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Abstract
As an alternative to recursion [2] or cycles [6], which grant Turing-completeness, we sketch a

system of nets that is sufficiently expressive to manipulate complex inductive and co-inductive
objects, but enforces termination at the same time. We aim at a logically sound framework,
close to prior fixed-point logics [1], that can be computationally implemented as a graph-based
rewriting system in the style of proof nets. A complete and fully satisfactory formalization
might require a refined approach, based on systems of interaction nets that are enriched with a
deep-inference typing system as presented in [3].
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1 Introduction

Inductive types include typically integers, list, trees, or more complex finite objects, possibly
simply-typed λ-terms. Co-inductive types typically represent infinite data-structures like
streams, however some infinite co-inductive terms also admit finite representations.

For instance, lists of elements of type A are either the empty list or a construct made of
an element of type A and another list. An unfolded definition of their type could be written,
using some standard functional programming syntax, as follows:

Nil | Cons of A * (Nil | Cons of A * (Nil | Cons of A * (...)))

With linear logic connectives it writes 1⊕A⊗ (1⊕A⊗ (1⊕A⊗ (. . . ))), which can also be
represented finitely with a µ abstraction: µα. 1⊕A⊗ α.

Using instead a ν abstraction, the dual connector, type να. 1⊕A⊗ α denotes streams,
i. e. possibly infinite sequences of elements of A. In particular, streams of natural numbers,
for instance, include recurrent sequences such as [1, 2, 1, 2, 1, 2, . . . [, or slightly more complex
sequences like [1, 1, 2, 1, 2, 3, 1, 2, 3, 4. . . [, which can be defined finitely in most programming
languages.

A few specific inductive types like integers, lists or trees are easily represented in systems
of nets like interaction nets [5], but co-inductive types are not commonly found. We describe
in this paper a generic method to implement any inductive or co-inductive type, from the
multiplicative, additive and exponential constructions provided by linear logic. We will
moreover show that the exponential constructions are not strictly required.

2 Unfolding Boxes

Given the usual system of proof nets for MELL [4], we consider sets NΓ [P1 : Γ1, . . . , Pk : Γk]
of nets of interface Γ containing open emplacements (also called net variables) Pi of interface
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Γi. These are called open nets. The usual principles behind net reduction are unchanged;
open emplacements just do not actively take part in the interaction process.

Unfolding boxes (a finite description of a co-inductive object). Let N(H) be an open
net with interface:

N(H)

B1 ... Bq V1 ... Vn

A1 ... Ap U1 ... Um

whose open emplacement H is typed with atomic type variables α1, . . . , αp and β1, . . . , βq

as follows:

H

β1 ... βq V1 ... Vn

α1 ... αp U1 ... Um

Such a net can be enclosed within an unfolding box as described hereafter. The open
emplacement H and type variables αi and βi, which are expected to appear in their respec-
tive Ai or Bi and are assumed not to appear in any of the Vi or the Ui, are bound in the
process.

ρH N(H)

A1 ... Ap U1 ... Um

να1. A1 ... ναp. Ap U1 ... Um

B1 ... Bq V1 ... Vn

µβ1. B1 ... µβq. Bq V1 ... Vn

From a logical viewpoint, the content of an unfolding box ρH is the body of an inductive
proof in which the open emplacement H is used as induction hypothesis. Ports typed ναi. Ai

or µβi. Bi are principal ports, and ports typed Vi or Ui are auxiliary ports which do not
interact immediately.

Moreover, two atomic variables among the αi or the βi can be chosen equal when their
respective Ai or Bi (i. e. the types they mask) are equal.

Reduction of unfolding boxes Any logical operator which interacts through a principal
port of an unfolding box will open, or “unfold”, this box. Type-wise, type variables αi and
βi are not made free, but are respectively substituted with type ναi. Ai or type µβi. Bi .
Bounded open emplacements which materialize inductive calls are substituted with copies
of the full original unfolding box.

The typing system ensures that recursive calls are made deep inside the inductive struc-
ture of the interacting object and prevents non-termination.

Self-reduction Open emplacements may anytime be substituted with copies of the contents
of the whole box which binds them. It optimizes later reductions of the net and could be
triggered once after each normal unfolding step (again, to avoid non-termination).
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3 Examples

Our system allows one to write any operation on inductive or co-inductive data types, like
usual integer addition, multiplication, exponentiation, etc. or list concatenation, mapping,
folding, flattening, etc. or stream intermixing, mapping, etc.

First, we provide the very basic example of a net producing (on demand) an infinite
stream να. 1⊕A⊗ α of a given element of type A produced by a net N .

ρH

N H

⊕2

⊗
A

α

A⊗ α

1⊕A⊗ α

να. 1⊕A⊗ α

Follows another example, which takes as parameters a promoted function !(A( B),
that maps elements of type A to elements of type B, and a list µα. 1⊕A⊗ α with elements
of the former type, and returns a list µβ. 1⊕B ⊗ β with elements the latter type:

ρH

&

@ H

? ?

⊕1 ⊕2

⊥ `

1 ⊗
BB µβ. 1⊕B ⊗ β

B ⊗ µβ. 1⊕B ⊗ β1

µβ. 1⊕B ⊗ βµβ. 1⊕B ⊗ β

µβ. 1⊕B ⊗ β

µβ. 1⊕B ⊗ β

µα. 1⊕A⊗ α

1⊕A⊗ α

1
A⊗ α

!(A( B)

!(A( B)

!(A( B)
!(A( B)A α
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This unfolding box will unfold as soon as the top-level constructor of the µα. 1⊕A⊗ α
list will interact through its principal port. This constructor will then be matched against
the additive box. Only one of the two additive slices will be kept. If the input list is not
empty, the first element is extracted and a copy of the function is applied to it by the net
labeled @. In parallel, an inductive call is made to deal with the tail of the list. Resulting
objects are combined to produce the output list. When the input list is eventually depleted,
notice that no inductive call is made, since the filled H emplacement is garbage-collected
with the entire right slice of the additive box.

4 A Co-Inductively Defined Exponential

Exponential constructions can be encoded with the provided co-induction scheme, using type
!A := να. 1 &A& α⊗ α, whose relevance was already mentioned in [4]. The implementation
of weakening, dereliction, contraction and promotion rules is provided below. Obviously, this
definition of the exponential is not free. In particular, would we not restrict generation of
!A to those four constructions only, we could build non-uniform exponentials.

Rules weakening and contraction write:

N

⊥

⊕1

?A

⊥ V1 ... Vn

N

`

⊕3

?A

?A ?A

?A` ?A V1 ... Vn

Rules dereliction and promotion of a net N write:

N

⊕2

?A

A

V1 ... Vn

ρH M(H)

1 &A& α⊗ α

!A

!V1 ... !Vn

!V1 ... !Vn

where M(H) denotes the net obtained by superposing the following additive-box slices.
Operators weakening and contraction used in those slices have already been defined.

&1

1

? ? ?

1

1 &A& α⊗ α

!V1 ... !Vn

!V1 ... !Vn
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&2

N

A

1 &A& α⊗ α

!V1 ... !Vn

!V1 ... !Vn

&3

⊗

? ? ?

α⊗ α

H

α

H

α

1 &A& α⊗ α

!V1 ... !Vn

!V1 ... !Vn

Main reductions of exponential constructions are simulated by unfoldings followed by
standard reduction steps. As an aside, additive commutation steps are expensive (except in
the case of a fully-parallel reduction strategy) and are usually disabled. It is then harmless
to allow interaction on upper ports of unfolding boxes that are typed with an exponential
type, so that exponential commutations are made available as well.

5 Conclusion

We presented inductive types and sketched a generic method to handle them in the proof net
formalism, as an extension of MELL. The exponential fragment can in fact automatically be
obtained trough an encoding, although a native handling would certainly be more efficient.

We provided examples that make proper use of the unfolding boxes, but a correctness
criterion was not discussed. Deep-inference typing systems such as the one presented in [3]
might offer a good framework to properly structure an unfolding construction. In forth-
coming works, we aim to extend their reducibility-based strong normalization theorem to
inductive and co-inductive types.
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