NXP_DESC_STR.

thePtr must point to a buffer where the prompt line string will be returned.
The buffer must contain at least len characters. thePtr is the empty string if
no prompt line is defined in the slot.

len is the maximum number of characters that can be written to thePtr.

Notes

If there is no prompt line attribute defined in theAtom (thePtr set to the
empty string), the Rules Element tries to inherit the prompt line from parent
objects or classes or it uses the default prompt line ("What is the value of
slot?").

The prompt line is also the second argument passed to the Question
handler, you don't need to use NXP_AINFO_PROMPTLINE within your
handler procedure in order to display the question about the current slot.

There is a small difference between a prompt line returned by
NXP_GetAtomInfo and the one passed to the Question handler: in the first
case it is non expanded, i.e. can contain @SELF and @V() interpretations, in
the second case it is completely expanded as it would be displayed in the
Session Control window.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a slot.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_STR.
218 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_PROP
Macros

You can use the NXP_GETSTRINFO(atom, code, ptr, len) macro:

NXP_GETSTRINFO(theAtom, NXP_AINFO_PROMPTLINE, thePtr, len)

Examples

The following code gives a simple example:

char prompt[1000];

NXP_GETSTRINFO(theSlot, NXP_AINFO_PROMPTLINE, prompt, 1000);
if(prompt[0] == (char)'\0') {

printf("No prompt line\n");
}
else {

printf("Prompt line = %s\n", prompt);
}

See Also

NXP_GetAtomInfo / NXP_AINFO_PROP
Purpose

This returns the property of the slot .

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_PROP, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_PROP */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_ATOM */
Str thePtr;
int len; /* ignored */

theAtom is a valid slot id.

code is equal to NXP_AINFO_PROP.

desc must be NXP_DESC_ATOM.

thePtr must be a pointer to an AtomId. The property id of the slot is
returned in thePtr.

Note: It is more efficient to use this call for getting the property id and then
get the property’s name rather than getting the slot’s name first and
parsing it to extract the property’s name.

NXP_PROC_QUESTION Question handler
C Programmer’s Guide 219

Chapter NXP_GetAtomInfo Routine4
Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETATOMINFO(atom, code, ptr) macro:

NXP_GETATOMINFO(theAtom, NXP_AINFO_PROP, thePtr)

See Also

NXP_GetAtomInfo / NXP_AINFO_PTGATES
Purpose

This returns whether or not forward chaining through semantic gates is
enabled (PT = propagate through).

This corresponds to the Forward Through Gates option in the strategy
window. A gate, or strong link, is a connection between two rules that share
the same data.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_PTGATES, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_PTGATES */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_PTGATES to get the default strategy. It must be
NXP_AINFO_PTGATES | NXP_AINFO_CURSTRAT to get the current
strategy ("Or" operation with the "current" bit).

desc must equal NXP_DESC_INT.

thePtr must point to an integer which will be set to 1 if forward chaining
through gates is enabled, and set to 0 otherwise.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid slot id.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_ATOM.

NXP_AINFO_SLOT Get properties of a class or an object.
220 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_PWFALSE
Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_PTGATES, thePtr).

See Also

NXP_GetAtomInfo / NXP_AINFO_PWFALSE
Purpose

This returns whether or not the context propagation is enabled on FALSE
hypotheses (PWFALSE = Propagate When False).

It corresponds to the Forward Rejected Hypothesis option in the strategy
window.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_PWFALSE, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_PWFALSE */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_PWFALSE to get the default strategy. It must be
NXP_AINFO_PWFALSE | NXP_AINFO_CURSTRAT to get the current
strategy ("Or" operation with the "current" bit).

NXP_Error() Return Code Explanation
NXP_ERR_INVARG2 code is invalid.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_AINFO_EXHBWRD Exhaustive backward chaining.

NXP_AINFO_PFACTIONS Forwarding of action effects.

NXP_AINFO_PWFALSE Context propagation on False hypotheses.

NXP_AINFO_PWNOTKNOWN Context propagation on Notknown hypos.

NXP_AINFO_PWTRUE Context propagation on True hypotheses.

NXP_Strategy Change the inference strategy.
C Programmer’s Guide 221

Chapter NXP_GetAtomInfo Routine4
desc must be NXP_DESC_INT.

thePtr must point to an integer which will be set to 1 if the strategy is on, and
set to 0 otherwise.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_PWFALSE, thePtr)

See Also

NXP_GetAtomInfo / NXP_AINFO_PWNOTKNOWN
Purpose

This returns whether or not the context propagation is enabled on
NOTKNOWN hypotheses (PWNOTKNOWN = Propagate When
Notknown).

It corresponds to the Forward Notknown Hypothesis option in the strategy
window.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_PWNOTKNOWN, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_PWNOTKNOWN */

NXP_Error() Return Code Explanation
NXP_ERR_INVARG2 code is invalid.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_AINFO_EXHBWRD Exhaustive backward chaining.

NXP_AINFO_PTGATES Forward chaining through gates.

NXP_AINFO_PFACTIONS Forward action effects.

NXP_AINFO_PWNOTKNOWN Context propagation on Notknown
hypos.

NXP_AINFO_PWTRUE Context propagation on True
hypotheses.

NXP_Strategy Change the inference strategy.
222 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_PWTRUE
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_PWNOTKNOWN to get the default strategy. It
must be NXP_AINFO_PWNOTKNOWN | NXP_AINFO_CURSTRAT to
get the current strategy ("Or" operation with the "current" bit).

desc must equal NXP_DESC_INT.

thePtr must point to an integer which will be set to 1 if the strategy is on, and
set to 0 otherwise.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_PWNOTKNOWN, thePtr).

See Also

NXP_GetAtomInfo / NXP_AINFO_PWTRUE
Purpose

This returns whether or not the context propagation is enabled on TRUE
hypotheses (PWTRUE = Propagate When True).

It corresponds to the Forward Confirmed Hypothesis option in the strategy
window.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG2 code is invalid.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_AINFO_EXHBWRD Exhaustive backward chaining.

NXP_AINFO_PTGATES Forward chaining through gates.

NXP_AINFO_PFACTIONS Forward action effects.

NXP_AINFO_PWFALSE Context propagation on False hypos.

NXP_AINFO_PWTRUE Context propagation on True hypotheses.

NXP_Strategy Change the inference strategy.
C Programmer’s Guide 223

Chapter NXP_GetAtomInfo Routine4
C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_PWTRUE, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_PWTRUE */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_PWTRUE to get the default strategy. It must be
NXP_AINFO_PWTRUE | NXP_AINFO_CURSTRAT to get the current
strategy ("Or" operation with the "current" bit).

desc must equal NXP_DESC_INT.

thePtr must point to an integer which will be set to 1 if the strategy is on, and
set to 0 otherwise.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_PWTRUE, thePtr).

See Also

NXP_Error() Return Code Explanation
NXP_ERR_INVARG2 code is invalid.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_AINFO_EXHBWRD Exhaustive backward chaining.

NXP_AINFO_PTGATES Forward chaining through gates.

NXP_AINFO_PFACTIONS Forward action effects.

NXP_AINFO_PWNOTKNOWN Context propagation on Notknown hypos.

NXP_AINFO_PWTRUE Context propagation on True hypotheses.

NXP_Strategy Change the inference strategy.
224 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_QUESTWIN
NXP_GetAtomInfo / NXP_AINFO_QUESTWIN
Purpose

This returns the NOIR question window name attached to a slot (string
edited in the Question Win. field of the meta-slot editor).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_QUESTWIN, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_QUESTWIN */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_STR */
Str thePtr;
int len;

theAtom must be a valid slot id.

code is equal to NXP_AINFO_QUESTWIN.

desc must equal NXP_DESC_STR.

thePtr must point to a buffer where the NOIR Question Window name will
be returned.

len is the maximum number of characters that can be written to thePtr.

Macros

You can use the NXP_GETSTRINFO(atom, code, ptr, len) macro:

NXP_GETSTRINFO(theAtom, NXP_AINFO_QUESTWIN, thePtr, len)

NXP_GetAtomInfo / NXP_AINFO_RHS
Purpose

This returns information about the actions of a rule or a method (the
right-hand side). Each action's atomId is returned in thePtr and then you
can get the text of the action using NXP_AINFO_NAME.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_RHS, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_RHS */
AtomId optAtom; /* ignored */
C Programmer’s Guide 225

Chapter NXP_GetAtomInfo Routine4
int optInt;
int desc;
Str thePtr;
int len; /* ignored */

theAtom must be a valid rule or method id (as returned by NXP_GetAtomId,
for instance).

code is equal to NXP_AINFO_RHS.

If optInt is equal to -1, desc should be equal to NXP_DESC_INT and the
number of right hand side actions will be returned as an integer in thePtr.
Otherwise, optInt should be a number between 0 and n-1. In this last case,
desc should be equal to NXP_DESC_ATOM and the right hand side actions
with the index optInt will be returned in thePtr.

thePtr must be a pointer or an integer if optInt equals -1. Otherwise it must
be a pointer to an atomId.

The right hand side actions are listed in the natural rule or method order (as
they appear in the rule or method editor notebook).

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

For the first call, use the NXP_GETLISTLEN(atom, code, ptr) macro:

NXP_GETLISTLEN(theAtom, NXP_AINFO_RHS, thePtr).

then use the NXP_GETLISTELT(atom, code, index, ptr) macro:

NXP_GETLISTELT(theAtom, NXP_AINFO_RHS, optInt, thePtr)

Examples

The following examples illustrate how to get the text of a rule's actions using
NXP_AINFO_RHS and NXP_AINFO_NAME:

AtomId ruleId, actionId;
int nActions, i;
char *ruleName, col1str[20], col2str[1000], col3str[1000];

/* First get the rule's atomId in ruleId */
NXP_GetAtomId(ruleName, ruleId, NXP_ATYPE_RULE);
/* get the number of conditions in nCond */
NXP_GETLISTLEN(ruleId, NXP_AINFO_RHS, &nActions);

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid rule or method id.

NXP_ERR_INVARG4 optInt is not -1 nor a valid RHS action index.

NXP_ERR_INVARG5 optInt is equal to -1 but desc is not equal to
NXP_DESC_INT.

optInt is a valid RHS action index but desc is not
equal to NXP_DESC_ATOM.

NXP_ERR_INVARG6 thePtr is NULL.
226 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_SELF
/* loop to get each condition's atomId and then its text */
for(i = 0; i < nActions, i++) {

NXP_GETLISTELT(ruleId, NXP_AINFO_RHS, i, &actionId);

/* get the text of the 1st column (operator) in col1str */
NXP_GetAtomInfo(actionId, NXP_AINFO_NAME, (AtomId)0,

NXP_CELL_COL1, NXP_DESC_STR, col1str, 20);

/* get the text of the 2nd column in col2str */
NXP_GetAtomInfo(actionId, NXP_AINFO_NAME, (AtomId)0,

NXP_CELL_COL2, NXP_DESC_STR, col2str, 1000);

/* get the text of the 3rd column in col3str */
NXP_GetAtomInfo(actionId, NXP_AINFO_NAME, (AtomId)0,

NXP_CELL_COL3, NXP_DESC_STR, col3str, 1000);
}

See Also

NXP_GetAtomInfo / NXP_AINFO_SELF
Purpose

This returns information (either the atom id or atom name) about the
current SELF atom.

SELF only exists in a method (i.e. you can use NXP_AINFO_SELF in an
execute routine called from a method). This function returns NULL in all
other cases.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_SELF, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_SELF */
AtomId optAtom; /* ignored */
int optInt;
int desc;
Str thePtr;
int len;

code is equal to NXP_AINFO_SELF.

NXP_AINFO_CACTIONS Getting the If Change methods

NXP_AINFO_PARENT Getting the rule or method id from the LHS, RHS
or EHS

NXP_AINFO_LHS Getting the left hand side actions.

NXP_AINFO_EHS Getting the Else right hand side actions.

NXP_AINFO_SOURCES Getting the Order of Sources methods.
C Programmer’s Guide 227

Chapter NXP_GetAtomInfo Routine4
optInt describes which part of the atom will be returned. optInt can take one
of the following values:

desc describes which format the information will be returned in. If desc
equals NXP_DESC_STR, the atom name is returned in thePtr. If desc equals
NXP_DESC_ATOM, the atomId is returned in thePtr.

thePtr must be a pointer to an atomId if desc is NXP_DESC_ATOM and a
pointer to a buffer of characters if desc is NXP_DESC_STR.

len is the maximum number of characters that can be written to thePtr if desc
is NXP_DESC_STR.

Note: The Rules Element does not check that NXP_ATYPE_OBJECT or
NXP_ATYPE_CLASS matches the type (class or object) of SELF.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

If SELF does not exist, NXP_Error() will return NXP_ERR_NOERR. This is
not an error condition.

Macros

None.

Examples

This call is useful if you want to write a generic FormInput or Show
procedure called from a method; SELF information is not passed for these
(for an Execute you can always pass SELF in the list of Atoms @ATOMID).

The following example illustrates how to get the full name of the SELF slot
in the form "object.property":

char slotName[100];

NXP_GetAtomInfo((AtomId)0, NXP_AINFO_SELF, (AtomId)0,
NXP_ATYPE_SLOT, NXP_DESC_STR, slotName,

100);

Code Description
NXP_ATYPE_CLASS, NXP_ATYPE_OBJECT Only the "obj" part is returned.

NXP_ATYPE_NONE, NXP_ATYPE_SLOT The full "obj.prop" is returned.

NXP_ATYPE_PROP Only the "prop" part is returned.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG4 The value of optInt is invalid.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_ATOM or
NXP_DESC_STR.

NXP_ERR_INVARG6 thePtr is NULL.
228 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_SLOT
NXP_GetAtomInfo / NXP_AINFO_SLOT
Purpose

This returns information about the slots of a class or an object.

The slots atom ids are returned, not the property ids. Once you have a slot
id you can get its property id with NXP_AINFO_PROP.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_SLOT, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_SLOT */
AtomId optAtom;
int optInt;
int desc;
Str thePtr;
int len; /* ignored */

theAtom must be a valid class or object id.

code is equal to NXP_AINFO_SLOT.

If optAtom is NULL, it returns the list of slot ids attached to theAtom. You
must first call with optInt = -1 to get the number n of slots in thePtr (desc =
NXP_DESC_INT, or use the NXP_GETLISTLEN macro). Then you call with
optInt = 0 to n-1 to get the atomId of the slot of index optInt (desc =
NXP_DESC_ATOM, or use the NXP_GETLISTELT macro). Slots are not
sorted.

If optAtom is not NULL, it should be a property id. NXP_GetAtomInfo will
look for the slot belonging to the object or class theAtom with the property
optAtom. In this case, desc must be equal to NXP_DESC_ATOM and thePtr
must be pointing to an AtomId. If the slot is not found, thePtr will be set to
NULL (this is not considered an error by the Rules Element).

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid class or object id.

NXP_ERR_INVARG3 optAtom is not NULL but is not a valid slot id.

NXP_ERR_INVARG4 optInt is not equal to -1 or is not a valid parent object
or class index and optAtom is NULL.
C Programmer’s Guide 229

Chapter NXP_GetAtomInfo Routine4
Macros

For the first call, use the NXP_GETLISTLEN(atom, code, ptr) macro:

NXP_GETLISTLEN(theAtom, NXP_AINFO_SLOT, &len).

Then use the NXP_GETLISTELT(atom, code, index, ptr) macro:

NXP_GETLISTELT(theAtom, NXP_AINFO_SLOT, i, thePtr)

Examples

The following example shows how to list the slot names of an object or a
class:

AtomId theObj, theSlot, theProp;
int nSlots, i;
char propName[255];

/* get the number of slots */
NXP_GETLISTLEN(theObj, NXP_AINFO_SLOT, &len);
printf("This object has %d properties:\n", len);

for(i = 0; i < len; i++) {
/* get the slot id */
NXP_GETLISTELT(theObj, NXP_AINFO_SLOT, i, &theSlot);

/* get the property id */
NXP_GETATOMINFO(theSlot, NXP_AINFO_PROP, &theProp);

/* get the property name */
NXP_GETNAME(theProp, propName, 255);

printf("%s\n", propName);
}

See Also

NXP_GetAtomInfo / NXP_AINFO_SOURCES
Purpose

This returns the atom ids of the Order of Sources methods attached to a slot
(methods specified as an Order of Sources type in the method editor).

The text can be obtained later with NXP_AINFO_NAME.

NXP_ERR_INVARG5 optInt is equal to -1 and desc is not equal to
NXP_DESC_INT.

optInt is a valid parent object index but desc is not
equal to NXP_DESC_ATOM.

optAtom is a valid slot id but desc is not equal to
NXP_DESC_ATOM.

NXP_AINFO_PROP Get the property id from the slot id.

NXP_Error() Return Code Explanation
230 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_SOURCES
C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_SOURCES, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code;
AtomId optAtom; /* ignored */
int optInt;
int desc;
Str thePtr;
int len; /* ignored */

theAtom is a valid slot id.

code must be NXP_AINFO_SOURCES to get the public Order of Sources. It
must be NXP_AINFO_SOURCES | NXP_AINFO_PRIVATE ("Or"
operation sets the "private" bit) to get the private Order of Sources, i.e.
methods that can’t be inherited. It must be NXP_AINFO_SOURCES |
NXP_AINFO_MLHS to get the conditions of the Order of Sources. It must
be NXP_AINFO_SOURCES | NXP_AINFO_MRHS to get the right-hand
side (Then) actions of the Order of Sources. And it must be
NXP_AINFO_SOURCES | NXP_AINFO_MEHS to get the Else actions of
the Order of Sources.

If optInt is equal to -1, desc should be equal to NXP_DESC_INT and the
number n of Order of Sources is returned as an integer in thePtr. Otherwise,
optInt should be a number between 0 and n-1. In this case, desc should be
equal to NXP_DESC_ATOM and the Order of Sources with the index optInt
is returned in thePtr.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

For the first call, use the NXP_GETLISTLEN(atom, code, ptr) macro:

NXP_GETLISTLEN(theAtom, NXP_AINFO_SOURCES, thePtr).

then use the NXP_GETLISTELT(atom, code, index, ptr) macro:

NXP_GETLISTELT(theAtom, NXP_AINFO_SOURCES, optInt, thePtr)

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is NULL or is not a valid slot id.

NXP_ERR_INVARG4 The value of optInt is not between -1 and n-1.

NXP_ERR_INVARG5 optInt equals -1 but desc does not equal
NXP_DESC_INT, or optInt does not equal -1 and
desc does not equal NXP_DESC_ATOM.

NXP_ERR_INVARG6 thePtr is NULL.
C Programmer’s Guide 231

Chapter NXP_GetAtomInfo Routine4
Examples

The following code gives a simple example.

int i, nSources;
AtomId atom, theSource;

/* returns the public OS methods of atom */
NXP_GETLISTLEN(atom, NXP_AINFO_SOURCES, &nSources);
for (i = 0; i < nSources; i++) {

NXP_GETLISTELT(atom, NXP_AINFO_SOURCES, i, &theSource);
...

}

/* returns the private OS methods actions */
NXP_GETLISTLEN(atom, NXP_AINFO_SOURCES|NXP_AINFO_PRIVATE, &nSources);
for (i = 0; i < nSources; i++) {

NXP_GETLISTELT(atom, NXP_AINFO_SOURCES|NXP_AINFO_PRIVATE, i,
 &theSource);

...
}

/* Use NXP_AINFO_NAME to get the text of the methods, see the
example in NXP_AINFO_LHS */

See Also

NXP_GetAtomInfo / NXP_AINFO_SOURCESCONTINUE
Purpose

This returns whether or not the Order of Sources methods will be fully
executed (Enable Order of Sources /Continue option of the Strategy dialog
window).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_SOURCESCONTINUE, optAtom, optInt,
desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code;
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc;
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_SOURCESCONTINUE to get the default
strategy. It must be NXP_AINFO_SOURCESCONTINUE |

NXP_AINFO_LHS Get the list of conditions of a rule or a method.

NXP_AINFO_RHS Get the list of actions of a rule or a method.

NXP_AINFO_EHS Get the list of Else actions of a rule or a method.

NXP_AINFO_CACTIONS Get the list of If Change actions.
232 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_SOURCESON
NXP_AINFO_CURSTRAT to get the current strategy ("Or" operation sets
the "current" bit).

desc must equal NXP_DESC_INT.

thePtr must point to an integer which will be set to 1 if the Order of Sources
methods are enabled and executed until the end of the actions list, and set
to 0 otherwise.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_SOURCESCONTINUE, thePtr).

Examples

The following code gives a simple example.

int sourcescontinue;

/* returns in sourcescontinue the default strategy.
 * sourceson = 1 if Order of Sources are enabled on
 * continue, 0 if they are disabled or enabled but no
 * continue
 */
NXP_GETINTINFO((AtomId)0, NXP_AINFO_SOURCESCONTINUE,

&sourcescontinue);

/* returns in sourcescontinue the current strategy */
NXP_GETINTINFO((AtomId)0,

NXP_AINFO_SOURCESCONTINUE | NXP_AINFO_CURSTRAT,
&sourcescontinue);

See Also

NXP_GetAtomInfo / NXP_AINFO_SOURCESON
Purpose

This returns whether or not Order of Sources methods are enabled (Enable
Order of Sources option of the Strategy dialog window).

NXP_Error() Return Code Explanation
NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_Strategy Change the default or current strategy.
C Programmer’s Guide 233

Chapter NXP_GetAtomInfo Routine4
C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_SOURCESON, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code;
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc;
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_SOURCESON to get the default strategy. It
must be NXP_AINFO_SOURCESON | NXP_AINFO_CURSTRAT to get
the current strategy ("Or" operation sets the "current" bit).

desc must equal NXP_DESC_INT.

thePtr must point to an integer which will be set to 1 if the Order of Sources
methods are enabled, and set to 0 otherwise.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_SOURCESON, thePtr).

Examples

The following code gives a simple example.

int sourceson;

/* returns in sourceson the default strategy.
 * sourceson = 1 if Order of Sources are enabled, 0 if they are
disabled
 */
NXP_GETINTINFO((AtomId)0, NXP_AINFO_SOURCESON, &sourceson);

/* returns in sourceson the current strategy */
NXP_GETINTINFO((AtomId)0,

 NXP_AINFO_SOURCESON | NXP_AINFO_CURSTRAT,
&sourceson);

See Also

NXP_Error() Return Code Explanation
NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_Strategy Change the default or current strategy.
234 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_SUGGEST
NXP_GetAtomInfo / NXP_AINFO_SUGGEST
Purpose

This returns whether or not a hypothesis is suggested.

(Use the code NXP_AINFO_FOCUSPRIO if you need more details on the
focus priority of the hypothesis)

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_SUGGEST, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_SUGGEST */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

theAtom must be a hypothesis slot.

code is equal to NXP_AINFO_SUGGEST.

desc must equal NXP_DESC_INT.

thePtr must be a pointer to an integer which will be set to 1 if the hypothesis
is suggested, and set to 0 otherwise.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_SUGGEST, thePtr)

Examples

The following code gives a simple example.

AtomId hypo;
int suggested;

NXP_GETINTINFO(hypo, NXP_AINFO_SUGGEST, &suggested);
if(suggested) {

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a hypothesis atomId.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.
C Programmer’s Guide 235

Chapter NXP_GetAtomInfo Routine4
...
}

See Also

NXP_GetAtomInfo / NXP_AINFO_SUGLIST
Purpose

This returns the list of hypotheses kept in the suggest selection of the
knowledge base (list built with the Suggest/Volunteer command or by
selecting hypotheses in the notebook).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_SUGLIST, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* NXP_AINFO_SUGLIST */
AtomId optAtom; /* ignored */
int optInt;
int desc;
Str thePtr;
int len; /* ignored */

code is equal to NXP_AINFO_SUGLIST.

optInt is an integer between -1 and n-1.

The mechanism used to retrieve this list is the following:

■ In your first call, you pass a value of -1 in the optInt argument. In
return, thePtr is set to the number n of atoms in the list (thePtr must be
a pointer to an integer).

■ Then you can call NXP_GetAtomInfo with the NXP_AINFO_SUGLIST
code and optInt set to any value between 0 and n-1 where n is the value
returned by the first call. The id of the (optInt+1)th atom in the list will
be returned in thePtr (which must be a pointer to an AtomId).

desc must be NXP_DESC_INT when optInt is -1, and NXP_DESC_ATOM
otherwise.

thePtr must be a pointer to an integer when optInt is -1, and a pointer to an
AtomId otherwise.

Macros

For the first call, use the NXP_GETLISTLEN(atom, code, ptr) macro:

NXP_GETLISTLEN((AtomId)0, NXP_AINFO_SUGLIST, &len)

then use the NXP_GETLISTELT(atom, code, index, ptr) macro:

NXP_AINFO_FOCUSPRIO Focus priority of a hypothesis.

NXP_BwrdAgenda Forces Order of Sources of an atom.
236 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_TYPE
NXP_GETLISTELT((AtomId)0, NXP_AINFO_SUGLIST, i, thePtr)

Examples

The following example shows how the Rules Element suggests all the
hypotheses selected when you use the Suggest command in the interface.

AtomId hypo;
int len;

NXP_GETLISTLEN((AtomId)0, NXP_AINFO_SUGLIST, &len);

for(i = 0; i < len; i++) {
NXP_GETLISTELT((AtomId)0, NXP_AINFO_SUGLIST, i, &hypo);
NXP_Suggest(hypo, NXP_SPRIO_SUG);

}

See Also

NXP_GetAtomInfo / NXP_AINFO_TYPE
Purpose

This returns the type of an atom (i.e. a class, an object, a rule, a method, etc.).

This is not the same thing as the data type of a value: use the code
NXP_AINFO_VALUETYPE to get a data type (int, float, string, etc.).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_TYPE, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_TYPE */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

theAtom is a valid atom id.

code is equal to NXP_AINFO_TYPE.

desc must be NXP_DESC_INT.

thePtr is a pointer to an integer. The type of theAtom is returned as an
integer in *thePtr. It can be any of the following values:

NXP_AINFO_VOLLIST List of slots selected for Volunteer.

NXP_Suggest Suggests a hypothesis.

Code Description
NXP_ATYPE_CACTIONS If Change method

NXP_ATYPE_CLASS Class
C Programmer’s Guide 237

Chapter NXP_GetAtomInfo Routine4
*thePtr returns the same value for all slots (so data and hypotheses could be
confused), and for permanent and temporary objects. To solve this
problem, use the mask NXP_ATYPE_MASK to get the basic type (SLOT or
OBJECT) and use AND operations with NXP_ATYPE_DATA,
NXP_ATYPE_HYPO, NXP_ATYPE_TEMP to get more information. See the
example below.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_TYPE, thePtr)

Examples

The following example shows how to handle types.

AtomId atom;
int theType;

NXP_GETINTINFO(atom, NXP_AINFO_TYPE, &theType);

/* Always mask type to get the low bits! */
switch(theType & NXP_ATYPE_MASK) {

case NXP_ATYPE_CLASS: ...;/* class */
break;

case NXP_ATYPE_OBJECT:
if(theType & NXP_ATYPE_TEMP)... /* temporary object */
else ... /* permanent object */
break;

case NXP_ATYPE_PROP: ...;/* property */

NXP_ATYPE_EHS Else actions of a rule or a method.

NXP_ATYPE_KB Knowledge base atom.

NXP_ATYPE_LHS Conditions of a rule or of a method.

NXP_ATYPE_METHOD Method atom.

NXP_ATYPE_OBJECT Permanent object.

NXP_ATYPE_OBJECT|NXP_ATYPE_TEMP Temporary object. (NXP_ATYPE_TEMP bit set)

NXP_ATYPE_PROP Property.

NXP_ATYPE_RHS Do actions (RHS) of a rule or a method.

NXP_ATYPE_RULE Rule name.

NXP_ATYPE_SLOT Slot (NXP_ATYPE_DATA and NXP_ATYPE_HYPO bits
are set if the slot is a data or a hypothesis.)

NXP_ATYPE_SOURCES Order of Sources method.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a valid atom id.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

Code Description
238 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_VALIDENGINE_ACCEPT
break;
case NXP_ATYPE_SLOT: ...;

if(theType & NXP_ATYPE_DATA)... /* data slot */
else if(theType & NXP_ATYPE_HYPO)/* hypo slot */
else ... /* neither data nor hypo slot */
break;

case NXP_ATYPE_LHS: ...; /* condition */
break;

case NXP_ATYPE_RHS: ...; /* actions */
break;

case NXP_ATYPE_CACTIONS: ...;/* if change */
break;

case NXP_ATYPE_SOURCES: ...;/* order of sources */
break;

case NXP_ATYPE_KB: ...; /* id of a knowledge base */
break;

default: /* error! */
break;

}

See Also

NXP_GetAtomInfo / NXP_AINFO_VALIDENGINE_ACCEPT
Purpose

This returns whether or not the validation of values generated by the engine
is turned on with systematic validation of data if the validation expression
contains missing information.

■ It corresponds to the Valid ENGINE ON/ACCEPT option in the
strategy window.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_VALIDENGINE_ACCEPT, optAtom,
optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_VALIDUENGINE_ACCEPT */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_VALIDENGINE_ACCEPT to get the default
strategy. It must be NXP_AINFO_VALIDENGINE_ACCEPT |
NXP_AINFO_CURSTRAT to get the current strategy ("Or" operation with
the "current" bit).

desc must equal NXP_DESC_INT.

NXP_AINFO_VOLLIST List of slots selected for Volunteer.

NXP_Suggest Suggests a hypothesis.
C Programmer’s Guide 239

Chapter NXP_GetAtomInfo Routine4
thePtr must point to an integer which will be set to 1 if the engine values
validation is ON/ACCEPT, set to 0 if the engine values validation is not
ON/ACCEPT (that is either OFF or ON/REJECT).

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_VALIDENGINE_ACCEPT, thePtr)

See Also

NXP_Error() Return Code Explanation
NXP_ERR_INVARG2 code is invalid.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_AINFO_EXHBWRD Exhaustive backward chaining.

NXP_AINFO_PTGATE Forward chaining through gates.

NXP_AINFO_PFMETHODELSEACTIONS Forward chaining from else actions of a method.

NXP_AINFO_PFMETHODACTIONS Forward chaining from left-hand-side and
right-hand-side actions of a method.

NXP_AINFO_PFELSEACTIONS Forward chaining from else actions of a rule

NXP_AINFO_PFACTIONS Forward chaining from left-hand-side and
right-hand-side oof a rule.

NXP_AINFO_PWFALSE Context propagation on False hypotheses.

NXP_AINFO_PWNOTKNOWN Context propagation on Notknown hypos.

NXP_AINFO_PWTRUE Context propagation on True hypotheses.

NXP_AINFO_VALIDUSER_ON Validation of data entered by the end user.

NXP_AINFO_VALIDUSER_OFF Validation of data entered by the end user is off and
value accepted unchecked.

NXP_AINFO_VALIDUSER_REJECT Validation of data entered by the end user and value
rejected if validation expression contains missing
information.

NXP_AINFO_VALIDENGINE_ON Validation of data generated by the engine.

NXP_AINFO_VALIDENGINE_OFF Validation of data generated by the engine is off.

NXP_AINFO_VALIDENGINE_REJECT Validation of data generated by the engine and value
rejected if validation expression contains missing
information.

NXP_Strategy Change the inference strategy.
240 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_VALIDENGINE_OFF
NXP_GetAtomInfo / NXP_AINFO_VALIDENGINE_OFF
Purpose

This returns whether or not the validation of values generated by the system
is turned off.

It corresponds to the VALID ENGINE OFF option in the strategy window.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_VALIDENGINE_OFF, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_VALIDENGINE_OFF */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_VALIDENGINE_OFF to get the default strategy.
It must be NXP_AINFO_VALIDENGINE_OFF |
NXP_AINFO_CURSTRAT to get the current strategy ("Or" operation with
the "current" bit).

desc must equal NXP_DESC_INT.

thePtr must point to an integer which will be set to 1 if the engine values
validation is OFF, set to 0 if the engine values validation is ON.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_VALIDENGINE_OFF, thePtr)

See Also

NXP_Error() Return Code Explanation
NXP_ERR_INVARG2 code is invalid.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_AINFO_EXHBWRD Exhaustive backward chaining.

NXP_AINFO_PTGATES Forward chaining through gates.

NXP_AINFO_PFMETHODELSEACTIONS Forward chaining from else actions of a method.
C Programmer’s Guide 241

Chapter NXP_GetAtomInfo Routine4
NXP_GetAtomInfo / NXP_AINFO_VALIDENGINE_ON
Purpose

This returns whether or not the validation of values entered by the end user
is turned on.

It corresponds to the Valid ENGINE ON/ACCEPT and ON/REJECT
options in the strategy window.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_VALIDENGINE_ON, optAtom, optInt,
desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_VALIDENGINE_ON */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_VALIDENGINE_ON to get the default strategy.
It must be NXP_AINFO_VALIDENGINE_ON | NXP_AINFO_CURSTRAT
to get the current strategy ("Or" operation with the "current" bit).

desc must equal NXP_DESC_INT.

NXP_AINFO_PFMETHODACTIONS Forward chaining from left-hand-side and
right-hand-side actions of a method.

NXP_AINFO_PFELSEACTIONS Forward chaining from else actions of a rule

NXP_AINFO_PFACTIONS Forward chaining from left-hand-side and
right-hand-side of a rule.

NXP_AINFO_PWFALSE Context propagation on False hypotheses.

NXP_AINFO_PWNOTKNOWN Context propagation on Notknown hypos.

NXP_AINFO_PWTRUE Context propagation on True hypotheses.

NXP_AINFO_VALIDUSER_ON Validation of data entered by the end user.

NXP_AINFO_VALIDUSER_ACCEPT Validation of data entered by the end user and value
accepted if validation expression contains missing
information.

NXP_AINFO_VALIDUSER_REJECT Validation of data entered by the end user and value
rejected if validation expression contains missing
information.

NXP_AINFO_VALIDENGINE_ON Validation of data generated by the engine

NXP_AINFO_VALIDENGINE_ACCEPT Validation of data generated by the engine and value
accepted if validation expression contains missing
information.

NXP_AINFO_VALIDENGINE_REJECT Validation of data generated by the engine and value
rejected if validation expression contains missing
information.

NXP_Strategy Change the inference strategy.
242 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_VALIDENGINE_ON
thePtr must point to an integer which will be set to 1 if the engine values
validation is ON (either ON/ACCEPT or ON/REJECT), set to 0 if the engine
values validation is OFF.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_VALIDUSER_ON, thePtr)

See Also

NXP_Error() Return Code Explanation
NXP_ERR_INVARG2 code is invalid.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_AINFO_EXHBWRD Exhaustive backward chaining.

NXP_AINFO_PTGATES Forward chaining through gates.

NXP_AINFO_PFMETHODELSEACTIONS Forward chaining from else actions of a method.

NXP_AINFO_PFMETHODACTIONS Forward chaining from left-hand-side and
right-hand-side actions of a method.

NXP_AINFO_PFELSEACTIONS Forward chaining from else actions of a rule

NXP_AINFO_PFACTIONS Forward chaining from left-hand-side and
right-hand-side of a rule.

NXP_AINFO_PWFALSE Context propagation on False hypotheses.

NXP_AINFO_PWNOTKNOW Context propagation on Notknown hypos.

NXP_AINFO_PWTRUE Context propagation on True hypotheses.

NXP_AINFO_VALIDUSER_OFF Validation of data entered by the end user off is off
and value accepted unchecked.

NXP_AINFO_VALIDUSER_ACCEPT Validation of data entered by the end user and
value accepted if validation expression contains
missing information.

NXP_AINFO_VALIDUSER_REJECT Validation of data entered by the end user and
value rejected of validation expression contains
missing information.

NXP_AINFO_VALIDENGINE_OFF Validation of data generated by the engine is off.

NXP_AINFO_VALIDENGINE_ACCEPT Validation of data generated by the engine and
value accepted if validation expression contains
missing information.

NXP_AINFO_VALIDENGINE_REJECT Validation of data generated by the engine and
value rejected if validation expression contains
missing information.

NXP_Strategy Change the inference strategy.
C Programmer’s Guide 243

Chapter NXP_GetAtomInfo Routine4
NXP_GetAtomInfo / NXP_AINFO_VALIDENGINE_REJECT
Purpose

This returns whether or not the validation of values generated by the engine
is turned on with systematic rejection of data if the validation expression
contains missing information.

It corresponds to the Valid ENGINE ON/REJECT option in the strategy
window.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_VALIDENGINE_REJECT, optAtom, optInt,
desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_VALIDENGINE_REJECT */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_VALIDENGINE_REJECT to get the default
strategy. It must be NXP_AINFO_VALIDENGINE_REJECT |
NXP_AINFO_CURSTRAT to get the current strategy ("Or" operation with
the "current" bit).

desc must equal NXP_DESC_INT.

thePtr must point to an integer which will be set to 1 if the engine values
validation is ON/REJECT, set to 0 if the engine values validation is not
ON/REJECT (that is either OFF or ON/ACCEPT).

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_VALIDENGINE_REJECT, thePtr)

NXP_Error() Return Code Explanation
NXP_ERR_INVARG2 code is invalid.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.
244 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_VALIDEXEC
See Also

NXP_GetAtomInfo / NXP_AINFO_VALIDEXEC
Purpose

This returns the user-defined data validation execute information attached
to a slot (the name of the user-provided execute in the Data Validation
Execute field of the meta-slot editor) returned as a string.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_VALIDEXEC, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_VALIDEXEC */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_STR */
Str thePtr;
int len;

NXP_AINFO_EXHBWRD Exhaustive backward chaining.

NXP_AINFO_PTGATES Forward chaining through gates.

NXP_AINFO_PFMETHODELSEACTIONS Forward chaining from else actions of a method.

NXP_AINFO_PFMETHODACTIONS Forward chaining from left- hand-side and
right-hand-side actions of a method.

NXP_AINFO_PFELSEACTIONS Forward chaining from else actions of a rule

NXP_AINFO_PFACTIONS Forward chaining from left- hand-side and
right-hand-side of a rule.

NXP_AINFO_PWFALSE Context propagation on False hypotheses.

NXP_AINFO_PWNOTKNOWN Context propagation on Notknown hypos.

NXP_AINFO_PWTRUE Context propagation on True hypotheses.

NXP_AINFO_VALIDUSER_ON Validation of data entered by the end user.

NXP_AINFO_VALIDUSER_OFF Validation of data entered by the end user is off
and and value is accepted unchecked.

NXP_AINFO_VALIDUSER_ACCEPT Validation of data entered by the end user and
value accepted if validation expression contains
missing information.

NXP_AINFO_VALIDUSER_REJECT Validation of data entered by the end user and
value rejected if validation expression contains
missing information.

NXP_AINFO_VALIDENGINE_ON Validation of data generated by the engine.

NXP_AINFO_VALIDENGINE_OFF Validation of data generated by the engine is off.

NXP_AINFO_VALIDENGINE_ACCEPT Validation of data generated by the engine and
value accepted if validation expression contains
missing information.

NXP_Strategy Change the inference strategy.
C Programmer’s Guide 245

Chapter NXP_GetAtomInfo Routine4
theAtom must be a valid slot id.

code is equal to NXP_AINFO_VALIDEXEC.

desc must equal NXP_DESC_STR.

thePtr must point to a buffer where the data validation execute name will be
returned.

len is the maximum number of characters that can be written to thePtr.

Macros

You can use the NXP_GETSTRINFO(atom, code, ptr, len) macro:

NXP_GETSTRINFO(theAtom, NXP_AINFO_VALIDEXEC, thePtr, len)

NXP_GetAtomInfo / NXP_AINFO_VALIDFUNC
Purpose

This returns the boolean data validation expression information attached to
a slot (the expression in the Data Validation Expression field of the
meta-slot editor returned as a string).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_VALIDFUNC, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_VALIDFUNC */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_STR */
Str thePtr;
int len;

theAtom must be a valid slot id.

code is equal to NXP_AINFO_VALIDFUNC.

desc must equal NXP_DESC_STR.

thePtr must point to a buffer where the boolean data validation expression
string will be returned.

len is the maximum number of characters that can be written to thePtr.

Macros

You can use the NXP_GETSTRINFO(atom, code, ptr, len) macro:

NXP_GETSTRINFO(theAtom, NXP_AINFO_VALIDFUNC, thePtr, len)
246 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_VALIDHELP
NXP_GetAtomInfo / NXP_AINFO_VALIDHELP
Purpose

This returns the data validation error help information attached to a slot
(string edited in the Data Validation Help field of the meta-slot editor).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_VALIDHELP, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_VALIDHELP */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_STR */
Str thePtr;
int len;

theAtom must be a valid slot id.

code is equal to NXP_AINFO_VALIDHELP.

desc must equal NXP_DESC_STR.

thePtr must point to a buffer where the data validation error help string will
be returned.

len is the maximum number of characters that can be written to thePtr.

Macros

You can use the NXP_GETSTRINFO(atom, code, ptr, len) macro:

NXP_GETSTRINFO(theAtom, NXP_AINFO_VALIDHELP, thePtr, len)

NXP_GetAtomInfo / NXP_AINFO_VALIDUSER_ACCEPT
Purpose

This returns whether or not the validation of values entered by the end user
is turned on with systematic validation of data if the validation expression
contains missing information.

It corresponds to the Valid User ON/ACCEPT option in the strategy
window.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_VALIDUSER_ACCEPT, optAtom, optInt,
desc, thePtr, len);
C Programmer’s Guide 247

Chapter NXP_GetAtomInfo Routine4
Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_VALIDUSER_ACCEPT */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_VALIDUSER_ACCEPT to get the default
strategy. It must be NXP_AINFO_VALIDUSER_ACCEPT |
NXP_AINFO_CURSTRAT to get the current strategy ("Or" operation with
the "current" bit).

desc must equal NXP_DESC_INT.

thePtr must point to an integer which will be set to 1 if the end-user values
validation is ON/ACCEPT, set to 0 if the end-user values validation is not
ON/ACCEPT (that is either OFF or ON/REJECT).

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_VALIDUSER_ACCEPT, thePtr)

See Also

NXP_Error() Return Code Explanation
NXP_ERR_INVARG2 code is invalid.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_AINFO_EXHBWRD Exhaustive backward chaining.

NXP_AINFO_PTGATES Forward chaining through gates.

NXP_AINFO_PFMETHODELSEACTIONS Forward chaining from else actions of a method.

NXP_AINFO_PFMETHODACTIONS Forward chaining from left-hand-side and
right-hand-side actions of a method.

NXP_AINFO_PFELSEACTIONS Forward chaining from else actions of a rule

NXP_AINFO_PFACTIONS Forward chaining from left-hand-side and
right-hand-side of a rule.

NXP_AINFO_PWFALSE Context propagation on False hypotheses.

NXP_AINFO_PWNOTKNOWN Context propagation on Notknown hypos.

NXP_AINFO_PWTRUE Context propagation on True hypotheses.

NXP_AINFO_VALIDUSER_ON Validation of data entered by the end user.

NXP_AINFO_VALIDUSER_OFF Validation of data entered by the end user is off.
248 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_VALIDUSER_OFF
NXP_GetAtomInfo / NXP_AINFO_VALIDUSER_OFF
Purpose

This returns whether or not the validation of values entered by the end user
is turned off.

It corresponds to the Valid User OFF option in the strategy window.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_VALIDUSER_OFF, optAtom, optInt,
desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_VALIDUSER_OFF */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_VALIDUSER_OFF to get the default strategy. It
must be NXP_AINFO_VALIDUSER_OFF | NXP_AINFO_CURSTRAT to
get the current strategy ("Or" operation with the "current" bit).

desc must equal NXP_DESC_INT.

thePtr must point to an integer which will be set to 1 if the end-user values
validation is OFF, set to 0 if the end-user values validation is ON.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()

NXP_AINFO_VALIDUSER_REJECT Validation of data entered by the end user and
value rejected if validation expression contains
missing information.

NXP_AINFO_VALIDENGINE_ON Validation of data generated by the engine.

NXP_AINFO_VALIDENGINE_OFF Validation of data generated by the engine is off.

NXP_AINFO_VALIDENGINE_ACCEPT Validation of data generated by the engine and
value accepted if validation expression contains
missing information.

NXP_AINFO_VALIDENGINE_REJECT Validation of data generated by the engine and
value rejected if validation expression contains
missing information.

NXP_Strategy Change the inference strategy.
C Programmer’s Guide 249

Chapter NXP_GetAtomInfo Routine4
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_VALIDUSER_OFF, thePtr)

See Also

NXP_GetAtomInfo / NXP_AINFO_VALIDUSER_ON
Purpose

This returns whether or not the validation of values entered by the end user
is turned on.

It corresponds to the Valid User ON /ACCEPT and ON/REJECT options
in the strategy window.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG2 code is invalid.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_AINFO_EXHBWRD Exhaustive backward chaining.

NXP_AINFO_PTGATES Forward chaining through gates.

NXP_AINFO_PFMETHODELSEACTIONS Forward chaining from else actions of a method.

NXP_AINFO_PFMETHODACTIONS Forward chaining from left-hand-side and
right-hand-side actions of a method.

NXP_AINFO_PFELSEACTIONS Forward chaining from else actions of a rule

NXP_AINFO_PFACTIONS Forward chaining from left-hand-side and
right-hand-side of a rule.

NXP_AINFO_PWFALSE Context propagation on False hypotheses.

NXP_AINFO_PWNOTKNOWN Context propagation on Notknown hypos.

NXP_AINFO_PWTRUE Context propagation on True hypotheses.

NXP_AINFO_VALIDUSER_ON Validation of data entered by the end user.

NXP_AINFO_VALIDUSER_ACCEPT Validation of data entered by the end user and
value accepted if validation expression contains
missing information.

NXP_AINFO_VALIDUSER_REJECT Validation of data entered by the end user and
value rejected if validation expression contains
missing information.

NXP_AINFO_VALIDENGINE_ON Validation of data generated by the engine.

NXP_AINFO_VALIDENGINE_OFF Validation of data generated by the engine is off.

NXP_AINFO_VALIDENGINE_ACCEPT Validation of data generated by the engine and
value accepted if validation expression contains
missing information.

NXP_AINFO_VALIDENGINE_REJECT Validation of data generated by the engine and
value rejected if validation expression contains
missing information.

NXP_Strategy Change the inference strategy.
250 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_VALIDUSER_ON
C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_VALIDUSER_ON, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_VALIDUSER_ON */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_VALIDUSER_ON to get the default strategy. It
must be NXP_AINFO_VALIDUSER_ON | NXP_AINFO_CURSTRAT to
get the current strategy ("Or" operation with the "current" bit).

desc must equal NXP_DESC_INT.

thePtr must point to an integer which will be set to 1 if the end-user values
validation is ON (either reject or accept in the case of missing information),
set to 0 if the end-user values validation is OFF.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_VALIDUSER_ON, thePtr)

See Also

NXP_Error() Return Code Explanation
NXP_ERR_INVARG2 code is invalid.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_AINFO_EXHBWRD Exhaustive backward chaining.

NXP_AINFO_PTGATES Forward chaining through gates.

NXP_AINFO_PFMETHODELSEACTIONS Forward chaining from else actions of a method.

NXP_AINFO_PFMETHODACTIONS Forward chaining from left-hand-side and
right-hand-side actions of a method.

NXP_AINFO_PFELSEACTIONS Forward chaining from else actions of a rule

NXP_AINFO_PFACTIONS Forward chaining from left-hand-side and
right-hand-side of a rule.

NXP_AINFO_PWFALSE Context propagation on False hypotheses.

NXP_AINFO_PWNOTKNOWN Context propagation on Notknown hypos.
C Programmer’s Guide 251

Chapter NXP_GetAtomInfo Routine4
NXP_GetAtomInfo / NXP_AINFO_VALIDUSER_REJECT
Purpose

This returns whether or not the validation of values entered by the end user
is turned on with systematic rejection of data if the validation expression
contains missing information.

It corresponds to the Valid User ON/REJECT option in the strategy
window.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_VALIDUSER_REJECT, optAtom, optInt,
desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_VALIDUSER_REJECT */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */

NXP_AINFO_PWTRUE Context propagation on True hypotheses.

NXP_AINFO_EXHBWRD Exhaustive backward chaining.

NXP_AINFO_PTGATES Forward chaining through gates.

NXP_AINFO_PFMETHODELSEACTIONS Forward chaining from else actions of a method.

NXP_AINFO_PFMETHODACTIONS Forward chaining from left-hand-side and
right-hand-side actions of a method.

NXP_AINFO_PFELSEACTIONS Forward chaining from else actions of a rule

NXP_AINFO_PFACTIONS Forward chaining from left-hand-side and
right-hand-side of a rule.

NXP_AINFO_PWFALSE Context propagation on False hypotheses.

NXP_AINFO_PWNOTKNOWN Context propagation on Notknown hypos.

NXP_AINFO_PWTRUE Context propagation on True hypotheses.

NXP_AINFO_VALIDUSER_OFF Validation of data entered by the end user off.

NXP_AINFO_VALIDUSER_ACCEPT Validation of data entered by the end user and
value accepted if validation expression contains
missing information.

NXP_AINFO_VALIDUSER_REJECT Validation of data entered by the end user and
value rejected if validation expression contains
missing information.

NXP_AINFO_VALIDENGINE_ON Validation of data generated by the engine.

NXP_AINFO_VALIDENGINE_OFF Validation of data generated by the engine is off.

NXP_AINFO_VALIDENGINE_ACCEPT Validation of data generated by the engine and
value accepted if validation expression contains
missing information.

NXP_AINFO_VALIDENGINE_REJECT Validation of data generated by the engine and
value rejected if validation expression contains
missing information.

NXP_Strategy Change the inference strategy.
252 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_VALIDUSER_REJECT
Str thePtr;
int len; /* ignored */

code must be NXP_AINFO_VALIDUSER_REJECT to get the default
strategy. It must be NXP_AINFO_VALIDUSER_REJECT |
NXP_AINFO_CURSTRAT to get the current strategy ("Or" operation with
the "current" bit).

desc must equal NXP_DESC_INT.

thePtr must point to an integer which will be set to 1 if the end-user values
validation is ON/REJECT, set to 0 if the end-user values validation is not
ON/REJECT (that is either OFF or ON/ACCEPT).

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_VALIDUSER_REJECT, thePtr)

See Also

NXP_Error() Return Code Explanation
NXP_ERR_INVARG2 code is invalid.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_AINFO_EXHBWRD Exhaustive backward chaining.

NXP_AINFO_PTGATES Forward chaining through gates.

NXP_AINFO_PFMETHODELSEACTIONS Forward chaining from else actions of a method.

NXP_AINFO_PFMETHODACTIONS Forward chaining from left-hand-side and right-hand-side
actions of a method.

NXP_AINFO_PFELSEACTIONS Forward chaining from else actions of a rule

NXP_AINFO_PFACTIONS Forward chaining from left-hand-side and right-hand-side
of a rule.

NXP_AINFO_PWFALSE Context propagation on False hypotheses.

NXP_AINFO_PWNOTKNOWN Context propagation on Notknown hypos.

NXP_AINFO_PWTRUE Context propagation on True hypotheses.

NXP_AINFO_VALIDUSER_ON Validation of data entered by the end user

NXP_AINFO_VALIDUSER_OFF Validation of data entered by the end user and value
accepted if validation expression contains missing
information.

NXP_AINFO_VALIDUSER_ACCEPT Validation of data entered by the end user and value
accepted if validation expression contains missing
information.

NXP_AINFO_VALIDENGINE_ON Validation of data generated by the engine

NXP_AINFO_VALIDENGINE_ACCEPT Validation of data generated by the engine and value
accepted if validation expression contains missing
information.
C Programmer’s Guide 253

Chapter NXP_GetAtomInfo Routine4
NXP_GetAtomInfo / NXP_AINFO_VALUE
Purpose

This returns the current value of an atom.

Note: Note: This call doesn't trigger any inheritance mechanism or Order of
Source methods (i.e. if Obj.Prop is unknown when the call is made
the engine won't process the OS methods of Obj.Prop or inherit its
value from a parent class, it will simply return the value Unknown).
See below for more information.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_VALUE, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_VALUE */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc;
Str thePtr;
int len;

theAtom can be a slot, rule, RHS, EHS, LHS of a rule or a method. If it is a
slot its value can take different data types, otherwise it is a boolean (i.e. it
takes only the values Unknown, Notknown, True and False).

code is equal to NXP_AINFO_VALUE.

optAtom and optInt are ignored.

desc specifies the data type in which the information should be returned. It
is one of the NXP_DESC_XXX codes as described on the next page. The
value of theAtom will be converted in this data type.

The information about the value of theAtom is returned in *thePtr. thePtr
must point to various types of variable depending on the value of desc.

len is used only if desc is NXP_DESC_STR. It represents the maximum
number of characters that can be returned in the buffer *thePtr.

NXP_AINFO_VALIDENGINE_REJECT Validation of data generated by the engine and value
rejected if validation expression contains missing
information.

NXP_Strateg Change the inference strategy.
254 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_VALUE
desc can be one of the following codes:

desc Code Description
NXP_DESC_INT thePtr should be a pointer to an integer.

If theAtom refers to a boolean atom (LHS, RHS, EHS, boolean slot, . . .),
and the value of theAtom is Unknown, *thePtr will receive the value
NXP_BOOL_UNKNOWN (-2). NXP_BOOL_NOTKNOWN (-1) will be
returned if the value is Notknown. NXP_BOOL_TRUE (1) or
NXP_BOOL_FALSE (0) will be returned otherwise.

If theAtom is not a boolean, NXP_GetAtomInfo will return an error if the
value is Unknown or Notknown (use NXP_DESC_NOTKNOWN or
NXP_DESC_UNKNOWN to test the value first). If not, the value will be
converted to an integer and returned in thePtr. If the value is a floating
point, this will be equivalent to rounding the value. If the value is a string,
the Rules Element will try to interpret the string as being a number and
will return its integer equivalent in thePtr.

NXP_DESC_DOUBLE Same as NXP_DESC_INT except thePtr should be a pointer to a double
floating point variable (64 bits, IIIE format on AT, DFloat on VAX, 64 bits
on Mac - type double for MPW C and short double for THINK-C).

NXP_DESC_FLOAT Same as NXP_DESC_INT except thePtr should be a pointer to a floating
point variable (normal precision 32 bits). If theAtom is a boolean value,
NXP_BOOL_UNKNOWN, NXP_BOOL_NOTKNOWN, TRUE, or FALSE
will be returned in the float format into thePtr.

NXP_DESC_LONG Same as NXP_DESC_INT except thePtr should be a pointer to a long
integer. If theAtom is a boolean value, NXP_BOOL_UNKNOWN,
NXP_BOOL_NOTKNOWN, TRUE, or FALSE will be returned in the long
format into thePtr.

NXP_DESC_NOTKNOWN This should be used to find out if a value is known but has the value
Notknown. thePtr should be a pointer to an integer which will be set to
TRUE if the value is Notknown, FALSE if it is not Notknown.

NXP_DESC_STR In this case, thePtr should be a pointer to a string. A maximum of len
characters will be returned in thePtr. If the value is Unknown, the string
"UNKNOWN" will be returned, "NOTKNOWN" if the value is Notknown
(or the format string defined for these special values). If theAtom is not a
string, the value will be converted to a string according to the format
associated with theAtom (applies to Date and Time as well).

NXP_DESC_UNKNOWN This should be used to find out if a value is Unknown or not. thePtr
should be a pointer to an integer which will be set to TRUE if the value is
Unknown, FALSE if it is not Unknown.
C Programmer’s Guide 255

Chapter NXP_GetAtomInfo Routine4
Notes

To get more information about the Atom you are requesting the value from
you can use NXP_AINFO_TYPE (type of atom) or
NXP_AINFO_VALUETYPE (data type of its value).

int and long types are the same on most platforms (32 bits value) except on
PC where int is 16 bits (i.e. if desc = NXP_DESC_INT a long value will be
truncated to 16 bits).
Warning: On the Macintosh the Rules Element treats int as 32 bits (MPW C
convention) so you must always use long integers if you are programming
with THINK-C.

string values of a slot are returned using the format defined for that slot or
for the corresponding property (as they are displayed in the interface).

float and double types can have different meaning depending on the
platform and the programming environment. Check in your platform
specific API manual.

date and time data types are not available in the API. You must set desc to
the string descriptor NXP_DESC_STR. The date or time will be returned
using the format defined for that slot, or the default format (for more
information on formats see the Intelligent Rules Element Reference
manual).

NXP_DESC_VALUE thePtr should be a pointer to a structure NXP_ValueRec defined in
nxpdef.h. This structure will be filled with all the characteristics of the
value of theAtom.

typedef struct NXP_ValueRec {
 int Known
 int Notknown
 int Type
 union {
 int Bool
 double Numb
 double Double
 long Long
 } NVal;
 char *_Str;
} NXP_ValueRec, *NXP_ValuePtr

If the value oftheAtom is known, thePtr->Known will be set to TRUE. If
it isn't known, it will be set to FALSE.

If theAtom is notknown, thePtr->Notknown will be set to TRUE. If it isn't
notknown, it will be set to FALSE.

thePtr->Type will be set to the type of value of theAtom (same as returned
by NXP_GetAtomInfo with code =NXP_AINFO_VALUETYPE).

thePtr->NVal.Bool will be set if theAtom is boolean and known.

thePtr->NVal.Double will be set if theAtom is float and known.

thePtr->NVal.Long will be set if theAtom is integer and known (long or
short integer).

If thePtr->Str is not NULL, it will point to a string where the string value
will be returned. In this last case, for any atom type, the string equivalent
is returned (same as desc = NXP_DESC_STR). A maximum of len
characters will be copied.

desc Code Description
256 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_VALUE
NXP_AINFO_VALUE doesn't trigger any inheritance mechanism in case
the value of a slot is unknown when the call is made. The only way to force
the engine to evaluate the Order of Sources of a slot (and thus use the
inheritance if necessary) is to use the function NXP_BwrdAgenda and
continue the session.

Warning: This cannot work in "modal" routines such as Executes or a modal
Question handler. You must return to the Rules Element to let the
engine process the Order of Sources that NXP_BwrdAgenda
pushed on top of the agenda.

See the appendix on NXP_AINFO_VALUE at the end of this manual for a
discussion on common errors and more examples.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETXXXVAL macros:

NXP_GETINTVAL(atom, ptr) /* Integer value */
NXP_GETDOUBLEVAL(atom, ptr) /* Double value */
NXP_GETSTRVAL(atom, ptr, len) /* String value */
NXP_GETUNKNOWNVAL(atom, ptr) /* Unknown value */
NXP_GETNOTKNOWNVAL(atom, ptr) /* Notknown value */

Examples

This example illustrates how to get the value of a slot in a generic way:

int ret;
AtomId theSlot;
int intVal, boolVal, typeVal;
double doubleVal;
Char strVal[255];

/* get the type of value first */
ret = NXP_GETINTINFO(theSlot, NXP_AINFO_VALUETYPE, &typeVal);
if(ret == 0) ... /* error */

switch(typeVal) {
case NXP_VTYPE_BOOL:

ret = NXP_GETINTVAL(theSlot, &boolVal);
if(boolVal == NXP_BOOL_UNKNOWN) ...
if(boolVal == NXP_BOOL_NOTKNOWN) ...

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a valid atom id.

NXP_ERR_INVARG5 desc is not valid.

NXP_ERR_INVARG6 thePtr is NULL.

NXP_ERR_NOTKNOWN desc is equal to NXP_DESC_INT, NXP_DESC_LONG,
NXP_DESC_FLOAT or NXP_DESC_DOUBLE and theAtom is
Notknown and is not boolean.

NXP_ERR_UNKNOWN desc is equal to NXP_DESC_INT, NXP_DESC_LONG,
NXP_DESC_FLOAT or NXP_DESC_DOUBLE and theAtom is
Unknown and is not boolean.
C Programmer’s Guide 257

Chapter NXP_GetAtomInfo Routine4
...
break;

case NXP_VTYPE_LONG:
/* For most platforms int and long are the same */
/* Internally Rules Element only keeps a long value */
ret = NXP_GETINTVAL(theSlot, &intVal);
if (ret == 0) { /* error */
 ret == NXP_Error();
 if (ret == NXP_ERR_UNKNOWN) ...
 if (ret == NXP_ERR_UNKNOWN) ...
 ...
}
break;

case NXP_VTYPE_DOUBLE:
ret = NXP_GETDOUBLEVAL(theSlot, &doubleVal);
if (ret == 0) { /* error */
 ret == NXP_Error();
 if (ret == NXP_ERR_UNKNOWN) ...
 if (ret == NXP_ERR_UNKNOWN) ...
 ...
}
break;

case NXP_VTYPE_STR:
case NXP_VTYPE_DATE:/* date retrieved as string */
case NXP_VTYPE_TIME:/* time retrieved as string */

/* If value is unknown or notknown the string will be
 * set using the format. It may be better to check
 * first with NXP_DESC_UNKNOWN or NXP_DESC_NOTKNOWN
 */
ret = NXP_GETSTRVAL(theSlot, strVal, 255);
...
break;

default:
/* error! */

}

See Also

NXP_GetAtomInfo / NXP_AINFO_VALUELENGTH
Purpose

This returns the length of a string slot value. It allows you to know how
much memory space to allocate before retrieving the string with the code
NXP_AINFO_VALUE.

C Format

The C format is as follows:

int NXP_GetAtomInfo(theAtom, NXP_AINFO_VALUELENGTH, optAtom, optInt, desc,
thePtr, len);

NXP_AINFO_VALUETYPE Get the data type of an atom’s value.

NXP_AINFO_TYPE Get the type of atom.

NXP_Volunteer Change the value of a slot.
258 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_VALUELENGTH
Arguments

The following list shows the valid arguments:

AtomId theAtom;
int code; /* = NXP_AINFO_VALUELENGTH */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

theAtom is the string slot you want information on.

desc must be NXP_DESC_INT.

thePtr must point to an integer where the length will be returned.

All the other arguments are ignored.

The length is in bytes and includes the terminating NULL (C string). If the
value is UNKNOWN or NOTKNOWN, it will return the length of the
reserved string (e.g. "UNKNOWN" or "NOTKNOWN") plus the NULL
byte. If a user-supplied format is available, that format will be applied in
determining the string length. For user-specified formats, only string
lengths up to 2K will be returned. For string slots with the default format
(i.e. no format defined), there is no length restriction.

Notes

The Rules Element string slots are not limited in size.

You can test whether a slot has format information attached to it by calling
NXP_GetAtomInfo with the code NXP_AINFO_FORMAT. It returns an
empty string if no format is defined.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error,
more information about the error is obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error returns one of the
following codes:

Macros

You can use the NXP_GETINTINFO macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_VALUELENGTH, thePtr)

Examples

The following example shows how to use NXP_AINFO_VALUELENGTH to
allocate a buffer to retrieve the string value to:

AtomId theSlot;
int err, ret;

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is null or not a string.

NXP_ERR_INVARG5 desc is not a NXP_DESC_ATOM.

NXP_ERR_INVARG6 thePtr is null.

NXP_ERR_NOERR Call was successful.
C Programmer’s Guide 259

Chapter NXP_GetAtomInfo Routine4
int len, type;
Str theStr;
/* Check that it is a string slot */
NXP_GETINTINFO(theSlot, NXP_AINFO_VALUETYPE, &type);
if (type != NXP_VTYPE_STRING) {

...
/* not a string. Exit */

}
/* Get the length */
ret = NXP_GETINTINFO(theSlot, NXP_AINFO_VALUELENGTH, &len);
if (ret == 0)

{ err = NXP_Error(); ... /* error code */ }
/* Allocate a buffer and get the value */
theStr = malloc(len);
ret = NXP_GETSTRVAL(theSlot, theStr, len);
if (ret == 0)

{ err = NXP_Error(); ... /* error code */ }

See Also

NXP_GetAtomInfo / NXP_AINFO_VALUETYPE
Purpose

This returns the data type of the value of an atom.

This is not the same thing as the type of an atom: use the code
NXP_AINFO_TYPE to get the atom type (object, class, slot, rule, method,
kb, etc.).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_VALUETYPE, optAtom, optInt, desc,
thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_VALUETYPE */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_INT */
Str thePtr;
int len; /* ignored */

theAtom is a valid atom id (either a property, a slot, a rule, a RHS, a EHS, a
LHS or a method).

code is equal to NXP_AINFO_VALUETYPE.

desc must equal NXP_DESC_INT.

NXP_GetAtomInfo / NXP_AINFO_VALUE returns the value of a slot.

NXP_GetAtomInfo / NXP_AINFO_VALUETYPE returns the data type of a slot.
260 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_VALUETYPE
thePtr must be a pointer to a valid integer memory location where the data
type code will be returned. The data type is returned as one of the following
codes:

If theAtom is a slot id its value can have any of the first six types.

If theAtom is a property id, the data type of the property will be returned.
If theAtom is the id of the property Value (the default property), the type
returned will be NXP_VTYPE_SPECIAL.

If theAtom is a rule, RHS, EHS, LHS, or method, it automatically has a
boolean value.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETINTINFO(atom, code, ptr) macro:

NXP_GETINTINFO(theAtom, NXP_AINFO_VALUETYPE, &type)

Examples

This example shows how to get the type of an atom (see a more detailed
example in NXP_AINFO_VALUE):

int ret, typeVal;
AtomId theAtom;

/* get the type of value first */
ret = NXP_GETINTINFO(theAtom, NXP_AINFO_VALUETYPE, &typeVal);
if(ret == 0) ... /* error */

switch(typeVal) {
case NXP_VTYPE_BOOL: ... break;
case NXP_VTYPE_LONG: ... break;

Code Explanation
NXP_VTYPE_BOOL Boolean (used for slots, rules, LHS, RHS, EHS,

methods).

NXP_VTYPE_DATE Date

NXP_VTYPE_DOUBLE Floating point (same as type NXP_VTYPE_NUMB
of version 1.0.)

NXP_VTYPE_LONG Long integer (internally the Rules Element keeps
integer values as long).

NXP_VTYPE_STR String

NXP_VTYPE_TIME Time

NXP_VTYPE_SPECIAL Special type (returned only if theAtom is the Value
property.)

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a valid atom id.

NXP_ERR_INVARG5 desc is not equal to NXP_DESC_INT.
C Programmer’s Guide 261

Chapter NXP_GetAtomInfo Routine4
case NXP_VTYPE_DOUBLE: ... break;
case NXP_VTYPE_STR: ... break;
case NXP_VTYPE_DATE: ... break;
case NXP_VTYPE_TIME: ... break;
case NXP_VTYPE_SPECIAL: ... break;

}

See Also

NXP_GetAtomInfo / NXP_AINFO_VERSION
Purpose

This returns the names and version numbers of the software components
(the Rules Element, Client/Server, etc.) included in the package used. These
are always returned as strings. For instance, the Development System adds
a string such as “Intelligent Rules Element” at the top of Transcript by using
this call.

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_VERSION, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_VERSION */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc;
Str thePtr;
int len;

code is equal to NXP_AINFO_VERSION.

n is always greater than or equal to 1, although optInt equal to 0 is a special
case. The software component with index 0 is the full software package, and
the full serial number is returned as it appears in the Transcript window.
optInt equal to 1 signifies the first software component within the package,
etc.

If optInt is -1, len is ignored. Otherwise, len is the maximum number of
characters that can be written to thePtr.

Return Codes

NXP_GetAtomInfo returns 1 on success and 0 on error. In case of error, you
can obtain more information about the error by calling NXP_Error()

NXP_AINFO_VALUE Get value of an atom.

NXP_AINFO_TYPE Get the type of atom.

NXP_Volunteer Change the value of a slot.
262 C Programmer’s Guide

NXP_GetAtomInfo / NXP_AINFO_VOLLIST
immediately after the failed call. NXP_Error() will return one of the
following codes:

Macros

You can use the NXP_GETLISTLEN(atom, code, ptr) macro to get the
number of software components:

NXP_GETLISTLEN((AtomId)0, NXP_AINFO_VERSION, thePtr)

Then use the NXP_GETLISTELTSTR(atom, code, index, ptr, len) macro to
get individual versions:

NXP_GETLISTELTSTR((AtomId)0, NXP_AINFO_VERSION, i, thePtr,
len)

Examples

The following example illustrates how to display a Rules Element serial
number in your application:

char serialStr[100];

NXP_GetAtomInfo((AtomId)0, NXP_AINFO_VERSION, (AtomId)0,
0, NXP_DESC_STR, serialStr, 100);

or

NXP_GETLISTELTSTR((AtomId)0, NXP_AINFO_VERSION, 0, serialStr,
100);

NXP_GetAtomInfo / NXP_AINFO_VOLLIST
Purpose

This returns the list of slots kept in the volunteer section with the knowledge
base (Suggest/Volunteer from the main menu or selection in the data
notebook).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_VOLLIST, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_AINFO_VOLLIST */
AtomId optAtom; /* ignored */
int optInt;
int desc;
Str thePtr;
int len; /* ignored */

NXP_Error() Return Code Explanation
NXP_ERR_INVARG4 The value of optInt is invalid.

NXP_ERR_INVARG5 optInt is equal to -1 but desc is not equal to
NXP_DESC_INT, or optInt is between 0 and n-1 but
desc is not equal to NXP_DESC_STR.
C Programmer’s Guide 263

Chapter NXP_GetAtomInfo Routine4
code is equal to NXP_AINFO_VOLLIST.

optInt is an integer between -1 and n-1.

The mechanism to retrieve this list is the following:

■ In your first call, you pass a value of -1 in the optInt argument. In
return, thePtr is set to the number n of atoms in the list (thePtr must be
a pointer to an integer).

■ Then you can call NXP_GetAtomInfo with the NXP_AINFO_VOLLIST
code and optInt set to any value between 0 and n-1 where n is the value
returned by the first call. The id of the (optInt+1)th atom in the list will
be returned in thePtr (which must be a pointer to an AtomId).

desc must be NXP_DESC_INT when optInt is -1, and NXP_DESC_ATOM
otherwise.

thePtr must be a pointer to an integer when optInt is -1, and a pointer to an
AtomId otherwise.

Macros

For the first call, use the NXP_GETLISTLEN(atom, code, ptr) macro:

NXP_GETLISTLEN(theAtom, NXP_AINFO_VOLLIST, thePtr).

then use the NXP_GETLISTELT(atom, code, index, ptr) macro:

NXP_GETLISTELT(theAtom, NXP_AINFO_VOLLIST, optInt, thePtr)

NXP_GetAtomInfo / NXP_AINFO_WHY
Purpose

This returns the why information attached to a slot, method, or rule (string
edited in the Why field of the meta-slot editor, method editor, or the rule
editor).

C Format

The C format is as follows.

int NXP_GetAtomInfo(theAtom, NXP_AINFO_WHY, optAtom, optInt, desc, thePtr, len);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_AINFO_WHY */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* = NXP_DESC_STR */
Str thePtr;
int len;

theAtom must be a valid slot, method or rule id.

code is equal to NXP_AINFO_WHY.

desc must equal NXP_DESC_STR.

thePtr must point to a buffer where the why string will be returned.
264 C Programmer’s Guide

NXP_GetAtomInfo / Examples
len is the maximum number of characters that can be written to thePtr.

Macros

You can use the NXP_GETSTRINFO(atom, code, ptr, len) macro:

NXP_GETSTRINFO(theAtom, NXP_AINFO_WHY, thePtr, len)

NXP_GetAtomInfo / Examples
The following lines of C code show examples of calls to NXP_GetAtomInfo.
This code could be improved by adding error checking and could be
simplified by using the macros defined in nxpdef.h.

More examples are available with each NXP_AINFO_XXX code
description.

In the following example we consider an object named "Object" with a
property "Prop1"

AtomId theObjId;
AtomId theSlotId;
AtomId thePropId;
AtomId theRuleId;
AtomId theAtom;
Char theStr[255];
int i;

/* Get the object id using NXP_GetAtomId */
NXP_GetAtomId("Object", &theObjId, NXP_ATYPE_OBJECT)

/* Get the name and the type from the id */
NXP_GetAtomInfo(theObjId, NXP_AINFO_NAME, (AtomId)NULL, 0,

NXP_DESC_STR, theStr, 255)
NXP_GetAtomInfo(theObjId, NXP_AINFO_TYPE, (AtomId)NULL, 0,

NXP_DESC_INT, (Str)&i, 0)
/* check that we get the same object back */
if (strcmp(theObjId, "Object") != 0 || i != NXP_ATYPE_OBJECT) {
 /* Problem! */
}

/* Now get the slot "Prop1" of this object */
NXP_GetAtomId("Prop1", &thePropId, NXP_ATYPE_PROP);
NXP_GetAtomInfo(theObjId, NXP_AINFO_SLOT, thePropId, 0,

NXP_DESC_ATOM, (Str)&theSlotId, 0)

/* another method is to use GetAtomId with "Object.Prop1"
 * This is not as fast because it has to parse the name */
NXP_GetAtomId("Object.Prop1", &theAtom, NXP_ATYPE_SLOT)
if (theAtom != theSlotId) {
 /* Problem! */
}

/* Now check some dependencies */
NXP_GetAtomInfo(theSlotId, NXP_AINFO_PROP, (AtomId)NULL, 0,

NXP_DESC_ATOM, (Str)&theAtom, 0)
if (theAtom != thePropId) {
 /* Problem! */
}
NXP_GetAtomInfo(theSlotId, NXP_AINFO_PARENT, (AtomId)NULL, 0,

NXP_DESC_ATOM, (Str)&theAtom, 0)
if (theAtom != theObjId) {
 /* Problem! */
C Programmer’s Guide 265

Chapter NXP_GetAtomInfo Routine4
}

/* Find theSlotId in the list of slot of the Objects */
NXP_GetAtomInfo(theObjId, NXP_AINFO_SLOT, (AtomId)NULL,

 -1, NXP_DESC_INT, (Str)&i, 0)
while (--i >= 0) {

NXP_GetAtomInfo(theObjId, NXP_AINFO_SLOT, (AtomId)NULL, i,
NXP_DESC_ATOM, (Str)&theAtom, 0)

if (theAtom == theSlotId) {
/* found the Slot id in the list */
goto noerr;

}
}
/* Problem.if we come here! */

noerr:
/* returns the value of theSlotId in theStr */
NXP_GetAtomInfo(theSlotId, NXP_AINFO_VALUE, (AtomId)NULL, 0,

NXP_DESC_STR, theStr, 255)

/* get the choice list for theSlotId */
NXP_GetAtomInfo(theSlotId, NXP_AINFO_CHOICE, (AtomId)NULL, -1,

NXP_DESC_INT, (Str)&i, 0)
while (--i >= 0) {

NXP_GetAtomInfo(theSlotId, NXP_AINFO_CHOICE, (AtomId)NULL, i,
NXP_DESC_STR, theStr, 255)

/* display theStr or do whatever */
...

}
/* get the current rule and display its contents */
NXP_GetAtomInfo((AtomId)NULL, NXP_AINFO_CURRENT, (AtomId)NULL,

NXP_ATYPE_RULE, NXP_DESC_ATOM, &theRuleId, 0);
/* get the hypothesis id */
NXP_GetAtomInfo(theRuleId, NXP_AINFO_HYPO, (AtomId)NULL, 0,

NXP_DESC_ATOM, (Str)&theAtom, 0);

/* get all the LHS strings in reverse order */
NXP_GetAtomInfo(theRuleId, NXP_AINFO_LHS, (AtomId)NULL,

-1, NXP_DESC_INT, (Str)&i, 0);
while (--i >= 0) {

NXP_GetAtomInfo(theRuleId, NXP_AINFO_LHS, (AtomId)NULL, i,
NXP_DESC_ATOM, (Str)&theAtom, 0);

/* get the operator string */
NXP_GetAtomInfo(theAtom, NXP_AINFO_NAME, (AtomId)NULL,

NXP_CELL_COL1, NXP_DESC_STR,
theStr, 255);

/* get the first argument string */
NXP_GetAtomInfo(theAtom, NXP_AINFO_NAME, (AtomId)NULL,

NXP_CELL_COL2, NXP_DESC_STR,
theStr, 255);

/* get the second argument string */
NXP_GetAtomInfo(theAtom, NXP_AINFO_NAME, (AtomId)NULL,

NXP_CELL_COL3, NXP_DESC_STR,
theStr, 255);
}

266 C Programmer’s Guide

Chapter
5 NXP_SetAtomInfo Routine 5

This chapter describes the NXP_SetAtomInfo routine and the information
codes associated with it.

NXP_SetAtomInfo
Purpose

NXP_SetAtomInfo provides some control over knowledge bases allowing
to change information associated with individual atoms or entire
knowledge bases. This function is the opposite of NXP_GetAtomInfo
(although all possible codes are not implemented yet).

C Format

The C format is as follows.

int NXP_SetAtomInfo(theAtom, code, optAtom, optInt, desc, thePtr);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code;
AtomId optAtom;
int optInt;
int desc;
Str thePtr;

theAtom specifies the atom or knowledge base you want to modify.
theAtom is an atomId obtained by a previous call to NXP_GetAtomId,
NXP_GetAtomInfo or, in the case of knowledge bases, to NXP_LoadKB.

code specifies what is being changed. The different values for code are
described in the following pages.

optAtom is an additional AtomId argument with different meanings
depending on the value of code or is unused.

optInt is an additional integer argument with different meanings depending
on the value of code or is unused.

desc is a code which describes the data type of the information or is unused.

thePtr points to the data associated with code or is unused.

Return Codes

NXP_SetAtomInfo returns 1 on success and 0 on error. In case of error,
more information about the error can be obtained by calling NXP_Error
immediately after the call which has failed.
C Programmer’s Guide 267

Chapter NXP_SetAtomInfo Routine5
NXP_SetAtomInfo Codes List
Following are the NXP_SetAtomInfo codes in alphabetical order:

NXP_SetAtomInfo Codes By Categories
Following are the NXP_SetAtomInfo codes by categories.

These codes are described in detail in the following sections.

NXP_SetAtomInfo / NXP_SAINFO_AGDVBREAK
Purpose

This allows your program to set or unset agenda break points on a specific
hypothesis. It is similar to clicking on the hypothesis name in the Agenda
window (it puts ">" in front of the name).

C Format

The C format is as follows.

int NXP_SetAtomInfo(theAtom, NXP_SAINFO_AGDVBREAK, optAtom, optInt, desc, ptr);

Code Description
NXP_SAINFO_AGDVBREAK Sets/unsets agenda break points on hypotheses.

NXP_SAINFO_CURRENTKB Sets the current (or "default") knowledge base.

NXP_SAINFO_DISABLESAVEKB Disables the saving of knowledge bases from the API.

NXP_SAINFO_INFBREAK Sets/unsets inference break points on atoms.

NXP_SAINFO_INKB Sets the knowledge base that an atom belongs to.

NXP_SAINFO_MERGEKB Merges two knowledge bases into one.

NXP_SAINFO_PERMLINK Changes the links of an atom to permanent.

NXP_SAINFO_PERMLINKKB Changes all links in a knowledge base to permanent.

Controlling the knowledge bases:
NXP_SAINFO_CURRENTKB Sets the current (or "default") knowledge base.

NXP_SAINFO_DISABLESAVEKB Disables the saving of knowledge bases from the API.

NXP_SAINFO_INKB Sets the knowledge base that an atom belongs to.

NXP_SAINFO_MERGEKB Merges two knowledge bases into one.

Setting/unsetting break points:
NXP_SAINFO_AGDVBREAK Sets/unsets agenda break points on hypotheses.

NXP_SAINFO_INFBREAK Sets/unsets inference break points on atoms.

Changing permanent/temporary links:
NXP_SAINFO_PERMLINK Changes the links of an atom to permanent.

NXP_SAINFO_PERMLINKKB Changes all links in a knowledge base to permanent.
268 C Programmer’s Guide

NXP_SetAtomInfo / NXP_SAINFO_AGDVBREAK
Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_SAINFO_AGDVBREAK */
AtomId optAtom; /* ignored */
int optInt;
int desc; /* ignored */
Str thePtr; /* ignored */

theAtom must be a valid hypothesis id.

code is equal to NXP_SAINFO_AGDVBREAK.

If optInt equals 1, the break point is set. If optInt equals 0, the break point is
unset.

Notes

If the break point is set, the session will stop the next time the hypothesis'
state changes and the Session Control window will show the break point. If
you are using the runtime library, you will get the break point message
through a SetData handler with winId = NXP_WIN_QUESTION.

Agenda break-points are different from inference break-points (which are
set in a network window or with the code NXP_SAINFO_INFBREAK in the
API). Agenda break-points give better control on hypotheses since they
allow monitoring the changes of state rather than the changes of value.

Return Codes

NXP_SetAtomInfo returns 1 on success and 0 on error. In case of error,
more information about the error can be obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error will return one of
the following codes:

Examples

Instead of interrupting the inference engine manually and
setting/unsetting break points in the Agenda window, you can write an
Execute routine that does it for you. You would call this routine from a rule
or a method, passing the list of hypotheses for which the break point must
be set or unset :

int setBreakPoints(theStr, nAtoms, theAtoms)
Str theStr; /* flag "SET" or "UNSET" */
int nAtoms; /* number of hypos passed to Execute */
AtomId *theAtoms;/* pointer to the list of hypotheses ids */
{

int set, i;

if(strcmp("SET", theStr) == 0)
set = 1;

else
set = 0;
/* loop to set a break-point on each hypothesis */

for(i = 0; i < nAtoms; i++) {
NXP_SetAtomInfo(theAtoms[i], NXP_SAINFO_AGDVBREAK,

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a hypothesis.
C Programmer’s Guide 269

Chapter NXP_SetAtomInfo Routine5
(AtomId)0, set, 0, (Str)0);
}

}

See also NXP_GetAtomInfo / NXP_AINFO_AGDVBREAK for an example
of how to unset all break points on hypotheses in the knowledge base.

See Also

NXP_SetAtomInfo / NXP_SAINFO_CURRENTKB
Purpose

This sets the current (or "default") knowledge base to atom. The current
knowledge base is the one used for every new creation (permanent objects
or rules). This call is similar to using the "Set Knowledge Base..." command
in the interface.

C Format

The C format is as follows.

int NXP_SetAtomInfo(theAtom, NXP_SAINFO_CURRENTKB, optAtom, optInt, desc, ptr);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_SAINFO_CURRENTKB */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* ignored */
Str thePtr; /* ignored */

theAtom must be a valid knowledge base Id.

code is equal to NXP_SAINFO_CURRENTKB. All other arguments are
ignored.

Notes

By default, the current knowledge base is the last one loaded. If no KB has
been loaded yet it is the special knowledge base untitled.kb (id = 2).

Temporary objects created during a Retrieve, for instance, belong to the
knowledge base temporary.kb and not the current knowledge base. Also,
undefined.kb (id = 0) and temporary.kb (id = 1) cannot be set to the current
knowledge base.

Return Codes

NXP_SetAtomInfo returns 1 on success and 0 on error. In case of error,
more information about the error can be obtained by calling NXP_Error

NXP_GetAtomInfo / NXP_AINFO_AGDVBREAK Information on Agenda breakpoints.

NXP_SetAtomInfo / NXP_SAINFO_INFBREAK Set inference breakpoints.
270 C Programmer’s Guide

NXP_SetAtomInfo / NXP_SAINFO_DISABLESAVEKB
immediately after the call which has failed. NXP_Error will return one of
the following codes:

Examples

The following example illustrates how to specify which knowledge base
permanent objects should belong to (if you are creating permanent objects
using NXP_Compile for instance):

KbId theKB;

/* Get the KB id from the KB name */
NXP_GetAtomId("myKB.tkb", &theKB, NXP_ATYPE_KB);

/* Change the current KB */
NXP_SetAtomInfo(theKb, NXP_SAINFO_CURRENTKB, (AtomId)0, 0, 0, (Str)0);

See Also

NXP_SetAtomInfo / NXP_SAINFO_DISABLESAVEKB
Purpose

This allows you to disable the saving of knowledge bases from the API. You
cannot enable it after you disable it. This call is useful if you are delivering
a protected knowledge base and don't want it saved after your application
decrypts it.

C Format

The C format is as follows.

int NXP_SetAtomInfo(theAtom, NXP_SAINFO_DISABLESAVEKB, optAtom, optInt,
desc, ptr);

Arguments

The following list shows the valid arguments.

AtomId theAtom; /* ignored */
int code; /* = NXP_SAINFO_DISABLESAVEKB */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* ignored */
Str thePtr; /* ignored */

code is equal to NXP_SAINFO_DISABLESAVE.

All other arguments are ignored.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a knowledge base Id.

NXP_SAINFO_INKB Set the KB that an atom belongs to.

NXP_SAINFO_MERGEKB Merge two knowledge bases into one.

NXP_GetAtomId, Get a knowledge base Id.

NXP_GetAtomInfo /
NXP_AINFO_KBID

Get a knowledge base Id.
C Programmer’s Guide 271

Chapter NXP_SetAtomInfo Routine5
Return Codes

There are no possible errors for this information code.

Examples

The following example illustrates how your application loads an encrypted
knowledge base, supplies the password (with a password handler, for
instance), and immediately uses NXP_SAINFO_DISABLESAVEKB so that
nobody can save the decrypted knowledge base.

/* Loads the knowledge base
 * (see NXP_PROC_PASSWORD for an example of a password handler)
 */
NXP_LoadKB("myKB", &theKbId);

/* Disable the Save knowledge base */
NXP_SetAtomInfo((AtomId)0, NXP_SAINFO_DISABLESAVEKB,

(AtomId)0, 0, 0, (Str)0);

NXP_SetAtomInfo / NXP_SAINFO_INFBREAK
Purpose

This allows your program to set/unset inference break points on any rule,
condition, RHS, EHS, method (except filtered breaks), slot, object, class, or
property. It is similar to clicking on the Atom name in the Network window
with the Stop cursor. If a break point is set, the inference engine will stop
the next time the value of the atom changes.

C Format

The C format is as follows.

int NXP_SetAtomInfo(theAtom, NXP_SAINFO_INFBREAK, optAtom, optInt, desc, ptr);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_SAINFO_INFBREAK */
AtomId optAtom; /* ignored */
int optInt;
int desc; /* ignored */
Str thePtr; /* ignored */

theAtom must be a valid atomId.

code is equal to NXP_SAINFO_INFBREAK.

If optInt equals 1, the break point is set. If optInt equals 0, the break point is
unset.

Notes

If you are using the Rules Element's interface, the inference break points
stop the session and display an explanation in the Session Control window.
If you are using the runtime library, you can get the break point message
through a SetData handler with winId = NXP_WIN_QUESTION.
272 C Programmer’s Guide

NXP_SetAtomInfo / NXP_SAINFO_INKB
Return Codes

NXP_SetAtomInfo returns 1 on success and 0 on error. In case of error,
more information about the error can be obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error will return one of
the following codes:

Examples

Instead of interrupting the inference engine manually and
setting/unsetting break points in the Rules or Objects network window,
you can write an Execute routine that does it for you. You would call this
routine from a rule or a method, passing the list of atoms for which the break
point must be set or unset :

int setBreakPoints(theStr, nAtoms, theAtoms)
Str theStr; /* flag "SET" or "UNSET" */
int nAtoms;/* number of atoms passed to Execute: */
AtomId *theAtoms;/* pointer to the list of atoms */
{

int set, i;

if(strcmp("SET", theStr) == 0
set = 1;

else
set = 0;

for(i = 0; i < nAtoms; i++){
NXP_SetAtomInfo(theAtoms[i],

NXP_SAINFO_INFBREAK,
(AtomId)0, set, 0, (Str)0);

}
}

See Also

NXP_SetAtomInfo / NXP_SAINFO_INKB
Purpose

This sets the knowledge base that an atom belongs to. This is equivalent to
using the command "Change KB" in the editors.

C Format

The C format is as follows.

int NXP_SetAtomInfo(theAtom, NXP_SAINFO_INKB, optAtom, optInt, desc, ptr);

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a valid atomId.

NXP_GetAtomInfo / NXP_AINFO_INFBREAK Information on Inference breakpoints

NXP_SetAtomInfo / NXP_SAINFO_AGDVBREAK Set agenda breakpoints.
C Programmer’s Guide 273

Chapter NXP_SetAtomInfo Routine5
Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_SAINFO_INKB */
AtomId optAtom;
int optInt; /* ignored */
int desc; /* ignored */
Str thePtr; /* ignored */

theAtom must be a valid object id, class id , rule id, etc.

code is equal to NXP_SAINFO_INKB.

optAtom must be a valid knowledge base Id.

Notes

Use the opposite function NXP_GetAtomInfo / NXP_AINFO_KBID to get
the knowledge base that an atom belongs to.

You can use NXP_SAINFO_INKB to move temporary atoms out of the
special kb temporary.kb, and make them permanent. This way they will not
be deleted at the next restart session. If you also wish to keep the temporary
links, you will need to use NXP_SAINFO_PERMLINK.

Return Codes

NXP_SetAtomInfo returns 1 on success and 0 on error. In case of error,
more information about the error can be obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error will return one of
the following codes:

Examples

The following example illustrates how to change the knowledge base of an
object :

AtomId theObj;
KBId newKB;

/* sets the knowledge base of theObj to newKB */
NXP_SetAtomInfo(theObj, NXP_SAINFO_INKB, newKB, 0, 0, (Str)0);

If theObj was created as a temporary object (during a Retrieve operation, for
instance), you would also need to change its links to class(es) to permanent
with:

NXP_SetAtomInfo(theObj, NXP_SAINFO_PERMLINK, (AtomId)0,
0, 0, (Str)0);

See Also

NXP_Error() Return Code Explanation
NXP_ERR_INVARG3 optAtom is not a valid knowledge base Id.

NXP_SAINFO_CURRENTKB Set the current knowledge base

NXP_SAINFO_MERGEKB Merge two knowledge bases into one.

NXP_GetAtomId, NXP_AINFO_KBID Get a knowledge base Id.

NXP_GetAtomInfo / NXP_AINFO_KBID Get a knowledge base Id.
274 C Programmer’s Guide

NXP_SetAtomInfo / NXP_SAINFO_MERGEKB
NXP_SetAtomInfo / NXP_SAINFO_MERGEKB
Purpose

This merges two knowledge bases into one by setting all the rules, objects
and slots, etc. of the second one so they belong to the first one.

C Format

The C format is as follows.

int NXP_SetAtomInfo(theAtom, NXP_SAINFO_MERGEKB, optAtom, optInt, desc, ptr);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_SAINFO_MERGEKB */
AtomId optAtom;
int optInt; /* ignored */
int desc; /* ignored */
Str thePtr; /* ignored */

theAtom must reference a valid knowledge base Id.

code is equal to NXP_SAINFO_MERGEKB.

optAtom must also reference a valid knowledge base Id. The knowledge
base optAtom is merged into knowledge base theAtom, and optAtom is
deleted from the list of knowledge bases.

All other arguments are ignored.

Notes

It is not possible to merge a knowledge base into the reserved knowledge
bases undefined.kb (id = 0) and temporary.kb (id = 1), but is possible to
merge undefined.kb and temporary.kb into another knowledge base.

NXP_SAINFO_MERGEKB is very useful if you want your temporary
objects to become permanent. In this case, you would merge temporary.kb
into your knowledge base.
Warning: As this call only affects the objects and classes and not the links,
you will need to use NXP_SAINFO_PERMLINKKB to change the links from
the objects and classes of the knowledge base to permanent.

Return Codes

NXP_SetAtomInfo returns 1 on success and 0 on error. In case of error,
more information about the error can be obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error will return one of
the following codes:

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a valid knowledge base Id.

NXP_ERR_INVARG3 optAtom is not a valid knowledge base Id.
C Programmer’s Guide 275

Chapter NXP_SetAtomInfo Routine5
Examples

The following code gives a simple example.

KBId into, from;/* two knowledge base ids */

/* Merge KB "from" into KB "into" */
NXP_SetAtomInfo(into, NXP_SAINFO_MERGEKB, from, 0, 0, (Str)0);

See Also

NXP_SetAtomInfo / NXP_SAINFO_PERMLINK
Purpose

This changes an object's temporary link(s) to permanent link(s); in other
words, links are not deleted after a restart session. This has no effect if a link
is already permanent.

C Format

The C format is as follows.

int NXP_SetAtomInfo(theAtom, NXP_SAINFO_PERMLINK, optAtom, optInt, desc, ptr);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_SAINFO_PERMLINK */
AtomId optAtom;
int optInt; /* ignored */
int desc; /* ignored */
Str thePtr; /* ignored */

theAtom must be a valid object or class Id.

code is equal to NXP_SAINFO_PERMLINK.

optAtom can be NULL, or a valid object or class Id.

If optAtom is not NULL, this changes the temporary link between theAtom
and optAtom to permanent. If optAtom is NULL, this changes all
temporary links from theAtom to permanent.

Notes

This call does not create any links; use NXP_CreateObject to do so.

If the temporary link from or to a temporary object is changed to permanent,
the object and the link will be deleted anyway when the session is restarted.
You need to move the object from temporary.kb to a permanent knowledge
base using NXP_SAINFO_INKB, or move all objects out of temporary.kb
using NXP_SAINFO_MERGEKB.

NXP_SAINFO_CURRENTKB Set the current knowledge base.

NXP_SAINFO_INKB Set the knowledge base that an atom belongs to.

NXP_GetAtomId, NXP_AINFO_KBID Get a knowledge base Id.

NXP_GetAtomInfo / NXP_AINFO_KBID Get a knowledge base Id.
276 C Programmer’s Guide

NXP_SetAtomInfo / NXP_SAINFO_PERMLINKKB
Return Codes

NXP_SetAtomInfo returns 1 on success and 0 on error. In case of error,
more information about the error can be obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error will return one of
the following codes:

Examples

The following example illustrates how to change the knowledge base and
links of a temporary object (created, for instance, during a Retrieve
operation):

AtomId theObj;
KBId newKB;

/* Sets the knowledge base of theObj to newKB */
NXP_SetAtomInfo(theObj, NXP_SAINFO_INKB, newKB, 0, 0, (Str)0);

/* Changes all its links to permanent */
NXP_SetAtomInfo(theObj, NXP_SAINFO_PERMLINK, (AtomId)0, 0, 0,

(Str)0);

See Also

NXP_SetAtomInfo / NXP_SAINFO_PERMLINKKB
Purpose

This changes all links of objects/classes belonging to a knowledge base to
permanent (it only affects temporary links).

This call is interesting after using NXP_SAINFO_MERGEKB to move all the
temporary objects out of temporary.kb.

C Format

The C format is as follows.

int NXP_SetAtomInfo(theAtom, NXP_SAINFO_PERMLINKKB, optAtom, optInt, desc, ptr);

Arguments

The following list shows the valid arguments.

AtomId theAtom;
int code; /* = NXP_SAINFO_PERMLINKKB */
AtomId optAtom; /* ignored */
int optInt; /* ignored */
int desc; /* ignored */
Str thePtr; /* ignored */

theAtom must be a valid knowledge base Id.

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a valid object or class Id.

NXP_ERR_INVARG3 optAtom is not NULL or not a valid object or class Id.

NXP_SAINFO_PERMLINKKB Changes all the links in a knowledge base to
permanent.
C Programmer’s Guide 277

Chapter NXP_SetAtomInfo Routine5
code is equal to NXP_SAINFO_PERMLINKKB.

Use NXP_SAINFO_PERMLINK if you just want to change the links of one
atom.

Return Codes

NXP_SetAtomInfo returns 1 on success and 0 on error. In case of error,
more information about the error can be obtained by calling NXP_Error
immediately after the call which has failed. NXP_Error will return one of
the following codes:

Examples

The following example shows how to change all the links in theKB.

KBId theKB;

NXP_SetAtomInfo(theKB, NXP_SAINFO_PERMLINKKB, (AtomId)0, 0, 0,
(Str)0);

See Also

NXP_Error() Return Code Explanation
NXP_ERR_INVARG1 theAtom is not a valid knowledge base Id.

NXP_SAINFO_PERMLINK Changes the links of an individual atom.
278 C Programmer’s Guide

Chapter
6 NXP_Edit Functions 6

This chapter describes the API you use to access and edit any atom in the
Rules Element memory.

Introduction
The Rules Element allows developers to edit knowledge base atoms
(classes, objects, rules, etc.) from the API via a mechanism that is improved
over the old NXP_Edit() function. The new Edit API makes editing from the
API much easier.

The new Edit API provides several levels of functionality:

■ Functions which provide general structure handling to allow creation
and deletion, as well as a reset of the basic data structure.

■ Functions which fill and/or access the structure with relative safety.

■ Editing functions that allow data to be fetched and atoms deleted,
modified, or created.

■ Dependencies information related to modifications can be retrieved
before the modification is made.

Compatibility with Previous Releases
NXP_Compile() remains unchanged. It takes a string for input and submits
it to the same compiler that the Rules Element uses for compiling TKB's.
This approach has a limitation in that you cannot delete atoms. This can still
allow you to modify classes, objects, and properties, but you can only add
additional rules, for example, since the old ones will not be deleted using
NXP_Compile(). It also does not provide much flexibility in dealing with
issues like dependencies, etc. It simply takes a string/buffer and passes it
to the Rules Element compiler. In terms of what it provides:

The old NXP_Edit() simulates how the user would use the development
interface to edit, for example, a rule. Through NXP_Edit, the user of this
API is expected to have already installed a GetData handler in order to
provide information for the "editor", as it is requested by the Rules Element.
In some cases the user also needs to install a SetData and a Notify handler.

Capability Class/Object/Property MetaSlot Rule/Method

 New Yes Yes Yes

 Edit Yes Yes No

 Copy No No No

 Delete No No No
C Programmer’s Guide 279

Chapter NXP_Edit Functions6
Technical Overview
The Edit API provides a logical view of the atoms that you can edit, which
varies from the view seen in the Rules Element editors. The Edit API lets
you define the following atom types within the knowledge base.

Atom Type

■ Class

■ Object

■ Rule

■ Method

■ Property

■ Hypo

■ Slot

In all cases except Hypo, the usage is unambiguous. In the case of the
Hypothesis it is necessary to specify whether its is defined in a Context or a
Meta-Slot.

NxpEditRec Structure
One structure will be used for all editing of atoms via the API:

typedef structure _NxpEditRec {
Int AtomType;
ArrayPtr Id;
ArrayPtr Text;
NxpEditInfoPtr Errors;
NxpEditInfoPtr Dependencies;

} NxpEditRec, C_FAR * NxpEditPtr;

There will be a minimalist API for power users who wish to manipulate this
structure directly (more efficiently), and a super-set of this which will
provide more assistance for the more novice programmer.

Briefly, the members of the structure are as follows:

AtomType describes the type of the atom.

Id is an array of integers (element size =
sizeof(ClientPtr)) that indicates what "logical" field
is being described. Examples of such fields are
some, but not all, of the NXP_AINFO_XXX fields.

Text is an array of VStr's that contain the text (actually a
VSTR) of what is described by the "Id".

Errors and Dependencies are pointers to an NxpEditInfoRec structure, where
either error or dependency information will be reported.

typedef structure _NxpEditInfoRec {
ArrayPtr Codes;
ArrayPtr Strs;
ArrayPtr Atoms;

} NxpEditInfoRec, *NxpEditInfoPtr;
280 C Programmer’s Guide

AtomType
For instance, for dependency information:

Codes This array would contain a code describing the
type of dependency. This code is currently not
public, it is the code used in the XREF modules (i.e.:
XREF_V_HYPO).

Strs This array would contain a VSTR which describes
the dependency.

Atoms This array would contain the AtomId of the
dependent atom.

The use of the Arrays in this structure is optional. If any of the three
ArrayPtr's is NULL, then that type of information will not be reported. In
other words, in the above example, if the ArrayPtr Codes is NULL, then an
error code would not be reported.

In all cases the Nth entries of each array will correspond to each other. In
the case where an Nth entry is either not applicable or available, a place
holder (NULL) entry will be inserted.

If the NxpEditInfoPtr in the NxpEditRec is NULL, then either dependencies
or error information will not be reported.

There is a minimalist API to manipulate this structure as desribed in this
chapter. See the Setting Up the Edit API section for details.

AtomType
In more detail, AtomType can specifically be one of the following:

To determine the AtomType, the atom->Itself field is used, except in the
case of a slot, where the user will have to set the AtomType using the
NXP_EditSetAtomType() function. This is because for both
NXP_ATYPE_CONTEXT and NXP_ATYPE_SLOT atoms, the Id field is a
slot. In all cases, prior to calling NXP_EditCreate(), the AtomType will have
to be set explicitly.

Id

The Id list for each atom is the set of values that can be edited for the
specified AtomType. The Ids are identical to the TKB keywords used to
define atoms in the editors. Note that items that are displayed in the
graphical editors which are NOT editable do not have valid Ids (for
example, all editors show the KB name; class, object, and property editors
show attached methods, etc.).

NXP_ATYPE_CLASS --> class edition

NXP_ATYPE_OBJECT --> object edition

NXP_ATYPE_PROP --> property edition

NXP_ATYPE_SLOT --> meta-slot edition

NXP_ATYPE_RULE --> rule edition

NXP_ATYPE_METHOD --> method edition

NXP_ATYPE_CONTEXT --> context edition
C Programmer’s Guide 281

Chapter NXP_Edit Functions6
The valid Id list for each AtomType includes the following:

Rule

The following atom ids can be defined for rules. In the case of the _LHS,
_RHS, and _EHS ids, a single id defines one condition or action. When more
than one condition or action is required to define the rule, multiple _LHS,
_RHS, and _EHS ids need to be added to the atom edit structure. It is
important to note that the system processes the conditions and actions in the
order in which they have been defined in the atom edit structure. The order
in which all other ids are defined in the atom edit structure is not important.

NXP_AINFO_NAME"myRule"
NXP_AINFO_LHS"Assign (|"hello world|") (message)"
NXP_AINFO_RHS"Assign (n+1) (n)"
NXP_AINFO_EHS"Reset (myhypo)"
NXP_AINFO_HYPO"myhypo"
NXP_AINFO_COMMENTS "some comments"
NXP_AINFO_WHY "a why string"
NXP_AINFO_INFATOM "infslot.prop"
NXP_AINFO_INFCAT "10"

Context

The following atom ids can be defined for contexts. The order in which
these are defined in the atom edit structure is not important.

NXP_AINFO_NAME "hyponame"
NXP_AINFO_CONTEXT "contexthyponame"

Object

The following atom ids can be defined for objects. Note that multiple
_CHILDOBJECT ids can be defined when the parent object contains more
than one child object. The order in which these are defined in the atom edit
structure is not important.

NXP_AINFO_NAME "myObject"
NXP_AINFO_PARENTCLASS"ParentClass1" allows one entry
NXP_AINFO_CHILDOBJECT"ChildObject1" allows one entry
NXP_AINFO_PROPPUBLIC"publicProp1" allows one entry
NXP_AINFO_PROPPRIVATE"privateProp1" allows one entry

Note that _PARENTCLASS, _CHILDOBJECT, _PROPPUBLIC, and
_PROPPRIVATE each allow one entry per definition.

Class

The following atom ids can be defined for classes. Note that multiple
_CHILDCLASS ids can be defined when the parent class contains more than
one child class. The order in which these are defined in the atom edit
structure is not important.

NXP_AINFO_NAME "myClass"
NXP_AINFO_CHILDCLASS"childClass1" allows one entry
NXP_AINFO_PROPPUBLIC"publicProp1" allows one entry
NXP_AINFO_PROPPRIVATE"privateProp1" allows one entry

Note that _CHILDCLASS, _PROPPUBLIC, and _PROPPRIVATE each allow
one entry per definition.
282 C Programmer’s Guide

AtomType
Property

The following atom ids can be defined for properties. The order in which
these are defined in the atom edit structure is not important.

NXP_AINFO_NAME "myProp"
NXP_AINFO_TYPE "Integer", "String", ...

Slot

The following atom ids can be defined for slots. The order in which these
are defined in the atom edit structure is not important. Note, the graphical
editor which allows you to define the slot is the Meta-Slot editor.

NXP_AINFO_NAME "obj.prop"
NXP_AINFO_INFCAT "10"
NXP_AINFO_INHCAT "20"
NXP_AINFO_INFATOM "infslot.prop"
NXP_AINFO_INHATOM "inhslot.prop"
NXP_AINFO_INHUP "TRUE" or "FALSE"
NXP_AINFO_INHDOWN "TRUE" or "FALSE"
NXP_AINFO_INHVALUP "TRUE" or "FALSE"
NXP_AINFO_INHVALDOWN "TRUE" or "FALSE"
NXP_AINFO_PARENTFIRST "TRUE" or "FALSE"
NXP_AINFO_BREADTHFIRST "TRUE" or "FALSE"
NXP_AINFO_PROMPTLINE "question prompt"
NXP_AINFO_QUESTWIN "module.classname"
NXP_AINFO_COMMENTS "some comments"
NXP_AINFO_WHY "a why string"
NXP_AINFO_FORMAT "mmm ddd yyyy" ...
NXP_AINFO_VALIDFUNC "SELF.prop>0"
NXP_AINFO_VALIDEXEC "extfunctionname"
NXP_AINFO_VALIDHELP "brief help string"
NXP_AINFO_PRIVATEINITVAL "1" or "red" or "TRUE"...
NXP_AINFO_PUBLICINITVAL "1" or "red" or "TRUE"...
NXP_AINFO_PROPPUBLIC "TRUE" or "FALSE"

Method

The following atom ids can be defined for methods. In the case of the _LHS,
_RHS, and _EHS ids, a single id defines one condition or action. When more
than one condition or action is required to define the method, multiple
_LHS, _RHS, and _EHS ids need to be added to the atom edit structure. It
is important to note that the system processes the conditions and actions in
the order in which they have been defined in the atom edit structure. The
order in which all other ids are defined in the atom edit structure is not
important.

Note the _ATTACHEDTO and _TYPE Ids together specify the atom to
which the method is attached. The _ATTACHEDTO Id defines the name of
the specific object, class, property, or slot to which the method is attached.
The _TYPE Id defines the AtomType of the object, class, property, or slot to
which the method is attached. The _METHODFLAGS Id takes a value of
either "PUBLIC" or "PRIVATE" and defines the privacy status of the
method.

NXP_AINFO_NAME "methodname"
NXP_AINFO_ATTACHEDTO"atomName_attached_to"
NXP_AINFO_TYPE "SLOT" or "OBJECT", ...
NXP_AINFO_LHS "Assign (|"hello world|") (message)"
NXP_AINFO_RHS "Assign (n+1) (n)"
NXP_AINFO_EHS "Reset (myhypo)"
NXP_AINFO_METHODFLAGS"PRIVATE" or "PUBLIC"
C Programmer’s Guide 283

Chapter NXP_Edit Functions6
NXP_AINFO_ARGLIST "@ARG1=_arg1; @NATURE=Slot..."
see TKB format

NXP_AINFO_COMMENTS "some comments"
NXP_AINFO_WHY "a why string"

Text

The Text member of the structure is an array of VSTRs that contains the text
representation of what appears in the Id field. The text representation
defines the atom for use in the knowledge base. To avoid redundant
definitions, we reuse the TKB syntax for the Edit API. In the case of a
complex atom such as a rule condition with a Retrieve, Write, or Execute
operator, we recommend that you output the TKB from the Rules Element
editors. Using this approach lets you rely on the interface to prompt you for
the required definition and prevents typing errors from being introduced
into the text definition.

In the case of conditions and actions, the text will be a simplified version of
the TKB (missing outer parentheses). All other atoms are defined by string
representations identical to the TKB syntax.

For example given that you want to define a method, you could generate the
following simple TKB description from the Method Editor:

(@METHOD testmeth
 (@ATOMID=a.b;@TYPE=SLOT;)
 (@ARG1=_d;@NATURE=Slot;@TYPE=Boolean;@LIST;@DEFVAL=TRUE;)
 (@ARG2=_d1;@NATURE=Slot;@TYPE=Boolean;@DEFVAL=TRUE;)
 (@FLAGS=PRIVATE)
 (@LHS (Assign("lhs")(a.string))
)

The following example shows the Ids and strings for the above method
when defined in the atom edit structure:

NXP_AINFO_NAME "testmeth"
NXP_AINFO_ATTACHEDTO"a.b"
NXP_AINFO_TYPE "SLOT"
NXP_AINFO_ARGLIST "@ARG1=_d;@NATURE=Slot; @TYPE=Boolean;
@LIST;

@DEFVAL=TRUE;"
NXP_AINFO_ARGLIST" @ARG2=_d1;@NATURE=Slot;
@TYPE=Boolean;

@DEFVAL=TRUE;"
NXP_AINFO_METHODFLAGS "PRIVATE"
NXP_AINFO_LHS "Assign("lhs")(a.string)"

Values supplied for the Ids must be quoted strings. Keyword definitions
must appear in all caps.

Error Handling
During compilation, in case of an error, NXP_CPL_Error is set to one of the
following values:

NXP_CPLERR_NOERR
NXP_CPLERR_NOMEM
NXP_CPLERR_CANCEL
NXP_CPLERR_INVSYNTAXLOW
NXP_CPLERR_INVSYNTAXUP
NXP_CPLERR_NEVER
284 C Programmer’s Guide

Setting up the Edit API
These codes are used to build error information (strings) which supply the
error description. This second set of codes (referred to in this document as
the IDS_CPL_xxx codes) can be used in conjunction with CPL_Error. The
IDS_CPL_XXX codes are currently found in ccompres.h. They are used to
load string resources from ccompres.rc. The string list resource in
ccompres.rc is called Messages. Messages currently contains both error and
warning strings.

Setting up the Edit API
The following functions provide general structure handling to allow
creation and deletion, as well as reset of the basic atom edit data structure.

NXP_EditDispose

Deallocates an existing atom edit structure and releases any memory.

void NXP_EditDispose (NxpEditPtr atomdef);

Once the atom's edit fields are deallocated by EditDispose(), the structure
cannot be reused and a new structure must be allocated. To reset the atom
edit structure without disposing, use EditReset().

Note that this must be a structure allocated with EditNew(), and must not
be stack based. Arrays will be reset to a size of 0, but the allocation will not
be shrunk. Any VStr's will be deallocated. In particular, any pointers in the
Text array will be disposed by VSTR_Dispose().

NXP_EditNew

Allocates memory for an atom with the standard edit fields.

NxpEditPtr NXP_EditNew (void);

EditNew() creates memory for an atom whose fields you wish to modify
and returns a pointer to the new structure. The new atom edit structure
contains the following fields:

Once allocated, the fields can be immediately filled through the EditSetStr()
function. The structure allocated must be disposed using EditDispose() to
avoid memory leaks.

AtomType A constant which defines the type of the knowledge base atom:
class, object, slot, property, method, rule, or context.

Id An array that constants that specify the field of the knowledge
base atom to be edited.

Text An array of strings that contain the text definition of the field to
be edited.

Errors Pointer to the atom info structure which reports error
information. See EditInfoNew().

Dependencies Pointer to the atom info structure which reports dependency
information. See EditInfoNew().
C Programmer’s Guide 285

Chapter NXP_Edit Functions6
NXP_EditReset

 Resets the fields of the atom edit structure for reuse.

void NXP_EditReset (NxpEditPtr atomdef);

EditReset() lets you reuse the memory already allocated when more than
one atom is to be modified. You can also create a new structure with
EditNew(), but must remember to free memory associated with each
structure you create using EditDispose().

Arrays will be reset to a size of 0, but the allocation will not be shrunk. Any
VStr's will be deallocated. In particular, any pointers in the Text array will
be disposed by VSTR_Dispose().

Receiving Error and Dependency Information
The following functions provide general structure handling to allow
creation and resetting of the atom information data structure. The structure
must be created and the Errors and Dependencies fields directly accessed in
the atom edit structure before error and dependency information can be
received.

NXP_EditInfoNew

Allocates memory for reporting errors and dependencies.

NxpEditInfoPtr NXP_EditInfoNew (void);

EditInfoNew() create memory for an atom that you want error and
dependency information reported for. The new atom info structure
contains the following fields:

Initially these fields are defined as NULL. To begin receiving error and
dependency information for a particular atom that you want to modify, you
must first obtain a pointer to the Error and Dependencies fields of the atom
edit structure:

NxpEditPtr NXP_Edit(void);
.
.
.
ptr->Dependencies=NXP_EditInfoNew();
ptr->Dependencies->Atoms=ARRAY_New();
NXP_EditDelete(ptr, ...);

Codes An array that contains the codes describing the type of
dependency resulting from a modify or delete edit operation.

Strs An array that contains the string descriptions of the dependency
resulting from a modify or delete edit operation.

Atoms An array that contains the AtomIds of the atoms which are
dependent on the atom being modified or deleted.
286 C Programmer’s Guide

Editing Capabilities
NXP_EditInfoDispose

Deallocates an existing atom info structure and releases any memory.

void NXP_EditInfoDispose (NxpEditPtr atomdef);

Once the atom's info fields are deallocated by EditInfoDispose(), the
structure cannot be reused and a new structure must be allocated. To reset
the atom edit structure without disposing, use EditInfoReset().

Note that this must be a structure allocated with EditInfoNew(), and must
not be stack based. Arrays will be reset to a size of 0, but the allocation will
not be shrunk. Any VStr's will be deallocated. In particular, any pointers in
the Text array will be disposed by VSTR_Dispose().

NXP_EditInfoReset

Resets the fields of the atom info structure for reuse.

void NXP_EditInfoReset (NxpEditInfoPtr atomerrinfo);

EditInfoReset() lets you reuse the memory already allocated when more
than one atom is to be modified. You must remember to free memory
associated with each structure you create using EditDispose().

Editing Capabilities
The following functions allow data to be fetched and atoms to be deleted,
modified, or created. These functions may generate dependency
information which you can have reported before completing the edit action.
In order to have dependency information reported, you must allocate the
atom info structure and access the Errors and Dependencies fields directly.

NXP_EditCreate

Creates a new atom in the knowledge base unless error information is
specifically requested.

Int NXP_EditCreate (NxpEditPtr atomdef, AtomId C_FAR * atom);

EditCreate() will either immediately create the atom specified by AtomId
within the knowledge base or it will generate a list of compilation errors for
you to receive before completing the action. It is important to note that
unless error information is specifically requested, EditCreate()
automatically creates that atom. If the create operation is allowed, the atom
whose definition you want to create will be based on the specified atom edit
structure.

Note that atom is a pointer to an AtomId, and a value will be returned in
atom, if the create request succeeds.

The return code will be 1 for success, 0 for failure. At completion of this call,
NXPError will be set as follows:

Code Description
NXP_ERR_NOERR for success

NXP_ERR_INVARG1 for a NULL atom pointer
C Programmer’s Guide 287

Chapter NXP_Edit Functions6
For EditCreate() if the atom edit structure passed is invalid, NXPError can
be set to the following errors:

NXP_EditDelete

Deletes the specified atom from the knowledge base unless dependency
information is specifically requested.

Int NXP_EditDelete (NxpEditPtr atomdef, AtomId atom);

EditDelete() will either immediately delete the atom specified by AtomId
from the knowledge base or it will generate a list of dependencies for you to
receive before completing the action. It is important to note that unless
dependency information is specifically requested, EditDelete()
automatically deletes the atom.

If dependency information is requested, EditDelete() will return the list of
dependency problems in the Dependencies field of the atom edit structure.
The existence of any dependencies will result in the atom not being deleted.
This gives you a chance to review the list of atoms which will be affected by
deleting the specified atom. You might want to modify the knowledge base
to remove the dependencies before completing the delete operation. If no
dependencies were found to exist for the specified atom, the system
completes the delete operation immediately.

You can force the system to delete an atom that has dependencies by
resetting the Dependencies field of the atom edit structure to NULL. If a
NULL NxpEditPtr or Dependencies field is provided, then it will be
understood that dependencies are to be ignored, and the specified atom will
be deleted.

NXP_ERR_COMPILEPB There was a problem modifying the atom. If not
NULL, the Errors ArrayPtr is provided in the atom
edit structure and error information will be reported.

Code Description
NXP_ERR_NULLEDPTR The edPtr is NULL.

NXP_ERR_NULLDATA The Text or Id array in the edPtr is NULL.

NXP_ERR_DATANSYNC The lengths of the Text and Id array are not equal.

NXP_ERR_INVALIDID There is an ID in the Id array which is not valid
for the AtomType of the edPtr.

NXP_ERR_INVALIDVSTR There is a NULL entry in the Text array of the
edPtr. All of the VStrPtr's in the Text array must
be not NULL.

NXP_ERR_MISSINGREQD A required piece of information for the
AtomType in the edPtr is missing - For instance
all atom types require an entry in the Id array of
NXP_AINFO_NAME. If one did not exist in the
Id array of the edPtr passed, this error would
result.

NXP_ERR_NOATOMTYPE The AtomType associated with the edPtr is
invalid.

Code Description
288 C Programmer’s Guide

Editing Capabilities
The return code will be 1 for success, 0 for failure. At completion of this call,
NXPError will be set as follows:

NXP_EditFill

Fills the atom edit structure with an existing atom's definition.

Int NXP_EditFill (NxpEditPtr atomdef, AtomId atom);

EditFill() lets you specify the AtomId of an atom such as a class, object, rule,
method that already exists in the knowledge base to define the fields of the
atom edit structure. The atom edit structure passed must be valid and
empty before it will be filled with the various fields corresponding to the
atom. The atom edit structure which contains the existing atom definition
can then be used for display or modification purposes.

The return code will be 1 for success, 0 for failure. At completion of this call,
NXPError will be set as follows:

In case of error, the structure passed in will remain unchanged.

If you want to define the atom edit structure with an existing slot, which can
include either context or meta-slot information, the AtomType field must be
filled in prior to calling EditFill(). This differentiates between context and
meta-slot information. It will be filled with NXP_ATYPE_CONTEXT or
NXP_ATYPE_SLOT respectively.

NXP_EditModify

Modifies the definition information of an existing atom unless dependency
information is specifically requested.

Int NXP_EditModify (NxpEditPtr atomdef, AtomId atom, AtomId *newAtom);

EditModify() will either immediately modify the atom specified by AtomId
within the knowledge base or it will generate a list of dependencies for you
to receive before completing the action. It is important to note that unless
dependency information is specifically requested, EditModify()
automatically modifies that atom. If the modification is allowed, the atom

Code Description
NXP_ERR_NOERR for success

NXP_ERR_INVARG1 for an unsupported or NULL atom

NXP_ERR_INVARG2 for a Dependencies ArrayPtr field that already
contains something. The Dependencies field
must be reset to NULL before dependencies can
be received.

NXP_ERR_DEPENDENCIES in the case of dependencies and a non-NULL
"Dependencies". If a NULL Dependencies field
or NxpEditPtr is provided, this error will never
be returned.

Code Description
NXP_ERR_NOERR for success

NXP_ERR_INVARG1 for an unsupported or NULL atom

NXP_ERR_INVARG2 for a NULL atom edit structure, or an atom edit
structure that already contains something.
C Programmer’s Guide 289

Chapter NXP_Edit Functions6
whose definition you want to modify will be based on the specified atom
edit structure.

If dependency information is requested, EditModify() will return the list of
dependency problems in the Dependencies field of the atom edit structure.
The existence of any dependencies will result in the atom not being
modified. This gives you a chance to review the list of atoms which will be
affected by modifying the specified atom. You might want to modify the
knowledge base to remove the dependencies before completing the modify
operation. If no dependencies were found to exist for the specified atom, the
system completes the modify operation immediately.

You can force the system to modify an atom that has dependencies by
resetting the Dependencies field of the atom edit structure to NULL. If a
NULL NxpEditPtr or Dependencies field is provided, then it will be
understood that dependencies are to be ignored, and the specified atom will
be modified.

Note that newAtom is a pointer to an AtomId, and a value will be returned
in newAtom, if the create request succeeds. Normally EditModify() returns
the same atomId specified when the modification is completed. In the case
of rules, however, the system first deletes the old atom and creates a new
atom for the modified rule. When modifying a rule, be sure to note the
newAtom returned will be different from the atom specified for
modification.

The return code will be 1 for success, 0 for failure. At completion of this call,
NXPError will be set as follows:

For the EditModify() if the atom edit structure passed is invalid, NXPError
can be set to the following errors:

Code Description
NXP_ERR_NOERR for success

NXP_ERR_INVARG1 for an unsupported or NULL atom

NXP_ERR_INVARG2 for a NULL newAtom

NXP_ERR_INVARG3 for a Dependencies ArrayPtr field that already
contains something. The Dependencies field must be
reset to NULL before dependencies can be received.

NXP_ERR_NOTFOUND for an atom that wasn't found

NXP_ERR_DEPENDENCI
ES

in the case of dependencies and a non-NULL
"Dependencies". If a NULL "Dependencies" is
provided, this error will never be returned.

NXP_ERR_COMPILEPB There was a problem modifying the atom. If not
NULL "Errors" ArrayPtr is provided in "rec", then
error information will be reported.

Code Description
NXP_ERR_NULLEDPTR The edPtr is NULL.

NXP_ERR_NULLDATA The Text or Id array in the edPtr is NULL.

NXP_ERR_DATANSYNC The lengths of the Text and Id array are not equal.

NXP_ERR_INVALIDID There is an ID in the Id array which is not valid for
the AtomType of the edPtr.
290 C Programmer’s Guide

Setting and Querying the Atom Definition
Setting and Querying the Atom Definition
The following functions let you fill and/or access the atom edit structure
with relative ease. Using these functions ensures that users will not
introduce errors to the ArrayPtr fields which result from accessing the atom
edit structure and its contents directly.

NXP_EditFindInstance

Retrieves the index number of the value that matches the specified Id and
string.

Int NXP_EditFindInstance (NxpEditPtr atomdef, Int Id, Str value, Int * index);

EditFindInstance() retrieves the index of the specified atom Id and string
value in the atom edit structure passed. This function is used to determine
which index is assigned to a given Text field Id and value.

The return code will be 1 for success, 0 for failure. At completion of this call,
NXPError will be set as follows:

NXP_EditGetNthStr

Retrieves the value of the atom Id which matches the index specified.

Int NXP_EditGetNthStr (NxpEditPtr atomdef, Int id, Str* value, Int index);

EditGetNthStr() retrieves the value of the specified atom Id which contains
multiple definition statements in the atom edit structure passed. For
example, a class or object atom might have several properties, or a rule can
have more than one condition defined in the atom edit structure. The atom
Ids which can have more than one input include:

For rules and methods:

NXP_AINFO_LHS
NXP_AINFO_RHS
NXP_AINFO_EHS

NXP_ERR_INVALIDVSTR There is a NULL entry in the Text array of the edPtr.
All of the VStrPtr's in the Text array must be not
NULL.

NXP_ERR_MISSINGREQD A required piece of information for the AtomType
in the edPtr is missing - For instance all atom types
require an entry in the Id array of
NXP_AINFO_NAME. If one did not exist in the Id
array of the edPtr passed, this error would result.

NXP_ERR_NOATOMTYPE The AtomType associated with the edPtr is invalid.

Code Description
NXP_ERR_NOERR the instance was located and returned successfully

NXP_ERR_NOTFOUND a matching instance could not be found.

NXP_ERR_INVARG1 the edPtr is invalid

NXP_ERR_INVARG3 the value is NULL

NXP_ERR_INVARG4 the instance is NULL

Code Description
C Programmer’s Guide 291

Chapter NXP_Edit Functions6
For classes:

NXP_AINFO_CHILDCLASS

For objects:

NXP_AINFO_CHILDOBJECT

Since multiple inputs can be specified in these cases, the particular instance
of the Id to retrieve is determined by the index number specified. The index
is 0-based, so the first id definition in the list of multiple Ids is 0. If an index
is specified that is higher than exists or the contents of the field is empty,
then a NULL pointer will be returned. Otherwise, if the index exists, the
user will be returned a pointer to the string part of the Text field present in
the atom edit structure. The user is NOT allowed to modify the contents of
this string.

The return code will be 1 for success, 0 for failure. At completion of this call,
NXPError will be set as follows:

NXP_EditGetStr

Retrieves the value of the atom Id specified.

Int NXP_EditGetStr (NxpEditPtr atomdef, Int id, Str* value);

EditGetStr() retrieves the value of the specified atom Id in the atom edit
structure passed. As a special case, value is returned as a NULL pointer if
the contents of the field had been empty (i.e.: no field existed in the current
structure). The user will be returned a pointer to the string part of the Text
field present in the atom edit structure. The user is NOT allowed to modify
the contents of this string.

The return code will be 1 for success, 0 for failure. At completion of this call,
NXPError will be set as follows:

NXP_EditRemoveNthStr

Removes the atom Id and its text string which matches the index specified.

Int NXP_EditRemoveNthStr (NxpEditPtr atomdef, Int Id, Int index);

EditRemoveNthStr() removes the value of the specified atom Id which
contains multiple definition statements in the atom edit structure passed.
The index parameter determines which instance of the Id should be

Code Description
NXP_ERR_NOERR for success

NXP_ERR_INVARG1 for a NULL rec pointer

NXP_ERR_INVARG2 for an invalid value for "id" (this will depend on
AtomType).

NXP_ERR_INVARG3 for instance less than zero.

Code Description
NXP_ERR_NOERR for success

NXP_ERR_INVARG1 for a NULL rec pointer

NXP_ERR_INVARG2 for an invalid value for "id" (this will depend on
AtomType).
292 C Programmer’s Guide

Setting and Querying the Atom Definition
removed. The matching is done on Id. The index is 0-based, so the first Id
definition in the list of multiple Ids is 0.

Use EditFindInstance() to obtain the index value of a particular atom Id
definition statement.

The return code will be 1 for success, 0 for failure. At completion of this call,
NXPError will be set as follows:

NXP_EditRemoveStr

Removes the atom Id specified and its text string.

Int NXP_EditRemoveStr (NxpEditPtr atomdef, Int Id);

EditRemoveStr() removes the value of the specified atom Id and its
associated string definition in the atom edit structure passed. The matching
is done on Id. In the case where more than one Array entry contains the Id,
only the first one will be removed.

The return code will be 1 for success, 0 for failure. At completion of this call,
NXPError will be set as follows:

NXP_EditSetAtomType

Sets the value of AtomType in the atom edit structure specified.

Int NXP_EditSetAtomType (NxpEditPtr atomdef, Int type);

EditSetAtomType() sets the value of the AtomType field to the constant type
in the atom edit structure passed. The field will be set regardless of its
current value. AtomType will only be set if the atom edit structure is a
valid, and new or reset structure, and type is a valid value.

The return code will be 1 for success, 0 for failure. At completion of this call,
NXPError will be set as follows:

Code Description
NXP_ERR_NOERR The instance was located and removed successfully

NXP_ERR_NOTFOUND A matching instance could not be found.

NXP_ERR_INVARG1 The edPtr is invalid

NXP_ERR_INVARG3 The instance is invalid.

Code Description
NXP_ERR_NOERR A matching entry was located and removed.

NXP_ERR_NOTFOUND A matching entry could not be found.

NXP_ERR_INVARG1 The edPtr is invalid

Code Description
NXP_ERR_NOERR for success

NXP_ERR_INVARG1 for a NULL rec pointer, or a "rec" that already contains
something

NXP_ERR_INVARG2 for an invalid value for "type"
C Programmer’s Guide 293

Chapter NXP_Edit Functions6
NXP_EditSetNthStr

Sets the value of the atom Id which matches the index specified.

Int NXP_EditSetNthStr (NxpEditPtr atomdef, Int id, Str value, Int index);

EditSetNthStr() sets the value of the specified atom Id which contains
multiple definition statements to the quoted string value in the atom edit
structure passed. For example, a class or object atom might have several
properties, or a rule can have more than one condition defined in the atom
edit structure. The atom Ids which can have more than one input include:

For rules and methods:

NXP_AINFO_LHS
NXP_AINFO_RHS
NXP_AINFO_EHS

For classes:

NXP_AINFO_CHILDCLASS

For objects:

NXP_AINFO_CHILDOBJECT

Since multiple inputs can be specified in these cases, the particular instance
of the Id to set is determined by the index number specified. The index is
0-based, so the first id definition in the list of multiple Ids is 0. If an index is
specified that is higher than exists, then value will be added to the end.
Otherwise, if the index exists, it will be changed.

Upon successful return, the contents of the string will have been captured
in the structure, and the user is free to re-use, de-allocate, or do whatever
with the string that is passed in.

The return code will be 1 for success, 0 for failure. At completion of this call,
NXPError will be set as follows:

NXP_EditSetStr

Sets the value of the specified atom Id.

Int NXP_EditSetStr (NxpEditPtr atomdef, Int id, Str value);

EditSetStr() sets the value of the specified atom Id to the quoted string value
in the atom edit structure passed. The field will be set regardless of its
current value. Text will only be set if the atom edit stru

Code Description
NXP_ERR_NOERR for success

NXP_ERR_INVARG1 for a NULL rec pointer

NXP_ERR_INVARG2 for an invalid value for "id" (this will depend on
AtomType).

NXP_ERR_INVARG3 for instance less than zero.
294 C Programmer’s Guide

Chapter
7 NXP_Context Functions 7

This chapter describes the API you use to invoke independent Intelligent
Rules Element sessions.

Introduction
Users can use the new context switching API to invoke an independent
session of the Rules Element while already in a session, and not have the
knowledge bases / name spaces collide. For example, an application may be
in a question handler, and in order to answer the question, it may be
necessary to run another KB to get the answer.

In previous releases it was possible, but usually required use of the Rules
Element journaling capability (saving a session to a file, and subsequently
restoring it to the state at the time of the save). This exacted a heavy penalty,
both in terms of use and performance. Even more difficult to control is the
case when someone is using the Rules Element in an application that is
using a tool or capability that may also be using the Rules Element. In this
case, there is again the real possibility of “overlap”, and no control over the
names or agenda may be possible. This scenario will usually be in a
single-user-oriented system or application.

Making the Rules Element application “partitionable” to work on the server
side of a client-server application though the context switching API offers
many advantages. In previous releases it was easier to put them on the client
side, because to put the Rules Element on the server side meant either using
a separate connection / process per client, or extensive use of the Rules
Element journaling capabilities. The new context switching API offers the
control of client-server functionality while improving performance over the
old solutions.

Audience
Users needs to be able to develop a rules and objects-based application
without concern of collision with anyone else and/or be able to provide a
server-based environment that can handle multiple clients from a single
process.

Specific Features
The context switching API includes the following features:

Multiple Sessions

It is possible to run multiple independent sessions without the various
sessions impacting one another.
C Programmer’s Guide 295

Chapter NXP_Context Functions7
User Compatibility

Backward compatibility at the user level is provided. Developers can
continue to use their existing knowledge bases (KB's) and API's. Users who
know they may exist in a multi-session environment can use the new
without affecting applications that use the old API.

Performance

In terms of both memory and CPU usage, there is a minimal performance
impact whether the feature is used or not.

HW/SW Requirements

Specialized hardware and/or software (e.g., a multi-threaded environment)
is not necessary.

Debugging

The new API allows the user to debug their application.

Context Switching Overview
In a context switched environment, the contexts are user defined and user
controlled / switched. The context can only be switched by the user (i.e.,
“manually”), and can only be switched at certain times. For example, there
can be no context switch by the user during inference engine cycles, or
during a load or save of a KB. Another important difference is that there is
only one stack. A local / stack-based variable in a routine exists in only one
place, shared by all contexts. Switching must be done at controlled times.

This implementation of the context switch does not include the GUI or
Database portions of the ND code / libraries. It is not normally necessary to
“thread” the GUI portion anyway since on a server, there is typically no
GUI; on a client, you can keep the GUI enshrouded and spawn off threads.

Switching Limitations

Since the context can only be switched in user code, this removes a lot of
issues with maintaining the integrity / consistency of the engine along with
the context currently executing. One problem that can occur is in a user
installed handler. For example, a user handler could be invoked during an
inference session, and the user could switch the context inside and return in
a different context than the one we had at entry. In a true multi-threaded
environment, this would not be an issue, since each thread has its own stack,
registers (or copy thereof), etc. In this context case, however, we may have
entered with N items being processed, and return where fewer than N items
even exist. If we were in a loop, this would cause fatal memory access
problems.

The only way to avoid this is that the Rules Element will “remember” the
context block in use when entering a handler (i.e.: calling back to user code),
and require that context block be the one in use when the handler returns.
During execution of the handler, the user can temporarily invoke a new
context block if desired, but will have to restore the original before returning
from their code. If a context is not properly restored, the Rules Element will
296 C Programmer’s Guide

Context Switching Overview
issue an error, and restore the proper context. If this context is not available
(e.g.: the user may have destroyed it in their handler), an ERR_Fail() will be
executed to anyone prepared to attempt to recover.

Users will have to be aware of this issue in other places where external
access is allowed outside the Rules Element scope (e.g.: script verbs).

Context Scope

This context block is currently intended to be limited in scope to the “pure”
runtime. This means, basically, that the NXP library will be context
switchable, but no other library (such as GUI, database, and execute).

NDCORE and NDRES will not be able to have contexts using this
mechanism. The statics and (few) externs would be problems in a threaded
environment, but probably not in a context-based environment. For
example, there are some static fields for the FILE module, and the error
handling, but these are acceptable in a context environment where the
switches occur at discrete times (plus, the Rules Element does not rely much
on the OI error-handling mechanism). In terms of the resource manager,
there is again a single common resource root, but for the Rules Element's
purposes, it only contains the “static” string resources of the Rules Element,
and this can be considered as a readonly access that is constant from context
to context. One possible problem (from memory) is that there may be an
NDCORE static variable to determine which the Rules Element format to
use: database or user-display. This may have to be cached in the context
block

We cannot allow any graphics (e.g.: NOIR, NXGFX, NDVGM, NDTKIT, ...)
because any context that used graphic resources could collide with any
other. It is possible, however, for the same interface to have multiple the
Rules Element contexts underneath.

A similar quick look at NXDB (Database and Flat file access) indicates that
this would probably be a big effort to include in the context mechanism. Part
of this is due to the large number of statics used in some of the modules
(specifically the flat files); part is due to the lack of a context mechanism
already when database handlers are called; and part is due to uncertainty
with the external linkage with things like Data Access, Oracle, etc.

For now, SCRPT and SCVRB (scripts in general) cannot be added since there
is a single lookup for verbs, event definitions, etc.

For those libraries that are not “active” in the context mechanism, it simply
means that they can use the NXP library in a context mode, but they
themselves cannot be customized on a context by context basis. For
example, an Oracle connection pointer would appear as common to all
contexts (some database software won't even allow multiple connections
from a single process to a local database).

Contents of the Context Block

The context block currently in the Rules Element contains a number of
(previously) extern variables, now accessed through the context record / C
structure.
C Programmer’s Guide 297

Chapter NXP_Context Functions7
Logic Flow When Manipulating Contexts

Creating a context uses the following program logic:

cntx = NXP_ContextNew();
NXP_Control(NXP_CTRL_INIT); /* mandatory */
set some visual clues or start another session

(suggest/volunteer/knowcess)
attach multiple clientdata to a context. If you attach only

one, you still need to get an Id.

To achieve best performance results, it is recommended that you globally
initialize your contexts up-front (for instance, at start-up) if you know how
many contexts will be used.

One problem that can occur is in a user installed handler. For example, a
user handler could be invoked during an inference session, and the user
could switch the context inside and return in a different context than the one
we had at entry. Users will have to be aware of this issue in other places
where external access is allowed outside the Rules Element scope (for
example: script verbs).

The best way to deal with this is to stop the session and set a flag. When back
to the main loop, you check the flag to know what context operation to do.
Switching contexts within an Execute even after a stopped session, will
make the new context fail.

Example code to pop out and push down contexts through the Execute:

static Int S_Switch = 0
static Int S_Running = 0
static Int C_FAR MyHandler (...)
{

NXP_Control(NXP_CTRL_STOPSESSION);
S_Switch = OPERATION...;
return 1;

}
...
main_loop() {

...
while (S_Switch) {

...
switch (S_Switch) {

case OPERATION1:
S_Switch = 0;
/(new context switch */
/* knowcess is safe here */
break;

case OPERATION2:
S_Switch = 0;
/* Delete/restore context */
break;

case NOOP:
break;

default:
/* Error */

}
...

}
}
main () {

/* initialize NXP, set handlers, ... */
...
S_Running = 1;
298 C Programmer’s Guide

Context API
while (S_Running) main_loop();
...
/* exit clean-up */

}

To delete a context, use the following program logic:

switch to a new context or back to the default initial one
delete all clientdata attached to the context.
If you don't you will get memory leaks

NXP_Control(NXP_CTRL_EXIT)
NXP_DeleteContext()

Sharing Information Between Contexts

Sessions that you create do not automatically share Rules Element
information. If you want to transfer objects or values between contexts, it is
your responsibility to either save it into a file of objects/values or in
variables which provide what you need.

Note that although you can cache the AtomId in a context before switching,
the atom has a separate AtomId per context if multiple contexts use the
atom. There is no API function which lets you clone a context. The best
alternative is to use the NXP_Journal() function to save the state and then
restore the state in the second context as the following code shows:

/* clone a context */
NXP_Journal(NXP_JRNL_STATESAVE, (AtomId)0, "state.nxp");
if (!(cntx = NXP_ContextNew())) return 0;
NXP_Control(NXP_CTRL_INIT);
oldCntx = NXP_ContextSetCur(cntx);
NXP_Journal(NXP_JRNL_STATERESTORE, (AtomId)0, "state.nxp");

Context API
The existing API will remain unchanged and function as before. In
particular, NXP_Control with NXP_CTRL_INIT or NXP_CTRL_EXIT will
assume no contexts ... only a single instance. It will, however, use the
context mechanism, but refer to a "well-known" context. It is the
responsibility of the developer / user of the contexts to maintain (if
necessary) a list of active session contexts (though it would be possible to
provide a list of allocated contexts).

The NXP contains these context switching API functions:

NXP_ContextNew

Creates a new, empty context.

NxpContextPtr NXP_ContextNew (void);

The size of the context record, to be presented later, is actually very small
(<100 bytes, but with pointers to probably very large client context blocks).
Creating a new context does not make it the current context. All necessary
structures must be initialized.
C Programmer’s Guide 299

Chapter NXP_Context Functions7
NXP_ContextDispose

Disposes of a context block.

void NXP_ContextDispose (NxpContextPtr context);

It is the responsibility of any clients to dispose of their portion of the context
block (see NXP_ContextSetNfyProc() later). The disposer of the context
must destroy all necessary structures.

NXP_ContextGetCur

Returns the current context.

NxpContextPtr NXP_ContextGetCur (void);

A NULL return means there was no previous established context.

NXP_ContextSetCur

Sets the provided context pointer to be the current context.

NxpContextPtr NXP_ContextSetCur (NxpContextPtr context);

The previous context pointer will be returned, since a likely use will be to do
something, and then restore the original context. This can be ignored if
NXP_ContextGetCur() is used. A NULL return will mean there was no
previous established context (i.e., this is the first and/or only one).

NXP_ContextSetNfyProc

Associates a notification procedure with the context mechanism (globally,
not per context).

void NXP_ContextSetNfyProc (NxpContextProc proc);

It is possible to have more than one notification procedure installed. The
NxpContextProc’s will be called (in the reverse order in which they were
registered) with the NxpContextPtr, when the context is changed, or as
other events become necessary to register. This can be used by a listener to
set global variables for faster lookup, update windows, etc., as desired.

NXP_ContextUnsetNfyProc

Removes the specified NxpContextProc from the list to receive notifications.

void NXP_ContextUnsetNfyProc (NxpContextProc proc);

NXP_ContextAllocateClientId

Allocates a client id so that multiple client pointers / data can be associated
with the context block.

NxpContextClientId NXP_ContextAllocateClientId (void);

The client/customer should always use this id when accessing the
clientdata via one of the next two calls. Note that this id can vary from
session to session depending on if/whether others are also storing
clientdata and what order things get done in.
300 C Programmer’s Guide

Examples Description
NXP_ContextSetClientData

Allows a customer to store information along with the context block, for a
given client id.

void NXP_ContextSetClientData (NxpContextPtr context, NxpContextClientId id,
ClientPtr data);

NXP_ContextGetClientData

Allows a customer to retrieve their client information from the context
block, given the appropriate client id.

ClientPtr NXP_ContextGetClientData (NxpContextPtr context, NxpContextClientId id);

Debugging API

Additional APIs have been provided to check the validity of certain context
related items. This is because for the above API, serious errors will usually
be signaled with the Open Interface error handling mechanism. Serious
errors are (for now): an illegal CntxtClientId, and a bad CntxtPtr. If this is
not desired, then the following API should be used, but once an application
is debugged, the use of the following API should not be required:

NXP_ContextIsValid

Performs validation of the context block pointer.

BoolEnum NXP_ContextIsValid (NxpContextPtr context);

NXP_ContextIsClientIdValid

Performs validation of the client id.

BoolEnum NXP_ContextIsClientIdValid (NxpContextClientId id);

Examples Description
This Rules Element API primer teaches you how to use the Rules Element
"data context switching" API. It starts with a very simple example and
progresses to more complex examples.

The context API is designed to allow the user to have several Rules Element
sessions going without any overlap of name space or engine operations.
This allows applications to safely make use of multiple Rules Element
sessions.

The examples are explained in more detail within the C file itself. Each file
contains an overview at the front, and the code itself contains numerous
explanatory comments. In addition, the examples print out information
along the way to illustrate what is happening (the user could also follow this
with a debugger, if that is available). There is no graphical interface to these
examples, since the context switching is purely non-graphical. On those
machines (eg: Macintosh, PC Windows, ...) that do not have a command line
interface / console such as is found on most workstations, the print out will
appear in an oit.dbg file in the working directory.

The KB's are extremely simple in order to allow the point to be made. The
KB's are also designed to have significant "name overlap" ("h" for hypo, etc),
C Programmer’s Guide 301

Chapter NXP_Context Functions7
so that the separation of the contexts is more obvious. The examples
generally stick with 2 KB's, again for no other reason than keeping the
example simple.

Example 1 (cntx1*.*): KB's in series.

This example runs two KBs, first one to completion, then the other.
Represented as a "timing diagram" this would be:

KB1 ------------X
KB2 -------------X

Example 2 (cntx2.*): Using a KB to answer another KB question.

This example again involves two KBs. The first KB asks a question that
requires a second KB to be run in order to provide the answer. A question
handler traps the request to setup a context for the second KB. After the
second KB completes, its answer is provided to the first. Represented as a
"timing diagram" this would be:

KB1 ------------ ------------X
KB2 -------------X

Example 3 (cntx3.*): Crude task switching from KB to KB via POLLING.

This example, using two KBs, installs polling handlers to allow Each KB to
run for "a while", before the context is switched to run the next KB for "a
while". It also illustrates how to set up "per context" ClientData so the user
can use context-specific data. Represented as a "timing diagram" this would
be:

KB1 -- -- -- -- -- -- --X
KB2 -- -- -- -- -- -- --X

Each example contains the following files:

A Simple Example cntx1.c

Overview

This example provides an introduction to using data contexts in the Rules
Element. This is a simple example using one context to load a knowledge
base, get some atom and KB IDs, run the KB to completion, and then do
almost exactly the same thing in a following context. The same KB is used
in the context, but it is important to note that different atom and KB IDs are
returned from the queries. Also, since the questions are answered
differently, the "same" hypo has different values in the two contexts. It
should also be noted that each context keeps its own set of handlers (eg: the
question handler).

Execution flow / logic

1. load / initialize the Rules Element

2. get hypo, set question handler, and knowcess (check IDs and values)

3. create a new data context

cntx*.c source files for the context examples

cntx*.tkb KB's for the context examples

makefile makefiles to rebuild the examples
302 C Programmer’s Guide

A Simple Example cntx1.c
4. repeat (1) and (2) for this context

5. destroy this context; restore previous context

verify original context still preserved

destroy original context and exit

cntx1.c listing
#define ERR_LIB the Rules Element

#include <errpub.h>
#include <strpub.h>
#if (MCH_WIN == MCH_WINMSW)
include <apppub.h>
#endif
#include <ndoptpub.h>
#include <nxppub.h>

ERR_DECLARE

#define ND_RT
#define ND_NXP
#include <ndopt.c>

/***
Question handlers

**/

/* This one always answers TRUE */
static Int S_AnswerTrue L2(AtomId, atom, Str, str)
{

Int status;
Int value = NXP_BOOL_TRUE;

STR_Printf("%s ... answering TRUE\n", str);
status = NXP_Volunteer(atom, NXP_DESC_INT, (Str)&value,

NXP_VSTRAT_QFWRD);
return 1;

}

/* This one always answers FALSE */
static Int S_AnswerFalse L2(AtomId, atom, Str, str)
{

Int status;
Int value = NXP_BOOL_FALSE;

STR_Printf("%s ... answering FALSE\n", str);
status = NXP_Volunteer(atom, NXP_DESC_INT, (Str)&value,

NXP_VSTRAT_QFWRD);
return 1;

}

/**
Context-based code: creates context, runs a KB, destroys context

**/

static void S_DoContext L0()
{

Int status;
KBId kb;
AtomId atom;
Int boolValue;
NxpContextPtr cntx;
C Programmer’s Guide 303

Chapter NXP_Context Functions7
NxpContextPtr prevCntx;
NxpIProc fcn;

/*
 * Create a new the Rules Element context; make it the "current"
 * context (save the previous one); and initialize the new context
 */
cntx = NXP_NewContext();
prevCntx = NXP_CurSetContext(cntx);
status = NXP_Control(NXP_CTRL_INIT);

/*
 * Load the same KB as before, but answer the question differently.
 * Verify (check printout) that KBIds, AtomIds, and hypo values
 * are indeed different from before.
 */
status = NXP_LoadKB("cntx1.tkb", &kb);
status = NXP_GetAtomId("h.Value", &atom, NXP_ATYPE_HYPO);
status = NXP_SetHandler(NXP_PROC_QUESTION, S_AnswerFalse, 0);
status = NXP_Suggest(atom, NXP_SPRIO_SUG);
status = NXP_Control(NXP_CTRL_KNOWCESS);
status = NXP_GetAtomInfo(atom, NXP_AINFO_VALUE, 0, 0, NXP_DESC_INT,

(Str)&boolValue, 0);
status = NXP_GetHandler(NXP_PROC_QUESTION, &fcn, 0);
STR_Printf("\n");
STR_Printf("Context: KBId = %p\n", kb);
STR_Printf("Context: hypo AtomId = %p\n", atom);
STR_Printf("Context: hypo value = %d\n", boolValue);
STR_Printf("Context: question handler = %p\n", fcn);
STR_Printf("Context: S_AnswerFalse = %p\n", S_AnswerFalse);

/* Destroy this context */
status = NXP_Control(NXP_CTRL_EXIT);
NXP_DisposeContext(cntx);

/* Restore the previous context */
NXP_CurSetContext(prevCntx);

}

/**
Main program

**/

Int main L2(Int, argc, Str*, argv)
{

Int status;
KBId kb;
AtomId atom;
Int boolValue;
NxpIProc fcn;

ERR_MAININIT;

APP_InitFirst();
NDOPT_Install();
APP_InitLast();

/*
 * For demo purposes, load a simple KB, install and answer a
 * question, and check various IDs and values (to be contrasted
 * later with what is found in a "data context".
 */
status = NXP_LoadKB("cntx1.tkb", &kb);
status = NXP_GetAtomId("h.Value", &atom, NXP_ATYPE_HYPO);
304 C Programmer’s Guide

A Simple Example cntx1.c
status = NXP_SetHandler(NXP_PROC_QUESTION, S_AnswerTrue, 0);
status = NXP_Suggest(atom, NXP_SPRIO_SUG);
status = NXP_Control(NXP_CTRL_KNOWCESS);
status = NXP_GetAtomInfo(atom, NXP_AINFO_VALUE, 0, 0, NXP_DESC_INT,

 (Str)&boolValue, 0);
STR_Printf("Main: KBId = %p\n", kb);
STR_Printf("Main: hypo AtomId = %p\n", atom);
STR_Printf("Main: hypo value = %d\n", boolValue);

/* Do same calls in a context */
S_DoContext();

/*
 * One last quick check to show that the hypo and question handlers
 * in this main context still has the same value as before (different
 * from that in the context).
 */
status = NXP_GetAtomId("h.Value", &atom, NXP_ATYPE_HYPO);
status = NXP_GetAtomInfo(atom, NXP_AINFO_VALUE, 0, 0, NXP_DESC_INT,

 (Str)&boolValue, 0);
status = NXP_GetHandler(NXP_PROC_QUESTION, &fcn, 0);
STR_Printf("\n");
STR_Printf("Main: hypo AtomId = %p (still)\n", atom);
STR_Printf("Main: hypo value = %d (still)\n", boolValue);
STR_Printf("Main: question handler = %p (still)\n", fcn);
STR_Printf("Main: S_AnswerTrue = %p\n", S_AnswerTrue);

/* This will destroy the main (current) "context" */
NDOPT_Exit();

return EXIT_OK;
}

cntx1.ms makefile listing
#---
Makefile
#
Make: Microsoft nmake
#
@(#)cntx1.ms5.1 95/04/05
#---

BUILD = DEBUG
SYSTEM = CONSOLE
!include <$(ND_HOME)\include\makedef.inc>

#---
Files
#---

OBJS = cntx1.obj
EXES = cntx1.exe
RCOS =

LIBS = $(LIBS_OS) $(LIBS_CORE) $(LIBS_NX)

!include <$(ND_HOME)\include\makerule.inc>

#---
End
#---
C Programmer’s Guide 305

Chapter NXP_Context Functions7
cntx1.tkb listing
(@VERSION=035)
(@COMMENTS="@(#)cntx1.tkb5.1 95/04/05")
(@OBJECT=a (@PUBLICPROPS=Value@TYPE=Boolean;))
(@OBJECT=h (@PUBLICPROPS=Value@TYPE=Boolean;))
(@RULE=R_h

(@LHS= (Yes (a)))
(@HYPO=h)

)
(@GLOBALS=@SUGLIST=h;)

Using a Question Handler: cntx2.c

Overview

This example continues an introduction to using data contexts in the Rules
Element. This example uses two contexts: the original context loads a
Knowledge Base and asks a simple question; the second context invokes a
KB that provides the answer to the question from the first KB. As with the
first example, the KBs are kept extremely simple to not overly complicate
the example, and the atom names are deliberately re-used to illustrate the
distinct non-overlapping name spaces. In this particular example, the
second context is pre-setup to improve the performance (an alternative with
poorer performance would have the each invokation of the question
handler create the context, load the KB, destroy the context, etc).

Execution flow / logic

1. Set up context1 for main KB; install question handler

2. Set up context2 to answer question

3. Return to context1 and loop over KB in context1

4. In question handler, switch to context2, run and get answer

5. In question handler, restore context1, and volunteer answer

cntx2.c listing
#define ERR_LIB the Rules Element

#include <errpub.h>
#include <strpub.h>
#if (MCH_WIN == MCH_WINMSW)
include <apppub.h>
#endif
#include <ndoptpub.h>
#include <nxppub.h>

ERR_DECLARE

#define ND_RT
#define ND_NXP
#include <ndopt.c>

/* statics for easy reference to context #1 */
static NxpContextPtrS_Cntx1 = NULL;
static AtomId S_Hypo1 = NULL;

/* statics for easy reference to context #2 */
static NxpContextPtrS_Cntx2 = NULL;
306 C Programmer’s Guide

Using a Question Handler: cntx2.c
static AtomId S_Hypo2 = NULL;

/***
Question handler ... use 2nd KB to randomly answer question from 1st

***/

static Int S_AnswerTrueOrFalse L2(AtomId, atom, Str, str)
{

Int status;
Int boolValue;
NxpContextPtr prevCntx;

STR_Printf("Asking: %s\n", str);

/*
 * Re-activate 2nd context. Remember this function returns the
 * current context (1st, in this case) so we can re-install it
 * before we we leave. The test is just to prove this case (the
 * cast as ULong is for PC-WIN)
 */
STR_Printf("Enter context2\n");
prevCntx = NXP_CurSetContext(S_Cntx2);
if ((ULong)prevCntx != (ULong)S_Cntx1) {

STR_Printf("context error in question handler\n");
}

/*
 * Run the KB in the 2nd context, and use the boolean value
 * of the hypo (randomly TRUE or FALSE) as the answer for
 * the question being asked in the 1st KB.
 */
status = NXP_Control(NXP_CTRL_RESTART);
status = NXP_Suggest(S_Hypo2, NXP_SPRIO_SUG);
status = NXP_Control(NXP_CTRL_KNOWCESS);
status = NXP_GetAtomInfo(S_Hypo2, NXP_AINFO_VALUE, 0, 0,

NXP_DESC_INT, (Str)&boolValue, 0);
STR_Printf("cntx2_b.tkb, hypo = %d\n", boolValue);

/* Restore the previous KB */
(void)NXP_CurSetContext(S_Cntx1);

/* Volunteer the answer and return */
STR_Printf("Back to main context, answer: %d\n", boolValue);
status = NXP_Volunteer(atom, NXP_DESC_INT, (Str)&boolValue,

NXP_VSTRAT_QFWRD);

return 1;
}

/**
Main program

**/

Int main L2(Int, argc, Str*, argv)
{

Int status;
KBId kb;
AtomId atom;
Int boolValue;
Int i;

ERR_MAININIT;

APP_InitFirst();
C Programmer’s Guide 307

Chapter NXP_Context Functions7
NDOPT_Install();
APP_InitLast();

/* Set up 1st context ... established by the above NDOPT_Install */
S_Cntx1 = NXP_CurGetContext();
status = NXP_LoadKB("cntx2_a.tkb", &kb);
status = NXP_GetAtomId("h.Value", &S_Hypo1, NXP_ATYPE_HYPO);
status = NXP_SetHandler(NXP_PROC_QUESTION, S_AnswerTrueOrFalse, 0);

/* Set up the 2nd context for use later */
S_Cntx2 = NXP_NewContext();
(void)NXP_CurSetContext(S_Cntx2);
status = NXP_Control(NXP_CTRL_INIT);
status = NXP_LoadKB("cntx2_b.tkb", &kb);
status = NXP_GetAtomId("h.Value", &S_Hypo2, NXP_ATYPE_HYPO);

/* Go back to 1st context and run it "N" (4) times */
(void)NXP_CurSetContext(S_Cntx1);
for (i=0; i<4; i++) {

STR_Printf("\n");
STR_Printf("Main: pass number = %d\n", i);
/*
 * Run the 1st KB and print out the hypo. The KB's are
 * set up so that the boolean values change randomly,
 * but should always be opposite values.
 */
status = NXP_Control(NXP_CTRL_RESTART);
status = NXP_Suggest(S_Hypo1, NXP_SPRIO_SUG);
status = NXP_Control(NXP_CTRL_KNOWCESS);
status = NXP_GetAtomInfo(S_Hypo1, NXP_AINFO_VALUE, 0, 0,

NXP_DESC_INT, (Str)&boolValue, 0);
STR_Printf("cntx2_a.tkb, hypo = %d\n", boolValue);

/*
 * One last print out to verify that the h.Value from
 * the 2nd context hasn't changed and is still distinct
 * from the h.Value of the 1st context.
 * Note that since we have not destroyed the 2nd context and
 * know the atom ID, we can still do queries about the other
 * context, even though it is not active. Static queries
 * of this nature are possible, as long as you are careful
 * about the existence of the other context!
 */
status = NXP_GetAtomInfo(S_Hypo2, NXP_AINFO_VALUE, 0, 0,

NXP_DESC_INT, (Str)&boolValue, 0);
STR_Printf("cntx2_b.tkb, hypo = %d (still)\n", boolValue);

}

/* Restore 2nd context to destroy it ... */
(void)NXP_CurSetContext(S_Cntx2);
status = NXP_Control(NXP_CTRL_EXIT);
NXP_DisposeContext(S_Cntx2);

/* Restore 1st context to destroy it ... */
(void)NXP_CurSetContext(S_Cntx1);
NDOPT_Exit();

return EXIT_OK;
}

308 C Programmer’s Guide

Using a Question Handler: cntx2.c
cntx2.ms makefile listing
#---
Makefile
#
Make: Microsoft nmake
#
@(#)cntx2.ms5.1 95/04/05
#---

BUILD = DEBUG
SYSTEM = CONSOLE
!include <$(ND_HOME)\include\makedef.inc>

#---
Files
#---

OBJS = cntx2.obj
EXES = cntx2.exe
RCOS =

LIBS = $(LIBS_OS) $(LIBS_CORE) $(LIBS_NX)

!include <$(ND_HOME)\include\makerule.inc>

#---
End
#---

cntx2_a.tbk listing
(@VERSION=035)
(@COMMENTS="@(#)cntx2_a.tkb5.1 95/04/05")
(@OBJECT=a (@PUBLICPROPS=Value@TYPE=Boolean;))
(@OBJECT=h (@PUBLICPROPS=Value@TYPE=Boolean;))
(@RULE=R_h

(@LHS= (No (a)))
(@HYPO=h)

)
(@GLOBALS=@SUGLIST=h;)

cntx2_b.tbk listing
(@VERSION=035)
(@COMMENTS="@(#)cntx2_b.tkb5.1 95/04/05")
(@OBJECT=a (@PUBLICPROPS=Value@TYPE=Float;))
(@OBJECT=h (@PUBLICPROPS=Value@TYPE=Boolean;))
(@RULE=R_h

(@LHS= (Assign(RANDOM())(a))
(< (a) (RANDOMMAX()/2))
)
(@HYPO=h)

)
(@GLOBALS=@SUGLIST=h;)
C Programmer’s Guide 309

Chapter NXP_Context Functions7
A Polling Example: cntx3.c

Overview
This example concludes the introduction to using data contexts in the Rules
Element. This example uses two contexts, though the code is able to be
easily extended to more. Each context is pre-loaded with a KB (in this case
the same KB, but that is also not necessary), with their appropriate starting
hypos suggested. Polling and EndOfSession handlers are setup for each
context (the same handlers for each). These contexts are individually
registered in an Array as needed to be started. As these contexts are started,
they are moved into an active task Array. Every "so many" ticks of the
polling handler we stop the current the Rules Element session and return
from the knowcess to switch to another context. At the very end, we remove
the task from the active list and put it on the idle Array for destruction at the
end of the program.

This example also shows how to make use of context-specific clientdata (for
information you may wish to associate on a "per-context" basis.

Execution flow / logic

1. Create tasks: suggest hypo, install POLLING, ENDOFSESSION
handlers, associate context clientdata, etc.

2. Loop over tasks needing running (start-new / continue-existing)

3. In Polling handler, StopSession (main loop moves to "next task")

4. In EndOfSession handler, task is moved from Active to Idle queue.

5. At "wind down", display information (different per context) and
destroy contexts

cntx3.c listing
#define ERR_LIB the Rules Element

#include <errpub.h>
#include <strpub.h>
#include <arraypub.h>
#if (MCH_WIN == MCH_WINMSW)
include <apppub.h>
#endif
#include <ndoptpub.h>
#include <nxppub.h>

ERR_DECLARE

#define ND_RT
#define ND_NXP
#include <ndopt.c>

static ArrayPtr S_StartTasks= NULL;
static ArrayPtr S_ActiveTasks= NULL;
static ArrayPtr S_IdleTasks= NULL;

static NxpContextClientId S_ClientId= 0;
310 C Programmer’s Guide

A Polling Example: cntx3.c
/***
Polling handler

***/

#defineS_SWITCHCOUNT1

static Int S_SwitchTask L0()
{
static Int count = 0;

Int status;

/*
 * Check against a static counter in this Polling handler
 * (incremented each time through the loop). Every one out of
 * (S_SWITCHCOUNT + 1) times, trigger a STOPSESSION. This will
 * pause the current the Rules Element session and return control to
 * the main loop (which will activate the next context and do a
 * CONTINUE).
 */
if (count++ >= S_SWITCHCOUNT) {

status = NXP_Control(NXP_CTRL_STOPSESSION);
count = 0;

}

return 1;
}

/***
End-of-Session handler

***/

static Int S_EndTask L0()
{

Int status;
Int index;
Int boolValue;
AtomId hypo;
AtomId slot;
Double slotValue;
NxpContextPtr cntx;

/*
 * EndOfSession encountered ... move this task (context) from
 * the Active list to the Idle list for later disposal.
 */
cntx = NXP_CurGetContext();

index = ARRAY_LookupElt(S_ActiveTasks, (ClientPtr)cntx);
if (index == -1) {

STR_Printf("context error in EndOfSession handler\n");
}
ARRAY_SetElt(S_ActiveTasks, index, (ClientPtr)NULL);
ARRAY_AddElt(S_IdleTasks, (ClientPtr)cntx);

return 1;
}

/***
Print out task summary and dispose of it
(This assumes known names for hypos, atoms of interest)

***/

static void S_DisposeTask L1(NxpContextPtr, cntx)
{

C Programmer’s Guide 311

Chapter NXP_Context Functions7
Int status;
Int boolValue;
AtomId hypo;
AtomId slot;
Double slotValue;
Str taskName;

if (cntx == NULL) {
return;

}

(void)NXP_CurSetContext(cntx);

taskName = (Str)NXP_GetContextClientData(cntx, S_ClientId);
status = NXP_GetAtomId("h.Value", &hypo, NXP_ATYPE_HYPO);
status = NXP_GetAtomInfo(hypo, NXP_AINFO_VALUE, 0, 0, NXP_DESC_INT,

(Str)&boolValue, 0);
status = NXP_GetAtomId("a.Value", &slot, NXP_ATYPE_SLOT);
status = NXP_GetAtomInfo(slot, NXP_AINFO_VALUE, 0, 0,

 NXP_DESC_DOUBLE, (Str)&slotValue, 0);

STR_Printf("\n");
STR_Printf("task = %s\n", taskName);
STR_Printf("cntx = %p\n", cntx);
STR_Printf("hypo h.Value = %d\n", boolValue);
STR_Printf("slot a.Value = %.3f\n", slotValue);

PTR_Dispose(taskName);
status = NXP_Control(NXP_CTRL_EXIT);
NXP_DisposeContext(cntx);

}

/***
Resume a task

***/

static BoolEnum S_ResumeTask L1(NxpContextPtr, cntx)
{

Int status;

if (cntx == NULL) {
return BOOL_FALSE;

}

/*
 * Make this context current, and resume. (In this simple
 * implementation, completed tasks are NULLed out to avoid
 * perturbing this loop)
 */
(void)NXP_CurSetContext(cntx);
STR_Printf(" %s", (Str)NXP_GetContextClientData(cntx, S_ClientId));
status = NXP_Control(NXP_CTRL_CONTINUE);

return BOOL_TRUE;
}

/***
Start a task on the list

***/

static BoolEnum S_StartTask L2(NxpContextPtr, cntx, Int, index)
{

Int status;
312 C Programmer’s Guide

A Polling Example: cntx3.c
if (cntx == NULL) {
return BOOL_FALSE;

}

/*
 * Make this context current, move context from Start to Active
 * array and start it. (Elements are removed from the back to
 * not affect the countdown loop)
 */
(void)NXP_CurSetContext(cntx);
ARRAY_RemoveIndex(S_StartTasks, index);
ARRAY_AddElt(S_ActiveTasks, cntx);
STR_Printf(" %s", (Str)NXP_GetContextClientData(cntx, S_ClientId));
status = NXP_Control(NXP_CTRL_KNOWCESS);

return BOOL_TRUE;
}

/***
Create a new task and add it to the list

***/

static void S_NewTask L4(NxpContextPtr,cntx,
Str, taskName,
Str, kbName,
Str, hypoName)

{
KBId kb;
AtomId hypo;
Int status;
Str str;

STR_Printf("add task: name = %s, context = %p, kb = %s, hypo = %s\n",
taskName, cntx, kbName, hypoName);

/*
 * Load KB passed in, suggest hypo (for subsequent KNOWCESS).
 * Install POLLING and ENDOFSESSION handlers to "task switch"
 * and "terminate task" respectively.
 */
status = NXP_LoadKB(kbName, &kb);
status = NXP_GetAtomId(hypoName, &hypo, NXP_ATYPE_HYPO);
status = NXP_SetHandler(NXP_PROC_POLLING, S_SwitchTask, 0);
status = NXP_SetHandler(NXP_PROC_ENDOFSESSION, S_EndTask, 0);
status = NXP_Suggest(hypo, NXP_SPRIO_SUG);

/* Store our name, using ClientData field */
str = PTR_New(STR_Len(taskName)+1);
STR_Cpy(str, taskName);
NXP_SetContextClientData(cntx, S_ClientId, (ClientPtr)str);

ARRAY_AddElt(S_StartTasks, (ClientPtr)cntx);
}

/**
Main program

**/

Int main L2(Int, argc, Str*, argv)
{

Int status;
AtomId atom;
NxpContextPtr cntx;
Int index;
C Programmer’s Guide 313

Chapter NXP_Context Functions7
BoolEnum something_active = BOOL_TRUE;

ERR_MAININIT;

APP_InitFirst();
NDOPT_Install();
APP_InitLast();

/* Initialize task arrays */
S_StartTasks = ARRAY_New();
S_ActiveTasks = ARRAY_New();
S_IdleTasks = ARRAY_New();

/* Get a ClientId for using ClientData */
S_ClientId = NXP_AllocateContextClientId();

/*
 * Setup 1st context ... KB is arbitrary.
 * Pre-suggest hypo.
 * Install POLLING and ENDOFSESSION handlers.
 * Add context to start array.
 */
cntx = NXP_CurGetContext();
S_NewTask(cntx, "a", "cntx3.tkb", "h.Value");

/* Setup 2nd context ... KB is arbitrary, and do as before */
cntx = NXP_NewContext();
(void)NXP_CurSetContext(cntx);
status = NXP_Control(NXP_CTRL_INIT);
S_NewTask(cntx, "b", "cntx3.tkb", "h.Value");

/* Loop as long as something is still runnable ... */
while (something_active) {

something_active = BOOL_FALSE;

/* Look for anything needing starting ... */
index = ARRAY_GetLen(S_StartTasks) - 1;
if (index >= 0) STR_Printf("\nStart");
for (; index >= 0 ; index--) {

cntx = ARRAY_GetElt(S_StartTasks, index);
if (S_StartTask(cntx, index) == BOOL_TRUE) {

something_active = BOOL_TRUE;
}

}

/* Look for anything in a runnable state ... */
index = ARRAY_GetLen(S_ActiveTasks) - 1;
if (index >= 0) STR_Printf("\nRun");
for (; index >= 0 ; index--) {

cntx = ARRAY_GetElt(S_ActiveTasks, index);
if (S_ResumeTask(cntx) == BOOL_TRUE) {

something_active = BOOL_TRUE;
}

}
}

/*
 * Nothing left running ... destroy all used contexts
 */
STR_Printf("\n");
index = ARRAY_GetLen(S_IdleTasks) - 1;
for (; index >= 0 ; index--) {

cntx = ARRAY_GetElt(S_IdleTasks, index);
S_DisposeTask(cntx);
314 C Programmer’s Guide

A Polling Example: cntx3.c
}

/*
 * Note that we DO NOT CALL NDOPT_Exit() !
 * We manually destroyed all contexts in the destruct loop above.
 */

return EXIT_OK;
}

cntx3.ms makefile listing
#---
Makefile
#
Make: Microsoft nmake
#
@(#)cntx3.ms5.1 95/04/05
#---

BUILD = DEBUG
SYSTEM = CONSOLE
!include <$(ND_HOME)\include\makedef.inc>

#---
Files
#---

OBJS = cntx3.obj
EXES = cntx3.exe
RCOS =

LIBS = $(LIBS_OS) $(LIBS_CORE) $(LIBS_NX)

!include <$(ND_HOME)\include\makerule.inc>

#--
C Programmer’s Guide 315

Chapter NXP_Context Functions7
316 C Programmer’s Guide

Appendix
A Retrieving Rules Element
Information A

This appendix addresses the issues involved in the retrieving of information
from the Rules Element via the API. Because a lot of programming is done
"by example", working examples of actual code will be provided.

Following the examples, there will also be a discussion of things to watch
out for that may cause problems if you find your calls are not working.
Throughout this note, a very terse atom naming convention will be used.
Names like "c", "c1", etc. will refer to classes; "o", "o1", etc. will refer to
objects; "p", "p1", etc. will refer to properties. For example: "o.p1" would be
the property "p1" of object "o".

C Language
1. Introduction / Common Errors

The general syntax of the call is:

int NXP_GetAtomInfo(theAtom, code, optAtom, optInt,
 desc, thePtr, len)

with the arguments described by:

AtomId theAtom;
Int code;
AtomId optAtom;
int optInt;
int desc;
Str thePtr;
int len;

Remember that the routine NXP_GetAtomInfo must always have 7
arguments! It is possible (and even recommended) to use C macros for
shortcuts and to use the function prototypes defined in nxppub.h. If you
are using NXP_GetAtomInfo directly and are having problems, the first
thing you should do is count the number of arguments you have provided
in the call. Any arguments documented as being "optional" must still be
present, typically as a "0" or "NULL".

On 32-bit machines, people are sometimes careless and use int when
AtomId is requested. This will work on 32-bit machines like Alpha
OpenVMS and most Unix machines. This will NOT work in a PC Windows
16environment where int means a 16-bit quantity. If the C compiler on
your platform supports C function prototyping, you might wish to consider
using the portable data type of the Elements Environment such as Int32 for
32-bit integers or Int16 for 16 bit integer.

The 6th argument is used to return information to the caller. It must be a
writable, allocated storage area. The calling sequence follows the
"C-standard" and is documented by how it is seen by NXP_GetAtomInfo:
for example, a pointer to a char (since these are generic pointers).
C Programmer’s Guide 317

Appendix Retrieving Rules Element InformationA
However, some people have mistaken this for the argument to be passed
and do

IntPtr myIntPtr;
NXP_GetAtomInfo(... myIntPtr ...);

This is wrong! The variable myIntPtr does not point to a known storage
space, and the results from NXP_GetAtomInfo will be written to a random
location. The correct method is:

int myInt;
NXP_GetAtomInfo(... (Str) &myInt ...);

A pointer to the storage location myInt is being passed, and that is where
the results will end up. This statement applies for chars, ints, floats,
etc. With C strings, it is allowable to use "myString" instead of
"&myString[0]". This note will use the "&..[0]" mode to keep similarity
with the non-char accesses and to emphasize passing the "address-of" a
known location.

NXP_GetAtomInfo returns a value of "1" (type int) if it succeeds, or "0" if it
fails. It is not correct to check the return of NXP_GetAtomInfo against the
NXP_ERR_xxx codes! Only if the call to NXP_GetAtomInfo fails should the
user call NXP_Error() to determine the reason for the failure (now specified
by the NXP_ERR_xxx codes). That is, the correct use is:

if (!(NXP_GetAtomInfo(...)) {
reason = NXP_Error();
... etc ...

}

Neglecting the typecast indicated may cause the NXP_GetAtomInfo call to
fail.

2. Declarations

Under C, your variable declarations will typically look like:

#include <nxppub.h>
#define STRSIZE 255
AtomId myAtom;
int myBool;
int myInt;
long myLong;
float myFloat;
double myDouble;
Char myString[STRSIZE];
int myStringLen;
int status;

where the "my" variables are those your program wishes to retrieve.
STRSIZE is a C "define" that has been used to set the length of the C-string.

3. Retrieving an Integer Property Value

status = NXP_GetAtomId("o.p", &myAtom, NXP_ATYPE_SLOT);
status = NXP_GetAtomInfo(myAtom, NXP_AINFO_VALUE, (AtomId) 0,

0, NXP_DESC_INT, (Str) &myInt, 0);

Alternatively, using the pre-defined macro (which does the typecasts):

status = NXP_GetAtomId("o.p", &myAtom, NXP_ATYPE_SLOT);
status = NXP_GETINTVAL(myAtom, &myInt);

On many platforms, there is no difference between longs and ints. On
some platforms, like Windows 3.1.x for example, there is a difference
318 C Programmer’s Guide

C Language
between an int and a long, and you should be sure to use the correct
method to retrieve into the proper datatype. It is possible to explicitly
retrieve longs instead of ints with NXP_GetAtomInfo. (As an aside, the
Rules Element stores all integer slots internally as longs.)

status = NXP_GetAtomId("o.p", &myAtom, NXP_ATYPE_SLOT);
status = NXP_GetAtomInfo(myAtom, NXP_AINFO_VALUE, (AtomId) 0,

0, NXP_DESC_LONG, (Str) &myLong, 0
);

There is no macro version for NXP_DESC_LONG in nxppub.h but you can
easily add one yourself.

4. Retrieving a String Property Value

status = NXP_GetAtomId("o.p", &myAtom, NXP_ATYPE_SLOT);
status = NXP_GetAtomInfo(myAtom, NXP_AINFO_VALUE, (AtomId) 0,

0, NXP_DESC_STR, &myString[0], STRSIZE);

Alternatively, using the pre-defined macro (which does the typecasts):

status = NXP_GetAtomId("o.p", &myAtom, NXP_ATYPE_SLOT);
status = NXP_GETSTRVAL(myAtom, &myString[0], STRSIZE);

5. Retrieving a Boolean Property Value

status = NXP_GetAtomId("o.p", &myAtom, NXP_ATYPE_SLOT);
status = NXP_GetAtomInfo(myAtom, NXP_AINFO_VALUE, (AtomId) 0,

0, NXP_DESC_INT, (Str) &myBool, 0);

Alternatively, using the pre-defined macro (which does the typecasts):

status = NXP_GetAtomId("o.p", &myAtom, NXP_ATYPE_SLOT);
status = NXP_GETINTVAL(myAtom, &myBool);

You will note that this is essentially the same as retrieving an integer. Since
the Rules Element booleans can have 4 different values, you must check for
TRUE, FALSE, NXP_BOOL_UNKNOWN, and
NXP_BOOL_NOTKNOWN.

6. Retrieving a Real/Floating Property Value

status = NXP_GetAtomId("o.p", &myAtom, NXP_ATYPE_SLOT);
status = NXP_GetAtomInfo(myAtom, NXP_AINFO_VALUE, (AtomId) 0,

0, NXP_DESC_DOUBLE, (Str) &myDouble, 0);

Alternatively, using the pre-defined macro (which does the typecasts):

status = NXP_GetAtomId("o.p", &myAtom, NXP_ATYPE_SLOT);
status = NXP_GETDOUBLEVAL(myAtom, &myDouble);

Note that this is a "double" (e.g. 8 bytes of floating point information). It is
also possible to use floats instead of doubles with NXP_GetAtomInfo.
On most platforms, these are different, and you should be sure to use the
correct method to retrieve into the proper datatype. As an aside, the Rules
Element stores all floating point numbers internally as doubles.

status = NXP_GetAtomId("o.p", &myAtom, NXP_ATYPE_SLOT);
status = NXP_GetAtomInfo(myAtom, NXP_AINFO_VALUE, (AtomId) 0,

0, NXP_DESC_FLOAT, (Str) &myFloat,
0);

There is no macro version for NXP_DESC_FLOAT in nxpdef.h but you can
easily add one yourself.
C Programmer’s Guide 319

Appendix Retrieving Rules Element InformationA
320 C Programmer’s Guide

Index 2

Symbols
@ATOMID 16
@STRING 15

A
API vii
application programming interface (API) vii
atom ids 6
atom types 5–7
atoms, editing 279

C
C language 317
C library list 39
calling in 3–4, 13
calling out 3–4, 18
class 5
client-server functionality 295
compiling 12
context switching See runtime contexts 295

D
data 5
development system control 1

E
editing atoms

functions for 287
overview 279
querying edit structure 291
receiving errors 286
setting up the api 285

examples
NXP_GetAtomInfo 265

Execute operator 14
execute statement 4
executing 12

F
function declaration 2

G
GetAtomInfo

macros 2

graphical interface control 1

H
handlers 4

I
interpreter 12

K
knowledge base editing 279

L
line-mode interpreter 12
linking 12

M
makefile 12
multiple sessions 295

N
NEXPERT control 3
NXP_BwrdAgenda 40
NXP_Compile 41
NXP_ContextAllocateClientId 300
NXP_ContextDispose 300
NXP_ContextGetClientData 301
NXP_ContextGetCur 300
NXP_ContextIsClientIdValid 301
NXP_ContextIsValid 301
NXP_ContextNew 299
NXP_ContextSetClientData 301
NXP_ContextSetCur 300
NXP_ContextSetNfyProc 300
NXP_ContextUnsetNfyProc 300
NXP_Control 42
NXP_CreateObject 45
NXP_DeleteObject 47
NXP_Edit 49
NXP_EditCreate 287
NXP_EditDelete 288
NXP_EditDispose 285
NXP_EditFill 289
NXP_EditFindInstance 291
NXP_EditGetNthStr 291
NXP_EditGetStr 292
NXP_EditInfoDispose 287
NXP_EditInfoNew 286
NXP_EditInfoReset 287
NXP_EditModify 289
NXP_EditNew 285
C Programmer’s Guide 321

Index
NXP_EditRemoveNthStr 292
NXP_EditRemoveStr 293
NXP_EditReset 286
NXP_EditSetAtomType 293
NXP_EditSetNthStr 294
NXP_EditSetStr 294
NXP_Error 50
NXP_ErrorIndex 52
NXP_GetAtomId 53
NXP_GetAtomInfo 55, 131

codes list 133
examples 265
macros 139
NXP_AINFO_AGDVBreak 141
NXP_AINFO_BreadthFirst 142
NXP_AINFO_BWRDLinks 143
NXP_AINFO_CActions 145
NXP_AINFO_CActionsOn 146
NXP_AINFO_CACTIONSUNKNOWN

148
NXP_AINFO_ChildClass 149
NXP_AINFO_ChildObject 151
NXP_AINFO_Choice 152
NXP_AINFO_ClientData 154
NXP_AINFO_Comments 155
NXP_AINFO_Context 156
NXP_AINFO_Current 157
NXP_AINFO_CURRENTKB 159
NXP_AINFO_DefaultFirst 160
NXP_AINFO_DefVal 161
NXP_AINFO_EHS 162
NXP_AINFO_ExhBwrd 164
NXP_AINFO_FocusPrio 166
NXP_AINFO_Format 167
NXP_AINFO_FwrdLinks 168
NXP_AINFO_HasMeta 170
NXP_AINFO_Hypo 171
NXP_AINFO_InfAtom 172
NXP_AINFO_InfBreak 174
NXP_AINFO_InfCat 175
NXP_AINFO_InhAtom 176
NXP_AINFO_InhCat 178
NXP_AINFO_InhClassDown 179
NXP_AINFO_InhClassUp 180
NXP_AINFO_InhDefault 181
NXP_AINFO_InhDown 181
NXP_AINFO_InhObjDown 182
NXP_AINFO_InhObjUp 183
NXP_AINFO_InhUp 184
NXP_AINFO_InhValDefault 185
NXP_AINFO_InhValDown 186
NXP_AINFO_InhValUp 187
NXP_AINFO_KBId 188
NXP_AINFO_KBNAME 190
NXP_AINFO_LHS 191
NXP_AINFO_Linked 193
NXP_AINFO_METHODS 195
NXP_AINFO_MotState 196
NXP_AINFO_Name 198
NXP_AINFO_Next 200
NXP_AINFO_Parent 203
NXP_AINFO_ParentClass 204

NXP_AINFO_ParentFirst 206
NXP_AINFO_ParentObject 207
NXP_AINFO_PFActions 209
NXP_AINFO_PFELSEACTIONS 210
NXP_AINFO_PFMETHODACTIONS

211
NXP_AINFO_PFMETHODELSEACTIO

NS 213
NXP_AINFO_Prev 214
NXP_AINFO_ProcExecute 216
NXP_AINFO_PromptLine 217
NXP_AINFO_Prop 219
NXP_AINFO_PTGates 220
NXP_AINFO_PWFalse 221
NXP_AINFO_PWNotKnown 222
NXP_AINFO_PWTrue 223
NXP_AINFO_QUESTWIN 225
NXP_AINFO_RHS 225
NXP_AINFO_Self 227
NXP_AINFO_Slot 229
NXP_AINFO_Sources 230
NXP_AINFO_SOURCESCONTINUE 232
NXP_AINFO_SourcesOn 233
NXP_AINFO_Suggest 235
NXP_AINFO_SugList 236
NXP_AINFO_Type 237
NXP_AINFO_VALIDENGINE_ACCEPT

239
NXP_AINFO_VALIDENGINE_OFF 241
NXP_AINFO_VALIDENGINE_ON 242
NXP_AINFO_VALIDENGINE_REJECT

244
NXP_AINFO_VALIDEXEC 245
NXP_AINFO_VALIDFUNC 246
NXP_AINFO_VALIDHELP 247
NXP_AINFO_VALIDUSER_ACCEPT

247
NXP_AINFO_VALIDUSER_OFF 249
NXP_AINFO_VALIDUSER_ON 250
NXP_AINFO_VALIDUSER_REJECT

252
NXP_AINFO_Value 254
NXP_AINFO_VALUELENGTH 258
NXP_AINFO_ValueType 260
NXP_AINFO_Version 262
NXP_AINFO_VolList 263
NXP_AINFO_Why 264

NXP_GetAtomValueArray 56
NXP_GetAtomValueLengthArray 58
NXP_GetAtomValueLengthList 60
NXP_GetAtomValueList 61
NXP_GetHandler 62
NXP_GetMethodId 65
NXP_GetStatus 67
NXP_Journal 68
NXP_LoadKB 70
NXP_SaveKB 71
NXP_SendMessage 73
NXP_SendMessageArray 75
322 C Programmer’s Guide

Index
NXP_SetAtomInfo 76
codes list 268
NXP_SAINFO_AGDVBreak 268
NXP_SAINFO_CurrentKB 270
NXP_SAINFO_DisableSaveKB 271
NXP_SAINFO_INFBreak 272
NXP_SAINFO_InKB 273
NXP_SAINFO_MergeKB 275
NXP_SAINFO_PermLink 276
NXP_SAINFO_PermLinkKB 277

NXP_SetClientData 77
NXP_SetData 79
NXP_SetHandler 81
NXP_SetHandler2 64, 84

NXP_Proc_Alert 87
NXP_Proc_Apropos 89
NXP_Proc_Cancel 90
NXP_Proc_EndOfSession 92
NXP_Proc_Execute 93
NXP_Proc_GetData 95
NXP_Proc_GetStatus 96
NXP_Proc_MemExit 98
NXP_Proc_Notify 99
NXP_Proc_Password 101
NXP_Proc_Polling 102
NXP_Proc_Question 104
NXP_Proc_Quit 105
NXP_Proc_SetData 107
NXP_Proc_Validate 108
NXP_Proc_VolValidate 110

NXP_Strategy 113
NXP_Suggest 115
NXP_UnLoadKB 116
NXP_Volunteer 118
NXP_VolunteerArray 122
NXP_VolunteerList 124
NXP_WalkNodes 127
nxpdef.h file 1, 11
NxpEditRec structure 280, 291
NXPGFX_Control 1, 129
nxpinter.c file 12

O
object 5

P
polling example
properties 5

R
retrieving info 317
runtime context

examples
functions for 299

runtime contexts
limitations 296
switching between 295

S
SetAtomInfo 267
slots 5

U
user interface customization 33
Users 295

W
working memory access 22
writing programs 18
writing routines 13
C Programmer’s Guide 323

Index
324 C Programmer’s Guide

PostScript error (--nostringval--, --nostringval--)PostScript error (--nostringval--, --nostringval--)PostScript error (--nostringval--, --nostringval--)PostScript error (--nostringval--, --nostringval--)

	C Programmer’s Guide
	Contents
	Preface
	Purpose of this Manual
	Description
	Audience
	Organization
	Documentation Conventions
	Related Manuals

	API Overview
	Introduction
	About the Format

	About nxpdef.h
	What nxpdef.h Contains
	Using nxpdef.h Macros
	How nxpdef.h Declares Functions

	Calling In and Calling Out
	Calling Into the Rules Element
	How the Rules Element Calls Routines

	A Note about Atoms
	What is an Atom?
	Properties and Property Slots
	Property Slots and Data
	Using Atoms with Atom ids
	Atom ids Aren’t Memory Pointers

	C Primer
	Introduction
	About the Examples
	Working Directory
	Using the Examples

	Specifying Header Files
	Starting Small - hello1.c
	Compiling, Linking, and Executing

	Using the Line-mode Interpreter
	Writing Routines that the Rules Element Calls
	Displaying a Message (hello1)
	Passing a String to an Execute Routine (hello2)
	Passing a List of Atoms to an Execute Routine (hel...
	Retrieving Atoms by Name with NXP_GetAtomId (hello...

	Writing Programs that Call the Rules Element
	Starting the Development Environment (hello5)
	Loading a Knowledge Base and Running a Session (he...
	Writing the Interpreter (hello7)
	Using Question Handlers (hello8)

	For More Advanced Programmers;
	Accessing the Working Memory
	Creating Objects and Assigning Slot Values (hello9...
	Investigating the Object Base (hello9 - Part 2)
	Remarks on NXP_GetAtomInfo

	Advanced Control
	Interrupting a Session (hello10 - Part 1)
	Non-modal Questions (hello10 - Part 2)
	Entering Values During a Session

	Customizing the User Interface
	Using Communication Handlers
	Writing in the Transcript (hello11)
	Trapping Transcript Messages (hello12)
	Compiling and Editing Knowledge Bases
	Monitoring a Session

	The C Library
	C Library Calls List
	NXP_BwrdAgenda
	NXP_Compile
	NXP_Control
	NXP_CreateObject
	NXP_DeleteObject
	NXP_Edit
	NXP_Error
	NXP_ErrorIndex
	NXP_GetAtomId
	NXP_GetAtomInfo
	NXP_GetAtomValueArray
	NXP_GetAtomValueLengthArray
	NXP_GetAtomValueLengthList
	NXP_GetAtomValueList
	NXP_GetHandler
	NXP_GetHandler2
	NXP_GetMethodId
	NXP_GetStatus
	NXP_Journal
	NXP_LoadKB
	NXP_SaveKB
	NXP_SendMessage
	NXP_SendMessageArray
	NXP_SetAtomInfo
	NXP_SetClientData
	NXP_SetData
	NXP_SetHandler
	NXP_SetHandler2
	NXP_SetHandler (2) / NXP_PROC_ALERT
	NXP_SetHandler (2) / NXP_PROC_APROPOS
	NXP_SetHandler (2) / NXP_PROC_CANCEL
	NXP_SetHandler (2) / NXP_PROC_ENDOFSESSION
	NXP_SetHandler (2) / NXP_PROC_EXECUTE
	NXP_SetHandler (2) / NXP_PROC_GETDATA
	NXP_SetHandler (2) / NXP_PROC_GETSTATUS
	NXP_SetHandler (2) / NXP_PROC_MEMEXIT
	NXP_SetHandler (2) / NXP_PROC_NOTIFY
	NXP_SetHandler (2) / NXP_PROC_PASSWORD
	NXP_SetHandler (2) / NXP_PROC_POLLING
	NXP_SetHandler (2) / NXP_PROC_QUESTION
	NXP_SetHandler (2) / NXP_PROC_QUIT
	NXP_SetHandler (2) / NXP_PROC_SETDATA
	NXP_SetHandler (2) / NXP_PROC_VALIDATE
	NXP_SetHandler (2) / NXP_PROC_VOLVALIDATE
	NXP_Strategy
	NXP_Suggest
	NXP_UnloadKB
	NXP_Volunteer
	NXP_VolunteerArray
	NXP_VolunteerList
	NXP_WalkNodes
	NXPGFX_Control

	NXP_GetAtomInfo Routine
	NXP_GetAtomInfo
	Information Codes List
	Information Codes by Categories
	NXP_GetAtomInfo Macros
	NXP_GetAtomInfo / NXP_AINFO_AGDVBREAK
	NXP_GetAtomInfo / NXP_AINFO_BREADTHFIRST
	NXP_GetAtomInfo / NXP_AINFO_BWRDLINKS
	NXP_GetAtomInfo / NXP_AINFO_CACTIONS
	NXP_GetAtomInfo / NXP_AINFO_CACTIONSON
	NXP_GetAtomInfo / NXP_AINFO_CACTIONSUNKNOWN
	NXP_GetAtomInfo / NXP_AINFO_CHILDCLASS
	NXP_GetAtomInfo / NXP_AINFO_CHILDOBJECT
	NXP_GetAtomInfo / NXP_AINFO_CHOICE
	NXP_GetAtomInfo / NXP_AINFO_CLIENTDATA
	NXP_GetAtomInfo / NXP_AINFO_COMMENTS
	NXP_GetAtomInfo / NXP_AINFO_CONTEXT
	NXP_GetAtomInfo / NXP_AINFO_CURRENT
	NXP_GetAtomInfo / NXP_AINFO_CURRENTKB
	NXP_GetAtomInfo / NXP_AINFO_DEFAULTFIRST
	NXP_GetAtomInfo / NXP_AINFO_DEFVAL
	NXP_GetAtomInfo / NXP_AINFO_EHS
	NXP_GetAtomInfo / NXP_AINFO_EXHBWRD
	NXP_GetAtomInfo / NXP_AINFO_FOCUSPRIO
	NXP_GetAtomInfo / NXP_AINFO_FORMAT
	NXP_GetAtomInfo / NXP_AINFO_FWRDLINKS
	NXP_GetAtomInfo / NXP_AINFO_HASMETA
	NXP_GetAtomInfo / NXP_AINFO_HYPO
	NXP_GetAtomInfo / NXP_AINFO_INFATOM
	NXP_GetAtomInfo / NXP_AINFO_INFBREAK
	NXP_GetAtomInfo / NXP_AINFO_INFCAT
	NXP_GetAtomInfo / NXP_AINFO_INHATOM
	NXP_GetAtomInfo / NXP_AINFO_INHCAT
	NXP_GetAtomInfo / NXP_AINFO_INHCLASSDOWN
	NXP_GetAtomInfo / NXP_AINFO_INHCLASSUP
	NXP_GetAtomInfo / NXP_AINFO_INHDEFAULT
	NXP_GetAtomInfo / NXP_AINFO_INHDOWN
	NXP_GetAtomInfo / NXP_AINFO_INHOBJDOWN
	NXP_GetAtomInfo / NXP_AINFO_INHOBJUP
	NXP_GetAtomInfo / NXP_AINFO_INHUP
	NXP_GetAtomInfo / NXP_AINFO_INHVALDEFAULT
	NXP_GetAtomInfo / NXP_AINFO_INHVALDOWN
	NXP_GetAtomInfo / NXP_AINFO_INHVALUP
	NXP_GetAtomInfo / NXP_AINFO_KBID
	NXP_GetAtomInfo / NXP_AINFO_KBNAME
	NXP_GetAtomInfo / NXP_AINFO_LHS
	NXP_GetAtomInfo / NXP_AINFO_LINKED
	NXP_GetAtomInfo / NXP_AINFO_METHODS
	NXP_GetAtomInfo / NXP_AINFO_MOTSTATE
	NXP_GetAtomInfo / NXP_AINFO_NAME
	NXP_GetAtomInfo / NXP_AINFO_NEXT
	NXP_GetAtomInfo / NXP_AINFO_PARENT
	NXP_GetAtomInfo / NXP_AINFO_PARENTCLASS
	NXP_GetAtomInfo / NXP_AINFO_PARENTFIRST
	NXP_GetAtomInfo / NXP_AINFO_PARENTOBJECT
	NXP_GetAtomInfo / NXP_AINFO_PFACTIONS
	NXP_GetAtomInfo / NXP_AINFO_PFELSEACTIONS
	NXP_GetAtomInfo / NXP_AINFO_PFMETHODACTIONS
	NXP_GetAtomInfo / NXP_AINFO_PFMETHODELSEACTIONS
	NXP_GetAtomInfo / NXP_AINFO_PREV
	NXP_GetAtomInfo / NXP_AINFO_PROCEXECUTE
	NXP_GetAtomInfo / NXP_AINFO_PROMPTLINE
	NXP_GetAtomInfo / NXP_AINFO_PROP
	NXP_GetAtomInfo / NXP_AINFO_PTGATES
	NXP_GetAtomInfo / NXP_AINFO_PWFALSE
	NXP_GetAtomInfo / NXP_AINFO_PWNOTKNOWN
	NXP_GetAtomInfo / NXP_AINFO_PWTRUE
	NXP_GetAtomInfo / NXP_AINFO_QUESTWIN
	NXP_GetAtomInfo / NXP_AINFO_RHS
	NXP_GetAtomInfo / NXP_AINFO_SELF
	NXP_GetAtomInfo / NXP_AINFO_SLOT
	NXP_GetAtomInfo / NXP_AINFO_SOURCES
	NXP_GetAtomInfo / NXP_AINFO_SOURCESCONTINUE
	NXP_GetAtomInfo / NXP_AINFO_SOURCESON
	NXP_GetAtomInfo / NXP_AINFO_SUGGEST
	NXP_GetAtomInfo / NXP_AINFO_SUGLIST
	NXP_GetAtomInfo / NXP_AINFO_TYPE
	NXP_GetAtomInfo / NXP_AINFO_VALIDENGINE_ACCEPT
	NXP_GetAtomInfo / NXP_AINFO_VALIDENGINE_OFF
	NXP_GetAtomInfo / NXP_AINFO_VALIDENGINE_ON
	NXP_GetAtomInfo / NXP_AINFO_VALIDENGINE_REJECT
	NXP_GetAtomInfo / NXP_AINFO_VALIDEXEC
	NXP_GetAtomInfo / NXP_AINFO_VALIDFUNC
	NXP_GetAtomInfo / NXP_AINFO_VALIDHELP
	NXP_GetAtomInfo / NXP_AINFO_VALIDUSER_ACCEPT
	NXP_GetAtomInfo / NXP_AINFO_VALIDUSER_OFF
	NXP_GetAtomInfo / NXP_AINFO_VALIDUSER_ON
	NXP_GetAtomInfo / NXP_AINFO_VALIDUSER_REJECT
	NXP_GetAtomInfo / NXP_AINFO_VALUE
	NXP_GetAtomInfo / NXP_AINFO_VALUELENGTH
	NXP_GetAtomInfo / NXP_AINFO_VALUETYPE
	NXP_GetAtomInfo / NXP_AINFO_VERSION
	NXP_GetAtomInfo / NXP_AINFO_VOLLIST
	NXP_GetAtomInfo / NXP_AINFO_WHY
	NXP_GetAtomInfo / Examples

	NXP_SetAtomInfo Routine
	NXP_SetAtomInfo
	NXP_SetAtomInfo Codes List
	NXP_SetAtomInfo Codes By Categories
	NXP_SetAtomInfo / NXP_SAINFO_AGDVBREAK
	NXP_SetAtomInfo / NXP_SAINFO_CURRENTKB
	NXP_SetAtomInfo / NXP_SAINFO_DISABLESAVEKB
	NXP_SetAtomInfo / NXP_SAINFO_INFBREAK
	NXP_SetAtomInfo / NXP_SAINFO_INKB
	NXP_SetAtomInfo / NXP_SAINFO_MERGEKB
	NXP_SetAtomInfo / NXP_SAINFO_PERMLINK
	NXP_SetAtomInfo / NXP_SAINFO_PERMLINKKB

	NXP_Edit Functions
	Introduction
	Compatibility with Previous Releases
	Technical Overview
	NxpEditRec Structure
	AtomType
	Error Handling
	Setting up the Edit API
	NXP_EditDispose
	NXP_EditNew
	NXP_EditReset

	Receiving Error and Dependency Information
	NXP_EditInfoNew
	NXP_EditInfoDispose
	NXP_EditInfoReset

	Editing Capabilities
	NXP_EditCreate
	NXP_EditDelete
	NXP_EditFill
	NXP_EditModify

	Setting and Querying the Atom Definition
	NXP_EditFindInstance
	NXP_EditGetNthStr
	NXP_EditGetStr
	NXP_EditRemoveNthStr
	NXP_EditRemoveStr
	NXP_EditSetAtomType
	NXP_EditSetNthStr
	NXP_EditSetStr

	NXP_Context Functions
	Introduction
	Audience
	Specific Features
	Context Switching Overview
	Context API
	Debugging API

	Examples Description
	A Simple Example cntx1.c
	Overview
	cntx1.c listing
	cntx1.ms makefile listing

	Using a Question Handler: cntx2.c
	Overview
	cntx2.c listing
	cntx2.ms makefile listing
	cntx2_a.tbk listing
	cntx2_b.tbk listing

	A Polling Example: cntx3.c
	cntx3.c listing
	cntx3.ms makefile listing

	Retrieving Rules Element Information
	C Language

	Index

