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Abstract
Matrix interpretations are powerful techniques for proving termination of term rewrite systems.
Among them, the original paper that introduced the matrix interpretation technique, originally
aimed at string rewriting, also described sets of matrices that inherently provide a well-founded
relation and its required monotonic properties, simplifying proofs. To the extent of our knowledge,
these special sets of matrices have not yet explicitly been used in a term rewriting setting. We report
on the generalisation of these sets of matrices to a term rewriting setting. Several results have been
formalised in Isabelle/HOL and are integrated in the CeTA certifier.
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1 Introduction

In this paper we present the core matrix interpretations termination technique, originally
designed for string rewrite systems (SRSs) [6] for integer matrices.

▶ Example 1. Consider the following SRS (TPDB Waldmann19/SRS_Standard/random-
246).

baaa → bbaa abbb → bbba abbb → bbaa

During termCOMP 2024, the tool Multum-non-Multa of Hofbauer [5] generated the following
termination proof by a core matrix interpretation.

α(a) =


1 1 1 0 0
0 2 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0

 α(b) =


1 0 1 1 1
0 2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


This proof could not be certified by CeTA [10] in year 2024.

We generalise the core matrix interpretation method to ordered rings so that in particular
it can be used for matrices over rational numbers using δ-orders, similarly to [7, 8]. We
further generalise the result from SRSs to term rewrite systems (TRSs). Both generalisations
have been formalised using Isabelle/HOL [9] and they are fully integrated into the formalised
rewriting framework IsaFoR/CeTA as of version 3.6. Consequently, proofs such as the one in
Example 1 are now accepted by CeTA.

In addition to the aforementioned generalisations, during the formalisation process, a
proof in [6] was found to be flawed. Whilst not required to deduce the end results of the
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termination technique, we provide a reconstructed proof nevertheless.
Our conditions on matrix interpretations are incomparable to other variants of monotone

matrix interpretations from the literature [4, 3, 8]. Still, we show that every matrix interpreta-
tion of [4, 8] can be transformed into a core matrix interpretation. Moreover, the integration
of core matrix interpretations has already successfully been tested: the Matchbox tool of
Waldmann [11] generates certificates for termination proofs using core matrix interpretations,
and all proofs are certified with CeTA version 3.6.

2 Preliminaries

We assume familiarity with term rewriting [1] and string rewriting and recall important
notions and notations. T (F , V) will be the set of first-order terms that can be constructed
from function symbols in F and variables in V . Then, a term rewriting system (abbreviated
TRS) is a binary relation in T (F , V) × T (F , V). Given a rule in a TRS R of the form ℓ → r,
a rewriting operation, denoted →R, using such a rule consists of rewriting C[ℓσ] to C[rσ],
where C is a term with exactly one special variable □ that will be replaced with ℓσ (resp. rσ),
and where σ : V → T (F , V) is a substitution. A string rewriting system (abbreviated SRS)
is a binary relation in Σ∗ × Σ∗ given an alphabet Σ. Rewriting using a rule ℓ → r in an SRS
R is denoted by →R and consists in rewriting xℓy to xry for any x, y ∈ Σ∗. Termination of
a TRS/SRS R is denoted by SN (→R) and refers to the non-existence of an infinite sequence
of rewrite operations. Termination of a TRS (resp. SRS) R relative to a TRS (resp. SRS) S
is the property SN (→S

∗ ◦ →R ◦ →S
∗) and it is abbreviated by SN (R/S).

Throughout this paper, only square matrices of size n (often left implicit) are considered.
Then, we need a few notations: The zero matrix shall be denoted by 0, whilst the identity
matrix shall be denoted by 1; The usual notation Ai,j will be used to denote the component of
A at the i-th row and j-th column; The non-strict comparison on matrices ≥ shall correspond
to a weak decrease in coefficients component-wise; On the other hand, the strict comparison
on matrices > shall correspond to a weak decrease component-wise in addition to a strict
decrease component-wise for at least one coefficient in the matrices; Then, N shall refer to the
set of non-negative matrices, i.e. {A | A ≥ 0}, while P shall refer to the set of non-negative
and non-null matrices, i.e. {A | A > 0}; Moreover, given two sets of matrices S and T , the
set ST shall denote the set {A1 × A2 | A1 ∈ S, A2 ∈ T}; Following that, the set T k shall
refer to TT . . . T k-times, T ∗ shall denote the set

⋃
k T k and T 0 shall be {1}; Finally, the

notation ST shall be extended to individual matrices, i.e. given a matrix d, the notation dT

shall denote {d × A | A ∈ T}.

3 Core matrix interpretations

In this section, we present the “core” matrix interpretation technique in an SRS setting, as
it is described in [6], before moving to its generalisation from integers to further ordered
rings and before moving to a TRS setting. Roughly speaking, the termination technique
consists in turning the string rewrite setting into a matrix setting, where every possible
rewrite operation would be mapped to a well-founded relation on integer matrices, such as
the strict comparison on N , ensuring termination.

Concretely, if we consider the SRS R, if we call α the interpretation of strings (i.e. the
map from strings to matrices), if α(s) ∈ N holds for any string s, and if α(s) > α(t) holds
for any strings s →R t, then R is strongly-normalising. To achieve relative termination,
e.g. SN (→S

∗ ◦ →R ◦ →S
∗), in addition to the previous criteria, satisfying the non-strict
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comparison on N for S-rewrite operations is sufficient, i.e. α(s) ≥ α(t) for any strings s →S t.
This criterion is sufficient since ≥∗ ◦ > ◦ ≥∗ ⊆ >, meaning →S

∗ ◦ →R ◦ →S
∗ would map to

> which terminates.
Since our goal is first and foremost to implement this termination technique into

IsaFoR/CeTA to be able to certify proofs by “core” matrix interpretations, the process of veri-
fying the required criteria (namely ∀s, t, s →R t =⇒ α(s) > α(t); s →S t =⇒ α(s) ≥ α(t)
in our case; let us call this criteria Property 1) must be computable. However, this is
obviously not the case for Property 1, due to the quantification over all possible strings.
Thus, the “core” matrix interpretation approach aims to reformulate this criteria in such
a way that it becomes computable. Since s has been rewritten to t in Property 1, s can
be split into a left context, the place where a rewrite rule was applied, and a right context,
making Property 1 equivalent to

∀x, y, ℓ, r, (ℓ → r) ∈ R =⇒ α(xℓy) > α(xry)
∀x, y, ℓ, r, (ℓ → r) ∈ S =⇒ α(xℓy) ≥ α(xry)

}
Property 2

While Property 2 is easily lifted to TRSs by simply changing the domain and the
definitions of left and right context, to further reformulate it we need to take into account
SRS-specific properties. In particular, in [6], the interpretation of the string ab is defined as
α(a) × α(b) considering {a, b} ⊆ Σ. Thus, Property 2 can be reformulated as

∀x, y, ℓ, r, (ℓ → r) ∈ R =⇒ α(x)(α(ℓ) − α(r))α(y) > 0
∀x, y, ℓ, r, (ℓ → r) ∈ S =⇒ α(x)(α(ℓ) − α(r))α(y) ≥ 0

}
Property 3

Now, assume (1) α(a) ∈ S for any letter a ∈ Σ, (2) α(ℓ) − α(r) ∈ T for all l → r ∈ R, and
(3) S∗TS∗ ⊆ P for some sets S and T , then the first line of Property 3 can be deduced.
Furthermore, if (4) α(ℓ) − α(r) ∈ U for all ℓ → r ∈ S, and (5) S∗US∗ ⊆ N for some other
set U , then the second line can be deduced. The latter property is usually given for free if
we choose S ⊆ N and U ⊆ N , since N is closed under multiplication.

range(α) ⊆ S; S ⊆ N ; ∀(ℓ → r) ∈ R, α(l) − α(r) ∈ T ; S∗TS∗ ⊆ P

∀(ℓ → r) ∈ S, α(l) − α(r) ∈ N

}
Property 4

In the original paper, the first line of Property 4 is presented using the definition of
“core of a set of matrices”, namely core(A) = {d ∈ N | A∗dA∗ ⊆ P}. Then, if for some A,
range(α) ⊆ A and ∀(ℓ → r) ∈ R, α(ℓ) − α(r) ∈ core(A) hold, R is strongly normalising. If
additionally A ⊆ N and ∀(ℓ → r) ∈ S, α(ℓ) − α(r) ∈ N hold, R is terminating relative to S.

We now introduce concrete sets of matrices, presented in the original paper, which exhibit
the desired properties stated above. Here, I is a subset of matrix-indices. Note that checking
whether a matrix is in such a set is computable.

EI = {d ∈ N | ∀i ∈ I, di,i > 0} MI = {d ∈ N | ∀i ∈ I, ∃j ∈ I, di,j > 0}
PI = {d ∈ N | ∃i, j ∈ I, di,j > 0}

▶ Lemma 2 ([6, Lemma 4]). PI = core(EI), MI = core(MI)

▶ Corollary 3. Let R and S be SRSs over signature Σ and let α : Σ → Zn×n be a matrix
interpretation and ∅ ⊂ I ⊆ {1, . . . , n}. Let S satisfy α(ℓ) − α(r) ∈ N for all ℓ → r ∈ S.
Then relative termination SN (R/S) is ensured if one of the following conditions is satisfied.

range(α) ⊆ EI and α(ℓ) − α(r) ∈ PI for all ℓ → r ∈ R, or
range(α) ⊆ MI and α(ℓ) − α(r) ∈ MI for all ℓ → r ∈ R.

Note that only the inclusions from left to right in Lemma 2 (e.g. PI ⊆ core(EI)) are
required to get Corollary 3. Nevertheless, the original proofs of the inclusions from right
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to left were found to be flawed during our Isabelle formalisation. We present an instance
contradicting the original proof for each inclusion before providing a reconstructed proof.

1. Original proof of core(EI) ⊆ PI (directly quoted from [6]): For showing the inverse in-
clusion P/EI ⊆ PI , assume the existence of a matrix d with dEI ⊆ P and d ̸∈ PI , so
di,j = 0 for i, j ∈ I. Define e ∈ EI by ei,j = 1 for i = j ∈ I and ei,j = 0 otherwise. Then
de = 0 ̸∈ P , a contradiction.

Instance: Consider the set of indices I := {1} and the matrix d :=
(

0 0
1 0

)
. Then, d ̸∈ PI

holds and finally, observe that de =
(

0 0
1 0

)
∈ P .

2. Similarly for core(MI) ⊆ MI : I := {1} and d :=
(

0 1
0 0

)
.

3. Reconstructed proofs: For both inclusions, the only change needed is that, instead of
proving de = 0 (resp. md = 0) which is not true, we prove that ede = 0 (resp. mdm = 0)
which is a contradiction with respect to the definition of core.

3.1 Arbitrary ordered rings

We now consider a generalisation of using integer matrices to allow matrices over other
ordered rings with a strongly normalising order ≻ on the set of non-negative numbers. In
particular we consider δ-orders [7, 8]. Here, some parameter δ > 0 is fixed, and ≻δ is defined
as x ≻δ y iff x − y ≥ δ. By choosing δ = 1 and the integers, we obtain the original setting of
[6], but we may also choose a different value of δ and the ring of rational or real numbers.

The definitions of EI , PI and MI are adjusted as follows to the new setting with δ-orders,
where we also add the new set LI,δ: for the integers with δ = 1 we have MI = LI,δ, so in the
original setting no differentiation between these sets is required, but in the general case we
gain from a distinction between these sets.

EI = {d ∈ N | ∀i ∈ I, di,i ≥ 1} MI = {d ∈ N | ∀i ∈ I, ∃j ∈ I, di,j ≥ 1}
PI,δ = {d ∈ N | ∃i, j ∈ I, di,j ≻δ 0} LI,δ = {d ∈ N | ∀i ∈ I, ∃j ∈ I, di,j ≻δ 0}

The results of [6] generalise as follows: we define Pδ as the set of non-negative matrices d

for which at least one entry di,j satisfies di,j ≻δ 0; the definition of the core is generalised to
coreδ(A) = {d ∈ N | A∗dA∗ ⊆ Pδ}.

We obtain the important direction of Lemma 2 in a more general setting.

▶ Lemma 4. PI,δ ⊆ coreδ(EI), LI,δ ⊆ coreδ(MI).

The proof of the lemma is similar to the integer setting. Here, we only mention why it was
required to change the definitions of EI and MI . Multiplication with some number di,j is
monotone for δ-orders: if x ≻δ y and di,j ≥ 1 then also di,jx ≻δ di,jy. But only requiring
di,j ≻δ 0 instead of di,j ≥ 1 at this point is not sufficient anymore to guarantee di,jx ≻δ di,jy.

▶ Corollary 5. Let R and S be SRSs over signature Σ and let α : Σ → Dn×n be a matrix
interpretation over domain D ∈ {Z,Q,R} and ∅ ⊂ I ⊆ {1, . . . , n}. Let δ ∈ D satisfy 0 < δ.
Let S satisfy α(ℓ) − α(r) ∈ N for all ℓ → r ∈ S. Then SN (R/S) is ensured if

range(α) ⊆ EI and α(ℓ) − α(r) ∈ PI,δ for all ℓ → r ∈ R, or
range(α) ⊆ MI and α(ℓ) − α(r) ∈ LI,δ for all ℓ → r ∈ R.
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3.2 Term rewrite setting
The main difference between matrix interpretations for SRSs and TRSs is that in the SRS
version only matrix multiplication is used, whereas for TRSs we see both addition and
multiplication. Given some n-ary function symbol f , the interpretation of f is of the form

α(f)(x1, . . . , xk) = f0 + f1 · x1 + . . . + fk · xk

where f1, . . . , fk are matrices, and f0 is a vector (as in [4, 8]) or a matrix (as in [3]). We
consider the “f0 is a matrix” setting as it subsumes the vector setting: one can always enlarge
the vector to a matrix by filling the remaining columns with zero entries. Hence, in this
setting a matrix interpretation is a linear polynomial interpretation with matrices as domain.

Consequently, the interpretation of a term t leads to a linear polynomial α(t) with matrix
coefficients, and orienting a rewrite step is similar to Property 2, where left-contexts are
replaced by term contexts C and right-contexts are replaced by substitutions σ:

∀C, σ, (ℓ → r) ∈ R =⇒ α(C[ℓσ]) − α(C[rσ]) > 0

Since contexts C are just terms with a special variable □, the hole, we can rewrite α(C[ℓσ])−
α(C[rσ]) to α(C){□/α(ℓσ) − α(rσ)}, and by a substitution lemma the previous condition
can be rewritten to a variant of Property 3.

∀C, x⃗, (ℓ → r) ∈ R =⇒ α(C){□/α(ℓ) − α(r)} > 0

where α(C){□/α(ℓ) − α(r)} is a linear polynomial over variables x⃗ that range over the
domain of the matrix interpretation.

We now again want to use coreδ(A) = {d ∈ N | A∗dA∗ ⊆ Pδ}. In order to get rid
of the context C in comparisons, the interpretation needs be chosen such that being in
the core propagates via α(C) for all possible contexts C. This is done by demanding
f1 ∈ A, . . . , fk ∈ A for each k-ary symbol f . Moreover, we identify the domain of the matrix
interpretation with A. Hence, in order to satisfy these conditions we further require the
following two conditions: f0 ∈ N for every k-ary symbol f , and whenever f is a constant,
then f0 ∈ A.

By enforcing these conditions a strict decrease of a rewrite step is now ensured by the
orientation condition α(ℓ) − α(r) ∈ coreδ(A). Note that α(ℓ) − α(r) is a linear polynomial
c0 + c1x1 + . . . cmxm with matrix coefficients c0, . . . , cm over variables x1, . . . , xm that occur
in ℓ and that range over A. So formally, for some set of matrices M we write α(ℓ)−α(r) ∈ M

as an abbreviation for ∀x1, . . . , xm ∈ A. α(ℓ) − α(r) ∈ M , and we call c0, . . . , cm the
coefficients of α(ℓ) − α(r). We next instantiate the abstract setting with A and coreδ(A) by
EI and PI,δ (resp. MI and LI,δ), i.e., the sets of matrices that are known from Section 3.1.

▶ Theorem 6 (Core matrix interpretations for TRSs). Let R and S be TRSs over signature
F and let i be a matrix interpretation over domain D ∈ {Z,Q,R} of dimension n and
let ∅ ⊂ I ⊆ {1, . . . , n}. Let every k-ary symbol f be interpreted as α(f)(x1, . . . , xk) =
f0 + f1 · x1 + . . . + fk · xk. Let δ ∈ D satisfy 0 < δ. Relative termination SN (R/S) is ensured
if all of the following conditions are satisfied.
1. fi ∈ EI (resp. MI) for all 1 ≤ i ≤ k and k-ary symbols f ∈ F
2. α(f)(x1, . . . , xk) ∈ EI (resp. Mi) whenever all x1, . . . , xk ∈ EI (resp. MI); this condition

is ensured by demanding—in combination with condition 1—that
a. f0 ∈ N for each f ∈ F , and
b. f0 ∈ EI (resp. MI) for each constant f ∈ F

3. α(ℓ) − α(r) ∈ N for ℓ → r ∈ R ∪ S; this condition is ensured by demanding that each
coefficient of α(ℓ) − α(r) is in N
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4. α(ℓ) − α(r) ∈ PI,δ (resp. LI,δ) for each ℓ → r ∈ R; this condition is ensured by
demanding—in combination with condition 3—that some coefficient of α(ℓ) − α(r) is in
PI,δ (resp. LI,δ).

Theorem 6 is the main result of this paper and it strictly generalises the SRS setting: if
every unary symbol f is interpreted by α(f)(x1) = f1 · x1 then Theorem 6 is equivalent to
Corollary 5, and choosing D = Z and δ = 1 we arrive at Corollary 3.
▶ Remark 7. If one does not want to prove relative termination directly, but instead requires
a reduction pair—e.g., when using dependency pairs—then condition 1 can be weakened to
fi ∈ N .

The conditions in Theorem 6 are incomparable to the monotone matrix interpretations
of [4, 3, 8]. Our version has the advantage in condition 4: we allow a strict decrease for
any coefficient of the linear polynomial α(ℓ) − α(r) whereas the strict decrease must happen
in the constant part of α(ℓ) − α(r) in [4, 3, 8]. On the other hand, condition 2b is a new
requirement in Theorem 6 which is not present in [4, 3, 8]. Roughly speaking, we require that
constants must be interpreted by positive matrices, in particular they cannot be interpreted
by the zero matrix as in [4, 3, 8]. Note that condition 2b cannot be dropped from Theorem 6.
Consider R = {f(x) → g(x)} and S = {g(a) → f(a)}. Clearly, SN (R/S) does not hold,
but one can find a matrix interpretation that satisfies all conditions except for condition 2b,
namely: D = Z, n = 1, I = {1}, δ = 1, α(f)(x) = 2x, α(g)(x) = x, and α(a) = 0.

In the remainder of this paper, we show how Theorem 6 can be strengthened even
further, i.e., by using more relaxed sufficient criteria to ensure conditions 1–4. It will turn
out, that with these improved conditions, Theorem 6 even subsumes the monotone matrix
interpretations of [4, 8].

First of all, we can improve the criterion for condition 4 in the MI setting:

▶ Lemma 8. Condition 4 in Theorem 6 is satisfied in the MI setting, if condition 3 is
satisfied and ∀i ∈ I. ∃c ∈ C. ∃j ∈ I. cij ≻δ 0, where C is the set of coefficients of α(ℓ) − α(r).

This new condition is more powerful than the one of Theorem 6, since there the sufficient
criterion to ensure condition 4 is equivalent to ∃c ∈ C. ∀i ∈ I. ∃j ∈ I. cij ≻δ 0 where one
cannot choose different coefficients c for each row i.

For the EI setting, we further improve the sufficient criteria for conditions 2–4. Here we
use a transformation similar to [2, Section 3.4] that is known for polynomial interpretations
over integers. In our setting, we basically switch from the carrier EI to N . To this end, we
define 1I to be the matrix which is always 0, except that (1I)i,i = 1 whenever i ∈ I. It is
easy to see that x ∈ EI iff x = 1I + y for some y ∈ N . We now just substitute each variable
x that ranges over EI by a variable y that ranges over N .

▶ Lemma 9. 2. ∀x1, . . . , xk ∈ EI . α(f)(x1, . . . , xk) ∈ EI iff ∀y1, . . . , yk ∈ N. α(f)(1I +
y1, . . . , 1I + yk) ∈ EI .

3. α(ℓ) − α(r) ∈ N (with variables x1, . . . , xm ranging over Ei) iff (α(ℓ) − α(r)){x1/1I +
y1, . . . , xm/1I + ym} ∈ N (with variables y1, . . . , ym ranging over N .)

4. α(ℓ) − α(r) ∈ PI,δ (with variables x1, . . . , xm ranging over Ei) iff (α(ℓ) − α(r)){x1/1I +
y1, . . . , xm/1I + ym} ∈ PI,δ (with variables y1, . . . , ym ranging over N .)

The advantage of the switch to N via Lemma 9 is that the criteria are equivalences, and
the new universally quantified conditions over N can easily be decided as follows.

▶ Lemma 10. Let p be a linear polynomial over variables y1, . . . , yk.
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∀y1, . . . , yk ∈ N. p(y1, . . . , yk) ∈ N iff all coefficients of p are in N .
∀y1, . . . , yk ∈ N. p(y1, . . . , yk) ∈ EI iff ∀y1, . . . , yk ∈ N. p(y1, . . . , yk) − 1I ∈ N .
∀y1, . . . , yk ∈ N. p(y1, . . . , yk) ∈ PI,δ iff all coefficients of p are in N and the constant
part of p is in PI,δ.

▶ Example 11. The EI interpretation α(f)(x) = 2x−1 for n = 1 and I = {1} is not accepted
by the sufficient criterion for condition 2 in Theorem 6, but it is accepted via Lemmas 9 and
10, since α(f)(1 + y) = 2(1 + y) − 1 = 2y + 1 is clearly in EI when y ranges over N .

With the help of Lemmas 9 and 10 we are able to show that Theorem 6 fully subsumes
matrix interpretations as they are defined by Endrullis et al. [4] and Neurauter et al. [8].

▶ Theorem 12. If there is some relative termination proof via a matrix interpretation
following [4, 8], then there also is a relative termination proof using Theorem 6.

Proof. Given a strictly monotone interpretation in the style of [4, 8] with α′(f)(y1, . . . , yk) =
f0 + f1y1 + · · · + fkyk—where f0 is interpreted as matrix—we convert it into the EI inter-
pretation α with I = {1} and α(f)(x1, . . . , xk) := α′(f)(x1 − 1I , . . . , xk − 1I) + 1I . We get
the relationship α(t) = α′(t) + 1I for all ground terms t, and both interpretations define
the same ordering ((α(ℓ) − α(r)){z1/1I + z1, . . . , zm/1I + zm}) = α′(ℓ) − α′(r)). Moreover,
all conditions of Theorem 6 are satisfied for α by using the criteria in Lemmas 9 and 10
whenever α′ satisfies the criteria for a relative termination proof in [4, 8]. ◀

We briefly show that Lemma 9 is crucial for this subsumption result: given α′(f)(y) = 2y,
it is transformed into α(f)(x) = α′(f)(x − 1) + 1 = 2(x − 1) + 1 = 2x − 1, and accepting this
interpretation α by Theorem 6 requires Lemma 9, cf. Example 11.

Note that the very same transformation can also be applied in the other direction, so
core matrix interpretations can be turned into the ones of [4, 8] for the E{1} setting.

We do not know, whether similar transformations are possible for the MI setting. Here,
the complication arises that we cannot add or subtract a matrix to switch between MI and
N , since there is not a unique minimal element such as 1I in the EI case, but there are |I||I|

many of those: a matrix A is minimal in MI if for every i ∈ I there is exactly one j ∈ I such
that Aij = 1, and all other entries are 0.

We leave it as future work, to include further sets than EI and MI into the formalization
and into CeTA. Such an addition can be triggered if there is demand from the tool author
side.
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